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Abstract

In this PhD thesis application of numerical methods to simulation-based
optimization of solar thermal systems both in the planning process and in operation
is investigated. The optimization process starting from definition of a target
function and specification of optimization parameters, moving forward with
application of an optimization algorithm and ending up by sensitivity analysis at the
found optimum, is described in detail. A hybrid genetic CHC — binary search
algorithm is proposed and applied. As a combination of reliable global genetic
algorithm with fast local binary search, the hybrid algorithm is computationally
efficient, especially due to good parallelization, and reliable in finding the global
optimum. Application of the algorithm to design optimization of the solar heating
combisystem shows optimization potential of around 13% in terms of solar energy
costs or 19 percent points in terms of extended fractional energy savings when
compared to the system configuration planned by the experts. Pareto front is built
showing the optimal solar energy costs for desired energy savings of the system, or
vice versa. Influence of variation of domestic hot water and space heating demand
as well as geographical location on Pareto front and optimal combisystem
configuration is investigated. To determine the most important parameters and
quantify their influence on the solar energy costs function, three methods of the
global sensitivity analysis: multiple linear regression, Morris method and extended
Fourier amplitude sensitivity test are applied in two parameter spaces around the

optimum.

To overcome dimensionality problem when optimizing solar heating system in
operation, splitting long year optimization into many short ones is proposed and
applied to optimization of flow rates on hourly basis. Only negligible potential of
0.3 per cent points in terms of extended fractional energy savings is determined. A
significant potential is shown in another way for dynamic optimization of the
auxiliary heater control settings.

In the last part of the thesis a control-based anti-stagnation approach consisting of
induced inefficient daily collector operation and nightly cooling is proposed and
theoretically investigated. Minimal specific store volume required for stagnation-
free operation of the solar heating system is calculated for ten sunniest days in a
row without heat consumption. Influence of location, collector thermal loss
coefficient, solar radiation, day and night ambient temperature is analysed. Practical
implementation of the approach reduces the excess thermal energy by 33% during
the induced inefficient collector operation compared to the usual control strategy.
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Zusammenfassung

In Rahmen dieser Dissertation wurde Anwendung numerischer Methoden auf
simulationsbasierte Planung- sowie Betriebsoptimierung solarthermischer Anlagen
untersucht. Der detailliert beschriebene Optimierungsprozess beinhaltet die Definition der
Zielfunktion, die Auswahl zu optimierender Parameter und des Optimierungsalgorithmus
sowie die Methoden zur Sensitivititsanalyse in der Umgebung des Optimums. Fiir
solarthermische Anlagen wurde ein hybride Algorithmus, bestehend aus einem genetischen
CHC und einem bindren Suchalgorithmus, vorgeschlagen und angewendet. Der hybride
Algorithmus ist sehr effizient hinsichtlich des Rechenaufwands besonders aufgrund guter
Parallelisierungseigenschaften und zuverldssig bei der Identifizierung eines globalen
Optimums. Die Anwendung des Algorithmus auf die Planungsoptimierung solarer
Kombianlagen zeigt ein Optimierungspotenzial von 13% niedrigere Gestehungskosten
solarer Wirme bei gleicher solarer Deckungsrate (fsqyext) 0der 19 Prozentpunkte hohere
solare Deckungsrate (f;q,x¢) bei gleichen Wirmegestehungskosten. Weiterhin wurde eine
Pareto Front ermittelt, die die niedrigsten solaren Wirmegestehungskosten fiir eine
gewiinschte solare Deckungsrate zeigt und vice versa. Um die Stabilitidt der optimalen
Systemkonfiguration zu bewerten, wurden Warmwasserverbrauch, Raumheizung und
Standort variiert und ihr Einfluss auf die optimale Systemkonfiguration und das
Optimierungspotential untersucht. Dariiber hinaus wurden Methoden globaler
Sensitivitdtsanalyse herangezogen, um die einflussreichsten Parameter in der Umgebung
des Optimums zu identifizieren und deren Einfluss zu quantifizieren.

Betriebsoptimierung solarer Kombianlagen zu jeder Stunde des Jahres wurde ermoglicht
durch eine Teilung der jéhrlichen Optimierung in mehrere kiirzere Dauer. Es wurde
festgestellt, dass durch die optimalen Massenstrome in einer Solaranlage eine
vernachléssigbare Verbesserung von 0.3 Prozentpunkten fiir solare Deckungsrate erreicht
werden kann. Dynamische Optimierung von Reglereinstellungen der Nachheizung zeigt
hingegen wesentlich héheres Optimierungspotenzial.

AbschlieBend wurde eine Methode zur regelungsbasierten Vermeidung von Stagnation in
solaren Kombianlagen entwickelt. Diese Methode beinhaltet eine Reduktion der
Uberschusswirme durch einen bewusst verschlechterten Kollektorbetrieb tagsiiber und
eine Nachtsauskiihlung des Speichers. Fiir zehn sonnenreichste Tage in Reihe ohne
Wiérmeabnahme wurde das minimale spezifische Speichervolumen bestimmt, der fiir einen
stillstandsicheren Betrieb mit der entwickelten Betriebsmethodik bendtigt wird. Weiterhin
wurde der Einfluss von dem Standort, der Kollektoreigenschaften, der solaren Einstrahlung
und den Umgebungstemperaturen ermittelt. Praktische Anwendung der Methode zeigt,
dass im Vergleich zu einer iiblichen AT Regelung durch den bewussten ineffizienten
Kollektorbetrieb der Eintrag von Uberschusswirme in den Speicher um 33% reduziert

werden konnte.
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1. Introduction

1.1. Background and motivation

It is obvious that the energy is crucial for the mankind. Evolution of human beings
implies not only evolution of capabilities but also evolution of needs which enable
and facilitate their lives. With industrial progress human needs evolved
tremendously and increased the energy consumption. As I was finishing my school
in Ukraine in the middle of 90-th my mother bought me a personal computer and I
was the only one in my class who had a computer. Now, only two decades later, it is

hard to imagine.

Growing consumption of energy mostly supplied by fossil fuels causes
environmental problems with unpredictable consequences. Since it is not likely to
reduce human needs, the technologies come enabling efficient use of clean
renewable energy and in this way reducing environmental impact. However,
existence of even the best renewable technology does not necessarily mean its good
dissemination. Especially for those who do not have “saving environment” high on
their priority list, the new renewable technology must be not only efficient and
affordable but also profitable to gain their acceptance. Although the environmental
awareness i1s a key factor and it is encouraging that more and more private
households behave accordingly, the governmental incentives are being developed
and implemented in Germany and other countries in order to facilitate
dissemination by making renewable technologies more attractive. It is especially

important in times when fossil fuels prices are low.

Having the main focus on numerical optimization of solar thermal combisystems
designed for preparing domestic hot water and space heating in households, this
thesis makes an attempt to contribute to better dissemination of solar thermal
technology. Since operation of a solar thermal combisystem consisting of many
components connected together, is not simple, dynamic system simulations are
often required to investigate the system behaviour. Proper dimensioning of the
system components as well as efficient controller settings depend on changing
boundary conditions as weather, domestic hot water and space heating demand. In
addition to energetic performance, the dimensioning of combisystem must be
justified economically. All this makes finding the combisystem configuration
optimally designed in terms of lowest solar energy costs for a given location and

demand rather challenging.



1.2. Objectives and outline

1.2. Objectives and outline

Three main objectives are formulated and pursued within this study:

1. Estimation of potential of design optimization of solar heating combisystems
with numerical algorithms. How sensitive is the obtained optimum to
changes of boundary conditions or optimized parameters themselves?

2. Development of an approach for estimating potential of optimization of the
combisystem in operation

3. Development of the control based approach to avoid stagnation in solar

combisystems

As it is seen from the objectives, the focus of this thesis is on methodology
development and application. The present study is based on earlier research
conducted by Michael Krause at University of Kassel and described in his thesis
(Krause, 2003). However, the method applied for design optimization of the solar
combisystem as well as those for sensitivity estimations are different. Different
approach is also developed and applied to optimization of the flow rates in

operation.

Numerical model of the solar heating combisystem already developed for the
TRNSYS simulation environment (Klein at al., 2009) in the framework of the IEA
Task 32 is used throughout the thesis.

The thesis is structured as follows.

In Chapter 2 the investigated combisystem is presented and described in detail
together with the boundary conditions and performance indicators, following the
IEA Task 32 report (Heimrath and Haller, 2007).

Chapter 3 gives a brief overview of optimization methods, their strong and weak
sides. Structure and general scheme of genetic algorithm are described in more

detail. Three global sensitivity methods are introduced here as well.

In Chapter 4, an optimization problem is formulated for design optimization of the
IEA Task 32 solar thermal combisystem and a hybrid CHC — binary search
algorithm is proposed and applied for its solving. Pareto front between solar energy
costs and extended fractional savings of the combisystem is built basing on results
of several optimization runs. Influence of boundary conditions as weather
(geographic location of the combisystem), domestic hot water and space heating
demand on both the optimal combisystem configurations and Pareto front itself, is

shown and analysed. In the second part of the chapter, introduced sensitivity
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analysis methods are applied in the space around the optimum point to investigate
influence of single optimization parameters and two boundary conditions on the
solar energy costs. Special attention is paid to computational aspects such as
parallelisation potential of the methods. Convergence and reliability are addressed

as well.

In Chapter 5 a method is proposed enabling time-consuming hourly optimization of
the combisystem. It is based on an idea of separation of the whole year optimization
into many short ones. The presented method is applied to the estimation of potential
of dynamic flow rate optimization. Potential of the dynamic optimization of the
boiler controller settings is estimated in different way, by replacing the boiler
heating up the auxiliary part of the store by two electrical instant heaters placed in

domestic hot water and space heating loops.

In Chapter 6 a control-based anti-stagnation approach is proposed and theoretically
investigated consisting of inefficient daily collector operation and nightly cooling of
the store. Minimal specific store volume is determined which is required for
stagnation-free operation of the solar thermal system during ten modelled sunniest
days in a raw without heat consumption. Influence of the boundary conditions such
as solar radiation, collector heat loss coefficient, ambient day and night
temperatures, night cooling duration, on the minimal specific store volume is
theoretically estimated. Difficulties in practical implementation of the inefficient
daily collector operation, possible solution and results from field tests are addressed

as well.

In Chapter 7 the results of the thesis are summarized and limitations are discussed.
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2. Description of investigated reference solar thermal
combisystem

In this Chapter the reference solar thermal combisystem investigated throughout the
thesis is briefly described following (Heimrath and Haller, 2007). The reference
combisystem was proposed within a framework of the IEA Task 32 project. The
reference conditions and reference simulation environment were defined for
simulation of solar thermal comibsystems intended for domestic hot water
preparation and heating of the building. Figure 2.1 shows simplified schematics of
the solar heating combisystem consisting of water storage tank, solar collector,

auxiliary heater, two external heat exchangers, pumps, etc.

Auxiliary £
heater
@ Tap water

Collector @

) Space heating

O

= rem— {1

@@

Figure 2.1: Schematics of reference solar combisystem with auxiliary heating loop

A numerical model of the combisystem was built in the TRNSYS (Transient
System Simulation Tool) simulation program allowing user to perform numerical
simulations on the system under various boundary conditions. Each component of
the system modelled in TRNSY'S (so-called Type) is a mathematical model of a real
component, consisting of mathematical equations describing its physical behaviour.
In the following section, main components of the IEA Task 32 reference

combisystem are described in more details.
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2.1. Main components of IEA Task 32 combisystem

2.1.1. Storage

As the solar insulation profile usually does not match the load profile, in solar
thermal applications a short-term or seasonal thermal storage tank is needed to store
the energy delivered from solar collector. In the Task 32 combisystem the storage
tank filled with water as a store medium is the central component. It is modelled by
Type 340 “Multiport store model for TRNSYS” developed by Driick (Driick, 2006)
the present version of which describes a stratified fluid storage tank with up to four
immersed heat exchangers, an internal electrical auxiliary heater and a maximum of
ten double ports (inlet/outlet couples) used for direct charge or discharge of the

storage. Up to five temperature sensors can be implemented for control purpose.

There are four loops attached to the storage tank in the Task 32 combisystem. Since
the working fluid in the collector loop is a mixture of water and antifreeze, solar
collector loop charges the storage tank via a heat exchanger, external in our case.
Charging by auxiliary heater (boiler) is done directly through one of the double
ports. On the consumption side the storage tank is directly attached to the space
heating loop of the building using the water of the space heating as a store medium.

The domestic hot water preparation loop discharges the store via fresh water station.

None of the heat exchangers immersed into the storage tank is used in the Task 32
combisystem; the store is charged and discharged via the double ports (or external
heat exchangers and double ports) only. A study conducted at University of Kassel
shows only a little benefit of charging and discharging the store via internal heat

exchangers comparing to the external ones (Zass et al., 2007).

The stratified storage tank is modelled by N,,,,, completely mixed segments (nodes)
of equal volume. The higher N,,,,, the better the stratification of the store can be
modelled. N,,,, = 1 represents a fully mixed store. If for a double port the stratified
charging is chosen then the water enters the store at the node with the temperature
closest to the inlet temperature. Otherwise the inlet positions are fixed and the

incoming water is mixed up with the water in the respective node of the store.

Temperatures of the nodes are calculated by solving the system of differential
equations. For each node of the store the energy balance equation is written,

describing the change of its internal energy with the time as the sum of heat transfer
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caused by mass flows, heat transfer between the internal heat exchanger and the

node, conductivity with the neighbour nodes and the heat loss to the ambient.

The equation system is solved numerically in an iterative manner. The accuracy is
specified explicitly and the higher it is, the more iterations and calculation time is

required for the equation system to converge.

The energy balance of the whole store is calculated for each time step and the error
is summed up and printed out at the end of the simulation. The high error values

might indicate the convergence problems during simulation.

Heat loss capacity rate from the store to the ambient can be separately specified for
the bottom and top of the tank as well as for up to four different zones of the store
mantle. A correction factor is introduced (Heimrath, 2004) dependent on the store

volume to describe the imperfect insulation.
Auxiliary heated volume inside the store is fixed to 200 liters.

In Chapter 4, several store parameters are subject to optimization. They are the store
volume, auxiliary heated volume, thickness of the insulation, positions of the double
ports (if not stratified), position of the temperature sensor used for the collector

pump control.

2.1.2. Collector loop

On days with high solar insolation, the working fluid in the solar collector usually
warms up enough to be able to charge the store via the collector loop consisting of
solar thermal collector, external heat exchanger, collector pipes, pumps and

controller.

For simulation of the solar collector, the model (Type 832) developed by Perers and
Bales is used. It is a dynamical model which accounts for beam and diffuse solar
radiation, heat losses to the ambient and effective thermal capacitance of the
collector. Most collectors can be described by this model. For more information on
the model refer to (Perers and Bales, 2002)

Three reference collector types are defined in the IEA Task 32 with parameters

summarized in Table 2.1.
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Table 2.1: Reference collector parameters. Source: (Heimrath and Haller, 2007)

770’ as, az, Cp’ Kd, bo, Optical
Collector

- W/m?K  W/m?K?*  J/m?K - - mode
Flat-plate, selective 0.80 3.50 0.015 7000 090 0.18
Flat-plate, nonselective  0.75 5.46 0.021 7000 0.88 0.18
Evacuated tube 0.77 1.09 0.009 44400 0.95 4

For calculation of the incident angle modifier (IAM) for the flat plate collectors the
parameter b, is used (optical mode 1). For the evacuated tube collector the IAM is

calculated with use of an external data table (optical mode 4).

The counter flow external heat exchanger (Type 5) separates the collector loop with
mixture of the polypropylene and water as the working fluid from the water used as
the medium in the storage tank. On the primary side the heat exchanger is
connected to the collector pipes and on the secondary side directly to the double
port of the store. The UA-value of the collector heat exchanger is calculated

dependent on the collector area using an equation from (Heimrath 2004):
UAHX, = 88.561 * A.,; + 328.19,[W /K] (2.1)

In Chapter 4 the optimal UA-value of the collector heat exchanger is found for the

specific combisystem.

The specific flow rate on the primary side of the heat exchanger is set by the user.
On the secondary side it is calculated from the equality of the capacitance flow rates

on the primary and secondary sides as

msec = mpri * Cbri /Cwatr [kg/h] (2-2)

The heat losses are not taken into account by the heat exchanger model. To simulate
the heat losses in the collector loop, two 15 meter long copper pipes are introduced
connecting the heat exchanger with the solar collector. Diameter of the pipes and
their insulation are calculated based on the flow rate so that the velocity of the fluid
in the pipe is about 0.6 m/s. Pipe diameter and flow rate are optimized

independently in Chapter 4.

Primary and secondary pumps in the collector loop are controlled by a Type 2
hysteresis AT controller. The pumps are turned on by the controller when the
difference between readings of the temperature sensors mounted at the collector

output and at the bottom of the tank exceeds the upper dead band setting of the



2.1. Main components of IEA Task 32 combisystem

controller and switched off when this difference becomes smaller than the lower
dead band. Another two controller rules are implemented to prevent overheating in
the collector loop in case of collector stagnation and to protect the storage tank. The
primary and secondary pumps are switched off when either threshold fluid
temperature of 110 I at the collector output is reached or the temperature sensor at
the top of the storage tank shows the temperature higher than 95 €. The pumps are
turned on again only after the above temperatures fall 15 K and 5 K below the
corresponding threshold values, respectively. All the control preferences can be
easily changed by the user. The lower and upper dead bands of the AT hysteresis

controller are optimized in Chapter 4.

2.1.3. Auxiliary loop

When there is not enough thermal energy delivered by collector to fully cover the
consumption needs, the conventional auxiliary boiler turns on and charges the
auxiliary volume in the top of the store to fill the gap. In Task 32 combisystem the
auxiliary boiler is modelled by Type 370. To control the boiler a separate auxiliary
controller is introduced. It starts the boiler whenever the auxiliary temperature
sensor shows 8°C below the auxiliary set temperature T,y st and runs it until the
temperature T,y ser + 2°C 1s reached. The auxiliary boiler is connected with the
storage tank by a 10 meter long pipe which helps to avoid some instability
problems in simulation. Heat losses in the pipe are calculated with respect to the
constant ambient temperature of 15 €. The boiler set temperature, lower and upper

dead bands of the auxiliary controller are to be optimized in Chapter 4.

2.1.4. DHW preparation loop and load profile

Hot water stored in the storage tank is used both for the domestic hot water
preparation and for the space heating. The yearly profile for the domestic hot water
demand with a 6 minute time resolution is constructed using the DHWcalc tool
developed by Jordan (Jordan and Vajen, 2005). According to the profile, the
consumption of the domestic hot water is stochastically distributed over the days

having main loads in the morning and late afternoon. Daily hot water demand for a

single family house is supposed to be 200 [//d and for a multi-family house —
1000 1/d.

Preparation of the domestic hot water in Task 32 combysystem is performed via the

external heat exchanger Type 805 which delivers the required amount of hot water
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to the user, according to the consumption profile. When the consumption occurs,
the flow rate in the primary loop is adjusted in the way that the specified set
temperature 45 U 1s held constant on the exit of the heat exchanger. Temperature of
the cold water coming into the heat exchanger varies on a seasonal basis as a sinus
curve with an average value at 11 € and amplitude of 5 <. If the domestic hot
water demand cannot be fully covered by the combisystem on specific days, then
the penalties are applied. Similarly as in collector loop, a 15 meter long pipe is

introduced to account for the heat losses. Overall heat transfer coefficient of the

DHW heat exchanger is set to 5333 W /K and subject to optimization in Chapter 4.
Influence of the DHW consumption on the optimum of the solar combisystem is

investigated there as well.

2.1.5. Space heating loop

Heating of the building is provided by the space heating loop with the radiator
Type 362 simulating the room radiators. Before entering the radiator, the hot water
which comes from the store is mixed up in the mixing valve with the cold water
returning from the radiator to achieve the required temperature. The flow rate in the
radiator is determined by the PID controller keeping the air temperature inside the
building over the set temperature of 19.5C. At the time steps at which the air

temperature inside the building drops below 19.5 €, a numerical penalty is applied.

2.2. Reference climates and buildings

The weather conditions are the most sensitive input data for simulation of solar
heating systems, that is why careful preparation of the climate data is required. For
simulation of the Task 32 combisystem the locations of Stockholm, Zurich and
Madrid are chosen representing a wider range of the European climates. The
weather data profiles of statistical meteorological years for these locations are

generated based on the commercial database Meteonorm (Meteotest, 2016).

For simulation of the building, a two-storey free standing single family house with
the effective floor area of 70 m? per store, and glazed area mostly on the south
facade (12 m?2, 25% of the south fagade) is chosen. The building is simulated as a
single thermal zone. For more detailed information on wall and windows
construction elements as well as on internal gains, ventilation, electricity

consumption, thermal comfort, etc., refer to (Heimrath and Haller, 2007).
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Three building types with the same architectural design but different wall insulation
and window thermal quality resulting in different heating loads (30, 60 and
100 kWh/m?a for Zurich climatic conditions) are defined within Task 32 and
simulated along with the thermal heating system. Influence of the heating demand

on the optimum of the solar combisystem is shown in Chapter 4 below.

2.3. Performance indicators

Different indicators are used to measure the performance of the solar thermal
heating systems. In the Task 32 reference TRNSYS model the fractional energy
savings indicators developed in the previous IEA Task 26 and described in
(Streicher and Heimrath, 2002) are used.

The fractional thermal energy savings fsqptnerm measures in percentage the
reduction of the auxiliary energy input to the heating system due to utilization of the
solar energy:

Q
fsav,therm =1- Qau;c (2.3)
re

This indicator does not take into account the electricity use. The extended fractional
energy savings fsqy, e 15 defined in a similar way but it also includes the electricity

consumption of the system components like pumps, controllers, etc.

Qaux/0-85 + Wel/0'4 _ Esol

_ _ (2.4)
Qref/0-85 + Wel,ref/0-4 Eref

fsav,ext =1

As it is possible to reach high fc,, oxe and fsqy therm but meanwhile not to meet the
comfort criteria for space heating or domestic hot water preparation, another
fractional solar savings indicator, f;; is introduced in Task 32 reference system.
This indicator includes the penalty term Fpepgq;r, Which is added when the evaluated

system configuration does not meet the comfort criteria.

_ Qaux/0'85 + Wel/0'4 + Fpenalty —1— Esol + Fpenalty
Qref/0-85 + Wel,ref/0-4' Eref

fsi=1 (2.5)

As already mentioned above, the penalty functions are applied when either the
required domestic hot water temperature (45 <) cannot be supplied or the room
temperature drops below the desired set temperature (19.5 ). They are defined as
follows:
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Fpenalty = I'penpaw T+ Fpen,SHs (2.6)
Fpen,DHW = m b Cp b (ATDHW + [ATDHW + 1]4 - 1)/3600, [kWh] (27)
Fpensy = UA - (ATgy + [ATgy + 1]? — 1)/1000, [kWh] (2.8)

Where ATDHW = maX(O, 4‘5 - TDHW)’ ATSH = maX(O, 195 - Tair) al’ld UA =
165 W /K is the UA-value of the building.

Since it is not really reasonable to refer to fs4y oxe and fsqy therm Indicators without
satisfying the comfort criteria, the indicators are modified to include the penalty

function Fpep gy SO that fogy, oxe = fs; in simulations below.

2.4. Simulation in TRNSYS environment

A well investigated model of the reference combisystem in form of a TRNSYS
input (deck) file ready for simulation by TRNSYS software was created as one of
the outcomes of the IEA Task 32. To get accurate simulation results and to avoid
convergence errors during the simulation, settings of the simulation environment, in
particular, those of the TRNSYS solver, must be properly chosen. In (Heimrath and
Haller, 2007) dependency of the simulated performance indicators fqqy therms
fsavext and fg; on simulation time step and tolerance settings (convergence and
integration accuracy) is shown. The performance indicators show stronger
dependency on tolerance settings for smaller time steps (1 or 2 minutes). To obtain
consistent simulation results for Task 32 combisystem it was recommended to use
simulation time steps of 2 or 3 minutes and tolerances of 0.002 or 0.003 both for

convergence and integration.

The computational time needed for a one-year simulation of the combisystem grows
exponentially with simulation time step decreasing. From this reason a larger time
step of 6 minutes is used in optimization calculations below. Although the accuracy
is slightly worse than for 3 minutes time step, it seems to be a good trade off in sake
of computational time. For simulation time step of 6 minutes a one-year simulation

takes around 4 minutes on a computer with 2.2 GHz CPU.

In order to facilitate making changes to Task 32 deck file and to follow the
connections between system components more easily, a visualized studio version of
the text deck file was developed at University of Kassel (Wilhelms et al., 2008).

Simulations carried out in this thesis are to much extent facilitated by this version.



3. Introduction to numerical optimization and
sensitivity analysis

In this Chapter a brief introduction to the theory of numerical optimization and

sensitivity analysis with their application to engineering problems is given.

Despite the first works on optimization theory are dated back to the 18" century,
significant development of the most numerical optimization algorithms took place
in the second half of the last century and was closely connected with rapid
development of computational devices. The problems of calculating optimal
trajectories of space rockets, optimal control of robots, traffic jam prediction and
finding the best route are only few examples to solving of which the optimization

methods have been applied.

Optimization is literally around us. In everyday life we face the problems of the
optimal choice: when we buy something we look for the highest quality at moderate
price, when we play a game we try to find the best strategy, when we have too
much to do we try to plan our time in most efficient way, etc. In all cases we have a

plenty of choices and look for the best one.

In general words, task of the optimization theory might be defined as follows: to
identify the best solution from a vast collection of alternatives without having to
evaluate all of them. To achieve this, an optimization algorithm is needed which
performs a clearly defined sequence of logical steps, usually done in an iterative
manner, leading, step by step, to the optimal solution being sought. Quality of the
algorithm might be seen as a combination of two criteria: reliability with which the
optimal solution is found and cost in form of number of evaluations (or
computational time) needed for this. These criteria are controversial meaning that
the more reliable algorithm most probably needs more system evaluations and,
other way around, only a rough estimation of the optimal solution might be possible
with only a few evaluations of the target function. In the limiting cases, the most
reliable algorithm is to evaluate all possible candidates what is also the most time-
consuming or, on the other side, to pick up only one candidate and call it the
optimal solution with a reliability of only 1/(number of all candidates). Both
efficient and reliable algorithm lies somewhere in between. In practice, reliability of
the algorithm is difficult to measure, as the optimal solution is normally not known

in advance. It could be benchmarked on a series of test optimization problems
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having, for example, analytical solutions. As a result one might say that a particular

algorithm is doing well on some target functions and worse on others.

When choosing an appropriate algorithm for a given optimization problem, it is
advantageous to know the shape of the target function, optimum of which the
algorithm is going to find. More complicated target functions with many parameters

might demand more sophisticated algorithms.

3.1. Local and global optimization algorithms. Overview

Assuming that in a chosen parameter space a target function may have not only one
optimum point but several local ones, it could be difficult to say if the optimum
found by a certain optimization algorithm is the sought global one. It might be a
case that the algorithm is getting stuck in one of the local optimum points which is,
however, not the best one. The optimization algorithms able to find the global
optimum of a target function among all the local optima it has in a chosen
parameter space are called global optimization algorithms. The algorithms which
start at a certain given point of the parameter space and find an optimum usually
nearest to this point by following a certain path, are called the path-oriented
optimization algorithms or local optimization algorithms. There are also hybrid

algorithms which usually are combination of the above two.

In the following sections representatives of local, global and hybrid algorithms are

described in more detail.

3.1.1. Path-oriented optimization algorithms

The path oriented algorithms build in a stepwise manner a path along which they
follow to the optimum point. They start at a chosen point of the parameter space
which is called the initial point. At each step of the algorithm a direction is chosen
and an optimum of the target function in this direction is found. Steps are repeated
until no improvement of the target function in any direction is possible. In this way
the optimization of a complex multidimensional target function is reduced to the
series of searches along single dimensions (one-dimensional functions) each of

which is a slice of the target function in a chosen direction.

Steepest descent and coordinate descent methods, Hook-Jeeves method, gradient
methods, etc., (e.g., Nocedal and Wright, 2006), belong to the path oriented

optimization algorithms.
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Figure 3.1: Example of search trajectory of the steepest descent local optimization method
minimizing two-dimensional target function f(x,y) = xsin(3.5x) — ycos(4y) from initial point
(x=23,y=23)

In Figure 3.1 the path to a local minimum of the two-dimensional function
f(x,y) = xsin(3.5x) — ycos(4y) built by the steepest descent optimization
method is shown. The algorithm starts at the chosen initial point (x = 2.3,y = 2.3).
At this point the steepest descent direction is determined as an opposite to the
gradient of the target function. The algorithm finds the minimum point in this
direction and continues from this point in a new steepest descent direction. The path
of descent built by this method looks like a trajectory of a ball rolling down a hill to
the next lowest point. Just like a ball having normally not enough inertia to roll over

to the deeper valley, the algorithm may stuck in the nearest minimum.

3.1.2. Heuristic optimization algorithms. Evolutionary algorithms

Another class of the optimization algorithms called heuristic algorithms is inspired
by the processes occurring in the nature. Evolutions of species, behaviour of the ant

colony, hunting of grey wolves, swarm intelligence are only a few to mention.

Heuristic algorithms implicitly comprise of exploratory and focusing stages. In the

early stage of the algorithm the exploratory features of the algorithm dominate, the
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algorithm explores the parameter space in order to find the promising regions where
the sought global optimum might be located. In the later stage the focusing is of
more importance; the algorithm tries to converge to the global optimum, region of

which is roughly located in the previous stage.

As it was previously shown in works at University of Kassel (Krause, 2003) the
heuristic algorithms perform better than their path-oriented counterparts when
applied to optimization of solar heating systems. In comparison to path-oriented
methods they are more robust to small perturbations of the target functions and
usually find the global optimum. In Chapter 4 the CHC genetic algorithm is applied

to optimization of the solar heating combisystem.

A simple genetic algorithm is an example of the evolutionary algorithms (Goldberg,
1998). It mimics evolution of a species population which in natural environment
undergoes processes of selection, recombination (pairing) and mutation. Each
individual of the population is a parameter vector which belongs to the search space
of the optimization problem. Each single parameter of the parameter vector
describes an individuals” characteristic. For example, an individual of the animal’s
population is a bunch of its characteristics like height, eye or skin color, etc. An
“individual” of the solar heating systems” “population” is a system with its collector
size, solar thermal storage volume, flow rates, etc., as single characteristics

(parameters) which comprise a parameter vector.

By analogy to genetics, in genetic algorithms the population individuals are first
encoded to the so-called chromosomes consisting of genes representing single
characteristics of the individual. Usually the binary encoding by zeros and ones is
used but other encodings are possible as well. An example of an encoded population
individual is shown in Figure 3.2.

genes

k’m
1011{01{11001{111{0001

Figure 3.2: Example of binary encoding of a population individual (chromosome) consisting of 5
characteristics (genes)

As the length of the whole chromosome as well as each of its genes is finite and
fixed, the encoding of an optimization parameter automatically means its
discretization. In the case of binary encoding the number of sampling points per
parameter (i.e. resolution of discretization) is 2V where N is a length of the gene

representing this parameter. This length is specified for each parameter before the
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algorithm starts. For example, if for the parameter “Collector area” the encoding
length N = 2 and the variation range [11; 14] are specified, then the sampling
points which the algorithm may choose for calculation of the target function are
11,12,13 and 14 m?2. In genetic algorithms all “genetic” operations are performed
on encoded strings. To calculate the target function the parameter vector must be
decoded, as calculation (simulation of the solar heating system) can be carried out

only if decimal values are assigned to optimization parameters.

The genetic algorithm starts by choosing an initial population of N individuals
(parameter vectors) randomly distributed within the parameter space. For each
individual the performance, i.e. value of the target function is assessed. The
individuals who have better performance, that is, represent better solutions to the
target problem are favoured when selecting for reproduction. There exists a wide
variety of selection rules according to which the better individuals are being picked
up for recombination. The probability to be picked up directly depends on the
performance of the individual. Once selected, the pairs of individuals are
recombined, that is, certain genes are exchanged between them. In Figure 3.3 an
example of the one-point recombination is shown.

recombination

point 1 parent 1 child 1

[1011]01/11001]111]0001]  [1011]01]01100]/001] 1100]

| J >
[1101/11]01100/001/1100] ~ [1101]11]11001]111]0001]

| parent 2 child 2

Figure 3.3: Example of one-point recombination of two individuals

After recombination is complete, a new population of children called also as a new
“generation” of the individuals is created. In the last step of the genetic algorithm
the individuals’ genes are mutated in the way that their bits are inverted with

specified small probability.

Application of selection, recombination and mutation operators is repeated until a
predefined termination condition is reached, that is, the algorithm converges (see
Figure 3.4). In present implementation, this happens if no improvement of the target

function was recorded during last N generations.
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Figure 3.4: General scheme of simple genetic algorithm

3.1.3.Hybrid algorithms

As already noticed above, the hybrid optimization algorithms are the combinations
of global and local optimization algorithms. Having taken the advantages of both of
them, the hybrid algorithms are an attempt to build a reliable and at the same time
fast optimization algorithm. They normally start with the global optimization
algorithm running in the exploratory mode to locate one or a few promising regions
in the parameter space, where the sought global optimum might be found. After this
part is finished, the algorithm switches to a faster local optimization algorithm
which starts from the best solution found by the previous global algorithm and
converges faster to the optimum. In other words, the global algorithm is used to
roughly locate the valley of the global optimum; fine search is done at the second
stage by the local algorithm.

The challenge for the hybrid algorithm is choosing the point at which the
optimization by global algorithm switches to the local one. If it happens too early,
before the region where the sought global optimum is located, was found by global
algorithm, then the consequent optimization by the local algorithm might lead to a
local optimum and miss the global one. If it happens too late, then the computation

time might be wasted as the faster local algorithm was not started in time.

The hybrid algorithms are less reliable than the pure global optimization algorithms;
they are normally used to speed up the optimization process in the cases when

saving the computational time is crucial.
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3.2. Sensitivity analysis methods. Overview

Sensitivity analysis (SA) is a bunch of mathematical techniques used to assess the
relative importance of the input parameters for the output of a numerical model, that
is, the target function. The qualitative SA methods answer the questions like “which
input parameter influences the target function the most?” or what is similar: “which
of the uncertain inputs brings the most uncertainty to the target function”. Ranking
of the input parameters in order of their importance is also a task of the qualitative
SA. Quantification of the variation of the target function due to variation of the

input parameters is done by the quantitative SA.

Another principal division of the SA methods is based on their application domain,
whether they are applied locally at certain points of the input parameters space, or
they estimate parameters importance globally by exploring the whole space. In this

sense, the global and local SA are distinguished.

In the following subsections the global SA methods are described in more detail.
For introduction to SA methods and their application refer to (Saltelli, 2004).

3.2.1. Multiple linear regression

This subsection shortly introduces the multiple linear regression (MLR) and
describes its applicability to estimation of the influence of the parameters on the

target function around optimum.

MLR attempts to model the relationship between k independent variables x;, j =

1,.., k (system parameters) and dependent variable y (target function) in the form:

k
Vi = ,30+Z,Bjxij+€i, i:1,..,n, (31)
j=1

where y; are n measurements of the target function for corresponding parameter
vectors (x;q, .- Xj ), that is, system configurations Xx;; &; denote the model errors.
The estimates of the coefficients f;, denoted as b;,j = 0, ..., k, are calculated by
finding the least-squares error, that is, from Y-, € - min. The coefficient b, is
called intercept and it estimates the value of the target function when all the
parameters equal zero. The coefficients bj,j = 1,...,k are called slopes. They
represent the change in the mean of the target function y due to the unit increase in

the corresponding parameters x; when all other parameters are fixed. The fit values
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of the target function are obtained as J; = b, +Z§-‘=1 bjx;; and the residuals

between measured and fitted target function are e; = y; — ;.

To determine the quality of the model, that is, to check how well the measured
values y; are described by the fit, the determination coefficient or squared multiple

correlation R? is introduced as:

_ SSM SSE

RP=—— =1
SSTO SSTO’

(3.2)

where SSM = YT, (§; — ¥)? is the sum of squares of the model quantifying how
far is y estimated by the model from “no relationship” simple mean y of measured
data, SSE = > ,(y; — $;)? is squared sum of errors telling how much the modelled
target function differs from the measured one, and SSTO = Y™, (y; — ¥)? is the
total sum of squares describing how much the measured data vary around their
mean. SSTO = SSM + SSE.

The determination coefficient R? is a proportion of the variation due to the
regression model (SSM) in the whole variation of the measured data SSTO and
therefore it varies between 0 and 1. Small values of R? mean poor fit of the
measured data by the MLR model, whereas the values close to 1 show the good
quality of the model. In other words, R? - 100% shows how many percent of the
variation in the target function y can be explained by the model, that is, by the

parameters Xq, ..., X.

Besides the fit coefficients b; and determination coefficient R?, the statistical

software calculate the p — values which are the measures for statistical significance
of the parameters. More precisely the p — value shows how compatible the
measured data are with the so-called null hypothesis Hy: 8; = 0 stating that the fit
coefficient is zero, that is, the parameter x; has no impact on the target function.
The p — value is the probability of obtaining effect of the parameter at least as
strong as in the measured data sample when assuming that the null hypothesis is
true. For example the p value of 0.01 means that if assume the null hypothesis to be
true, at least the observed impact can be obtained in only 1% of samples due to
random sampling error. If the p value is small then one of the following is true:
either the null hypothesis is true but the measured data sample is so unusual or the
null hypothesis is false. Testing with other data might be useful for rejecting the
null hypothesis that is, stipulating the significance of the influence of the parameter

on the target function with more confidence. The levels of the p value smaller than
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0.001 and 0.01 indicate very strong and strong significance of the corresponding

parameter.

The n% confidence interval can be calculated for each regression coefficient ; as
well. It tells that other estimates of the regression coefficient which can be obtained
using different randomly sampled measurement data lie within this confidence
interval n% of time. In this study usual 95% confidence intervals are obtained for

the regression coefficients.

The MLR method is applied to estimating the portion of the influence of the solar
combisystem parameters on the chosen target function near the previously found
optimum. It is applied because the regression coefficients of the MLR model can be
easily interpreted and, in fact, they are the sought portion of the influence. Another
advantage of the method is that in contrast to the differential analysis in which the
influences are estimated only at the selected points, the MLR model is valid over
the space made up by variation ranges of the parameters. The method also allows
self-verification in the form of the coefficient of determination R? telling how much
variation in target function is explained by the linear model. If R? is relatively
small, in our case smaller than 80%, then other methods of the sensitivity analysis

should be applied.

3.2.2. Morris method

In contrast to the MLR, the Morris method can be successfully applied to the
problems having significantly non-linear relationships between the target function
and parameters. However, the Morris method can identify the parameter importance
only qualitatively providing no reliable quantification of its influence. Another
drawback is lack of the self-verification indicator similar to the MLRs coefficient of
determination R?.

Identification of the most important input parameters of the model is commonly
used for simplifying the existing model or rethinking its structure by eliminating the
parameters which have almost no influence on the target function. Ranking of the
parameters might also be beneficiary when choosing them for optimization of the
target function because exclusion of the unimportant parameters from optimization
process saves valuable computation time. After the optimal configuration of the
parameters is found another importance ranking in the vicinity of the optimal point
can be applied to determine uncertainty of which input parameter has the most

influence on the uncertainty of the target function and therewith lessens the
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optimization potential the most. In practical implementation these important

parameters must be handled particularly carefully.

In the case when a large number of parameters are to be ranked and, at the same
time, the number of model evaluations must be keep as small as possible, an
efficient experimental design is crucial. The screening SA methods fulfil this
requirement. They efficiently perform the qualitative analysis of the parameters
importance without really quantifying how much is one parameter more important
than another. Several screening SA methods have been proposed in the literature. In
this subsection the method proposed by Morris at (Morris, 1991) is described in

more details.

In the Morris method two quantities are used as sensitivity measures for each
parameter; the measure u estimates the overall, linear effect of the parameter on the
target function, and the measure o accounts for the second and higher order effects,
including interaction effects in which the parameter is involved. The Morris method
varies one parameter at a time. Each parameter may take only a set of discrete

values, the so-called levels, fixed within the parameter variation range.

The Morris method is simple in implementation and efficient at the same time as it
requires small number of model evaluations which grows only linearly with respect
to the number of investigated parameters. The drawback of the method is that it
analyses the so-called elementary effects defined below in (3.3), which are the
sensitivity measures at selected local points. As seen from the definition, the
elementary effect is similar to the derivative. The final sensitivity measure g,
however, is obtained by averaging the elementary effects calculated at a number of
local points and therefore can be regarded as the global measure over the whole
parameter space, not dependent on the specific point especially when the number of

points is large enough.

Basing on the sensitivity measures @ and o, the method of Morris determines which
of the input parameters can be considered as negligible, which have mostly linear
impact on the target function and which have nonlinear effect or are involved in

interactions with other parameters.

To describe the way, in which the sensitivity measures are calculated for each input
parameter, assume that the k input parameters take the discrete values from the unit
p-level set {0,1/(p — 1),2/(p — 1), ...,1} which must be appropriately rescaled for
calculation of the target function. By assuming such discretization of the input

parameters, the input space Q as the k -dimensional p-level grid is generated.
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The elementary effect of the i-th parameter at any selected local point x from €, is

defined as follows:

Xiy o Xi, Xi ¥ A, X501, 00, X)) — V(X
dl(x) — y( 1 -1 i+1 k) y( ) (3.3)
A
where A is a predetermined multiple of 1/(p — 1) and the point x is selected such
that the shifted point x + e; X A (e; is the unit transformation vector having one at

the i-th position and zeros at all others) remains within Q.

For each i, i =1,..,k, the elementary effects are calculated at a number of
randomly chosen points x from Q and their distribution is denoted by F;. In
(Campagnolo et al., 2007) it is proposed to consider the distribution G; of the
absolute values of the elementary effects along with F;. Here we follow it and take
w1, the mean of the distribution G; and o, the standard deviation of the distribution
F;, as the sensitivity measures upon which the importance of the input parameter is
determined. The mean value x of the distribution F; is less informative than u* of
G; because the elementary effects having opposite signs cancel each other in F;, and,
therefore, 1 may underestimate the parameters linear effect on the target function y.
Despite of this, ¢ might be used in no extra computational costs to identify if the
parameter has only positive or only negative effect (|u| and u* are nearly the same)
or the effect has different signs depending on the point at which the effect is

calculated (u* is large and || is noticeably smaller than u*).

The standard deviation o of the distribution F; is considered as a measure detecting
the nonlinearity of the parameters effect or the degree of its interactions with other
parameters. The value of o is large when the elementary effects of the parameter are
significantly different at different points (values of other parameter), where they are
calculated. In contrast, the small value of ¢ indicates that the considered parameter
is not involved in the interactions with other parameters (or this interaction is

negligible) and that its effect on the target function is linear.

3.2.3. Fourier amplitude sensitivity test

The Morris screening method described in the above subsection cannot be used for
quantifying the effect of the input parameter on the model output. For this the
methods of quantitative SA should be applied. These methods evaluate the “main
effect” also called “first order effect” S;, that is, the contribution of the parameter x;

to the variation of the target function defined in Bayesian notation as
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_vary[E(y/x;)]
B var(y)

; 3.4
where y is the target function, E (y/x;) is the expectation of y taken over the whole
parameter space x;,j = 1, ..., k,j # i but at the fixed value of the parameter x;, and
the variance vary is taken over all possible values of x;. The sum of main effects
describes how much variance in the target function is described by all parameters.

This value must be close to 1 if the FAST analysis is successful.

Another measure quantified by the quantitative SA is the total sensitivity index
which estimates the total effect of the parameter. For the model with three

parameters it is calculated as follows:
St1 = 81+ 512 + S13 + S123, (3.5)

where S, is the total effect of the parameter 1, S; is the first-order sensitivity index
of this parameter, its main effect, S;, is the second-order sensitivity index for the

two parameters 1 and 2, showing the two-way interaction between them, and so on.

In this subsection the Fourier amplitude sensitivity test (FAST) method for
estimation of main effect indices of the input parameters is described in more
details, following (Saltelli et al, 1999). To calculate the total effect indices the
extension of the FAST method was proposed in (Saltelli et al, 1999).

The FAST method appears to be efficient for estimating the sensitivity indices for
models with many input parameters, as it requires relatively small sample size, that
is, less model evaluations comparing to other quantitative SA methods, however,

still much more than it is required for the qualitative Morris method.

Let the target function y depend on the parameters x,...,x, by means of the
model f, y = f(x). Let also assume that vector x(xq, ..., x,) lie within the unit
hypercube K*(x|0 < x; <1, i =1,..,n).

Calculation of the main effects and interactions between the parameters is based on

the calculation of the following integral, denoted as the 7, moment of y:

Y@ = f fr(x)dx (3.6)
Kn

This presentation of y™ is true under the assumption that the input parameters are

identically and uniformly distributed in K™.
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In the FAST method, in order to avoid calculation of the multidimensional integrals,
the one-dimensional Fourier decomposition is suggested which is performed along a

search curve, exploring the hypercube K™. The curve is defined as follows:
x;(s) = Gi(sin(wi X s)), i=1,..,n, (3.7)

where s is a scalar variable, —o0 < s < +00, G; are the transformation functions,
and w; are the frequencies associated with corresponding parameters x;. Choice of
the transformation functions G; determines how uniformly the unit hypercube K™ is

explored by the search curve.

By varying the point s, values of input parameters x;(s) oscillate periodically and
independent of each other, with their own frequencies w;. The investigated target
function y will also show different periodicities connected with different
frequencies w;. The stronger the effect of the parameter x; on the target function y

1s, the higher the amplitude of oscillations of y at the corresponding frequency w;.

The search curve completely fills the hypercube K™ if and only if the frequencies
w; are selected according to the rule that none of the frequencies can be obtained by
the linear combination of the others, that is

n

riw; = 0 (3.8)
2.

i=1

for any integer r;: — o0 < 1; < 400, In this case the integral over the hypercube K"
in (3.6) can be replaced with the one-dimensional integral along the curve. With
account of (Cukier et al., 1978) and denoting f(x;(s), ..., x1(s)) as f(s), the iy,

moment of y can be then computed as follows:
s
yo =5 [ Fras (3.9
2m '
-1

By definition of the variance D of the model y and after omitting some intermediate

assumption:

2

D=y®— (y(1))2 _ % ffz(s)ds - [% ff(s)ds] (3.10)

Further, the target function f(s) is expanded in the Fourier series:
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+00
y=f(s) = z {Aj cos(js) + Bjsin(js)} (3.11)
Jj=—o00
with Fourier coefficients A; and B;:
A= ! f 's)d 3.12
=52 | f©)cos(is)ds (3.12)
1 T
B; = o ff(s)sin(is)ds (3.13)
-1

The power spectrum of the Fourier series expansion of y is defined as
— 42 2
Aj = A? + B; (3.14)

where j is an integer frequency, j € Z .
Summing up all A, p # 0 corresponding to each frequency w; and its higher

harmonics pw;, we get estimation of the portion of the variance D; in the total

variance D of the output y, which is due to the variation of the i;;, factor x;.

+o00
D; = Zpri = ZZAM (3.15)
p=1

p#0

because A_,y, = Apw,;-

The total variance D is then the sum of all A; (j # 0) and A_; = A;

+00
D =ZAj=ZZA,- (3.16)
j=1

j#0
The ratio D; /D calculated in this way estimates the main effect of the i;, parameter
x; on the target function y.
The minimum sample size for calculation of the main effects was shown to be

Ng = 2Mwy 0, + 1 (3.17)
where M is the interference factor, usually chosen to be 4 or higher, w,,,, is the
largest frequency among w;.

Suggestions on the appropriate choice of the transformation functions G;,

frequencies w; as well as the optimal sample size are given in (Saltelli et al., 1999).






4. Numerical optimization of solar thermal
combisystems in planning process. Application of
sensitivity analysis around optimum

In this Chapter, the methods of numerical optimization and sensitivity analysis are
applied to the solar thermal combisystem described in Chapter 2. Choice of the
target function and parameters of the combisystem that might have influence on it

has been discussed along with construction of the optimization algorithm.

An optimization process of the solar heating system can be seen as an improvement
of the system as a whole, improvement of its single component, connections

between the components in the system, the way in which the system operates, etc.

Before the numerical optimization can be performed on the system the following

questions must be cleared:
What should be optimized?

The boundary of the system to be optimized must be clearly defined in advance and
an approved mathematical model of the system as long as possible validated by
measurements must be provided. These are the prerequisites to successful
optimization.

What is the purpose of optimization?

We try to improve the system so that it becomes optimal in some reasonable sense.
It is not always easy to define this “reasonable sense” appropriately because often
controversial criteria must be taken into account, for example, energy output of the

system and its costs.
What should be adjusted on the existing system?

Optimization is only possible if there is a degree of freedom, that is, it is possible to
adjust some parameters of the system as, for example, dimensions of single
components, controller settings, etc. All parameters which seem to have impact on
the purpose of optimization and can be varied in specified variation ranges are
reasonable to optimize.

What optimization algorithm should be used?

Among plenty of algorithms already successfully applied to solving other
optimization problems, the one must be chosen to carry out optimization of the solar
heating combisystem. The reliability and computationally efficiency of the

algorithm are of key importance.
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Numerical optimization has already been successfully applied to optimization of
solar combisystems. (Fiedler et al., 2006) applied Hook-Jeeves algorithm to
optimization of auxiliary heater settings. (Bornatico et al., 2012) used Particle
Swarm optimization algorithm to optimization of main components of solar thermal
system and compared with results of genetic algorithm. (Cheng and
Zmeureanu, 2014) applied a hybrid Particle Swarm — Hook Jeeves algorithm to
optimization of solar combisystem with respect to life cycle cost, energy use and
exergy destroyed. (Rey and Zmeureanu, 2016) used multi-objective particle swarm
optimization algorithm to build a Pareto front between life cycle costs and life cycle

energy.

In the following the target function is defined, optimization parameters and

optimization algorithm are selected for optimization.

4.1. Target function

During design of solar thermal systems or their single components the important
compromise between the energetic performance and costs must be found. It is
almost always possible to construct a huge solar heating system which will cover
user heating demand to 100% but will be so expensive that it becomes not
economically reasonable. Vice versa, with no investments there is no system what
can be an optimal choice at certain boundary conditions, for example, when fossil
fuel prices are low enough. As it is easily seen, energetic performance and costs are
controversial criteria: maximization of the energetic output mostly leads to increase
of the costs. However, in certain cases when the investment costs do not change
with changing the system configuration, it is possible to come up with energetic
criterion only. For example, decision on the heights of inlets and outlets of the solar
store may be made basing on the energy output of the system unless putting the
inlets or outlets in some definite positions requires additional material or labour
efforts. The same is true for optimization of the controller settings, altering of which
1s usually not connected with additional costs, unless the adjusted controller settings

lead to, for example, more electric consumption of the pumps.

In the planning process of the solar thermal system, the dimensions of the system
components or their type are relatively free to choose with some natural restrictions
(house roof area for the collectors, cellar volume for the storage, etc.). Obviously,
the costs for the whole system will vary with changing the dimensions of its

components and these costs must be reflected in the target function.
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The target function for design optimization of the solar heating systems usually
consists of energetic and economic parts. The both parts, however, are not easy to
estimate. Calculation of each of them has different sources of uncertainties.

As already mentioned in Chapter 2, the energetic performance of the solar heating
systems can be estimated by several performance indicators. In this study the solar
combisystem is optimized for minimum cost per kWh of saved auxiliary final
energy. The target function dependent on the set of the optimization parameters
X ={x4,...,xy} which are listed in Table 4.1 in the following section, installer
margin m and interest rate r (both explained in subsection 4.1.2), is constructed as

follows:
Feost X,m,r)
Eref — Eso1 X) + Fpenalty (fsave,ext X), C)

Ftarget (X: ¢,m, T) = (4. 1)
having in the numerator economics of the combisystem represented by its annuity
costs F.,:(X,m,r) and in the denominator the energetic performance in sense of
saved auxiliary energy calculated over a year. ﬁpenalty is the penalty function

applied when the required level of extended fractional savings c is not reached.

4.1.1. Energetic performance of the combisystem

As already mentioned above the energetic performance of the combisystem is
described by the denominator of the target function (4.1), in which

Eref = (QSH + QDHW + Qloss,ref)/0-85 + Epar,ref/0-4 (4-2)

1s the auxiliary final energy consumption of the reference heating system with Qgy
and Qpyw denoting space heating and domestic hot water demands, respectively,
Quossref - the heat losses of the reference store and E g, oy — parasitic electrical

energy consumption by the reference system, i.e. electrical consumption by the
pumps, controller and boiler. Energy consumption of the solar combisystem is
defined by

Esol(X) = Qaux,pen(X) + Epar,sol(X)/OA' ’ (4-3)

where Epq. 50 1s the parasitic electrical energy consumption of the solar
combisystem. Qgyxpen 1S the auxiliary energy consumption including penalties for
not meeting DHW and SH demands described by Fyepngity from (2.6). It is defined

as follows:
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Qaux,pen X) = Qaux (X)/0-85 + Fpenalty X) (4.4)

Boiler efficiency is set to be constant 0.85 throughout its operation and the

electricity is produced with the efficiency of 0.4.

The energetic performance of the combisystem is measured by the amount of saved
auxiliary final energy E,.r— E;,(X) over a year. The third term ﬁpenalty in
denominator of (4.1) is the penalty added to the target function if the extended

fractional energy savings f defined being equal to f;; from (2.5), are less than

sav,ext’

a given value c. This term is needed only if the extended fractional energy savings

f savexe OF the optimized combisystem are required to be not smaller than ¢. Fpenairy
describes how much solar gains are missing in order to reach f =c. Itis
sav,ext

defined as follows:

fsav,ext(X) =C ﬁpenalty(fsav,ext(X): C) =0 (4.5)
fsav,ext(X) <c : Fpenalty(fsav,ext(X)» C) = (1 - C) ' Eref - Esol(X) (4-6)

To calculate energetic performance, a one-year simulation of the solar heating

combisystem is carried out by the TRNSYS simulation software environment.

Calculation of the energetic performance is coupled with uncertainties which are
coming from input data (weather conditions, load profiles, building envelope, etc.),
the numerical models of the components and from TRNSYS environment itself. In
this study, however, the magnitude of uncertainties has not been estimated and,

thus, their influence on the optimization results is not taken into account.

4.1.2. Costs of combisystem

To determine the costs of the combisystem described by the numerator of the target
function Figpger defined in (4.1), comprehensive market study is required. It is
connected with large uncertainties due to variety of the solar thermal components of
different quality present on the market. Furthermore, the prices of the system
components, transportation costs, interest rate, etc., are noticeably time dependent,
different special offers influence the cost function as well. All this together with
non-transparency of the installer price margins makes determination of the cost
function quite difficult.

In this study a simple calculation of the prices of single system components is
attempted. If any optimization parameters from Table 4.1 below have an impact on

the price of a certain system component then the price function for this component
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is built which is a dependency of the component price from the magnitude of these

parameters.

The price functions are built for each component basing on the offers of online
discount suppliers. Dependency of the price on the optimization parameters is
chosen in the form of polynomial up to the second degree and the unknown
coefficients of the polynomial are determined by performing linear or multi linear
regression. Component price functions obtained in this way are listed in
Appendix A.

As already mentioned, the prices offered by the online discounters are taken as the
regression data. They seem to be the cheapest retail prices on the market accessible
for the end user and probably be the best approximate for the wholesaler prices. The
component prices offered by the installers most likely already include their margins
which might be different for different components and also vary from installer to
installer. For example, one installer might add 30% to the price of collectors and
50% to the store price offered by the wholesaler whereas another installer might do
vice versa. From this reason the component prices offered by the discounters and
not the installer prices are chosen to be appropriate for building the cost function of
the solar combisystem.

On the other hand, however, it seems unlikely that the end user will succeed to hire
the installer to build up the combisystem out of the user’s own components bought
by the discounter. From one side the end user has usually not enough experience to
buy the correct components in correct sizes and from the other side, the installer
will most probably neither guarantee nor assume the responsibility for the
combisystem built up out of such components. From this reason, to estimate the
final price for each component C;,i = 1, ..., N for the end user, the discounter price
Feostaisc(C;) (see Appendix A) is corrected by the factor m representing expected
installer margin, supposed to be the same for all components. To get the final
capital costs Feos¢cqp the installation costs equal to 20% of the price for solar

combisystem are added.

N
Fcost,cap X,m)y=12-m- Z Fcost,disc(ci) 4.7)

i=1
The final capital costs F,gcqp depend implicitly (through the functions
Feostaisc(C;)) on at least some of the optimization parameters X. In the present

implementation the capital costs include German value added tax equal to 19%
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Following the annuity method, the annual payments due each year over the lifetime
of the solar combisystem at the given interest rate r are calculated as follows:

(1+7r)%0.r

Feost (X, m, 1) = (1+7)20 —1

' Fcost,cap (X: m) + 0.007 - Fcost,cap (X: m) (4'8)

The lifetime of the combisystem is set to 20 years and it is not varied in any of the
following optimizations. Second term in (4.8) describes annual maintenance and
insurance costs. These costs discounted to the installation year, equal around 11%
of the capital costs F,q5t cqp for the lifetime of the combisystem and the interest rate

of 2.5% (r = 0.025).

The cost function F,,;(X) with interest rate of 2.5% and m = 1.5, meaning that
50% is added to the discount component prices as an installer margin, is used in the
target function Fig.ge:(X,c) from (4.1) in the following optimizations. Other
annuities  Feose coner (X) = Feose(X,1,0.025)  and  Fopge coner (X) = Frose(X,1,0)
both representing the costs with different interest rates of 2,5% and 0%,
respectively, for the company which installs the solar thermal systems (m = 1), are
calculated as well. After subtracting the value added tax (Fs;cone(X)) and
substituting into (4.1), the costs per kWh of saved auxiliary final energy are
obtained for the installation company doing, for example, the energy contracting.
The cost function F2 (X) = F,.s(X, 1.5,0), that is, the cost function for the end
user (m = 1.5) investing its own savings (r = 0) in a solar combisystem 1is
presented in the results below as well.

After substituting the annuity cost functions into (4.1) the corresponding target
functions, are obtained. Since all the cost functions derived here do not change the
weighting of the capital costs F ¢ 4i5c(C;) of single components under the sum sign
in (4.7) but only modify the sum as the whole, the optimum system configuration

X = X,p¢ received for one of the functions is also the optimum for all others.

4.2. Optimization parameters

Before the optimization algorithm may start, the parameters of the system, values of
which are believed to be not optimal and are to be changed in order to improve the
existing system, must be specified. Not only the parameters themselves, but also the
variation ranges in which the parameter values can be varied during optimization
are to be chosen. Too wide variation ranges will most likely slow down the

optimization whereas too narrow ranges may cause missing the optimum when the
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optimal parameter value lies beyond the specified variation range. In this case the
optimal value of the parameter found by the optimization algorithm will probably
lie exactly on the boundary of the variation range. It is a good indication that for

this parameter the variation range must be extended beyond this boundary.

In general, parameters to be optimized as well as their variation ranges can be
chosen independently from each other, that is, without taking care about possible
correlations between parameters. However, for any two parameters which are
involved in interactions with regard to the target function (f.e. flow rate and pipe
diameter), the variation ranges should be chosen such that none configuration of the
values (f.e. flow rate chosen large and pipe diameter — too small) will cause the
system simulation to fail. Large number of such “invalid” configurations may

mislead the optimization algorithm.

In this work, 18 parameters of the solar heating combisystem have been adjusted in
the process of optimization in order to get the optimal value of the solar energy
costs (4.1). They comprise such design parameters as collector area, store volume,
insulation thickness, UA-values of the heat exchangers, pipe diameter, inlet/outlet
positions, etc., and operational parameters as flow rate, set temperature of the
auxiliary heater, dead bands of the collector and auxiliary heater controllers. All the
optimization parameters with their variation ranges, discretization steps and
corresponding coding lengths used in genetic algorithm, are listed in Table 4.1. In
several optimizations below the variation ranges of certain parameters are modified
so that the optimum lie within the variations ranges.

Table 4.1: List of optimization parameters with variation ranges, discretization steps and coding
lengths for optimization algorithm. For several optimizations with large extended solar fractional

savings in below variation ranges of collector area and store volume are changed in order to
include optimum

Parameter Variation range Step Coding
length
1. Collector area, m? [5:36] 1 5
2. Store volume, m3 [0.5;2.0] 0.1 4
3. Number of auxiliary nodes [5;20] 1 4
4. Insulation thickness, m [0.05;0.8] 0.05 4
5. Pipe inner diameter, mm [10;40] 2 4
6. Specific collector flow rate, kg/m?h [5;36] 1 5
7. AT controller upper dead band, K [4;11.5] 0.5 4
8. AT controller lower dead band, K [0.1;4.0] ~0.25 4
9. AT temperature sensor position in store [0.01;0.3] ~0.02 4
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10. UA value of external solar HX, W /K [1000;5500] 300 4
11. UA value of external DHW HX, W /K [1000;10300] 620 4
12. Collector inlet position in store [0;1] ~0.03 5
13. Space heating outlet position in store [1— Vaux/Vstores 1] ~0.06 4
14. Space heating inlet position in store [0.075;0.3] ~0.02 4
15. Set temperature of auxiliary heater, °C [50;70] ~1.3 4
16. Auxiliary controller upper dead band, K [4;16] 0.8 4
17. Auxiliary controller lower dead band, K [0.5;4] ~0.25 4
18. Collector slope,® [40;71] 1 5

4.3. Hybrid genetic CHC - binary search optimization

algorithm

The solution found by the optimization algorithm is the system configuration
optimal with regards to a chosen target function. Whether the found solution is
really the optimal one and how efficient the performed operations are, are the
questions of reliability and efficiency of the algorithm. As already noted, there are
global optimization algorithms which are, as a rule, reliable but not really efficient,
and the local ones being relative fast but not really reliable. Hybrid optimization
algorithms are an attempt to make the reliable global optimization algorithms faster
by coupling them with computationally less expensive local algorithms. In this
work the CHC genetic algorithm is coupled with the local binary (n-ary) search
algorithm.

4.3.1.CHC genetic algorithm

The CHC genetic algorithm, implemented in this work is a modification of the
simple genetic algorithm (see Chapter 3). It was developed by Eshelman and
described in (Eshelman, 1991). The CHC abbreviation stands for Cross generational
elitist selection, Heterogeneous recombination by incest prevention and

Cataclysmic mutation. General scheme of CHC algorithm is shown in Figure 4.1.

The CHC algorithm monotonically collects the best individuals found so far. It
starts with an initial random parent population similarly as a classical genetic
algorithm. The recombination is done by the half uniform crossover called HUX,
which swaps each bit with a probability of 0.5 between two individuals chosen

randomly from the parent population. In this way both children get approximately a
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half of the bits from each parent. An example of the HUX crossover is given in

Figure 4.2.

Initial random
parent population

v

<

— |parent population n|
cataclysmic
random selection No mutation
v
o mutate \Yes
HUX recombination condition
Y
child population n T
l No
v
arent population n+1 —_ Yes_) END
P pop condition

Figure 4.1: General scheme of CHC algorithm

parent 1 | |

parent 2 | |

child 1 |

child 2 |

Figure 4.2: Example of HUX crossover. Children get half of bits from parent 1 and another half
from parent 2. Crossover points are chosen randomly

Selection of the parent individuals for recombination is performed randomly with
the restriction, that their binary encodings must be a certain Hamming distance
(number of the bits in which the binary encodings differ one from another) apart
from one another. For example, two parents with binary encodings
"100011100101" and "100100110011", respectively, are not allowed to be
chosen for recombination if the required Hamming distance is larger than 6. Such
“incest prevention” is designed to promote diversity in the offspring population.
However, in progress of optimization the required Hamming distance is being

gradually decreased allowing the algorithm to converge to the optimum.
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After recombination, the N best individuals are drawn from both the parent and
offspring populations to create the next parent generation (see Figure 4.1).

Other than in classical genetic algorithm, in the CHC algorithm no mutation
operator is applied to the population individuals. However, when the population
converges to the point that it begins to reproduce nearly the same individuals and
the best value of the target function does not improve for a specified number of
populations, then the cataclysmic mutation is performed. It heavily mutates all the
individuals except for the best one, preserving the monotonicity of the best value of
the target function. In the proposed implementation 35% of the bits are mutated.
The cataclysmic mutation promotes diversity by adding new genetic material to the
optimization and is able to kick the algorithm out of the local optimum in which it
might be stuck.

The CHC algorithm typically uses small population sizes.

4.3.2. Binary (n-ary) search

The binary (n-ary) search also known as half-interval search is a simple one-
dimensional search. It runs along one parameter at a time, while the other
parameters remain fixed. Schematic description of the n -ary search with n = 4
along the chosen optimization parameter X is shown in Figure 4.3.

First, the variation range of the parameter X is divided by n + 1 = 5 equidistant
points X 1, X2, ... X1,5 at which the target function F,,. 4, is calculated. The points
X1, and x; 3 nearest to the best point x; , are then chosen as the boundaries of the
new range for the second run. In this run Fy4.g must be calculated at only two
points x,, and x,, because it has already been calculated at the remaining points
X21, X3 and x,s. The m-ary divisions are repeated until the value of target
function does not significantly improve, that is, a given precision or discretization
deepness is reached. After that, the n-ary search fixes the optimized parameter X to
the obtained optimal value (x5, in Figure 4.3) and moves to the next optimization
parameter. This outer parameter cycle repeats over all parameters so many times
until the target function Fig.4.; cannot be improved any more, that is, the
algorithms stops if the best value of the target function in the i -th run Figp g0

equals the best value Fiqyger i1 Of the previous i — 1 -th run (see Figure 4.4).
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Ftarget
X ] X X3 X4 X5 X
X;, X;5 X;3 X4 Xis
Xip Xz Xus Xpy Xy

Figure 4.3: Example of an one-dimensional optimization by the n -ary search with n = 4. In each
deep runi, i =1,..,3 target function F,, g is calculated in equidistant points x; j, j = 1,..,5 and
the point with the best Fq,4.; is taken as the middle of the interval for the next deep run

optimize along all parameters in a turn ( i -th run):

hd

Par1 |—| Par2 — Par X — Par N

J{ F target, i

i=it+] No Yes

End

Figure 4.4: Scheme of outer loop of the n -ary search. In each i —th run target
function Fi4,4e¢ Is Optimized along all parameters in a turn as shown in Figure 4.3.
and then the optimal Fiu.ge; IS compared with optimal Figpgee;—1 from the
previous run

The n-ary search is the local optimization method as it optimizes only one
parameter in a turn. However, on the contrary to the path-oriented methods which
start from the initial point and move only in the direction where the target function

can be locally improved, the n-ary search algorithm checks the function at n points
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and it is therefore more robust and may avoid local optima as shown in an example
(Figure 4.3).

4.3.3. Coupling CHC and binary (n-ary) search algorithms

Switching from the CHC algorithm to the n-ary search occurs when the best
individual of the CHC has not been significantly improved for a given number of
population generations. If the target function is expected to have not a very complex
surface and the CHC algorithm hits the basin of the global optimum relatively fast,
then it could be reasonable to switch to the n-ary search before the cataclysmic
mutation of the CHC algorithm takes place. Otherwise it is better to sacrifice more
computational time to the CHC algorithm and switch to the n-ary search after

mutation.

The pure CHC algorithm is, in general, more reliable in finding the global optimum
as it widely explores the searching space. But even this algorithm might stuck in the
local optimum in the case if the population size is chosen too small or restriction on
the Hamming distance between two mating individuals is too weak. It is possible in
this situation that the n-ary search hits out of the local optimum and reaches if not
the global optimum then at least a better local one. The results below show exactly

such a case.

The proposed hybrid algorithm should be carefully tuned with a closer look onto the
complexity of the target function. To ensure the reliability, it is recommended to run
the same optimization several times each time starting with different initial
population, that is, different parameter values and running different ways to the
optimum. If the optimization results are (nearly) the same in all runs, then it is more

likely that the global optimum has been reached.

4.3.4. Implementation in GenOpt. Coupling with TRNSYS

The proposed hybrid algorithm was coded in Java programming language and
implemented in generic optimization software (GenOpt) (Wetter, 2008). GenOpt
provides standard routines for input/output, interaction with the simulation
software, error handling, etc., what lets the developer to fully focus on the algorithm
implementation. GenOpt software can be easily coupled with any simulation
environment like TRNSYS, input/output of which can be done via usual ASCII-
coded text files. The information flow between GenOpt and simulation program is

shown in the Figure 4.5.
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GenOpt starts with reading the initialization, configuration and command text files
through which it gets the locations of the files needed for simulation, description of
the optimization parameters and settings of the chosen optimization algorithm. The
optimization algorithm prepares the input file for TRNSY'S, by assigning the values
to the optimization parameters in the so-called simulation template file which
describes the model to be optimized. GenOpt starts TRNSY'S simulation and after it
is successfully completed, reads the value of the calculated target function from the
specified simulation output file. Based on it, the optimization algorithm decides on
new values which are to be assigned to the optimization parameters, prepares next
input file and runs the simulation again. This loop repeats until the terminating
condition of the optimization algorithm occurs. If the TRNSYS simulation
terminates with an error then an appropriate error message appears in the GenOpt
graphical user interface and the optimization algorithm is informed about it. It is up
to the algorithm to decide how the simulation errors shall be handled. In the
implementation of the hybrid algorithm, a large value of target function is assigned
to such an “invalid” parameter configuration to possibly skip it in successive

populations, but the optimization does not terminate, it continues running.
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Figure 4.5: Coupling GenOpt with a simulation program, information flows. Source: (Wetter,
2008)

For more detailed description of coupling GenOpt with TRNSYS refer to the
GenOpt manual (Wetter, 2008).

4.3.5. Potential of Parallelization

Genetic algorithms in common and the proposed hybrid algorithm in particular can
be easily parallelized on multi-core CPUs to decrease the computation time of the
algorithm and achieve the efficient use of the hardware. Simulations done by the
genetic algorithms to calculate the target function for each individual in a certain
generation may run in parallel as they do not exchange any information and do not
depend on each other. Let the population size be N, and at least the same number of
CPUs is available. Consider an ideal case when simulation runtime is the same for
calculating the target function for all individuals, that is, it does not depend on
system parameter configuration. Then the simulation of the whole genetic algorithm
may be decreased in N times by means of parallelization. In practice, runtimes of
single simulations are unequal not only because TRNSYS simulations for some
system configurations last longer than for others but also because it might be the
case that some of N available CPUs must be shared with other applications running

on the same machine. Some CPUs will stay idle after finishing their simulations
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waiting for other CPUs which still calculate. From this reason for genetic algorithm

with population size N the parallelization potential will be less than N.

In general, potential of parallelization for the hybrid CHC — binary search algorithm
is lower than for the pure CHC algorithm because for the binary search algorithm
the number of simulations which can be run in parallel is normally less than the
population size N of the CHC algorithm. If more than one optimization is to be
done it looks reasonable to start them in parallel to use idling CPUs more

efficiently.

Parallelization does not necessarily mean the investment into an expensive multi-
core server in order to be able to implement it and use its benefits. Distributed
computing which is performed on available computational resources in the network
might be used as well. The parallelized version of the current implementation of the
hybrid algorithm was coded and run on computers in the network by means of open
source HTC Condor (High Throughput Computing) distributed computing software.
The HTC Condor software performs all the management tasks like monitoring the
available computational resources (CPUs) in the network, submitting und running
the jobs (simulations) on these CPUs, migrating the job if the CPU is no more
available, etc. See the HTC Condor manual (HTCondor, 2017) for further

explanations about installation and running jobs within HTC Condor environment.

4.3.6. Reliability

The probability with which the optimization algorithm hits the optimum is one of
the most important characteristics of the algorithm and it is called to be the
reliability of the algorithm. The optimization algorithms are tested on certain mostly
analytical target functions of different complexity for which the optimum points are
known in advance. The algorithms are tested for reliability (how often they found
the optimum) and benchmark (how fast they found the optimum). After testing one
may assert that a particular algorithm works better on some functions and worse on

others.

In real applications the complexity of the target function and particularly where its
optimum 1is located are, as a rule, unknown. Thus, the reliability of the algorithm
cannot be easily estimated. In this case, the algorithm is run a number of times each
time starting with different randomly chosen initial population. If the optimum
found after each optimization is the same or nearly the same, then the probability is

high that it is the sought global optimum, and that the algorithm is reliable.
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Otherwise, the algorithm settings must be tuned up in order to enhance diversity, for
example, by increasing the population size, allowing more cataclysmic mutations in

CHC algorithm, etc. If this does not work, another algorithm should be chosen.
In this study, to test the reliability, the hybrid CHC — binary (n-ary) search

algorithm was started 6 times in a row for chosen optimizations. All the optima
found by the algorithm differed less than 1 — 2% from their mean value, depending
on the number of optimization parameters, boundary conditions and system
configurations. This means that most probably the global optimum was found each

time and the algorithm might be seen as a reliable one.

4.4. Results of optimization

The proposed above hybrid CHC — binary (n-ary) search optimization algorithm is
applied to optimization of the solar combisystem described in Chapter 2. The solar
combisystem supplying heat to a two-story single family house located in Zurich,
Switzerland is to be optimized. The house has 140 m? of the floor area, space
heating demand of 60 kWh/m?a and domestic hot water consumption is set to
200 1/d. List of optimization parameters which are varied during the optimization

is given in Table 4.1 and the target function Fyyge, 1s defined by (4.1).

4.4.1. Behaviour of hybrid CHC - binary (n-ary) search algorithm

In Figure 4.6 improvement of the target function Fi4,.gor With ¢ = 0.3, that is, with
the extended fractional savings fs4y, exe Of the combisystem required to be not less
than 0.3 is shown for one run of the CHC - binary search hybrid optimization
algorithm. Overall 3642 calculations of the combisystem are started by the
algorithm from which 2180 are unique, that is, for that many combisystem
configurations TRNSYS simulations are carried out. The exploratory CHC part of
the algorithm (solid line in Figure 4.6) is run up to the simulation number 2261 and
then the algorithm switched to local binary (n-ary) search (dashed line). Overall
1511 unique simulations are started by the CHC algorithm and 669 by the binary

search. This ratio is rather typical for optimizations presented in this study.
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Figure 4.6: Progress of optimization by CHC - binary search hybrid algorithm for Fi4.g¢c With

c = 0.3 constraint on f;,, .x¢. CHC algorithm (solid line) is switched to binary search (dashed
line)

As it is seen from Figure 4.6 the CHC algorithm converged relatively fast (in
around 500 first simulations) to the basin of likely global optimum, but then many
simulations were spent by exploring other regions of the parameter space. For this
three cataclysmic mutations of the CHC algorithm were applied but they brought no
essential improvement to the optimal solution. The binary search which was
launched after the CHC algorithm finished, localized the optimal solution with
Fiarget = 0.1675 Eur /kWh and f4y exr = 0.30.

In Figure 4.7, the best values of the target function obtained so far by the proposed
hybrid CHC-binary (n-ary) search (dashed lines) and by the pure CHC genetic
algorithm (solid lines) versus the number of simulations are presented. This figure
1s picked out from (Kusyy, 2010). In fact, it is obtained for the target function in the
form identical to Fig;4.; Which is used throughout this thesis but having the cost
function F,;; somewhat differently defined. However, it is irrelevant here because
not the absolute values of the target function but the performance of the algorithms

is of the main importance.
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Figure 4.7: Performance of hybrid CHC - binary search algorithm vs. pure CHC algorithm for two
independent runs (Kusyy, 2010). Left figure shows typical pattern of faster convergence of the
hybrid algorithm compared to the pure one and both algorithms reach the same optimum. Right
figure shows pure CHC algorithm stuck at local optimum whereas hybrid algorithm found
probably the global one

Figure 4.7 shows two independent optimization runs for the both algorithms. The
first run (left graph in Figure 4.7) shows the pattern which is frequently observed
whereas the second run (graph to the right) is most likely an exception. The results
are the same up to the point at which the binary search is launched. In the first run it
1s seen that the binary search can accelerate the convergence and ends up at the

same optimum almost two times faster than the pure CHC algorithm does.

In the second run (right graph in Figure 4.7), the CHC algorithm stuck in a local
minimum, whereas the binary search improved the solution up to the (likely) global
minimum. Although in the second run the hybrid algorithm needs almost as many
calculations as the pure CHC algorithm in the first run, it is more reliable. It is not
typical that the pure genetic algorithm is worse in terms of reliability than the
hybrid algorithm based on it. It can be explained by not optimally chosen settings of
the algorithm such as small population size, rough discretization of the parameter
space, weak constraint on the Hamming distance, which might cause fast
convergence of the genetic algorithm to the local optimum. In this example, the
binary (n-ary) search runs with n = 4, the population size of the CHC algorithm is
taken as N = 30. Switching from the CHC algorithm to the binary search is done
early, just before the first cataclysmic mutation of the CHC algorithm, because the
study of the target function surface showed that it is quite shallow and relatively

smooth in the basin of expected optimum.

In the following optimizations as well as in the optimization from Figure 4.6 above,

the hybrid CHC-binary (n-ary) search algorithm is configured with the smaller
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population size N = 20 and three cataclysmic mutations before switching to the
binary (n-ary) search with n = 4. Smaller population size is chosen to get more
quickly to the basin of global optimum. The reliability of the hybrid algorithm is
ensured by three cataclysmic mutations in the CHC algorithm and capability to
avoid local optimum by binary search. Another reason to choose the settings so that
more simulations are performed by the CHC algorithm than by binary search is
better ability of parallelization of the CHC algorithm along with sufficient number

of CPU cores available.

In general, when not enough computational resources are available early switching
to binary search might noticeably decrease the optimization time but probably at the
cost of reliability. To decide on the early switching, a priori information about the
complexity of the target function might be helpful. Reliability of the algorithm
should be also checked by running the algorithm a number of times on the same

problem each time starting with different initial population.

4.4.2. Pareto front

Solar combisystem is optimized for different given extended fractional energy

savings f Seven optimizations are carried out with respect to Figpg0r With

sav,ext’
different constraints ¢,c = 0.3,0.35,...,0.6 on the fi5,e, as well as one
optimization is started without any constraint, that is, with ¢ = 0. The optimization

function Fig.gee plotted versus foqp0xe Shows the Pareto front, that is, minimal

costs per kW h of saved auxiliary energy for each given extended fractional energy

savings f Each point (Figrget > f ) lying to the left of the Pareto front is

sav,ext’ sav,ext

not reachable, that means, no combisystem can be built having such properties. On

the other hand, each combisystem with the properties (Fiqrget > f ) lying to the

sav,ext

right of the Pareto front is realizable but not optimal.
The Pareto front for the investigated solar combisystem is shown in Figure 4.8

Optimum of each optimization corresponding to a given constraint c¢,c =
0.0,0.3,0.35, ..., 0.6 is marked by a blue cross. Colored points depict the properties

(Ftarget » fgqpere) Of intermediate non-optimal system configurations which are

calculated by the algorithm before the optimum is reached. Colors of the points
correspond to the constraint ¢, for example, red color means ¢ = 0.35, black -
¢ = 0.5, etc. Higher density of the points is observed in the vicinity of the crosses

where the algorithm converges and performs more calculations. Only the points
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corresponding to combisystem configurations with Fygp0., < 0.23 Eur/kWh are

shown for better visibility. Blue dashed line connecting the blue crosses shows
interpolation of the Pareto front.

Pareto front, Ftarget VS fsav, ext
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Figure 4.8: Interpolation of Pareto front: optimal Figprger VErsUS figyexe- Results of 8
optimizations are shown by blue crosses. Colored points depict non-optimal configurations
(Ftarget fsav,ext) Calculated in progress of optimizations. Colors correspond to same optimization,
that is same constraintc on fyuy ex. Black cross shows properties (Figrget: fsavext) Of base
combisystem

4.4.3. Optimization potential. Comparison to Task 32 reference

combisystem

The base configuration of solar combisystem from IEA Task 32 has the extended
fractional energy savings fsqy, exe around 0.33 and energy costs of 0.1964 Eur per
kW h of saved final auxiliary energy. This point is depicted by the black cross in the
Figure 4.8. The costs for kWh of saved final auxiliary energy reachable for the
combisystem with the same fixed fs4y exe = 0.33, is nearly 0.17 Eur/kWh what is
around 13.5% cheaper than that for the base configuration. On the other hand at
nearly the same Fi,rg0 as for the base system, it is possible to construct the

combisystem with noticeably higher fractional energy savings fsqp exe = 0.52.
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Optimal values of optimization parameters, target function Fiurge, corresponding

fsavext> €nergy amounts such as solar yield, auxiliary energy Q,, . store losses

Qs> €tc., measured at the store inputs, various capital and annuity costs for end

user and installer / energy contractor both with interest rate of 2.5% and when
investing own capital, are listed in Table 4.2 for all eight optimized combisystems

along with the base case.

Table 4.2: Properties of solar combisystem optimized for different extended energy savings
¢ =0.0,0.3,0.35, ..., 0.6. Optimal values of parameters being varied, energy demands, solar yield
and store losses for both reference heating system and optimized solar combisystems followed by
differently defined capital and annuity costs (see subsection 4.1.2) and resulting target functions
are showed together with reached fractional energy savings. First column shows properties of base
case combisystem defined in framework of the IEA Task 32

base case optl, opt2, opt3, opt4, opt5, opto, opt7, opt8,

Task32 ¢=00 ¢c=03 ¢c=035 ¢c=04 ¢c=045 ¢c=05 ¢c=055 c=0.6
Optimization parameters
Collector area, m? 20 10 14 19 24 30 38 45 54
Store volume, m3 2 0.8 1.2 15 1.9 2 2.1 2.5 3.1
Auxiliary volume, m? 0.2 0.14 0.16 0.14 0.12 0.2 0.12 0.16 0.18
Store insulation, m 0.15 0.2 0.2 0.2 0.15 0.25 0.2 0.25 0.25
Pipe inner diameter, mm 13 14 10 12 12 14 14 14 16
Specific flow rate, kg/m?h 15 36 11 10 10 9 10 9 8
AT upper dead band, K 7.0 4.5 4.0 4.0 4.0 4.5 9.5 5.5 6.5
AT lower dead band, K 4.0 0.7 4.0 1.9 2.1 1.0 2.1 0.7 1.7
AT sensor pos. in store, % 0.1 0.15 0.15 0.15 0.15 0.15 0.07 0.13 0.07
UA of solar HX, W /K 2100 1000 1000 1300 1900 2200 2500 3100 3400
UA of DHW HX, W /K 5333 5340 6580 5340 6580 5960 7200 7200 6580
Coll. inlet pos. in store, % 0.4 0.65 0.81 0.84 0.81 0.84 0.87 0.84 0.68
SH outlet pos. in store, % 0.96 0.85 0.88 091 0.94 091 0.95 0.94 0.95
SH inlet pos. in store, % 0.15 0.28 0.30 0.30 0.27 0.27 0.27 0.26 0.18
Set temp. of aux. heater, °C 63 55 52 55 55 54 54 51 51
Aux. upper dead band, K 8 9.6 7.2 7.2 10.4 11.2 10.4 8.0 8.8
Aux. lower dead band, K 2 2.6 2.1 2.8 3.8 2.6 3.8 2.6 3.5
Collector slope,® 45 51 53 56 57 61 60 60 61
Energy quantities, MWh/a
Aux. energy demand, Qg  7.82 8.84 8.08 7.45 6.89 6.24 5.68 5.02 4.43
Solar yield, (kWh/m2a) 5.89 3.54 451 5.34 6.50 6.68 7.58 8.17 9.09

(294) (353)  (322)  (281) (270)  (222) (199)  (181) (168)
Store losses 2.30 1.00 1.22 1.41 1.99 1.50 1.82 1.74 2.05
Ref. store losses, Quoss,ref 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64
SH demand, Qg 8.46 8.44 8.44 8.44 8.45 8.45 8.46 8.45 8.45
DHW demand, Qppuw 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93
Ref. demand, E;.o¢ 14.72 14.7 14.7 14.7 1471 1471 1472 14.72 14.72
Ref. el. demand, Epqy rer 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
Solar demand, E,; 9.88 1111 1021 9.47 8.80 8.02 7.36 6.59 5.88
Solar el. demand, Epqy,so1 0.27 0.28 0.27 0.27 0.27 0.27 0.26 0.26 0.26
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Capital costs, kEur (Eur/m?)

End user Frot cap 133 82 10.5 12,5 146 172 197 230 26.4
(663) (819)  (749)  (659) (608)  (573) (519)  (510) (488)
Contractor Fogt cap 8.9 5.5 7.0 8.4 9.7 115 13.2 15.3 17.6
(442) (546)  (499)  (439) (405)  (382) (346)  (340) (325)
Target function (Annuity costs), Eur/kWh (Eur/a)
End user, interest rate 2.5% g 196 0164 0168  0.172 0177  0.184 0192  0.202 0.214
Frarget» (Feost) (951) (587)  (752)  (898) (1046) (1234)  (1414) (1645)  (1891)
End user, own capital 0.158 0131 0134  0.138 0.142  0.148 0.154  0.162 0.172
Feurget» (Feost) (763) (471)  (603)  (721) (840)  (990) (1134) (1320)  (1517)
Contractor, int. rate 2.5% 0.131 0109 0112 0115 0118  0.123 0128  0.135 0.143
Ftarget,contr» (Feost,contr) (634) (391)  (501)  (598) (697)  (822) (942)  (1096)  (1260)
Contractor, own capital 0.105 0.088  0.090  0.092 0.095  0.099 0.103  0.108 0.115
Feurgetcontrs (Féost.coner)  (509) (314)  (402)  (480) (560)  (660) (756)  (880) (1011)
Contractor, own cap., no tax yaq 0.074 0075  0.077 0.080  0.083 0.086  0.091 0.096
Feurgetcontrs (Féost.coner) — (427) (264)  (338)  (403) (470)  (554) (635)  (739) (850)
Extended fractional energy savings
[ savext 0329 0244 0305 0356 0402 0455 0500  0.552 0.600

It is seen from Table 4.2 that the Task 32 reference combisystem is more expensive
than the optimal combisystem with approximately the same fractional energy
savings. It is mostly due to larger collector area and store volume. The auxiliary
heating volume is also slightly larger but the store insulation is thinner. The store
losses are with 2.3 MWh/a noticeably larger than by the optimal combisystem
(only ca 1.3 MWh/a ). The systems significantly differ also in specific flow rates,
set temperatures of the auxiliary heater, collector inlet positions, etc. However it is
not obvious which parameters except, probably, collector area and store volume,
make the most contribution to the difference between target functions of the both
combisystems. The results of sensitivity analysis from Section 4.5 might be used for

rough estimation.

The optimal combisystem with similar solar energy costs Fiq,40; as the reference
system reaches almost 19% higher f4, ox¢. It has significantly more solar collectors
(38m? vs 20m?) and therefore more solar yield. The store volume remains nearly

the same; the store losses are still smaller due to more store insulation and lower

auxiliary set temperature.

4.4.4. Profitability of optimized solar combisystem

In order to calculate the profitability of the solar combisystem solar energy costs
and reference fuel price, for example, gas price should be at hand for the lifetime

period of the system. In Figure 4.9 profit over 20 years compared to reference fuel
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price taken constant at 0.16 Eur/kWh is shown versus extended fractional savings
of the system for five different solar energy costs functions (see Table 4.2 and
definitions from subsection 4.1.2). According to the figure, different size (fractional
energy savings) of the combisystem is optimal for each solar energy costs function.
For example, for the private person investing its own capital (magenta curve) the
solar combisystem with fg;;, 0¢ = 0.35 would be the most profitable and it would
bring around 2.3 kEur over 20 years at this fuel price level. For the contractor
investing own capital (no tax), the solar combisystem with f;,, ., = 0.55 would be

the best, bringing 11.2 kEur profit.

Profit over 20 years at reference fuel price = 0.16Eur/kWh
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Figure 4.9: Profit calculation over 20 years lifetime for different extended fractional savings
(system size) and five differently defined cost functions (private, contractor). Reference fuel price is
set constant to 0.16 Eur/kWh for lifetime period

It is obvious that the profit calculation and consequently the best size of the solar
combisystem are influenced by the reference fuel price to much extent. Changing
the gas price to 0.10 Eur/kWh makes the combisystem for the three out of five
cost functions unprofitable. Only for the contractor investing own money (no tax)
the solar combisystem remains bringing small profit with optimum around
2.4 kEur at fgy oxe = 0.40 as shown in Figure 4.10.

No governmental or any other subsidies are taken into account in profit

calculations.
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Profit over 20 years at reference fuel price = 0.10Eur/kWh
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Figure 4.10: Profit calculation over 20 years lifetime for different extended fractional savings
(system size) and five differently defined cost functions (private, contractor). Reference fuel price is
set constant to 0.10 Eur/kWh for lifetime period

4.4.5. Influence of boundary conditions on optimization results

The boundary conditions have an influence on the single optimal combisystem
configurations, as well as on the Pareto front as the whole. Sensitivity of the
optimum to the alternated chosen boundary condition might also depend on the
point on the Pareto front. In the following the domestic hot water demand, space
heating demand and weather conditions are changed one in a turn and the
corresponding Pareto fronts are calculated. Detailed optimization results in the

tabular form similar as in Table 4.2 are presented in Appendix B.

Influence of domestic hot water demand

To estimate the influence of DHW demand, the demand is changed proportionally,
that is, the DHW profile is simply multiplied by the factor. The combisystem is
optimized for +50% change in DHW consumption, that is, for 100[/d and 3001/
d. The corresponding Pareto fronts are shown in Figure 4.11. Grey dotted lines
show —10%, +10% and +20% with respect to Fi44.: 0f the Pareto front for the
combisystem with the base DHW demand of 200l/d (blue curve in Figure 4.11).
From Figure 4.11 it is seen that if the DHW consumption decreases by 50% to
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100l/d then the solar energy costs Fiqr4.¢ Of the combisystem optimized for this
consumption increases by around 15% depending on the point on the Pareto front.
On the other hand, the combisystem optimized for 50% larger DHW demand will

be around 5 — 8% cheaper.

The quality of the solar combisystem optimized for the base DHW demand of
2001/d but used with reduced demand of 100[//d is shown by the magenta curve in
Figure 4.11. It is seen that although the energy costs are increased by around
18 — 20% in comparison to the base demand, the combisystem optimized for the
base demand but used with the reduced demand is not significantly worse (only
around 1 — 5%) than the combisystem optimized for the reduced demand. Similar
comparison with the combisystem optimized for the increased demand of 3001/d
does not work because of the penalty function applied when DHW demand of the
given set temperature cannot be supplied.

Pareto fronts, Ftarget VS fsav, ext; Variation of DHW demand
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Figure 4.11: Pareto fronts for combisystem with +50% changed DHW demand. Grey dotted lines
show —10%, +10%, +20% target function levels with respect to combisystem with base DHW
demand of 200l/d (blue line). Pareto front for combisystem optimized for DHW demand of
2001/d but then used with 100l/d is shown in magenta dashed line. Results show significant
influence of DHW demand
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Influence of space heating demand

Influence of the space heating demand is estimated in the similar way as that of the
DHW consumption. Three building envelopes are defined within IEA Task 32
having space heating demand of 30,60 and 100 kWh/m?a. Pareto fronts for the
optimal combisystems for all three buildings located in Zurich are shown in
Figure 4.12. The curves lie close to each other, differing in less than 5%. A closer
look at the data behind the curves reveals more distinctions, for example, to reach
fsavext = 0.50 by the combisystem optimized for the SH demand of 30 kWh/m?a,
collector area of 20 m? is required, for 60 kWh/m?a - 38 m? and for 100 kWh/
m?a - 57 m2. The fact that the green curve corresponding to SH demand of
30 kWh/m?a lies to the right of the blue one can be explained by good house

insulation — SH demand is shifted to colder months with less solar yield.

Pareto fronts, Fiarget VS fsav, ext; Variation of SH demand
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Figure 4.12: Pareto fronts for combisystem with changed SH demand. Grey dotted lines show
—10%,+10% target function levels with respect to combisystem with base SH demand of
60 kWh/m?a (blue line). Pareto fronts for combisystem with changed SH demand lie close to
each other, however, system configurations differ significantly. Combisystem optimized for SH
demand of 60 kWh/m?a and then applied to better insulated house with 30 kWh/m?a (in cyan)
remains optimal but each point on base Pareto front is shifted to point located higher on this line

The combisystem optimized for the SH demand of 60 kWh/m?a but calculated
with 30 kWh/m?a is almost as good as the combisystem optimized for 30 kWh/



4.4. Results of optimization 54

m?a. This is shown by the cyan curve in Figure 4.12 built through only the selected
points (cyan crosses) which do not induce large DHW penalty. The curve is shifted
up meaning that, for example, the combisystem with f;4;, ox¢ = 0.30 optimized for
the SH demand of 60 kWh/m?a obviously has significantly higher f;,,, ex; = 0.42
when applied to the house with 30 kWh/m?a heating demand.

Influence of weather conditions

To estimate influence of the weather condition on the optimum, the combisystem is
optimized for two more locations, Stockholm and Madrid. Corresponding Pareto

fronts are shown in Figure 4.13.

Pareto fronts, Fiarget VS fsav, ext; Variation of location
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Figure 4.13: Pareto fronts for combisystem optimized for different locations. Grey dotted lines
show in 10% steps target function levels with respect to combisystem located in Zurich.
Combisystem built in Madrid is around 40% cheaper. Combisystem built in Stockholm is nearly
same expensive as that located in Zurich for f4, .x: < 0.35 but it is more expensive for larger
fsav,ext- Combisystem optimized for Stockholm location and then built in Zurich is almost optimal
but with similar shift as for variation of SH demand

In Madrid location the combisystem is optimized with less insulated house having
larger space heating demand of 100 kWh/m?a if located in Zurich but still with
only around 42 kWh/m?a for Madrid. The solar energy costs are nearly equal for
the combisystems built in Stockholm and Zurich for fq4;, 0re < 0.35; For higher
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fsav,ext Up to 0.50 the comibsystem for Stockholm is up to 12% more expensive

whereas the combisystem built in Madrid is around 40% cheaper.

Similarly as in the case of variation of space heating demand above, variation of the
location (simultaneous variation of solar gain and space heating demand) leaves the
combisystem to be nearly optimal, at least when moving the combisystem from

Stockholm to Zurich as it is shown by cyan curve in Figure 4.13.

4.5. Application of sensitivity analysis around the optimum

of solar combisystem

In this section the results of application of sensitivity analysis methods theoretically
described in Section 3.2 are presented. First influence of selected parameters on the
solar energy costs Fiurgee 18 calculated by simple parameter variations (one at a
turn) at the optimum point. Estimation of the sensitivity of the solar energy costs
Fiarger upon single parameters varied in a larger parameter space containing the
optimum point is carried out by global sensitivity analysis methods: Multiple Linear
Regression (MLR) method, Morris method and Fourier Amplitude Sensitivity Test
(FAST) method. Sensitivity analysis is applied to the solar combisystem already

optimized for the reference boundary conditions: Location in Zurich, DHW demand
of 2001/d, SH demand of around 8400 kWh/a (60 kWh/m?a), and the cost of

the system defined as in subsection 4.1.2. No constraints are applied to fsgp, e In

calculations.

Since the sensitivity analysis requires many calculations with parameter values
varying around the optimum point, the probability is large that the DHW and SH
demands cannot be fully covered by certain combisystem configurations and the
respective penalties apply. It is because the combisystem optimized for given
boundary conditions in particular for certain DHW and SH demand profiles, is
actually fitted to these conditions in the sense that it is dimensioned to be able to
deliver exactly an energy amount required to cover the peak demand. Already slight
variations of system parameters might cause the penalty applied. To avoid too high
distortion of the target function and, as a result, unexpected non-linearity or too
sensitive parameters in all following calculations, the DHW and SH penalties (2.7),

(2.8) are replaced with the less strict linear functions:

Fpen,DHW == m . Cp - ATDHW/36OO’ [kWh] (49)
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Fpensy = UA * ATgy/1000, [kWh] (4.10)

In this way it is assumed that the amount of energy most probably missing only at
times of peak consumption, is just as if delivered to the consumer by an external
source. This simplification, in fact, may slightly promote the penalized

configurations, but it surely helps to estimate the sensitivities more accurately.

The influence of all 18 optimization parameters and also 2 boundary condition
parameters is investigated. Two variation ranges, “broad” and “narrow”, both
around the optimum point, are defined for each parameter. The “broad” range
comprises about [—50% ; +50%] variation around the optimum for most
parameters with some exceptions, and the “narrow” range is normally a “better”
half of the “broad” one, where less penalty is anticipated. It is obvious that in the
“broad” range containing the optimum in the middle, larger influence on the target
function and more nonlinearity is expected for each parameter whereas in the

“narrow” range the influence should be less and more linear.

Table 4.3 lists the parameters and corresponding variation ranges in which their

influence is investigated by applied sensitivity methods.

Table 4.3: Parameter variation ranges for calculation of parameter influence on solar energy
COSts Fiqrger NEQr optimum. “Broad™ variation range stretches about [-50% ; +50%] around
optimal parameter value whereas “narrow’ range is a half of it

Variation ranges

Parameter Notation
broad narrow
Optimization parameters
1. Collector area, m? Acor [7;21] [14;21]
2. Store volume, m3 Vstore [0.6; 1.8] [1.2;1.8]
3. Number of auxiliary nodes Naux [4;12] [8;12]
4. Store insulation thickness, m Dis, [0.1;0.4] [0.2;0.3]
5. Pipe inner diameter, mm Dpipe [8; 20] [10; 15]
6. Specific collector flow rate, kg/m?h Mfrow [5.5;22] [11;16.5]
7. AT controller upper dead band, K ATcorup [2; 8] [4; 6]
8. AT controller lower dead band, K AT 0110w [2; 8] [4; 6]
9. AT controller sensor pos. in store Heop sens [0.10; 0.16] [0.14; 0.21]
10. UA value of external solar HX, W /K UA.or [500;2000] [1000; 1500]
11. Collector inlet position in store Heo1in [0.4;0.96] [0.4;0.8]
12. Space heating outlet position in store Hgy out [0.035;0.105] [0.07;0.105]
13. Space heating inlet position in store Hgp in [0.15; 0.5] [0.15;0.3]
[ [

14. UA value of external DHW HX, W /K UApuw 3290;9870] 6580;9870]
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15. Set temperature of auxiliary heater, °C Toux, set [42; 79] [52; 78]
16. Auxiliary controller upper dead band, K ATgyxup [3.6; 14.4] [7.2;10.8]
17. Auxiliary controller lower dead band, K ATyyx 10w [1.1; 4.3] [2.1; 3.2]
18. Collector slope,° sl [43;79] [53;79]
Boundary condition parameters

19. DHW demand multiplier DHW [0.5; 1.5] [1.0;1.5]
20. Collector price, Eur /m? Price [150; 450] [300; 450]

4.5.1. Parameter variations at optimum point

In the following, simple parameter variations are carried out at the optimum point.
The parameters are varied “one at a turn”, that is, all parameters but one are fixed to
their optimal values and only this single parameter is varied in a corresponding
range, mostly in [-50% ; +50%].
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Figure 4.14: Variations of optimization parameters at optimum point. Influence is significantly
non-linear for “broad” variation range but rather linear in a “narrow” half range

In Figure 4.14 variations of selected optimization parameter are presented. It is seen
that variation of auxiliary set temperature T, so¢ has the largest impact on the solar
energy costs Figpger @ 50% increase of Tyyyser Causes 15% increase of Figrger.

Other influential parameters are the collector slope, collector area, store volume and

auxiliary volume, height of the collector inlet in the store, etc. Lower and upper
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dead bands of both collector and auxiliary heater controllers as well as the inlet and
outlet positions of the space heating in the store have only a little influence on the
target function when varied in corresponding ranges, and they are not shown in
Figure 4.14. It is also easily seen that the influence is mostly nonlinear if the whole
variation range is considered and rather linear for a half of the variation
range [0% ; +50%].

In Figure 4.15 variation of collector price and DHW demand is shown together with
variation of optimization parameters. Influence of these two parameters is
significantly larger and more linear over the whole variation range than influence of
the optimization parameters.

Local sensitivity at optimum point. All parameters
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Figure 4.15: Variations of all parameters from Table 4.3 at optimum point. Boundary condition
parameters: collector price and DHW demand have significantly more influence on solar energy
costs than optimization parameters in given ranges and their influence is linear over whole range

It is obvious that the parameter variations at one point are too local. The influence
of the investigated parameters showed by the variations is valid only for this
selected point and it cannot be generalized on the whole parameter variation space
because it might differ at other points of the space. From this reason the following

global sensitivity methods are applied.
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4.5.2. Results of MLR method

Parameter variations at the optimum point show that the effect of the parameters on
the target function in the “narrow” variation range has mostly linear character.
Although the variations are carried out only at one point and no information is
available about the form of dependency at other points of the parameter space, the
linear dependency may still be assumed and the MLR regression applied. The
determination coefficient R? of the MLR model will either support or reject this

assumption.

The “measured” data required as an input for the MLR are obtained as follows. First
n = 500 parameter sets (combisystem configurations) are chosen by random
sampling of the Latin Hypercube what gives the uniform distribution with respect to
each parameter, and then the “measured” Fiuprgee 1s calculated by the TRNSYS
simulation model for each combisystem configuration. The size n of the
“measured” data has influence on the accuracy of the model, n = 500 is turned out

to be fairly enough.

The MLR model is built on the simulated “measured” data. The estimates of the

intercept b, and regression coefficients b; of the corresponding combisytem
parameter x;,j = 1,.., k, as well as their 95% confidence intervals [2.5%);97.5%]

and p — values showing the parameter significance level, are listed in Table 4.4.

Table 4.4: Results of MLR method for all parameters varied in “narrow” variation space as in
Table 4.3. Estimates of the intercept and regression coefficients b;, 95% confidence intervals,
corresponding p — values and significance levels are presented. Absolute and relative (with respect
to optimum) variation of |AFtarget| is shown due to 55% variation of corresponding parameters.
Determination coefficient R? equals 0.97

95% Confidence interval Signifi- | AFygrgor |' | AFogrgor |’

Paramater b; estimate p - value
2.5% 97.5% cance Eur/kWh % of opt.

0. Intercept 4.71e-03 -6.29e-03 1.57e-02  4.01e-01
1. Acor m? 9.77e-04 8.40e-04 1.11e-03 < 2e-16  #xx 0.004 2.2
2. Vstore, m3 3.30e-03  1.63e-03  4.96e-03 1.19e-04  #xx 0.001 0.7
3. Nyux 9.87e-04 7.43e-04 1.23e-03  1.36e-14  #x*x 0.002 1.3
4.Djsp,m 8.26e-03 -1.68e-03 1.82e-02  1.03e-01
5. Dpl-pe, mm 2.00e-04  -6.02e-06 4.06e-04 5.70e-02 . 0.001 0.3

6.mﬂow,kg/m2h 3.02e-04  1.29e-04 4.75e-04  6.59e-04  xxx 0.001 0.5
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7. AT corup: K 4.87e-04  -1.85e-05  9.92e-04 5.90e-02 . 0.001 0.3
8.ATcor10w) K -1.11e-04  -6.23e-04  4.01e-04 6.71e-01

9. Ho1 sens 1.56e-03  -1.38e-02  1.69e-02 8.41e-01

10.UA.o;, W/K -3.50e-06  -5.45e-06  -1.56e-06 4.45e-04  xxx* 0.001 0.6
11. Heopin -1.16e-02  -1.41e-02  -9.12e-03  <2e-16  #xx 0.003 15
12. Hsy out 8.11e-03  -2.00e-02  3.62e-02 5.71e-01

13. Hgy in -6.19e-03  -1.29e-02  4.98e-04  6.96e-02 : 0.001 0.3
14.UApyw, W /K 9.35e-07  6.33e-07  1.24e-06 2.60e-09  sx* 0.002 1
15.Tqux set» °C 1.09e-03  1.05e-03  1.13e-03  <2e-16  #xx 0.016 9.3
16. ATquxup, K -4.85e-04  -7.61e-04  -2.10e-04 5.88e-04  xxx 0.001 0.6
17. AT gyx 10w K -1.02e-04  -1.04e-03  8.37e-04 8.31e-01

18.sl,° 6.97e-04  6.59e-04  7.35e-04 <2e-16  xxx 0.01 6
19.DHW -5.41e-02  -5.61e-02  -521e-02 <2e-16  xxx 0.015 8.9
20.Price,o;, Eur/m?  4.57e-04  4.48e-04 467e-04 <2e-16  xxx 0.025 15

The determination coefficient R? equals 0.97 meaning that 97% of the variance in
measured data is explained by the MLR model. It justifies application of the MLR
in the “narrow” parameter variation space. To give an example of the interpretation
of the estimated regression coefficients, the coefficient b,, = 4.57e-04 for the
collector price parameter Price,, means that the increase by 1 Eur/m? of Price,,,
causes 4.57e-04 Eur/kWh increase of the solar energy costs Fyqpge. Significance
level (see subsection 3.2.1) is depicted by *** for the estimates with p — values
smaller than 0.001. The last two columns in Table 4.4 show the absolute and
relative (comparing to the optimal Fg,.4.¢) change of the target function |AFtaTget|,
respectively, when the corresponding parameter varies over 55% of its “narrow”
variation range as presented in Table 4.3. These values are calculated in order to

compare with the results of the Morris method following in the next subsection.

The MLR method is also applied to the “broad” parameter variation space in order
to check if the linearity assumption is still valid although it is not expected to be.
Two broad MLRs models are constructed, the MLR,, 444 o model including all 20
parameters and MLRy,q4,0p¢ including only 18 optimization parameters all varying
in respective “broad” parameter ranges as listed in Table 4.3. Similarly, two narrow
models MLR, grrowau (results already shown above in Table 4.4) and
MLR,grrowopt are built. In Table 4.5 the determination coefficients R? are

presented for all four models.
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Table 4.5: Determination coefficient R? for two “narrow” and two “broad” MLR models.
Application of MLR is justified in ““‘narrow’” variation space only

Model Parameter space Parameters R?

1.MLRgrrow,aul narrow all 0.97
2. MLRygrrow,opt narrow only optimization 0.93
3.MLRyroqa,aul broad all 0.73
4. MLRproqd,0pt broad only optimization 0.29

According to Table 4.5 the MLR models fit well the measured data for parameter
variations in the “narrow” parameter space when either all 20 parameters or only 18
optimization parameters are considered. On the contrary, the “broad” MLR models
are not satisfactory, due to significantly larger nonlinearity in the relationship
between parameters and target function over the “broad” variation space. The
MLRp,oqaau describes 73% of the measured target function variation, whereas the
MLRpyoq4,0pt - Only 29%. This difference is explained by strong linearity and large

significance of the two boundary condition parameters present in MLR},,0q4 qu1-

The MLR models built for the f4, .y as the target function might be also
interesting to consider. The MLR model in “narrow” parameter space is briefly
described in Appendix C.

4.5.3. Results of Morris method

Similarly as the MLR, the Morris method can be applied to calculate sensitivity
measures of the target function with respect to variation of single parameters in a

parameter space around the optimum.

The Morris method is applied to sensitivity estimation of the solar energy costs
Fiarget I “narrow” and “broad” parameter variation ranges defined in Table 4.3.
Settings of the method (see subsection 3.2.2) are chosen as follows: number of grid
levels pissetto 10 and A=5-1/(p — 1) = 0.55 what means that the elementary
effects are calculated by changing each parameter over 55% of its variation range.
Number of trajectories, that is, at how many points elementary effects are evaluated
for each parameter is set to 80. Since 20 elementary effects (1 effect per parameter)
are calculated by each trajectory in cost of 21 evaluations of the target function,

overall 1680 target function evaluations are needed for 20 parameters and 80
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trajectories. The results of the Morris method are shown in Figures 4.16 and 4.17

for “narrow” and “broad” variation ranges, respectively.

On the left hand side of both figures the investigated parameters are presented in
descending order regarding their Morris sensitivity measures y* - the mean values
of the distributions G; (distributions of absolute values of elementary effects, see
subsection 3.2.2) for each parameter i,i = 1,..,k. The larger u* for the parameter
the more influence it has on Fy4pgee. The values of u* can be recalculated into mean
values of absolute change of Fig,4er by simple relation [AF, g gor| = p*-A= p*-
0.55 or in its relative change with respect to the optimal F,y. g Which is shown on
the second x - axis in Figures 4.16 and 4.17. The 95% confidence intervals of the
mean values u* are shown by black lines for each parameter. It is seen that the

confidence intervals are larger for the “broad” parameter variation range than for

the “narrow” one.

In the left part of Figure 4.16 besides the Morris sensitivity measure, similar
measure calculated from estimates of the regression coefficients (last column in
Table 4.4) of the MLR method is shown in orange. Although being completely
different the both methods deliver very similar results. It might be considered as a
kind of justification of both of them.
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Figure 4.16: Results of Morris method applied in ““narrow” parameter variation space as in
Table 4.3. In left figure Morris u* measure and recalculated |AFta,,get| are shown in comparison

with similar results obtained by MLR. Two methods show good compliance. Black lines show 95%
confidence interval for obtained p*. In right figure coefficient of variation o/u* shows ratio of
nonlinear (o) to linear (u*) effect of each parameter on solar energy costs

On the right hand side of both figures the mean values p* are plotted against o — the
standard deviations of the distributions F;. These plots show the ratio of linear and
nonlinear effects for the investigated parameters. The smaller the ratio o /u* (also
called as the coefficient of variation) for the parameter is, more linear is its effect on
the target function. In other words, the effect of parameters with smaller o /u* is
more homogeneous over the variation space whereas the parameters with larger o/
u* influence the target function differently strong (possibly their influence has
different signs) at different points of the variation space. It is obvious that for the
“broad” variation space the ratios o/u* is larger than for the “narrow” one because
more nonlinearity is expected for the “broad” space, what is also indicated by the

MLR method from the previous subsection.
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Figure 4.17: Results of Morris method applied in “broad” parameter variation space as in
Table 4.3. Larger 95% confidence intervals shown by black lines in left figure and larger
coefficient of variation o/u* indicate significantly higher nonlinearity of parameter effects in
“broad’ variation space than in ““narrow’” one shown in Figure 4.16

According to Figures 4.16 and 4.17 the collector price denoted as Price, has the
most significant effect on the target function Figygee both in “broad” and “narrow”
variation spaces. It has the most linear effect on Fi4,.g¢¢ but not only linear. Even in
“narrow” variation space its ¢ is not 0. It is explained by interaction of Priceg,
with other parameters as it appears in Figpg0; (4.1) not as a separate term but in
multiplication with the collector area A, divided by the whole energetic part —
factor that is not constant over the parameter variation space. In Figure 4.18
sensitivity of only optimization parameters in “narrow” variation space is shown. In
absence of Price, the collector area A, becomes even less important most
probably due to weaker interaction. In general the collector area A, has rather
negligible influence on the solar energy costs Figpge:- Although it has large effect
both on the costs F.,s; and on the saved final auxiliary energy E,.r — Es,; of the
solar combisystem, these two effects being in numerator and denominator of Fygyget
(4.1) cancel each other. Sensitivity of the extended energy savings fq, exe (almost

the same as sensitivity of E,.r — Egy) to the variation of the optimization
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parameters is similar to those presented in Appendix C calculated by the MLR
method

|AFtarget| in % from opt.
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Figure 4.18: Results of Morris method applied only to optimization parameters in “narrow”
variation space as in Table 4.3. Influence of collector area A, becomes even smaller in absence of
Price,, what shows significant interaction between them. Overall small influence of A is
explained by cancelling of its effects in numerator and denominator of target function Fig,ger (4.1)

4.5.4. Results of FAST method

As already stated above, the Morris method is used to rank the parameters by their
effect on the target function, that is, estimate this effect qualitatively. To quantify it
more comprehensive sensitivity analysis methods as the FAST or Sobols’ methods
are to be applied (Saltelli, 2004). In fact, quantification is similar to that already
received by determination coefficient R? of the MLR method showing how much
variation in measured data is described by model. Significant difference is that the
FAST method calculates how much variation in the target function is due to
variation in a specific parameter. The mentioned methods are applicable to models
with nonlinear relationship between the parameters and the target function. Hence,

the FAST is applied to quantify parameter influence in “broad” variation space

Table 4.6 presents the main and total effects S; and Sy; as defined in (3.4) and (3.5),
respectively, and calculated by the extended FAST method.
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Table 4.6: Main and total effects S; and Sy; calculated by extended FAST method

Parameter Main effect, S; Total effect, Sr;
1. Agop, M? 0.018 0.062
2.Vtore, M3 0.009 0.081
3. Naux 0.014 0.088
4.Di5o,m 0.007 0.129
5.Dpipe, mm 0.003 0.018
6. Ms1ow, kg /m?h 0.002 0.029
7. AT copupr K 0 0.006
8.AT o1 10w K 0 0.008
9. Heol sens 0 0.003
10.UA.o;, W/K 0.001 0.005
11. Heopim 0.019 0.077
12. Hgy out 0 0.005
13. Hsy in 0 0.006
14.UApyw, W/K 0.002 0.009
15. Tgyx set, °C 0.079 0.124
16. ATgyxup, K 0 0.012
17. AT gux1owr K 0 0.006
18.sl,° 0.040 0.057
19.DHW 0.274 0.294
20. Priceqy, Eur /m? 0.411 0.428
Sum 0.882 1.447

According to Table 4.6 88% of variation in the solar energy costs Figrger 18
explained by variation of all parameters. It is the quality measure of the FAST
method same as the MLR determination coefficient R%, showing that application of
the method is successful. The MLR model applied in the same “broad” variation
space shows “only” R? = 0.73 (see Table 4.5). Similarly to the Morris method and
local parameter variations, the boundary condition parameters Price.,; and DHW

have the largest influence on the solar energy cost Fiurger showed by the main
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effects S; of 41% and 27%, respectively, followed by Ty, se¢ and sl with 8% and
4%. The results are also in accordance with ranking of the Morris method presented
in Figure 4.17. Total effect indices Sy; showing not only main effect of the
parameters but also effect from interactions with other parameters are noticeably
larger for some parameters than their main effects. This indicates more complex

relations between these parameters and the target function.

4.5.5.Parallelization and reliability

Each sensitivity method applied to analysis of the solar thermal combisystem in the
above subsections requires different amount of the input data in the form of the
target function values “measured” at the specific points, that is, parameter values,
which are also differently chosen by each method. The common to all methods is
that the “measured” data are to be prepared before the method starts. In this sense
they differ from the optimization methods which decide on the combisystem
configurations to be calculated in the course of optimization. Since preparation of
the “measured” data, that is, calculation of the target function, especially for
computationally expensive models takes considerably more time than calculation of
sensitivities by the method, all the parallelization potential is concentrated in
possibility to perform the “measurements”, in our case, the TRNSYS simulations, in
parallel. If m computational kernels are available and n,n > m independent
simulations are to be carried out, then computation in parallel is approximately m

times faster comparing to the usage of only one kernel.

The reliability of the results of sensitivity analysis presented in the above is only
roughly checked. In the MLR method, 500 “measurements” are chosen for
estimation of the regression coefficients. The method is also run with 1000 and
2000 “measurements” but without any significant difference in results. The Morris
method turned out to be more sensitive to the number of input data, especially
regarding ranking of less influential parameters. Here 1680 simulations are chosen
as appropriate. The most computationally expensive method is the FAST with

10000 simulations needed to calculate indices of the first-order and total effects.

Calculation of the regression coefficients is carried out by R-Studio. The results of
the Morris and FAST methods are obtained with using Sensitivity Analysis Library
(SALib) (Herman and Usher, 2017) programmed in Python but also compared to

own implementations of the methods written in Java programming language.



5. Dynamic optimization of solar thermal
combisystems. Estimation of optimization potential
of dynamic controller settings

In Chapter 4 optimization of the solar thermal combisystem in the planning process
1s carried out resulting in the configuration of the system which is optimal for the
given one-year weather data and hot water consumption. It is called static (or
design) optimization during which the main design parameters such as collector
area, store volume, flow rates, etc., are determined. The values of these parameters
stay constant during the simulation period (except for the flow rates which are zero

when pumps do not run).

Optimization of solar thermal combisystems in operation or the so-called dynamic
optimization implies that the system parameters being optimized are varying during
the operation, usually with a given time resolution, f.e. on seasonal, daily or hourly
basis. Apparently, only the operational parameters such as the controller settings or

flow rates might be considered for dynamic optimization.

As it is shown in Chapter 4 and earlier in (Krause, 2003), the numerical
optimization during the planning process can bring additional > 10% benefit in
terms of the solar energy costs to a solar thermal system already appropriately
designed by experienced engineers. Following (Krause, 2003) it seems that the

further optimization of such systems in operation does not have much potential.

In this Chapter a systematic approach is proposed which enables estimation of the
theoretical potential of the dynamic control settings optimization for solar heating
combisystems designed for use in single- or multi-family houses by application of
numerical optimization algorithm. Knowing this potential beforehand can help to
decide if the smart dynamic controllers based on sophisticated predictive algorithms

are worth to implement or not.

5.1. Idea of approach: splitting one-year optimization

The main challenge for any algorithm performing dynamic optimization are large
number of optimization parameters which run into thousands already when only one
control parameter is being adjusted on hourly basis. But even if the algorithm could
deal with this number of parameters, the optimization would be unallowable long.

For example, if five minutes are required to perform a single simulation of the
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combisystem (what is usually a case for precise TRNSYS simulations with a 3 to 6

minute time step), then the optimization would take weeks or even months.

In an approach presented below long one-year optimization is split into many short
ones (up to four days and in average with 15 parameters per optimization). Solving
many short optimization problems is faster than optimizing the whole year at once
as the optimization time increases faster than linearly with increasing the number of
parameters. Such a splitting, however, is justified only if changing a single
optimization parameter affects the system performance (mainly the store
temperature profile) for a short time horizon usually not longer than a couple of
days. Figure 5.1. shows three temperatures in the store (top part in red, middle -
green and bottom - blue). Specific flow rate in the collector loop is set to 10 kg/
hm? and it is switched from the low flow (10 kg/hm?, solid lines) to high flow
(30 kg/hm?, dashed lines) on 14 April only. Flow rate in the store loop is adjusted
as well according to equality of the capacity flow rates. Already after one day
almost no change in the store temperatures caused by this local change in flow rates
can be noticed.

Temperatures in store for different flow rates on 14 April
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Figure 5.1: Temperatures in store. Flow rates are changed from 10 kg/hm? (solid lines) to
30 kg/hm? (dashed lines) on 14 April only. Already after one day there is almost no influence on
store temperatures



5.2. Optimization of flow rate on hourly basis 70

5.2. Optimization of flow rate on hourly basis

The idea of splitting one-year optimization is applied to dynamic optimization of
the slightly modified solar combisystem, similar to that shown in Figure 2.1 but
with stratified charging of the store. The combisystem is optimized in order to get
as much energy as possible from the collector into the storage tank and meanwhile
minimize the energy consumed by the pumps. The target function is defined as

follows:
F'target = Qsol - 3Wpumps (51)
Actually, the following function

Ft*arget = Qaux + 3M/pumps (5.2)

should have been minimized, but it would not work with the idea of splitting
optimization because of rather unpredictable time windows when the boiler heats
up.

To maximize the target function F'target, the flow rate in the collector loop is
adjusted on hourly basis but only on hours when the specific solar insolation is high
enough (> 200 W /m?). The specific flow rate is varied in the range from 10 to
30 kg/hm?. The flow rate in the store charging loop is calculated in the way that

the capacity flow rates in the collector and store loops are equal.

As shown in Figure 5.1 the choice of the flow rate in the collector loop for a
selected day (or hour) has almost no impact on the performance of the system (more
precisely: on the temperature profile in the store) already a couple of days later.
Thus, there is no reason to perform the whole year simulation of the system each
time when the flow rate changes only during selected hours, and the idea of splitting
optimization can be applied. It is suggested to split up the whole one-year
optimization in many short ones with duration of up to four days. After each short
four-day optimization, the temperature profile of the storage tank (temperatures of
all store nodes), temperature of the air zone of the building, temperatures of the
walls and fluxes through the walls are saved at the end of the first day being
optimized and taken as the initial condition for the next optimization. Such simple
splitting saves huge amount of computational time and, in this way, allows the one-

year dynamic optimization to be completed in a reasonable time.

In Figure 5.2. two hourly optimizations with duration of four days each are
schematically presented. The hours with solar insolation > 200 W /m? for which

the optimal flow rates are being determined are shown in grey color. In the
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optimization 1, the optimal flow rates for days 1-4 are identified by maximizing
the target function F target €valuated at the end of the day 4. After the optimization 1
is completed, the calculated flow rates only for the hours of day 1 are stored as
optimal. Flow rates calculated for the hours of days 2-4 are further optimized in
next optimizations. The temperature profile of the store, temperature of the air zone
of the building, temperatures of the walls and fluxes are saved at the end of day 1
and are used to initialize the system at the beginning of day 2 in each simulation of
the optimization 2. In this way “global” optimization proceeds each time optimizing
four days in a row and after this short optimization is completed, it shifts one day
and optimizes other four days. These steps are repeated until the end of the year is

reached.

duration
day 1 day 2 day 3 day 4
N T N 1 || I P

optimization 2

optimization 1

day 5

L N N I

shift

Figure 5.2: Schematic presentation of two four-day optimizations. Hours with solar insolation
> 200 W /m? on which flow rates are optimized are shown in grey color. After optimization 1 is
done optimal flow rates are saved for day 1. Store temperature profile and temperatures in
building at the end of day 1 are taken as initial conditions for next optimization starting at day 2

In each short optimization the target function F target» Calculated over the time
interval of four days, is maximized. As mentioned above, minimization of the
function ﬁt*arget would be more appropriate since it represents the final energy
consumption of the system, but it would not work in the approach represented here.
The backup heating may switch on by chance at the end of the fourth day, or just at
the beginning of the fifth day. Evaluation of the target function Ft*arget based on
Q4ux 1s misleading in these cases. Thus, it was decided to maximize the solar yield
assuming that the more energy gets into the storage tank, less auxiliary energy is

required, and the better is the system performance.

Choice of duration for each short optimization and how many days is the shift
between two consequent optimizations are the questions which should be cleared in
advance. Duration of the short optimization must be larger than the time interval
within which the influence of the parameter variation occurred at the first day of

optimization remains significant. Duration also depends on how the hourly
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parameters influence the target function calculated at the end of the short
optimization. If their influence is mostly linear and additive then the duration can be
short, up to one-day. On the other hand if the parameters are involved in
interactions and not only with their close neighbors but also with the parameters
from the next days, then the optimization duration is to be longer. Short shift
between two optimizations (with duration longer than the shift) seems to refine the

optimization because most parameters are optimized more than once.

In the investigated case, the parameters (values of flow rates for specific hours)
seem to be not involved in significant interactions; even short optimizations with
one day duration and with one day shift (next optimization starts from the following

day) provide almost the same results as presented four-day optimizations.

5.3. Potential of the dynamic flow rate optimization

The dynamic optimization of the fluid mass flow in the collector and storage loops
i1s carried out by the binary (n-ary) search algorithm programmed in GenOpt
(Generic optimization software) and described in Chapter 4. As a rule it is not as
reliable in finding the global optimum as, for example, the genetic algorithm, but it
1s much faster. As shown above it seems to be reliable enough when applied to
optimization of the solar combisystems. It is considered as an appropriate choice for

the investigated case.

The dynamic flow rate optimization is applied to solar combisystem similar to that

described in Chapter 2 (see Figure 2.1) but with stratified charging of the store.

The optimization results show that the extended fractional savings fg4,ex: Of the
combisystem with hourly optimized flow rate are only 0.3 percent points larger than
those of the reference with constant specific flow rate of 10 kg/hm? (35.92%
versus 35.59%). It should be noted, however, that for the reference combisystem
operated with high flow (constant specific flow rate of 30 kg/hm?) fiayext =
34.49%. Thus, for this particular system, no significant improvement of the system
performance can be expected by dynamically adjusting only the flow rates in

collector and store loops.

5.4. Potential of boiler control optimization

Heating up the water and storing it causes thermal losses. It can be assumed that the

system performance is the best if the boiler delivers to the store exactly the amount
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of energy needed by the consumer at the specific moment. To estimate the potential
of forecasting the consumption, that is, the optimization potential of the boiler
control settings such as set temperature and control dead bands, one could proceed
as above by adjusting these settings on the hourly basis. Here, however, another,

simpler way is chosen.

The hydraulics of the investigated combisystem is modified to determine the
theoretical optimization potential of boiler control settings. The boiler heating up
the auxiliary volume inside the storage tank, is replaced by two electric instant
heaters placed in tap water preparation and space heating loops, respectively
(Figure 5.3). Such modification is expected to have several positive effects on the
system performance. The store losses should decrease due to lower temperatures
especially in the upper part of the tank. In summer, when stagnation of the system
may occur, more store space is available for possible anti-stagnation control
strategy (see Chapter 6) or, alternatively, the store can be made smaller and cheaper.

The pump in the auxiliary loop is also obsolete.

For more consistent comparison, performance of the modified combisystem is
compared to that of the reference combisystem (Figure 5.4) having the boiler
“replaced” by electric instant heater being actually the same boiler controlled in the
same way but with no standby and less electricity consumption of the auxiliary
pump set to 15 W (Figure 5.4). In the reference system the electricity consumption
of the boiler is set to 9 W when the boiler is idle and to 43 W when it heats up. The
heater turns on when temperature at the bottom of the auxiliary heated volume

drops down to 50 °C and turns off when it reaches 60 °C.

In the modified combisystem, the electric instant heater in the DHW loop turns on
when the water coming from the store is colder than the set temperature of 45 °C.
The instant heater in the space heating loop heats up the water coming from the
store (when needed) to the set temperature received from the radiator. It should be

noticed that the maximal heating rate of the electric heater in tap water preparation

loop has to be increased to 25 kW in order to fully fulfill the consumption demand.
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Figure 5.3: Modified combisystem with two electrical instant heaters in tap water and space
heating loops
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Figure 5.4: Reference combisystem with electrical heater in the auxiliary heating loop

The reference combisystem shown in Figure 5.4 and the modified combisystem
with electric instant heaters built into domestic water preparation and space heating
loops (Figure 5.3) are simulated in TRNSY'S software. Table 5.1 shows the relevant
energy quantities, performance factors and solar energy price for the both
investigated combisystems as well as for the reference combisystem 0 from
Figure 2.1 with Tse¢ gy = 53°C and Tsep gy = 70°C. According to Table 5.1 the
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combisystem 2 with heaters built in DHW and SH loops, has 1.85 percent points

higher f;4, exe particularly due to smaller store losses, and, consequently,

0.87 EurCent/kWh (around 5%) cheaper solar energy costs than the reference
combisystem 1 with electrical heater inside the store. Performance of combi-
system 2 is obviously even higher comparing to reference combisystem 0 having

higher electricity consumption of the boiler (3.3 percent points in fs;;, 0 and

1.6 EurCent/kWh (around 10%) in costs). If the boiler in reference combi-

system 0 has not optimal (too high) set temperature Tses gy = 70°C (combi-

system Oa in Table 5.1) then combisystem 2 is 5.8 percent point (3.1 EurCent/
kWh or 17% in costs) better. This last comparison shows the influence of set

temperature of the boiler which is already shown to be significant in Chapter 4.

Table 5.1: Optimization potential of boiler control settings. Performance of modified combisystem
with two instant heaters in DHW and SH loops is shown along with that of three reference
combisystems

Auxiliary Solar Store Electricity

Ftarget ’
Combisystem energy, yield, losses,  consumption,  figytherm  fsavext
kWh kWh — kWh kWh Eur [kWh
0. Reference combisystem
. 8084 4514 1216 274 0.3272 0.3054 0.1675
with Tsep gyr = 53°C
Oa. Reference combisystem
. 8411 4319 1335 272 0.3003 0.2805 0.1824
with Tsep gyr = 70°C
1. Reference combisystem,
. 8084 4514 1216 186 0.3272 0.3202 0.1598
Figure. 5.4
2. Modified combisystem
with two instant heaters, 7885 4626 1112 173 0.3433 0.3387 0.1511
Figure. 5.3

Although the modified combisystem 2 performs better than others, it must have
more complicated controller instantly providing constant DHW temperature. The
maximal heating rate of the instant electrical heater in the DHW loop is higher than
that of the heater heating up the auxiliary volume in the reference system. On the

other hand, the auxiliary pump is obsolete in the modified combisystem 2.

5.5. Conclusion

A simulation approach proposed above enables estimation of the theoretical

potential of the dynamic control settings optimization for solar heating
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combisystems. This approach can be used before improving the control settings of
solar heating systems with help of sophisticated predictive algorithms to first
estimate the theoretical potential of these improvements and then to decide if they

are worth to implement or not.

Application of this approach to optimization of the flow rates in collector and store
loops of a solar combisystem on hourly basis shows only 0.3 percent points of
theoretically possible improvement in terms of the extended fractional savings
fsavext- On the other hand, optimization of the control settings of the auxiliary
heater as shown by application of instant electrical heaters in DHW and SH loops,
has more potential, but the controller must be more complicated and probably more

expensive.
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6. Control - based approach to avoid stagnation of
solar heating systems

In the following Chapter a control - based anti - stagnation approach is proposed
and numerically investigated. Practical implementation of the approach is
described.

6.1. Stagnation of solar thermal systems. Brief overview

and approaches

During the periods of high sun insolation and low hot water consumption, the
probability that a solar heating system stagnate is high: the thermal store becomes
filled with hot water and the exceed heat cannot be removed from the collector any
more. When exposed to high temperatures, the heat transfer fluid in the collector
loop may rapidly degrade, the produced excessive pressure may damage the solar
thermal system components if the system is not properly built. The stagnation
problem is even more harmful in climates with potential freezing periods where the
propylene-glycol/water mixtures are typically used as the working fluid in the
collector loop. Such mixtures are subject to deterioration at temperatures higher
than 140°C and may become corrosive resulting in damages to the solar heating

system components.

It is a common practice to switch off the pump in the collector loop when the
temperature in the thermal store or at the collector outlet reaches the set thresholds.
Most of the working fluid from the collector is pushed out by the steam into the
expansion vessel and the residual evaporates in the collector. This helps to prevent
damage to the system components such as the thermal store, pump and external heat
exchanger. Emptying properties of the collectors are crucial for avoiding damages
to the system components and deterioration of the working fluid at high stagnation
temperatures. They also determine the maximum pressure strain which the system

components must bear during stagnation.

In solar heating systems with too low flow rates in the collector, the stagnation may
also happen on sunny days in spring and fall even when the thermal store can still
accept energy but the temperature at the collector outlet is too high due to the low
flow rate. Moreover, at low flow rates the partial stagnation can happen in the

collector if it is not properly designed for the low flow operation.
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Plenty of approaches have been developed to minimize the stagnation time of the
solar heating systems. Most of them fall in one of the following three categories
(see (Morhart, 2010)):

e stagnation-proof system concepts (drain-back concept with water as a

working fluid, heat-pipe collectors)

e control strategies (switching mode for solar pump control, night time

cooling)

e stagnation cooler (passive and active cooling, heat transfer to the

swimming pool or ground)

e selective absorber coatings with the absorption coefficient as a function of

the absorber temperature € = f(Typsorper)

In this study a control-based approach is presented and theoretically investigated in

application to a solar heating system.

6.2. A control based approach. Main idea

To completely prevent stagnation of a solar heating system, a simple requirement
must be fulfilled on a daily basis: the energy delivered by the collector must fit into
the store. As the stores are usually well-insulated, even for a large specific store
volume (large ratio between store volume and collector area) the stagnation may

occur after several hot days in a row with minimal or no hot water consumption.

The control-based approach to avoid stagnation proposed in this Chapter starts with
an attempt to minimize the energy produced by the collector during a day, that is, to
get as little energy into the store as possible and, thus, have more space available for
another sunny day. In order to achieve this, the performance of the thermal collector
should be lowered what happens, for example, when it is operated at higher mean

fluid temperature.

In Figure 6.1 the mean fluid temperature T,,,.,, Of the collector is shown for the two
control strategies, the conventional AT strategy (dashed line) and the proposed anti-
stagnation (constant 90°C collector output) strategy (solid line). The triangular
dashed area built by these two lines gives a rough estimation of the potential of
inefficient collector operation. The larger this area is, the less energy is produced by
the collector operated in anti-stagnation mode comparing with the AT control
strategy. It is also worth to mention that the quantity of energy produced by the

collector when using proposed anti-stagnation control strategy is constant and it
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does not depend on either the store size or its initial temperature. Of course it is
only possible when input collector temperature can be hold constant, for example in

systems charging the store via external heat exchanger.
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Figure 6.1: Collector mean fluid temperature T,.., for anti-stagnation (solid line) and
conventional AT (dashed line) control strategies. Dashed area shows the potential of inefficient
collector operation

As it was already shown in (Scheuren, 2008), inefficient collector operation alone is
usually not enough to avoid stagnation. The stagnation may still happen a few hours
later and can be even more dangerous. Thus, more store space is needed for the
incoming energy and it could be provided, for example, by nightly cooling of the
store. During the night, the hot water from the store can be cooled down through the
collector as the ambient temperature is much cooler than the temperature in the
store. The thermal collector is used then as a heat sink. The heat loss coefficient of
the collector is a crucial factor for the performance of the night cooling and should
be large enough. As shown below, the night cooling makes sense only for the solar

thermal systems with not too good insulated flat plate collectors.

6.2.1. Suitable hydraulics

The proposed control-based approach of an inefficient collector operation coupled
with the night cooling of the store can be directly applied to the solar heating

systems with an external heat exchanger. The inefficient collector operation is
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provided by adjusting the flow rates in the collector and store (primary and

secondary) loops in an appropriate way.

Application to the heating systems with an internal heat exchanger seems more
complicated as there is only one flow rate to adjust what might be not enough.
Moreover, since the internal heat exchanger is usually placed in the lower one-third
of the store, the night cooling requires additional pump for stirring the store a few

times per night to enable cooling of the whole store.

6.3. Implementation of the approach

The proposed control-based strategy is applied to the reference solar combisystem
of the IEA SHC Task 32 with an external heat exchanger similar to that described in
Chapter 1 but with 40 m? of the flat plate collectors. The 5% propylene-
glycol/water mixture is used as the heat transfer fluid in the collector loop. The
specific heat transfer coefficient of the collector heat exchanger is set to 125 W/

Km?. The auxiliary heating volume is 200 [.

To safely operate the heating system close to the stagnation point, the following two

requirements are to be met by the anti-stagnation control strategy:

a. relatively high constant specific flow rate (chosen at 27 [/m?h) in the

collector loop

b. the temperature T¢pqyrge at the HX output to the store does not exceed
95°C
The first requirement ensures that the fluid flows uniformly through the collector

and there is no risk of the partial stagnation inside the collector. The second

requirement prevents steam delivery to the store.

If the anti-stagnation control strategy is activated, the pump in the collector loop
(primary pump) starts when the temperature T,,; at the collector output rises up to
70°C in the morning and runs with the constant flow rate of V,,,; = 27 [/m?h (see
Figure 6.2). The pump in the store loop (secondary pump) starts when the
temperature Tg,;q, r at the entrance of the heat exchanger from the collector side
reaches 95°C. It runs with a variable flow rate adjusted to keep the temperature
Tcharge at the heat exchanger output to the store close to 95°C. Such control
strategy prevents the collector from overheating (the collector output temperature
T.,; does not exceed 100°C) and operates the collector at high mean fluid

temperature, i.e. the collector efficiency is low.
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Figure 6.2: Schematic representation of the temperature sensor positions for theoretical
implementation of anti-stagnation control strategy

In the evening when the sun does not heat up the collector, the night cooling mode
turns on. The two pumps run with a constant flow rate of 27 [/m?h and cool down
the store through the collector as a heat sink. If the following day is expected to be
very sunny and there will be no consumption, then the night cooling can be
continued till early in the morning when the sun shines on the collector. Otherwise,
the pumps should be turned off earlier providing that enough energy is left in the

store to cover the possible consumption on the following day.
6.4. Results of theoretical implementation

6.4.1. Modeled weather conditions

The reference solar combisystem is simulated with application of the proposed anti-
stagnation control strategy using the TRNSYS software. The extreme weather
conditions are especially modeled for three different locations: Madrid, Zurich and
Stockholm. The sunniest summer day is picked up from the statistical year for each
location (Meteotest, 2016) and then the system is simulated for such ten days in a

row. No heat consumption is assumed.

The aim of the simulation is to find the minimal V.., /A.,; ratio at which the
system still does not go into stagnation. In Table 6.1, the climate data and the
minimal V.. /Acor calculated theoretically are given for the three chosen

locations. The results show that even for such extreme modeled weather conditions
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it is possible to completely avoid stagnation of the solar heating system with

relatively small specific store volumes.

Table 6.1: Minimal specific store volume Voo /Acor fOr three locations: Madrid, Zurich and
Stockholm

. Collector Irradiation, Ambient temperature, °C,  Vgore /Acols
Location ) )
slope, °© kWh/m*day Tomin ; Tmax l/m
Madrid 35 7.36 (Aug, 18) 18.5; 35.5 68
Zurich 45 7.48 (Aug, 17) 15.9; 28.7 50
Stockholm 50 7.49 (Jul, 20) 15.2; 28.3 42,5

6.4.2. Method applicability range

To determine the applicability range of the proposed anti-stagnation control strategy
to solar heating systems with different collector types, the collector loss coefficient
U,, is varied in the range from 2.0 W /m?K (evacuated tube collector) to 4.5 W/
m2K (poor isolated flat plate collector). For U,,; between 2.0 and 2.5 W /m?K the
flow rate of the primary pump during the day and that of both pumps in the night
must be gradually increased up to 70 [/m?h. It is caused by good insulation of such
a collector which does not allow to run the system all ten days in a row without

stagnation at previously proposed 27 [/m?h.

In Figure 6.3 the ratio Viioremin /Acor versus Ugy 1s shown for the location in
Zurich. As seen from the figure, the minimal V.. /Aco; grows exponentially with
U.,; decreasing, what means that the applicability of the proposed anti-stagnation is
restricted to the flat plate collectors with U, not smaller than 3.0 W /m?K. The
evacuated tube collectors and well-insulated flat plate collectors have still too good
efficiency at around 90°C mean fluid temperature during the day. Furthermore,

their heat losses are too low to sufficiently cool down the store in the night.
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Figure 6.3: Minimal specific store volume Ve /Aco1 VErsus collector thermal loss coefficient
U, for Zurich location

6.4.3.Influence of the weather conditions

It is obvious that changes of weather conditions have influence on the minimal
specific store volume. To estimate this influence, the variations of the global
radiation H; on horizontal plane, the ambient day and night temperatures, (Tgmp, day
and Tymp night> respectively) are carried out for the modeled weather conditions in
Madrid. Figure 6.4 shows nearly linear dependency of the minimal V.. /A0 ON
the global radiation H;. Change of the global radiation in 5% leads to

approximately 20% change of the minimal specific store volume.
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Figure 6.4: Influence of global radiation H, on minimal specific store volume Ve /Acor fOr
Madrid location

To investigate the variation of the ambient day and night temperatures (Tgmp, aay
and Tgmpnignt), the real ambient temperature is approximated by the sine curve.
The modeled curve is varied in four different ways. First, day and night
temperatures are changed independently, to show the influence of the ambient
temperature on the inefficient collector operation and the night cooling separately.
In two other variations the temperatures are changed simultaneously either in one
direction (the sine curve is shifted up or down increasing or decreasing the average
temperature) or in the opposite directions (the sine curve is deformed, contracted or
stretched, preserving the average temperature). The latter variation is probably the
most realistic one. It models the ambient temperature for the climate types starting
with the maritime-like climate (small difference between day and night

temperatures) and ending up by the continental one (hot day and quite cool night).

Figure 6.5 shows the simulation results of all four variations of the ambient
temperature. As it was expected the shifting of the whole ambient temperature
curve has the largest impact on the minimal specific store volume (solid line in
Figure 6.5). Variation of only day temperature has approximately the same
influence as that of the night temperature (dash-dotted and dotted lines,
respectively). The least influential is the last variation that preserves the average
temperature (dashed line).
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Figure 6.5: Influence of ambient day and night temperatures on minimal specific store volume
Vstore /Acor- Dash-dotted and dotted lines show influence of changing only day and only night
temperatures, respectively. Solid line describes influence of shifting both temperatures in one
direction (both increasing or decreasing). Dashed line means streatching or contracting of
temperature sine curve with preserving average temperature

6.4.4. Influence of duration of night cooling period

Duration of the night cooling period is another important factor for the proposed
anti-stagnation strategy. In principle, if no consumption is expected for the
following day the night cooling period can be as long as possible, starting in the
early evening, when the sun leaves the collector, and ending in the later morning
when the rising sun shines on the collector again. For example, for the chosen
Madrid weather condition (August 18) the maximum night cooling period is 14.8
hours. But if the hot water demand, larger than the auxiliary volume in the store, is
expected on the next day, especially in the early morning, the night cooling must be
stopped earlier in the morning or started later in the evening, thus, providing that
enough energy is left in the store to fully cover the consumption on the next day.
The similar is correct if the weather is expected not to be that shiny during the
following day. The power consumed by the pumps could be then saved by making

the night cooling period shorter.

In Figure 6.6 variations of the night cooling starting and ending times are presented
for the modeled Madrid weather conditions and without hot water demand. It is

easily seen that each half hour of the night cooling in the morning saves much more
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storage space than half hour in the evening does. In other words, it is always better

to start the night cooling as late in the evening as possible and to finish it just before
the sun comes on the collector in the morning. This conclusion is trivial. It is

explained by the lower ambient temperature in the morning and thus, more efficient
night cooling.
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Figure 6.6: Influence of duration of night cooling period on minimal specific store volume
Vstore /Acor - Dashed curve shows influence of stopping night cooling earlier in the morning

whereas dotted curve shows effect of starting it later in the evening. Distance between two
neighbour points depicted by circles is half an hour

6.4.5. Electricity consumption of the pumps

In comparison with the usual AT control strategy, the proposed anti-stagnation
strategy has larger power consumption of the pumps due to the night cooling of the
store. For the most sunny day in Madrid the high efficient collector and store pumps
consume 0.8 kWh and 0.2 kWh per night, respectively. During the night cooling
the mass flows and thus the power consumption can be lowered by 50% resulting in
only 10% increase of the minimal specific store volume. The pump power
consumption during a day can be hardly compared with the usual AT control
strategy as the solar heating system controlled by AT strategy usually stagnates
earlier. If there were quite large hot water consumption and the AT strategy hold a
day without stagnation, then the power consumption by the collector pump would
be almost equal around 0.5 kWh/day for both strategies and the consumption by
the store pumps would be 0.15 kW h for the AT strategy and 0.08 kW h for the anti-
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stagnation strategy. This difference is explained by significantly lower flow rate in

the store loop during a day for the anti-stagnation strategy.

6.4.6. Discussion

An important question to answer before the practical implementation of the
proposed anti-stagnation control strategy is when to use this strategy and how to
couple it with the usual AT control strategy. In the case when the residents leave for
vacation for a couple of weeks in the summer it could be switched on manually (the
so-called vacation modus of the controller). An automatic switching between the
control strategies or automatic adjustment of the duration of night cooling period for
the anti-stagnation strategy requires rough prediction of the weather and
consumption profile on the following day. In other words, the controller should
roughly know how much energy will come into the store next day, and how much
consumption will take place. The weather conditions could be approximately
estimated as average worst case conditions for the chosen location and season. A
more precise weather forecast for the following day can be provided online by a
nearby meteorological station. This feature must be programmed in the controller
and the data transmission line must be reliable. The hot water consumption should
be predicted or set to a fixed value by the consumer. Basing on these two predicted
values, the weather conditions and consumption, it seems possible to control the
heating system in such a way that no stagnation will take place in the summer and

the hot water demand will be covered to 100 per cent.

6.5. Practical application of anti-stagnation control

The proposed and theoretically investigated anti-stagnation strategy was tested in
field at two solar heating systems. In the following subsections the difficulties of

practical implementation and possible solutions are discussed in more details.

6.5.1. Difficulties of implementation at Huett brewery

First field tests were carried out on solar heating system installed at the Huett
brewery near Kassel (Germany). The schematics of the system is shown in the
Figure 6.7. The solar heating system consists of 22 flat plate collectors with total
aperture area of 155.5m?, external heat exchanger with specific UA-value of
130 W/ m?K related to the collector aperture area and 10 m? solar store. Variable

speed pumps are installed in primary and secondary solar loops. The solar heating
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system charges the brewing water tank with variable water volume of maximum
50 m3.

Tcol
155.5 m’
Tstore_top
A
30':6“?" cold brewery
m water variable volume
tank
50m’
Tsolar_F Teharge
1 I
V.. =20 I/m’h V... - variable
) o —
Primary Secondary
pump Tsolar_R pump

Figure 6.7: Schematics of solar heating system at Huett brewery near Kassel (Germany) with
positions of temperature sensors used for anti-stagnation approach

The anti-stagnation algorithm is first programmed in the controller of the solar

heating system with the following relevant settings:

Stagnation temperatures:
o T, >130°C
® Tsoiarr > 103°C
® Tstore top > 98°C

If one of the temperature thresholds is reached, the primary and secondary pumps

shut down.
Anti-stagnation algorithm settings:

e The primary pump turns on at T,,; > 75°C and runs with the constant flow rate

Vpri = 20 1/m?h. It shuts down at T,,,; < 70°C

e Speed of the secondary pump is varied by the PID controller to keep
Tcharge = 80°C. This temperature is chosen much lower than 95°C used in
simulations in order to prevent store overheating due to possible temperature
fluctuation occurring when using the PID controller.

The approach was monitored for several days. On the first testing day the secondary

pump is started for test purpose already at T¢pgarge = 70°C, indicated by the point Py
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in Figure 6.8. It is seen that just after starting the pump Tip4pg. (brown curve)
increases by around 10 K with no immediate effect on T, (orange) and T F
(light blue) temperatures. At the point P, the secondary pump is started at Tepgpge =

80°C and only several minutes after this T, r €Xceeds the stagnation threshold of

103°C and the system stagnates.
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Figure 6.8: Application of anti-stagnation approach to solar heating system at Huett brewery.
First day shows it difficult to hold constant Tcp4.ge = 80°C. Point P; indicates test start of

secondary pump and immediate increase of Tp4rge by 10 K followed by delayed decrease in
Tso1ar r - PoOINt P, shows normal pump start, similar effect for T¢pq,g. and stagnation after only
few minutes because of too high T4, ¢

According to the measurements, two weak points of the approach are identified:
difference between readings of two sensors Tsyiqr p and Tepgrge 18 more than 10 K
when the secondary pump is not running and T¢pg,g. increases fast when the pump
is turned on. But due to the capacity of the collector, T,,; and Ty4 ¢ respond too
late to cooling down of Ty, g and system stagnates. So, it is obvious that holding
approximately constant T¢pqrge = 80°C is not possible by this control.

For the next day the behaviour of the secondary pump was changed as follows:

e Secondary pump turns on at Ty, g > 85°C and runs with small speed
until Tso14r g < 85°C. If Typgyge > 80°C pump is managed by the PID controller
keeping Tepgrge = 80°C.
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In Figure 6.9 relevant temperatures and flow rates are shown for the second day.
Due to modified control of the secondary pump, T¢pgyge 18 hold around 80°C when
the primary pump is on. The primary pump switches on and off according to T,,;
temperature. Last time it switches on at around 15: 48 and shortly after that (point
P; in Figure 6.9) the system stagnate due to too high Ty 4, 7. It seems that the

temperature sensor measuring T,,; is improperly installed.
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Figure 6.9: Application of anti-stagnation approach to solar heating system at Huett brewery. Day
two shows better control of T;p4rg. = 80°C due to modified control of secondary pump. But still

system stagnates at point P;. Primary pump starts too late most likely because improperly installed
temperature sensor measuring T,,,

The secondary pump control was changed once more in order to keep Tsp1ar F
constant at 80°C instead of T, pqpge. Figure 6.10 shows the influence of this
modification. The system does not stagnate but Ty, r shows relative large
fluctuation around 80°C. It happens due to collector capacity. Variation of the flow
rate of the secondary pump does not have immediate effect on the controlled
Tso1ar - When secondary pump is started at Tg,, p = 80°C collector inlet
temperature which is close to T4, g TESpONSses fast, but it takes around 5 minutes
till it arrives at the collector output. At this time the PID controller being unable to
hold Tso14r r (it keeps increasing), increases the flow rate of the secondary pump
and cools down T4, g more than needed. After 5 minutes “cooled” fluid arrives at
Tso1ar r» PID controller switches off the secondary pump and waits until T4, £
rises to 80°C to start the next loop.



6.5. Practical application of anti-stagnation control

92

(=]
(=

L]
o

Tsolar R

Temperature, °C
=
(=]

20

| aWaralay

9. Sep 9. Sep 9. Sep 9. Sep 9. Sep 9. Sep 9. Sep 9. Sep 9. Sep 9. Sep
13:15 13:20 13:25 13:30 13:35 13:40 13:45 13:50 13:55 14:00
Uhr Uhr Uhr Uhr Uhr Uhr Uhr Uhr Uhr Uhr

Time

Figure 6.10: Application of anti-stagnation approach to solar heating system at Huett brewery.
Day three shows control of T4, = 80°C 0on a sunny day. Primary pump stays on but secondary
pump switches on and off due to capacity in pipes and collector

It is obvious that neither T¢pgpge NOT Tgo1qr ¢ Can be hold constant in practical
implementation by the PID controller varying the flow rate of the secondary pump
by the proposed anti-stagnation strategy. The only temperature at the heat
exchanger which can be hold constant by the PID controller is T¢,;4 p and, hence,
the inlet temperature of the collector.

6.5.2.Modification. Implementation at Gartenstrasse

In the following the results of holding Ty, g constant by varying secondary pump
flow rate are shown for the solar thermal system for DHW preparation installed at
the Gartenstrasse in Kassel (Germany). The collector field of 32 m? charges 2 m3
store via external heat exchanger and stratification device.

In Figure 6.11 relevant temperatures and flow rates are shown when the flow rate of
the secondary pump V., is varied by the PID controller so that T4, g = 75°Con a
sunny day. It is seen that T;,;4, r can be hold constant fairly well, with only +3K
fluctuation at the beginning of the secondary pump operation and then with +1K.
At this T¢pgarge can also be hold fairly constant with maximum at 83°C, maximum
for T,,; 1s 93°C.
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Figure 6.11: Application of anti-stagnation approach to solar heating system in Gartenstrasse,
Kassel on a sunny day. Ts,14 g = 75°C is hold very well (within at max +3K)) by varying flow rate
of secondary pump Vg,

Figure 6.12 shows application on a partially cloudy day with high fluctuation of
solar radiation. It is seen that secondary pump flow rate V;,. fluctuates significantly
but Tsiqr g can be still hold fairly constant, within at max +4.5K. However T;p4rge
dependent on both Ty, r and changing Vg, also fluctuates and has its maximum
at 92°C, noticeably higher than on a sunny day. Maximum for T,,; remains at 93°C.

To calculate potential of the daily inefficient collector operation for the measured
solar heating system two sunny days with similar solar irradiation are chosen:
12 September with G, = 3.82 kWh/m?d and usual AT control and 15 September
with G, = 4.02 kWh/m?d and anti-stagnation control. On these days the sum of
energy incoming into store is calculated giving Qsorein = 73,93 kWh/d for 12
September and Qgorein = 49,56 kWh/d for 15 September what is around 33%
less. For partly cloudy 14 September with G, = 3.46kWh/m?d, Qsiorein =
42,10 kWh/d.
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PID secondary pump control for Tsoar g =75 ° C, partially cloudy day
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Figure 6.12: Application of approach to solar heating system at Gartenstrasse, Kassel on a partly
cloudy day. Flow rate of secondary pump Vs, fluctuates significantly but Ty, g = 75°C is still
hold fairly well (within at max +4.5K) and none stagnation threshold is exceeded
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Figure 6.13: Comparison of T, meqn for usual AT (on 12 September) and proposed anti-
stagnation (on 15 September) control. During a day T,o; meqn fOr anti-stagnation control is
significantly higher
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To conclude, the proposed anti-stagnation control strategy shows good theoretical
potential. However in practical implementation it is especially sensitive to correct
installation of relevant temperature sensors and proper settings of the PID controller
because inefficient collector operation occurs at high collector output temperature
close to stagnation threshold. Even small fluctuations in control might lead the solar
heating system into stagnation. Successfully applied daily anti-stagnation control
strategy shows more than 30% reduced energy flow to the store when compared to
usual AT control.



7. Conclusion and outlook

In this thesis numerical optimization of the IEA Task 32 solar heating combisystem
1s carried out with regards to three different aspects: optimization of the
combisystem in planning process, optimization in operation and anti-stagnation
control-based approach. In all cases the main focus was on development of suitable
methodology. In this chapter main results of the thesis are summarized and

discussed.

7.1. Design optimization of solar combisystem. Application

of sensitivity analysis methods

Basing on earlier research carried out at University of Kassel (Krause, 2003) which
suggested application of heuristic approaches as evolutionary strategies or genetic
methods to optimization of the combisystem in planning process, in this thesis a
hybrid genetic CHC - binary (n-ary) search algorithm is proposed and tested with
regards to computational efficiency and reliability. The method shows good
performance: all optimizations started from different randomly choosen populations
converge to nearly the same optimum (£2%). Local binary search algorithm used
in the second stage of the hybrid algorithm to accelerate the convergence rate is
shown to be able to avoid the local optimum. Good parallelization properties of the
CHC algorithm allow up to n times acceleration where n is the population size
when running either on the server or in distributed computational network with at

least n available cores.

The proposed method is applied to optimization of the solar combisystem described
in Chapter 1. For this first the target function as solar energy costs (costs of the
combisystem divided by saved auxiliary final energy) is defined and then
18 parameters of solar combisystem which might have an influence on this target
function are chosen for optimization within corresponding variation ranges. The
combisystem is optimized for chosen extended fractional energy savings
incorporated in target function as a constraint in form of additional penalty function
term. In this way the IEA Task 32 solar combisystem was optimized for several
extended fractional savings and the Pareto front in form of the optimal points
connected to the curve: optimal solar energy costs vs. extended fractional savings is
obtained. The minimal solar energy costs which can be reached for the

combisystem at each given extended fractional savings or vice versa, the maximal



7.1. Design optimization of solar combisystem. Application of sensitivity

analysis methods 97

fractional savings for fixed energy costs can be easily determined from the Pareto
front. It is shown that improvement of either around 13% in terms of costs or
around 19 percent points in terms of energy savings is reachable comparing to the
standard dimensioned IEA Task 32 solar combisystem. These figures are seen as

potential of the numerical optimization for the combisystem in planning process.

Influence of the domestic hot water and space heating demand as well as the
weather conditions (location of the combisystem) is investigated. Domestic hot
water profile is proportionally changed +50% (from initial 200 [/d to 100 [/d and
300 [/d) and Pareto fronts are constructed by optimizations. The solar energy costs
increases by around 15% for 50% decrease in domestic hot water demand and it
decreases by 5 — 8% (depending on the point on the Pareto front) when demand
grows by 50%. The combisystem optimized for standard 200 [/d demand but used
with —50% reduced demand (100 [/d) is not significantly worse (only around

1 — 5%) from the combisystem initially optimized for the reduced demand.

Influence of space heating demand is analysed by changing the building envelope.
The Pareto fronts for three buildings with 30,60 and 100 kWh/m?a of space
heating demand differ less than in 5%. However, the optimal combisystem
configurations for the same solar fractional savings differ significantly. For
example, to reach fq4 0x¢ = 0.50 by the combisystem optimized for the SH demand
of 30 kWh/m?a, collector area of 20 m? is required, for 60 kWh/m?a - 38 m?
and for 100 kWh/m?a - 57 m?.

Influence of the location, that is, simultaneous change of the solar insolation and
space heating shows that the minimal solar energy costs is nearly equal for the
combisystems built in Stockholm and Zurich for fsg; exe < 0.35; For higher f;4, oxt
up to 0.50 the comibsystem in Stockholm is up to 12% more expensive whereas the
combisystem built in Madrid is around 40% cheaper. The combisystem optimized
for Stockholm but built in Zurich is negligibly worse than that optimized for Zurich
in terms of solar energy costs but obviously it has larger fractional savings than if it

were built in Stockholm.

In Section 4.6 influence of variation of each optimization parameter as well as two
boundary condition parameters on solar energy costs is accessed around the
optimum point by application of three global sensitivity methods. First local
sensitivity at optimum is estimated. All parameters are changed (mostly in
[-50%; +50%]) one at a time showing that the both boundary condition



7.1. Design optimization of solar combisystem. Application of sensitivity

analysis methods 98

parameters: collector price and domestic hot water demand have the largest
influence followed by the optimization parameters as boiler set temperature, slope,

collector input height in store, collector area, store volume, etc.

To estimate the influence in larger parameter space over the optimum and to
quantify it, three different sensitivity methods are applied in “narrow” and “broad”
parameter spaces (Table 4.3). The MLR model built by multiple linear regression
method basing on “measured” data calculated at random points of the “narrow”
parameter space shows very good correspondence (R? = 0.97) to TRNSYS model
in this parameter space. Being justified by high value of the determination
coefficient, the model allows simple quantification of the parameter influence on
the solar energy costs. For example, increase of the collector price by 1 Eur/m?
causes 4.57e-04 Eur/kWh increase in the solar energy costs or, in other
interpretation, if the collector price is changed by around 25%, the solar energy
costs is changed by around 0.025FEur/kWh what is 15% from the optimum
(Table 4.4). Two more MLR models are built: one including all parameters and
another including only optimization parameters in “broad” parameter space. Both
models show poor fit with R? = 0.73 and R? = 0.29, respectively. Large difference
between two values of the determination coefficient is due to large linear influence

of the boundary condition parameters: collector price and DHW load.

The qualitative sensitivity analysis method, the Morris method, based on calculation
of measures pu* and o of the elementary effects ranks parameters by their
importance. The variation coefficient o/u* indicates if the parameter effect is
mostly linear, that is nearly the same at different points of the parameter space
(small values of o/u*) or nonlinear, significantly different at different points. As
expected in “narrow” parameter space the effect of the most parameters is linear,
that is also shown by tight confidence ranges of the measure y* estimations. In
“broad” variation space the effect of collector price remains mostly linear but
effects of other significant parameters become nonlinear. Simple “quantification” of
the effects shows good agreement between the MLR and Morris methods in

“narrow” parameter space.

The extended FAST sensitivity method is applied to quantify the parameter
influence in “broad” variation space. According to the method 88% of variation in
solar energy price is explained by main effects of the parameters and method can be
seen as justified. The collector price and DHW load have the largest influence on

the solar energy price showed by the main effects S; of 41% and 27%, respectively,
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followed by Tgyx se¢ and sl with 8% and 4%. The results are also in accordance

with ranking of the Morris method.

Although quite comprehensive study on design optimization of solar combisystem
and sensitivity analysis around optimum is carried out, there are some minor weak
points which remain open for future research. The combisystem cost function must
be carefully defined by more precise and comprehensive market study than that
carried out in this thesis. Installation expenses cannot be taken flat rate but must be
differentiated depending on component sizes and installation peculiarities.
Sensitivity analysis with respect to other boundary parameters as prices of store,

heat exchanger, pipes, pumps, etc. as well as interest rate should be carried out.

7.2. Optimization of solar combisystem in operation

Dynamic optimization of the solar combisystem based on an idea to separate yearly
optimization in many short ones is presented in Chapter 5. This approach is justified
only when variation of the optimization parameter on a specific hour or day has
influence on the system performance (target function) over a short time period only.
The proposed approach is applied to estimate potential of the dynamic hourly
adjustments of the flow rates in collector and store loops. The optimization results
show only a negligible benefit of 0.3 per cent points in terms of the extended
fractional energy savings when comparing to the constant (same over the year when
the pumps are on) flow rate already optimized during the design optimization. Low
optimization potential of dynamic flow rates adjustment indicates that application of
a smart controller which varies the flow rates depending on weather forecast would

be inefficient.

Potential of dynamic adjustment of the auxiliary heater control settings to the load
profile is estimated in a different way. For this the boiler heating up the store
auxiliary volume is replaced by two electrical instant heaters introduced into DHW
and space heating loops. Simulation results show that comparing to reference 1
combisystem (see Table 5.1) 1.85 percent points higher f;4, o+ due to smaller store
losses and larger solar gains, is achievable. It means 0.87 EurCent/kWh (around
5%) cheaper solar energy costs. If compared to the initial reference 0 combisystem
with optimized constant T, 4, = 53°C, the potential is even larger due to higher

electricity consumption by the boiler (3.3 percent points in fs,e,e  and

1.6 EurCent/kWh (around 10%) in costs). If Tge gy, 15 increased to 70°C for

reference 0 combisystem then the dynamically optimized combisystem is 5.8
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percent points in figy,exe (3.1 EurCent/kWh or 17% in costs) better. This last
comparison shows the importance of auxiliary set temperature already stated in

Chapter 4 by sensitivity methods.

The method of separating long year optimization in many short ones and its
implementation for dynamic optimizations of solar thermal systems should be

approved by further applications.

7.3. A control - based anti - stagnation approach

A control-based anti-stagnation approach is presented and theoretically investigated
in Chapter 6. The proposed approach combines daily inefficient collector operation
and nightly cooling. It is investigated theoretically basing on TRNSYS simulation.
Minimal specific store volume required for stagnation-free operation for 10
sunniest days in a row without consumption is determined for three climate
conditions. The method can be applied to solar thermal systems with external heat
exchanger and collector with thermal loss coefficient larger than 3.0 W/m?K.
Influence of boundary conditions on minimal specific store volume is analysed.
Change of the global radiation in 5% causes approximately 20% change of the
minimal specific store volume. Influence of the ambient temperature variations
(daily and nightly, simultaneous and in separate) and duration of night cooling is

shown as well.

Difficulties of practical implementation of the approach are described when applied
at Huett brewery (near Kassel, Germany). An approach cannot be applied as
proposed due to collector capacity. Temperature at the inlet to the store could not be
held at a fixed value. Large fluctuation occurs which lead to stagnation. The

approach is sensitive to correct positioning of the relevant temperature sensors.

A modification of the approach which cannot ensure the theoretical potential but
still provides good results is proposed. It turns to be reliable in application to solar
heating system installed in Gartenstrasse in Kassel both on sunny and partially
cloudy days. Inefficient daily collector operation shows 33% less energy incoming

into the store in comparison to usual AT control.

The proposed approach should be further investigated. Nightly cooling must be
practically implemented and the solar heating system analysed for several sunny
days in a row without consumption. Influence of the PID controller settings on

stability of the approach is to be estimated as well.
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CHC Cross generational elitist selection, Heterogeneous recombination by incest
prevention and Cataclysmic mutation

CPU Central processing unit

DHW Domestic hot water

FAST Fourier amplitude sensitivity test

GenOpt  Generic optimization program

HX Heat exchanger

IAM Incident angle modifier

IEA International energy agency
HTC High Throughput Computing
MLR Multiple linear regression

PID Proportional integral derivative
SA Sensitivity analysis

SH Space heating

SSE Squared sum of errors

SSM Sum of squares of the model

SSTO Total sum of squares

TRNSYS Transient system simulation program
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Latin symbols

aq

d:

D

D iso
D pipe
ATaux,low
ATaux,up
ATcol,low
ATcol,up
€;

Esol

E par,sol

E parref
E ref

F cost
Feost

F cost,cap

F cost,contr

F gost,contr
F cost,disc
F;

F penalty

Fpen,DHW

First order heat loss coefficient

Second order heat loss coefficient

Collector area

Fourier coefficients

Store surface area

Estimates of regression coefficients

Specific heat capacity of brine

Specific heat capacity of water

Specific heat capacity of water

Elementary effect

Variance

Store insulation thickness

Pipe inner diameter

Auxiliary controller lower dead band
Auxiliary controller upper dead band

AT controller lower dead band

AT controller upper dead band

Residuals

Total energy consumption by solar combisystem
Electricity consumption by solar combisystem
Electricity consumption by reference system
Total energy consumption by reference heating system
Combisystem cost function with r = 0.025
Combisystem cost function with r = 0
Capital costs

Combisystem cost function for contractor with
r = 0.025

Combisystem cost function for contractor with r = 0
Discounter components costs

Distribution of elementary effects

Overall penalty function

DHW penalty function

kJ/(kgK)
kj/(kgK)
kj/(kgK)

3

x = X X

kWh
kWh
kWh
kWh
Eur
Eur

Eur

Eur

Eur

Eur
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F penSH

Ftarget
fsav,ext

f sav,therm
f st

G

G;

H col,in
Hcol,sens
HSH,in
HSH,out
Hsol,p
ﬁsol,s
Hy
QDH w

Q aux

Q aux,pen

Qloss,re f

SH penalty function

Target function, solar energy costs
Extended fractional energy savings
Thermal fractional energy savings

Fractional savings indicator

Distribution of absolute values of elementary effects

Transformation functions in FAST method
Collector inlet position in store

AT controller sensor position in store
Space heating inlet position in store

Space heating outlet position in store
Pressure drop in primary loop

Pressure drop in secondary loop

Null Hypothesis

Domestic hot water demand

Auxiliary energy

Auxiliary energy with penalty

Store thermal losses of reference heating system
Energy consumption by reference heating system
Space heating demand

Unit hypercube

Pipe length in primary loop

Pipe length in secondary loop

Specific collector flow rate

Mass flow rate in primary loop

Mass flow rate in secondary loop

Number of auxiliary nodes

Maximum number of nodes in store
p-value

Collector price

Interest factor

Determination coefficient

Eur/kWh

3 3

kWh
kWh
kWh
kWh
kWh
kWh
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Si Main effects —

St Total effects —

T ,ir Air temperature of building zone C

T aux.set Boiler set temperature €

T ol Collector output temperature C

T col mean Mean collector temperature i
Tpouw DHW temperature delivered to consumer C
UA., UA-value of collector heat exchanger W /K
UApyw UA-value of external DHW heat exchanger W /K
V qux Auxiliary heating volume m3
Vexp Expansion vessel volume !

Vpri Volume flow rate in primary loop m3/h
Vsec Volume flow rate in secondary loop m3/h
Vtore Store volume m3
w; Frequency -
W, Electricity consumption by solar combisystem kWh
Welrer Electricity consumption by reference heating system kWh
X; Combisystem configuration —

Y, Measurements of target function —

Y, Fit values of target function —

y Mean of measured data —
Greek symbols

p i Regression coefficients

& MLR model errors

o Collector optical efficiency

A Eigenfrequencies

u Mean of distribution F; in Morris method

u* Mean of distribution G; in Morris method

o Standard deviation of distribution F; in Morris method

Q Input space in Morris method
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Appendix

A. Price functions of solar combisystem components

Price functions F,g 45c(C;) for capital cost calculation (4.7) for each main solar
combisystem component C;,i = 1,..,N based on online discounter offers. All

prices are in Euro and include German value-added tax (VAT) of 19%
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B. Influence of boundary conditions on optimization
results (Tables with results)

Table B.1: Optimization results for DHW demand —50% (100 [/d) presented by red curve in
Figure 4.11. First column shows properties of base case Task 32 combisystem

base case opt2, opt3, opt4, opt5,
Task32 ¢=040 ¢=045 ¢c=050 c=0.60

Optimization parameters

Collector area, m? 20 25 31 39 58
Store volume, m?3 2 1.8 2 2 2.9
Auxiliary volume, m? 0.2 0.1 0.14 0.12 0.22
Store insulation, m 0.15 0.2 0.2 0.2 0.2
Pipe inner diameter, mm 13 14 14 16 18
Specific flow rate, kg/m?2h 15 12 11 11 10

AT upper dead band, K 7 7 8 5 5.5

AT lower dead band, K 4 1 0.5 0.5 0.5

AT sensor pos. in store, % 0.1 0.09 0.11 0.13 0.13
UA of solar HX, W /K 2100 1900 1900 3100 4000
UA of DHW HX, W /K 5333 3480 3480 3480 4100
Coll. inlet pos. in store, % 0.4 0.84 0.81 0.81 0.84
SH outlet pos. in store, % 0.96 0.95 0.93 0.94 0.93
SH inlet pos. in store, % 0.15 0.15 0.2 0.18 0.18
Set temp. of aux. heater, °C 63 50 48 49 46
Aux. upper dead band, K 8 6.4 4 5.6 5.6
Aux. lower dead band, K 2 2.6 2.1 3.1 2.8
Collector slope,® 45 59 60 62 64
Energy quantities, MWh/a

Aux. energy demand, Q. 7.82 5.98 5.5 4.96 3.87
Solar yield, (kWh/m?a) 5.89(294) 5.65(225) 6.31(203) 6.92(177) 8.53(147)
Store losses 23 1.69 1.85 191 2.38
Ref. store losses, Qossref 0.64 0.64 0.64 0.64 0.64
SH demand, Qgy 8.46 8.45 8.45 8.45 8.45
DHW demand, Qpuw 2.93 1.46 1.46 1.46 1.46
Ref. demand, Eyy 14.72 12.97 12.98 12.97 12.98
Ref. el. demand, Epgy,yef 0.23 0.22 0.22 0.22 0.22
Solar demand, E,,; 9.88 7.7 7.12 6.49 5.2
Solar el. demand, E,q- 501 0.27 0.26 0.26 0.26 0.25
Capital costs, kEur (Eur/m?)

End user Fyogt cap 13.3(663) 14.9(594) 17.0(548) 19.8(506) 26.8(461)
Contractor Frogt cap 8.9(442) 9.9(396) 11.3(365) 13.2(337) 17.9(307)
Target function (Annuity costs), Eur /kWh, (Eur/a)

End user, interest rate 2.5% 0.196, 0.202, 0.208, 0.218, 0.247,
Frarget: (Feost) (951) (1064) (1217) (1415) (1920)
End user, own capital 0.158, 0.162, 0.167, 0.175, 0.198,
Fiargetr (Féost) (763) (854) 977) (1136)  (1541)
Contractor, int. rate 2.5% 0.131, 0.135, 0.139, 0.146, 0.165,
Frarget.contr» (Feost,coner) (634) (709) (811) (943) (1280)
Contractor, own capital 0.105, 0.108, 0.111, 0.117, 0.132,
Fiurget,contrs (Febst,contr) (509) (569) (651) (757) (1027)
Contractor, own cap., no tax 0.088, 0.091, 0.094, 0.098, 0.111,
Féarget.conerr (Fobst,contr) 427) (478) (547) (636) (863)

Extended fractional energy savings
[savext 0.329 0.406 0.451 0.5 0.6
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Table B.2: Optimization results for DHW demand +50% (300 [/d) presented by green curve in
Figure 4.11. First column shows properties of base case Task 32 combisystem

base case optl, opt2, opt3, opt4, opts,

Task32 ¢=030 ¢c=035 ¢c=040 ¢=050 c=0.60
Optimization parameters
Collector area, m? 20 13 20 24 39 55
Store volume, m?3 2 1.2 1.3 1.8 2 3
Auxiliary volume, m? 0.2 0.16 0.14 0.14 0.24 0.2
Store insulation, m 0.15 0.25 0.2 0.25 0.3 0.3
Pipe inner diameter, mm 13 10 12 12 14 18
Specific flow rate, kg/m?h 15 11 9 8 7 10
AT upper dead band, K 7 4 7.5 4 4 9
AT lower dead band, K 4 0.5 1.7 3.5 1 1
AT sensor pos. in store, % 0.1 0.2 0.13 0.18 0.16 0.15
UA of solar HX, W /K 2100 1300 1600 1600 3100 4300
UA of DHW HX, W /K 5333 8440 7820 7200 9060 10300
Coll. inlet pos. in store, % 0.4 0.74 0.81 0.77 0.77 0.87
SH outlet pos. in store, % 0.96 0.93 0.9 0.93 0.89 0.94
SH inlet pos. in store, % 0.15 0.26 0.3 0.28 0.26 0.23
Set temp. of aux. heater, °C 63 66 66 67 61 63
Aux. upper dead band, K 15.2 13.6 13.6 14.4 16
Aux. lower dead band, K 2 4 4 3.3 2.4 3.5
Collector slope,® 45 52 57 56 60 64
Energy quantities, MWh/a
Aux. energy demand, Qg 7.82 9.17 8.36 7.76 6.36 5.06
Solar yield, (kWh/m?a) 5.89(294) 4.72(363) 5.81(290) 6.46(269) 7.90(202) 9.57(174)
Store losses 2.3 1.04 1.31 1.34 1.36 1.68
Ref. store losses, Quoss,ref 0.64 0.64 0.64 0.64 0.64 0.64
SH demand, Qg 8.46 8.45 8.45 8.45 8.45 8.47
DHW demand, Qpyw 2.93 4.39 4.39 4.39 4.39 4.39
Ref. demand, E,.f 14.72 16.45 16.45 16.45 16.45 16.47
Ref. el. demand, Epgr.rer 0.23 0.23 0.23 0.23 0.23 0.23
Solar demand, E,,; 9.88 11.51 10.58 9.86 8.21 6.65
Solar el. demand, Epqy 501 0.27 0.28 0.28 0.27 0.27 0.26
Capital costs, kEur (Eur/m?)
End user Feost,cap 13.3(663) 10.6(813) 12.9(647) 15.0(625) 20.7(530) 27.4(497)
Contractor Feost,cap 8.9(442) 7.1(542) 8.6(431) 10.0(416) 13.8(353) 18.2(331)
Target function (Annuity costs), Eur /kWh, (Eur/a)
End user, interest rate 2.5% 0.196, 0.158, 0.163, 0.180, 0.201, 0.154,
Frarget» (Feost) (951) (927) (1075) (1483) (1960) (758)
End user, own capital 0.158, 0.127, 0.131, 0.144, 0.161, 0.123,
Fiargetr (Féost) (763) (744) (863) (1190)  (1573)  (608)
Contractor, int. rate 2.5% 0.131, 0.105, 0.109, 0.120, 0.134, 0.102,
Frarget.contr» (Feost,contr) (634) (618) (717) (988) (1307) (505)
Contractor, own capital 0.105, 0.085, 0.087, 0.096, 0.108, 0.082,
Furget.conerr (Fobst,contr) (509) (496) (575) (793) (1049) (405)
Contractor, own cap., no tax 0.088, 0.071, 0.073, 0.081, 0.090, 0.069,
Fiarget.conerr (Fobst,contr) (427) (417) (483) (667) (881) (340)
Extended fractional energy savings
[savext 0.329 0.3 0.357 0.401 0.501 0.596
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Table B.3: Optimization results for SH demand 30 kWh/m?a presented by green curve in
Figure 4.12. First column shows properties of base case Task 32 combisystem

base case opt2, opt3, opt4, opts,
Task32 ¢=030 ¢=040 ¢c=050 c=0.60

Optimization parameters

Collector area, m? 20 9 13 20 32
Store volume, m?3 2 0.77 1.17 1.57 2
Auxiliary volume, m? 0.2 0.14 0.14 0.26 0.16
Store insulation, m 0.15 0.2 0.2 0.25 0.2
Pipe inner diameter, mm 13 14 10 10 14
Specific flow rate, kg/m?h 15 36 13 8 9

AT upper dead band, K 7 4 6.5 4 8

AT lower dead band, K 4 1.4 1.2 4 0.7

AT sensor pos. in store, % 0.1 0.2 0.13 0.16 0.15
UA of solar HX, W /K 2100 1000 1000 1300 2200
UA of DHW HX, W /K 5333 5340 5340 5960 7200
Coll. inlet pos. in store, % 0.4 0.45 0.74 0.77 0.77
SH outlet pos. in store, % 0.96 091 0.89 0.84 0.93
SH inlet pos. in store, % 0.15 0.3 0.18 0.3 0.26
Set temp. of aux. heater, °C 63 55 56 51 51
Aux. upper dead band, K 8 8 12 9.6 8

Aux. lower dead band, K 2 0.7 3.5 3.8 2.4
Collector slope,® 45 53 59 61 61
Energy quantities, MWh/a

Aux. energy demand, Qg 7.82 4.88 4.26 3.52 2.73
Solar yield, (kWh/m?a) 5.89(294) 3.16(351) 4.05(311) 4.87(243) 6.24(194)
Store losses 2.3 0.99 1.25 1.32 1.87
Ref. store losses, Quoss,ref 0.64 0.64 0.64 0.64 0.64
SH demand, Qg 8.46 4.12 412 4.12 4.12
DHW demand, Qpw 2.93 2.93 2.93 2.93 2.93
Ref. demand, E,.f 14.72 9.54 9.53 9.54 9.54
Ref. el. demand, Ep,qrref 0.23 0.2 0.2 0.2 0.2
Solar demand, E,,; 9.88 6.38 5.65 4.76 3.82
Solar el. demand, Epqy 501 0.27 0.24 0.24 0.24 0.23
Capital costs, kEur (Eur/m?)

End user Feos¢,cap 13.3(663) 7.8(865) 10.0(768) 13.3(662) 17.7(552)
Contractor Feost cap 8.9(442) 5.2(576) 6.7(512) 8.8(441) 11.8(368)
Target function (Annuity costs), Eur /kWh, (Eur/a)

End user, interest rate 2.5% 0.196, 0.177, 0.185, 0.199, 0.222,
Frarget» (Feost) (951) (558) (716) (950) (1266)
End user, own capital 0.158, 0.142, 0.148, 0.160, 0.178,
Fiargers (Foose) (763) (447) (575) (762) (1016)
Contractor, int. rate 2.5% 0.131, 0.118, 0.123, 0.133, 0.148,
Frarget.contr» (Feost,contr) (634) (372) (477) (633) (844)
Contractor, own capital 0.105, 0.095, 0.099, 0.107, 0.119,
Furget.coners (Fevst,contr) (509) (298) (383) (508) (677)
Contractor, own cap., no tax 0.088, 0.079, 0.083, 0.090, 0.100,
Ft(:zrget,contr' (ﬁcoost,contr) (427) (250) (322) (427) (569)

Extended fractional energy savings
[savext 0.329 0.331 0.407 0.501 0.6
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Table B.4: Optimization results for SH demand 100 kWh/m?a presented by red curve in
Figure 4.12. First column shows properties of base case Task 32 combisystem

base case opt2, opt3, opt4, opts,

Task32 ¢=00 ¢=030 ¢c=035 ¢=0.50
Optimization parameters
Collector area, m? 20 14 24 34 57
Store volume, m?3 2 1.1 1.83 2 5
Auxiliary volume, m? 0.2 0.12 0.12 0.1 0.13
Store insulation, m 0.15 0.2 0.25 0.2 0.25
Pipe inner diameter, mm 13 10 14 14 16
Specific flow rate, kg/m?h 15 12 12 12 10
AT upper dead band, K 7 4 5.5 5 4
AT lower dead band, K 4 4 4 0.5 1.9
AT sensor pos. in store, % 0.1 0.15 0.07 0.13 0.13
UA of solar HX, W /K 2100 1300 1600 2200 4900
UA of DHW HX, W /K 5333 4720 5960 5340 5960
Coll. inlet pos. in store, % 0.4 0.84 0.87 0.87 0.9
SH outlet pos. in store, % 0.96 0.91 0.97 0.97 0.99
SH inlet pos. in store, % 0.15 0.3 0.3 0.26 0.26
Set temp. of aux. heater, °C 63 56 54 61 59
Aux. upper dead band, K 8 12 7.2 16 15.2
Aux. lower dead band, K 2 2.6 2.8 2.4 2.8
Collector slope,® 45 51 52 58 59
Energy quantities, MWh/a
Aux. energy demand, Qg 7.82 13.48 11.99 11.09 8.42
Solar yield, (kWh/m?a) 5.89(294) 4.63(330) 6.35(264) 7.67(225) 11.1(193)
Store losses 2.3 1.18 1.38 1.79 2.45
Ref. store losses, Quoss,ref 0.64 0.64 0.64 0.64 0.64
SH demand, Qg 8.46 14 14 14.01 14.01
DHW demand, Qpw 2.93 2.93 2.93 2.93 2.93
Ref. demand, E,.f 14.72 21.3 21.3 21.31 21.32
Ref. el. demand, Epgr.rer 0.23 0.25 0.25 0.25 0.25
Solar demand, E,,; 9.88 16.62 14.86 13.79 10.65
Solar el. demand, Epqy 501 0.27 0.3 0.29 0.29 0.29
Capital costs, kEur (Eur/m?)
End user Feos¢,cap 13.3(663) 10.3(737) 14.9(622) 18.1(533) 29.1(509)
Contractor Frpst cap 89(442) 6.9(491) 10.0(414) 12.1(355) 19.4(339)
Target function (Annuity costs), Eur /kWh, (Eur/a)
End user, interest rate 2.5% 0.196, 0.158, 0.166, 0.173, 0.195,
Frargets (Feost) (951) (739) (1070)  (1300)  (2082)
End user, own capital 0.158, 0.127, 0.133, 0.139, 0.157,
Fiargetr (Féost) (763) (593) (859) (1044)  (1671)
Contractor, int. rate 2.5% 0.131, 0.105, 0.111, 0.115, 0.130,
Frarget,contr» (Feost,contr) (634) (493) (713) (867) (1388)
Contractor, own capital 0.105, 0.085, 0.089, 0.093, 0.104,
Fiarget,contrs (Féost.contr) (509) (395) (572) (696) (1114)
Contractor, own cap., no tax 0.088, 0.071, 0.075, 0.078, 0.088,
Ft(:zrget,contr' (ﬁcoost,contr) (427) (332) (481) (584) (936)
Extended fractional energy savings
[savext 0.329 0.22 0.303 0.353 0.5
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Table B.5: Optimization results for Stockholm (SE) presented by green curve in Figure 4.13. First
column shows properties of base case Task 32 combisystem located in Zurich (CH)

base case optl, opt2, opt3, opt4, opt5,
Task32 ¢=025 ¢=030 ¢c=035 ¢=040 c=0.50

Optimization parameters

Collector area, m? 20 16 22 30 41 60
Store volume, m?3 2 1.2 1.5 1.9 2 5
Auxiliary volume, m? 0.2 0.14 0.14 0.14 0.14 0.26
Store insulation, m 0.15 0.2 0.2 0.2 0.2 0.25
Pipe inner diameter, mm 13 12 12 14 14 18
Specific flow rate, kg/m?%h 15 11 9 9 10 10

AT upper dead band, K 7 6.5 8.5 10 11.5 6.5

AT lower dead band, K 4 0.7 1 2.4 1.9 0.5

AT sensor pos. in store, % 0.1 0.13 0.15 0.05 0.05 0.11
UA of solar HX, W /K 2100 1000 1600 2200 3100 3700
UA of DHW HX, W /K 5333 4720 5340 5340 5340 5960
Coll. inlet pos. in store, % 0.4 0.81 0.87 0.74 0.81 0.9

SH outlet pos. in store, % 0.96 0.89 0.92 0.93 0.95 0.95
SH inlet pos. in store, % 0.15 0.3 0.3 0.24 0.2 0.24
Set temp. of aux. heater, °C 63 58 55 58 55 51
Aux. upper dead band, K 8 13.6 9.6 14.4 12 9.6
Aux. lower dead band, K 2 2.8 3.5 4 2.8 3.3
Collector slope,® 45 64 66 70 71 75
Energy quantities, MWh/a

Aux. energy demand, Qg 7.82 11.73 10.91 10.11 9.28 7.64
Solar yield, (kWh/m?a) 5.89(294) 4.81(300) 5.78(262) 6.87(228) 7.82(190) 10.1(168)
Store losses 2.3 1.23 1.38 1.67 1.79 2.4
Ref. store losses, Qjogs,ref 0.64 0.64 0.64 0.64 0.64 0.64
SH demand, Qgy 8.46 12.41 12.41 12.42 12.41 12.42
DHW demand, Qpuw 2.93 2.93 2.93 2.93 2.93 2.93
Ref. demand, E;y 14.72 19.41 19.42 19.43 19.42 19.43
Ref. el. demand, Ej gy rep 0.23 0.25 0.25 0.25 0.25 0.25
Solar demand, E;,,; 9.88 14.54 13.57 12.61 11.64 9.7
Solar el. demand, Epqr 501 0.27 0.29 0.29 0.29 0.28 0.28
Capital costs, kEur (Eur/m?)

End user Feost,cap 13.3(663) 11.0(690) 13.6(619) 16.8(560) 20.5(499) 29.5(491)
Contractor Feost cap 8.9(442) 7.4(460) 9.1(413) 11.2(373) 13.7(332) 19.7(327)
Target function (Annuity costs), Eur/kWh, (Eur/a)

End user, interest rate 2.5% 0.196, 0.162, 0.167, 0.177, 0.189, 0.217,
Frarget» (Feost) (951) (791) (977) (1204) (1467) (2114)
End user, own capital 0.158, 0.130, 0.134, 0.142, 0.151, 0.174,
Fiargetr (Foost) (763) (635) (784) (966) (1178)  (1697)
Contractor, int. rate 2.5% 0.131, 0.108, 0.111, 0.118, 0.126, 0.145,
Frarget,contr» (Feost,coner) (634) (527) (651) (803) (978) (1409)
Contractor, own capital 0.105, 0.087, 0.089, 0.095, 0.101, 0.116,
Fiarget,contrs (Feost,contr) (509) (423) (522) (644) (785) (1131)
Contractor, own cap., no tax 0.088, 0.073, 0.075, 0.079, 0.085, 0.098,
Ffurget,contrr (Flost,contr) (427) (356) (439) (541) (659) (950)

Extended fractional energy savings
[ savext 0.329 0.251 0.301 0.351 0.401 0.501
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Table B.6: Optimization results for Madrid (ES) presented by red curve in Figure 4.13
column shows properties of base case Task 32 combisystem located in Zurich (CH)

base case optl, opt2,

Task32 ¢=0.0 ¢=0.60
Optimization parameters
Collector area, m? 20 9 18
Store volume, m?3 2 0.8 1.5
Auxiliary volume, m? 0.2 0.12 0.12
Store insulation, m 0.15 0.15 0.15
Pipe inner diameter, mm 13 14 12
Specific flow rate, kg/m?h 15 36 10
AT upper dead band, K 7 4 5
AT lower dead band, K 4 0.5 1.9
AT sensor pos. in store, % 0.1 0.24 0.13
UA of solar HX, W /K 2100 1000 1300
UA of DHW HX, W /K 5333 4100 5340
Coll. inlet pos. in store, % 0.4 0.71 0.87
SH outlet pos. in store, % 0.96 0.97 0.95
SH inlet pos. in store, % 0.15 0.27 0.18
Set temp. of aux. heater, °C 63 59 57
Aux. upper dead band, K 10.4 12
Aux. lower dead band, K 2 3.5 2.8
Collector slope,® 45 54 58
Energy quantities, MWh/a
Aux. energy demand, Qg 7.82 5.29 3.43
Solar yield, (kWh/m?a) 5.89(294) 5.25(583) 7.69(427)
Store losses 2.3 1.63 2.19
Ref. store losses, Qjogs,ref 0.64 0.64 0.64
SH demand, Qgy 8.46 5.96 5.96
DHW demand, Qpyw 2.93 2.93 2.93
Ref. demand, E,.c¢ 14.72 11.7 11.7
Ref. el. demand, Epqr.ref 0.23 0.2 0.2
Solar demand, E,,; 9.88 6.88 4.67
Solar el. demand, Epqr 501 0.27 0.26 0.25
Capital costs, kEur (Eur/m?)
End user ot cap 13.3(663) 7.5(836) 11.9(663)
Contractor Feost cap 8.9(442) 5.0(557) 8.0(442)
Target function (Annuity costs), Eur /kWh, (Eur/a)
End user, interest rate 2.5% 0.196, 0.112, 0.122,
Frarget» (Feost) (951) (539) (855)
End user, own capital 0.158, 0.090, 0.098,
Furget (Febse) (763) (433) (686)
Contractor, int. rate 2.5% 0.131, 0.075, 0.081,
Ftarget,contrl (Fcost,cantr) (634) (359) (570)
Contractor, own capital 0.105, 0.060, 0.065,
Ft(zzrget,contrl (Fcoost,contr) (509) (288) (457)
Contractor, own cap., no tax 0.088, 0.050, 0.055,
Ffurget,contrr (Flost,contr) (427) (242) (384)
Extended fractional energy savings
fsavext 0.329 0.412 0.601

. First
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C. MLR model for f,, cxe in “narrow” parameter space

Table C.1: Results of MLR method for fs,, e, In “narrow” variation space as in Table 4.3.
Estimates of the intercept and regression coefficients b;, 95% confidence interval, corresponding
p —values and significance levels are presented. Absolute and relative (with respect to optimum)
variation in |AF,q.ge;| is shown due to 55% variation in corresponding parameters.

Determination coefficient R? equals 0.98

Paramater b; estimate 95% Confidence interval p - value Signifi- |AFtaTget|' |AFnget ;
2.5% 97.5% cance  Eur/kWh % of opt.

0. Intercept 2.84E-01  2.72E-01 2.96E-01 <2e-16 Hk

1. Ao, m? 8.45E-03  8.29E-03 8.60E-03 <2e-16 ok 0.033 10.7
2. Vstore» m* 1.94E-02  1.76E-02 2.12E-02 <2e-16 Hoex 0.006 2.1
3. Naux -1.42E-03  -1.69E-03 -1.15E-03 <2e-16 o 0.003 1.0
4.Diso,m 9.43E-02  8.34E-02 1.05E-01 <2e-16 ok 0.005 1.7
5. Dpipe, mm 240E-04  -4.67E-04  -1.32E-05 0.04 - 0.001 0.2
6. Mp1ow, kG/M*h 636504 -826F-04 -446E-04  1.31e-10 ok 0.002 0.6
7-ATeoup, K -6.19E-04  -1.17E-03 -6.28E-05 0.03 * 0.001 0.2
8. AT¢o1,10ws K 9.50E-05  -4.69E-04 6.59E-04 0.7 0.000 0.0
9. Heot,sens -4.06E-03  -2.09E-02 1.28E-02 0.6 0.000 0.0
10.UAco, W/K 9.91E-06  7.77E-06 1.21E-05 <2e-16 ok 0.003 0.9
11. Heopin 1.86E-02  1.58E-02 2.13E-02 <2e-16 Hk 0.004 1.3
12. Hgy out -1.63E-02  -4.72E-02 1.46E-02 0.3 0.000 0.1
13. Hsp,in 1.31E-02  5.69E-03 2.04E-02 0.0 Hork 0.001 0.4
14.UApyw, W/K 226807  -1.07E-07 5.59E-07 0.2 0.000 0.1
15. Taux,set» °C -1.69E-03  -1.73E-03  -1.65E-03 <2e-16 ok 0.024 7.9
16. ATqux,up, K 557E-04  2.54E-04 8.61E-04 0.0 *rr 0.001 0.4
17. AT qux 1ow) K -1.38E-04  -1.17E-03 8.95E-04 08 0.000 0.0
18.s1,° -1.07E-03  -1.11E-03  -1.03E-03 <2e-16 e 0.015 5.0
19.DHW 1.31E-02  1.09E-02 1.52E-02 <2e-16 *x 0.004 1.2

20. Price.,;, Eur

/mz -6.78E-06  -1.74E-05 3.81E-06 0.208774 0.000 0.1




