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Abstract

Using an algorithmic approach, we derive classes of mixed recurrence equations satisfied
by classical orthogonal polynomials. Starting from certain structure relations satisfied by
classical orthogonal polynomials or their connection formulae, we show that our mixed
recurrence equations are structurally valid. However, they couldn’t be easily obtained
with classical methods and for this reason, our algorithmic approach is important. The
main algorithmic tool used here is an extended version of Zeilberger’s algorithm. As
application of the mixed recurrence equations,

1. we investigate interlacing properties of zeros of sequences of classical orthogonal
polynomials;

2. we prove quasi-orthogonality of certain classes of polynomials and determine the
location of the extreme zeros of the quasi-orthogonal polynomials with respect to
the end points of the interval of orthogonality of the polynomial sequence, where
possible;

3. we find bounds for the extreme zeros of classical orthogonal polynomials.

Every orthogonal polynomial system {p,(z)},>o satisfies a three-term recurrence relation
of the type

Pnt1(z) = (Apx + Bp)pn(z) — Cppp_1(x) (n=0,1,2,....,p_1 =0),

with C,,A,A,_1 > 0. Moreover, Favard’s theorem states that the converse is also true.
A general method to derive the coefficients A,, B,, C, in terms of the polynomial co-
efficients of the divided-difference equations satisfied by orthogonal polynomials on a
quadratic or g-quadratic lattice is revisited. The Maple implementations rec2ortho of
Koornwinder and Swarttouw [1996-1998] or retode of Koepf and Schmersau [2002] were
developed to identify classical orthogonal polynomials knowing their three-term recur-
rence relations. The two implementations rec2ortho and retode do not handle classical
orthogonal polynomials on a quadratic or g-quadratic lattice. We extend the Maple im-
plementation retode of Koepf and Schmersau [2002] to cover classical orthogonal polyno-
mials on quadratic or ¢g-quadratic lattices and to answer as application an open problem
submitted by Alhaidari [2017] during the 14th International Symposium on Orthogonal
Polynomials, Special Functions and Applications.



Chapter O

(zeneral Introduction

We say that a polynomial set {y,(x)},>0, where y,(z) is of exact degree n in the variable
x, is orthogonal with respect to the measure du(z) defined on the interval (c,d) (with
—00 < ¢ < d < 400) if the following orthogonality relation is valid

=0 if n#m

d
() @) = [ (@)
c #0 if n=m.
If the nondecreasing, real valued, bounded function pu(z) is absolutely continuous with
du(x) = p(z)dz, p(x) > 0, then the orthogonality relation reduces to

=0 if n#m

d
(&) (@) = [ () (@)pl)d
c =h,#0 if n=m.
The sequence {y, },>0 is said to be orthogonal with respect to the weight function p(z)
defined on the interval (¢, d). We refer to the sequence {y, } >0 as orthogonal polynomials
of a continuous variable.
However, if p(z) is a step-function with jumps p(z) = p; at the points x = z; = j, j =
0,1,2,..., then the orthogonality relation takes the form

=0 if n#%m

<yn(x)7ym($)> = ;yn($)ym($)p(x) —h, 7& 0 if n=m.

In this case, the variable x = x; is discrete instead of being continuous and we refer to
the sequence {y, },>0 as orthogonal polynomials of a discrete variable.

A family {y,},>0 of orthogonal polynomials of a continuous variable is said to be
classical if the weight function p(z) is solution of the Pearson equation

(o(z)p(x))" = T(x)p(x),

where o(z) = az? + bz + ¢ is a polynomial of at most second order and 7(z) = dz + e is
a polynomial of first order, with o(x) > 0 on (¢, d) and limd z"o(x)p(z) = 0.
r—c

It is known that classical orthogonal polynomials (in short COP) of a continuous
variable satisfy a second-order differential equation of the type

o)y, () + 7(2)y,(x) + Apyn(z) = 0,



2 General Introduction

where )\, is a constant depending on the leading coefficients of o and 7.

On the other hand, COP of a discrete variable satisfy (depending on the type of the
discrete variable) three types of difference equations. COP of a discrete variable on a
linear lattice satisfy a second-order difference equation

0 (2)AVy,(2) + 7(2) Ayn () + Anyn () = 0,

if the variable is of the form x = x; = j, j = 0,1,..., where A and V are, respectively,
the forward and the backward difference operators defined by

Af(z) = fz+1) = f(z), Vf(z) = f(z) — flz —1).
Classical g-orthogonal polynomials satisfy a second-order g-difference equation

a(x)DqD%yn(x) + 7(2) Dyyn(x) + A gyn(x) =0,

if the variable is of the foom z = x; = ¢/, j=0,1,...0or j =...,—2,-1,0,1,2,..., where
D, is the Hahn operator defined by
fgz) — f(x)
D, f(r) = ———F—=.
q ( ) (q—l)&?

COP of a discrete variable on a quadratic or a g-quadratic lattice satisfy a second-order
divided-difference equation

o (2(5))D2yn(x(5)) + 7(2(5))SeDayn (2(s)) + A ((s)) = 0,
if the variable is of the form

c4s® + 55+ g if g =1,
r=ux(s) =
c1q® + coq”® + c3if q¢ # 1.

Here the operators D, and S, are defined by Foupouagnigni [2008]
fa(s +3)) = fla(s = 3))

z(s+3)—x(s —3)

S, f(a(s)) = L&+ 2) : fle(s—3)

The classical orthogonal polynomials considered in the sequel (see e.g. [Chihara, 1978],
[Nikiforov and Uvarov, 1988], [Nikiforov et al., 1991], [Koekoek et al., 2010] and references
therein) are defined in terms of the generalized hypergeometric series

D f(x(s)) =

Y

ar,...,0qp o0 (al)m"'(ap)m m
F €T = —_—,
o bl,...,bq mz::o(bl)m(bq)m m!

where (a),, denotes the Pochhammer symbol (or shifted factorial) defined by

(@) = 1 ifm=20
" ala+1)(a+2)---(a+m—1) if meN.



Their g-orthogonal analogues, 0 < ¢ < 1, are given in terms of basic hypergeometric series
(see e.g. [Gasper and Rahman, 1990], [Koekoek et al.; 2010] and references therein)

A1y...,0p oo (al,‘..,ar;q)k k(’“) 14s—r Zk
2 67| = ((~1)4)) ,
b, ..., b ch:O (01, bss (4 )

where the ¢g-Pochhammer symbol (ay, as, ..., ax; q), is defined by

k-1

[T —a®) if ke{1,2,3,...}
(a1, a5 @k = (a1; )k -+~ (ar; @, With (ai;q)y, = { 7=0

1 if k=0.

If {pn}n>0 is a sequence of polynomials orthogonal on (¢, d), with respect to the weight
function w(x), then the polynomial p,(z) has exactly n simple zeros in (¢, d) and the zeros
of p,(z) and p,+1(x) separate each other. That is, if c < x,; < xp0 < -+ <y, < d and
C< Tpt11 < Tpg12 < -+ < Tpgipt1 < d are the zeros of p, and p,1, respectively, then

Tn+1,1 < Tn,1 < Tn+1,2 < Tn,2 << Tn+1,n < Tnn < Tn+1n+1-

The zeros of orthogonal polynomials are used for example in the Gauss quadrature for-
mula, in polynomial interpolation as interpolation nodes (see e. g. [Szegd, 1975], [Nikiforov
and Uvarov, 1988], [Mason and Handscomb, 2002|, [Ismail, 2005] and references therein).
The zeros of the classical Jacobi polynomials JS (x) are the unique location of n unit
charges distributed in (—1,1) in the logarithmic field generated by two fixed charges with
strengths (8 4+ 1)/2 and (a + 1)/2 fixed at —1 and 1 (see e.g. [Valent and Van Assche,
1995], [Ismail, 2005, Remark 3.5.1]).

Definition 0.1 (see e. g. Driver and Muldoon [2016], Driver and Jordaan [2018]). Let
neN. Ifr,; <x,2<...<xy, are the zeros of p, and Yn1 < Yn2 < ... < Ypn are the
zeros of qn, then the zeros of p, and q, are interlacing if

I < yn,l < Tn,2 < Yn,2 <...< Ln,n < Yn.n (1)
or if

Unl < Tpl <Yn2 < Tp2 < ...<Upn < Tpn.
In case py, is replaced by ppy1, (1) is replaced by

anrl,l < yn,l < xn+1,2 < yn,2 <...< xn+1,n < yn,n < :En+1,n+1-

According to results by Peherstorfer [1990], interlacing properties of the zeros of orthog-
onal polynomial expansions are responsible for the existence of positive interpolatory
quadrature formulas (see also [Locher, 1993], [Criscuolo et al., 1990]). Starting from in-
terlacing properties of the zeros of the orthogonal polynomials, Mastroianni and Occorsio
[1995] proposed a method to approximate the finite Hilbert transform. Interlacing also
happened to be crucial in [Bender et al.; 2000].

Definition 0.2. Let {p,}n>0 be a sequence of polynomials with degree p, = n for each
n € N. For a positive integer r < n, the sequence {py,}n>o is quasi-orthogonal of order r
with respect to a positive Borel measure p if

/a:kpn(:z:)du(:c) =0 fork=0,1,....n—1—7r, VneN. (2)



4 General Introduction

It is clear that if (2) holds for r = 0, the sequence {p, }n>¢ is orthogonal with respect to
the measure p.

Using certain structure relations satisfied by classical orthogonal polynomials or their
connection formulae, we show that some classes of mixed recurrence equations satisfied by
classical orthogonal polynomials (with shifted parameters) are structurally valid. How-
ever, they cannot be easily obtained with classical methods. To solve this problem, we
use an algorithmic approach to find these mixed recurrence equations. A list of some
problems that motivates the consideration of special linear combinations of polynomials,
orthogonal with respect to a given weight on a given interval, is given in [Grinshpun,
2004]. The major algorithmic tool for our development is an extended version of Zeil-
berger’s algorithm (see [[Koepf, 2014] and reference therein). Without this preprocessing
the relevant recurrence equations are not easily accessible. Using our mixed recurrence
equations,

1. we investigate interlacing properties of zeros of sequences of orthogonal polynomials.
In the cases when the zeros do not interlace, we give numerical examples to illustrate
this;

2. we prove quasi-orthogonality of certain classes of polynomials and determine the
location of the extreme zeros of the quasi-orthogonal polynomials with respect to
the end points of the interval of orthogonality of the polynomial sequence, where
possible;

3. we find bounds for the extreme zeros of the classical orthogonal polynomials.

Every orthogonal polynomial system (p,(x)),>o satisfies a three-term recurrence relation
of the type

pn-i—l(m) = (Anx + Bn)pn<x> - Cnpn—l(x> (n = 07 17 27 s P11 = 0)7

with C,A,A,_1 > 0. Moreover, Favard’s theorem [Chihara, 1978, Section 4| states that
the converse is also true. Alhaidari [2017] submitted (as open problem during the 14th In-
ternational Symposium on Orthogonal Polynomials, Special Functions and Applications)
two polynomial systems defined by their three-term recurrence relations and initial val-
ues. He was interested in the derivation of their weight functions, generating functions,
orthogonality relations, etc.. In order to solve this problem as suggested in the comments
by W. Van Assche in [Van Assche, 2019], we use the computer algebra system Maple to
identify the polynomials from their recurrence relations, similar as in the Maple imple-
mentation rec2ortho of Koornwinder and Swarttouw [1996-1998] or retode of Koepf
and Schmersau [2002]. The two implementations rec2ortho and retode do not handle
classical orthogonal polynomials on a quadratic or a g-quadratic lattice. We extend the
Maple implementation retode of Koepf and Schmersau [2002] to cover classical orthog-
onal polynomials on a quadratic or a ¢-quadratic lattice and to answer the problem by
Alhaidari [2017] as application.

The plan of the work is as follows: Chapter 1 is devoted to the preliminary results and
the derivation of the mixed recurrence equations using Zeilberger’s algorithm and its ¢-
version. In Chapter 2, we use our algorithms to recover known results for classical orthog-
onal polynomials of a continuous and discrete variable, and moreover, we improve some
bounds in these cases. We also collect the scattered results in one place which will make
them accessible. In Chapter 3 and 4, the interlacing properties, the quasi-orthogonality



as well as the bounds for the extreme zeros for classical g-orthogonal polynomials and
orthogonal polynomials on a quadratic or a g-quadratic lattices are studied, respectively.
Finally, in addition, in Chapter 4, we implement the algorithm to identify classical orthog-
onal polynomials on a quadratic or a g-quadratic lattice from their three-term recurrence
relations.



Chapter 1

Preliminary results

The purpose of this chapter is to give the main results which will be applied to derive
the interlacing properties and the bounds of the extreme zeros of the classical orthogonal
polynomials consider in the sequel, and to study quasi-orthogonal polynomials. Moreover,
we show how the mixed recurrence equations involved in the main results will be derived,
using an algorithmic approach.

1.1 Interlacing properties for zeros of sequences of clas-
sical orthogonal polynomials

The separation of the zeros of different sequences of Hahn polynomials of the same or ad-
jacent degree was first studied by Levit [1967], and similar interlacing results followed for
Jacobi polynomials ([Askey, 1990], [Driver et al., 2008]), Krawtchouk polynomials (|Chi-
hara and Stanton, 1990], [Jordaan and Tookos, 2009]), Meixner and Meixner-Pollaczek
polynomials [Jordaan and Tookos, 2009]. The different sequences were obtained by integer
shifts of the parameters, and in order to prove these results, recurrence equations, follow-
ing from the contiguous relations for hypergeometric polynomials [Rainville, 1960, p. 71],
[Prudnikov et al.; 1990] or basic hypergeometric series [Swarttouw, 1990], [Gupta et al.,
1992|, were used. In the case of Gauss’ hypergeometric function (cf. [Szegd, 1975, Eq.
(4.21.3)]), a useful algorithm in this regard is available as a computer package [Vidunas
and Koornwinder, 2000].

Interlacing results for the zeros of different sequences of g-orthogonal sequences with
shifted parameters are given for g-Laguerre polynomials in [Jordaan and Tookos, 2010],
[Moak, 1981], for Al-Salam-Chihara, g-Meixner-Pollaczek and g-ultraspherical polynomi-
als in [Jordaan and Tookos, 2010] and for 5¢; hypergeometric polynomials, associated
with the little g-Jacobi polynomials, in [Gochhayat et al.; 2016]. The recurrence equa-
tions necessary to prove these results were obtained, respectively, from relationships be-
tween polynomials orthogonal w.r.t. a positive measure d¥(z) and those orthogonal to
xd¥(z) (cf. [Karlin and McGregor, 1957]), from the generating functions of the appropri-
ate polynomials and from the contiguous relations satisfied by the basic hypergeometric
function (cf. [Heine, 1847]). In order to determine the specific order of the interlacing
zeros, Markov’s monotonicity theorem (or a consequence of it), is used (cf. [Szegd, 1975,
Theorems 6.12.1, 6.12.2] or [Ismail, 2005]):

Theorem 1.1 (see [Szegd, 1975]). Let w(z) and W(x) be two weight functions on (c,d),
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w()
and {X,} denote the zeros of the corresponding orthogonal polynomials of degree n in

decreasing order, we have

both positive and continuous for ¢ < x < d. Let be increasing. Then if {x,}

Ty < Xy, v=12,...,n.

In this section, we show how mixed recurrence equations, satisfied by different se-
quences of orthogonal polynomial systems, are used to study interlacing properties of the
zeros of sequences of orthogonal systems.

Lemma 1.2 (cf. Brezinski et al. [2004], Jordaan and Tookos [2010], Gochhayat et al.
[2016]). Let (¢, d) be a finite or infinite interval and p,, and q, polynomials (not necessarily
orthogonal) of degree n, with zeros ¢ < Tp1 < Tpo <+ < Ty, < d and ¢ < Yp1 < Yno <
o < Ypn < d, respectively, satisfying the interlacing property

Tn,1 < Yn—1,1 < Tn,2 < Yn—1,2 << Tnn—1 < Yn—1,n—1 < Tnn- (11)

Let a and b be continuous functions on (c,d) and assume that f, is a polynomial of degree
n, with zeros ¢ < zp1 < Zpo < -+ < 2n, < d, satisfying the equation

fa(@) = a(@)pn(x) + b(2)gn—1(2). (1.2)
Then,
(a) if b has constant sign on (c,d), the zeros of f, and p, interlace;

(b) if a has constant sign on (c,d), f, has an odd number of zeros between any two
consecutive zeros of qn_1.

Proof. Assume that f, has degree n with zeros z,1 < 2,2 < -+ < 2.

(a) We evaluate (1.2) at z,, 5 and , g41, k € {1,2,...,n — 1}, two consecutive zeros of
pn(z). Then

fn (xn,k)fn (I‘n,kJrl) = b(xn,k>b($n,k+l>Qn71 (xn,k)anl (xn,k+1>-

By (1.1) the zeros of p, and ¢,_; interlace, therefore ¢, ; will differ in sign at
Tpg and Tppi1, k€ {1,2,...,n — 1}, which implies ¢,—1(Zpnx)@n-1(Tnrr1) < 0.
Since b(x) has constant sign on (¢, d), we have b(x, x)b(znr+1) > 0 and therefore
fo(@ng) fu(Tnrs1) < 0. f, must therefore have an odd number of zeros in each
interval with endpoints z,,j and z, 11, £ € {1,2,...,n — 1}, and the interlacing
result follows.

(b) We evaluate (1.2) at y,,—1 and yn—1 411, £ € {1,2,...,n—2}, two consecutive zeros
of ¢,—1(x). Then

FoWn—1.06) fr(Yn—14+1) = ¢(Yn-1%)A(Yn—1.k+1)Pn(Yn—1.4)Pn(Yn—1 k+1)-

From (1.1) we know that the zeros of p, and g,_; interlace, therefore p,, will differ
in sign at y, 1 and Yn—1,k+1, ke {17 2,...,m— 2}7 and pn<yn—1,k)pn(yn—1,k+1) < 0.
Since a(z) has constant sign on (¢, d), we have a(y,—1.1)a(yn—1,+1) > 0 and therefore
Jo(Yn—1.4) fn(Yn—14+1) < 0, which implies that f,, must have an odd number of zeros
in each interval with endpoints y,,—1 and yp—1 441, k € {1,2,...,n — 2}.
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O

In the following result, which follows from Lemma 1.2, we assume that the polynomials

p, and g, are monic. In fact if p, is a polynomial of degree n with leading coefficient
k, # 0, then the monic polynomial p,, = p,/k, and p,, have the same zeros.

Corollary 1.3 (cf. Brezinski et al. [2004], Joulak [2005], Jordaan and Todkos [2010],
Gochhayat et al. [2016]). Let (¢,d) be a finite or infinite interval and assume that p, and
¢n are monic polynomials (not necessarily orthogonal) of degree n, with zeros ¢ < x,1 <
Tpo < < Tpp < dand c < Yp1 < Yno < - < Ypn < d, respectively, satisfying the
interlacing property (1.1). Assume that a and b are continuous and have constant sign on
(¢,d) and that f, is a polynomial of degree n with zeros ¢ < zp1 < Zpa < -+ < Znn < d,
satisfying (1.2). Then, for each k € {1,2,...,n— 1},

(a) if a(x) and b(x) have the same sign on (¢,d), zngx < Tpgk < Yn—1k < Zngr1 < Tng+l;
(b) if a(x) and b(x) differ in sign on (¢, d), Tngk < Znk < Yn—1k < Tng+1 < Znjt1-

Proof. Assume that f,, has degree n and both a and b have constant sign on (¢, d). Then
both results of Lemma 1.2 are true. From Lemma 1.2(a), the zeros of f,, and p,, interlace
and either z, , < Zp Or Ty < 2, for each k € {1,2,...,n}.

Evaluating (1.2) at y,—1,-1 and z,,,, we obtain

fn(xn,n)fn<ynfl,nfl) = a(ynfl,nfl)b(wn,n)pncynfl,nfl)qnfl (xn,n) (13)

Since, by assumption, p, and ¢, ; are monic polynomials with interlacing zeros,
pn(!/nfl,nfl) < O and Qn71<xn,n) > 0

(a) Assume a and b have the same sign on (¢, d). Then a(y,—1,,-1)b(x,,) > 0 and, since
Prn(Un-1n-1)Gn-1(Tnn) < 0, we deduce from (1.3) that fn(@nn)fn(Yn-1,n-1) < 0. This
implies f,, has an odd number of zeros in the interval (Yn—1,-1, Tnn)-

Suppose 2, < Tng, k € {1,2,...,n}. From (1.1) we deduce that 2,1 < T,1 < Yn—11
and thus one zero of f, lies to the left of y,,_1 1. From Lemma 1.2(b), we know there
is an odd number of zeros of f,, in each of the n — 2 intervals (Yn—1x, Yn—14+1),k €
{1,2,...,n — 2}. If each of the n — 2 intervals between the first and the last zero
of ¢,_1 has exactly one zero of f,,, we have n — 1 zeros accounted for. There is only
one zero remaining (since f, has n zeros), and we deduce that only one zero of f,
lies in (Yn—1,n—1,Tnn), which leads to the configuration

Zn,1 < Tn, < Yn—1,1 < Zn,2 << Tnn—1 < Yn—1,n-1 < Znon < Tnn-

Suppose T i < Znk, k € {1,2,...,n}. From (1.1), we deduce that y,_1 -1 < Tpn <
Znn- This contradicts the fact that f, must have an odd number of zeros in the
interval (Yn—1n—1,Tnn).

(b) Assume a and b have different signs on (¢, d). Then a(yn—1,-1)b(2n,) < 0 and we
deduce from (1.3) that f,(znn)fu(YUn—1n-1) > 0, thus f,, has either 0 or an even
number of zeros in the interval (y,—1,-1, Tnn)-

Suppose Ty < Znk, k € {1,2,...,n}. From (1.1) we deduce that y,_1,-1 < Tpn <
Znn and the only option, counting the zeros, is that

Tn,1 < Zn,1 < Yn—1,1 < Tn,2 << Zn,n—1 < Yn—1,n-1 < Tnn < Znon-
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Suppose 2z, < Tng, k € {1,2,...,n}. From (1.1) we deduce that z,; < x,; <
Yn—11 and thus one zero of f, lies to the left of y,_1;. From Lemma 1.2(b),
we know there is an odd number of zeros of f, in each of the n — 2 intervals
(Yn—1ks Yn—14+1), k € {1,2,...,n — 2}. If each of the n — 2 intervals between the
first and the last zero of ¢,,_; has exactly one zero of f,,, we have n—1 zeros accounted
for. There is only one zero remaining (since f,, has n zeros). The one remaining
zero therefore must lie to the right of y,,_1,-1, such that y,_1,-1 < 2 < Zpn,
which contradicts the fact that f,, must have either 0 or an even number of zeros in
the interval (Yn—1mn-1, Tnn)-

O
From Corollary 1.3 we remark that, once we have a relation of type (1.2), it is sufficient
to know the sign of a(z) and b(z) in (1.2) to prove our interlacing results.

1.2 Quasi-orthogonal polynomials

We recall that a sequence of polynomials {p,},>0, where each polynomial p, has degree
n, is orthogonal with respect to the weight function w(z) > 0 on the finite (or infinite)
interval (c,d) if

d
/ "pp(x)w(r)dr =0,m € {0,1,...,n— 1}, ¥n € N.

In order for orthogonality conditions to hold, we often need restrictions on the parame-
ters of the classical orthogonal polynomials and when the parameters deviate from these
restricted values in an orderly way, the zeros may depart from the interval of orthogonal-
ity in a predictable way. This phenomenon can be explained in terms of the concept of
quasi-orthogonality. The sequence of polynomials {g, s }n>0, Where each polynomial g,
has degree n, is quasi-orthogonal of order k € {1,2,...,n — 1} with respect to the weight
function w(x) > 0 on (¢, d) if

d
/ 2" g p(x)w(z)dr =0,m € {0,1,...,n —k —1}, Yn € N. (1.4)

Quasi-orthogonality was first studied by Riesz [1923], followed by Fejér [1933], Shohat
[1937], Chihara [1957], Dickinson [1961], Draux [1990], Maroni [1991], Joulak [2005], ....
The quasi-orthogonality of Jacobi, Gegenbauer and Laguerre sequences is discussed in
[Brezinski et al., 2004], the quasi-orthogonality of Meixner sequences in [Jooste et al.,
2013] and of Meixner-Pollaczek, Hahn, Dual-Hahn and Continuous Dual-Hahn sequences
in [Johnston et al., 2016]. More recently, interlacing properties of zeros of quasi-orthogonal
Meixner, Jacobi, Laguerre and Gegenbauer polynomials were studied in [Driver and
Jooste, 2017], [Driver and Jordaan, 2016], [Driver and Muldoon, 2016], [Driver and Mul-
doon, 2015] and in [Bultheel et al.; 2010] interlacing properties of zeros of quasi-orthogonal
polynomials were used to prove results on Gaussian-type quadrature. [smail and Wang
[2019] developed a general theory of quasi-orthogonal polynomials. They first derive three-
term recurrence relation and second-order differential equations for quasi-orthogonal poly-
nomials. They also give an expression for their discriminants in terms of the recursion
coefficients of the corresponding orthogonal polynomials. In addition, they investigate an
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electrostatic equilibrium problem where the equilibrium position of movable charges is
attained at the zeros of the quasi-orthogonal polynomials. Quasi-orthogonal polynomials
are characterized by the following property:

Lemma 1.4 (Brezinski et al. [2004], Chihara [1957]). Let {pn}n>0 be a family of orthogonal
polynomials on (c,d) with respect to the weight function w(z) > 0. A necessary and
sufficient condition for a polynomial sequence {qnx}n>0 with deg(gnx) = n to be quasi-
orthogonal of order k < n — 1 with respect to w on (c,d), is that

k
Qn,k<$> = Z an,ipnfi(x)a an,OCLn,k 7& 07 n > k (15)
=0

Remark 1.5. Bracciali et al. [2018] established necessary and sufficient conditions so
that the quasi-orthogonal polynomials {gn i }n>0 defined by (1.5) also constitute a sequence
of orthogonal polynomials.

Lemma 1.6 (Brezinski et al. [2004], Shohat [1937]). If a sequence {Gni}n>0 is quasi-
orthogonal of order k > 1 on (¢,d) with respect to w(x) > 0, then at least (n — k) real,
distinct zeros of qn . lie in the interval (c,d).

Lemma 1.7 (Brezinski et al. [2004], Joulak [2005]). Suppose ¢,1(x) = pn(z)+anpn—1(2), an #
0. Let ynj,j7 € {1,2,...,n}, be the zeros of gn1(x) and let f,(z) = eo(®) W hape

Pn—1 (.I)

(1) Yna < cif and only if —a, < fn(c) <O0;
(11) d < ynn if and only if —a, > f,(d) > 0;
(111) qna has all its zeros in (c,d) if and only if f.(c) < —a, < fn(d).

Lemma 1.8 (Brezinski et al. [2004], Joulak [2005]). Suppose ¢, 1(x) = pn(z)+anpn—1(2), an, #
0. Let x,, ;.7 € {1,2,...,n}, denote the zeros of p,(z) and y, ;,5 € {1,2,...,n}, the zeros
of gua(x). Then

(i) an, <0 if and only if Tp1 < Yn1 < Tn—11 < Tno < Yno < -+ < Tpo1n-1 < Tpp <

yn,n 7'

(i1) a, > 0 if and only if Yyn1 < Tp1 < Tpo11 < Yna < Tpna < -+ < Tpo1n-1 < Ynn <

T -

1.3 Bounds of extreme zeros of classical orthogonal poly-
nomials

Let {py, }n>0 be a sequence of monic orthogonal polynomials with zeros x,; < z,2 < --- <
Zpn- 1t is well known that p,, satisfies a three-term recurrence equation

pn(ZE) = (z — Bn)pn—1<x) — Cupn—2(), (1'6)

where B,, and C,, do not depend on x, p_; =0, pg = 1 and C,, > 0, and that the zeros of
pn and p,_1 interlace. It is also known that, if p,, and p,_» do not have a common zero,
then the n — 1 zeros of (x — B,,)p,_2(x) interlace with the n zeros of p,, [Beardon, 2011,
Theorem 3|, therefore z,,1 < B,, < &, and the point B, is a natural inner bound for the
extreme zeros of p,. Beardon generalised this result in [Beardon, 2011, Theorem 4] and
we state it here as a lemma:
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Lemma 1.9. Suppose {p,}n>0 is a sequence of polynomials, satisfying (1.6). Then, given
n, there exist real polynomials S,, of degree m, where m < n — 2, such that

CrCht - - Cpomi2Pn-m(@) = Sp-1(®)pp-1(2) + Sp—2(2)pn () (1.7)

and if Pp_m and p, do not have any common zeros, their zeros interlace in the Stieltjes
sense. More-over, the n — 1 zeros of Sp_1Pn_m interlace with the n zeros of p,.

An important feature of the polynomials S,, ; is that they are completely determined
by the coefficients in (1.6) (cf. [Segura, 2008, Theorem 1]). A natural consequence of
Lemma 1.9 is

Corollary 1.10. (c¢f. [Driver and Jordaan, 2012, Corollary 2.2]) Suppose (1.7) holds for
m,n € N fized, m < n — 2. The smallest and largest zeros of S,,_1 are inner bounds for
the extreme zeros of p,.

Equations similar to (1.7), involving polynomials p,, p,_1, and g,_.,,m € {2,3,...},
where the polynomial g,,_,, belongs to a related orthogonal sequence, obtained by integer
shifts of the appropriate parameters, are used to obtain (more accurate) inner bounds for
the extreme zeros of orthogonal sequences (cf. [Driver and Jordaan, 2012]). However, as
in (1.7), the coefficient of p,,_1(x), which will be denoted by G,,,—1 in (1.9), needs to be a
polynomial of exact degree m — 1 in order to have full interlacing between the n zeros of
pn and the n — 1 zeros of G, 1(2)gn—m(z). In [Jooste and Jordaan, 2014, Theorem 2.1],
conditions necessary for the existence of such mixed three-term recurrence equations are
given for m = 2:

If, for £ € Ny fixed and {g, 1 }n>0 @ sequence of polynomials orthogonal with respect
to ¢x(z)w(xz) > 0 on (c¢,d), where cx(x) is a polynomial of degree k in z, the sequence
{pn}n>0 satisfies

Apcr (@) g2k () = ap—2(x)pp(z) — (x — By)pn-1(x), n € {2,3,...}, (1.8)

with A, By, a_1, a_s constants and ay_» a polynomial of degree k — 2 defined on (¢, d)
whenever k € {2,3,...}, then k € {0,1,2,3,4}.

We generalise the result in [Jooste and Jordaan, 2014, Theorem 2.1] by providing con-
ditions necessary for equations, similar to (1.8), involving the polynomials g, x, m €
{2,3,...,n— 1}, p, and p,_1, to exist.

Theorem 1.11 (cf. [Jooste et al.]). Let {pn}n>0 be a sequence of polynomials orthogonal
on the (finite or infinite) interval (c,d) with respect to the weight function w(x) > 0.
Let k € Ng and m € {2,3,...,n — 1} be fized and suppose {gnx}n>0 is a sequence of
polynomials orthogonal with respect to cx(x)w(x) > 0 on (c,d), where cx(x) is a polynomial
of degree k, that satisfies

Ak (2) gn—m i () = Ag—m(2)pn(T) — Gro1 () pp_1(x), n € {2,3,...}, (1.9)

with A,, B, a_1 and a_y constants, ax_,, a polynomial defined on (c,d) and of degree
m —2 when k—m € {—m,—m+1,...,m — 2} and of degree k —m whenever k —m &€
{m—1,m,m+1,...}, and G,,(x) a polynomial of degree m. Then

(i) ke {0,1,2,...,2m};
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(1) if Gn—mr and py are co-prime, the n—1 real, simple zeros of Gp—1(x)gn—m interlace
with the zeros of p,, the smallest zero of G,,—1 is an upper bound for the smallest
zero of pn, and the largest zero of Gp,—1 is a lower bound for the largest zero of py;

(111) if Gn—m i and p, are not co-prime and have r common zeros counting multiplicity,
then
a) r <min{m,n —m — 1};
b) these r common zeros are simple zeros of Gp,_1;
c) no two successive zeros of p,, nor its largest or smallest zero can be a zero of
Gm—l;
d) the n — 2r — 1 zeros of Gp—1gn—mi(2), none of which is a zero of p,, together
with the r common zeros of gn—m i and py, interlace with the n — r non-common
zeros of pn;
e) the smallest zero of Gp,—1 is an upper bound for the smallest zero of p,, and the
largest zero of Gp,—1 is a lower bound for the largest zero of p,.

Proof. The proof of this theorem is explicitly given in [Jooste et al.] O
The bounds obtained in this way are more accurate than the inner bounds obtained
using mixed recurrence equations in the specific case when m = 2, as was done for
the extreme zeros of the Jacobi, Laguerre and Gegenbauer polynomials in |Driver and
Jordaan, 2012, Meixner and Krawtchouk polynomials in [Jooste and Jordaan, 2014] and
Hahn polynomials in [Jooste et al., 2017]. In our applications, the polynomials g, x, m €
{2,3,...,n — 1} are typically obtained from the polynomials of the orthogonal sequence
{Pn}n>0, by making appropriate parameter shifts of (in total) k£ units. Inner bounds for the
extreme zeros of Gegenbauer, Laguerre and Jacobi polynomials were given in [Neumann,
1921], [Bottema, 1931], [Szegd, 1975], [Krasikov, 2006], [Gupta and Muldoon, 2007], [Area
et al., 2012]; bounds for the extreme zeros of the discrete orthogonal Charlier, Meixner,
Krawtchouk and Hahn polynomials in [Krasikov and Zarkh, 2009], [Area et al., 2013], for
the extreme zeros of the g-Jacobi and g-Laguerre polynomials in [Gupta and Muldoon,
2007] and for the little g-Jacobi polynomials in [Gochhayat et al.; 2016]. Lower bounds
for x,,; and upper bounds for z,, can be found in the case of classical continuous and
discrete orthogonal polynomials in [Szegd, 1975], [Ismail and Li, 1992], [Krasikov, 2002],
[Area et al., 2004], [Krasikov, 2006], [Dimitrov and Rafaeli, 2009], [Krasikov and Zarkh,
2009], [Dimitrov and Nikolov, 2010], [Area et al., 2013| and in [Krasikov, 2005], bounds
of the extreme zeros of (symmetric) orthogonal polynomials are given in terms of the
coefficients of their three-term recurrence equations.

In the next section, we use an algebraic method to obtain mixed three-term recurrence
equations involving polynomials p,(z;a, f) and p,_1(x; «, 5), belonging to the same se-
quence that is orthogonal on an interval (¢, d) with respect to a measure w(z;a, ), and
a polynomial from a related sequence, obtained by integer shifts of the parameters v and
B, namely p,_m(x;a+s,8+t),m € {2,3,...,n— 1}, which is orthogonal with respect to

'LU(.%,CK—F Saﬁ +t> = CSth(iI?;Oé,ﬁ)W(fE;CM,B) >0

on (¢, d), where ¢ (x; v, B) is a polynomial of degree k in x. If the sequence is g-orthogonal
with respect to the weight w(x; «, ), the equations involve the polynomials p,(z; «, )
and p,_1(x;a, B), and p,_(z; g, Bq"),m € {2,3,...,n — 1} and the latter polynomial
is orthogonal with respect to

w(z; aq®, Bq") = cope(w; o, flw(z; o, f) > 0
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on (¢,d). From Theorem 1.11(i) it follows that such equations only exist for the values
of s and ¢ such that s +¢ € {0,1,...,2m}. We note that the polynomial coefficient
of the polynomial p, 1(x;«, 3) in the mixed recurrence equation involving polynomials
pu(z;a, B), pro1(x; o, 8) and p,_pm(z;a+ 5,8+ t),m € {2,3,...,n— 1}, will be denoted
by Gu—1,s:(2). From Theorem 1.11(ii) and (ili) we deduce that the smallest and largest
zeros of G,_1 () are (inner) bounds for the extreme zeros of p,.

1.4 Mixed recurrence equations satisfied by different
sequences of orthogonal polynomial systems

As seen in the previous sections, we are interested by equations of type (1.2), (1.5) and
(1.9). We will first show that such equations are structurally valid and then we provide
an algorithmic approach to derive them.

In order to find for example equations of type (1.5) used to prove quasi-orthogonality,
we can use the structure relation (cf. [Koepf and Schmersau, 1998], [Medem et al., 2001],
[Foupouagnigni et al., 2012])

Pn(z) = ayDppia(z) + b, Dpp(x) + ¢ Dpy—1(2), (1.10)

where the constants a,, b, and ¢, are explicitly given and D is a derivative or difference
operator. Most of the classical orthogonal polynomial systems considered in the sequel
(see [Kockocek et al., 2010, Chapters 9 and 14|) satisfy

Dp,(z) = S(n)pn—1x(z), k€ {-1,0,1,2}, (1.11)

where S(n) does not depend on = and p,_1x(z) denotes the polynomial obtained when
each of the parameters on which the polynomial p,(z) depends, can be shifted by k units
in the case of the classical systems, or, in the case of the g-classical systems, when the
parameters can each be multiplied by ¢*. Substituting (1.11) in (1.10) yields

pa(z) = anS(n + 1)pn,k(w) + bnS(”)pn—l,k(x) +cnS(n — 1)]?”_2716(1')

or, by making a parameter shift,
Pu—k(@) = @, 5" (n + D)pa(x) + b, (n)pn-1(2) + 5" (n — 1)pn—2(),

where a,, b, ¢/ and S’(n) are the values of the coefficients taking into consideration the
parameter shift. We therefore get a linear combination of polynomials in an orthogonal
sequence as in (1.5). For the so-called very classical orthogonal polynomials, the general

expression for the parameters a,;, i € {0,1,2}, in (1.5) for k =2, 1. e.,

Qn,2($) - pn(x) + an,lpn—1<x> + an,an—Z(x)

were given in [Marcellan and Petronilho, 1994, Eq. (76)] in terms of the coefficients of the
differential equations they satisfy.
We can also apply the operator D to (1.10) to obtain

Dp,(x) = ayD*pri1(z) + b, D?*pp(2) + caD*pp1 (7). (1.12)
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Replacing (1.12) in (1.10) and using (1.11) twice, yields

Pn(®) = anani1S(n + 2)S(n + 1)ppok(x) + anlby + buy1)S(n + 1)S(n)pr—1,26()
+ (ancn+l + ap_1cy + bi)s(n)s(n - 1)pn—2,2k ('I)
+ Cn(bn + bn_1)3<n - 1)S(n - 2)pn—3,2k + Cncn—ls(n - Q)S(n - 3)pn—4,2k(x)'

By applying a parameter shift again, we obtain
Pr—2(%) = a,0;,,.15" (0 + 2)S" (0 + 1)pa(2) + @y (b, + b41) S (n + 1) (n)pp—1 ()

+ (andyy + an_ycy + (0,)%)S"(n)S" (n — 1)pp—2(z)
(b, + b, S (n — 1) (0 — 2)pu_s + cycly_1S'(n — 2)8' (0 — 3)p_a().

These induction arguments show that equations of type (1.5) are structurally valid.
Classical orthogonal polynomials p,, (z) satisfy the three-term recurrence equation

Pni1(z) = (Apx + Bp)pu(z) — Cppp_a(x),n € {1,2,3,...}, (1.13)

as well as a derivative rule [Koepf and Schmersau, 1998], [Medem et al., 2001], [Foupouag-
nigni et al., 2012] of the form

7(2)Dpp(x) = anpp+1(z) + Bupn(z) + Yapn-1(x),n € {1,2,.. .}, (1.14)

where D € {%,A, V,D,,D1}. The coefficients A, By, Cy, o, B, and 7, are explicitly
q
given in terms of the coefficients of the differential equations they satisfy.

Proposition 1.12. Let {p,(z)}n>0 be a system of classical orthogonal polynomials of a
continuous, discrete or q-discrete variable, that satisfies (1.11). Then, fork € {—1,0,1,2},
there exist polynomials f;(x), h;(n,x), gj(n,z) such that

[i(@)pn—jjr(x) = hj(n, z)pn(x) + gj—1(n, x)pp_1(z),j € {1,2,...}. (1.15)

Proof. The proof is done by induction on j € {1,2,...}.
Step 1: Let j = 1. If we substitute p,41 from (1.13) into (1.14), we obtain

o (2)Dpp(z) = ((Anx + Bn)an + B2)pa(®) + (Y0 — Crntin)pp—1().
Application of (1.11) leads to
(z)S(n)pn-14(z) = (Anz + Bp)am + Bu)pa(@) + (0 — Cratn)pp—1(2),
and (1.15) is valid for j = 1 with

7n - Cn Qn

Fu@) = 6(2), hi(n, 2) = ——((Anz + By)an + B), go(n, ) = S

S5(n)

Step 2: Fix j > 2 and suppose that (1.15) is valid for j. We need to prove that (1.15)
is also valid for j + 1. We know that, for Y, ;(x) = Dp,(x),j € {1,2,...}, the relations

Yn+1,j(x) = (An,jl' + ij)Yn’j(‘I) — Cn,an—l,j(x)a n e {1, 2, 3, .. .}, (116)
and

() DY5(2) = tnjYnr15(2) + BuyYni(@) + Yy Yar5(x),n € {1,2,3,...},  (1.17)
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are valid since {Y,, ;(%)},>0 is also a classical orthogonal polynomial system for j =
1,2,.... If we substitute (1.16) in (1.17), we obtain

Gj(2)D (D'pa()) = ((Anja+DBnj)anj+Bn,) D’ pu(@) +(Ynj—Ch,jen ) D i (). (1.18)
By iterating (1.11), it follows that

j—1

Dipn(x) = puji(z) [[S(n = 1).5 < n. (1.19)

=0

We substitute (1.19) in (1.18), multiply by f;(x) and use the induction hypothesis to get

@@ﬁﬂ@@ﬂmam:(mmw+3wﬁmfu%»0memam

+ gj— 1(” T pn 1 ) HS n— l fYn,j - Cn,jan,j) (h](n - 1vx)pn—1(33)

7j—1

+g;-1(n— l,x)pn_g(x)) H S(n—1-=1).

=0

Replacing n by n—1 in (1.13), we obtain p,_» that we substitute in the right hand side of
the above equation and using once more (1.19) for j replaced by j + 1, yields the equation

Fi1(®)Pn—v1),Grw(®) = hjpa(n, )pa(z) + g5(n, 2)pp-1(2),

where
fin1(x) = 6;(x) f;(x),
by ) = et Bl £ ) - il 1,)
9(n, ) = (An’jxsjan_né-)jé_nf)jL ik gj—1(n, )
+ Ind ;(C;)’jan’j (hj(n —1,z)+ —gj_l(gnjll’ ?) (A, 12+ Bn_l)) .

O
This proof shows how one can iteratively get equations of type (1.9) for classical
orthogonal polynomials of a continuous, a discrete or a ¢-discrete variable. We also refer
the reader to [Koepf and Schmersau, 1998], [Foupouagnigni et al., 2012], [Tcheutia, 2014],
where we have the so-called connection formulae for classical orthogonal polynomials
from which one can deduce certain equations of type (1.2), (1.5) and (1.9). One may also
use contiguous relations for the hypergeometric and basic hypergeometric series (see e.g.
[Heine, 1847], [Swarttouw, 1990], [Jordaan and Tookos, 2009], [Gochhayat et al., 2016])
to get some of these recurrence equations, as well as the generating functions of classical
orthogonal polynomials (see e.g. [Jordaan and Tookos, 2009]|, [Tcheutia et al., 2018b]).
Another option to get equations of type (1.9) is the following.

Lemma 1.13. (Christoffel’s formula, cf. [Szeqd, 1975, Theorem 2.5]) Let {pn(z)}n>0 be
the orthonormal polynomials associated with the distribution da(x) on the interval |c, d).

Also let
plx) =alr —x)(x —x2) - -+ (x — 1), a#0, (1.20)
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be a polynomial of degree k which is non-negative in this interval. Then the orthogonal
polynomials {q,(x)}n>0, associated with the distribution p(x)da(x), can be represented in
terms of the polynomials p,(x) as follows:

pn(*T) pn—l—l(x) pn—‘rk(x)

p(x)qn(x) _ pn(xl) pn-i-l(xl) . 'pn-i-k(xl). (1.21>

Pr(Tk) Pns1(2k) - - Dpsi(@k)

In case of a zero xj, of multiplicity m, m > 1, we replace the corresponding rows of (1.21)
by the derivatives of order 0,1,2,...,m—1 of the polynomials p,(x), pps1(2), ..., Dasr(T)
at x = x;.

Using Christoffel’s formula for p(x) = ¢x(z) in (1.20) and ¢, (z) = gn—mxr(z), we get

k(T) Gn—m k() = Z UjPn—m+j ().

By using Beardon’s theorem (cf. Lemma 1.9), the latter equation can be reduced to a
mixed three-term recurrence equation of type (1.9).

However, due to the complexity of classical methods, it is not really easy for example
to get equations of type (1.2), (1.5) and (1.9) satisfied by classical orthogonal polynomials
on quadratic or g-quadratic lattices, or in general to get in a unified approach equations
of type (1.2), (1.5) and (1.9). As a consequence, our algorithmic approach to derive
such equations is welcome. Using an extended version of Zeilberger’s algorithm (see
e.g. [Petkoviek et al., 1996], [Koepf, 2014]) and following the approach in [Chen et al.,
2012], [Koepf, 2014], we write, using the Computer Algebra System Maple, procedures to
find mixed recurrence equations of type (1.2), (1.5) and (1.9) satisfied by all the classical
orthogonal polynomials. We also use an adaption of the g-version of Zeilberger’s algorithm
which is an extension of Gosper’s algorithm. Gosper’s algorithm deals with the question
how to find an anti-difference s, for given ay, i.e., a sequence s; for which a, = As, =

s
Sk+1 — Sk, in a particular case that s is a hypergeometric term, i.e., SLAR S Q(k).
Sk
Given F(n, k), Zeilberger’s algorithm provides a recurrence equation for

[e.e]

Sy = Z F(n, k),

k=—o00

where F'(n, k) is a hypergeometric term with respect to both n and k. We set
J
ar = F(n,k)+Y_o;(n)F(n+j,k) (1.22)
j=1

with undetermined variables o;(n) and apply Gosper’s algorithm to a;. If successful,
Gosper’s algorithm finds g(n, k) with

gn,k+1) —g(n, k) = ay (1.23)
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and at the same time o;(n), j € {1,2,...,J}. By summation, we have from (1.23)

0:Zak

k=—o00

as a telescoping sum and from (1.22)

J 00
Sp + Zaj(n)snﬂ- = Z aj.
j=1

k=—o0
We deduce that

J
Sy + Z oj(n)sp+; =0,
j=1

which is a recurrence equation satisfied by s,. We refer the reader to [Koepf, 2014,
Chapters 57| and references therein for more details about the algorithms of Gosper
and Zeilberger and their g-analogues. The g-analogues of Gosper’s and Zeilberger’s al-
gorithms are implemented in the Maple gsum package [[Koepf, 2014] which can be down-
loaded at http://www.mathematik.uni-kassel.de/ koepf/Publikationen. By apply-
ing an adaption of the sumdiffeq [Koepf, 2014, p. 210] and the qsumdiffeq [Koepf,
2014, p. 219] procedures of the hsum and the gsum packages, we wrote codes to de-
rive recurrence equations of type (1.2), (1.5) and (1.9) for the classical orthogonal poly-
nomial systems considered in the sequel. Our Maple codes can be downloaded from
http://www.mathematik.uni-kassel.de/ tcheutia/.

The first program called Mixedrecl1(F, k,S(n), so,a, s1, $2,) finds a recurrence equa-
tion of the form

S(n — sp,a+s1) = g;S(n—j,a+sy+1j),J €{1,2,...}, re{0,1},

Q.
I M“
o

[o.¢]
where S(n,a) = Z F, Fis a hypergeometric term w.r.t. k, n and a, and sq, s1, S2, are
k=—oc0
integers and the second one, denoted by gMixedrecl(F,q,k,S(n), so,a,s1,S2,7), is the
g-analogue of the first one and finds a recurrence equation of the form

J

S(n — sg,aq°") = ZajS(n —jyaq®™), J € {1,2,...}, r € {0,1}.

J=0

These first two programs can be used when we want to play with at most one parameter
of the polynomial. When dealing with two parameters, the following ones generalizing
the first ones are more suitable.

The program called Mixedrec2(F, k, S(n), no, a, So, b, s1, S2, S3,71, 72) finds a recurrence
equation of the form

S(n—ng, a+so, b+s1) = 0;S(n—j, a+so+r1j, b+ss+rag),J € {1,2,...}, r1,r9 € {0,1},

<.
(e}


http://www.mathematik.uni-kassel.de/~koepf/Publikationen
http://www.mathematik.uni-kassel.de/~tcheutia/
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oo
where S(n,a,b) = Z F, Fis a hypergeometric term w.r.t. k, n, a and b, and ng, s;, i =
k=—o0
0, 1,2, 3, are integers and the one denoted by gMixedrec2(F, q, k, S(n),ng, a, So, b, $1, S2, S3,
T1,T2) 18 its g-analogue and finds a recurrence equation of the form

S(n —ng,aq®,bg™) = oiS(n — j,aq™ " bg® 1) J € {1,2,...}, ri,ry € {0,1}.

M-

Jj=0

Note that these procedures can be extended to as many parameters as possible.



Chapter 2

Classical orthogonal polynomials of a
continuous and a discrete variable

In this chapter we use our algorithms to recover known mixed recurrence equations from
which the interlacing properties of classical orthogonal polynomials of a continuous and
a discrete variable were derived. We also recover equations which characterize quasi-
orthogonal polynomials of a continuous and a discrete variable. With our implementa-
tions, we can derive more mixed recurrence equations which cannot easily be obtained us-
ing contiguous relations of hypergeometric functions or their generating functions. More-
over, we show that using our implementations, we get mixed recurrence equations which
can improve the existing bounds of the extreme zeros of the polynomials considered in this
chapter. These bounds can be found in our joint work [Jooste et al.]. Let us recall that
Jooste et al. [2017] were the first to use this algorithmic approach to find bounds of the
Hahn polynomials and this paper was the starting point of this work. Finally, the existing
results on interlacing properties, quasi-orthogonality or bounds of the extreme zeros are
collected in this chapter to make them accessible for the readers. We cite the references
for each result and the proofs can be found in the cited references. In the sequel, we will
denote the monic polynomials associated to p, by p,.

2.1 The Jacobi polynomials

The Jacobi polynomials defined by

1), —n,n+a+F+1]1_—
Péa’m(%):—(()é—F ) 2 Iy & ;

|
n: a+1 2

are orthogonal on (—1,1) with respect to w(x) = (1 — x)%(1 + x)? provided that o >

—1, 8> —1. We denote the monic Jacobi family by P\*? () %Pﬁa’ﬁ) (7).

2.1.1 Interlacing of zeros

Our implementations (see http://www.mathematik.uni-kassel.de/ tcheutia/), us-
ing

> FJac:=pochhammer (alpha+l, n)/n!

> *(hyperterm([-n,n+alphatbeta+1], [alpha+1], (1-x)/2,k))


http://www.mathematik.uni-kassel.de/~tcheutia/
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> Mixedrecl(FJac,k,P(n),0,alpha,0,1,0);
> Mixedrecl1(FJac,k,P(n),0,beta,0,1,0);
> Mixedrec2(FJac,k,P(n),0,alpha,0,beta,1,1,0,0,1);
> Mixedrec1(FJac,k,P(n),1,beta,2,0,0);
> Mixedrecl(FJac,k,P(n),1,alpha,2,0,0);
> Mixedrec2(FJac,k,P(n),0,alpha,0,beta,2,0,0,0,1);
give the following equations (see e.g. [Driver et al., 2008]), respectively,

+a+p+1) (n+p) atl

pleB) _ (n platip) _ plothB) . 21
1

Pled) () — (n+a+p+ )P(a,ﬂ-s-l)(x) n (n+ o) P(a’f+1)(x); (2.2)

2n+a+p+1 "
P(a) = Pt (@) = BT (@);
(

2n+a+G+1 "
(x+1)°(m+a+B+1)2n+a+p) P (z)

=2n(2n+a+B)z+ (a+38+2n+2) P (@) +4 (8+1) (n+B8) PD(2):
(=1’ (n+a+B+1)2n+a+ )P ()
=2n(2n+a+B8)z—Ba+B+2n+2) P @) +4 (a+1)(a+n) P (2);
(n+a+B+1)(n+a+B+2)(v+1) P (2)
=(2n+a+B+1)2n+a+B+2)(z+1)—2n(a+n)) P (z)
—(a+n)(2n+a+B8+2)z+a+38+2n+4) P2 (g).

From the latter equations, the following interlacing results are deduced. Their proofs can
be found in [Driver et al., 2008].

Theorem 2.1 (see [Driver et al., 2008]). Let « > —1, > —1,t € (0,2) and k € (0,2).
Let =1 < zp1 < ... < xp, < 1 be the zeros of }3,50"6)(:1:), 1 < yp1 < ... < Ypp <1
be the zeros of PT(x), =1 < zp1 < ... < zpn < 1 be the zeros of P (x),
—1<Y,1<...<Y,, <1 be the zeros oqugaH’B)(x), 1< Zy1 <...<Zpyn <1 be the

zeros of PP (1), =1 <ty < ... < tun < 1 be the zeros of PSP (2). Then for
1=1,2,...,n—1,

(@) Yni < Tni < Yn1i < Ynit1 < Tnit1,

() Tni < Zni < Zn—1i < Tnit1 < Zn,itls

(€) Yni < Tni < Zni < tn1i < Ynit1 < Tnit1 < Znjitl,
(d) Tni < Tp—14 < Zp-1,i < Zn—l,z‘ < Tpitls

(6) Tni < Ynfl’i < UYn—1,i < Tp-1,i < Tpitl-

Remark 2.2. The interlacing properties in Theorem 2.1 are not retained in general (see
[Driver et al., 2008]):

(a) when one or both of the parameters «, 5 are increased by more than 2,
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(b) for the zeros of P\ (z) and those of PT(f:t’B) (x) or P,Eci’lﬁ_k)(a:) or PR (1)
where t, k > 0.

Using the counterexample o = 1.266, § = 1.85, o/ = a+0.2, ' = 5+0.2, n =4, Driver
et al. [2008] remarked that the zeros of P,ga’ﬁ)(x) and P )(:c) do not interlace in general
when both parameters are increased simultaneously.

2.1.2 Quasi-orthogonality
We substitute o by a — 1 in (2.1) and 5 by 8 — 1 in (2.2) to get

_ +a+p n+f3
pla=18) gy = PeB) (g _ (@:8) (). 93
n ([E) 27’L—|—O[—|—/6 n (l’) 27’L+Of—|—/8 n—1 (l’), ( )

_ +a+p n+a«
plaf=1) _nraT/ plesB) pleB) iy 2.4
(9 0w) = g P @) 4 gt S R () (24

Substituting 5 by f — 1 in (2.3) and using (2.4) yields

(a—1,8-1)(,\ _ (n+a+B-1n+a+p) (a,B)
Fa <I>—(2n+a+ﬂ)(2n+0z+ﬁ—1)P" (z)
(a—ﬂ)(n+0z+ﬁ—1) (a,8) _
Gntatf@ntatp-2im @

m+B8-1n+a-1)
Cn+a+F-1)2n+a+p5—2)

P ().

Using our implementations, we also recover the following mixed recurrence equations given
in [Driver and Jordaan, 2018].

2((a+p+2n—2)z—a+pP)n

(@B) (1) o
st <m)_(x2—1)(n+oz+5—1)(2n+0z+5—2)Pn @
An+p-1)(n+a-1) Pl ().

(@ —-1)(n+a+B-1)2n+a+p-2)"
«%”*W”®%=R?*m@ﬁ+%O—nﬂp@m@%

n—1
(n—i—oz—i—ﬁ)P(aﬁ)
a+B8+2n "

(a+B+2n)z—a+P8) (s
Natpran ot )

P 2) = (@) -

Theorem 2.3 (see [Brezinski et al., 2004|, [Driver and Jordaan, 2018]). (i) The Jacobi
polynomials Rga_k’ﬁ_l)(a:) where —1 < a < 0, =1 < 8 < 0, and k,I € N with
k + 1 < n, are quasi-orthogonal of order k + [ with respect to the weight function
(1 —2)%(1 +z)? on the interval (—1,1). R(La_k’ﬁ_l)(x), with k+1 < n, has at least
n— (k+1) zeros in the interval (—1,1).

(ii) Let xpy < ... < Tp, be the zeros of PT(LO‘”B)(I), Yn1 < ... < Ynn be the zeros of
Péa_l’ﬁ)(x), Zp1 < ... < Zpn be the zeros of Pé“ﬂ‘l)(x) and t,1 < ... <t,n be the

zeros of P (1)

(a) If =1 < o and —1 < 3 <0, then

op1 < =1 <Tp1 <@po11 < 2n2 < Tp2 < ..o < Tpoip-1 < Znpn < Tnp;
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(b) If =1 < B and —1 < a < 0, then
xn,l < yn,l < xnfl,l < xn,Z < yn,2 <...< xnfl,nfl < xn,n <1l< yn,n;

(¢) If-1<a<0, —-1< <0, then
o forn > 2,

o1 < —1<ap 11 <tlpo<Tp-12<...<tlpn-1<Tp-1n-1 <1 <tyn;
e forn >3,
b1 <lp1 < =1 <tho<tp12<...<Clpin-2<tpn1<1<tpn <Iln_1n-1;
e forn>1,
lng < —1<yp1 <tln2<...<tlpn-1 <UYnn-1<1<Ynn <tnn;

e for n > 2, the zeros of PV and the zeros of PP are not interlac-
ing. However, if P,Safl’ﬁfl)(ﬂy) £ 0, where v == —a=B_ the zeros of Péa,b’)(x)

o+p+2n’
interlace with the zeros of (x — W)Péafl’ﬁfl)(iv)-

2.1.3 Bounds of the extreme zeros

We provide, using our code, equations of the form

F@) P 75 (1) = H(x) PP (@) 4+ Gt 00 () P (), 51+ 50 € {0, 1, , 2Kk}
(2.5)

If we denote by B,(JS)LSQ, B,(jzl’SQ the smallest and the largest zero of G_1 s, s,, respectively,

then for the smallest zero z,,; and the largest zero z,, ,, of the Jacobi polynomials pleh) (x),

the inequality
(1)

k,s1,52

B® < Tnn, k< n, (2.6)

k781752

Tp1 < B <

is valid. For k =2, s; = 2 and sy = 0, we recover the bound given by [Szegd, 1975, Eq.
(6.2.11)]

BO =1 <.
For k =2, s; =4, sy =0, the bound (cf. [Driver and Jordaan, 2012, Eq. (8)]) for ;.

5O 2(a+1)(a+3)
2,4,0 2n—1)(n+a++2)+ (a+3)(a+B+2)

< Ty, (2.7)

which is already sharper than [Szegd, 1975, Eq. (6.2.11)] and the bound obtained in [Area
et al., 2012, Cor. 3]), is recovered. For k = 2, s; = 0, sy = 4, we also recover a bound
(cf. [Driver and Jordaan, 2012, Section 2.2]) for z,,1

2(8+1)(8+3)

n
Ty < Bygy = 1+2(n_1)(n+a+ﬁ—|—2)+(5+3)(a+6+2).

(2.8)
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For k =3, s; = 0 and sy = 6, we have (2.5) with Gog6(x) = az? + a1 + ag, where

az = agp(a, B) + K(a, B), a1 = 2ao(cv, B) + K(a, B) — 4(55—:_13)57

ag 1= ao(a,ﬁ):3n4+(6a+66+6)n3+(3a2+9a6—ﬁ2+9a—24ﬁ—41)n2
+(a+B+1)(3aB—48"+3a—-308—44)n+ (B+1), ((a —B8)> —1la+ 135+ 38),

K(a,8)=8(8+4)(8+2) (n2—|—(a+ﬁ+1)n+%(ﬂ+1)(a—2)>.

1
Bi(’),10,6 = 2—a2(—a1 — 1/ ai — 4agay)

of Gagg is an upper bound of x,; and is sharper than the bound (2.8). Let us note
here and everywhere else in the sequel that we say “sharper or more accurate” in general
according to simulations.

For k =3, s; = 6 and sy = 0, we have (2.5) with Gago(x) = byz? + byx + by, where

The smallest zero

(a+1)5

by = ap(B,a) + K(B,a), by = —2a0(8, ) — K(B,a) + 4 o

1
BY) = ——(—by + /b — 4bob,)
[ASE) 2b2

(
3

, bo = aop(B, ).
The largest zero
of G, is a lower bound of z,,, and is sharper than the bound (2.7). Some numerical

simulations are done in Table 2.1 to illustrate how sharp are the bounds derived from our
recurrence equations.

n n=4 n =12 n =19 n = 100
« a=-0.9 a=30.9 a=30.9 a=—0.5
3 B=-08 B =-08 B =328 B =30
zero T, | -0.966815724842541 | -0.999156791323282 | -0.682 -0.951
bound Bs | -0.966815724842536 | -0.999156791323269 | -0.677 -0.94998
bound B} ; -0.966815719 -0.9991567909 -0.657 -0.946
bound (2.8) -0.96674 -0.9991545 -0.55 -0.92
bound (2.7) 0.984109 -0.05 0.59 0.99990427
bound B, 0.98411889115 0.1083 0.687 0.9999055189
bound B4, | 0.98411889130462334 0.1369 0.7058 | 0.99990552024133
2610 Ty, | 0.98411889130462342 0.1414 0.7102 | 0.99990552024165

Tz%blei 2.1: Comparison of the bounds for the extreme zeros of the Jacobi polynomials
P ()
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[Krasikov [2006] proved that if « > 8 > —1, then for n > 5
Ty < A+9(1 — A%)?3(2R)13, (2.9)

and for n > 56,
Tnpn > B —9(1 — B)*32R)"/3, (2.10)

where

s=a+f+1 g=a—f r=2n4+a++1, R=1/(r?— >+ 25+ 1)(r2 — s?),

and
_ R+4gq(s+1) B R—q(s+1)

r24+2s+1" 7 242541

In Table 2.2, we compare the bounds (2.9), (2.10), Bg&ﬁ, Bé?ﬁ),o under the hypothesis of
(2.9), (2.10).

n n =10 n = 56 n =75 n = 100
« a=0.5 a =175 a =50 a=—-05
Ié] g =-0.8 g =13 g =-0.1 g =—-0.8
Tn1 -0.995905277982168 | -0.98178 | -0.9997329012 | -0.999955987905

bound B{js | -0.995905277982118 | -0.98168 | -0.999732900 & -0.9999559833
bound B | -0.995905276236077 | -0.9809 | -0.99973287 | -0.99995598788

bound (2.9) | -0.994901948730266 | -0.971 -0.99954 -0.999945
bound (2.10) n/a 0.577 0.789 0.999808
bound BYY, | 0.954222147582673 | 0.616 0.819 0.9998762585
bound B, | 0.954244065608416 | 0.6468 0.8338 0.9998762603419
Tom 0.954244105748079 | 0.660 0.8394 0.9998762603423

Table 2.2: Comparison of the bounds (2.9), (2.10), Bé}g,ﬁ, B?E,Q),o of P{*P) (x)

We note from various numerical simulations that for the Jacobi polynomials, sharpest
bounds for z,; are the smallest zero of Gy_102k, K > 2 in (2.5) and we get sharpest
bounds for z,,, by taking the largest zero of Gy_12x0, &k > 2 in (2.5).

2.2 The Laguerre polynomials

The Laguerre polynomials

LO(z) = —"F x|, a>-—1,
a+1

are orthogonal w.r.t. w(z) = % * on (0,00). The monic Laguerre polynomials will be
denoted by L{™(z) = (—1)"n!L{" (z).
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2.2.1 Interlacing of the zeros

The following mixed recurrence equations (that we recover using our implementations)
are valid (see e.g. [Driver and Jordaan, 2007|, [Driver and Jordaan, 2011, Eq. (4)])

L) = Ly (@) + 0L (); (2.11)
(a+n+ DL (2) = (a + 1)L (2) + n(x + a + 1)L (@),
L (@) = —(n = 2) L (@) = n(n+ a) LY, (2);
L (@) = L) + (0 + ) L) (2); (2.12)
LY (@) = (@ +a+ DL (@) + (a+ (e + ) LY (@);
(n+ o+ D)L () = (a+ DLE (@) + na L2 ().
The following interlacing properties are derived from the first two preceding equations.
Theorem 2.4 (see [Driver and Jordaan, 2007]). Let a« > —1, and let 0 < x,; < ... <
T, be the zeros of L(a)( ), let 0 < yp1 < ... < Ynn be the zeros of L,(f‘“)(x) while
0<Y,1 <...<Y,, are the zeros ofL (at2) (93) Then forie {1,2,...,n— 1},
(@) Tni < Yni < Yn—14 < Tyit1 < Yn,it1,
(b) Tni < Yoni<Yn1i<Znit1 < Ynit1,
(¢) Tni < Tpn1i < Yn-14 < Yn-1i < Tn,it1,
(d) xpi < Yni < Yni <Yn1i<ZTnit1 < Yni+1 < Ynit1-

Let 0 < z,1 < ... < 2,5 be the zeros of LY H)( ) where 0 < t < 2, then 0 < z,,; <
Zni < Yni, 0 =1, 2 ,n. However, as shown by Driver and ]()1(1(1<1n [2007], the zeros of
L,(f+3 () and LY ( ), as well as the zeros of L™ ( ) and L ( ) do not interlace in
general for a > —1.

Using our implementations, we recover the equations obtained in [Driver and Jordaan,

2011, Egs. (5), (9), (12)]:
(n+a+1l—a)LP(@) L8 (@)

L) = n+1 T a1
L () = (@ —z+1) (a+1+n) LM () B 22L D (1) ‘
i (n+1)(a+1) (n+1)(a+1)
L) gy = Pt Dat (@+2) @+ 1) L)
+(a+n)((—a—n—1)x+(a—|—2)(o¢—|—l))Lfﬁ1(x).
Li@(x):_n((—nﬂ)x?—z n—1)(a+2)z+ (a+3)(a+2)(a+1)) L ()
! (@)
N (a+2)(a+n)((—a— 2n—x14)x+ (a+3) (a+ 1))Ln,1(x); (2.13)
(n+ 1)L () = (a+2n+ 1 —2) L (2) — (n + )L, (2). (2.14)

Driver and Jordaan [2011] derived from the latter equations the following results:
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Theorem 2.5 (see |Driver and Jordaan, 2011]). (a) The zeros of Ln 1, together with
the point o + 1 + 2n, interlace with the zeros of Ln+)1,

(b) The zeros of Lnatl , together with the point o + 1 + n, interlace with the zeros of
L(a)

n+17
(c) The zeros of Lﬁjﬁ?% together with the point o 4+ 1, interlace with the zeros of Ln+1>

(d) The zeros of Lil Jf’ , together with the point %, interlace with the zeros of
L1(la+)17

(e) The zeros of Lﬁf‘*{‘ , together with the point %, interlace with the zeros of
L.

Remark 2.6. The extra interlacing points in (d) and (e), respectively, are the upper
bounds for the smallest zero x,, 111 of the Laguerre polynomial ijﬁl obtained in [Gupta and
Muldoon, 2007, Eqgs. (2.9) and (2.10)], namely x,411 < (otD)@t2) ng Tpi11 < (atl)(at3)

nta+2 ontats -
2.2.2  Quasi-orthogonality
Substituting a by o — 1 in (2.11) and (2.12) yields, respectively,
LirD(@) = 1 () + nLy?s (@);
oL (@) = L (@) + (n+ = DL (@)
Therefore L{* () can be written as a linear combination of L (z), L', (z), . . ., Eila_)j(x)

Theorem 2.7 (see |Brezinski et al., 2004], [Driver and Muldoon, 2015]). (i) Let j—2 <

a<j—1,75€{l,....,n— 1} such that « — j < —1. The Laguerre polynomials
Lf{l_])(m) are quasi-orthogonal of order j on (0,00) with respect to the weight func-

tion zoe~. L7 (x) has at least (n — j) positive real zeros.
(i) If =1 < a < 0 and 4,1 € {1,...,n} and y,;,i € {1,...,n} denote, respectively,
the zeros of L\ (x) and LYV (z), then
Yn, <0< Tn,1 < Tn—1,1 < Yn,2 < Tn,2 <...< Tn—1,n—1 < Yn,n < LTnn,
Yn—-1,1 < Yn,1 <0< Yn,2 < Yn—1,2 <...< Ynn—1 < Yn—1,n—1 < Yn,n-
From the equations
(n =D +n—DLY) = L (@) — (a+ 20— 1 —2) L, (x),
(n = DLy (2) = —E&f’( ) - (- )L @),
(n = Da®L,757 (0) = ~(a+ DILP(@) — (a0 + 1 - 0) LY (),
Driver and Muldoon [2015] derived the following results.

Theorem 2.8 (see [Driver and Muldoon, 2015]). Let n — 2 € N, « fized, —2 < o < —1,
and suppose E%a)(x) is the sequence of Laguerre polynomials.
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1. The zeros of x[:,(fi)Q, together with the point o + 2n — 1, interlace with the zeros of
L () provided INJEfC_)Q(x) and LY (x) are co-prime.

2. Stieltjes interlacing does not hold between the zeros of [N/SX_)Q(x) and L\ ().

3. The n—2 simple, positive zeros of Ing ( ) together with the point n+ a, interlace
with the n — 1 positive zeros of L\, )( ) if L, a“ ( ) and L ( ) are co-prime.

4. For2 <t <4, then — 2 simple, positive zeros of Eﬁf;” (x) interlace with the n — 1
positive zeros of L (7).

5. For the negative zero x, 1 of [N/,(f‘)(:p), the chain of inequalities

a+1 _ (a+1)(a+3)
n a+2n+1

O(‘f']. < < 07

a+2 172 (a+1)(a+2)
1)) =

< 1 < (a1)(
o1 < (@) n(n+ o+ a+n+1

18 valid.

2.2.3 Bounds of the extreme zeros

Using our code, we get equations of type

F@) L (2) = H(z) L () 4 Gy o (z) LY

N (x), k=2,3,...,s€{0,1,...,2k}, (2.15)
satisfied by the Laguerre polynomials. Let B,SS), B,(fs) be the smallest and the largest
zero of Gj_1 s, respectively. For k = 2 and s = 3, we recover the upper bound Bélg =

1 2 o ) ,
(et (e +2) for the smallest zero x,,; of LY )(x) obtained by Hahn (cf. [Hahn, 1933])

n+a+1
and for s = 4 the upper bound Béli = (a4 1)(a+3) for x,, 1 given by Szegé [Szegd, 1975,
’ 2n+a+1 ’
Eq. (6.31.12)]. For k = 2 and s = 0, we have the natural bound Bé}g = 2n+a—1 obtained
by Szegd (cf. [Szegd, 1975]). For k =3 and s = 5 and s = 0, respectively, we recover the
equations given in [Driver and Jordaan, 2012, Egs. (4) and (6)] which provided a strict

upper bound Bélg for the smallest zero z,,; of LY and a lower bound Bé?g for the largest

Zero T, of Lff‘), respectively. For k£ = 3 and s = 6, we get
L (@) = H@) L (2) + (n+ o) (@ + 3)Bn(n +a + 1) + (a + 1))a?

—2a+2)s(a+2n+ 1)z + (o + 1)5)L§;‘_>1(m).

This equation provides for z,,; the upper bound

1
< BY = ( 9 4 o+ 1
Tl = 236 3n(n+a+1)+ (a+1), (a+2)(a+4)(a+2n+1)

. \/(a+2)(a+4)((a2+6a+17)n2+(a+1) (@2 +6a+17)n— (a+2) (a+1)2)>.
(2.16)
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Numerical simulations indicate that (2.16) is sharper than the upper bound given in
[Driver and Jordaan, 2012, Eq. (5)] but could not be compared with the bound

<Vi+ v if 5 < - (2.17)
Tn, , 1 —, :
5 (U2 — V2)1/3(2 — 2752/3) 50
given in Krasikov [20006] for
1 1
U:\/n—l—a—i—l—f—\/ﬁ,vzyn—i—a—}— —\/ﬁ,(s:——’—? (218)
n o«

Note that the condition § < % with a > —1 is valid for n > 51. However, for £k = 4 and
s = 8in (2.15), it turns out that the smallest zero Bfg of the polynomial

Gag(z) = (a+4)(@+2n+1) (e’ +2an+2n°+5a+2n+6)2°
— (@ +3);(3a*+10an+10n*+9a+10n 4 6) 2
+3(a+2);(a+2n+1)z—(a+1),

is a more accurate upper bound for z,; compared to (2.16), and for £ =4 and s =0 in
(2.15), the largest zero Bfg of the polynomial

Gso(z) = 2° — 3(2n + o — 3)2° + (10n* + 10(a — 3)n + 3(a — 3)9)x
— (@ +2n —3)(2n* + 2(a — 3)n + (a — 2),)

is an accurate lower bound for z,,,, the largest zero of Lg{l) (x), compared to the lower
bound [Driver and Jordaan, 2012, Eq. (7)].
Krasikov [2006] showed that for n > 30, and U,V given in (2.18),

U2 — if @ <2(3+2v3)n -1
2 U2_v2)1/37 — )
Tpp > ) ( o . (2.19)
U — otherwise.

(U27V2)1/3(273n’2/3) )

This bound of z,,, is sharper than Bfg but if we take (k,s) = (7,0), we get from simula-
tions that the largest zero B% of Gg is sharper than the bound in (2.19). In Table 2.3,
we compare Bi’lg, Bfg, the lower bound 3n — 4 for x,, obtained by Neumann [1921], the
lower bound z, o :=4n + a — 16+/2n given by Bottema [1931], the upper bound

(a+1)(a+2)(a+4)2n+a+1)
(a+1)°(a+2)+Ga+1)n(n+a+1)

Tp1 < Zpl =

obtained by [Gupta and Muldoon, 2007, Eq. (2.11)], (2.19) and the bound B%.

We observe from the simulations that the sharpest upper bounds (compared to the
existing ones) for x,; are obtained for s = 2k, k > 4 and the sharpest lower bounds for
Tpy, for s = 0 and £ > 4. We also observe as in [Gupta and Muldoon, 2007 that the
upper bounds for z,, ; will be sharpest for « close to —1.
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n, o 5, —0.9 13, 340.56 | 21, 65.3 101, —0.9

zero x,1 | 0.020777151319288 | 251.82 | 27.677 | 0.00103830995555334
bound BYY | 0.020777151319291 | 259.04 | 28.59 | 0.00103830995555361
bound z,; | 0.020777504961963 | 309.59 | 36.616 = 0.0010383284039825

bound z, o n/a 310.98 45.61 175.69
bound 3n — 4 11 35 59 299
bound B} 11.1133332 453.62 | 161.88 338.20
bound (2.19) 7.94 443.001 | 166.78 370.93
bound By 11.1262992 469.109 | 172.19 371.24
7610 Ty 11.1262992 469.74 | 172.77 377.13

T?k;le 2.3: Comparison of the bounds for the extreme zeros of the Laguerre polynomials
Ly (x)

2.3 The Bessel polynomials

The Bessel polynomials

—n,n+a+l| 5
Yn(z;00) = o F) —3 ,n=0,1,...,N, a < —2N — 1,

a

are orthogonal on (0,00) w.r.t. w(z) = 2% <. The monic Bessel polynomials are given

by (w3 @) = gy Yn(s ).

2.3.1 Interlacing of the zeros
The following mixed recurrence equations are valid.

2n

Un ;a—1 = Yn ; Un— y &)5

(i =1) = a(o:0) + s 2 (i)

. a+2n—1_ n((a+2n)x —2) _

n(T = 2) = ————pn(2;0) — n-1(7; Q);
Il =2) a+n—1y($ @) (a—l—Qn)(a—i—n—l)y z:0)

a+2n—1 nw

gn(t;a0 —2) = —— (v — 1) = ———— 1 (7; ).
(e =2 = 2 g - 1) - — g ()

It follows that

Theorem 2.9. Let n = 0,1,...,N, a < —2N — 1 and z € (0,00). Let 0 < z,1 <
oo < Ty be the zeros of Gn(x;a), 0 < yp1 < ... < Ynn be the zeros of §,(z;a — 1) and
0<Y,1 <...<Y,, bethe zeros of §,(z;a —2). Then foriec {1,2,...,n—1},

(a) Yng < Tnyji < Tp-1; < Ynitl < Tpgdls

(b) Yoi<@n <Tp-1; < Ynit1 < Tnit+1,
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(c) Yoi <Uni < Tni < Tp-1i < Yoit1 < Ynit1 < T it

Remark 2.10. We deduce from the latter theorem that yni < Yn—1; < Tn-1,i < Ynit1,
Yo <Yn1 <Tpo1; < Yoipr and Yo < Yn—1i < Tp-1,i < Yit1.

2.3.2 Quasi-orthogonality

For the Bessel polynomials, the following recurrence equation is valid:
rz(a+1+2n)(a+2n)—2n _
Un (1 )
z(a+1+2n)(a+2n)
N dn(a 4 n)
za+1+2n)(a—14+2n)(a+2n)

Un(z; 00+ 1) =

5 Un—1(x; ).

Therefore, the polynomial ,(x;a + k) (kK > 1) is not quasi-orthogonal with respect to
xo‘e_%, on (0,00), since it cannot be written as a linear combination of the polynomials
gn(l‘; a), gn—l(x; a)v SRR gn—k(m; (I).

2.3.3 Bounds of the extreme zeros

We use equations of type
f(@)Yn—i(z;a+s) = H@)yn(z; ) + Gro1 () yn—1(z; ), s €{0,1,...,2k}, (2.20)

to find the bounds of the extreme zeros x,; and x,, of the Bessel polynomials y, (z; ).
Let B,(g’lz, B,(fz be the smallest and the largest zeros of G_; s, respectively. For k = 3 and
2)

s = 0, we derive the lower bound Bé o of @, given by

200 +4n — 4

B _
B0 (a4 2n —4)5

(—at@+2n-1)(a+2n-3)+((1—a-2n)(a+2n-3)

y ((n—l)a3+(5n2—10n+1)a2+8n(n—1)(n—2)a—{—4n2(n—2)2))1/2>.

The upper bound

a+3+vV—an—-n2+a—n+3
a2+an+n?2+5a+n+6

for x,, ;1 is obtained for k£ = 3 and s = 6. As we can observe from the simulations in Table

2.4 for k = 4, the sharpest bounds for z,; are obtained for s = 2k, k£ > 4, and for s = 0,

k > 4, we get sharpest bounds for z,, .

B =2

2.4 The Hahn polynomials
The Hahn polynomials

—n,—z,n+1+a+p
Qn($;@,B,N):3F2 1 ,n:O,1,2,...,N,

a+1,—-N
a>—land f>—1, ora< —N and g < —N,

are orthogonal w.r.t. w(z) = (a;—x) (ﬁj\ﬁ;z), x=0,1,..., N. The monic Hahn polynomials

will be denoted by Q,(z;a, 5, N) = %Qn(x; a, B, N).
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n, a 4, -20 | 10, —25 | 50, —305 | 100, —205
zero x,; | 0.080626 | 0.05438 | 0.003997 | 0.0052
bound B{Y | 0.08097 | 0.0558 & 0.00437 | 0.0058
bound B{J | 0.084899 | 0.06 | 0.0048 | 0.0066
bound BY) | 0287 | 1.699 | 0.019 14.07
bound By | 0.201999 | 1.71575 | 0.0214 | 14.2335
2610 T, | 0.29213 | 1.7161 | 0.02284 | 14.23786

Table 2.4: Comparison of the bounds for the extreme zeros of the Bessel polynomials
Yn (3 @)

2.4.1 Interlacing of the zeros

Using our implementations, we show that the Hahn polynomials are solutions of the

following recurrence equations [Jordaan and Tookos, 2009]:
n(n+p)(N—-—n+1)

2n+a+8)2n+a+5+1)

Qn(:v;oz,ﬁ,N):Qn(x;a+1,ﬁ,N)+ Qn_l(x;a+1,5,N);

(2.21)
~ R B n(a+n)(N—-—n+1) ~ . .
Qn(z;a, B, N) = Qn(z;a, B+ 1,N) Gntatd) (2n+a—|—5—i—1)Q”_1(x’a’6+1’N)’

(2.22)
Qulicep+1.8) = Qulasa+ 1 N) + 5 G ot 1,64 1,8),

Some mixed recurrence relations satisfied by the Hahn polynomials are also given in
[Levit, 1967] as well as some separation theorems. Jordaan and Tookos [2009] derived the
following interlacing properties.

Theorem 2.11 (see [Jordaan and Tookos, 2009]). Let a, 5 > —1 and let 0 < z,1 < ... <
Ty be the zeros of Qn(z;a, B,N), 0 < yp1 < ... < Ynn be the zeros of Qn(x;a+k, 5, N),
0 < 2p1 < ...< 2y, be the zeros of Qu(z;0, 84+ 5,N), 0 <tn1 <...<ty, be the zeros
of Qu(z;ac+ k, B+ s, N) where 0 < k,s < 1. Then fori=1,2,...,n—1,

(a) Tngi < Yni < Yn—-1,i < Tpitl < Ynit+ls
(b) Zng < Tpi < Zn-14 < Znitl < Tpitls
(¢) Zni < Tpi < Yni < tno1i < Znit1 < Tnit1 < Ynitl-

Remark 2.12. (i) The interlacing order given in [Jordaan and Tookos, 2009, Thm.
5.1] should read p; < t; < q; < pit1 < tiz1 and not t; < p; < ¢; < tiy1 < piy1 where
ti, pi, @i are, respectively, the zeros of Qn(z; o, B, N), Qn(x; o, B+8, N), Qn_1(z; o, B+
s, N) in increasing order with 0 < s < 1.

(b) From (a) and (b), we deduce, respectively, the interlacing x,; < Tp—1; < Yn—1; <
T it+1 and T < Zn—1y < Tpn—1, < Lnit1, L= 17 27 N L.
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2.4.2 Quasi-orthogonality

Substituting o by a — 1 in (2.21) and 8 by § — 1 in (2.22) yields (see [Johnston et al.,
2016])

n(n+p)(N—-—n+1)
2n+a+p-1)2n+a+p)

Qn($;a_1>ﬁaN):Qn(x;a7ﬁaN)+ Qn—l(z;a7B>N);

(2.23)
~ A B n(a+n)(N—-—n+1) ~ ‘
Qn(xaa7ﬁ_ 17N) - Qn(IE,Oé,ﬁ,N) (Qn—i—a—f—ﬂ— 1) (2n+a+ﬁ)Qn—l(x7aaﬁ7N>‘

(2.24)

Replacing 5 by 8 — 1 in (2.23) and using (2.24), we get
Qn(xaa_]-uﬁ_]-)N):Qn(x7aa67N)_ n(a_ﬁ)(N_n+1) Qn—l(-r7avﬂaN)

2n+a—-2+p)(a+S+2n)
_n(n—1+a)(N—n—|—1)(n—1)(n—£—5—1)(N—n+2)Qn_2($;a,ﬁ’N)‘
2n—=3+a+p)2n+a—-2+6)2n+a+p—-1)

Johnston et al. [2016] deduced the following results.

Theorem 2.13 (cf. [Johnston et al., 2016]). (i) Let N € N with n € {0,1,...,N}.
Then for a« > —1,8 > —1 and k,l € N fized with k +1 < N such that « — k < —1,
B —1 < —1, the sequence of Hahn polynomials {Q,(z;a — k, 5 — 1, N)} is quasi-
orthogonal of order k + | with respect to (a:x) (%JX;“), x =0,1,...,N and the
polynomials have at least n — (k + 1) real, distinct zeros in the interval (0, N).

(i) Forn € {2,3,...}, let x,,,i € {1,2,...,n} be the zeros of Qu(z;, B, N), Yniri €
{1,2,...,n} be the zeros of Qn(z;o0— 1,6, N) and Znist € {1,2,...,n} be the zeros
of Qu(x;a, —1,N). Then
for B> -1, =1 <a<0, Y1 <0< 2p1 <Tp11 <Yn2 < Tp2<...<Tp1p-1 <

YUnn < Tnny
fora> -1, =1 < B8<0, Tp1 < 2p1 < Tp-11 < Tp2o < 2p2 < ... < Tpo1p-1 <
Topn <N < zZyp.

(1) Forn € {2,3,...} and o, B > —1, the zeros of Qn_1(z;cr, B, N) interlace with the
zeros of the second-order quasi-orthogonal polynomial
(a) Qu(z;ao—1,8—1,N) for =1 < a,3 <0;
(b) Qu(z;a—2,8,N) for -1 <a <0, >—1;
(¢c) Qu(z;a,f—2,N) fora>—1, -1 < <0.

2.4.3 Bounds of the extreme zeros

For the Hahn polynomials, we use, for k =2,3,..., s; +s2 € {0,1,...,2k}, equations of
the form

f(x)Qn—k(xv a+ S1, 6 + S92, N) = H(ZL‘)Qn([E, O{,ﬂ, N) + Gk—le,sz(m)Qn—l(x; «, 67 N)
(2.25)
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Let B,(ighsz, B,(C?S)LSQ be the smallest and the largest zeros of G_1 4, s,, respectively. The
case k = 2 was already studied in [Jooste et al.; 2017] and the bounds derived from that
case are not accurate as the one obtained for £ = 3. In fact, for £ > 3 in (2.25), sharpest
upper bounds for z,,; are the smallest zeros of G'y_1 o0 and sharpest lower bound for z,, ,,
are the largest zeros of Gy_1 02, as shown in Table 2.5 for £ = 3. From the simulations,
the bounds we get for k = 3, s; = 2k, so = 0, are already sharper than the ones given in

[Krasikov and Zarkh, 2009 fora >8> -lora << —N —1:

(n+a)(N—-—n+1)

Tni < (2.26)
Nt O;)ni(zj;?(” =Y (2.27)
n, a 5,10 | 5,200 | 5, 10.5 | 100, 3
B, N 2,5 | 2 30 | 10, 30 | —0.5, 1000
zero T,, | 0.1659 | 23.219 | 5.0265 |  0.036
bound B, = 047 | 23435 | 5.67 2.105
bound (2.26) | 1.15 | 26.256 | 18.74 n/a

bound B, | 1.41 | 24.736  9.00092 |  5.802
bound By, | 2.726 | 26.638 | 21.419 | 995.2478
bound By, | 4.01 | 28.417 | 24.699 | 997.649
bound (2.27) | 4.68 | 29.14 | 17.21 n/a
2610 Ty, | 4.9975 | 29.998 | 25.3339 | 999.9999

Table 2.5: Comparison of the bounds for the extreme zeros of the Hahn polynomials

Qn(r;0, 3, N)

2.5 The Krawtchouk polynomials

The Krawtchouk polynomials

—-n,—x|1
K,(z;p, N) = oI} -|,n=0,1,2,....,N, 0<p<1,

N |P

are orthogonal w.r.t. w(z) = (Jz)px(l —p)N® 2 =0,1,...,N. The monic Krawtchouk

polynomials will be denoted by K, (x;p, N) = (—=N),p" K, (z;p, N).
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2.5.1 Interlacing of the zeros

The following mixed recurrence equations are valid. Note that the two equations are given
in [Jordaan and Tookos, 2009] but with a misprint in each equation.

K, (2;p, N) = K,(x;p, N — 1) — npK,,_(z;p, N — 1);

N—-—np+1—x -

K, (z:p, N +1

N_or1 fel@mpN+1)

np (1 —p) (N —n+2)
N+1-x)

K,(z;p,N) =

Kn—l(aj;p>N + 1)

In addition to the first equation, Chihara and Stanton [1990] also derived the equations

K,(z;p,N) =
Kn(z;p,N) =

Kn(z +1;p, N) = ko (w;p, N = 1);
Kn(z = 1;p, N = 1) + n(1 = p)Kp_1(z — 1;p, N — 1).
It follows that

Theorem 2.14 (see [Chihara and Stanton, 1990], [Jordaan and Tookos, 2009] ). Let

€(0,1) andn=0,1,...,N. If 0 < zp1 < ... <y, <N are the zeros ofKn(x,p,N),
0<Yn1 <...<Ynn < N+1 are the zeros of K, (x;p, N+1) and 0 < 2,1 < ... < 2pp <
N — 1 are the zeros of K,(z;p, N — 1) then, fori=1,2,...,n—1

Y )

(a) zp; < Tp; < Zn—14 < Znitl < T+l <= Tng < Yng < Tn—14 < T+l < Ynitl,

(b) Yni < Tpi+1<xp_1;,+1<Ynit1 < Tni1+ 1,

1
(¢) Tni < Yni < Yn-1 < Tnyit1 < Yn,it1 when n <

"@ |

With counterexamples, Jordaan and Tookos [2009] showed that the zeros of K,,(x;p, N)
and K,(z;p, N + t) do not interlace in general when ¢ is an integer greater than 1 and
the zeros of K, (x;p, N) and K, _1(z;p, N + 1) or those of K,(z;p, N —2) do not also
generally interlace.

2.6 The Meixner polynomials

The Meixner polynomials are defined by

—n,—x 1
M, (x;y, 1) = oF} 1——1],7v>0, 0<pu<l,
1
Y
and are orthogonal w.r.t. w(z) = V)Z,u for = 0,1,.... The monic Meixner family is

denoted by M, (w37, 1) = (24 M, (237, o).
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2.6.1 Interlacing of the zeros

Our implementation yields the equations (cf. [Jordaan and Tookos, 2009)])

~ ~ n ~
M (57, ) = M (s + 1, 1) + ﬁMn—l(x; v+ 1, p); (2.28)
- T+n—p)
Mp(z;y, 1) = —————Myu(z;7 + 2,
(@37, 1) m_—— (37 + 2, 1)
n - 2)v+(n+xz+1 -1)) ~
L (p =2+ ) (w )>Mn_1(x;v+2,u).

(n=1)(n+7)

Jordaan and Tookos [2009] derived from the latter equations the following interlacing
property.

Theorem 2.15 (see [Jordaan and Tookos, 2009]). Let v > 0, 0 < p < 1 and let 0 <
Tp1 < Tna < ...< Ty, be the zeros of My,(z;7y, 1) and 0 < Yp1 < Ypa < ... < Ynn be the
zeros of My (x;y +t,u) where 0 <t < 2. Then

Tng < Ynji < Yn—1,i < Tryit1 < Yniv1, 1 =1,2,...,n—1.

Moreover, they show that this interlacing is not valid in general for shifts of ¢ > 2 or
t <O.

2.6.2 Quasi-orthogonality

We substitute v by v — 1 in (2.28) to get

nyu .~

from which we deduce the equation

[y
mMn—2(I§%M)-

My (57 = 2, p1) = My (w37, 1) — 2n-— = My (3, 1) + n(n — 1)

It follows that
Theorem 2.16 (see [Jooste et al., 2013]). Let 0 < p <1 and 0 <y < 1.

1. The Meizner polynomials M,,(x;y—k, p) withk = 1,2,... ,n—1 are quasi-orthogonal
of order k with respect to the weight function (1),““’ p* on (0,00).

2. The Meizner polynomials M, (x;y —k, n) with —k < v < —k + 1 have at least n — k
zeros in (0,00) when k=1,2,...,n— 1.

3. If 0 <~ < 1, then the smallest zero of M, (z;vy — 1, 1) is negative.

4. If0 <y <1andn > Z—j then all the zeros of M, (x;y — 2, u) are nonnegative and
simple.
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2.6.3 Bounds of the extreme zeros

We use recurrence equations of the form

@) Mnp(z;y + 8, 10) = H(x) M (237, ) + Gro1,s(2) Mp—1 (257, 1), s €{0,1,... ,(216} |
2.29

satisfied by the Meixner polynomials. For £ = 2, we recover the recurrence equations
given in [Jooste and Jordaan, 2014] and the bounds derived from these equations:

(nM+9)y(n—1+pB+y-3n)—pnn-—1)((n+y+1)p—4y-3n-3)

Tpi < Zpi =
o I—p) (v (y+2n+1) —n(un— @2 —n—1)
(2.30)
-1 1
P i (it U 0 BN (2.31)
IL—p
Moreover, for k = 3 and s = 0, we deduce the bound
2vu+ (2n=3)(u+1)+Apun(y+n—3) —4dyu+p2+10pu+1
Zn2 < Zn,? = Tnn.
2(1 = p)
k =3, s = 6 yield the bound
A-+VB

Tpi < Zn,l = < Zn,1,

2(1—p)((n+7)5— (n—2)513)
with

A= (=2, (Rp—n+ (1—3) 27+3) & (142 (—Ap+2n+294+9u—3),
B=—S(n—2)> (—;ﬂ+ (—4yn —4n+ 47 + 14) j+ 247° + 48y n + 24n> + 48y

4 48n — 1) + 24 (n—2), (n+7)3<(30n2 — 600 +17) yi2 + (—40yn — 4002 + 40 + 50) 1
+307% +60yn+30n? +60v +60n + 17) + (n+7)§<(—24n2—|—48n+1) 2

+ (4’yn+4n2—4’y—14)u—|—1).

We provide in Table 2.6 numerical examples to illustrate these bounds.

n, v, & |8, 0.09, 0.99 | 15, 20, 0.5 | 100, 20, 0.5 | 100, 0.09, 0.99

Zero T, 1 1.118068 2 2.9 x 10713 0.0555
bound Z,, ; 1.118078 6.06 18.75 0.0756
bound Z, 5 | 1959.6293 90.93 468.36 2941591

ZeTr0 Ty p, 2114.696 106.44 589.77 37133.5

Table 2.6: Comparison of the bounds for the extreme zeros of the Meixner polynomials

M, (x5, )




Chapter 3

Classical g-orthogonal polynomials

This chapter is devoted to the interlacing properties, the quasi-orthogonality of classical
g-orthogonal polynomials. The bounds of their extreme zeros are also given. The results
of this chapter can be found in the joint works by Tcheutia et al. [2018a], Tcheutia et al.
[2018b] and Jooste et al.. The equations from which the bounds of the extreme zeros are
derived can be found in the Maple file associated to this work.

3.1 Introduction

Let 0 < ¢ < 1. The classical g-orthogonal polynomials were introduced by Hahn [1949]
and can be written in terms of basic hypergeometric series [Gasper and Rahman, 2004],
as introduced by Heine [1847]. These polynomials are associated especially to quantum
groups (cf. [Koelink and Koornwinder, 1989], [Koornwinder, 1990], [Koornwinder, 1994)),
as introduced in |[Drinfeld, 1987], [Woronowicz, 1987]. We list the systems of monic g¢-
orthogonal polynomials considered in this chapter (cf. [Kockock et al., 2010]).

1. Big g-Jacobi polynomials
-n n+1
: (24 )n (V45 @)n ¢ " afg"

Py(z;0,8,7;q) = ¢ q:q |, 3.1
( )= aBearian g (31)

with0 <ag<1,0<fg<1land vy <0,z € (vq,q);

2. g-Hahn polynomials

-N -n n+l =
- aq; Q)n(q™V5q)n g " afbg" T
Qn(l',Oé,/B,N|Q) = ( (aﬁ)q;nQ) ) 3¢2 q;:9 |,
y4)n Oéq,q_N
withZ =¢®, ne{0,1, ..., N, 0<ag<land0< f¢g<1lora>qg?" and
B>q N ze(lg™);
3. Little ¢g-Jacobi polynomials
—-n n+1
N n (" aq; q)n q ", abq
(i Blg) = (~1g®) LD Gar .
(aB9q™; @)n oq

with 0 < ag <1, g <1,z € (0,1);
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4. g-Meixner polynomials

_— " on? m q ",
My (z; 8,7:q) = (=1)"¢"" " (BG @)n 201 g, —2 ,
Bq i

withz =¢7,0<fg<1,v>0,7 € (1,00);

5. g-Krawtchouk polynomials

_N _
=~ q 5 q)n q ,T,—pq
Kn(x;p,N;Q)——é_pqn-q)) 302 ¢q |,

with Z =¢®andn € {0,1, ..., N}, p>0,z € (1,¢7);

6. g-Laguerre polynomials

—1)™(¢*"5 q)n q" ta
e S e R

7. Alternative ¢-Charlier or g-Bessel polynomials

N —1)q(3) ¢ ", —aq"
Jn(z; 05 q) :((_O[)T.qq)%bl gqr |, a >0,z € (0,1);
) n O

8. Al-Salam-Carlitz I polynomials

1
0 (23q) = (—a)"q3) 59, a0 | a <02 e (L)

n

9. Al-Salam-Carlitz II polynomials

- n A
Vi (259) = (—a)"q () 10 ¢L ) 0<ag<1,ze(l,0)
(6]

3.2 The big g-Jacobi polynomials

The sequence of big g-Jacobi polynomials { P, (x; a, 3,7;q)} is orthogonal for 0 < aq < 1,
— (a_lx,'y_lx;q)oo
T (@A)
on the interval (vq,aq). As the parameter o decreases to ag, the interval in which the

zeros lie decreases to (vq, ag?) and we can deduce that the zeros of f’n(x, a, B,7; q) decrease
as « decreases to aq. Similarly, as v increases to vq, the zeros will increase, since the
interval in which the zeros lie reduces to (y¢%, aq).

0 < B¢ < 1and v < 0 with respect to the continuous weight function w(z)
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3.2.1 Interlacing properties

We have P, (z;a, 3,7;q) = Z F, where, by (3.1),

k=—o0

(aq,vq; @)nlg™", @B+, x5 q)1g"

(@Bq™; @)n(aq, 74, ¢ Q)
Using our codes with gMixRec1(F,q,k,P(n),0,alpha,0,1,0), gMixRecl1(F,q,k,P(n),
0,beta,0,1,0) and gMixRec2(F,q,k,P(n),0,alpha,0,beta,1,1,0,0,1), respectively,
we get the following recurrence equations (see the Maple file which can be downloaded
from http://www.mathematik.uni-kassel.de/ tcheutia/).

F =

Proposition 3.1. The following mized recurrence equations are valid:
aq(@"—1)(Bq"—1)(vq"—1) -
Poa(zi0q,5,7:9);

(@8 — 1) (aBgn—1) | HHAeS
(3.2a)

P.(z;0, B,7;q) = Pu(x;aq,8,7:q) +

Po(z;, 8,7;q) = Pu(z; 0, Bg, ;)

Ckﬂqn-‘rl(&qn_1)(,.)/qn_1)(qn_1)N ' o
_ (a5q2n+1 _1) (aﬁqQ"—l) Pn—1($,0z,ﬁq,'y,q)7 (32b)

- = aq(g” —1)(vg" 1) 5
Pu(x;a, Bq,7v;q) = Pu(z; 09, B,7;9) + (a5q2n)+(1 — >Pn71(x; aq,Bq,v;q).  (3.2¢)

From the latter equations, we deduce the interlacing properties of the zeros given by

Theorem 3.2. Let 0 < ag < 1,0 < g < 1, v < 0 and denote the zeros of P,(x; v, 3,7: q)
by VG < Tpa < Tpa < - < Tpp < Qg, the zeros Of Pn(ajvacbﬁaf%Q) by Yna < Yn2 <

-+ < Ynn, the zeros of P (z;0, Bq,7v:q) by Zn1 < Zno < -0 < Zn, and the zeros of
P, (x;0q, 5q,7:q) by tn1 <tno <-+- <tpn. Then, for eachi € {1,2,...,n— 1},

(a) Ynji < Tnji < Yn—1,i < Ynjitl < Tnjitl
(b) Tni < Zng < Zn—14 < Tnyi+l < Znitl
(¢) Yni < Tni < Zni < tn1i < Ynit1 < Tnit1 < Znitl-

Proof. Let 0 <aqg<1,0<p8qg<1,v<0. Since 0 < ¢q <1, it follows that ¢" — 1 < 0,
ag" —1<0,B¢"—1<0,aB¢*" —1<0, af¢® —1<0andv¢g" —1<0.

(a) Since P,(z;aq,3,7;q) and P,_i(x;aq, 5,7;¢) belong to the same orthogonal se-
quence, their zeros interlace and the interlacing property (1.1) is satisfied. (3.2a) is
in the form of (1.2), i.e.,

folx) = a(@)pn(z) + b(2)gn- (2),

with a(x) = 1 and, taking into consideration the restrictions on the parameters,
b(x) is a negative constant and the interlacing follows from Corollary 1.3 (b).

(b) The polynomials P, (z;a, 8q,7;q) and P,_y(z; o, Bq,7;q) belong to the same or-
thogonal sequence and their zeros satisfy (1.1). (3.2b) is in the form of (1.2) with
a(x) = 1 and taking into consideration the restrictions on the parameters, b(x) is a
positive constant. The result follows from Corollary 1.3 (a).
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(¢) In (b) we have proved that the zeros of f’n(w; o, B,7;q) and P,_i(x;a, Bq,v;q) in-
terlace for all « such that 0 < ag < 1, from which we can deduce that the zeros of
P, (x;0q, B,7:q) and P,_1(x; aq, B¢,7; q) interlace, satisfying (1.1). Equation (3.2¢)
is in the form of (1.2) with a(x) = 1 and taking into consideration the restrictions on
the parameters, b(z) is a negative constant. Applying Corollary 1.3 (b), we obtain
Uni < Zni < tn—1i < Yni+1 < Zns+1 for each ¢ € {1,2,...,n — 1}. Furthermore,
Yni < Tpi < 2zn,; for each i € {1,2,...,n} (from (a) and (b)), and the required
combined interlacing follows.

Corollary 3.3. For eachi € {1,2,...,n—1},
(a) Tpi < Yn—1; < Tn-1; < Tnjit1
(b) Tni < Tn-1i < Zn—1,i < Tpstl-

Proof. We obtain the results by combining the interlacing of the zeros of an(w; a, B,7;q)
and P,_1(z; a, B, 7; q) with the results proved in Theorem 3.2 (a) and (b), respectively. O

Remark 3.4. (i) In general, the zeros of Py(x; a, 8,7:q) do not interlace with the zeros
of P,(z; 00, B,7q;q) or with the zeros of P,_i(x;, 3,7q;q). For example, when n =
4,00 = 1,8 = 3, v = —5,q = 0.14, the zeros of ﬁn(x, a,3,7;q) are {—0.6993,
—0.1066,0.0198,0.1353}, the zeros of Py(z; a, B,7¢; q) are {—0.0992, 0.0000, 0.0071,

0.1407} and the zeros of P,_1(x; a, 5,7¢; q) are {—0.0978,0.0056,0.1399};

(i) When 8 = 0 in the definition of the monic big q-Jacobi polynomials, we obtain
the monic big q-Laguerre polynomials, i.e., P,(x;a,0,7;q) = Po(x; 0,7, q) [Kockock
et al., 2010, Eq. (14.5.13)]. The interlacing property of the zeros of the big q-
Laguerre polynomials, as o decreases to aq, can thus be obtained from the result
obtained for the big q-Jacobi polynomials. Furthermore, we have f’n(x;oz,ﬁ;q) =
]sn(:v;ﬁ,a;q) and the interlacing property as [ increases to [Bq follows directly.
The interlacing results of Theorem 5.2 and Corollary 3.5 are therefore valid, where
Ty Ynis Zniis tnint € {1,2,...,n} are the zeros of Py(z;0,7:q), P.(x;aq,7:q),
Pn(x; a,vq;q) and Pn(x;aq,yq; q), respectively.

3.2.2 Quasi-orthogonality

The first two recurrence equations in the following proposition follow from (3.2a) and
(3.2b), with a and § replaced by ¢ and g, respectively. The big g-Jacobi polynomials

q
are orthogonal for v < 0, and by replacing v by g, 0 < g < 1, we obtain the polynomial

P,(z;a, f, %; ) of which all the parameters are still in the regions where orthogonality is
guaranteed and we will therefore not consider a g-shift of ~.
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Proposition 3.5.

aq(q"—1)(Bq" —1) (y¢" — 1)
(afg?m—1)(aBg*" —q)

n( Z; >ﬁ P)/a ) (.CE aaﬂ 77 ) Pn—1($;aaﬁ77;Q);

(3.3a)
5o B B v _aB (@ =) (" =) (" =) 5 L
Pn(maO{)E?/yﬂQ)_Pn(x7aﬂﬁ77’Q) (Oéﬁq2n—1) (aﬁan_q) Pn—l(x’OQBv’YaQ)a
(3.3b)
5o By s oy (@ =D(ag" =1 (—aBq"+7) 5 - _
Pn<LL’,Oé,E,E,Q) —Pn(.’I?,Oé,ﬁ,’Y,Q) (aﬁq“—l) (Oéﬁ([?n_l—l) Pn—1<x7057B777Q)'
(3.3¢)
Corollary 3.6
Po(a; %é,’y;q) = Py(x; 00, 8,7: ) (3.4)
aq (afg*" = Bg" = Bg" + ) (¢" — 1) (vg" — 1)

- @B 1) (@B — ) Por(@ien B,7.0)

?B(" ~ D"~ @) (0" ) (1" V("9 (" )" 5
(B¢ =)’ (@B " = ¢*) (B " — q) Frali 00 f.70)

Proof. By replacing g with é n (3.3a), we obtain an equation involving polynomials
P, (z; o g, v:q), Po(; @, g, i q ) and P,_y(z; o, g, v;q). We use (3.3b) to replace the latter
two polynomials and, after simplifying, we obtain (3.4). ) OJ

We will start by proving the quasi-orthogonality of the sequence { P, (z; 5 By q) 152,

In order to ensure that the parameter % is not in the region where orthogonality is

guaranteed, we fix o > 1 with 0 < ag <1, such that & >1, k€ {1,2,...,n —1}.

Theorem 3.7. Let k,I,m e Ny , a,3, 7€ R, 0<aqg<1,0< g <1 and~y <0. The
sequence of big q-Jacobi polynomials

(i) {ﬁn( o B, 9) tnz0, @ > 1, is quasi-orthogonal of order k < n — 1 with respect to
w(x) on the interval (vq, aq) and the polynomials have at least (n — k) real, distinct
zeros in (vyq,aq);

(ii) {P,(z; 0, qﬁm,v; Q) }n>0, B > 1, is quasi-orthogonal of order m < n — 1 with respect
to w(z) on (vq, aq) and the polynomials have at least (n —m) real, distinct zeros in
(va, aq);

(111) {P (z; a, ﬁl, T34 q) >0, B > 1, is quasi-orthogonal of order | < n — 1 with respect
to w(zx) on (’yq, aq) and the polynomials have at least (n — 1) real, distinct zeros in
(va, aq);

() {P,(x; E qﬁm,v;q)}nzo, a, 8 > 1 is quasi-orthogonal of order k +m < n — 1 with
respect to w(x) on (vq, aq) and the polynomials have at least n—(k+m) real, distinct
zeros in (vq, aq).

Proof .
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(i) Fix a > 1 such that 0 < ag < 1. From Lemma 1.4 and (3.3a), it follows that
P, (x; o B,7;q) is quasi-orthogonal of order one on (¢, ag) and according to Lemma

1.6, at least (n — 1) zeros of f’n(m, %, B,7;q) lie in the interval (yq, aq). By itera-

tion, we can express P,(x; %,ﬂ,fy;q) as a linear combination of P,(z;a, §,7;q),

f’n_l(x; a, 3,79, ., Pog(z;a,6,7;q), and from Lemma 1.4 we deduce that

P,(x; (%, B,7;q) is quasi-orthogonal of order k on (ygq, aq). It follows from Lemma

1.6 that at least (n — k) zeros of P,(x; 5 B,7;q) are in (vq, aq).

(ii)-(iii) Fix > 1 such that 0 < g < 1. The proofs follow in exactly the same way as the

proof of (i), by using (3.3b) and (3.3¢), together with Lemmas 1.4 and 1.6.

(iv) Fix a > 1,8 > 1 such that 0 < ag < 1 and 0 < B¢ < 1. From (3.4), P,(z; o 5,7; q)

can be written as a linear combination of f’n(a:;a,ﬁ,’y; q), Pn,l(:v; a, B,7;q) and
P, o(z;a, 8,7; q), and it follows from Lemma 1.4 that each polynomial P, (x; L g, v q),
n € {1,2,...}, is quasi-orthogonal of order two on (vq,aq). From Lemma 1.6,

we know that at least (n — 2) zeros of P, (z; o g,y;q) lie in (vq, aq). By itera-

tion, we can express ]5”(3:; & qﬂm,'y;q) as a linear combination of P, (x;a, 8,7 q),

Poi(zy0,8,70), oy Po—eym) (@50, 8,7:q), and the results follow directly from
Lemmas 1.4 and 1.6.

O
In order to determine the location of the zeros of the order one and order two quasi-
orthogonal systems, we use a g-analogue of the Vandermonde identity, namely

qg"b G
. 1 @)n

b" [Gasper and Rahman, 2004, Eq. (1.5.3)]. (3.5)

Theorem 3.8. Letn € N, o, 8,7 € R, such that 0 < ag,8q <1 and v < 0. Suppose
Tnj,J €1{1,2,...,n} denote the zeros of Py(%;c, 3,7 4), Ynj, J € {1,2,...,n} the zeros of
Pn(ma %75577(]); Zn,jv.j € {1727 s 7n} the zeros Of Pn(xa &, g;%Q% Un,jaj € {1a 27 s 777’}
the zeros of P,(z; o %,’y; q) and wy, j,7 € {1,2,...,n} the zeros of Py (z; g, g; q). Then,

(i) when we fix o > 1, such that 0 < ag < 1,

7q < Tn, < Yn,1 < Tn—-1,1 < Tn,2 < Yn,2 < Tpn—1,2 << Tn—1n—1 < Tnn < Yn,n;

(i) when we fiz f > 1, such that 0 < fq < 1,
Znl <VG < Tp1 < Tp-11<2p2 < Tp2 < < Tp_i1p-1<Zpn < Tpp < Qg
(111) when we fiz f > 1, such that 0 < fq < 1, we also have

Wn,1 < Tni < Tn—1,1 < Wn, 2 < Tn2 << Tpn—1,n-1 < Wn,n < Tn,n < ag;

() when we fix a, > 1, such that 0 < aq, g < 1, all the zeros of P,(x; o g,'y;q) are
real and distinct and v, ; < q.
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Proof .

(i)

(i)

aq(g"=1)(Bg" =1 (v ¢" 1)
(aBq*"—q)(aBq®"—1)
well as the location of y,, 1, follows from Lemma 1.8 (i).

From (3.3a), we obtain a,, = < 0, and the interlacing result, as

From (3.3b), we obtain a, = a8 qz;(gj ;_1%()‘(3‘5;;211(1;;_1), which is positive when

taking into consideration the values of the parameters. The interlacing result, as
well as the location of ¥, ,, follows from Lemma 1.8 (ii).

The polynomial Pn(ac; a, B,7;q) evaluated at @ = g, can be written in terms of a
2¢1-hypergeometric function. We apply (3.5), and simplify, to obtain

_ Pvga,Byvq)  a(aBq=1)(B¢"=1)(vq" —1)¢"
Fnl4) = Poi(vgia, Bviq) (@fg®" —q)(afg*™ —1) 30

and by taking into account the values of the parameters, this expression is negative.

Since .
a(B-1) (¢ —1)q"
afq¢*" —q

—an — fn(7q) = — <0,

the result follows from Lemma 1.7 (i).

. "—1)(ag"—1)(—apqg"
From (3.3¢), we obtain a, = — 4 (a/;E;?’qL—q)()o(éﬁqf’?—Jlr)’Y)

as well as the location of w,, ,, follows from Lemma 1.8 (ii).

4 > 0, and the interlacing result,

Fix a > 1 and 8 > 1 such that 0 < ag < 1 and 0 < 8¢ < 1. We use (3.4), with a,
the coefficient of P, 1(z;«, 8,7;q) and b, the coefficient of P, o(x;, 5,7;q). By
taking into account the values of the parameters,

_a®B(g" = 1) (Bg" —q) (" —q) (v¢" = 1) (v¢" — q) (¢" — q) ¢"*
(@B@m—¢*)? (aB" —¢*) (a Bg*" — q)

and it follows from |Brezinski et al., 2004, Theorem 4| that v, ;,7 € {1,2,...,n},
are real.

b, = < 0,

In order to determine the location of v, and v, ,, we use [Joulak, 2005, Theorem
9]. Since

P.(vq; o, B, 73 q P, 1 (vg; o, 8,7 q
(V@) from1(Vq) + an fo1(7q) + by = = Gl 7:0) + an—= 10 7:49)
Pn&(’Y‘Jy%ﬁf%Q) an(fYQ7Oé757’yvq>

= a?(B—1)(v¢" — 1) (Bg" — q) (v¢" — q) ¢"
@B — @) (P~ &)

+bn

<0,

it follows that v, 1 < vq. Furthermore,

fn(aCJ)fnfl(Oéq) + @nfn71<OCQ> + bn
(g™ — q) (*B¢*™ — ayg™™! — aBq" — ag"t +v¢" T + aq) (v — aB) "2
(aBg*™ — ¢*) (aBg*™ — ¢?)

and since the sign of this expression varies as the parameters vary within the regions
applicable, we cannot determine the position of v,, ,,.
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O

Remark 3.9. (i) From Theorem 3.7 (i) we know that the polynomial P, (z; g, B,7:q), >
1, is quasi-orthogonal of order one and an interlacing result is proved in Theorem
3.8(i), but the location of the extreme zero yy,.,, with respect to (yq, aq), is not fived,
since the sign of

P.(ag; o, B,7;q
_an_fn(QQ):an_ = ( 7 )
P.oi(ag; o, 8,7 q)
_ (e’@"BtaBg+ ey +ad" —vq" —a)q (3.7)
afBq¢*n—q

changes as the parameters vary within the region applicable.

(i) When 8 = 0 in the definition of the big q-Jacobi polynomials (3.1), we obtain the big
q-Laguerre polynomials, i.e., Py(x;a,0,7:q) = Pu(x;0,7:q) [Kockoek et al., 2010,
(14.5.13)] and we can use (3.3a) with § = 0. Let x,;,j € {1,2,...,n}, be the zeros
of P,(x;a,v;q) and Unj,J € {1,2,...,n}, the zeros of P, (x; %,7;q). When 5 =0
in (3.7), we obtain

P,(agq;a,v;q
_an_fn(O‘Q) =0np — = ( )
Po_i(ag;a,v;q)

taking into consideration that a > 1, 0 < aq <1 and v < 0, and

=v¢"(a—1)+a(¢"—1) <0,

P(g 0,739 n(n o n

nwm+mf:~( )—Hmzaq(vq—l%wmzaﬁm -1)<0
Pnfl(fycb a, ;5 Q)

We thus have f,(vq) < —a, < fo(aq) and according to Lemma 1.7 (iii), all the zeros

of the order one quasi-orthogonal polynomial P,(x; %,’y;q),a > 1, lie in (vq, aq).

Furthermore, since a,, <0, it follows from Lemma 1.8 (ii) that

Yq < Tn,1 < Yn,1 < Tn—-1,1 < Tn,2 < Yn,2 < Tn—1,2 <--- < Tn—1,n—1 < Tnn < Yn.n < aq.

3.2.3 Bounds of the extreme zeros

The big g-Jacobi polynomials ﬁn(x; a, B,7; q) satisfied equations of the type

f@)Poi(x; 09, Bg™, 75 q) = H(x)Po(2; 0, 8,795 q) + Gr-1,51,5 (¥) Pae1 (23 0, 8,75 9),
with s34+ € {0,1,...,2k}. Let BY , and Bl(js)th be the smallest and the largest zero

k,s1,s
of Gi_1.,.s,, respectively. For k = 2, the best upper bound for z,,; is BQBA, the zero of

G104, and the best lower bound for z,, is Bgio, the zero of G49. We observe from

numerical simulations that the sharpest bounds for z,; are the smallest zeros B,(:g o Of

Gr—1,0.2r and the sharpest bounds of z,,,, are the largest zeros B,(f%ko of Gi_12k,0-

3.3 The ¢g-Hahn polynomials

The ¢-Hahn polynomials Q,,(Z; «, 3, N|q) with Z = ¢~* and n € {0,1,..., N} are orthogo-
nal on (1, ¢~) with respect to the discrete weight w(x) = @ Bfffiqjv_,:);zzzﬁq)m for0 <ag<1
and 0 < fg<lora>qg " and 3> q¢?".
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3.3.1 Interlacing properties

Proposition 3.10.

ol -G - @ =), .

qN (a5q2n+1 _ 1) (Ozﬁq2” _ 1) anl(x,ozq,ﬁ,NM),
(3.8a)

Qn(x;, B,N|q) = Qunlz;aq, B, Nlg) +

Qu(w; @, B, N|g) = Qu(a; @, Bg, Nq)

Oéﬁqan (qN+1_qn) (aq"—l) (q"—l) B ‘ |
(@B —1) (af 2" —1) Qn-1(z; 0, g, N|q); (3.8b)

~ - n __ n _ ,N+1) _
Qn(gﬂa a,ﬁqv N|Q) = Qn(xa O‘qaﬁa N|q) + a(ZN(a;)q(Qanrl :] 1) )anl(l'; aq, Bq,N|Q), (38C)

~ ‘ B (@ﬁq2n+1 _ 1) (anN+2(aqn+1 —1) - anfrH»Z(qn —1) - (ag — 1))
Qn (z;0,8,Nlq) = (aqn+1 —1) (aﬁqn+1 —1) (aﬁqn+N+2 —1)

aq (B — 1) (¢" — ™) (¢" — 1) (ag® — )
qn (aqn+1 _ 1) (aﬂanrl _ 1) (aﬁqn+N+2 _ 1)

+

anl(:l:; Oéq2, 57 N|Q)
(3.84)

X Qn(xQ aq, B3, N|Q) +

Theorem 3.11. Let 0 < fg<1,0<aq<1,ne€{0,1,...,N}. We denote the zeros of
Qn(z;a,8,Nlq) by 1 < Tpg < Tpo < -+ < Ty < g, the zeros of Qn(z:aq,8,N|q) by
Yni < Yno < -+ < Ynn, the zeros of Qn(x;oz,ﬁq,]\ﬂq) by zng < Zpo < -+ < Zpn and the
zeros of Qu(x; aq, Bq, Nq) by tha <tpa <--- <tpn. Then, forie{1,2,...,n—1},

(a) Thngi < Ynji < Yn—1,i < Tpitl < Ynitls
(b) Zng < Tpg < Zn—14 < Znitl < Tpjitl,
(¢) Zni < Tpni < Yni <tno1i < Znit1 < Tnit1 < Ynitl-

Proof. Let 0 < f8g<1,0<aqg<1,ne{0,1,...,N}. Since 0 < ¢ < 1, it follows that
" —1<0,B¢"—1<0, af¢g* —1 < 0 and afg* ™ — 1 < 0. Furthermore, ¢™ < ¢" for
m > n and consequently ¢V ! — ¢" < 0.

The two polynomials on the right-hand side of each of the equations (3.8a) and (3.8b)
belong to the same orthogonal sequence, therefore their zeros interlace and satisfy the
interlacing property (1.1). Each of these equations are thus in the form of (1.2) with
a(x) = 1. Furthermore,

(a) in (3.82), b(z) > 0 on (1,¢~) and the required interlacing follows from Corollary
1.3 (a);

(b) b(x) in (3.8b) is a negative constant and the result follows from Corollary 1.3 (b);

(¢) From the interlacing of the zeros of Q,(z; o, B¢, N|q) and Qn_1(z; v, Bq, N|q) for all
a such that 0 < ag < 1 (from (b)), the interlacing of the zeros of Qn(x: aq, 8,7 q)
and Q,_1(z;q, Bq,v; q) follows directly. Equation (3.8¢) is in the form of (1.2)
with a(x) = 1 and taking into consideration the restrictions on the parameters, b(x)
is a positive constant. Applying Corollary 1.3 (a), we obtain z,; < Yn; < tn_1,; <
Znit1 < Ynit1 for each ¢ € {1,2,...,n — 1}. Furthermore, it follows from (a) and
(b) that z,; < x,; < yn,; for each i € {1,2,...,n}, and the required combined
interlacing follows.
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U
Corollary 3.12. For each i € {1,2,...

,n—1},
(0) Tpi < Tn—1; < Yn-1; < Tnitl;
(b) Tng < Zpn—1,i < Tp-1; < Tpitl-

Proof. We obtain the results by combining the interlacing of the zeros of Qn(x, a, 3, N|q)
and Q,_1(z; a, B, N|q) with the results proved in Theorem 3.11 (a) and (b), respectively.
O

Remark 3.13. (i) When we let 5 = 0 in the definition of the monic q-Hahn polyno-
mials, we obtain the monic affine q-Krawtchouk polynomials [Kockoek et al., 2010,
Section 14.16/ f(;fﬁ(:f;a,N;q), orthogonal on (1,¢~ ) if 0 < ag < 1. The inter-
lacing results in Theorem 3.11 (a) and Corollary 3.12 (a) follow from (3.8a) (with
B =0), where x,; and y,;,i € {1,2,...,n} are the zeros of KA#(Z:a, N3 q) and
KA8(Z; aq, N;q), respectively. Furthermore, when we let 3 = 0 in (3.8d), we find
that

Tng < Yni < Yn-1i < Tnitt < Ynit1,

foreachi € {1,2,...,n—1}, where Y, ;,i € {1,2,...,n} are the zeros of KA#(Z; aq?, N; q);

(i) Since limg_ o0 Qn(f;a,ﬂ,]\f]q) = thm( B, N;q) [Kockoek et al., 2010, Section
14.14], we obtain from (3.8b), the equation

N+1 n n
= qtm (— = qtm (= ¢ =q") ("= 1) =
KI"™®; 8,N;q) = KI'™(T; Bq, N; q) + ( 6q2"+)N+1 K™ (%5 Bq, N3 q),
from which the interlacing results in Theorem 3.11 (b) and Corollary 5.12 (b) follow

directly, where T, ; and zn;,1 € {1,2,...,n} are the zeros of the monic quantum q-
Krawtchouk polynomials thm( B, N; q) and thm( : Bq, N; q), respectively.

3.3.2 Quasi-orthogonality

We will consider the case 0 < agq, g < 1. The following equations follow from (3.8a) and
(3.8b), with @ and S replaced by % and g, respectively.

a(qg"—1)(Bg"—1) (¢" — V1)
N(apg?r = 1) (aBg*" —q)

Qu(7; 3 B, N|q) = Qu(#a, 8, N|g) + Qu 1 (T; 0, B, N|g);

(3.9a)
R S 08 (¢" —¢"*") (og" ~ (g~ 1) -
Qn(xaavngM) - Qn(xaavﬁvNM) (Oéﬂqzn — )(aﬂan — )qN n Qn 1(55 o ﬁ N|Q)
(3.9b)
Corollary 3.14.
Qu(@: 2.2 Nla) = Qufai. 6.0 (3.10)

(ocﬁq — B =B+ ) (" =) (" =) <
(B¢ —¢*) (g —1)¢¥ On-(@ 5, Nla)
a8 (" = 1) (B — @) (¢" = ¢") (aq” — ) (¢" — @) (¢" — ¢
(@B — ) (aB " —q) (B¢ — ) >N

Qn—2(‘f;a767 N|Q)
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Theorem 3.15. Let k,m, N € No, n € {0,1,2,...,N}, o, 3, € R. For 0 < ag <1 and
0 < Bq < 1, the sequence of qg-Hahn polynomials

(i) {Qn(Z ,qk,ﬁ N|g)}N,, with a > 1, is quasi-orthogonal of order k < n — 1 with
respect to the discrete weight w(x) on the interval (1,q~N) and the polynomials have
at least (n — k) real, distinct zeros in (1,q7N);

(i) {Qn(T;a, qm7N|Q) o, B >1, is quasi-orthogonal of order m < n — 1 with respect

to w(z) on (1,¢7) and the polynomials have at least (n —m) real, distinct zeros in
the interval (1,q7N);

(iii) {Qn(Z T; o qm,N|q) oy @, B > 1, is quasi-orthogonal of order k +m < n — 1 with

respect to w(z) on (1,¢~) and the polynomials have at least n — (k + m) real,
distinct zeros in (1, ™).

Proof .

(i) Fix a > 1,8 € R, such that 0 < ag < 1,0 < g < 1. From Lemma 1.4 and (3.9a),
it follows that Qn( 6 N|q) is quasi- orthogonal of order one on (1,¢7%). From

Lemma 1.6 we know that at least (n — 1) zeros of Q,(Z; 7,5, N|q) lie in the interval
(1,¢N). By iteration, we can express Q,(Z; %,ﬁ, N|q) as a linear combination of

Qn(T;a, B, N|q), Qn-1(Z;, 3,N|q), ..., Qu_i(ZT:a,8,Nl|q), and the results follow
from Lemmas 1.4 and 1.6.

(i) Fix f > 1,a € R, such that 0 < ag < 1, 0 < ¢ < 1. The quasi-orthogonality
follows in the same way as in (i), by using (5 9b).

(iii) Fix a > 1 and ﬂ > 1 such that 0 < ag < 1 and 0 < B¢ < 1. From (3.10), w
see that Qn(7; 7, o 5 N|q) can be written as a linear combination of Q. (Z; a, 3, N|q)
Qn1(T; 0, B, N|q) and Q,_2(Z; v, B, N|g) and it follows from Lemma 1.4 that the
sequence Qn( o ’g ,7;q) is quasi-orthogonal of order two on (1,¢7%). By itera-
tion, we can express Q,(7; %, qﬁm, Nlq) as a linear combination of Q,(Z;«, 3, N|q),

~ ' 4a
Qn-1(T;0, B, N1q), ..., Qu_(k+m)(T; , B, N|q), and the result follows directly from

Lemma 1.4. It follows from Lemma 1.6 that at least n—(k+m) zeros of Q,,(%; & qm Y3 4)

lie in the interval (1,7 ).
U

Theorem 3.16. Let N € No, n € {0,1,2,...,N}, o, € R, 0 < aq,B8q < 1, and let
Tnj,J €1{1,2,...,n}, denote the zeros onn(x a, B,NIq), Ynj,J € {1 2,...,n}, the zeros
of Qn(7; %,B,N|q) and z,;,j7 € {1,2,...,n}, the zeros Oan({E a, N|q) Then

(7’) ZfOé > 1; Yn,1 <l< Tn1 < Tp-1,1 < Yn,2 < Tn2 < - < Tp—1,n—-1 < Yn,n < Tn,n <
—N
qa

(ii) if B>1,1<Tp1 < 2p1 < Tp11 < Tpa < 2pa <+ < Tpin1 < Tpp < ¢ 0 <

Znn-

Proof .
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n__ _ N+1
(i) From (3.9a) we obtain the value a,, = ol (a;)éff T 1)(1(2 ng ﬁ , which is positive when
ei

we take into consideration the values of the parameters. The interlacing result, from
which we can deduce the location of y,, ,, follows from Lemma 1.8 (ii).

In order to prove that y,, ; does not lie in the interval of orthogonality, i.e., y,1 < 1,
we use the fact that

q—n’aﬁqn-i-l’l . ]., ifn=20
302 ¢;q | = 1since (1;¢)n = _
aq, q_N O, if n 7é 0

and Lemma 1.7. Consider
Qu(l;0,8,Nlg) _ (aq"=1)(aBq"—1)(¢" — ")
Qn1(1;0, 8, Nlg) (@B = 1) (B —q)
which is negative for the appropriate parameter values. We thus have
(CY - 1) (qn - qN—H)
(aBg —q)q"
ie., —a, < f,(1) <0, and the result follows from Lemma 1.7 (i).

af (¢" =" ™) (ag" = 1) (¢" = 1) ¢"

(aBg?" = 1) (@B ¢*" —q) ¢
ative. The interlacing result, from which we can deduce the location of z, ;, follows

from Lemma 1.8 (i).

fn(l) =

—Qp — fn(l) =

<0,

(ii) From (3.9b) we obtain a, = —

, which is neg-

The polynomial Q,(Z;«, 3, N|q) evaluated at Z = ¢~, can be written in terms of
a o¢1-hypergeometric function. We apply (3.5), and simplify, to obtain

Qnu(¢™;a, B, Nlg) _ a(Bg"—1)(aBq"—1) (=¢"" +4¢") ¢"
Qu-1(¢7V;a,8,N|q) (@b —q)(afg™ —1)g"
When taking into consideration the values of the parameters,
a(B-1)(¢"—¢""")q"

(aBg" —q)g™

and the result follows from Lemma 1.7 (ii).

fn(qiN) =

<0

—Qp — fn(q_N) = -

O

Remark 3.17. We cannot say anything about the location of the zeros of Qn( <. B,N|q),

since the coefficient of Q,_o(Z; a, B, N|q), in the equation
N = a(g+1)(¢" =1)(Bg" = 1) (¢" — ¢"*)
n\T; —=, 7N = n\T; &, 7N +
@nl( e B, Nlg) = Qn( B, Nlq) (@B — @) (aB™ — 1) gV
2(.n n n N+1 n n N+2
aq)”(¢" —1) (B¢" —q) (¢" — ¢ q"—q)(Bg" —1)(¢" — ¢
(00)* 6" = V(3" =) (" = ) (4"~ ) (3" ) ) o0 s(esen 5N
(aBg®™ — ¢*)" (aBg®" — q) (aBg®™ — ¢*) g
that can be obtained from (3.9a), is positive (cf. [Brezinski et al., 2004, Theorem 4]).
The same is true for the location of the zeros of Qn(T; a, q%, Nlq) and the equation can be
found in the accompanying Maple file.

Qn—l('f; «, ﬁ?N‘q)
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Theorem 3.18. Let N € No, n € {0,1,2,..., N}, o, B > 1. All the zeros Oan(iL' a 5 Nlg)
are real and distinct and if z,;,7 € {1,2,...,n}, are the zeros of Qn(7;
Zn1 < 1 and g N < Znon-

Lo 2
APREPE

Proof. Fix a > 1and 8 > 1 such that 0 < ag < 1 and 0 < B¢ < 1. We use (3.10)
with a, the coefficient of Q,_1(Z;, 3, N|q) and b, the coefficient of Q,_2(Z;a, 3, N|q).
By taking into account the values of the parameters, we see that

2B(Bq"—q) (¢ — ") (" — ") (aq" — @) (" — 1) (¢" — ¢) ¢"T"
(@B —q) (aB@" — ) (a B — ¢?)* 2N

and it follows from |Brezinski et al., 2004, Theorem 4| that z, ;,j € {1,2,...,n}, are real.

In order to determine the locatlon of 2,1 and 2z, ,, we use [Joulak, 2005, Theorem 9|.
Since

b, = —

<0,

Qn(1; 0, 8, N|q) Qn-1(1;, B, Nlq)

nln—l nn—l bn:~ n =

f ( )f 1( )+a f 1( )+ anQ(l;Oé?BaNM) e anZ(l;aaﬁaN‘Q)

_(a-1D(ag"—q)(¢"—¢""?) (" —d"")q
(04/8 q2n _ q2> (OZ,BQQn _ q3) q2N

+bn

<0,

it follows that z,; < 1. Furthermore,

fn(q_N)fn—l(q_N)+anfn—1(q_N)+bn - <0

o (B-1)(Bq"—q) (¢ qN“) (¢" — ¢V *?) ¢
(B¢ —q*) (aBg> —q*) ¢*N

and ¢~V < Znn- [

Remark 3.19. (i) When we let 5 = 0 in the definition of the q-Hahn polynomials,
we obtain the affine q-Krawtchouk polynomz'als [Kockoelk et al., 2010, Section 14.16]
KA0(%; 0, N; q), orthogonal on (1,¢7N) if 0 < aqg < 1. When we ﬁx a > 1, such
that 0 < aq < 1, the quasi-orthogonality of the polynomials KAﬁ( T; qk ,N:q),k <n,
on (1,q7%) follows directly from (3.10), with 8 =0. Ifz,,j € {1,2,...,n}, denote
the zeros of KA(%;a, N;q) and Ynj,J €1{1,2,...,n}, the zeros of f(;;‘ﬁ(a_c; o N; q),
the interlacing result in Theorem 3.16 (i) follows.

(i) Since lima_e0 Qn(T; 0, p, N|q) = KI™Z;p, N;q), [Kockock et al., 2010, Section
14.14], we obtain from (3.9b), the equation

(qN+1 - qn) (qn . 1)
pq2n+N

K (f; E,N;q) = K™ (T;p, Nig) + K" (T:p, N3 q).

q
For ¢V < p < ¢ Nt the quantum q-Krawtchouk polynomials thm( ,qk,N, q)
are quasi-orthogonal of order k < n and the interlacing result in Theorem 3.16
(ii) follows, where x,;,j € {1,2,...,n}, denote the zeros of K" (T;p, N;q) and
2 g €{1,2,...,n}, the zeros of K&™ <_, q, N,q)
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3.3.3 Bounds of the extreme zeros

The ¢-Hahn polynomials P, (z; o, B,7; q) satisfy equations of the type
F(2)Qu-i(z300", B¢, Nlg) = H(2)Qu(3 0, B, N1q) + Gi-1,5,,5(2) Q-1 (w3 0, B, Nlg),

with s34+ s € {0,1,...,2k}. Let BY , and BY , be the smallest and the largest zero

k,s1,s k,s1,s
of Gi_1.s, s,, respectively. For k = 2,3,..., the best upper bound for z, ; is B,S%m, the

: 2
zero of G_1 91,0, and the best lower bound for xz, , is B,(M)],Qk, the zero of G_1 0.2k

3.4 The little g-Jacobi polynomials

The little g-Jacobi polynomials p,(¢%; a, B|q) are orthogonal with respect to the discrete

weight w(z; «, §) = W for 0 <ag <1, Bg<1on(0,1).

3.4.1 Interlacing properties

Proposition 3.20.

aggm(fl — 1))((5561271 _) 1)ﬁn_1(x;ozq,ﬁ|q); (3.11a)

2n (. n _ 1 n_ 1
Pulis o Bl0) = il 0 Bal) — 7o s N (i Bl (3110
(ag—1)(aB g™ = 1) pu(w; ag?, Blg)
(Oé qn+l _ 1) (aﬁqn-‘rl _ 1)
Lo (¢" = 1) (Bg" = 1) (B =) x4+ ¢" (g — 1)) pur(w;2¢°, Blq)

Pn(; v, Blq) = P25 g, Blq) + (

Pn(z; 0, Blg) =

(g — 1) (a B2 — 1) (a Bgt — 1) ; (3.11c)
_— _ (aBg (" =)+ 1= B¢ (@B = 1) pu(z; 0, Balg)
pn(l',ohﬁ|q>__ (ﬁq”“—l)(aﬁq"“—l)
aBg" (Bgr —1)(¢" — 1) (ag" — 1) pos(@; 0, B’|q) |
+ (ﬁ qn+1 _ 1) (a,@q""‘l _ 1) ) (3'11d)
Pu(; 0, Balq) = pu(z; g, Blq) + %ﬁnq(:ﬁ;aq,ﬁﬂcﬂ. (3.11e)

For equations (3.11d) and (3.11e), one can also refer to [Gochhayat et al., 2016, Egs.
(9), (10)], respectively.

Theorem 3.21. Let 0 < ag < 1 and fq < 1 and denote the zeros of p,(z;a, Blq) by
0< Tn,1 < Tn,2 < - < Tnn < 17 the zeros Ofﬁn(x7QQ7ﬁ‘q) by Yn,1 < Yn,2 <--- < Ynn,
the zeros of pn(z;aq®, B]q) by Ya1 < Yoo < -++ < Y., the zeros of p,(z;«, Bqlq) by
Zn1 < Zpna < 0 < Zpp, the zeros of pu(x;a, BaPlq) by Zny < Zpa < -+ < Zp, and the
zeros of pn(x; aq, Bq|q) by tny <tns < - <tpn. Then, forie {1,2,...,n—1},

(a) Tngi < Yni < Yn—-1,i < Tpi+l < Ynit+ls

(b) Zni < Tng < Bn—14 < Zngtl < Tnjitl Zfﬁ > 0 and Tpg < Zpg < Zp—1,i < Tpit+1 <
Znit+1 Zfﬁ < O,
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(c) T < UYni < Yni < Yn1i < Zpitt < Ynit1 < Yniti,

(d) Tni < Zng < Zn—l,i < Znit1 < Znjitl Zfﬁ < O,

() Zni < Yni <tn-1i < Znit1 < Yni+1 of B <O0.

Proof. Let 0 < ag < 1 and 8¢ < 1. We note that, since 0 < ¢ < 1, ¢" —1 < 0,
aq" —1<0, Bg" —1 <0, afq”—1 <0, for all positive integers n.

The polynomials on the right-hand side of each of the equations (3.11a) and (3.11b)
belong to the same orthogonal sequence, therefore their zeros interlace and satisfy the
property (1.1). Each of these equations are thus in the form of (1.2), i.e.,

fn(w) = a(m)pn(x) + b(m)anl(x)a

with a(x) = 1. Furthermore,

(a)

(b)

()

b(x) in (3.11a) is a positive constant (w.r.t. z) and the result follows from Corollary
1.3 (a);

taking into consideration the restrictions on the parameters, b(z) in (3.11b) is a
positive constant if 5 < 0 and b(z) is negative when § > 0. The result follows from
applying Corollary 1.3 to the different situations.

The polynomials p, (z; aq?, 8|q) and p,_1(z; ag?, 8|q) belong to the same orthogonal
sequence and their zeros satisfy (1.1). (3.11c) is in the form of (1.2) and taking into
consideration the restrictions on the parameters, a(z) is a positive constant.

_ agq(q" —1)(Bg" —1) QB2 — 1) r b a" (g —
)= g 1) 0 pp — D (a g =) (A0 e ea =)

— k2 ((aﬁq2”+2—1)x+q”(aq—1)),k’GR,

represents a linear function with derivative —k?(a 3¢?™ — 1) > 0, intersecting the
r-axis at v = % < 0 for Bq < 1. b(z) is thus positive on (0,1) and from
Corollary 1.3 (a) we deduce that z,; < Y., < Yo_1; < @pit1 < Yyip for each
i €{1,2,...,n — 1}. Furthermore, by replacing o with aq in (3.11a), we obtain
Uni < Yni <Yn_1; < UYnit1 < Yt foreachie {1,2,...,n—1} and by combining
these two interlacing results with the fact that z,; < y,,; for each i € {1,2,...,n},
the required interlacing follows.

Let 5 < 0. By replacing 8 with ¢ in (3.11b), we obtain z,; < Z,; < Z,_1,; <
Zniit1 < Zpitr for each i € {1,2,...,n — 1} and equation (3.11d) is in the form of
(1.2). Under the condition that 5 < 0, the coefficient of p,(z; a, Bq|q) is a positive
constant. The coefficient of p,_1(z; a, B8¢3|q) is

)
)

that represents a linear function with positive derivative, intersecting the negative
z-axis and b(x) is thus positive on (0,1). The result follows from Corollary 1.3 (a).

af " (" —1)(aq" —
(Bgtt =1)(aBgnt!t —

b(x) = 11 (B ¢ — 1) = —k? (ﬁq% — 1) , k eR,
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(e) Assume § < 0. From (b) we know that the zeros of p,(z; «, 5|q) and p,—1(x; «, 5q|q)
interlace. By replacing a by ag, it follows that vy,;, < t,—1; < ¥Yni+1 for each
i € {1,2,---,n — 1}. Equation (3.11e) is in the form of (1.2) with a(z) = 1
and, taking into consideration the restrictions on the parameters, b(x) is a positive
constant. The result follows from Corollary 1.3 (a).

]
Corollary 3.22. For eachi € {1,2,...,n— 1},
(a) Thni < Tn-1i < Yn-1,4 < Tnitl,
(b) Tpi < Zn-1i < Tp-1; < Tpip1 f B>0 and Tp; < Tpo1; < 2n-14 < Ty if B <0,
(¢) Tni < Zni < Yni < Tnit1 < Znit1 < Ynit1 of B <O0.
Proof .

(a) We combine the interlacing of the zeros of p,(x; «, 8|q) and p,—i1(x; «, B|q) with the
results proved in Theorem 3.21 (a) to obtain the required interlacing.

(b) We combine the interlacing of the zeros of p,(z; «, 8|q) and p,_1(x; «, 5|q) with the
result of Theorem 3.21 (b).

(c) Let 8 < 0. This result follows from the interlacing proved in Theorem 3.21 (a), (b)
and (e).

O

Remark 3.23. (i) We note that our results differ from the interlacing results for the lit-
tle g-Jacobi polynomials, given in [Gochhayat et al., 2010, Section 3]. In [Gochhayal
et al., 2010, Theorem 2/, the values of x, given as the zeros of the polynomial
pu(z; @, Blq), are actually the zeros y of the polynomial p,(qY; o, B|q). The same
is true for the interlacing results in [Gochhayat et al., 2016, Theorems 4,5,6 and 7];

(i) When 3 = 0 in the definition of the little q-Jacobi polynomials, we obtain the little
q-Laguerre (or Wall) polynomials p,(x; «|q), that are orthogonal on (0,1) when 0 <
aq < 1. The interlacing results in Theorem 3.21 (a) and (c) and Corollary 12
(a) follow from (3.11a) and (3.11c) (with f = 0), where Tp;,Yn; and Yy ;i €
{1,2,...,n} are the zeros of p,(z;alq), pn(x; aqlq) and p,(z; aq?|q), respectively.

3.4.2 Quasi-orthogonality

Consider the recurrence equations (cf. (3.11a) and (3.11b))

aq" (" =1)(Bqg" —1) P
(@B — 1) (aBg? —q) """

2n (n __ 1 n_1
?cvﬂﬁqq”(g 1) <Cf éo;g” _ q;ﬁn—l(x; a,Blg).  (3.12b)

Pn (x;%,ﬂlq) = Pulz; o, Blq) + (z;a,6lq);  (3.12a)

g ( ' /8 )
Pn | T3 a7_|q
q

ﬁn(l‘; «, ﬁlCZ) -
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Corollary 3.24.

~ 6 ~ n ﬁQn_ n—l—lﬁ_ﬁ n_'_ n_1~
o (52 210) = (aian glg) - SIS EE D05 (wia

a®Bg*" 1 (¢" = 1) (Bq" —q) (ag" —q) (¢" — q) -
- 2n( 2 2)< 2n ! 21)1( 3 )pn_g(x;oz,ﬁlq). (3.13)
(@B —q*) (@B —q)(aBg®" —¢*)
Theorem 3.25. Let k,m € Ng, a, B €R. For0 < ag <1 and 0 < fq < 1, the sequence
of little q-Jacobi polynomials

(i) {pn(z; 5 Bq) }ns0, with a > 1, is quasi-orthogonal of order k < n — 1 with respect
(BG:0)x (2q)”
(4:9)«
real, distinct zeros in (0,1);

tow(zr) = on the interval (0,1) and the polynomials have at least (n — k)

(ii) {pn(z;, qﬁm|q)}n20, B > 1, is quasi-orthogonal of order m < n — 1 with respect to
w(x) on (0,1) and the polynomials have at least (n—m) real, distinct zeros in (0,1);

(111) {ﬁn(x;(%;qﬁm’q)}n207 a, B > 1, is quasi-orthogonal of order k +m < n — 1 with
respect to w(x) on (0,1) and the polynomials have at least n — (k+m) real, distinct
zeros in (0,1).

Proof .

(i) Fixa > 1,5 € R, such that 0 < ag < 1, 0 < f¢ < 1. From Lemma 1.4 and (3.12a),
it follows that p,(x; 5 Blq) is quasi-orthogonal of order one on (0,1). By iteration,
we can express p, (; il Blq) as a linear combination of p,(x; «, 5|q), pn_1(z; @, B|q),

oy Pn-k(x;a, Blq), and the result follows from Lemma 1.4. The location of the
(n— k) real, distinct zeros of p,, (x; & Blg),k € {1,2,...,n—1}, follows from Lemma
1.6.

(ii) Fix 8 > 1, € R, such that 0 < ag < 1, 0 < g < 1. The quasi-orthogonality
follows in the same way as in (i), by using (3.12b).

(iii) Fixa > 1 and 8 > 1 such that 0 < ag < 1 and 0 < 8¢ < 1. From (3.13), we see that

Pl 5, §|q) can be written as a linear combination of p,(z; a, 8|q), Pn_1(z; @, B|q)

and p,_s(x; @, 5|q), and it follows from Lemma 1.4 that the sequence p,(z; o B1g) is

q
quasi-orthogonal of order two on (0,1). By iteration, we can express p,(z; 5 q%]q)

as a linear combination of p,(x; «, Bq), Pr—1(z; o, B1q), - - ., Pu—ktm)(2; v, B]q), and
the results follow directly from Lemmas 1.4 and 1.6.

O

Theorem 3.26. Let o, 8,€ R, 0 < agq,fq < 1, and suppose x,;,j € {1,2,...,n},
denote the zeros of pn(z;a,B|q), Ynjj € {1,2,...,n}, the zeros of jﬁn(:c;%,ﬂq) and

ZngrJ € {1,2,...,n}, the zeros of p,(z;a, glq). Then
(1)) ifa>1, Y1 <0< p1 <Tp11 <Ynz2 < < Tp-1n-1 < Ynn < Tnn < 1;
(15) if 6>1,0<xp1 < 2n1 < Tpo11 < Tp2 < < Tp1n-1<Tnn <1<z

Proof .
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a(q"=1)(B¢"=1)q"
aBg?m—1)(apfq*"—q)
result, as well as the position of y,, ,, follows from Lemma 1.8 (ii).

(i) From (3.12a) we obtain the value a, = ( > 0. The interlacing

To obtain the position of ¥, ; we use Lemma 1.7 and when we consider the given
parameter values,

Pn(0; v, Blq) (aBq"—1)(aq"—1)q"

IO = G OBl ~ (ape D@ —q)
We thus have - 0
_ g \a—
_a”_fn(o)_aﬁq2”—q<0

and the result follows from Lemma 1.7 (i).

_ oB(g"=1)(ag"=1)g*"
(afg*r—1)(aBq*"—q)
result, as well as the position of z, i, follows from Lemma 1.8 (i).

(ii) From (3.12b), we obtain the value a, = < 0. The interlacing

To obtain the position of z, ,, we use Lemma 1.7, and when we consider the given
parameter values,

_ (e Ble) - a(B-1)¢*"
fol1) = hoa(GoBlg)  aBii—q 0
We thus have (5 1) .
B v/
—an—fn(l)— ozﬁq”—q >0

and it follows from Lemma 1.7 (ii) that 1 < z,,.

U

Theorem 3.27. Let o, B > 1. All the zeros of py(z; o §|q), denoted by z, ;,7 € {1,2,...,n},
are real and distinct and z,; < 0 and 1 < 2, .

Proof. Fix o > 1and 8 > 1 such that 0 < ag < 1 and 0 < S¢g < 1. We use (3.13), with
a, the coefficient of p,_1(z; a, f|q) and b, the coefficient of p,,_o(z; «, 5|q). By taking into
account the values of the parameters, we see that

_a?B(Bq" —q)(ag" —q) (¢" — 1) (¢" — @) ¢°"*"
(@B —q) (@B g™ — ) (a B — ¢2)°

and it follows from [Brezinski et al., 2004, Theorem 4] that z, ;,j € {1,2,...,n}, are real
and distinct.

In order to determine the location of 2,1 and z,,, we use [Joulak, 2005, Theorem 9].
Since

b, =

<0,

(a—1)(ag” — q) >

fn(o)fn—l(o) + anfn—l(o) + b” = (aﬁan _ q3) (aﬁqQTL _ q2) < O’
it follows that z,; < 1. Furthermore,
B far(V) o a(1) b, = VBT ) a”

(@B —q*) (aBg*™ —¢3)

and 1 < 2, 5. O
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Remark 3.28. (i) From (3.12a) we obtain

[« o agq"(g+1) (" -1 (Bg¢" - 1)
Dn (L q2’5|9) =Dn(7; @, Blq) + (aB@" — @) (aB g — 1)

X Pr—1(x; v, B]q) + bppn—2(x; @, Blq),

with

n

P (-1 (B =) (" —q) (Bq" - 1)
(@B — %)’ (a B — q) (B — ¢?)

¢ (e —q)(¢" —q) (Bg" —g)

(aBg*" — ¢*) (afg®" — ¢*)*
where —C,, is the coefficient of pn_o(x; «, B|q) in the three-term recurrence equation
of the little q-Jacobi polynomials [Kockoek et al., 2010, (14.12.4)]. Since C,, < by,
there is an interlacing between (n — 2) zeros of pn(x; (;%,B]q) and the (n — 1) zeros
of pn_1(x; v, Blq) (cf. [Joulak, 2005, Theorem 15]).

and

Cp — by =

(ii) When 3 =0 in the definition of the little q-Jacobi polynomials, we obtain the little
q-Laguerre (or Wall) polynomials p,(x; |q), that are orthogonal on (0,1) when 0 <
aq < 1. The quasi-orthogonality of {ﬁn(a:;(%m)}nzo, for k < n, when a > 1,
0 < aq <1, follows directly from (3.12a) (with = 0). The location of the zeros of
the order one quasi-orthogonal polynomial p,(x; %\q) is given in Theorem 3.26 (i),
where x,, ;,7 € {1,2,...,n}, denote the zeros of p,(x; alq) and y, 5,7 € {1,2,...,n},
the zeros of pn(z; ¢q).

3.4.3 Bounds of the extreme zeros
For the little g-Jacobi polynomials p,(x; v, |q), we have equations of type
f(x)ﬁnfk(xy aq81 ) 6q82 |q) = H(I‘)ﬁn(ﬂl, «, BIQ> + Gk71,51,32 (x)ﬁnfl(xv «, ﬁ‘Q)u

with s;+s5 € {0,1,...,2k}. Let B’ and B

k,s1,82 k,s1,52
of Gi_14, s, respectively. For k = 2, we obtain

a g’z (¢" = q) (Bq" — q) (aB" = 1) (aB ¢*" — q) Pu—a(; 00", Blq)
= as(x)pn(w; , Blg) + ¢*"(ag® — 1)(ag" — 1)(aBq" — 1)G1a0(x)pn1(2; @, Blg),
with
as(z) = (af " q)Qq(aqw "= B —q) (aBP" = 1) Fx+ (¢ +1) (ag® = 1) ¢")
+¢*" (ag; Q)3>
and G1.40(z) = Az + B so that

g _ B _ (a@®—1)(ag—1)¢g" ! |
nl = Do40 A (af@Pr '+ 1) (ag®+1) —ag" T (B+1)(g+ 1)

For k = 3, the best upper bound for z,,; is

Tp1 < B:,()60 = (—b— Vb2 —4ac> /(2a),

be the smallest and the largest zero
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with
a=¢ (¢ +ad®+1) (¢ +1) —agd" " (ag®+1) (B+1) (¢ +q+1)
< (B +1) +ag™ ™ (®B° +q(Ba+ ¢ +q+1) (B +Ba+B+q)a+h),
b=—¢""(a¢ —1) (ag" = 1) (af (a®+1) " —a (@ +1) (B+1) " +ag®+1)
x(¢+1), c=¢"(ad —1) (ag—1)(aqg' —1) (ag® ~1).

(

The best upper bounds for z,,; are the smallest zeros Bkgk’o, k > 4. However, we remark
that we don’t obtain good bounds for the largest zeros from our mixed recurrence relations.

n,q 10, 0.4 5, 0.4 15, 0.9 | 20, 0.98
a, B 0.2, 0.3 21,24 05,34 0.1,-5
zero x,; | 0.000229210625 | 0.00273372029 | 0.0367 | 0.288
bound BYy, | 0.00022921089 | 0.00273372034 = 0.0374 | 0.318
bound B}, | 0.0002307 0.0027371 | 0.046 | 0.4049

Table 3.1: Bounds for the extreme zeros of the little g-Jacobi polynomials p,(z; «, 5|q)

Remark 3.29. In [Gupta and Muldoon, 2007, Eq. (4.2) and Eq. (4.3)], the bounds of
the smallest zero Z,,1 of the little g-Jacobi polynomials p,((1 —q)z; o, B|q) (that we denote
here by GMyo and GMys for [Gupta and Muldoon, 2007, Eq. (4.2)] and [Gupta and
Muldoon, 2007, Eq. (4.3)], respectively) were given. As shown in Table 3.2, the upper
bound %qBS&O is more accurate than the upper bounds obtained in [Gupta and Muldoon,
2007, Eq. (4.2) and Eq. (4.3)].

n.q 10, 0.4 5,04 15,0.9 | 20, 0.98

a, B 0.2,0.3 2.1, 2.4 0.5,-3.4| 0.1, -5

zero ,1/(1—q) | 0.0003820177 | 0.004556200485 = 0.367 | 14.3998
bound L B{{ | 0.00038201816 | 0.004556200569 | 0.374 | 15.9198
bound GM, 5 0.0004186 0.0045692 0.4698 | 21.382
bound GMys | 0.000527796 0.004898 0.709 | 24.2655

Table 3.2: Bounds for the extreme zeros of the little g-Jacobi polynomials p,((1 —
a)z; o, Blq)

3.5 The g-Meixner polynomials

Inz
“Ing’
and as z increases on (0, 00), T will increase on (1,00). The variable z in our equations

thus represents 7 in the definition of the polynomials and for 0 < 8¢ < 1 and v > 0, the
polynomial M, (z;3,7;q) is orthogonal on (1, 00).

We note that in the definition of the ¢-Meixner polynomials, we set 7 = ¢~*, i.e., x =
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3.5.1 Interlacing properties

Proposition 3.30.

Mo (x; 8,7¢;9) = Mn(; 8,7 0) + v ¢ " (¢" = 1) (Bg" — 1) M1 (23 8,7 ¢); (3.14a)
Ny (22 ot q) = — 019" = 1) = a7 = 1) ¢"Mn(23 5, 7:.9)

g+ q" )
N Y (Bg" = 1) (¢" — 1) (v Baq+ ¢z +vq + 1) My (38, 7; q); (3.14D)
9+ 4"
- (YBq+q"x) My(x; Bq,viq) B (" +7)(¢"—1) ~
M, (z;8,7v;,q) = - M, _1(z; Bq,7v;q);
(3 8:7:4) q*(vBq+x) @2y Bq+ ) 123 80,7:4)
(3.14c)
M, (x; B,7¢; q) = My(x; Bq,viq) — v > (¢ — 1) M1 (x5 B, 7; 9).- (3.14d)

Theorem 3.31. Let 0 < 8¢ < 1 and v > 0 and denote the zeros of M,(z;3,7;q) by
1 <xpy <Tpo <+ < Ty, <00, the zeros of M, (z; Bq,v:q) by Yni < Yn2 < < Ynn,
the zeros of M,(z; ,7vq¢; q) by Zna < Zna < -+ < Znn and the zeros of M, (z;8,7v¢% q) by
Zpy < Zng < -+- < Zpn. Then, forie{1,2,...,n—1},

(a) Zng < Tpi < Tp-1i < Znitl < Tnyitl,
(b) Z,; < Tni < Tp1i < Lpiv1 < Tpitl,
(c) Zng < Tpg < Yng < Yn—14 < Znitl < Tl < Ynitl-

Proof. Let 0 < B¢ < 1 and v > 0. Since 0 < ¢ < 1, it follows that ¢" — 1 < 0 and
Bq" —1 < 0.

The polynomials on the right-hand side of each of the equations (3.14a) - (3.14d)
belong to the same orthogonal sequence, therefore their zeros interlace and satisfy the
property (1.1). Each of these equations thus is in the form of (1.2) with

(a) a(z) = 1and b(x) > 0 in (3.14a) and the required interlacing follows from Corollary
1.3 (a);

(b) a(xz) > 0in (3.14b) and, taking in consideration the restrictions on the parameters,

v (Bq" —1)(¢" = 1)
" (vq +q")

b(r) = ("r+yBg+rg+1)

is a linear function with positive derivative and is positive on (1, c0). The interlacing
follows from Corollary 1.3 (a);

(c) Taking into consideration the restrictions on the parameters, the coefficients of both
polynomials on the right-hand side of (3.14c) are positive on (1, 00), and following
Corollary 1.3 (a), Tni < Yni < Yn—1,4 < Tnit1 < Yn,it1 for each i € {1,2,...,n—1}.
Furthermore, the coefficients of both polynomials on the right-hand side of (3.14d)
are positive constants and applying Corollary 1.3 (a) for a second time, we obtain
Zni < Yni < Yn—14 < Znjit1 < Ynit+1 for each i € {1,2,...,n — 1}. It is known, from
(a), that z,; < x,; for each i € {1,2,...,n}, and the required combined interlacing
follows.
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O
Corollary 3.32. Forie€ {1,2,...,n— 1},
(a) Zni < Zn-14 < Tp-14 < Yn—14 < Zn,i+1,
(b) i < Zn—1i < Tp-1,; < Znit1,
(¢) Zni < Tpi < Tn-1i < Yn—1,i < Znyit1 < Tpjigd-
Proof .

(a) The result follows from Theorem 3.31 (c) and the interlacing of the zeros of M, (z; 8,7¢;9)
and Mnfl(x; 67 74q; q)

(b) The result follows from Theorem 3.31 (b) and the interlacing of the zeros of M, (z; 8,74 q)
and M,y (2; 8,74% q)-

(¢c) We combine the interlacing of the zeros of M, (z; 3,7;q) and M,_(x; 5,7;¢) with
the result of Theorem 3.31 (c) to obtain the required interlacing.

O

Remark 3.33. (i) In general, the zeros of M,(z;3,7v:q) and M,_1(x:8,7¢;q) do not
interlace. These polynomials satisfy

2n—1 1
- " Mo (2:8,739) | b(@) Moo (235,75 q)
1@, 74:9) Yq+qn q(vq+qm)

with b(x) = ¢*"x+7v q (Bq™ + ¢ — 1), which represents a linear function that changes
sign on (1,00) for 0 < Bq < 1 and v > 0. For exzample, when n = 2,8 =

L,y = 5,q = 0.1, the zeros of My(x;3,7;q) are {42.15,5413.85} and the zero of
My—1(7; 8,7vq; ) is {5.50};

(i) When 8 = 0 in the definition of the q-Meizner polynomials, we obtain the q-Charlier
polynomials Cy,(z;7;q). The interlacing results in Theorem 3.31 (a) and (b) and
Corollary 3.32 (b) follow from (3.14a) and (3.14b) (with B = 0), where Ty ;, Yn.;
and Z,;,1 € {1,2,...,n}, are the zeros of Co(:7:9),Co(x;7q: ¢) and Cr(x:7v¢%; q),
respectively.

3.5.2 Quasi-orthogonality

The g-Meixner polynomials Mn(i; B,7;q) with = ¢~*, are orthogonal with respect to

xT
(Be:9)7"q\?

the discrete weight , when 0 < g < 1,v>0, z € (1,00), and satisfy

(4,—B7%:9) =
- (_p ) "z +67) ~ - By +7) (" —1)q
My Z5—=,7vq | = 75— Mu(Z; 8,7, q) — M, (z; 8,7; q).
(m %) = G o (Z; 8,7 9) B+ o) (Z;8,7:9)
(ﬁq;q)wzq@)

The polynomial Mn(jz; qﬁk, v;q), k < n, is not quasi-orthogonal with respect to (g

on (1, 00), since it cannot be written as a linear combination of the polynomials M, (z; 8,7;q),
M, 1(Z;8,7:9), -, My_x(Z; B,7;q). Since v > 0, we also have % > 0 or vq > 0 and the

sequences M, (Z; 3, g; q) or M,(Z; 3,7q: q), are orthogonal on (1,00) for 0 < B¢ < 1. We
therefore do not consider g-shifts of .
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3.5.3 Bounds of the extreme zeros

The ¢-Meixner polynomials M, (Z; 8,7; q) satisfy recurrence relations of type

f(@) My (w; 8,747 q) = H(@) My (2; 8,7 @)+ G5 (2) Mo 1 (258,73 0), 5 € {0,1,..., 2k}
Let B,(QIS) and B,(fs) be the smallest and the largest zero of Gy_1s(z), respectively. The

bounds z,; < B,E}Q)k and z,, > B,(fg are more accurate for £k = 2,3,.... We have

B = (—b+ V2 —4c)/2 with
b=¢" " (¢"VB—v@+d"v—q" —7) (g+1), 6=q‘2"+3(ﬁ272+572—57
+92 —7+1> —q "B =y (@ g+ 1) (@B e ")

The expression for the bound ng is huge and will not be displayed here. However, we
have in Table 3.3 some values of the bounds for some random parameters.

n, ¢, B, 7 | 5,05, 0.15,3 10,09, 0.1, 0.5 | 20, 0.98, 0.05, 25
2610 @1 4.26295 1.048 12.061
bound B{Y |  4.263796 1.12 12.698
bound B} 4.299 1.27 14.08
bound B{y | 2415.251 10.78 100.04
bound By | 2415.757878 11.28 109.65
2610 T, | 2415.757968 11.35 114.32

Table 3.3: Bounds for the extreme zeros of the g-Meixner polynomials M, (Z; 5,7 q)

3.6 The ¢g-Krawtchouk polynomials

The ¢-Krawtchouk polynomials Kn(f;p, N;q) with £ = ¢ and n € {0,1, ..., N},
—N. Y
are orthogonal for p > 0 with respect to the discrete weight w(z) = (g (’ q)z)( P) on
q;49)x
(Lg™).

3.6.1 Interlacing properties

Proposition 3.34.

_ . pg" (" —q") (¢" - 1)
K, (z;p,N;q) = K,(x;pq, N;q) +
( ) ( ) v (1 + pg®") (q + pg*™)

Ro(wip Nig) = (p?" + 1) (pg"** + 1) Ko (736, N3 q)
n\4,y M ) (pqn + 1) (pqn+N+1 + ]_)

p(g" =1) (¢"" = ¢") (@" (" + D) a + " (pg"* + 1)) Ka (2504, N3 q)
¢ (pg" + 1) (pg" N+ + 1) (pg*" ' + 1)

K, 1(z;pq, N;q);  (3.15a)

+

(3.15b)
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Theorem 3.35. Let p > 0, n € {0,1,...,N} and denote the zeros of f(n(x;p, N;q)
byl < @1 < Tpo < -+ < Tpyp < ¢, the zeros of f(n(:c;pq, N:q) by Yn1 < Yn2 <
o < Ypn and the zeros of Kn(x;qu,N; q) by o1 < Yno <--- <Y, Then, for each
ie{1,2,...,n—1},

(a) Thng < Yni < Yn—1,i < Tpitl < Ynitls
(0) Tp; < Yni <Yni1; < Tniv1 < Yoig1-

Proof. Let p >0, n € {0,1,...,N}. We note that ¢" — 1 < 0 and since ¢ < ¢" for
m > n, ¢Vt — ¢® < 0. Since the polynomials on the right-hand side of both equations
(3.15a) and (3.15b) belong to the same orthogonal sequences, their zeros interlace and
both these equations are in the form of (1.2). The required interlacing follows from
Corollary 1.3 (a), since

(a) both a(x) and b(x) in (3.15a) are positive constants;

(b) taking into account the restrictions on the parameters, it is clear that a(z) is a
positive constant and b(xz) > 0 represents a linear function that does not change
sign on (1,¢~").

O
Corollary 3.36. Fori e {1,2,...,n— 1},
(a) Tni < Tpo1; < Yn—1,i < Tnjit1,
() Tri < Yni < Yni<Yno1i < Tpit1 < Ynit1 < Ynit1-
Proof .

(a) The result follows directly from Theorem 3.35 (a) and the interlacing of the zeros
of Kn(xapv N; q) and Kn71<xﬂp7 N7 Q)

(b) When we replace p by pg in (3.15a), we obtain, using the same argument as in the
proof of Theorem 3.35 (a), that y,; < Y. < Yno_1; < Ynit1 < Ynit1, for each
i€{l1,2,...,n—1}. We combine this with the interlacing results in Theorem 3.35
(a) and (b), which leads to the required result.

O

3.6.2 Quasi-orthogonality
(@™:0)o(FF)°
(¢ )z

The polynomials f(n(f, q%, N, q) are orthogonal for p > 0 with respect to
on (1,¢7%). By iterating the equation

p(qn o 1) (qn _ qN—l-l) qn—i-l
(¢®>"p+q) (®"p+ ¢*) g™

_p _ _
K(aaNm):m@mNm%— Kp1(2;p, N q),
we can write K, (7; qﬂk, N’; q) as a linear combination of the polynomials K,,_;(Z; p, N; q), j €
{0,1,...,k}, and the polynomials K, (Z; q%, N;q) are also quasi-orthogonal for p > 0 on
(1,¢~) with respect to w(x).



3.7 The g-Laguerre polynomials 61

3.6.3 Bounds of the extreme zeros
The polynomials K, (z;p, N; q) verify equations of type
(@) Ko k(204" N3 q) = H () Ko(2;, N; @) + Gror,6(2) Kot (230, N3 ),
with s € {0,1,...,2k}. Let B}E;B: B,(fs) be the smallest and the largest zeros of Gj_1 s,
respectively. For k = 3 and s = 6, we derive the upper bound Bé% _ _bubybizdme of

2a1
Tn,a with
ar = ¢*" (p"" +q) (¢" +pd*") (& +pa"") (04°" + ), b1 =
% (q2np+q )qn—I—N—l—l ((q2np_
= ( 4np2 +q ) 2n+3 (qQNp2
% (q Yo+ 1) _p(p2q2+2N

—(¢"+¢*"p) (g+1)
@) ("p—1)+p(@+1) (" +1)¢"),

p + 1) +p (q2np_ q3) (qN+1 . 1) (qu_ 1) el
p<qN+2 FN N 1) (qN+2 F P4 q+ 1) +q2)q4+4n7

and for s = 0 the lower bound Bé?g = ( by + /b3 — 4a202> (2a3) of z,,,, with

(p2q2N+6 qu+3 + 1) (q4np2 4 1) q2N+3

+p(q p—l) (qN+1+1) (qu-‘r?)_l) qn+2N+3 (q2+q_|_1)

- (1 +p2q2N+6 q <qN+2 +q2 +q+ 1) (qN-‘rQ +qN+1 +qN + 1) p) pq?ﬂr‘r?N-‘rS7

b — ( N+2 ) ( N+4 ) ((anp_ 1) (qu+3 _ 1) +p(q2+ 1) (qN+1 _|_ 1) qn)
X (q+1) "™ =" (pd" " +1) (" T+ 1) (pg" T +1) (pgV T +1).

As shown in Table 3.4 for k = 4, the accurate bounds for z,,; are the smallest zeros B,(:%k

of G_12r and the accurate bounds for xz,,, are the largest zeros B,(fg of Gi_10.

n, p, N, q | 10,7,15,0.9 | 5,0.5, 10, 0.98 | 20, 1, 20, 0.85
2610 @y 1.022 1.048 1.140878
bound B} 1.084 1.051 1.1410586
bound B} 1.1996 1.06 1.14539
bound B, 4.069 1.18 1.56
bound BY) | 4.4699 1.204 1.91
ZeTO T p 4.685 1.218 25.8

Table 3.4: Bounds for the extreme zeros of the ¢-Krawtchouk polynomials f(n(x; p,N;q)

3.7 The g-Laguerre polynomials

The ¢-Laguerre polynomials L4 (x; q) are orthogonal for « > —1 on (0, 00) with respect
to the weight function w(z) = ﬁ In [Moak, 1981], relations between different
sequences of g-Laguerre polynomials are provided and interlacing results between the
zeros of different sequences of these polynomials are given in [Jordaan and Tookos, 2010],

[Moak, 1981].
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3.7.1 Interlacing properties
Proposition 3.37.
LO(z;q) = LD (2:q) — ¢ 2" (¢" — 1) L\ (@ q) (cf. [Moak, 1951, Eq. (4.12)]);

(3.16a)
E @ q) = (" = 1) q"LY (23) Lt -t ) (g7 - 1) LYt (@ q)
n \L;4) = gntotl — 1 gnroti(gntatl — 1) ’
(3.16b)

Theorem 3.38. Let o > —1. We denote the zeros of f/gf‘)(x; q) by 0 < 2p1 < 2p2 <
© < Tppy < 00, the zeros of E%O‘H)(a:;q) bY Yn1 < Ynz < -+ < Ynn and the zeros of
[:%aﬁ)(x;q) by Yo1 <Yuo <---<Y,,. Then, forie {1,2,...,n—1},

(a) Tni < Yni < Yn-1i < Tnit1 < Ynit1 (cf- [Moak, 1981, Theorem 3]),
(b) Tni < Yni<Yn1i<Zniv1 < Ynit1-
Proof. Let a > —1. We note that ¢" — 1 < 0 and ¢"** — 1 < 0.

(a) Since Z?%O‘H)(:E;q) and Eﬁfj”(a:; q) belong to the same orthogonal sequence, the
interlacing property (1.1) is satisfied and (3.16a) is in the form of (1.2). Both a(x)
and b(x) are positive constants and the result follows from Corollary 1.3 (a).

(b) The polynomials L™ (2;¢) and L ¥ (z;¢) belong to the same orthogonal se-
quence, which implies (1.1) is satisfied and equation (3.16b) is in the form of (1.2).
For the given values of the parameters, a(x) is a positive constant and

_ " —1 n+a+1 a+1
b(a:) - qn+a+1(qn+a+1 _ 1) (q rT—q + 1) >0

on (0,00) and the interlacing follows from Corollary 1.3 (a).

Corollary 3.39. Fori e {1,2,...,n— 1},
(a) Tni < Tpn-1; < Yn-1i < Yn-1i < Tnit1,
(0) Tpi < Uni < Yni <Yn_1i < Znit1 < Ynit1 < Yoit1-
Proof .
(a) See [Jordaan and Tookos, 2010, Theorem 5.1].
(b) When we replace a by o+ 1 in (3.16a), we obtain, using the same argument as in
the proof of Theorem 3.38 (a), that y,; < Y,; < Y1, < Yni+1 < Yni+1, for each

i€{l,2,...,n—1}. We combine this with the results in Theorem 3.38 (a) and (b)
to obtain the result.

0

Remark 3.40. In [Jordaan and Tockos, 2010], the result in Corollary (3.39) (a) is ex-
tended to also include a continuous shift of the parameter . Furthermore, examples are
provided to show that, in general, interlacing breaks down between the zeros of: Lﬁf‘) (x;q)

and L (2:q), LY (x1q) and LS (2;q) and LV (259) and LYY, (21 q).
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3.7.2 Quasi-orthogonality
Consider the equation (cf. [Moalk, 1981, Eq. (4.12)] and (3.16a)

. - "—1)q -
g2nta

Theorem 3.41. Let k € Ny and a € R. For —1 < a < 0 and k € {1,2,...,n — 1},
the sequence of q-Laguerre polynomials {ES;“’“) (x;q) }n>0 1s quasi-orthogonal of order k
on the interval (0, 00) with respect to w(x) and the polynomials have at least (n — k) real,
distinct zeros in (0, 00).

Proof. Fix —1 < a < 0. From Lemma 1.4 and (3.17) it follows that [Zﬁf’hl)(aj; q) is quasi-
orthogonal of order one on (0,00). By iteration, we can express L™ (x;q) as a linear
combination of L (x;q), sza_)l(x; q),- .- ,Lgi)k(x; q), and the result follows from Lemma

1.4. The location of the (n — k) real, distinct zeros of L™ (2;9),k € {1,2,...,n— 1},
follows from Lemma 1.6. O

Theorem 3.42. Let —1 < o < 0 and denote the zeros off/,(f‘) (x;q) by, ,j € {1,2,...,n},
and the zeros of [Z%ail)(x; q) by yn; g €{1,2,...,n}. Then

Yn,1 <0< Tn,1 < Tn—-1,1 < Yn,2 < Tn,2 << Tn—1n—1 < Ynn < Tnn-
Proof. From (3.17), we obtain the value a, = % > 0. The interlacing result, as
well as the position of y,, ,, follows from Lemma 1.8 (ii).

To obtain the position of y, 1, we use Lemma 1.7, and when we consider the given
parameter values,

<qn+a _ 1) q
fn(()) = W < 0.
We thus have ( )
¢ —1)q
—an, — fn(0) = e 0
and since —a, < f,(0) < 0, the result follows from Lemma 1.7 (i). O

3.7.3 Bounds of the extreme zeros

The g-Laguerre polynomials ZSF) (x; q) are solution of equations of type
F@) LD (w5 q) = H(@) L (2:9) + G (@) L (w5), s €40,1,..., 2k} (3.18)

Let B,SS), B,(fs) be the smallest and the largest zeros of G_; s, respectively. For k = 3 and

s = 0, we derive the lower bound Bé?g of x,, given by

1 aTn n o . n n 2
fcn,n>B§,23=QCJQW(q(qH)((12+1—<1+ —q)+((1+Q)2q2(qq — ¢ +q" 1)

1/2
— 4" (P H 1+ ) +4 (" + 1) " (L +q+ ) — 44 (1+q+q2)) )
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and for s = 6 the upper bound B?E’lﬁ) of x,, 1 given by

b+ Vb% — 4dac

Tn,1 < B?(),lﬁ) = — %0 ,

where

a = ((q6+2a +qa+3+ 1) q2n o (q2 +q+ 1) (qnqaq3+qn _C]))QQOH_S,
b — (qa+n+3 _ q2 _|_qn o 1) qOH-l (q+ 1) (qa+2 _ 1) (qa+4 - 1) ’
c = (qa+2_1) (qa+4_1> (qa+5_1) (qa+l—1).

As shown in Table 3.5 for k = 4, the sharpest bounds for z,,; are the smallest zeros B,(;;k

of G_12r and the sharpest bounds of z,,, are the largest zeros B,g()) of G_1p.

n, a, q 10, —0.9, 0.8 20, 65, 0.95 40, —0.95, 0.9

zero x,; | 0.00524429273450741 11.31 | 0.0005479977042140575
bound BYY | 0.00524429273450819 | 11.54 | 0.0005479977042140596

bound B} 0.0052442928 12.46 0.0005479977053

bound B 110.1179 461.13 9496.159

bound B} 111.79 498.71 10012.19
2610 Ty 111.83 509.576 10086.19

Table 3.5: Bounds for the extreme zeros of the ¢-Laguerre polynomials E%a)(:v; q)

Remark 3.43. Gupta and Muldoon [2007] considered the q-Laguerre polynomials

_ nta+l

L (1= q)a;q) = 101 4 —q (1—q)z |, a>-1, z€(0,00).

As shown in Table 3.0, our upper bounds for the smallest zero x,1/(1 — q) of Lgf‘)((l —
q)x;q) are sharper than the bounds given in [Gupta and Muldoon, 2007, Eq. (4.8) and
(4.9)] (that we denote here by GMyg and GMyg, respectively, for the bound [Gupta and
Muldoon, 2007, Eq. (4.8)] and [Gupta and Muldoon, 2007, (4.9)]). Moreover, in Gupta
and Muldoon [2007] lower bounds for the largest zeros &, , were not given whereas we
obtain significant lower bounds for the largest zeros x,,/(1 — q).
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n, a, q 10, —0.9, 0.8 | 20, 65, 0.95 40, —0.95, 0.9

zero i,y | 0.026221463672537 | 226.22 | 0.005479977042140575
bound - B{{ | 0.02622146367254 230.84 | 0.005479977042140596
bound {L-B{\} | 0.0262214643551 249.19 0.005479977053
bound G M, 0.0262386 317.63 0.005481029
bound GM, s 0.02718 431.105 0.0056003
bound 1B} 550.5895 9222.6 94961.59
bound - B{} 558.955 9974.2 100121.92

2610 Ty 559.15 10191.51 10086.19

Table 3.6: Bounds for the extreme zeros of the g-Laguerre polynomials Eﬁf”)((l —q)x;q)

3.8 The alternative g-Charlier or ¢-Bessel polynomials

3.8.1 Interlacing properties

Proposition 3.44.

ag’"(¢" —1)
q+ag)(1+ag”
(g”" + D) gz 0q%q) — aq"(¢" = 1) ((@g®"" + 1)z +¢") fns(2; 0q%; )

aq+1 (a@® 1+ 1) (g + 1)

Un (5 05 q) = Gn(; g q) — ( )ﬂn_l(ﬂc;aq; q); (3.19a)

Un(z;0,q) =

(3.19b)

Theorem 3.45. Let o > 0. We denote the zeros of Gn(x;0;q9) by 0 < xp1 < Tpo < -+ <
Tpp < 1, the zeros of Gn(z;aq;q) by 2p1 < 2na < -+ < 2, and the zeros of ¥, (x; aq?; q)
by Zny < Zpo < -+ < Zyn. Then, forie {1,2,...,n— 1},

(a) Tni < Zng < Zn—14 < Tnitl < Znitl;
(b) Tni < i < Zn—1i < Tnjit1 < Lnitl-

Proof. Let « > 0. The polynomials on the right-hand side of each of the equations
(3.19a) and (3.19b) belong to the same orthogonal sequence and their zeros satisfy (1.1),
therefore these equations are in the form of (1.2). Taking into consideration the values of
the parameters,

(a) both a(z) and b(z) in (3.19a) are positive constants and the result follows from
Corollary 1.3 (a).

(b) a(z) in (3.19b) is a positive constant and b(x) represents a linear function that does
not change sign on (0, 1) and the interlacing follows from Corollary 1.3 (a).

O
Corollary 3.46. Forie€ {1,2,...,n— 1},
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(a) Tni < Tnet1i < Zn1i < Zp-1,i < Tpitl,
(b) Tni < Zni < Zni < Zp—1i < Tpig1 < Znjitl < it
Proof .

(a) The result follows from Theorem 3.45 (a) and (b) and the interlacing of the zeros
of ?jn(zr, Q; Q) and gn—l(x; a; Q)

(b) When we replace a by g in (3.19a), we deduce that z,; < Z,,; < Z,_1; < zni+1 <
Zp,i+1 and we combine this with the interlacing results in Theorem 3.45 (a) and (b)
to obtain the required result.

3.8.2 Quasi-orthogonality

The polynomials 3, (¢"; «; ¢) are orthogonal for a > 0 with respect to w(z) =

on (0,00). By iterating the equation

a?™ (g = 1) §n-1(T; @3 q)
(g™ + q) (ag®™ + ¢?)

(07 S
E;q) = Un(T; 05 q) —

Un (T

)

where T = ¢* € (0, 1), we can write 7, (Z; ik q) as a linear combination of the polynomials
Un—j(Z;0;9),7 € {0,1,...,k}, and the polynomials g, (z; nd q) are also quasi-orthogonal
for a > 0 on (0,1) with respect to w(x).

3.8.3 Bounds of the extreme zeros

The polynomials g, (x; «; q) are solutions of recurrence equations of type
F(@)Gn—k(z; ¢ q) = H(2)Gn(z; 0 q) + Gro1,5(2) G (2505 q), s € {0,1,...,2k}.
Let B,(cls) be the smallest zero of G_ ;. For k = 3, the best upper bound for z,,; is
Tp1 < Bé}g = (—b — m> /(2a),
with

a:q4n+3a2_q3+n (q2na_1) (q2+q+1)a+q2n+3 (q3a+q2a+aq_1)a+q3’
b=qg"! (—q”+2a +¢*"a—aqt — 1) (g+1), c= ¢r.

The best upper bounds for x, ; are the zeros B,S%k, as shown for k£ = 4 in Table 3.7.

3.9 The Al-Salam-Carlitz I polynomials

The Al-Salam-Carlitz I polynomials U (x;q) are orthogonal for « < 0 on («, 1) with

respect to the weight function w(z) = (¢, £; q)oo-
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n, a, q 5, 5,045 | 20, 50, 0.9 | 50, 5, 0.95
7610 ,1 | 0.03536656765 | 0.0079156 |  0.0314
bound B{Y | 0.03536656789 | 0.007974 | 0.0323
bound BY) | 0.0353685 0.0084 0.0349

Table 3.7: Bounds for the extreme zeros of the alternative g-Charlier y,(x; «; q)

3.9.1 Interlacing properties
Proposition 3.47.

U (25q) = UL (239) + alq" — D)UY (w3 q). (3.20)

Theorem 3.48. Let a < 0 and denote the zeros of UT(LO‘)(x; @ bya <z <xpo<---<
Ty < 1 and the zeros of U,gaq)(:v; q) by a¢ < Yn1 < Yna < -+ < Ynn < 1. Then, for
1€ {1,2, o, n = 1}, Tng < Ynji < Yn—1,i < Tpitl < Ynstl-

Proof. Let o < 0. Since U (2;q) and U?(x:¢) belong to the same orthogonal
sequence, the interlacing property (1.1) is satisfied and (3.21) is in the form of (1.2).
Taking into consideration the values of the parameters, a(z) > 0 and b(z) > 0 are
constants on («, 1) and the result follows from Corollary 1.3 (a). O

Corollary 3.49. Fori e {1,2,....n— 1}, &p; < Tpn_1; < Yn-14 < Tni+1-

Proof. The result follows from Theorem 3.48 and the interlacing of the zeros of A (x;q)
and U, (z; q). O

Tn general, the zeros of U\ (z; ¢) do not interlace with the zeros of U\*?”(z; q) or with
the zeros of (?éoi%)(x;q). For example, when n = 2, &« = —16 and ¢ = 0.9, the zeros of
U (x:q) are {—15.77, —12.78}, the zeros of Uqgaq%(z;q) are {—12.64, —10.08} and the
zero of U,(iqf)(x; q) is {—11.96}.

3.9.2 Quasi-orthogonality

) "

~ (
The polynomials U, (x;q), k < n, are orthogonal with respect to w(z) = (¢7, *—*; ¢)x
on the interval ((%, 1) and we will prove that they are quasi-orthogonal with respect to
w(x) on (a,1). Using the equation

(@) ~ (o P ~ (o0
Un® (z;q) = U (259) + aq ' (¢" — DO, (23 9), (3.21)
we deduce that

(¢"=Dg+1)
q2

o (¢" = 1) (¢" — q)

/i 0%, (x5 q).

(3.22)

0™ (21 q) = U (239) + = U (25.9) +

Theorem 3.50. Let k € Ny and o < 0. The sequence of Al-Salam-Carlitz I polynomials

~ (%) , . .
{U." (x;9) Ynso is quasi-orthogonal with respect to w(z) on (a,1) and the polynomials
have at least (n — k) real, distinct zeros in («, 1).
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Proof. From Lemma 1.4 and (3.21) it follows that U,(f)(x; q) is quasi-orthogonal of order

one on («, 1). By iteration, we can express U, " (x; q) as a linear combination of UL (x;q),
UT(loi)l (7 q), --.,UT(LOL),C(IE; q), and the result follows from Lemma 1.4. The location of the

(n — k) real, distinct zeros of U,iqik)(m; q),k € {1,2,...,n — 1}, follows from Lemma 1.6.
[

Remark 3.51. We can also obtain (3.21) from the generating function [Kockoek et al.,
2010, Eq. (14.24.10)] of the Al-Salam-Carlitz I polynomials

(t,atiq), _ i W (39)

(Tt q)e 2= (GDn " (8.23)
from which it follows that
(t, 585 @)oo _ i Ugm(”f?qhn ke{l,2..} (3.24)
(@t q)e = (G@n R '
From the relation )
a;4)
(C(an;qQ)oo = (@0

we obtain, when a = ;ikt and n = k,

—t;q) =|—=tq) (ot;q¢) -
q* - q* .

By using (3.23), (3.24) becomes

o, > UT(LO‘)(:L';q) - Urgﬁ)(iﬂ;Q) n
(W)éﬁmt "2 Ty, ke

n=0

FEzxpanding (%t; q)k and equating powers of t yields U,L(‘Tk>(:1:; q) as a linear combination

of Ur(fi)j(x;q), j €{0,1,...,k}. In particular, for k =1 and k = 2, we get (3.21) and
(3.22), respectively.

Theorem 3.52. Let a < 0 and denote the zeros of U,(la)(q:;q) by xnj,7 € {1,2,...,n},
and the zeros of ﬁ,gg)(x;q) by YnjrJ € {1,2,...,n}. Then

(i) &< n1 < Tt < Tp1,1 < Yn2 <0 < Tt < Ynn < Ty < 1 and, addition-
ally, if a < q:f—il, then y,1 < a < Tp1;

qn+1

(ii) (n —2) zeros of U,(L?)(x; q) interlace with the n zeros of U (3q) if o < 5

Proof .
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(i) From (3.21) we obtain the value a, = w > 0. The interlacing result, as well

as the position of y,, , follows from Lemma 1.8 (ii). The position of y,; cannot be
determined, since

() .
fala) = ~?04) () =—¢"' <0
n—l(a; q)
and the sign of
a(qg" —1 e a(l —q") +q"
~ fule) =L g o - 2D

q q

n

q

varies as the parameters vary within the allowed regions. However, if a < g

then —a, < f,(o) <0 and from Lemma 1.7(i), it follows that y,, 1 < a.
(ii) The coefficient of ﬁﬁg(m; q) in (3.22) is

(¢" = 1)(¢" — q) &
q4

b, =

From the three-term recurrence equation of the Al-Salam-Carlitz I polynomials
[Koekoek et al., 2010, Eq. (14.24.4)]

"7 (o qn Oé—l—l (o aqn qn_q~a
cmmw:@——L—Qauw@——i——lum@

q ¢
we obtain C,, = % and since
n __ n _ n+l _
b - (e —q )y

q4

when o < £ the interlacing result follows from [Joulak, 2005, Theorem 15 (ii)].

n17

O

3.9.3 Bounds of the extreme zeros

Finding inner bounds b?z using Theorem 1.11 is not p0881ble for the Al-Salam Carlitz
I polynomial system {Un x; q)}n>0, since the polynomials e (ac; q) are orthogonal for
a < 0on (o, 1) and shifting o to ag® will result in a change of the interval of orthogonality.

3.10 The Al-Salam-Carlitz II polynomials

3.10.1 Interlacing properties
Proposition 3.53.

V@9 (2 q) = VO (2;9) — aqlq” — 1)g "V, (z; q); (3.25a)
V) (2;q) = (ag™ +1— aq) V(x;9) — ag ™ (¢" — 1) (¢"z + 1 — aq) V¥ (z;q).

(3.25b)
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Theorem 3.54. Let 0 < aq < 1. Denote the zeros of Véa)(x; q) byl < zpy < xpo <
+ < Tpn < 00, the zeros of V,L(O‘q)(x;q) bY Yni < Ynz2 < -+ < Ynn and the zeros of

~ 2

A )(az;q) by Vo1 < Yno <+ <Y,n.. Then, forie{1,2,...,n—1},

(a) Yng < Tnji < Tp-1; < Ynitl < Tpgtls

(b) Yoi <@Tpi < Tp—1; < Yoit1 < Tt

Proof. Let 0 < aq < 1. Since V\® (x;q) and f/n(f)l(:v, q) belong to the same orthogonal
sequence, the interlacing property (1.1) is satisfied and both (3.25a) and (3.25b) are in
the form of (1.2).

(a) Taking into consideration the values of the parameters, both the coefficients of
v, (x;q) and Vn(f)l (x;q) in (3.25a) are positive constants and the result follows
from Corollary 1.3 (a).

(b) Taking into consideration the restrictions on the parameters, a(x) in (3.25b) is a

positive constant and b(z) = a(qln_,qln) (¢"r — avq + 1) represents a linear function with

positive values on (1, 00). The result follows from Corollary 1.3 (a).

O
Corollary 3.55. Forie€ {1,2,...,n— 1},
(@) Yni < Yn-1i < Tp-1,i < Ynit1,
(b) Yoi <Uni < Tni < To—1i < Ynit1 < Ynit1 < Tnjit1,
(¢) Yoi<Yp1:<xp-1;<Ynit1
Proof .

(a) The result follows from Theorem 3.54 (a) and the interlacing of the zeros of V,? (z: )

and f/n(iu{) (x;q).

(b) By replacing o with aq in (3.25a), we obtain Y, ; < ¥ni < Yn—1,4 < Ynit1 < Ynit1-
We combine this with the interlacing results in Theorem 3.54 (a) and (b) to obtain
the required result.

(¢) The result follows directly from Theorem 3.54 (b) and the interlacing of the zeros
~ 2 ~ 2
of Vi (x; q) and V,°7(z; q).

O

Remark 3.56. In general, the zeros of V) (x;q) and \N/n(f({) (x;q) do not interlace. These
polynomials satisfy

VD (259) = ="V (25.9) + b(x) V. (23 )

with b(z) = ¢ (¢"x — aq), a function that changes sign on (1,00) for 0 < aq < 1.
However, when we restrict o in such a way that 0 < aq < ¢" < 1, the zeros interlace as
follows: Ty ; < Yn—1; < Tn—1,; < Tpit1 for each i € {1,2,...,n —1}.
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3.10.2 Quasi-orthogonality

The Al-Salam-Carlitz II polynomials f/n(a)(f; q) with & = ¢~*, are orthogonal with respect

T

to the discrete weight w(z) = —L-2

CTIRCTTIS, when 0 < ag < 1,7 € (1,00), and satisfy

~ ([« Ny - —1) ~ o

Vn(q>(l’,q) — _(q z O{) V(a)(l’, Q) aq (q )V(,

(@ —z)g

The polynomial ‘N/n<q7k)($;q),k < m, is not quasi-orthogonal with respect to w(zx), on
(1,00), since it cannot be written as a linear combination of the polynomials [7AS (x;q),

V) (z1q),..., V) (2:9).

3.10.3 Bounds of the extreme zeros

The Al-Salam Carlitz IT polynomials AS (¢g~*; q) are orthogonal for 0 < aeg < 1 on (0, 00)
with respect to

¢~ a” w(z;ag ) (347%4), o
w(xr;a) = —— and = =c(qg " a
(w5 0) (4 Dr(g; @ w(z; a) (%:9), rl )

is a polynomial of degree k in the variable ¢7®. However, when we substitute o with
aqg ® k € {1,2,...}, the condition 0 < aq < 1 is not satisfied. Therefore, finding inner
bounds by using Theorem 1.11 is not possible for the Al-Salam Carlitz II polynomials

Vn )( 7Q>



Chapter 4

Classical orthogonal polynomials on
quadratic and ¢g-quadratic lattices

The aim of this chapter is to study the quasi-orthogonality and the interlacing proper-
ties of the zeros of some families of classical orthogonal polynomials on quadratic and
g-quadratic lattices. Starting from the hypergeometric representations of classical orthog-
onal polynomials, we get mixed recurrence equations they satisfied. In converse, if we
have for example the three-term recurrence equations satisfied by a classical orthogonal
polynomial family on quadratic or g-quadratic lattices, can we recover its hypergeometric
representation? In this chapter, we implement an algorithm to identify classical orthog-
onal polynomials on a quadratic or a g-quadratic lattice from their recurrence relations
(see [Tcheutia, 2019)]).

4.1 Introduction

Foupouagnigni showed in [Foupouagnigni, 2008] that classical orthogonal polynomials on
a quadratic or g-quadratic lattice satisfy a second-order divided difference equation of the
form

O(x())D3pa((s)) + ¥ (2(5))SeDapn((s)) + Aapa(a(s)) =0, (4.1)

where ¢(z) = az® + bz + ¢, ¥(x) = dz + e (d # 0), are polynomials of degree at most 2
and of degree one, respectively, the operators D, and S, are given by

D, f(a(s)) = L2 =IO 3D g oy - SR TSRS,

and z(s) is a quadratic or g-quadratic lattice defined by [Magnus, 1995]

|
DO [

D=

c1q° + g +c3if 0 <qg<1,
x(s) = c1y...,06 € C.
cas® +css+cg if g =1,

Note that (4.1) is equivalent to a difference or g¢-difference equation of the form (see
[Koekoek et al., 2010, chaps. 9, 14])

Any((s)) = B(s)y(a(s + 1)) = (B(s) + D(s))y(x(s)) + D(s)y(x(s — 1)), (4.2)
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with
8(r(s)) = —5 (a5 + 5) — a5 = ) (s + 1)~ 2(5) B(s) + (a(5) — (s~ 1)D(5)),

P(x(s)) = (2(s) — (s + 1)) B(s) + (x(s) — x(s = 1)) D(s).

Following the work by Foupouagnigni [2008], Njionou Sadjang et al. [2015b] proved that
the Wilson and the continuous dual Hahn polynomials are solutions of a divided-difference
equation of the form

¢(2)D3pn(x) + 9(2)S; Dapn (@) + Aupn(x) =0, (4.3)

where the operators S, and the Wilson operator (see [Cooper, 2002], [[smail and Stanton,

2012]) D, are defined by
(1))

fe+s) 1 —3) 2

2ix

, Saf(x) =

Using the same approach, Tcheutia et al. [2017] derived a divided—difference equation of
type
A (2)62p,(x) + 1 (2)S26.n () + Aupn(z) = 0, (4.4)

satisfied by the continuous Hahn and the Meixner—Pollaczek polynomials, where the dif-
ference operator d, (see [Olver et al., 2010, p. 436], compare [Kockoek et al.; 2010, p. 201
and 214], [Njionou Sadjang, 2013|, [Njionou Sadjang et al., 2015a], [Tratnik, 1989, Eq.
(1.15)]) is defined as follows:

st = I

i

(4.3) and (4.4) are equivalent to the difference equation (see [Kockoek et al., 2010, chap.

91
Any(x) = B(x)y(z +1i) — (B(x) + D(x))y(x) + D(x)y(x — 1), (4.5)

with
o(z) = x((2z +19)B(x) + (22 — i) D(x)), ¥(x) = —i((2z +i)B(z) — (22 —i)D(x)),

and
6(x) = 3 (B(x) + D(a)), ¥(x) = ~i(B(x) ~ D(x),

respectively.

The coefficients of the divided-difference equations given in the forms (4.1), (4.3) or
(4.4) can be used for instance to compute the three-term recurrence relation or some
structure formulae, from which one can derive the inversion coefficients of classical or-
thogonal polynomials on a quadratic and a g-quadratic lattice (see e. g. [Foupouagnigni
et al., 2013], [Njionou Sadjang et al., 2015b], [Tcheutia, 2014], [Tcheutia et al., 2017] and
references therein).

The hypergeometric and the basic hypergeometric representations of classical orthog-
onal polynomials on a quadratic or a g-quadratic lattice are given below (see [Kockock
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et al., 2010] for more details):
1. Askey-Wilson

b, ac, ad; g~ ", abedg" ', ae, ae
pn(z;0,0,c,d|q) = w4 3 ¢q |, v=cos0,

an
ab, ac, ad

with p,(z; a,b, ¢, d|q) = 2"(abedq"™"; q)npn(2; a, b, ¢, d|q);
2. g-Racah

—n

g " aBq"t g, yogt
R, (u(w); a0, B,7,0lq) = a3 ¢q|, n=01,... N,

aq, 30q,vq
where
p(x) == q " +70¢"", ag=q " or Bog=q N oryqg=q ",
with a nonnegative integer N and

(aBq™ 1 q)n
(aq, B0g,vq; q)n

Ry (p(x); v, 8,7, 0q) = Ro(u(@): . 8,7, 01q);

3. Continuous dual ¢-Hahn

ab, ac; q), q
(ab,a¢; g)n 302 ¢;q |, ©=cosb,
ab, ac

n\L; Q, ba =

pul;ab,clg) = %
with p,(7;a,b, clq) = 2"pn(z; a,b, c|q);

4. Continuous ¢g-Hahn

(abezié, ac,ad; q)p, q ", abedg™ ™, Gei(9+2é)a ae~ "

pra 4¢3 ) a4q |,
(ae’?) abe?® ac, ad

(50,0, ¢,d;q) =

A

x = cos(0 + 0), with p,(z;a,b,c,d;q) = 2"(abcdq”_1; Q)npn(z;a,b,c,d; q);
5. Dual ¢-Hahn

q " q ", yog"
Rn(/l’('r)7fy757N|Q):3¢2 q;q9 |, n:O,l,...,N,

vq, g7V

where ju(z) = ¢~* 4+ 7d¢" !, with R, (u(2);7,6, Nlg) = (v¢,47; @) Rn(pa(x); 7, 6, N|g);
6. Al-Salam-Chihara

ab; q), q
Qn(x;a,blq) = &3% ¢q |, ©=coso,

ar ab,0
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with Qn(z;a,blq) = 2"Qn(x; a, blq);
7. g-Meixner-Pollaczek

—n Li(0420) . ,—if

- s(a%q), q " ae ,ae .
Pu(w;alq) = a‘”e‘”‘(’wwz ¢;q |, v =cos(f+0),
(4:0)n 0.0
with P, (z;alq) = P, (x;alq);
(@3 alg) (¢ @)n (;alg)
8. Continuous g-Jacobi
a+1. —n ntat+B+1 41 9 a4l g
) R V) R
q:9)n qa+1 —gT g

2nq(%+i)n<qn+a+6+1; Q)n

with P?)(z|q) = P2 (z]q);

(a-i-ﬁ-i—l)’ _q%(a+,6’+2)

1
(¢, —q2 s Qn

9. Continuous ¢-Ultraspherical / Rogers
B%q)n . (€82 B2, Bre

D) B 2403 1 1 ¢q |, ©=cosb,
T 6q§7_/87_5q5

Cu(; Blg) =

_ 2"

with Cy,(z; Blq) @)

10. Dual ¢-Krawtchouk
Kn(Az); ¢, Nlg) = 3¢2 ¢q|, n=0,1,...,N,
N

where () := ¢~ + c¢® N, with K,(A(z);¢,N|q) = (¢7V: Q)nKn(A(z); ¢, N|q);
11. Continuous big ¢-Hermite

q ", ac ae=" .
H,(z;alq) = a "3¢ ¢;q |, ©=cosf, with H,(z;a|q) = 2"H,(x; alq);
0,0

12. Continuous g-Laguerre

a1, —n oS4t 0 24l —if
(6% q 7q n q 7q € ’q €
PTE )($|Q)=%3¢2 q¢;q |, x=cosb,
q7q n anrl,O
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13. Wilson

) —n,n+a+b+c+d—1,a+1ir,a—ix
W, (2% a,b,¢,d) = (a+b),(a+c),(a+d) 4 Fs

a+ba+ca+d

with W, (2% a,b,¢,d) = (=1)"(n+a+ b+ c+d—1),W,(2? a,b, ¢, d);
14. Racah

—n,n+a+0+1,—x,x+v++1
Ry(Mz); a0, B,7,0) = 4 F3 11, n=0,1,...,N
a+1,8+0+1,7+1
where

Mz)=z(z+~v+d+1), a+1=—Norf+d+1=—-Nory+1=—-N

with a nonnegative integer N, and

Aot Br b poy@)ia, 8,70

R,(M(x);a, ,7,0) = (@+1)p(B+6+ (v + 1), "

15. Continuous dual Hahn

) —n,a+1x,a —ix
Sn(x*a,b,¢) = (a+b)p(a+ c)nsFs 1],

a+ba+c

with S, (22 a,b,¢) = (—1)*S,(x%; a, b, ¢);
16. Continuous Hahn

L(a+c)(a+d), —n,n+a+b+c+d—-1a+1x
" 3F2 1 s
a+ca+d

pa(@;a,b,c,d) = ,
n.

m+a+b+c+d—1),_

with p,(x;a,b,¢,d) = ' pn(z;a,b,c,d);
n!
17. Dual Hahn
—n,—x,x+7+0+1
R,(A\(x);7,0,N) = 3F, 1], n=0,1,..., N,

v+1,—-N

where A(z) = z(x + v+ 6 + 1), Ry(A(2);7,6, N) = (v 4+ Dp(=N)u R (AN (x); 7,5, N);
18. Meixner-Pollaczek

(2\),, —n, A+ ix

PT(LA) ((L’, 8) — : ezn92F1 1 — 6—219 ’ P1§>\) (CL’, 9) _ ( S111 )
n:

2\ n!
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4.2 Interlacing properties of the zeros of some families
of classical orthogonal polynomials on quadratic
and g-quadratic lattices

4.2.1 The Wilson polynomials

The Wilson polynomials Wn(:v2; a, b, c,d) are orthogonal on (0, c0) with respect to

I'(a + iz)T(b + iz)T(c + iz)D(d + iz) |
[(2ix) ’

w(zx;a,b,c,d) = (4.6)

for Re(a,b,c,d) > 0 and non-real parameters occur in conjugate pairs. Furthermore, the
weight function is clearly independent of the order in which the parameters a, b, ¢ and d
occur. By shifting b to b+ 1, c to ¢+ 1 or d to d + 1, the same interlacing results are
obtained as by shifting a to a + 1. We note that the polynomlal W, (z% a,b,c,d) has n
zeros in (0,00), namely 22 |, 22 ,, ..., Let W, (22) = W,(22;a,b, ¢, d).

n,1»¥n,2» nn

Proposition 4.1.

Wn(xQ;mb, c,d) = Wn(azQ;a—i—l,b, ¢, d) (4.7a)
nc+d+n—-1)0b+d+n—-1)(b+c+n-—1)
2n+a+b+c+d—2)2n+a+b+c+d—1)

Wo(z?a,b+1,¢,d) = Wy(a%a+1,b,¢,d) (4.7b)

nb—a)(c+d+n—1)
2n+a+b+c+d-1

Wn—1<x2; a + 1; b7 C, d)?

Wooi(z%a+1,0+1,¢d).

Theorem 4.2. Suppose a,b,c,d > 0. Denote the zeros of Wn(:v2;a,b, c,d) by :B,QL1 <
a2y <o < al,, the zeros of W, (2% a+1,b,¢,d) by xff%z < xﬁla; <o <2l the zeros
ofW (x a,b+1,c, d) by:‘r;bl2 <x£f’)2 < - <:C51b312, the zeros of Wy(x%a+1,b+ 1,¢,d)

a,b)? (a,b)? (a,b)?

bya: <Zpy <o <Zpn . Then,

)

(a) a2, < 2 ()2 (a)?

< xn 41 < xn H—l;

() ifb—a>0, 20 <2l <zl <l <2l and

n—1,2
Zfb —a<0 [L'( ) < [L'(b) (a,b)2 (a)2 (b )2

< xnflz < ‘(L'n a+1 < xn i1

Proof. Suppose a,b, c,d are positive real numbers.

(a) Since W, (2% a,b,c,d) and W,_i(2% a,b,c,d) belong to the same orthogonal se-
quence, their zeros interlace and (4.7a) is in the form of (1.2), with a(z) = 1 and
b(x) > 0. The result follows from Corollary 1.3 (a).

(b) Equation (4.7b) is in the form of (1.2), with a(z) =1, b(x) < 0if b—a < 0 and the
result follows from Corollary 1.3 (b), b(x) > 0 if b — a > 0 and the result follows
from Corollary 1.3 (a).

O
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4.2.2 The Racah polynomials

The Racah polynomials R, (\(z);a, 3,7,6), n € {0,1,2,..., N}, with A(z) = z(z + v +
d + 1), are orthogonal on (0, N') with respect to the weight function

(@4 1B+ +1)(v+1D.(v+ 5+ 1)a((v+ 6+ 3)/2),
(—a+7+0+ 1) (=b+7+1)(0+ 1) ((v++1)/2),

w(z) =

ifa+l=—-Norf+d+1=—-Norvy+1=—N with N a nonnegative integer. Since
shifting  or § will change A(x), we will only consider shifts in « and f.

Proposition 4.3.

Rn()‘(x)a «, 57’77 5) = Rn()\<l’>, o+ 1, ﬂ, v, 5) (483)
Brn)(B+o+n)(y+n)n ~ , .
i _(2n+04~|—ﬁ+1)(2n+a+ﬁ)Rn_1(/\<w)’a+1’5’7’5)’

Rn(/\(l'), O‘7/37775) = Rn(/\(l’), Oé,ﬁ + 1a’775> (48b)

(atn)(@a=b0+n)(y+n)n ; | |
T @ntatdin@ntarg mrA@iafE1y.0)

R.(\(x); o, B+ 1,7,0) = R,(A(z);a+ 1, 8,7,0) (4.8¢)

n(y+n)(a—p5-9) ~ )
T Tatpt1 Ruo(M@)a+1,5+1,7,0).

From the latter equations, we can make some assumptions on the parameters «, (3,
to derive interlacing properties of the zeros of the Racah polynomials.

4.2.3 The continuous Hahn polynomials

The continuous Hahn polynomials ]Bn(x;a,b, c,d) are orthogonal on R with respect to
w(z) = T'(a+ix)l'(b+iz)['(c —ix)['(d — iz) for Re(a,b,c,d) >0, c=a and d =b. We
have for this family equations like

P.(x;a,b,c,d) = P,(z;a+ 1,b,¢,d)
ni(b+c+n—-1)(b+d+n—1) 3
P”_ ) ]-aba 7d7
+(27’L+a+b—|-c—|—d—2)(2n—|—a+b+c+d_1) 1(zia+1,b,¢,d)

Py(z;a,b+1,¢,d) = Py(z;a 4 1,b,¢,d)

ni (b —a) -
Poi(zia+1,b+1,¢d).
Yoot atbitetd—1 iwat1,b+1,cd)

Like in the latter equations, there is the complex ¢ appearing in the second term of
the right-hand sides of the mixed recurrence equations satisfied by the continuous Hahn

polynomials. Therefore, we can not apply our method to deduce the interlacing properties
of the zeros of P,(x;a,b,c,d).
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4.2.4 The Askey-Wilson polynomials
The weight function of the Askey-Wilson polynomials

1 (€ q)oo ’
V1-— x? (a€i97 bei07 Cei07 dew; Q)oo ’

is independent of the order of the parameters a, b, ¢ and d and by shifting b to bq, ¢ to cq
or d to dq, we obtain the same interlacing results as by shifting a to aq.

(4.9)

w(x;a,b, e d|q) =

Proposition 4.4.

Pl 0, b, ¢, dlg) = Pl g, b, ¢, dlg) (4.100)
a(l — ¢")(1 — edg" ") (1 — bdg" ) (1 — beg" ™)
a 2(1 — abedg®1)(1 — abedg®—2)
(b—a)(L —¢")(1 —cdg"™")
2(1 — abedg®1)

pn—l('r; aq, b7 ¢, d|Q)7

ﬁnfl('x; aq, bg7 C, d‘q)
(4.10D)

pn(xa a, bQ7 C, dlq) = ﬁn(xa aqg, ba ¢, d‘q) +

Theorem 4.5. Suppose a,b,c,d are real and max(|a|, |b],|c|,|d]) < 1. Denote the zeros

of pn(x;a,b,¢,d|q) by —1 < Tp1 < Tpo < -+ < Tn, < 1, the zeros of pn(x;aq, b, c,d|q) by

-1< xfla% < xﬁla% <<l <1, the zeros of pn(x;a,bq,c,d|q) by —1 < xsj)l < a:flb)Q <

o< 2 < 1, the zeros of pn(T;aq,bq,c,d|q) by —1 < :vfﬁ’lb) < 937(;?’21’) <<l <1

Then,

(a) (a)

(a) if =1 <a<0, vy <wp; <71, < Tpigr < x,(zl)-ﬂ, and
if 0<a<l, xflaz < Tp; < xfla_)l,i < xEZZ)»H < Tpiy1;

(b) if b—a>0, xilbz < :Eflaz < @ xggﬂ < x,(g“, and

n—1,2
~ (a) () (a,b) (a) ()

Proof. Suppose a,b,c,d are real and max(|al, |b], |c|, |d|]) < 1. Then max(|ac|, |ad|, |bc|,
|bd|, |cd|, |abed|) < 1 and, for n € N, 1 —acg™ > 0, 1 —beg™ > 0, 1 —bdg™ > 0, 1 —edg™ > 0
and 1 — abedg™ > 0. Since p,(x;aq,b,c,d|q) and p,_1(z;aq,b,c,d|q) belong to the same
orthogonal sequence, their zeros interlace and (4.10a) is in the form of (1.2), with a(z) =1
and

(a) b(x) > 01if —1 < a < 0 and the result follows from Corollary 1.3 (a) and b(z) < 0 if
0 < a < 1 and the result follows from Corollary 1.3 (b).

(b) Since by shifting b to bg, we obtain the same interlacing results as by shifting a
() < 7 < Ty < :z;s)g.ﬂ if —1 < b < 0, and

to aq and we have x,; < z,; ne1i

l‘s}i < T, < xs)zl,i < a:,(f%H < xp 4 if 0 < b < 1. By replacing a by ag, it follows
that a:flag <z < xfsl)-ﬂ for each ¢ € {1,2,...,n — 1}. Equation (4.10b) is in
the form of (1

n—1,
2), with a(x) =1, b(z) < 0 if b — a < 0 and the result follows from
Corollary 1.3 (b), b(x) > 0 if b—a > 0 and the result follows from Corollary 1.3 (a).

O
The following result follows directly:
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Corollary 4.6. Foriec {1,2,...,n— 1},

b b
<) < I%,)iﬂ < Tpjitr < xffz)‘ﬂ;

n,7 n—1,1

(a) if =1 <a<0 and0<b<1,x$2~<xn7i<x

Q

DI

(b) if —1<b<0and0<a<l, x(“} < Xy < x;b)l <xy < Ty < Tpgpn < xflbzﬂ

Remark 4.7. The following systems of polynomaials follow from the Askey-Wilson poly-
nomauals:

(i) By setting d = 0, we obtain the monic continuous dual g-Hahn polynomials p,(x; a,b, c|q),
x = cos B, orthogonal on (—1,1) with respect to w(x;a, b, c,0|q) in (4.9) where a,b,c
are real and max(|al, |b],|c|) < 1;

(ii) By setting c = d = 0, we obtain the monic Al-Salam Chihara polynomials Q,(x; a, b|q),
x = cos @, orthogonal on (—1,1) with respect to w(z;a,b,0,0|q) in (4.9) where a,b
are real and max(|al,|b]) < 1;

(111) By setting b = ¢ = d = 0, we obtain the monic continuous big q-Hermite polynomials

H,(z;alq), © = cosf, orthogonal on (—1,1) with respect to w(x;a,0,0,0|q) in (4.9)
where a is real and |a| < 1.

(iv) By the substitutions 0 — 0 + ¢, a — ae'®, b — be'®, ¢ — ce™ and d — de™* we
obtain the monic continuous q-Hahn polynomials p,(x;a,b,c,d;q), © = cos (0 + ¢),
orthogonal on (—m, ) with respect to

(e%1049): ¢) o ?
W(COS (0 + ¢) Ay b7 ) d‘Q) = (aei(ngd))’ bei(9+¢), C@ie, deia; q)oo )

if c=a and d = b and, if a and b are real and max(|al,|b]) < 1, or if b =a and
la| < 1. Using the above substitution in (4.10a), we obtain

~a(l —¢")(€" = cdg" e ") (1 — bdg"")(1 — beg™ )
2(1 — abedg® 1) (1 — abedg®—2)

pnfl(x; aq, b7 c, d7 q)

and we can not apply our method to deduce the interlacing properties of the zeros of
(x5 a,b,c,d; q), since it is not possible to determine if € — cdq™ e~ is positive
or negative.

Corollary 4.8. Suppose a,b,c,d are real and max(|a|, |b|, |c|,|d|) < 1. Then for each of
the systems in (i) - (iii) above, we have, for i € {1,2,...,n— 1},

(a) T < Yn,i < Yn—1,i < Tnit1 < Ynji+1 Zf —1<a< 07'
(b) Ynji < Tnji < Yn—1,i < Ynjitl < Tnitl zf() <a< 1,
where =1 < xp1 < Tpo < -+ < Tp, < 1 are the zeros of the polynomial p,(z;a,b, clq) in

(i) (Qn(z;a,b|q), Ho(z;a|q)), and —1 < yp1 < Yns < o < Ynn < 1 are the zeros of the
polynomial with a shifted to aq, i.e., p,(x;aq,b,clq) (Qn(z;aq,blq), Hu(x;aq|q)).



4.2 Interlacing properties of the zeros of C.O.P. on quadratic and g-quadratic lattices 81

4.2.5 The ¢g-Racah polynomials

The g-Racah polynomials are orthogonal on (0, N) if ag = ¢~ or 36q = ¢ or vq =
¢V, and N a nonnegative integer. In order to prove interlacing results, we make some

assumptions on the parameters.

Proposition 4.9.

R (p(x); @, 8,7, q) = R (p(2); g, B, 7, 61q) (4.11a)

aq(l —q¢")(1 - B¢")(1 —vq")(1 — Boq") - , ,

- (1 — Oéﬁq2n)(1 — Oéﬁqzn—"_l) Rn—l(ﬂ(‘r)a aq, Ba Y 5|Q)a

R (p(x); @, 8,7, q) = R (p(2); v, 54,7, 61q) (4.11b)

Ba(l —¢")(1 —aq")(1 —vq")(aq" — ) ~ :
(= o) (1 apg®H) Ry 1 (p(x); o, Bg, v, 0]q)-

Theorem 4.10. We denote the zeros of Rn(u(z);a, 8,7,0|q) by w(0) < piny < fins <

© < Hnp < N(N)7 the Z€T'08~0f RR(M(IL‘)’OZQaﬁ77’5|Q) by M(O) < M?S?? < M'ESCZ) < -0 <

psih < w(N) and the zeros of R, (u(x); v, Bq.7.6lg) by p(0) < ul) < pulf <+ < pil <
w(N) and we assume that (1 — aBg*)(1 — afg® ™) >0, y¢ <1 and 0 < iqg < 1.

(a) Let ag = ¢ > 1. If Bqg < 1 and B6q < 1, then, for i € {1,2,...,n — 1},

() (a)

(a) .
Fopi < Hng < fp 15 < My i1 < Hnitl;

(b) Let B6q = ¢ > 1. If aqg < 1 and aq™ < 6, then, for i € {1,2,...,n — 1},

Mfzﬁl) < Hnyi < Mgzﬁjl,i < “gfi)Jrl < Hn,it1-

Proof. The polynomials on the right-hand side of both equations (4.11a) and (4.11b)
belong to the same orthogonal sequences, their zeros interlace and these equations are
both in the form of (1.2), with a(x) = 1.

+

(a) Let ag = ¢~V > 1 and assume that 8¢ < 1 and 3dq < 1. Then 1 — 36¢" > 0, i.e.,
b(x) < 0 and the result follows from Corollary 1.3 (b);

(b) Let 8dqg = ¢~ > 1 and assume that ag < 1 and ag" < J. Then b(z) is a negative
constant and the result follows from Corollary 1.3 (b).

O

Remark 4.11. When we take 8 = 0,vq¢ = ¢ and § — adg™*! in the definition of the
q-Racah polynomials, we obtain the monic dual q-Hahn polynomials, i.e.,

with p(z) = ¢% + adq®™, and (4.11a) becomes

Ro(p(x); @,6, Ng) = Ry (u(); ag, 8, Nlg) — aq(1 — ¢") (1 = ¢" V") Ry (u(@); g, 6, Nlq),
with 0 < ag < 1 and 0 < 6q < 1, and, since —aq(l — ¢")(1 — ¢ N=1) > 0, the zeros
interlace as follows:

Hni < Mgbo,éz‘) < quoi)l,i < Pngir1 < /LgLO,‘i)Jrl?Z‘ €{L,2,....,n—1},

where p,; are the zeros of R, (u(z);a,8,Nl|q) and u&ag,z € {1,2,...,n}, the zeros of
Ry (u(2); agq, 0, N|q).
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For the monic dual ¢g-Hahn polynomials we also get the following results.

Proposition 4.12.

R (u(x); o, 6q, Ng) = Ru(pu(x); aq, 6, N|q) (4.12a)

+ag N (1= ¢")(¢" — ") Rosi (1(2); 0q, 6, N|q);
~ 1—ad qa:+N+3—n B
Ra(u(2); , 0¢, Nlg) = —— P R,.(u(); aq, 6q, Nlq) (4.12b)
N a (1 _ qn) (qn _ qN—i-l) (1 o 5qN+2—n)
qN<1 —« (qu+N+3)

R, (u(x); aq, g, Nlq).

Theorem 4.13. Let n € {0,1,...,N}, 0 < ag < 1 and 0 < dq < 1, and denote the
zeros of Ry(p(x);o,0q,Ng) by p(0) < pl} < pih < - < pin < p(N), the zeros

of Ru(p(x);0q,0,N|q) by p(0) < p? < pif) < -+ < i < p(N) and the zeros of
» a,d a,d a6 .
R, (u(z); aq,0q,N|q) by u(0) < ,LL,(M) < ,ufm) < o< i < u(N). Then, fori €
1,2, ,n—1},

1) a a 1) «
(a) Mfﬂ < Uim) < #ng)l,i < :u1(1,2+1 < :uiz,i)+17

5 a,d a,d ) a8
(b) ufﬂ < Ug,i ) < Mgfl),z' < N%H < Mgl,zdr)l-

Proof. Let 0 <ag<land 0<dg<1 Thenl—adg >0,1—a¢ >0,1—35¢ >0
if j > 0 and equations (4.12a)—(4.12b) are in the form of (1.2) and under the given
assumptions, the results follows from Corollary 1.3 (a). O

4.3 Quasi-orthogonal polynomials on quadratic and g¢-
quadratic lattices

4.3.1 The Wilson polynomials
Proposition 4.14.

~ nlc+d+n—-1)b+d+n—-1)(b+c+n—1)

Wzt a—1,bc,d) = Wp(z? Woo1(2?);
(@5a=1b.c4d) (m)+(2n+a+b+c+d—2)(2n+a+b+c+d—3) 1(=);

(4.13a)

) - +d+n—1)(a+d+n—Da+c+n—1) -
@b —Led) = W + Wo-1(a);
Wa(z%a,b—1,c,d) W(x)+(2n—i—a—|—b—l—c+d—2)(2n+a+b+0+d—3) 1
(4.13b)

) 5 +d+n—-1)(b+d+n—1)(a+b+n—-1) -
Wa(a2ia,be—1,d) = Wa(a?) + 2 W ()
(2% a,b,c~1,d) (:U)+(2n+a+b+c+d—2)(2n+a+b+c+d—3) 1
(4.13c)

§ - +c+n—1)(b+c+n—1)(a+b+n—1) -
Pabed—1) = Wi n(a (2.
Wa(z%5a,b, ¢, ) W(x)+(2n+a+b+c+d—2)(2n+a+b+c+d—3)W 1
(4.13d)

Theorem 4.15. Let a,b,c and d be such that Re(a,b,c,d) > 0. Consider ky, kg, k3, ks €
{0,1,...,n — 1}, such that ki + kg + k3 + k4 < n — 1. The sequence {W,(z*;a — ky,b —
ko,c — k3, d — k4)}n20, with 0 < Re(a) <1 (Zf k1 7é 0), 0 < Re(b) <1 (Zf ko 7& 0),
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0 < Re(c) <1 (ifks #0) and 0 < Re(d) < 1 (if ky # 0), is quasi-orthogonal of order
ki + ko + ks + ky < n — 1 with respect to the weight w(z) on (0,00) and the polynomials
have at least n — (ki + ko + ks + ky) real, distinct zeros in (0, 00).

Proof. Fix a such that 0 < Re(a) < 1. From Lemma 1.4 and (4.13a), it follows that
Wn(mQ; a —1,b,¢,d) is quasi-orthogonal of order one on (0,00). By iteration, we can ex-
press W, (22;a — k, b, ¢, d) as a linear combination of W,,(z%; a, b, ¢, d), Wy_1(2%;a,b, ¢, d),
o, Wa_k(2%a,b,¢,d) and from Lemma 1.4 it follows that W,(z%a — k,b,c,d),0 <
Re(a) < 1, is quasi-orthogonal of order £ < n—1 on (0, 00). Furthermore, from Lemma 1.6
we know that at least (n—k) real, distinct zeros of W, (22;a—k, b, ¢, d), k € {1,2,...,n—1},
lie in (0,00), i.e., at least (n — k) of the zeros (z,,1)%, (zn2)? ..., (Xnn)? lie in (0,00).
When we fix the parameter b, (or ¢, d) such that 0 < Re(b) < 1 (or 0 < Re(c) < 1,0 <
Re(d) < 1), we can prove in the same way, using (4.13b) (or (4.13c), (4.13d)), that the
polynomial W, (2% a,b — k, ¢, d) (alternatively W, (z%; a,b,c — k,d), or Wy (22, a,b, ¢, d —
k)) is quasi-orthogonal of order k£ on (0,00). Using an iteration process, we can write
Wo(z%a — ki, b — ko, ¢ — ks, d — ky) with 0 < Re(a) < 1 (if ky # 0), 0 < Re(b) < 1 (if
ke #0),0 < Re(c) <1 (if k3 # 0) and 0 < Re(d) < 1 (if k4 # 0), in the form of (1.5) and

the results follow from Lemmas 1.4 and 1.6. [l

Theorem 4.16. Consider a,b,c,d, such that Re(b,c,d) > 0, 0 < Re(a) < 1 and non-
real parameters occur in conjugate pairs. Let x2 ;1 € {1,2,...,n}, denote the zeros of

n,t?

Wn($2;a, b,c,d) and y?m-,i € {1,2,...,n}, the zeros of Wn(mQ;a —1,b,¢,d). Then

2

2 2 2 2 2 2 2
Yna < Tni < Tp—1,1 < Yn,2 < Ln2 << Tpn—1n-1 < Ynn < T

Proof. From (4.13a), we obtain a, = (7;(:151:;2Elbjﬁr;;;?j_b:;:;__?), which is positive and

the interlacing result, as well as the position of y?w, follows from Lemma 1.8 (ii). U

4.3.2 The Racah polynomials
Proposition 4.17.

Ry(Mz); o0 —1,B,7,6) = Ru(A(z); o, B,7,0)
(B+n)(B+d+n)(y+n)n

(
C@2n+a+B)2nta+f— 1)R”*1(A(x)5o"ﬁ’%5)?

Ry(M=); o, B—1,7,6) = Ry(Ax); v, 8,7, 0) (4.14b)
(a+n)(a—=d+n)(y+n)n =

T BntatB@ntatpop mrM@ie o)

4.14a)

Theorem 4.18. Let k € {1,2,...,n— 1}. The sequence of Racah polynomials

(i) {R,(\z);a — K, B,7,0)},, with a« = —N — 1, is quasi-orthogonal of order k with

n=0’
respect to the weight w(x) on (0, A\(N)) and the polynomials have at least (n — k)
real, distinct zeros in (0, A\(N));
(ii) {Ro(\z);0, B — k, v, 0) Y\, with § = —N — & — 1, is quasi-orthogonal of order
k with respect to the weight w(x) on (0, \(N)) and the polynomials have at least
(n — k) real, distinct zeros in (0, A\(N)).
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Proof .

(i) Let « = —N — 1. From Lemma 1.4 and (4.14a), it follows that R,(\(z);o —
1, 3,7, 9) is quasi-orthogonal of order one on (0, A(V)). By iteration, we can express
]:Zn()\( );a—k, B,7,9) as a linear combination of R, (A(z); o, 8,7,9), Ra_1(Az); a, B,7,6),
.y Ry x(Mx);, 8,7,9) and the result follows from Lemma 1.4. Furthermore,
from Lemma 1.6 we know that at least (n — k) real, distinct zeros of R, (\(z); o —

k,B,7v,0),k€{1,2,...,n— 1}, lie in (0, A\(V)).

(ii) Let = —N —§ — 1. The result follows in the same way from (4.14b) and Lemmas
1.4 and 1.6.

O
As in the case of the g-Racah polynomials, we obtain different interlacing results for
values of n larger than ﬂ + 1, that we show in the next theorem.

Theorem 4.19. Consider n < N and let x,;,1 € {1,2,...,n} denote the zeros of
Ry(\(@); @, 8,7,0), yniri € {1,2, .. -}, the zer0s of Ru(Ma);a — 1,5,7,8) and 2,1 €
{1,2,...,n}, the zeros of R,(A\(z);a, 8 —1,7,6). Then, for n > % +1,

(i) ifa=—N—1and >0, § >0, v >0, we have

0< Tn,1 < Un,1 < Tn-1,1 < Tn,2 < Yn,2 << Tn—1n—1 < Tnn < Yn,n;

(ii) if f=—N—-0—1anda >0, v>0, a—3 >0, we have

0< Tpil < 2nl <Tp11 <Tp2<2p2 < < Tpnin-1<Tpn<Znn

Proof. Under the above hypotheses, the coefficients of R, (AMx); o, B,7,0) in (4.14a) and
(4.14b) are negative and the interlacing results follow from Lemma 1.8 (i). U

4.3.3 The continuous Hahn polynomials

Proposition 4.20.

pn(m;a— 1,b,¢,d) = f’n(x, a,b,c,d) (4.15a)
N ilb+c+n—-1)(b+d+n—1)n

2n4+a+b+c+d—3)2n+a+b+c+d—2)
Py(x;a,b—1,¢,d) = P,(x;a,b,c¢,d) (4.15Db)
t(a—14+d+n)(a—1+c+n)n .
+@n+a£b+c+d—$én+a+b+1+d—lemﬁmaqﬁ;
Isn(.r;a, byc—1,d) = P, (x;a,b,c, d) (4.15¢)
ilb+d+n—1)(a—1+d+n)n -

C 2n4+a—-3+b+c+d)(2n+a—2+b+c+d)

P’n—l(x; a, b7 ¢, d))

P,_1(x;a,b,c,d);

ﬁn(m;a, byc,d—1) = f’n(x, a,b,c,d) (4.15d)
ilb+c+n—-1)(a—1+c+n)n

(2n+a—3+b+c+d>(2n+a_2+b+c+d) 1(x,a, , Cy )
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Corollary 4.21.
ila+d—b—c)(b+d+n—1)n ~
Pn_l(l’)
Cn+a—4+b+c+d)(2n+a—2+b+c+d)
b+d+n—-2)(a—24+d+n)(n—1)(b+c—24+n)(b+d+n—1)n
2n—5+a+b+c+d) (2n+a—4+b+c+d?2n+a—3+b+c+d)
ila+d—b—c)(a—14+c+n)n -
Pnfl(l')
2n—4+a+b+c+d)(2n+a—2+b+c+d)
na+d+n—-2)(a—14+c+n)(b+c+n—-2)(a+c+n—-2)(n—1)
2n—5+a+b+ct+d)(2n—44+a+btce+d)?2n+a—3+b+c+d)

Theorem 4.22. Consider a,b, c,d such that Re(a,b,c,d) >0, c=a and d = b. Consider
ki, ko, ks, ky € {0,1,...,n — 1}, such that ky + ko + k3 + ks < n — 1. The sequence of
continuous Hahn polynomials { P, (x;a — ky,b — ky, ¢ — ks, d — ky) }ns0, with 0 < Re(a) =
Re(c) <1 (if ky #0), 0 < Re(b) = Re(d) < 1 (if ko # 0), 0 < Re(a) = Re(c) <
1 (if k3 # 0) and 0 < Re(b) = Re(d) < 1 (if ka # 0), is quasi-orthogonal of order
ki + ko + ks + ky < n — 1 with respect to the weight w(z) on R and the polynomials have
at least n — (ki + ko + ks + kq) real, distinct zeros.

Proof. Fix a and ¢ such that 0 < Re(a) = Re(c) < 1. From Lemma 1.4 and (4.15a),

Pu(zia—1,b,c—1,d) = Pu(z) -

P,_5(x); (4.16a)

Pu(z;a,b—1,¢,d — 1) = Py(z) +

P,_(x). (4.16b)

it follows that P, (x;a —1,b,¢,d) is quasi-orthogonal of order one on R. By iteration, we
can express P, (z;a— k b, c, d) as a linear combination of P, (z;a,b,c, d) P,_1(x;a,b,c,d),
P, _i(x;a,b,¢,d) and it follows from Lemma 1.4 that P, ( — 1,b,¢,d) is quasi-

orthogonal of order one on R. By using an iteration process, we can write P,(z;a —
k,b,c,d) as a linear combination of orthogonal continuous Hahn polynomials and it is
quasi-orthogonal of order £ < n— 1. Furthermore, from Lemma 1.6 we know that at least
(n— k) zeros of P,(x;a—k,b,c,d),k € {1,2,... ,n—1}, are real and distinct. In the same
way, using (4.15¢), we can prove that P,(z;a,b, ¢ — k,d),0 < Re(a) = Re(c) < 1 is quasi-
orthogonal of order £ < n —1 on R. By fixing b and d such that 0 < Re(b) = Re(d) < 1
we can prove the quasi-orthogonality of P, (x;a,b—k,c,d) and P, (x;a,b—k,c,d), using
(4.15b), (4.15d) and Lemma 1.4.

Using an iteration process, we can write Pn(:c; a—Fki,b—ky,c— kg, d—ky), with 0 <
Re(a) = Re(c) < 1 (if k1 #0), 0 < Re(b) = Re(d) < 1 (if k2 #0), 0 < Re(a) = Re(c) < 1
(if k3 #0) and 0 < Re(b) = Re(d) < 1 (if k4 # 0), as a linear combination of orthogonal
continuous Hahn polynomials and the results follow from Lemmas 1.4 and 1.6. O

Theorem 4.23. Consider a,b,c,d such that Re(a,b,c,d) >0, c =a and d = b.

(i) Let 0 < Re(a) = Re(c) < 1. Then n — 2 zeros of P,(z;a —1,b,c —1,d) interlace
with the zeros of P,_1(x;a,b,c,d);

(i) Let 0 < Re(b) = Re(d) < 1. Then n — 2 zeros of P(z;a,b—1,¢,d — 1) interlace
with the zeros of P,_1(x;a,b,c,d).
Proof. In this proof —C,, refers to the coefficient of P,_s(x;a,b, ¢, d) in the three-term re-

currence equation of the continuous Hahn polynomials (cf. [I\()( koek et al., 2010, (9.4.3)]),
involving the polynomials P, (z;a,b,c,d), P,_1(z;a,b,¢,d) and P,_y(z;a, b ¢, d).

(i) Let 0 < Re(a),Re(c) < 1. We consider the coefficient b, of P,_5(z;a,b,c,d) in
(4.16a). Then
(a+c—2)(n—24+b+d)(a+d+n—-2)(n—1)(b+c+n—2)

Cy —b, =
2n—56+a+b+c+d)(2n—4+a+b+c+d)?

Y
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and when we take into consideration the specific restrictions on the parameters, we
observe that C,, < b, and the result follows from [Joulak, 2005, Theorem 15 (ii)].

(i) Let 0 < Re(b), Re(d) < 1 and let b, be the coefficient of P,_y(x;a,b, ¢, d) in (4.16b).
Then
b+d—2)(n—=1)(b+c+n—-2)(a+d+n—2)(a+c+n—2)

C,—0b,=
2n—5+a+b+c+d) (2n—4+a+b+c+d)?

<0,

when we take into consideration the specific restrictions on the parameters and the
result follows from [Joulak, 2005, Theorem 15 (ii)].

O

4.3.4 The Askey-Wilson polynomials

We will now fix a > 0 such that ¢ < |a| < 1 and for these values of a, the polynomial
pn(x;a,b,c,d|q) is orthogonal on (—1,1) with respect to w(x;a,b, c,d|q) defined in (4.9).
In what follows, we assume that |a| = max(|al, |b],|c|,|d|) < 1. Should this not be the
case, the order in which the parameters occur, can be changed.

We will thus only consider the equations in which a is shifted to ;ik > 1 (or q% < -1
should a < 0), and we will prove that the polynomials p, (x; a0 bc dlg), k€ {1,2,...,n—
1}, are quasi-orthogonal of order k on (—1,1). We use the equation

Ba(5 b, ¢, dlg) = pu(w:a,b, ¢, dg) (4.17)
q

- n— 7 9 b) 9 d .
2 (abcdq2” — q3) (abcdan _ qz) p 1(5E a,o,c |q)

Theorem 4.24. Let a,b, c,d be real, or they occur in complex conjugate pairs if compler,
and max(|al, [b],|c|,|d]) < 1, and let w(z;a,b,c,d|q) be as defined in (4.9). For a such
that ¢ < |a| < 1, the sequence of Askey-Wilson polynomials {p,(x; (;ik,b, ¢, d|q) bn>o s
quasi-orthogonal of order k < n with respect to the weight w(zx;a,b,c,d|q) on the interval
(—=1,1) and the polynomials have at least (n — k) real, distinct zeros in (—1,1).

Proof. Suppose ¢ < |a| < 1. From Lemma 1.4 and (4.17), it follows that p,(z; ¢, b, ¢, d|q)
is quasi-orthogonal of order one on (—1,1). By iteration, we can express p,(z; Fbic d|q)

as a linear combination of p,(z;a,b, c,d|q), pn_1(z;a,b,c,d|q), ..., Pn_k(z;a,b,c,d|q) and
the result follows from Lemma 1.4. The location of the (n — k) real, distinct zeros of
Pn(x; b, ¢, d|q),k €{1,2,...,n— 1}, follows from Lemma 1.6. O

Theorem 4.25. Let a,b, c,d be real, or they occur in complex conjugate pairs if complez.
Suppose |a| = max(|al, |b],|c|,|d]) < 1, ¢ < |a| <1 and let x,,,i € {1,2,...,n}, denote
the zeros of pn(z;a,b,c,d|q) and yni i € {1,2,...,n}, the zeros of p,(x; 2,b,c,d|q). Then

i
(1) ifa>0, =1 <Xp1 < Yn1 < Tp-11 < Tp2 < Yn2 < < Tnin-1 < Tnn < Ynons
(’LZ) Zfa < 07 yn,l < ajn,l < xnfl,l < yn,2 < xn,Q << xnfl,nfl < yn,n < xn,n < 1.
Proof. Suppose |a| = max(|al,|b],|c|,|d|]) < 1. The coefficient of p,_i(z;a,b,c,d|q) in
(4.17) is

aq(g" — 1) (cdg" — q) (bdg" — q) (beg" — )
2 (abcdg®™ — ¢3) (abcdg®™ — q?) .

Ay —
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(i) Consider the case a > 0 and fix a such that ¢ < a < 1. Then a,, < 0 for the given
parameter values and the interlacing result, as well as the position of ¥, 1, follows
from Lemma 1.8 (i).

(ii) Now we consider the case a < 0 and fix a such that —1 < a < —¢. Then a,, > 0 and
the interlacing result, as well as the position of y,, ,, follows from Lemma 1.8 (ii).

O

4.3.5 The ¢g-Racah polynomials

x+1

The ¢-Racah polynomials R, (u(z); a, 5,7, 6|q) with u(z) = ¢~ + d¢* ", are orthogonal

forn € {0,1,..., N}, with respect to the discrete weight function

2£E+1>

w(z) = (g, Bdg, 7q, 79¢; 9)=(1 — 7dq
(q7 %&17 %a 56], q)x(aﬁq)w(l — fy§q>

for ag = ¢V or Boqg = ¢V or v¢ = ¢, where N is a nonnegative integer. Shifting
the parameter 7 or ¢ will change u(x) and we will only consider shifts of o and 5. From
(4.11a) and (4.11b) we obtain

B.7,0lq) = Ra(pu(z); v, B, 7, 0lq

)
aq(l —q")(1 — Bq")(1 —vg")(1 — Bdq")
(1 —aBg*)(q — apg*™)
R )
)

N N

(%

R, (u(x); . (4.18a)

én—l(u(x)v «, /87 7> 5|q)7

Ry (u(@); §7 v, 6lq) = Ru(u(z); o, 8,7, 6]q (4.18b)

Bq(1 —¢")(1 - aq™)(1 — vq")(agq" — )
(1 —apg*)(q — apg®)

Theorem 4.26. Let k € {1,2,...,n— 1}. The sequence of q-Racah polynomials

—+ Rn—l(ﬂ(x)yaaﬁa’yv(shl)

(i) {Rn(u(x);%,ﬁ,%ﬂq) N o, with o = ¢ N7 is quasi-orthogonal of order k with

respect to the weight w(z) on (11(0), u(N)) and the polynomials have at least (n — k)
real, distinct zeros on (1u(0), u(N));

n=0> B
spect to the weight w(x) on (u(0), w(N)) and the polynomials have at least (n — k)
real, distinct zeros on (p(0), u(N)).

Proof .

(i) Let @ = ¢V, From Lemma 1.4 and (4.18a), it follows that R, (y(x); =, B8,7,6lq)
is quasi-orthogonal of order one on ((0),(N)). By iteration, we can express
Ry (p(2); 2, 8,7, 0lq) as a linear combination of R, (u(z); a, 8,7, 0q), Rn-1(u(x); o,

(1) {Rn(u(x);a, 5,7,5\61) N with B = qufl, is quasi-orthogonal of order k with re-

B,7%,01q), -y Ro_r(u(x); o, B,7,0|q) and the result follows from Lemma 1.4. Fur-
thermore, from Lemma 1.6 we know that at least (n — k) real, distinct zeros of

Ro(p(x); &, 8,7,0), k € {1,2,...,n — 1}, lie in (u(0), u(N)).

N-1

(i) Let § = 25— The result follows in the same way from (4.18b) and Lemmas 1.4
and 1.6.
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O
For values of n larger than % + 1, we obtain the following interlacing results.

Theorem 4.27. Consider n < N and let x,;,i € {1,2,...,n}, denote the zeros of
Rn(/i(x)JOQvi%é‘Q); yn,ivi < {1,2,...,%}, the zeros Of Rn(ﬂ(@g B7775‘Q) and “nyis

7q7

i€{1,2,...,n}, the zeros of ]:Zn(,u(x), a, g,'y,(ﬂq). Then, forn > % +1,
(i) if o =q V"' and Bg <1, g <1, Bdg <1,
,u(o) < Tn,1 < Yn,1 < Tn—1,1 < Tn,2 < Yn,2 <--- < Tn—1,n—1 < Tnn < Yn.ns

q—N—l

(ii) if B =T—— and aqg < 1, y¢ <1, $q <1, we have

M(O) < Tn,1 < Zn,1 < Tn—-1,1 < Tn,2 < Zn,2 <--- < Tn—1n—1 < Tnn < Znn-

Proof. Under the above hypotheses, the coefficients of R,_1(p(z); v, 8,7,0|q) in (4.18a)
and (4.18b) are negative and the interlacing results follow from Lemma 1.8 (i). O

4.4 Three-term recurrence equations satisfied by clas-
sical orthogonal polynomials on a quadratic or a
g-quadratic lattice

Every orthogonal polynomial system {p,(z)},>0 satisfies a three-term recurrence relation
of the type

Pni1(z) = (Apx + Bp)pu(z) — Cpppa(x) (n=0,1,2,...,p_1 =0), (4.19)

with C,A,A,_1 > 0. Moreover, Favard’s theorem [Chihara, 1978, Section 4| states that
the converse is true. Starting from a difference equation of type (4.2) or (4.5) given in
[Koekoek et al., 2010], we deduce the divided-difference equation of type (4.1), (4.3) or
(4.4) satisfied by each classical orthogonal polynomial on a quadratic or g-quadratic lattice.
Some of them can be found in [Foupouagnigni, 2008], [Njionou Sadjang et al., 2015b],
[Tcheutia et al., 2017]. They will also be recovered using the algorithms implemented in
the next section with the three-term recurrence relation given as input. Considering the
divided-difference equations of type (4.1), (4.3) or (4.4) as input, we recall in this section
a general method to derive three-term recurrence relations (4.19) for classical orthogonal
polynomials on a quadratic or a ¢-quadratic lattice in terms of the coefficients a, b, c,d, e
of the given polynomials ¢(x) = ax?® + bz + ¢ and ¥(z) = dx + e.

The polynomial basis (z"),>0 is not appropriate for the operators D,, D, and ¢,
(see e. g. [Foupouagnigni, 2008], [Witte, 2015]). From the definitions of the classical
orthogonal polynomials on a quadratic or a ¢-quadratic lattice, the natural polynomial
bases appropriate for the operator D, are the bases { B, (a, z) }n>0, {&.(7, 0, u(z)) }n>o and
{Xn (7,0, A(x)) }nz0 defined by

n—1

Bn(a,x) = (aq®; q)n(aqg*; q)n = H(l —2axq” + d*¢**), n > 1, By(a,z) =1, (4.20)
k=0
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where x = z(s) = cosf = 5 4 =€
n—1
En(7, 6, 1(x)) = (7 @)n (V0G5 @) = TT (1 + 706>+ — pu(x)g¥), n > 1,
F—0 (4.21)
&](7? 67 ,LL(Q?)) = 17
with p(z) = ¢=* 4+ ydg"
n—1
n(7,0,0(2) = (—)nlz+v+ 54+ 1), = k(v+8+k+1)—Xz)), n>1,
(18 M@)) = (=0 ++3+ 1 =TT (K6 )= A@)), n 2

XO(’77 57 >‘($))

L,
for \M(z) = z(x + v+ d + 1). The basis {¥,(a, x)},>0 defined by
Unla,x) = (a+ i), (a — iz),; (4.23)

is appropriate for the operator D, whereas the corresponding basis for 6, is {(a +
i%)n}n>0. The elements of the basis {By,(a,)}n>0, {(@ + i@)n}n>0, {&n(7, 9, () }nzo
or {Xn(7,0,A(x))}n>0 are polynomials of degree n in the variables z, x, u(x) or A(z),
respectively, and the elements of the basis {9, (a,x)},>¢ are polynomials of degree n in
the variable 2.

4.4.1 Polynomials expanded in the basis {J,(«,)},>0

In this basis are expanded the Wilson polynomials W, (2?;a,b,c,d) and the continuous
dual Hahn polynomials S, (x?;a, b, c). The procedure to find the coefficients of the recur-
rence equation (4.19) (with z substituted by x?) in terms of the coefficients a, b, ¢, d, e of
¢(z) and ¢ (x) is as follows (cf. [Foupouagnigni et al., 2013], [Koepf and Schmersau, 1998],
[Koepf and Schmersau, 2002], [Njionou Sadjang et al., 2015b], [Tcheutia et al., 2017]):

1. Substitute
() = pn(2?) = knOn(a, x) + klOn(c, ) + kndp_o(a, ) + ... (4.24)

in the divided-difference equation (4.3) (with x substituted by z?). Next multiply
this equation by ¥ (a, x) and use the relations [Njionou Sadjang et al.; 2015b]

i(a, 2)D30, (e, ) = n(n)n(n — a1 (e, @),
V1 (a, 2)S, D0, (o, ) = n(n) (B(a + %, n—1)9,_1(a,z) + J,(c, m)) :
Vi (a, )0, (o, x) = v(a,n)d,(a, z) + Opir (o, ),

with '
n(n) =n, fla,n) = —n(n+a— 5), v(a,n) = —(n* + 2an).
2. To eliminate the terms 229, («, x) and 2*9,, (v, ), use twice the relation [Njionou Sad-

jang et al., 2015b]

2?0, (a, 1) = —(n + a)*V,(a, ) + Vi1 (a, ). (4.25)
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3. Equate the coefficients of ¥,,11(a, z) to get A\, = —n((n — 1)a+d) in (4.3), and the
coefficients of J,,(c, x) and ¥, (o, x) to get kI, /kn, kI /k, € Q(n), respectively.

4. Substitute the expression of p, given by (4.24) in the recurrence relation (4.19)
(with x substituted by z?) and use (4.25). By equating the coefficients of ¥,,1(c, x),
Un(a, ), 91 (v, ), we get A, B, and C,, respectively, in terms of k,, k!, and k!'.

5. Substituting the values of k], and k] given in step 3 in these equations yields the
three unknowns in terms of a, b, ¢, d, e, n, k,_1, kyn, kni1.

Proposition 4.28. Let p,(z) = p.(2?) = kOn(a,z) + K 9. (a, 2) + k!9, o(a, z) +
. (n € Ny) be a family of polynomial solutions of the divided-difference equation (4.3).
Then the recurrence equation (4.19) (with x substituted by x2) holds with

K

A=

k—"B ~ n(m-1a(2an’—2an+4nd —2b—d) —nd(2b+d —2nd) +e(2a —d)
Epnpr " (2n—2)a+d)(2an+ d) ’
Fno1, n(an —2a+d)

220, = x{$(n—1)°"a*+ (n—1)db?
Knt1 (2an —a+d) (2an —3a+d) (2an —2a + d)° {( ) ( )

+ (-2 (n—1"+3 (n—l)Sd—4c(n—1)2)a2+ (-2 (n—1)2d2—|—de)b+(—en—c—|—e)d2
+((n—1)2b2—4 (n—1)*db+3 (n—1)4d2—(n—1)(en+4c—e)d—62)a—|—(n—1)3d3}.

4.4.2 Polynomials expanded in the basis {(a + iz),},>0

The polynomials expanded in this basis are the continuous Hahn polynomials p,, (z; a, b, ¢, d)

and the Meixner-Pollaczek polynomials PT(L’\) (x;6). The action of the operators d, and S,
on the basis (a + ix), is given by [Tcheutia et al., 2017]

(a+i2)0%(a +iz), = —n(n — 1)(a +iz),_1;
n(n—1).
2

(a+ix)(a+ix), = (@ +i2) 1 — (o +102),;
r(a+ix), = —i(a+iz)p +i(n+ a)(a +iz),.

( )

(a +i2)S0, (a + i), = ni(a + iz), — (a4 ix)p_1;
( Jn =
( )

We suppose that
(@) = kp(a+ix), + k(@ + ix) o + k(@ +i2) o + . . ...

Using the same approach as in Section 4.4.1, it follows that A\, = —n((n — 1)a + d) in
(4.4) and the following result holds.

Proposition 4.29. Let p,(x) = k,(a+ix),+ k| (a+ix),—1 + k) (a+iz),—2+... (n € Np)
be a family of polynomial solutions of the divided-difference equation (4.4). Then the
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recurrence equation (4.19) is valid with

k
_”An:i7
kn-ﬁ-l
k., (2bn? —2bn —2¢€)a+d(2bn + e)
g i ,
kni1 (2an —2a+d) (2an + d)
kp—
1Cn:n{—8n(n—2)(n—1)4a5+ (—4 (Tn? = 13n+2) (n—1)°d
knJrl

+326n(n—2)(n—1)2>a4+ (—8n(n—2)(n—1)2b2—2 (1972 — 347 + 10)

x (n—1) d2—|—16c(n—1)(5n2—9n+2)d+862n(n—2)>a3

_|_

(=4 —1) (50— 9n+2) dt* — 8en (n—2) db+ (720 — 128 + 48) dc
—(n— )(5n—3)(5n—6)d3—|—(12n—8)62d>a2+(—4(4n—3)(n—1)d262
+ (= 12n+8)ed2b+(28n—24)d30—(8n—7)(n—1)d4+462d2>a

+ (—4n+4)d®* — 4bd’e + (1 —n) d° + 4 cd*

/{4(2an—2a+d)2(2an—3a+d) (2an +d) (2an—a+d)}.

4.4.3 Polynomials expanded in the basis { x,(7,d, A(z)) }n>0

In this basis, we have the Racah polynomials R, (A(x);«, 3,7,6), the Dual Hahn poly-
nomials R, (A(x);v,d, N). We get by direct computations the action of the operators D,
and S, on x,(7v,d, A\(x)) given by

X1(77 57 )\(SL’)) ]D)azc Xn(fyv 57 )\(LE)) = 77(”)77(” - 1) Xn71<77 57 )\(.T)),
728, 0(2)) 8.5, (1 Ma)) =10 BGG2 701 = 1) a5 M) + 12,80 ).
(7.8, M(x)

1(7, 0, M2)) X (7,0, M) = v(7,6,1) Xa (7,6, A(@)) + Xns+1(7, 0, A(2)),
(l’) Xn(’% 57 A(x)) = H’(’ya 5a n) Xn(,% 6’ )\(37)) — Xn+1 (77 57 )‘(l‘))>

n(v,0,n) =n(n+vy+d+1), v(y,6,n) = —n(n+y+46+1),

—n2n+~v+0+ 2a
Bla,v,0,n) = ( 72 )

We set

Pn() 1= pn(A(@)) = Fn Xn(7, 6, A(2)) + ky, Xn-1(7, 6, A(2)) + Ky Xn-2(7, 0, A(2)) + ...,

use the latter structure relations satisfied by x, (7, d, A(x)), and proceed as in Section 4.4.1
to get A, = —n((n — 1)a + d) in (4.1) and the following result.
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Proposition 4.30. Let p,(x) := pp(A(x)) = kn Xn(7,0,A(x)) + kI, Xn-1(7,0, A(x)) +
k! Xn—2(7,0,M(x)) + ... (n € Ny) be a family of polynomial solutions of the divided-
difference equation (4.1) (where ¢(x) <— ¢(A(x)) and Y(z) < (A (z))). Then the recur-
rence equation (4.19) (with x < \(z)) is valid with

k

A, =1,

kn—l—l

k., B __an(n—1)(2an2—2an+4dn+2b—d)+2bdn+n(2n—1)d2+de—2ae
Enp1 (2an —2a+d) (2an+d) ’
ko — -2 d

L, = — n(an—2a+d) 2><{(4c—|—(—4n—|—4)e)d2
Knt1 4 (2an—a+d)(2an—3a+d)(2an —2a+d)

+(—8 (n—1)"b+4 (n— 1) (202 +457+272 - 30+ 45+ 47+ 6n—1)d
+16c(n—1) a2 + ((n =1 (56 + 1007+ 59 — 120> + 106+ 107 + 24n — 7) &
—4(n—17%0—16 (n—1)3db+((16n—16)0—4e(n—1)2)d—|—462)a
+4n—1)"n+d+7) (—n+2+5+7)a®+ (—4n +4)dp?

+ (-8 (n—1)2d2—4de)b+(n—1)(—2n+3+(5—|—”y)(2n—1+(5+’y)d3}.

4.4.4 Polynomials expanded in the basis {B, (o, z)},>0

The following polynomial families are expanded in the basis { B, («, z)}: the Askey-Wilson
polynomials p,(z;a,b, c,d|q), the continuous dual ¢g-Hahn polynomials p,(z;a, b, c|q), the
continuous ¢-Hahn polynomials p,(z;a,b,c,d;q), the Al-Salam-Chihara polynomials
Qn(z;a,blq), the g-Meixner-Pollaczek polynomials P,(z;alg), the continuous g¢-Jacobi
polynomials Pi*" (x|q), the continuous g-ultraspherical /Rogers polynomials C,(z; 5|q),
the continuous big ¢-Hermite polynomials H,(x;a|q), the continuous ¢-Laguerre polyno-
mials P® (x|q) The procedure to find the coefficients of the recurrence equation (4.19)
in terms of the coefficients a, b, ¢, d, e of ¢(x) and ¢(x) is as in Section 4.4.1:

1. Substitute

pn(z) = kp,Bp(a,z) + k! By 1 (o, ) + k. By _o(a, ) + . ... (4.26)
in the divided-difference equation (4.1). Next multiply this equation by Bj(a,x)
and use the relations [Foupouagnigni et al., 2013]

B (e, 2)D2 Ba(a, 2) =m0 mn(an/Gm — 1) Bu_1(0, 2), (4.27)
By(e, 2)8:D; By (e, ) = nla,n) (Bi(ay/q;n — 1) B,y (a, ) + fa(n — 1) Bu(a, 7)),
(4.28)
Bi(a,z)B,(a, z) = vi(a,n) B, (o, x) + v2(n) By (o, x), (4.29)
with
2a(1 —q")

(o) =  Brfasn) = 50— 0% (1 - g,

qg—1
1

) = 5+ 500 o) = (1= ")(1=a*"), oa(m) = ¢
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2. To eliminate the terms zB, (o, x) and x?B,(«a, ), use the relations [Foupouagnigni
et al., 2013]

xBp (o, x) = py (o, n) By (o, x) + po(a,n) By (o, x), (4.30)
‘T2BN(Q7 CB) = ,u%((% n)Bn<a’ ZL’) + /L2<a’ n)(lul(a/7 n) + p (av n+ 1))Bn+1(a’ ZL')
+ pa(, n)p2(a,n + 1) Byia(a, ), (4.31)
with
(am) = LT ) = —
a,n) = ——— a,n) = .
H1{&, 20&(]” y M2 @&, 205(]77’

3. Equating the coefficients of B, ,1(«a, x) gives

An__}(q"—l)(2\/6_1(61”—q)aJrQ(q—1)((1”+(1)d)‘ (432)
2 ¢ (¢ —1)

Equating the coefficients of B, (v, ) and B,,_1 (o, x) gives k], /ky,, k. /k, € Q(¢", \/q).

4. Substitute the expression of p,, given by (4.26) in the recurrence relation (4.19) and
use (4.30). By equating the coefficients of B, ;1(a, x), B,(a, ), By_1(a, x), we get
A,, B, and C,, respectively, given as

A Ky, _ 1 B Ky _ _M2<O‘7n — 1)1% k;LJrl . UI(O‘?n) (4 33)
“hner palayn)” T kg p2(cv, n)ky, kg1 p2(a,n)’ '
C k-1 _ /~52(a7n - 1)(’%)2 :u2<05=n - 2)]5;; . k;{—i—l + k;zk;z—&-l (4'34)
" knJrl 2 (Oé, n)krzz /JJ2(057 n) kﬂ knJrl knkn+1
~ (mlayn) = mla,n — 1)K,
(o, n)ky,

5. Substituting the values of k], and k] given in step 3 in these equations yields the three
unknowns given in terms of «, a, b, ¢, d, e, n, ky_1, kp, kny1, for N =¢", Q = \/q,
by:
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k

— A, = —2aN,
kn—l—l
kk" B, — 2aN2{(( (—2Q* - 2Q) b+ (Q* —2Q*+1) e) (Q*d +2Qa — d) N?
n+1

— (@ +1) (((—2Q5+4Q3—2Q)e—4Q4b—4Q2b)a+ (Q°—Q*'—Q*+1)de
+(2Q% — 4Q% + 2Qb) d>N—Q2((—2Q3—2Q)b+ (@ —2Q*+1)¢) (QQd—2Qa—d)>}

/{ ((Q*d+2Qa—d) N* + Q%d — 2Q%a — Q*d) ((Q*d+2Qa — d) N? + Q%d — 2Qa — d) }
kn—l
kn+1

—4Q° (Q*d+2Qa — d)2 (a+2c)N° + Q" (Q*d+2Qa — d) (Q4d2 —4Q%* —40Q%* + 16 Q*V?
Q%P +8Q% + d — 4 62)N4 —8 Q7<Q4ad2 +2Q%e? — 4Q"%de + 2 Q'ed? — 4Q%°

C, = a®N? (N — 1) ((Q2d+2Qa—d)N+Q6d—2Q5a—Q4d>{((Q2d+2Qa—d)3N6

—8Q%% + 8 Q%ab® — 2Q%ad? — 4Q%ae? + 8 Q%bde — 4 Q%cd® + ad® + 2 ae® — 4 bde + 20d2) N3
—Q*(Q*d—2Qa—d) (Q'd* —4Q"* —4Q%a* + 16 Q0> — 2Q*d* + 8Q%¢* + d* — 4¢”) N*
—4Q" (Q%d—2Qa—d)’ (a+2¢) N — Q" (QQd—ZQa—d)?’)}

/{Q2 ((Q*d+2Qa — d) N? + Q%d — 2Q%a — Q*d)” ( (Q%d +2Qa — d) N?

+Q'd-2Q% — Q%d) ((Q*d+2Qa—d) N*+ Q%d - 2Qa - Q%) }.

4.4.5 Polynomials expanded in the basis {&,(7,d, u(z)) }nso

The polynomials represented in this basis are: the g—Racah polynomials R, (u(z); «, 5,7, d|q),
the dual ¢—Hahn polynomials R, (u(x);v,0, N|g), the dual g¢—Krawtchouk polynomials
K, (u(x); ¢, N|q). By direct computations, we have the structure relations

61 (77 6a M(I))Dign(’% 5a H(x))
§1(7, 0, ()22 (7, 0, p())

77(17 n)n(\/a7 n-— 1)571—1(77 5a N(‘T))v
1L m) (8112 76,1 = Dua (7,6, ()
+ Ban = 1)&a(3,6, 4(@)));

51 (77 67 M(x))£n<77 (57 :u(l')) =" (77 57 n)§n<7> 57 /L(l')) + y2(n>£n+l(77 57 ,u(:r;)),
()& (7, 0, (@) = pa (7,6, 1)6n (7, 6, i) + p2(n)nta (v, 6, plz));

where
1+ Hdg* ! ~1 . : B
M1(7,5,n)=—n , ,ug(n):q—n7 vi(v,0,n) = (1 — ¢ ™) (1 —~dq +1)7 va(n) = ¢,
L n -n 1+4" a(l —q"
a7 0.m) = 51— a0 (1 =g, Falo) = L () = U=

We suppose now that

pn(iL') = pn(ﬂ<x)> = knfn(% 0, :U(x)) + kggnfl(’)’a 0, [L(l‘)) + k:z,gan(% 9, :u(x)) to
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To get the coefficients A,,, B, and C,, of (4.19), we proceed as in Section 4.4.4 and obtain
An given by (4.32) and for N = ¢", Q = /4,

kn

____f4n = —N,
kn+1
g = v (208 - 2Q) b+ (Q' ~ 27 +1) ) (@0 +2Qu — d) N

—(@*+1) (—2 (Q*e +2Q% —2Q% +2Qb +e) Qa+d(@2—1)2(Q26+2Qb+e)>N
Q2 ((—2Q° —2Q) b+ (Q*—2Q*+1) €) (Q2d—2Qa—d)>}

/{ ((Q*d+2Qa —d) N> + Q°d — 2Q% — Q*d) ((Q%d +2Qa — d) N> + Q*d — 2 Qa — d) }
kn—l

kn+1
X {(57 (Q%d+2Qa—d)’ N°—2Q (Q*d+2Qa — d)’ (2Q%ady + c) N

+Q* (@ +2Qa—d) (vQ* (P — d)* — 4Q%2) 5 — (Q%e — )" + 4Q%* ) N*

. 4@5( ((QQd —d)’ - 4Q2a2> c+270% ((QQd— d)* — 4Q2a2> 5+ <Q4e2 FAQM — 2%
+62>a— 2bde (Q* — 1)2>N3 — Q% (Q% — 2Qa — d) (7622 ((Q%z— d)’ - 4Q2a2> 5+ 4Q%?
— (Q%— 6)2)N2 ~2Q° (Qd—2Qa—d)* (2Q%ab v+ c) N — Q6 (Q%d —2Qa — d)‘°’)}
J{(@*d+2Qa—d) N* + Q*d —2Q7a — Q%) ((Q*d +2Qa — d) N?

+ QU —20% - Q2d> ((Q*d +2Qa — d) N? + Q%d — 2Q%a — Q*d)’ }

Cn:(N—l)N2<(—2Q5+2NQ)a+ (Q6—Q4+NQ2—N)d)

4.5 Extension of the algorithms implemented in the
Maple package retode

As shown in the last section 4.4, the classical orthogonal polynomials on a quadratic or a
g-quadratic lattice satisfy a recurrence equation

pn() = (Anx + By)pa(z) — Crpp_1(x),

with A, B,, C, given explicitly. If a holonomic recurrence equation (i. e. linear, homo-
geneous with polynomial coefficients)

G (2)Pns2(2) + 70 (2)Pnt1 (2) + 80 (2)pn(2) = 0 (gn(2), T0(2), sn(z) € Qln, 2]),  (4.35)

is given as input, the Maple implementations rec2ortho of Koorwinder and Swarttouw
or retode of Koepf and Schmersau can identify its solution which is a (linear trans-
formation of a) classical orthogonal polynomial system of a continuous, a discrete or a
g-discrete variable, if applicable. The two implementations rec2ortho and retode do not
handle classical orthogonal polynomials on a quadratic or g-quadratic lattice. Alhaidari
[2017] (see also [Alhaidari, 2019]) submitted (as open problem during the 14th Interna-
tional Symposium on Orthogonal Polynomials, Special Functions and Applications) two
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polynomials defined by their three-term recurrence relations and initial values. He was
interested by the derivation of their weight functions, generating functions, orthogonality
relations, etc.. Motivated by this open problem and as suggested in the comments by
Van Assche [2019], our aim in this section is to implement, using the same approach as
Koepl and Schmersau [2002], algorithms to test whether a given holonomic recurrence
equation has classical orthogonal polynomial solutions on a quadratic or a ¢-quadratic
lattice. The algorithms were explicitly given and explained in [Koepf and Schmersau,
2002] for classical orthogonal polynomials of a continuous, a discrete or a ¢-discrete vari-
able and we will adapt them here for classical orthogonal polynomials on a quadratic or
a g-quadratic lattice according to the basis in which the polynomials are expanded.

4.5.1 Polynomials expanded in the basis {9, (o, z)},>0

Algorithm 1 (cf. [Koepf and Schmersau, 2002, Algorithms 1 and 2]). This algorithm
takes as input a holonomic three-term recurrence equation of type (4.35) and decides if
it has (a linear transformation of) classical orthogonal polynomial solutions expanded in
the basis {0,,(a, z) },>0, and returns its divided-difference equation if applicable.

1. Input: A holonomic three-term recurrence equation
G (2)Pnt2(2) + 10 (2)Pns1(2) + 50 (2)pn(2) = 0 (gu(@), 70(), sn(z) € Qln, ]).

2. shift: Shift by max{n € Ny | n is a zero of either g,_1(x) or s,(z)}+1 if necessary.
3. Rewriting: Rewrite the recurrence equation in the form

If either ¢, (x) is not a polynomial of degree one in x or u,(x) is not a constant with
respect to x, return “no classical orthogonal polynomial solution exists";
exit.

4. Linear transformation: Use the linear transformation z — (z — g)/f with un-
knowns f and ¢ to rewrite the recurrence equation.

5. Standardization: Rewrite the latter recurrence equation as

pn-l—l(x) = (Anx + Bn)pn(m> - Cnpn—l(J:) (Am Bm On S Q(n)v An 7é 0) (436)

Since £2- A, = 1 in Proposition 4.28, define

kn+1

kn n
k:l = An = Z]_n (Um Wy € @[TL])

6. Make monic: Since p,(z) = k,pn(z) where p,(z) is the monic family, we can rewrite
(4.36) as

ﬁn—l—l(x) = (l‘ + Bn)ﬁn(‘r) - Onﬁn—l(x)a
Cn

1 h B = = —_
it " AnAnfl

€ Q(n) and C,: € Q(n),

[

3
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and bring these rational functions in lowest terms. According to Proposition 4.28, if
the degree of the numerator of B, is larger than 4, if the degree of the denominator
of B, is larger than 2, if the degree of the numerator of C,, is larger than 8, or if
the degree of the denominator of C,, is larger than 4, then return “no classical
orthogonal polynomial solution exists'.

. Polynomial identities: Set

~ kn ~ kp_
Bn = _Bnu Cn = _10n7
kn+1 kn—i—l
with the right-hand sides given in Proposition 4.28, in terms of the unknowns
a, b, ¢, d, e. Multiply these identities by their common denominators, and bring
them therefore in polynomial form.

. Equating coefficients: Equate the coeflicients of the powers of n in the two re-
sulting equations. This results in a nonlinear system in the unknowns a, b, ¢, d, e, f
and g. Solve this system by Grobner bases methods. If the system has no solution
or only one with a = d = 0, then return ‘no classical orthogonal polynomial
solution exists"; exit.

. Output: Return the solution vector (a,b,c,d, f,g) of the last step, the divided-
difference equation (4.3) together with the information kk—:l and y = fxr +g.

Example 4.31. For the first example, we consider the three-term recurrence equation
satisfied by the Wilson polynomials

1 - 2.
Wn(xZ) = Wn<x2;a7 bu & d) = Wn(l‘ ’a’b’ = d)
(@a+b)n(a+c)ula+d)y

given by [Kockoek: et al., 2010, Eq. (9.1.4)]

—(a® + W, (2?) = AWoia (22) — (Ap + C)Wi(2?) + CWi_y (22),

n+a+bt+c+d—1)(n+a+b)(n+a+c)(n+a+d
2n+a+b+c+d—1)2n+a+b+c+d)
nn+b+c—1)(n+b+d—1)(n+c+d—-1)

" @2n+a+btctd—2)2n+ta+tbtct+d—1)

4

)

Using our implementation, the result is obtained by

A[n] :=(nta+b+c+d-1)*(n+a+b)* (ntatc)* (n+a+d)/( (2*n+a+b+c+d-1)
*(2*n+a+b+c+d))

m+a+b+c+d—1)(n+a+b)(n+a+c)(n+a+d)
2n+a+b+c+d—1) 2n+a+b+c+d)

Cln] :=n*(n+b+c-1)*(n+b+d-1) *(n+c+d-1)/((2*n+a+b+c+d-2)
*(2*n+a+b+c+d-1))

nn+b+c—1)(n+b+d—1)(n+c+d—1)

2n4+a+b+c+d—2)2n+a+b+c+d—1)
RecWilson:= -(a~2+zx)*p(n)=A[n]*p(n+1)-(A[n]+C[n])*p(n)+C[n]*p(n-1):

A, =

C, =
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> strict:=true:
> REtoWilsonDE (subs(n=n+1, RecWilson),p(n),z)

‘Warning: parameters have the wvalues’, {a =a,b=—a(ab+ ac+ ad+ cb+ bd + cd),
c = a*bed,d = a* + ab + ac + ad,e = —a*bc — a*bd — a*cd — abcd}

[(abcd—abx—acz — adz — cbr — bdx — cdx + %) DD (DD (p (n, ), z) , x)
— (abc + abd + acd + bed — ax — br — cx — dx) SS (DD (p (n,z),x),x)
—nn+a+b+c+d—1)p(n,z) =0,
Fnir 2n+a+b+c+d—1)2n+a+b+c+d) ]

k,  (n+at+btectd—1)(n+a+b(nt+atc)(n+a+d)
which gives the divided-difference equation of the Wilson polynomials (see [Njionou Sad-
jang et al., 2015b, Thm. 2.5]), as well as the term ratio k.1 /k,. Here SS and DD stand
for S, and D, respectively.

Example 4.32. Alhaidar: [2017] encountered two families of orthogonal polynomials on
the real line defined by their three-term recurrence relations and initial values. The first
system is given by

1\ 2
cos BHW) (z; a0, 0) = (2 sin 0 <n+ M) +a

2

2 2
— 2
+ v K )H}SJ’“’V)QZ;OZ,G) + (n+M)(n+ V)
Cn4+p+v)2n+p+v+2) Cn4+p+v)2n+p+rv+1)
2n+D)(n+p+v+1) (1)

x H"(z0,0) +

0,0 4
@t o+ Dt prw ) e Fed): (4.37)

with0 < 0 <, u,v > —1, a € R and initial values H(()”’V)(z; a,0) =1, H(fl’y)(z; a,0) = 0.
The second system is

2 2 2n(n + v)
G (5 :< B Pt L B T
) = B (@ a e+ T T e
(M+U3 2(n+ p)(n+v) (nv)
B G (2 0) — (o + B G2t (3
2 w(zo) = (o “O@n+u+W@n+u+V+U w1 (59)
2+ D(n+p+v+1) ()

— (0 + B?) (z;0), (4.38)

Cn+p+v+D)2n+p+v+2) "

with B, = n+ 1+ %, v > —1 and o € R and initial values Gé“’y)(z; o) = 1,
G(fl"/)(z;a) =0.

Our implementation with

BB:=n->n+1+(mu+tnu) /2:

recOpen2:=z*p(n)=((sigma+BB(n) ~2)* ((mu~2-nu~2)/((2*n+mu+nu)

* (2*n+mu+nu+2) ) +1) -2xn* (n+nu) / (2*n+mu+nu) - (mu+1) ~2/2) *p (n)

- (sigma+BB(n-1) ~2) *2* (n+mu) * (n+nu) / ((2*n+mu+nu) * (2*n+mu+nu+1) ) *p(n-1)

- (sigma+BB(n) ~2) *2* (n+1) * (n+mu+nu+1) / ((2*n+mu+nu+1) * (2*n+mu+nu+2) ) xp(n+1) :

vV V. V V V V

strict:=false:
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> REtoWilsonDE(subs(n=n+1, recOpen2),p(n),z)
returns six divided-difference equations (see the Maple file associated to this work) for
the second recurrence equation (4.38):

(22+ (u2—20—3)z~|—i (u—1) (,u2—|—2u+40+1)> D2P,(2/2)

+@Az+2(pu—1)(p+20+1))S.D,P,(2/2) —4n(n+ 1)P,(2/2) =0 (v = —p),
(4.39)

4
—40 (u+1)S.D.P,(2/2) —4n(n — 1)P,(2/2) =0 (v = —pp — 2), (4.40)

1
<z2—|— (W+2p—20+1)z+—(u+1) (u2+2u+4o—+1)> D2P,(z/2)

1
(a222+((u2+2u—20+1)a2—d(u+1)a—§d2>z

+i (w+ 1 (P +2u+40+1) a2—2d(u—|—1)a—|—d2))D§Pn(z/2)

+ (2adz — (p+1) (4a’c —d(p+1)a+d?)) S.D.P,(z/2)
—4dna((n —1)a+d)Py(2/2) =0 (a#0, d#0) (v =—p—2+d/a), (4.41)

1
(Adv+1)z— 5 Vv )D?P,(22) + (V* + v — 22)S.D. P,(22) + nP,(22) = 0, (4.42)
1/7&—% witho =0, p=v —1,

1 1
<(4 v+3)z— 37 (v + 1)) D2P,(22) + (V* +2v — 2z + E)SzDan(QZ) +nP,(2z) =0,
(4.43)

V%—%Witha:—%,uzu,

<(4 v+5)z— % (v+ 1)2> D?P,(22) + (v* + 3v — 22+ 2)S.D. P, (22) + nP,(22) = 0,
(4.44)

v # —% with 0 = 0, p = v + 1. By comparison with the Wilson divided-difference
equation, we deduce from the first three divided-difference equations (4.39)—(4.41) that

G(l‘v'j) (Z, 0’) = constant X Wn(2/27 a, b7 ¢, d)

n

where a, b, ¢, d are permutations of elements of the set

(G40, 5t 1), (4 1)+ Voo, (4 1) — V),
{50+ 1, 50+ 1), =5 (a 1) + Vo, ~ 2+ 1) = Va},
G0+ D, 5t 1), 56— = 1)+ V=0, 56—~ 1)~ Vo),
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for the first equation (4.39), the second equation (4.40), and the third equation (4.41) in
which the parameters a = 1, d = ¢, respectively. This brings therefore a new parameter
§ in the definition of the polynomial G¥*")(z;¢) and we also remark that for d = 0 and
a = 1 in the third equation (4.41), we recover the second equation (4.40). For the value
d = = 2u+2, we recover (from the identification of (4.41) with the Wilson polynomials)
the solution

Wo(z/2;a,b,¢,d)

n!(a+ b),(a+ d),

given in [Van Assche, 2019] where a = ¢ = “TH, b= “TH ++/—0c and d = “TH —\/—0.

Comparing the last three equations (4.42)—(4.44) with the divided-difference equation of
the continuous dual Hahn polynomials S, (2z; a, b, ¢), we deduce that

el (z;0) =

n

G~ (2;0) = constant x S,(2z;a,b, c),

Witha:c:y,b:%,ora:b:u,c:

permutations of elements of the set {v, v, %},

orb=c=vrv,a= 3,1 e, a,b,c are

1
2

N =

G%”’”)(z; —1/4) = constant x S,(2z;a,b,c),
where a, b, ¢ are permutations of elements of the set {v + 1, v, %},
Gt (2;0) = constant x S, (2z;a,b, c),

where a, b, ¢ are permutations of the elements of the set {v + 1,v + 1, %}

4.5.2 Polynomials expanded in the basis {(a + ix), }n>0

The steps of the algorithm in this case agree with those given in Section 4.5.1. In steps 5
and 7, we use Proposition 4.29 whereas in step 6, the algorithm will return “no classical
orthogonal polynomial solution exists" if the degree of the numerator or the de-
nominator of B, is larger than 2, if the degree of the numerator of C, is larger than 7, or
if the degree of the denominator of C,, is larger than 5.

Example 4.33. As example here, starting from the three-term recurrence equations (RE)

[Kockoek et al., 2010, Eq. (9.4.3)] and [Kockoek et al., 2010, Eq. (9.7.3)] satisfied by the

continuous Hahn and the Meixner-Pollaczek polynomials, respectively, and using our im-

plementation with REtoContHahnDE (subs (n=n+1, RE), p(n), ), we recover the divided-
difference equations of type (4.4) satisfied by both families (see [T'cheutia et al., 2017, prop.

4]). In the output in this case, SS and DD stand for S, and 0., respectively.

4.5.3 Polynomials expanded in the basis { x,(7,d, A(z)) }n>0

We proceed as in the algorithm of Section 4.5.1. Here, in steps 5 and 7, we use Propo-
sition 4.30 whereas in step 6, the algorithm will return “no classical orthogonal
polynomial solution exists" if the degree of the numerator of B, is larger than 4,
if the degree of the denominator of B, is larger than 2, if the degree of the numerator of
C,, is larger than 8, or if the degree of the denominator of C,, is larger than 4.
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Example 4.34. If we call RE the three-term recurrence equation of the Racah or the dual
Hahn polynomials given, respectively, by [Kockock et al., 2010, Eq. (9.2.8)] and [Kockoelk:
et al., 2010, Eq. (9.6.3)], then with our implementation REtoRacahDE (subs (n=n+1, RE),
p(n),z), we get the divided-difference equation satisfied by both families (see the associated
Maple file).

Remark 4.35. From our implementations of sections 3.1., 3.2 and 3.3, we get for the
recurrence equation (4.37) the following:

> RE:=1/2%(yty~(-1))*p(n)=(z/(2*I)*(y-y~(-1))*((n+(mu+nu+1)/2) “2+alpha) +

(nu~2-mu~2)/((2*n+mu+nu) * (2*n+mu+nu+2)) ) *p (n)

> 2% (ntmu) * (n+nu) / ((2*n+mutnu) * (2*n+mu+nu+1) ) *p (n-1)

> +2x(n+1)*(ntmutnu+l)/((2*n+mutnu+tl) * (2*n+mutnu+2))*p (n+1) :

> strict:=false:

> REtoWilsonDE (subs(n=n+1, RE), p(n), z)

‘Warning: parameters have the wvalues‘, {a =a,a =a,b=bc=c,d=4d,}

{e=ef=0,9=g.p=prv=vy=1}

‘Warning: parameters have the wvalues‘, {a =a,a=a,b=bc=c,d=4d,}
{e=ef=0,9g=g.p=prv=vy=1}

(dg +¢€) SS (DD (p(n.g),z),z) nlan—a+d)p(n,g)

DD (DD - =0
DD (DD (p(n,g) =), ) + b o PR )

We get the same answer using

> REtoRacahDE (subs(n=n+1, RE),p(n),z)
and

> REtoContHahnDE (subs(n=n+1, RE),p(n),z)
We deduce from our implementations (which return the solution H,S”’V)(z; a,0) =0) that
the polynomial family H,(L”’V)(z; a, 0) satisfying the recurrence equation (4.37) is not related
(by a linear transformation) to a known classical orthogonal polynomial sequence on a
quadratic lattice expanded in the basis {U, (o, x)}, {(a + ix),} or { xn(v,0, A(z))}. This
recurrence equation may lead to a new family of orthogonal polynomials. This problem by
Alhaidari remains then open.

4.5.4 Polynomials expanded in the basis {B,(«, z)},>0

Algorithm 2 (see [Koepf and Schmersau, 2002, Algorithm 3]). This algorithm takes as
input a holonomic three-term recurrence equation of type (4.35) and decides if it has (a
linear transformation of) classical orthogonal polynomial solutions expanded in the basis
{B(a, x) }n>0, and returns its divided-difference equation if applicable.

1. Input: A holonomic three-term recurrence equation
(%) 12(2) + 70 () P02 () + 80 (2)pn(2) = 0 (gu(2), T0(2), sn(2) € Qlg", Vg, 2]) -

2. Shift: Shift by max{n € Ny | n is a zero of either g,_1(z) or s,(z)}+1 if necessary.

3. Rewriting: Rewrite the recurrence equation in the form

Prr1(%) =t (2)pn (@) + un(2)pn1(2)  (a(2), un(z) € Q¢", Vg, 7))
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If either ¢, (x) is not a polynomial of degree one in x or u,(x) is not a constant with
respect to x, return “no classical orthogonal polynomial solution exists';
exit.

Linear transformation: Rewrite the recurrence equation by the linear transfor-
mation = — (z — g)/f with unknowns f and g.

Standardization: Rewrite the latter recurrence equation as

anrl(x) = (Anm + Bn)pn<x) - Cnpnfl(x) (Am Bn7 Cn c Q(qnv \/(_D? An 7é 0) .

In Section 4.4.4, we get ki 1A” = —2aq"™ from which we define

kn

kn-{—l 1 Un

= A, =" (vn, wn €Q[q", /1))

k, 2aq™ Wy,

Make monic: Since p,(z) = k,pn(z), the last recurrence equation becomes

ﬁn—i—l(x) = ((—2aqn)x + Bn)ﬁn(x) - Onﬁn—l(x)>

with B, := % € Q(¢",q) and C, := 1A in € Q(¢", Va)-
n n{in—1
If the degree (w. r. t. N := ¢") of the numerator of B, is larger than 3, if the
degree of the denominator of B, is larger than 4, or if the degree of the numerator
or the denominator of C,, is larger than 8, then return “no classical orthogonal
polynomial solution exists'.

Polynomial identities: Set

Bn = ﬁBna C~Yn = kn—l
kn—H kn—l—l

Ch,

with the right-hand sides given in Section 4.4.4, in terms of the unknowns a, b, ¢, d, e.
Multiply these identities by their common denominators, and bring them therefore
in polynomial form.

Equating coefficients: Equate the coefficients of the powers of N = ¢" in
the two resulting equations. This results in a nonlinear system in the unknowns
a, b, ¢, d, e, fand g. Solve this system by Grobner bases methods. If the system
has no solution or only one with @ = d = 0, then return ‘no classical orthogonal

polynomial solution exists'; exit.

Output: Return the solution vector (a,b,c,d, f,g) of the last step, the divided-

difference equation (4.1) together with the information k’;zl and y = fzr +g.

Example 4.36. As illustrative example, we use our implementation to find the divided-
difference equation of type (4.1) satisfied by the continuous Hermite polynomials.

recContinuousqHermite:=2*x*p(n)=p(n+1)+(1-q°n)*p(n-1)
recContinuousqHermite := 2axp(n) =p(n+1)+ (1 —q¢")p(n—1)
strict:=true:
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> REtoAskeyWilsonDE(subs(n=n+1, recContinuousqHermite), p(n),q, )
, 755 (DD (p(m,2) ) ) /3
qg—1

[1/2 (22> —1) DD (DD (p (n,z),z),x) —

¢ (=1+q)p(ne) o ke
qn (q _ ]_)2 ’ kn
In the result, SS and DD stand for S, and D, respectively. The results for the other
families can be found in the accompanying Maple file.

+2 = 2]

4.5.5 Polynomials expanded in the basis {&,(7, 0, 1u(2))}n>o

The steps of the algorithm in this case agree with those given in Section 4.5.4. In steps 5
and 7, we use the results from Section 4.4.5 whereas in step 6, the algorithm will return “no
classical orthogonal polynomial solution exists" if the degree of the numerator
of B, is larger than 3, if the degree of the denominator of B,, is larger than 4, if the degree
of the numerator or the denominator of C,, is larger than 8.

Example 4.37. If we consider for example the recurrence equation RE for the q-Racah,
dual q-Hahn, dual q-Krawtchouk polynomials given, respectively, by [Kockoek: et al., 2010,
Eq. (14.2.3)], [Kockoek et al., 2010, Eq. (14.7.8)], [Kockoek et al., 2010, Eq. (14.17.8)],
we use our implementation REtoqRacahDE (subs(n=n+1,RE), p(n), x, q) to get the
divided-difference equations satisfied by the three families of polynomials and the prod-
uct 0.

Note: The Maple implementation retode by Koepf and Schmersau has been updated
with our extension to classical orthogonal polynomials on a quadratic or a g-quadratic
lattice. The package retode.mpl and a worksheet retodedemo.mw containing the three-
term recurrence equations of Section 4.4 and the examples for all the classical orthogonal
polynomials on a quadratic or a g-quadratic lattice can be obtained from http://www.
mathematik.uni-kassel.de/ tcheutia/.


http://www.mathematik.uni-kassel.de/~tcheutia/
http://www.mathematik.uni-kassel.de/~tcheutia/
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