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Abstract

Using an algorithmic approach, we derive classes of mixed recurrence equations satisfied
by classical orthogonal polynomials. Starting from certain structure relations satisfied by
classical orthogonal polynomials or their connection formulae, we show that our mixed
recurrence equations are structurally valid. However, they couldn’t be easily obtained
with classical methods and for this reason, our algorithmic approach is important. The
main algorithmic tool used here is an extended version of Zeilberger’s algorithm. As
application of the mixed recurrence equations,

1. we investigate interlacing properties of zeros of sequences of classical orthogonal
polynomials;

2. we prove quasi-orthogonality of certain classes of polynomials and determine the
location of the extreme zeros of the quasi-orthogonal polynomials with respect to
the end points of the interval of orthogonality of the polynomial sequence, where
possible;

3. we find bounds for the extreme zeros of classical orthogonal polynomials.

Every orthogonal polynomial system {pn(x)}n≥0 satisfies a three-term recurrence relation
of the type

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x) (n = 0, 1, 2, . . . , p−1 ≡ 0),

with CnAnAn−1 > 0. Moreover, Favard’s theorem states that the converse is also true.
A general method to derive the coefficients An, Bn, Cn in terms of the polynomial co-
efficients of the divided-difference equations satisfied by orthogonal polynomials on a
quadratic or q-quadratic lattice is revisited. The Maple implementations rec2ortho of
Koornwinder and Swarttouw [1996–1998] or retode of Koepf and Schmersau [2002] were
developed to identify classical orthogonal polynomials knowing their three-term recur-
rence relations. The two implementations rec2ortho and retode do not handle classical
orthogonal polynomials on a quadratic or q-quadratic lattice. We extend the Maple im-
plementation retode of Koepf and Schmersau [2002] to cover classical orthogonal polyno-
mials on quadratic or q-quadratic lattices and to answer as application an open problem
submitted by Alhaidari [2017] during the 14th International Symposium on Orthogonal
Polynomials, Special Functions and Applications.



Chapter 0

General Introduction

We say that a polynomial set {yn(x)}n≥0, where yn(x) is of exact degree n in the variable
x, is orthogonal with respect to the measure dµ(x) defined on the interval (c, d) (with
−∞ ≤ c < d ≤ +∞) if the following orthogonality relation is valid

〈yn(x), ym(x)〉 :=

∫ d

c

yn(x)ym(x)dµ(x)

= 0 if n 6= m

6= 0 if n = m.

If the nondecreasing, real valued, bounded function µ(x) is absolutely continuous with
dµ(x) = ρ(x)dx, ρ(x) ≥ 0, then the orthogonality relation reduces to

〈yn(x), ym(x)〉 =

∫ d

c

yn(x)ym(x)ρ(x)dx

= 0 if n 6= m

= hn 6= 0 if n = m.

The sequence {yn}n≥0 is said to be orthogonal with respect to the weight function ρ(x)
defined on the interval (c, d). We refer to the sequence {yn}n≥0 as orthogonal polynomials
of a continuous variable.

However, if µ(x) is a step-function with jumps ρ(x) = ρj at the points x = xj = j, j =
0, 1, 2, . . ., then the orthogonality relation takes the form

〈yn(x), ym(x)〉 =
∞∑
x=0

yn(x)ym(x)ρ(x)

= 0 if n 6= m

= hn 6= 0 if n = m.

In this case, the variable x = xj is discrete instead of being continuous and we refer to
the sequence {yn}n≥0 as orthogonal polynomials of a discrete variable.

A family {yn}n≥0 of orthogonal polynomials of a continuous variable is said to be
classical if the weight function ρ(x) is solution of the Pearson equation

(σ(x)ρ(x))′ = τ(x)ρ(x),

where σ(x) = ax2 + bx + c is a polynomial of at most second order and τ(x) = dx + e is
a polynomial of first order, with σ(x) > 0 on (c, d) and lim

x→c,d
xnσ(x)ρ(x) = 0.

It is known that classical orthogonal polynomials (in short COP) of a continuous
variable satisfy a second-order differential equation of the type

σ(x)y′′n(x) + τ(x)y′n(x) + λnyn(x) = 0,
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where λn is a constant depending on the leading coefficients of σ and τ .
On the other hand, COP of a discrete variable satisfy (depending on the type of the

discrete variable) three types of difference equations. COP of a discrete variable on a
linear lattice satisfy a second-order difference equation

σ(x)∆∇yn(x) + τ(x)∆yn(x) + λnyn(x) = 0,

if the variable is of the form x = xj = j, j = 0, 1, . . ., where ∆ and ∇ are, respectively,
the forward and the backward difference operators defined by

∆f(x) = f(x+ 1)− f(x), ∇f(x) = f(x)− f(x− 1).

Classical q-orthogonal polynomials satisfy a second-order q-difference equation

σ(x)DqD 1
q
yn(x) + τ(x)Dqyn(x) + λn,qyn(x) = 0,

if the variable is of the form x = xj = qj, j = 0, 1, . . . or j = . . . ,−2,−1, 0, 1, 2, . . ., where
Dq is the Hahn operator defined by

Dqf(x) =
f(qx)− f(x)

(q − 1)x
.

COP of a discrete variable on a quadratic or a q-quadratic lattice satisfy a second-order
divided-difference equation

σ(x(s))D2
xyn(x(s)) + τ(x(s))SxDxyn(x(s)) + λnyn(x(s)) = 0,

if the variable is of the form

x = x(s) =

c4s
2 + c5s+ c6 if q = 1,

c1q
s + c2q

−s + c3 if q 6= 1.

Here the operators Dx and Sx are defined by Foupouagnigni [2008]

Dxf(x(s)) =
f(x(s+ 1

2
))− f(x(s− 1

2
))

x(s+ 1
2
)− x(s− 1

2
)

,

Sxf(x(s)) =
f(x(s+ 1

2
)) + f(x(s− 1

2
))

2
.

The classical orthogonal polynomials considered in the sequel (see e.g. [Chihara, 1978],
[Nikiforov and Uvarov, 1988], [Nikiforov et al., 1991], [Koekoek et al., 2010] and references
therein) are defined in terms of the generalized hypergeometric series

pFq

a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣∣x
 =

∞∑
m=0

(a1)m · · · (ap)m
(b1)m · · · (bq)m

xm

m!
,

where (a)m denotes the Pochhammer symbol (or shifted factorial) defined by

(a)m =

1 if m = 0

a(a+ 1)(a+ 2) · · · (a+m− 1) if m ∈ N.
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Their q-orthogonal analogues, 0 < q < 1, are given in terms of basic hypergeometric series
(see e.g. [Gasper and Rahman, 1990], [Koekoek et al., 2010] and references therein)

rφs

a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣∣ q; z
 =

∞∑
k=0

(a1, . . . , ar; q)k
(b1, . . . , bs; q)k

(
(−1)kq(

k
2)
)1+s−r zk

(q; q)k
,

where the q-Pochhammer symbol (a1, a2, . . . , ak; q)n is defined by

(a1, . . . , ar; q)k := (a1; q)k · · · (ar; q)k, with (ai; q)k =


k−1∏
j=0

(1− aiqj) if k ∈ {1, 2, 3, . . .}

1 if k = 0.

If {pn}n≥0 is a sequence of polynomials orthogonal on (c, d), with respect to the weight
function w(x), then the polynomial pn(x) has exactly n simple zeros in (c, d) and the zeros
of pn(x) and pn+1(x) separate each other. That is, if c < xn,1 < xn,2 < · · · < xn,n < d and
c < xn+1,1 < xn+1,2 < · · · < xn+1,n+1 < d are the zeros of pn and pn+1, respectively, then

xn+1,1 < xn,1 < xn+1,2 < xn,2 < · · · < xn+1,n < xn,n < xn+1,n+1.

The zeros of orthogonal polynomials are used for example in the Gauss quadrature for-
mula, in polynomial interpolation as interpolation nodes (see e. g. [Szegő, 1975], [Nikiforov
and Uvarov, 1988], [Mason and Handscomb, 2002], [Ismail, 2005] and references therein).
The zeros of the classical Jacobi polynomials P (α,β)

n (x) are the unique location of n unit
charges distributed in (−1, 1) in the logarithmic field generated by two fixed charges with
strengths (β + 1)/2 and (α + 1)/2 fixed at −1 and 1 (see e.g. [Valent and Van Assche,
1995], [Ismail, 2005, Remark 3.5.1]).

Definition 0.1 (see e. g. Driver and Muldoon [2016], Driver and Jordaan [2018]). Let
n ∈ N. If xn,1 < xn,2 < . . . < xn,n are the zeros of pn and yn,1 < yn,2 < . . . < yn,n are the
zeros of qn, then the zeros of pn and qn are interlacing if

xn,1 < yn,1 < xn,2 < yn,2 < . . . < xn,n < yn,n (1)

or if
yn,1 < xn,1 < yn,2 < xn,2 < . . . < yn,n < xn,n.

In case pn is replaced by pn+1, (1) is replaced by

xn+1,1 < yn,1 < xn+1,2 < yn,2 < . . . < xn+1,n < yn,n < xn+1,n+1.

According to results by Peherstorfer [1990], interlacing properties of the zeros of orthog-
onal polynomial expansions are responsible for the existence of positive interpolatory
quadrature formulas (see also [Locher, 1993], [Criscuolo et al., 1990]). Starting from in-
terlacing properties of the zeros of the orthogonal polynomials, Mastroianni and Occorsio
[1995] proposed a method to approximate the finite Hilbert transform. Interlacing also
happened to be crucial in [Bender et al., 2000].

Definition 0.2. Let {pn}n≥0 be a sequence of polynomials with degree pn = n for each
n ∈ N. For a positive integer r < n, the sequence {pn}n≥0 is quasi-orthogonal of order r
with respect to a positive Borel measure µ if∫

xkpn(x)dµ(x) = 0 for k = 0, 1, . . . , n− 1− r, ∀n ∈ N. (2)
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It is clear that if (2) holds for r = 0, the sequence {pn}n≥0 is orthogonal with respect to
the measure µ.

Using certain structure relations satisfied by classical orthogonal polynomials or their
connection formulae, we show that some classes of mixed recurrence equations satisfied by
classical orthogonal polynomials (with shifted parameters) are structurally valid. How-
ever, they cannot be easily obtained with classical methods. To solve this problem, we
use an algorithmic approach to find these mixed recurrence equations. A list of some
problems that motivates the consideration of special linear combinations of polynomials,
orthogonal with respect to a given weight on a given interval, is given in [Grinshpun,
2004]. The major algorithmic tool for our development is an extended version of Zeil-
berger’s algorithm (see [Koepf, 2014] and reference therein). Without this preprocessing
the relevant recurrence equations are not easily accessible. Using our mixed recurrence
equations,

1. we investigate interlacing properties of zeros of sequences of orthogonal polynomials.
In the cases when the zeros do not interlace, we give numerical examples to illustrate
this;

2. we prove quasi-orthogonality of certain classes of polynomials and determine the
location of the extreme zeros of the quasi-orthogonal polynomials with respect to
the end points of the interval of orthogonality of the polynomial sequence, where
possible;

3. we find bounds for the extreme zeros of the classical orthogonal polynomials.

Every orthogonal polynomial system (pn(x))n≥0 satisfies a three-term recurrence relation
of the type

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x) (n = 0, 1, 2, . . . , p−1 ≡ 0),

with CnAnAn−1 > 0. Moreover, Favard’s theorem [Chihara, 1978, Section 4] states that
the converse is also true. Alhaidari [2017] submitted (as open problem during the 14th In-
ternational Symposium on Orthogonal Polynomials, Special Functions and Applications)
two polynomial systems defined by their three-term recurrence relations and initial val-
ues. He was interested in the derivation of their weight functions, generating functions,
orthogonality relations, etc.. In order to solve this problem as suggested in the comments
by W. Van Assche in [Van Assche, 2019], we use the computer algebra system Maple to
identify the polynomials from their recurrence relations, similar as in the Maple imple-
mentation rec2ortho of Koornwinder and Swarttouw [1996–1998] or retode of Koepf
and Schmersau [2002]. The two implementations rec2ortho and retode do not handle
classical orthogonal polynomials on a quadratic or a q-quadratic lattice. We extend the
Maple implementation retode of Koepf and Schmersau [2002] to cover classical orthog-
onal polynomials on a quadratic or a q-quadratic lattice and to answer the problem by
Alhaidari [2017] as application.

The plan of the work is as follows: Chapter 1 is devoted to the preliminary results and
the derivation of the mixed recurrence equations using Zeilberger’s algorithm and its q-
version. In Chapter 2, we use our algorithms to recover known results for classical orthog-
onal polynomials of a continuous and discrete variable, and moreover, we improve some
bounds in these cases. We also collect the scattered results in one place which will make
them accessible. In Chapter 3 and 4, the interlacing properties, the quasi-orthogonality
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as well as the bounds for the extreme zeros for classical q-orthogonal polynomials and
orthogonal polynomials on a quadratic or a q-quadratic lattices are studied, respectively.
Finally, in addition, in Chapter 4, we implement the algorithm to identify classical orthog-
onal polynomials on a quadratic or a q-quadratic lattice from their three-term recurrence
relations.



Chapter 1

Preliminary results

The purpose of this chapter is to give the main results which will be applied to derive
the interlacing properties and the bounds of the extreme zeros of the classical orthogonal
polynomials consider in the sequel, and to study quasi-orthogonal polynomials. Moreover,
we show how the mixed recurrence equations involved in the main results will be derived,
using an algorithmic approach.

1.1 Interlacing properties for zeros of sequences of clas-
sical orthogonal polynomials

The separation of the zeros of different sequences of Hahn polynomials of the same or ad-
jacent degree was first studied by Levit [1967], and similar interlacing results followed for
Jacobi polynomials ([Askey, 1990], [Driver et al., 2008]), Krawtchouk polynomials ([Chi-
hara and Stanton, 1990], [Jordaan and Toókos, 2009]), Meixner and Meixner-Pollaczek
polynomials [Jordaan and Toókos, 2009]. The different sequences were obtained by integer
shifts of the parameters, and in order to prove these results, recurrence equations, follow-
ing from the contiguous relations for hypergeometric polynomials [Rainville, 1960, p. 71],
[Prudnikov et al., 1990] or basic hypergeometric series [Swarttouw, 1990], [Gupta et al.,
1992], were used. In the case of Gauss’ hypergeometric function (cf. [Szegő, 1975, Eq.
(4.21.3)]), a useful algorithm in this regard is available as a computer package [Vidunas
and Koornwinder, 2000].

Interlacing results for the zeros of different sequences of q-orthogonal sequences with
shifted parameters are given for q-Laguerre polynomials in [Jordaan and Toókos, 2010],
[Moak, 1981], for Al-Salam-Chihara, q-Meixner-Pollaczek and q-ultraspherical polynomi-
als in [Jordaan and Toókos, 2010] and for 2φ1 hypergeometric polynomials, associated
with the little q-Jacobi polynomials, in [Gochhayat et al., 2016]. The recurrence equa-
tions necessary to prove these results were obtained, respectively, from relationships be-
tween polynomials orthogonal w.r.t. a positive measure dΨ(x) and those orthogonal to
xdΨ(x) (cf. [Karlin and McGregor, 1957]), from the generating functions of the appropri-
ate polynomials and from the contiguous relations satisfied by the basic hypergeometric
function (cf. [Heine, 1847]). In order to determine the specific order of the interlacing
zeros, Markov’s monotonicity theorem (or a consequence of it), is used (cf. [Szegő, 1975,
Theorems 6.12.1, 6.12.2] or [Ismail, 2005]):

Theorem 1.1 (see [Szegő, 1975]). Let w(x) and W (x) be two weight functions on (c, d),
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both positive and continuous for c < x < d. Let W (x)
w(x)

be increasing. Then if {xv}
and {Xv} denote the zeros of the corresponding orthogonal polynomials of degree n in
decreasing order, we have

xv < Xv, v = 1, 2, . . . , n.

In this section, we show how mixed recurrence equations, satisfied by different se-
quences of orthogonal polynomial systems, are used to study interlacing properties of the
zeros of sequences of orthogonal systems.

Lemma 1.2 (cf. Brezinski et al. [2004], Jordaan and Toókos [2010], Gochhayat et al.
[2016]). Let (c, d) be a finite or infinite interval and pn and qn polynomials (not necessarily
orthogonal) of degree n, with zeros c < xn,1 < xn,2 < · · · < xn,n < d and c < yn,1 < yn,2 <
· · · < yn,n < d, respectively, satisfying the interlacing property

xn,1 < yn−1,1 < xn,2 < yn−1,2 < · · · < xn,n−1 < yn−1,n−1 < xn,n. (1.1)

Let a and b be continuous functions on (c, d) and assume that fn is a polynomial of degree
n, with zeros c < zn,1 < zn,2 < · · · < zn,n < d, satisfying the equation

fn(x) = a(x)pn(x) + b(x)qn−1(x). (1.2)

Then,

(a) if b has constant sign on (c, d), the zeros of fn and pn interlace;

(b) if a has constant sign on (c, d), fn has an odd number of zeros between any two
consecutive zeros of qn−1.

Proof . Assume that fn has degree n with zeros zn,1 < zn,2 < · · · < zn,n.

(a) We evaluate (1.2) at xn,k and xn,k+1, k ∈ {1, 2, . . . , n− 1}, two consecutive zeros of
pn(x). Then

fn(xn,k)fn(xn,k+1) = b(xn,k)b(xn,k+1)qn−1(xn,k)qn−1(xn,k+1).

By (1.1) the zeros of pn and qn−1 interlace, therefore qn−1 will differ in sign at
xn,k and xn,k+1, k ∈ {1, 2, . . . , n − 1}, which implies qn−1(xn,k)qn−1(xn,k+1) < 0.
Since b(x) has constant sign on (c, d), we have b(xn,k)b(xn,k+1) > 0 and therefore
fn(xn,k)fn(xn,k+1) < 0. fn must therefore have an odd number of zeros in each
interval with endpoints xn,k and xn,k+1, k ∈ {1, 2, . . . , n − 1}, and the interlacing
result follows.

(b) We evaluate (1.2) at yn−1,k and yn−1,k+1, k ∈ {1, 2, . . . , n−2}, two consecutive zeros
of qn−1(x). Then

fn(yn−1,k)fn(yn−1,k+1) = a(yn−1,k)a(yn−1,k+1)pn(yn−1,k)pn(yn−1,k+1).

From (1.1) we know that the zeros of pn and qn−1 interlace, therefore pn will differ
in sign at yn−1,k and yn−1,k+1, k ∈ {1, 2, . . . , n− 2}, and pn(yn−1,k)pn(yn−1,k+1) < 0.
Since a(x) has constant sign on (c, d), we have a(yn−1,k)a(yn−1,k+1) > 0 and therefore
fn(yn−1,k)fn(yn−1,k+1) < 0, which implies that fn must have an odd number of zeros
in each interval with endpoints yn−1,k and yn−1,k+1, k ∈ {1, 2, . . . , n− 2}.
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�
In the following result, which follows from Lemma 1.2, we assume that the polynomials

pn and qn are monic. In fact if pn is a polynomial of degree n with leading coefficient
kn 6= 0, then the monic polynomial p̃n = pn/kn and pn have the same zeros.

Corollary 1.3 (cf. Brezinski et al. [2004], Joulak [2005], Jordaan and Toókos [2010],
Gochhayat et al. [2016]). Let (c, d) be a finite or infinite interval and assume that pn and
qn are monic polynomials (not necessarily orthogonal) of degree n, with zeros c < xn,1 <
xn,2 < · · · < xn,n < d and c < yn,1 < yn,2 < · · · < yn,n < d, respectively, satisfying the
interlacing property (1.1). Assume that a and b are continuous and have constant sign on
(c, d) and that fn is a polynomial of degree n with zeros c < zn,1 < zn,2 < · · · < zn,n < d,
satisfying (1.2). Then, for each k ∈ {1, 2, . . . , n− 1},

(a) if a(x) and b(x) have the same sign on (c, d), zn,k < xn,k < yn−1,k < zn,k+1 < xn,k+1;

(b) if a(x) and b(x) differ in sign on (c, d), xn,k < zn,k < yn−1,k < xn,k+1 < zn,k+1.

Proof . Assume that fn has degree n and both a and b have constant sign on (c, d). Then
both results of Lemma 1.2 are true. From Lemma 1.2(a), the zeros of fn and pn interlace
and either zn,k < xn,k or xn,k < zn,k for each k ∈ {1, 2, . . . , n}.

Evaluating (1.2) at yn−1,n−1 and xn,n, we obtain

fn(xn,n)fn(yn−1,n−1) = a(yn−1,n−1)b(xn,n)pn(yn−1,n−1)qn−1(xn,n). (1.3)

Since, by assumption, pn and qn−1 are monic polynomials with interlacing zeros,
pn(yn−1,n−1) < 0 and qn−1(xn,n) > 0.

(a) Assume a and b have the same sign on (c, d). Then a(yn−1,n−1)b(xn,n) > 0 and, since
pn(yn−1,n−1)qn−1(xn,n) < 0, we deduce from (1.3) that fn(xn,n)fn(yn−1,n−1) < 0. This
implies fn has an odd number of zeros in the interval (yn−1,n−1, xn,n).

Suppose zn,k < xn,k, k ∈ {1, 2, . . . , n}. From (1.1) we deduce that zn,1 < xn,1 < yn−1,1

and thus one zero of fn lies to the left of yn−1,1. From Lemma 1.2(b), we know there
is an odd number of zeros of fn in each of the n− 2 intervals (yn−1,k, yn−1,k+1), k ∈
{1, 2, . . . , n − 2}. If each of the n − 2 intervals between the first and the last zero
of qn−1 has exactly one zero of fn, we have n− 1 zeros accounted for. There is only
one zero remaining (since fn has n zeros), and we deduce that only one zero of fn
lies in (yn−1,n−1, xn,n), which leads to the configuration

zn,1 < xn,1 < yn−1,1 < zn,2 < · · · < xn,n−1 < yn−1,n−1 < zn,n < xn,n.

Suppose xn,k < zn,k, k ∈ {1, 2, . . . , n}. From (1.1), we deduce that yn−1,n−1 < xn,n <
zn,n. This contradicts the fact that fn must have an odd number of zeros in the
interval (yn−1,n−1, xn,n).

(b) Assume a and b have different signs on (c, d). Then a(yn−1,n−1)b(xn,n) < 0 and we
deduce from (1.3) that fn(xn,n)fn(yn−1,n−1) > 0, thus fn has either 0 or an even
number of zeros in the interval (yn−1,n−1, xn,n).

Suppose xn,k < zn,k, k ∈ {1, 2, . . . , n}. From (1.1) we deduce that yn−1,n−1 < xn,n <
zn,n and the only option, counting the zeros, is that

xn,1 < zn,1 < yn−1,1 < xn,2 < · · · < zn,n−1 < yn−1,n−1 < xn,n < zn,n.
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Suppose zn,k < xn,k, k ∈ {1, 2, . . . , n}. From (1.1) we deduce that zn,1 < xn,1 <
yn−1,1 and thus one zero of fn lies to the left of yn−1,1. From Lemma 1.2(b),
we know there is an odd number of zeros of fn in each of the n − 2 intervals
(yn−1,k, yn−1,k+1), k ∈ {1, 2, . . . , n − 2}. If each of the n − 2 intervals between the
first and the last zero of qn−1 has exactly one zero of fn, we have n−1 zeros accounted
for. There is only one zero remaining (since fn has n zeros). The one remaining
zero therefore must lie to the right of yn−1,n−1, such that yn−1,n−1 < zn,n < xn,n,
which contradicts the fact that fn must have either 0 or an even number of zeros in
the interval (yn−1,n−1, xn,n).

�
From Corollary 1.3 we remark that, once we have a relation of type (1.2), it is sufficient

to know the sign of a(x) and b(x) in (1.2) to prove our interlacing results.

1.2 Quasi-orthogonal polynomials

We recall that a sequence of polynomials {pn}n≥0, where each polynomial pn has degree
n, is orthogonal with respect to the weight function w(x) > 0 on the finite (or infinite)
interval (c, d) if ∫ d

c

xmpn(x)w(x)dx = 0,m ∈ {0, 1, . . . , n− 1}, ∀n ∈ N.

In order for orthogonality conditions to hold, we often need restrictions on the parame-
ters of the classical orthogonal polynomials and when the parameters deviate from these
restricted values in an orderly way, the zeros may depart from the interval of orthogonal-
ity in a predictable way. This phenomenon can be explained in terms of the concept of
quasi-orthogonality. The sequence of polynomials {qn,k}n≥0, where each polynomial qn,k
has degree n, is quasi-orthogonal of order k ∈ {1, 2, . . . , n− 1} with respect to the weight
function w(x) > 0 on (c, d) if∫ d

c

xmqn,k(x)w(x)dx = 0,m ∈ {0, 1, . . . , n− k − 1}, ∀n ∈ N. (1.4)

Quasi-orthogonality was first studied by Riesz [1923], followed by Fejér [1933], Shohat
[1937], Chihara [1957], Dickinson [1961], Draux [1990], Maroni [1991], Joulak [2005], . . . .
The quasi-orthogonality of Jacobi, Gegenbauer and Laguerre sequences is discussed in
[Brezinski et al., 2004], the quasi-orthogonality of Meixner sequences in [Jooste et al.,
2013] and of Meixner-Pollaczek, Hahn, Dual-Hahn and Continuous Dual-Hahn sequences
in [Johnston et al., 2016]. More recently, interlacing properties of zeros of quasi-orthogonal
Meixner, Jacobi, Laguerre and Gegenbauer polynomials were studied in [Driver and
Jooste, 2017], [Driver and Jordaan, 2016], [Driver and Muldoon, 2016], [Driver and Mul-
doon, 2015] and in [Bultheel et al., 2010] interlacing properties of zeros of quasi-orthogonal
polynomials were used to prove results on Gaussian-type quadrature. Ismail and Wang
[2019] developed a general theory of quasi-orthogonal polynomials. They first derive three-
term recurrence relation and second-order differential equations for quasi-orthogonal poly-
nomials. They also give an expression for their discriminants in terms of the recursion
coefficients of the corresponding orthogonal polynomials. In addition, they investigate an
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electrostatic equilibrium problem where the equilibrium position of movable charges is
attained at the zeros of the quasi-orthogonal polynomials. Quasi-orthogonal polynomials
are characterized by the following property:

Lemma 1.4 (Brezinski et al. [2004], Chihara [1957]). Let {pn}n≥0 be a family of orthogonal
polynomials on (c, d) with respect to the weight function w(x) > 0. A necessary and
sufficient condition for a polynomial sequence {qn,k}n≥0 with deg(qn,k) = n to be quasi-
orthogonal of order k ≤ n− 1 with respect to w on (c, d), is that

qn,k(x) =
k∑
i=0

an,ipn−i(x), an,0an,k 6= 0, n > k. (1.5)

Remark 1.5. Bracciali et al. [2018] established necessary and sufficient conditions so
that the quasi-orthogonal polynomials {qn,k}n≥0 defined by (1.5) also constitute a sequence
of orthogonal polynomials.

Lemma 1.6 (Brezinski et al. [2004], Shohat [1937]). If a sequence {qn,k}n≥0 is quasi-
orthogonal of order k ≥ 1 on (c, d) with respect to w(x) > 0, then at least (n − k) real,
distinct zeros of qn,k lie in the interval (c, d).

Lemma 1.7 (Brezinski et al. [2004], Joulak [2005]). Suppose qn,1(x) = pn(x)+anpn−1(x), an 6=
0. Let yn,j, j ∈ {1, 2, . . . , n}, be the zeros of qn,1(x) and let fn(x) = pn(x)

pn−1(x)
. We have

(i) yn,1 < c if and only if −an < fn(c) < 0;

(ii) d < yn,n if and only if −an > fn(d) > 0;

(iii) qn,1 has all its zeros in (c, d) if and only if fn(c) < −an < fn(d).

Lemma 1.8 (Brezinski et al. [2004], Joulak [2005]). Suppose qn,1(x) = pn(x)+anpn−1(x), an 6=
0. Let xn,j, j ∈ {1, 2, . . . , n}, denote the zeros of pn(x) and yn,j, j ∈ {1, 2, . . . , n}, the zeros
of qn,1(x). Then

(i) an < 0 if and only if xn,1 < yn,1 < xn−1,1 < xn,2 < yn,2 < · · · < xn−1,n−1 < xn,n <
yn,n;

(ii) an > 0 if and only if yn,1 < xn,1 < xn−1,1 < yn,2 < xn,2 < · · · < xn−1,n−1 < yn,n <
xn,n.

1.3 Bounds of extreme zeros of classical orthogonal poly-
nomials

Let {pn}n≥0 be a sequence of monic orthogonal polynomials with zeros xn,1 < xn,2 < · · · <
xn,n. It is well known that pn satisfies a three-term recurrence equation

pn(x) = (x−Bn)pn−1(x)− Cnpn−2(x), (1.6)

where Bn and Cn do not depend on x, p−1 ≡ 0, p0 ≡ 1 and Cn > 0, and that the zeros of
pn and pn−1 interlace. It is also known that, if pn and pn−2 do not have a common zero,
then the n− 1 zeros of (x− Bn)pn−2(x) interlace with the n zeros of pn [Beardon, 2011,
Theorem 3], therefore xn,1 < Bn < xn,n and the point Bn is a natural inner bound for the
extreme zeros of pn. Beardon generalised this result in [Beardon, 2011, Theorem 4] and
we state it here as a lemma:
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Lemma 1.9. Suppose {pn}n≥0 is a sequence of polynomials, satisfying (1.6). Then, given
n, there exist real polynomials Sm of degree m, where m < n− 2, such that

CnCn−1 . . . Cn−m+2pn−m(x) = Sm−1(x)pn−1(x) + Sm−2(x)pn(x) (1.7)

and if pn−m and pn do not have any common zeros, their zeros interlace in the Stieltjes
sense. More-over, the n− 1 zeros of Sm−1pn−m interlace with the n zeros of pn.

An important feature of the polynomials Sm−1 is that they are completely determined
by the coefficients in (1.6) (cf. [Segura, 2008, Theorem 1]). A natural consequence of
Lemma 1.9 is

Corollary 1.10. (cf. [Driver and Jordaan, 2012, Corollary 2.2]) Suppose (1.7) holds for
m,n ∈ N fixed, m < n − 2. The smallest and largest zeros of Sm−1 are inner bounds for
the extreme zeros of pn.

Equations similar to (1.7), involving polynomials pn, pn−1, and gn−m,m ∈ {2, 3, . . .},
where the polynomial gn−m belongs to a related orthogonal sequence, obtained by integer
shifts of the appropriate parameters, are used to obtain (more accurate) inner bounds for
the extreme zeros of orthogonal sequences (cf. [Driver and Jordaan, 2012]). However, as
in (1.7), the coefficient of pn−1(x), which will be denoted by Gm−1 in (1.9), needs to be a
polynomial of exact degree m− 1 in order to have full interlacing between the n zeros of
pn and the n− 1 zeros of Gm−1(x)gn−m(x). In [Jooste and Jordaan, 2014, Theorem 2.1],
conditions necessary for the existence of such mixed three-term recurrence equations are
given for m = 2:

If, for k ∈ N0 fixed and {gn,k}n≥0 a sequence of polynomials orthogonal with respect
to ck(x)w(x) > 0 on (c, d), where ck(x) is a polynomial of degree k in x, the sequence
{pn}n≥0 satisfies

Anck(x)gn−2,k(x) = ak−2(x)pn(x)− (x−Bn)pn−1(x), n ∈ {2, 3, . . . }, (1.8)

with An, Bn, a−1, a−2 constants and ak−2 a polynomial of degree k − 2 defined on (c, d)
whenever k ∈ {2, 3, . . . }, then k ∈ {0, 1, 2, 3, 4}.
We generalise the result in [Jooste and Jordaan, 2014, Theorem 2.1] by providing con-
ditions necessary for equations, similar to (1.8), involving the polynomials gn−m,k,m ∈
{2, 3, . . . , n− 1}, pn and pn−1, to exist.

Theorem 1.11 (cf. [Jooste et al.]). Let {pn}n≥0 be a sequence of polynomials orthogonal
on the (finite or infinite) interval (c, d) with respect to the weight function w(x) > 0.
Let k ∈ N0 and m ∈ {2, 3, . . . , n − 1} be fixed and suppose {gn,k}n≥0 is a sequence of
polynomials orthogonal with respect to ck(x)w(x) > 0 on (c, d), where ck(x) is a polynomial
of degree k, that satisfies

Anck(x)gn−m,k(x) = ak−m(x)pn(x)−Gm−1(x)pn−1(x), n ∈ {2, 3, . . . }, (1.9)

with An, Bn, a−1 and a−2 constants, ak−m a polynomial defined on (c, d) and of degree
m − 2 when k −m ∈ {−m,−m + 1, . . . ,m − 2} and of degree k −m whenever k −m ∈
{m− 1,m,m+ 1, . . .}, and Gm(x) a polynomial of degree m. Then

(i) k ∈ {0, 1, 2, . . . , 2m};
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(ii) if gn−m,k and pn are co-prime, the n−1 real, simple zeros of Gm−1(x)gn−m,k interlace
with the zeros of pn, the smallest zero of Gm−1 is an upper bound for the smallest
zero of pn, and the largest zero of Gm−1 is a lower bound for the largest zero of pn;

(iii) if gn−m,k and pn are not co-prime and have r common zeros counting multiplicity,
then
a) r ≤ min{m,n−m− 1};
b) these r common zeros are simple zeros of Gm−1;
c) no two successive zeros of pn, nor its largest or smallest zero can be a zero of
Gm−1;
d) the n − 2r − 1 zeros of Gm−1gn−m,k(x), none of which is a zero of pn, together
with the r common zeros of gn−m,k and pn, interlace with the n − r non-common
zeros of pn;
e) the smallest zero of Gm−1 is an upper bound for the smallest zero of pn, and the
largest zero of Gm−1 is a lower bound for the largest zero of pn.

Proof . The proof of this theorem is explicitly given in [Jooste et al.] �
The bounds obtained in this way are more accurate than the inner bounds obtained
using mixed recurrence equations in the specific case when m = 2, as was done for
the extreme zeros of the Jacobi, Laguerre and Gegenbauer polynomials in [Driver and
Jordaan, 2012], Meixner and Krawtchouk polynomials in [Jooste and Jordaan, 2014] and
Hahn polynomials in [Jooste et al., 2017]. In our applications, the polynomials gn−m,k,m ∈
{2, 3, . . . , n − 1} are typically obtained from the polynomials of the orthogonal sequence
{pn}n≥0, by making appropriate parameter shifts of (in total) k units. Inner bounds for the
extreme zeros of Gegenbauer, Laguerre and Jacobi polynomials were given in [Neumann,
1921], [Bottema, 1931], [Szegő, 1975], [Krasikov, 2006], [Gupta and Muldoon, 2007], [Area
et al., 2012]; bounds for the extreme zeros of the discrete orthogonal Charlier, Meixner,
Krawtchouk and Hahn polynomials in [Krasikov and Zarkh, 2009], [Area et al., 2013], for
the extreme zeros of the q-Jacobi and q-Laguerre polynomials in [Gupta and Muldoon,
2007] and for the little q-Jacobi polynomials in [Gochhayat et al., 2016]. Lower bounds
for xn,1 and upper bounds for xn,n can be found in the case of classical continuous and
discrete orthogonal polynomials in [Szegő, 1975], [Ismail and Li, 1992], [Krasikov, 2002],
[Area et al., 2004], [Krasikov, 2006], [Dimitrov and Rafaeli, 2009], [Krasikov and Zarkh,
2009], [Dimitrov and Nikolov, 2010], [Area et al., 2013] and in [Krasikov, 2005], bounds
of the extreme zeros of (symmetric) orthogonal polynomials are given in terms of the
coefficients of their three-term recurrence equations.

In the next section, we use an algebraic method to obtain mixed three-term recurrence
equations involving polynomials pn(x;α, β) and pn−1(x;α, β), belonging to the same se-
quence that is orthogonal on an interval (c, d) with respect to a measure w(x;α, β), and
a polynomial from a related sequence, obtained by integer shifts of the parameters α and
β, namely pn−m(x;α+ s, β+ t),m ∈ {2, 3, . . . , n− 1}, which is orthogonal with respect to

w(x;α + s, β + t) = cs+t(x;α, β)w(x;α, β) > 0

on (c, d), where ck(x;α, β) is a polynomial of degree k in x. If the sequence is q-orthogonal
with respect to the weight w(x;α, β), the equations involve the polynomials pn(x;α, β)
and pn−1(x;α, β), and pn−m(x;αqs, βqt),m ∈ {2, 3, . . . , n − 1} and the latter polynomial
is orthogonal with respect to

w(x;αqs, βqt) = cs+t(x;α, β)w(x;α, β) > 0
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on (c, d). From Theorem 1.11(i) it follows that such equations only exist for the values
of s and t such that s + t ∈ {0, 1, . . . , 2m}. We note that the polynomial coefficient
of the polynomial pn−1(x;α, β) in the mixed recurrence equation involving polynomials
pn(x;α, β), pn−1(x;α, β) and pn−m(x;α + s, β + t),m ∈ {2, 3, . . . , n− 1}, will be denoted
by Gm−1,s,t(x). From Theorem 1.11(ii) and (iii) we deduce that the smallest and largest
zeros of Gm−1,s,t(x) are (inner) bounds for the extreme zeros of pn.

1.4 Mixed recurrence equations satisfied by different
sequences of orthogonal polynomial systems

As seen in the previous sections, we are interested by equations of type (1.2), (1.5) and
(1.9). We will first show that such equations are structurally valid and then we provide
an algorithmic approach to derive them.

In order to find for example equations of type (1.5) used to prove quasi-orthogonality,
we can use the structure relation (cf. [Koepf and Schmersau, 1998], [Medem et al., 2001],
[Foupouagnigni et al., 2012])

pn(x) = anDpn+1(x) + bnDpn(x) + cnDpn−1(x), (1.10)

where the constants an, bn and cn are explicitly given and D is a derivative or difference
operator. Most of the classical orthogonal polynomial systems considered in the sequel
(see [Koekoek et al., 2010, Chapters 9 and 14]) satisfy

Dpn(x) = S(n)pn−1,k(x), k ∈ {−1, 0, 1, 2}, (1.11)

where S(n) does not depend on x and pn−1,k(x) denotes the polynomial obtained when
each of the parameters on which the polynomial pn(x) depends, can be shifted by k units
in the case of the classical systems, or, in the case of the q-classical systems, when the
parameters can each be multiplied by qk. Substituting (1.11) in (1.10) yields

pn(x) = anS(n+ 1)pn,k(x) + bnS(n)pn−1,k(x) + cnS(n− 1)pn−2,k(x)

or, by making a parameter shift,

pn,−k(x) = a′nS
′(n+ 1)pn(x) + b′nS

′(n)pn−1(x) + c′nS
′(n− 1)pn−2(x),

where a′n, b′n, c′n and S ′(n) are the values of the coefficients taking into consideration the
parameter shift. We therefore get a linear combination of polynomials in an orthogonal
sequence as in (1.5). For the so-called very classical orthogonal polynomials, the general
expression for the parameters an,i, i ∈ {0, 1, 2}, in (1.5) for k = 2, i. e.,

qn,2(x) = pn(x) + an,1pn−1(x) + an,2pn−2(x)

were given in [Marcellán and Petronilho, 1994, Eq. (76)] in terms of the coefficients of the
differential equations they satisfy.

We can also apply the operator D to (1.10) to obtain

Dpn(x) = anD2pn+1(x) + bnD2pn(x) + cnD2pn−1(x). (1.12)
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Replacing (1.12) in (1.10) and using (1.11) twice, yields

pn(x) = anan+1S(n+ 2)S(n+ 1)pn,2k(x) + an(bn + bn+1)S(n+ 1)S(n)pn−1,2k(x)

+ (ancn+1 + an−1cn + b2
n)S(n)S(n− 1)pn−2,2k(x)

+ cn(bn + bn−1)S(n− 1)S(n− 2)pn−3,2k + cncn−1S(n− 2)S(n− 3)pn−4,2k(x).

By applying a parameter shift again, we obtain

pn,−2k(x) = a′na
′
n+1S

′(n+ 2)S ′(n+ 1)pn(x) + a′n(b′n + b′n+1)S ′(n+ 1)S ′(n)pn−1(x)

+ (a′nc
′
n+1 + a′n−1c

′
n + (b′n)2)S ′(n)S ′(n− 1)pn−2(x)

+ c′n(b′n + b′n−1)S ′(n− 1)S ′(n− 2)pn−3 + c′nc
′
n−1S

′(n− 2)S ′(n− 3)pn−4(x).

These induction arguments show that equations of type (1.5) are structurally valid.
Classical orthogonal polynomials pn(x) satisfy the three-term recurrence equation

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x), n ∈ {1, 2, 3, . . .}, (1.13)

as well as a derivative rule [Koepf and Schmersau, 1998], [Medem et al., 2001], [Foupouag-
nigni et al., 2012] of the form

σ̃(x)Dpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x), n ∈ {1, 2, . . .}, (1.14)

where D ∈ { d
dx
,∆,∇, Dq, D 1

q
}. The coefficients An, Bn, Cn, αn, βn and γn are explicitly

given in terms of the coefficients of the differential equations they satisfy.

Proposition 1.12. Let {pn(x)}n≥0 be a system of classical orthogonal polynomials of a
continuous, discrete or q-discrete variable, that satisfies (1.11). Then, for k ∈ {−1, 0, 1, 2},
there exist polynomials fj(x), hj(n, x), gj(n, x) such that

fj(x)pn−j,jk(x) = hj(n, x)pn(x) + gj−1(n, x)pn−1(x), j ∈ {1, 2, . . .}. (1.15)

Proof . The proof is done by induction on j ∈ {1, 2, . . .}.
Step 1: Let j = 1. If we substitute pn+1 from (1.13) into (1.14), we obtain

σ̃(x)Dpn(x) = ((Anx+Bn)αn + βn)pn(x) + (γn − Cnαn)pn−1(x).

Application of (1.11) leads to

σ̃(x)S(n)pn−1,k(x) = ((Anx+Bn)αn + βn)pn(x) + (γn − Cnαn)pn−1(x),

and (1.15) is valid for j = 1 with

f1(x) = σ̃(x), h1(n, x) =
1

S(n)
((Anx+Bn)αn + βn), g0(n, x) =

γn − Cnαn
S(n)

.

Step 2: Fix j ≥ 2 and suppose that (1.15) is valid for j. We need to prove that (1.15)
is also valid for j + 1. We know that, for Yn,j(x) = Djpn(x), j ∈ {1, 2, . . .}, the relations

Yn+1,j(x) = (An,jx+Bn,j)Yn,j(x)− Cn,jYn−1,j(x), n ∈ {1, 2, 3, . . .}, (1.16)

and

σ̃j(x)DYn,j(x) = αn,jYn+1,j(x) + βn,jYn,j(x) + γn,jYn−1,j(x), n ∈ {1, 2, 3, . . .}, (1.17)
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are valid since {Yn,j(x)}n≥0 is also a classical orthogonal polynomial system for j =
1, 2, . . .. If we substitute (1.16) in (1.17), we obtain

σ̃j(x)D
(
Djpn(x)

)
= ((An,jx+Bn,j)αn,j+βn,j)Djpn(x)+(γn,j−Cn,jαn,j)Djpn−1(x). (1.18)

By iterating (1.11), it follows that

Djpn(x) = pn−j,jk(x)

j−1∏
l=0

S(n− l), j ≤ n. (1.19)

We substitute (1.19) in (1.18), multiply by fj(x) and use the induction hypothesis to get

σ̃j(x)fj(x)Dj+1pn(x) =
(
(An,jx+Bn,j)αn,j + βn,j

)(
hj(n, x)pn(x)

+ gj−1(n, x)pn−1(x)
) j−1∏
l=0

S(n− l) + (γn,j − Cn,jαn,j)
(
hj(n− 1, x)pn−1(x)

+ gj−1(n− 1, x)pn−2(x)
) j−1∏
l=0

S(n− 1− l).

Replacing n by n−1 in (1.13), we obtain pn−2 that we substitute in the right hand side of
the above equation and using once more (1.19) for j replaced by j+1, yields the equation

fj+1(x)pn−(j+1),(j+1)k(x) = hj+1(n, x)pn(x) + gj(n, x)pn−1(x),

where

fj+1(x) = σ̃j(x)fj(x),

hj+1(n, x) =
(An,jx+Bn,j)αn,j + βn,j

S(n− j + 1)
hj(n, x)− γn,j − Cn,jαn,j

S(n)Cn−1

gj−1(n− 1, x),

gj(n, x) =
(An,jx+Bn,j)αn,j + βn,j

S(n− j + 1)
gj−1(n, x)

+
γn,j − Cn,jαn,j

S(n)

(
hj(n− 1, x) +

gj−1(n− 1, x)

Cn−1

(An−1x+Bn−1)

)
.

�
This proof shows how one can iteratively get equations of type (1.9) for classical

orthogonal polynomials of a continuous, a discrete or a q-discrete variable. We also refer
the reader to [Koepf and Schmersau, 1998], [Foupouagnigni et al., 2012], [Tcheutia, 2014],
where we have the so-called connection formulae for classical orthogonal polynomials
from which one can deduce certain equations of type (1.2), (1.5) and (1.9). One may also
use contiguous relations for the hypergeometric and basic hypergeometric series (see e.g.
[Heine, 1847], [Swarttouw, 1990], [Jordaan and Toókos, 2009], [Gochhayat et al., 2016])
to get some of these recurrence equations, as well as the generating functions of classical
orthogonal polynomials (see e.g. [Jordaan and Toókos, 2009], [Tcheutia et al., 2018b]).
Another option to get equations of type (1.9) is the following.

Lemma 1.13. (Christoffel’s formula, cf. [Szegő, 1975, Theorem 2.5]) Let {pn(x)}n≥0 be
the orthonormal polynomials associated with the distribution dα(x) on the interval [c, d].
Also let

ρ(x) = a(x− x1)(x− x2) · · · (x− xk), a 6= 0, (1.20)
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be a polynomial of degree k which is non-negative in this interval. Then the orthogonal
polynomials {qn(x)}n≥0, associated with the distribution ρ(x)dα(x), can be represented in
terms of the polynomials pn(x) as follows:

ρ(x)qn(x) =

pn(x) pn+1(x) . . . pn+k(x)

pn(x1) pn+1(x1) . . . pn+k(x1)

. . . . . . . . . . . .

pn(xk) pn+1(xk) . . . pn+k(xk)

. (1.21)

In case of a zero xj, of multiplicity m, m > 1, we replace the corresponding rows of (1.21)
by the derivatives of order 0, 1, 2, . . . ,m− 1 of the polynomials pn(x), pn+1(x), . . . , pn+k(x)
at x = xj.

Using Christoffel’s formula for ρ(x) = ck(x) in (1.20) and qn(x) = gn−m,k(x), we get

ck(x)gn−m,k(x) =
k∑
j=0

ujpn−m+j(x).

By using Beardon’s theorem (cf. Lemma 1.9), the latter equation can be reduced to a
mixed three-term recurrence equation of type (1.9).

However, due to the complexity of classical methods, it is not really easy for example
to get equations of type (1.2), (1.5) and (1.9) satisfied by classical orthogonal polynomials
on quadratic or q-quadratic lattices, or in general to get in a unified approach equations
of type (1.2), (1.5) and (1.9). As a consequence, our algorithmic approach to derive
such equations is welcome. Using an extended version of Zeilberger’s algorithm (see
e.g. [Petkovšek et al., 1996], [Koepf, 2014]) and following the approach in [Chen et al.,
2012], [Koepf, 2014], we write, using the Computer Algebra System Maple, procedures to
find mixed recurrence equations of type (1.2), (1.5) and (1.9) satisfied by all the classical
orthogonal polynomials. We also use an adaption of the q-version of Zeilberger’s algorithm
which is an extension of Gosper’s algorithm. Gosper’s algorithm deals with the question
how to find an anti-difference sk for given ak, i.e., a sequence sk for which ak = ∆sk =

sk+1 − sk, in a particular case that sk is a hypergeometric term, i.e.,
sk+1

sk
∈ Q(k).

Given F (n, k), Zeilberger’s algorithm provides a recurrence equation for

sn =
∞∑

k=−∞

F (n, k),

where F (n, k) is a hypergeometric term with respect to both n and k. We set

ak = F (n, k) +
J∑
j=1

σj(n)F (n+ j, k) (1.22)

with undetermined variables σj(n) and apply Gosper’s algorithm to ak. If successful,
Gosper’s algorithm finds g(n, k) with

g(n, k + 1)− g(n, k) = ak (1.23)
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and at the same time σj(n), j ∈ {1, 2, . . . , J}. By summation, we have from (1.23)

0 =
∞∑

k=−∞

ak

as a telescoping sum and from (1.22)

sn +
J∑
j=1

σj(n)sn+j =
∞∑

k=−∞

ak.

We deduce that

sn +
J∑
j=1

σj(n)sn+j = 0,

which is a recurrence equation satisfied by sn. We refer the reader to [Koepf, 2014,
Chapters 5–7] and references therein for more details about the algorithms of Gosper
and Zeilberger and their q-analogues. The q-analogues of Gosper’s and Zeilberger’s al-
gorithms are implemented in the Maple qsum package [Koepf, 2014] which can be down-
loaded at http://www.mathematik.uni-kassel.de/~koepf/Publikationen. By apply-
ing an adaption of the sumdiffeq [Koepf, 2014, p. 210] and the qsumdiffeq [Koepf,
2014, p. 219] procedures of the hsum and the qsum packages, we wrote codes to de-
rive recurrence equations of type (1.2), (1.5) and (1.9) for the classical orthogonal poly-
nomial systems considered in the sequel. Our Maple codes can be downloaded from
http://www.mathematik.uni-kassel.de/~tcheutia/.

The first program called Mixedrec1(F, k, S(n), s0, a, s1, s2, r) finds a recurrence equa-
tion of the form

S(n− s0, a+ s1) =
J∑
j=0

σjS(n− j, a+ s2 + rj), J ∈ {1, 2, . . .}, r ∈ {0, 1},

where S(n, a) =
∞∑

k=−∞

F , F is a hypergeometric term w.r.t. k, n and a, and s0, s1, s2, are

integers and the second one, denoted by qMixedrec1(F, q, k, S(n), s0, a, s1, s2, r), is the
q-analogue of the first one and finds a recurrence equation of the form

S(n− s0, aq
s1) =

J∑
j=0

σjS(n− j, aqs2+rj), J ∈ {1, 2, . . .}, r ∈ {0, 1}.

These first two programs can be used when we want to play with at most one parameter
of the polynomial. When dealing with two parameters, the following ones generalizing
the first ones are more suitable.

The program called Mixedrec2(F, k, S(n), n0, a, s0, b, s1, s2, s3, r1, r2) finds a recurrence
equation of the form

S(n−n0, a+s0, b+s1) =
J∑
j=0

σjS(n−j, a+s2+r1j, b+s3+r2j), J ∈ {1, 2, . . .}, r1, r2 ∈ {0, 1},

http://www.mathematik.uni-kassel.de/~koepf/Publikationen
http://www.mathematik.uni-kassel.de/~tcheutia/
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where S(n, a, b) =
∞∑

k=−∞

F , F is a hypergeometric term w.r.t. k, n, a and b, and n0, si, i =

0, 1, 2, 3, are integers and the one denoted by qMixedrec2(F, q, k, S(n), n0, a, s0, b, s1, s2, s3,
r1, r2) is its q-analogue and finds a recurrence equation of the form

S(n− n0, aq
s0 , bqs1) =

J∑
j=0

σjS(n− j, aqs2+r1j, bqs3+r2j), J ∈ {1, 2, . . .}, r1, r2 ∈ {0, 1}.

Note that these procedures can be extended to as many parameters as possible.



Chapter 2

Classical orthogonal polynomials of a
continuous and a discrete variable

In this chapter we use our algorithms to recover known mixed recurrence equations from
which the interlacing properties of classical orthogonal polynomials of a continuous and
a discrete variable were derived. We also recover equations which characterize quasi-
orthogonal polynomials of a continuous and a discrete variable. With our implementa-
tions, we can derive more mixed recurrence equations which cannot easily be obtained us-
ing contiguous relations of hypergeometric functions or their generating functions. More-
over, we show that using our implementations, we get mixed recurrence equations which
can improve the existing bounds of the extreme zeros of the polynomials considered in this
chapter. These bounds can be found in our joint work [Jooste et al.]. Let us recall that
Jooste et al. [2017] were the first to use this algorithmic approach to find bounds of the
Hahn polynomials and this paper was the starting point of this work. Finally, the existing
results on interlacing properties, quasi-orthogonality or bounds of the extreme zeros are
collected in this chapter to make them accessible for the readers. We cite the references
for each result and the proofs can be found in the cited references. In the sequel, we will
denote the monic polynomials associated to pn by p̃n.

2.1 The Jacobi polynomials
The Jacobi polynomials defined by

P (α,β)
n (x) =

(α + 1)n
n!

2F1

−n, n+ α + β + 1

α + 1

∣∣∣∣∣∣ 1− x
2

,
are orthogonal on (−1, 1) with respect to w(x) = (1 − x)α(1 + x)β provided that α >

−1, β > −1. We denote the monic Jacobi family by P̃ (α,β)
n (x) = 2nn!

(n+α+β+1)n
P

(α,β)
n (x).

2.1.1 Interlacing of zeros

Our implementations (see http://www.mathematik.uni-kassel.de/~tcheutia/), us-
ing

> FJac:=pochhammer(alpha+1, n)/n!
> *(hyperterm([-n,n+alpha+beta+1],[alpha+1],(1-x)/2,k))

http://www.mathematik.uni-kassel.de/~tcheutia/
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> Mixedrec1(FJac,k,P(n),0,alpha,0,1,0);
> Mixedrec1(FJac,k,P(n),0,beta,0,1,0);
> Mixedrec2(FJac,k,P(n),0,alpha,0,beta,1,1,0,0,1);
> Mixedrec1(FJac,k,P(n),1,beta,2,0,0);
> Mixedrec1(FJac,k,P(n),1,alpha,2,0,0);
> Mixedrec2(FJac,k,P(n),0,alpha,0,beta,2,0,0,0,1);

give the following equations (see e.g. [Driver et al., 2008]), respectively,

P (α,β)
n (x) =

(n+ α + β + 1)

2n+ α + β + 1
P (α+1,β)
n (x)− (n+ β)

2n+ α + β + 1
P

(α+1,β)
n−1 (x); (2.1)

P (α,β)
n (x) =

(n+ α + β + 1)

2n+ α + β + 1
P (α,β+1)
n (x) +

(n+ α)

2n+ α + β + 1
P

(α,β+1)
n−1 (x); (2.2)

P (α,β+1)
n (x) = P (α+1,β)

n (x)− P (α+1,β+1)
n−1 (x);

(x+ 1)2 (n+ α + β + 1) (2n+ α + β)P
(α,β+2)
n−1 (x)

= 2n ((2n+ α + β)x+ (α + 3 β + 2n+ 2))P (α,β)
n (x) + 4 (β + 1) (n+ β)P

(α,β)
n−1 (x);

(x− 1)2 (n+ α + β + 1) (2n+ α + β)P
(α+2,β)
n−1 (x)

= 2n ((2n+ α + β)x− (3α + β + 2n+ 2))P (α,β)
n (x) + 4 (α + 1) (α + n)P

(α,β)
n−1 (x);

(n+ α + β + 1) (n+ α + β + 2) (x+ 1)P (α,β+2)
n (x)

= ((2n+ α + β + 1) (2n+ α + β + 2) (x+ 1)− 2n (α + n))P (α,β)
n (x)

− (α + n) ((2n+ α + β + 2)x+ α + 3 β + 2n+ 4)P
(α,β+1)
n−1 (x).

From the latter equations, the following interlacing results are deduced. Their proofs can
be found in [Driver et al., 2008].

Theorem 2.1 (see [Driver et al., 2008]). Let α > −1, β > −1, t ∈ (0, 2) and k ∈ (0, 2).
Let −1 < xn,1 < . . . < xn,n < 1 be the zeros of P̃ (α,β)

n (x), −1 < yn,1 < . . . < yn,n < 1

be the zeros of P (α+t,β)
n (x), −1 < zn,1 < . . . < zn,n < 1 be the zeros of P (α,β+k)

n (x),
−1 < Yn,1 < . . . < Yn,n < 1 be the zeros of P (α+2,β)

n (x), −1 < Zn,1 < . . . < Zn,n < 1 be the
zeros of P (α,β+2)

n (x), −1 < tn,1 < . . . < tn,n < 1 be the zeros of P (α+t,β+k)
n (x). Then for

i = 1, 2, . . . , n− 1,

(a) yn,i < xn,i < yn−1,i < yn,i+1 < xn,i+1,

(b) xn,i < zn,i < zn−1,i < xn,i+1 < zn,i+1,

(c) yn,i < xn,i < zn,i < tn−1,i < yn,i+1 < xn,i+1 < zn,i+1,

(d) xn,i < xn−1,i < zn−1,i < Zn−1,i < xn,i+1,

(e) xn,i < Yn−1,i < yn−1,i < xn−1,i < xn,i+1.

Remark 2.2. The interlacing properties in Theorem 2.1 are not retained in general (see
[Driver et al., 2008]):

(a) when one or both of the parameters α, β are increased by more than 2,



2.1 The Jacobi polynomials 21

(b) for the zeros of P (α,β)
n (x) and those of P (α−t,β)

n−1 (x) or P (α,β−k)
n−1 (x) or P (α−t,β−k)

n−1 (x)
where t, k > 0.

Using the counterexample α = 1.266, β = 1.85, α′ = α+ 0.2, β′ = β+ 0.2, n = 4, Driver
et al. [2008] remarked that the zeros of P (α,β)

n (x) and P (α′,β′)
n (x) do not interlace in general

when both parameters are increased simultaneously.

2.1.2 Quasi-orthogonality

We substitute α by α− 1 in (2.1) and β by β − 1 in (2.2) to get

P (α−1,β)
n (x) =

n+ α + β

2n+ α + β
P (α,β)
n (x)− n+ β

2n+ α + β
P

(α,β)
n−1 (x); (2.3)

P (α,β−1)
n (x) =

n+ α + β

2n+ α + β
P (α,β)
n (x) +

n+ α

2n+ α + β
P

(α,β)
n−1 (x). (2.4)

Substituting β by β − 1 in (2.3) and using (2.4) yields

P (α−1,β−1)
n (x) =

(n+ α + β − 1)(n+ α + β)

(2n+ α + β)(2n+ α + β − 1)
P (α,β)
n (x)

+
(α− β)(n+ α + β − 1)

(2n+ α + β)(2n+ α + β − 2)
P

(α,β)
n−1 (x)− (n+ β − 1)(n+ α− 1)

(2n+ α + β − 1)(2n+ α + β − 2)
P

(α,β)
n−2 (x).

Using our implementations, we also recover the following mixed recurrence equations given
in [Driver and Jordaan, 2018].

P
(α,β)
n−1 (x) =

2 ((α + β + 2n− 2)x− α + β)n

(x2 − 1) (n+ α + β − 1) (2n+ α + β − 2)
P (α−1,β−1)
n (x)

− 4 (n+ β − 1) (n+ α− 1)

(x2 − 1) (n+ α + β − 1) (2n+ α + β − 2)
P

(α−1,β−1)
n−1 (x);

P (α−1,β−1)
n (x) = P (α−1,β)

n (x) +
1

2
(1− x)P

(α,β)
n−1 (x);

P (α−1,β−1)
n (x) =

(n+ α + β)

α + β + 2n
P (α,β)
n (x)− ((α + β + 2n)x− α + β)

2(α + β + 2n)
P

(α,β)
n−1 (x).

Theorem 2.3 (see [Brezinski et al., 2004], [Driver and Jordaan, 2018]). (i) The Jacobi
polynomials P (α−k,β−l)

n (x) where −1 < α < 0, −1 < β < 0, and k, l ∈ N with
k + l < n, are quasi-orthogonal of order k + l with respect to the weight function
(1− x)α(1 + x)β on the interval (−1, 1). P (α−k,β−l)

n (x), with k + l < n, has at least
n− (k + l) zeros in the interval (−1, 1).

(ii) Let xn,1 < . . . < xn,n be the zeros of P (α,β)
n (x), yn,1 < . . . < yn,n be the zeros of

P
(α−1,β)
n (x), zn,1 < . . . < zn,n be the zeros of P (α,β−1)

n (x) and tn,1 < . . . < tn,n be the
zeros of P (α−1,β−1)

n (x):

(a) If −1 < α and −1 < β < 0, then

zn,1 < −1 < xn,1 < xn−1,1 < zn,2 < xn,2 < . . . < xn−1,n−1 < zn,n < xn,n;
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(b) If −1 < β and −1 < α < 0, then

xn,1 < yn,1 < xn−1,1 < xn,2 < yn,2 < . . . < xn−1,n−1 < xn,n < 1 < yn,n;

(c) If −1 < α < 0, −1 < β < 0, then
• for n ≥ 2,

tn,1 < −1 < xn−1,1 < tn,2 < xn−1,2 < . . . < tn,n−1 < xn−1,n−1 < 1 < tn,n;

• for n ≥ 3,

tn−1,1 < tn,1 < −1 < tn,2 < tn−1,2 < . . . < tn−1,n−2 < tn,n−1 < 1 < tn,n < tn−1,n−1;

• for n ≥ 1,

tn,1 < −1 < yn,1 < tn,2 < . . . < tn,n−1 < yn,n−1 < 1 < yn,n < tn,n;

• for n ≥ 2, the zeros of P (α−1,β−1)
n and the zeros of P (α,β)

n are not interlac-
ing. However, if P (α−1,β−1)

n (γ) 6= 0, where γ := α−β
α+β+2n

, the zeros of P (α,β)
n (x)

interlace with the zeros of (x− γ)P
(α−1,β−1)
n (x).

2.1.3 Bounds of the extreme zeros

We provide, using our code, equations of the form

f(x)P
(α+s1, β+s2)
n−k (x) = H(x)P (α,β)

n (x) +Gk−1,s1,s2(x)P
(α,β)
n−1 (x), s1 + s2 ∈ {0, 1, . . . , 2k}.

(2.5)
If we denote by B(1)

k,s1,s2
, B(2)

k,s1,s2
the smallest and the largest zero of Gk−1,s1,s2 , respectively,

then for the smallest zero xn,1 and the largest zero xn,n of the Jacobi polynomials P (α,β)
n (x),

the inequality
xn,1 < B

(1)
k,s1,s2

< B
(2)
k,s1,s2

< xn,n, k ≤ n, (2.6)

is valid. For k = 2, s1 = 2 and s2 = 0, we recover the bound given by [Szegő, 1975, Eq.
(6.2.11)]

B
(2)
2,2,0 = 1− 2(α + 1)

2n+ α + β
< xn,n.

For k = 2, s1 = 4, s2 = 0, the bound (cf. [Driver and Jordaan, 2012, Eq. (8)]) for xn,n

B
(2)
2,4,0 = 1− 2(α + 1)(α + 3)

2(n− 1)(n+ α + β + 2) + (α + 3)(α + β + 2)
< xn,n, (2.7)

which is already sharper than [Szegő, 1975, Eq. (6.2.11)] and the bound obtained in [Area
et al., 2012, Cor. 3]), is recovered. For k = 2, s1 = 0, s2 = 4, we also recover a bound
(cf. [Driver and Jordaan, 2012, Section 2.2]) for xn,1

xn,1 < B
(1)
2,0,4 = −1 +

2(β + 1)(β + 3)

2(n− 1)(n+ α + β + 2) + (β + 3)(α + β + 2)
. (2.8)
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For k = 3, s1 = 0 and s2 = 6, we have (2.5) with G2,0,6(x) = a2x
2 + a1x+ a0, where

a2 = a0(α, β) +K(α, β), a1 = 2a0(α, β) +K(α, β)− 4
(β + 1)5

β + 3
,

a0 := a0(α, β) = 3n4 + (6α + 6 β + 6)n3 +
(
3α2 + 9αβ − β2 + 9α− 24 β − 41

)
n2

+ (α + β + 1)
(
3αβ − 4 β2 + 3α− 30 β − 44

)
n+ (β + 1)2

(
(α− β)2 − 11α + 13 β + 38

)
,

K(α, β) = 8 (β + 4) (β + 2)

(
n2 + (α + β + 1)n+

1

2
(β + 1) (α− 2)

)
.

The smallest zero
B

(1)
3,0,6 =

1

2a2

(−a1 −
√
a2

1 − 4a0a2)

of G2,0,6 is an upper bound of xn,1 and is sharper than the bound (2.8). Let us note
here and everywhere else in the sequel that we say “sharper or more accurate” in general
according to simulations.

For k = 3, s1 = 6 and s2 = 0, we have (2.5) with G2,6,0(x) = b2x
2 + b1x+ b0, where

b2 = a0(β, α) +K(β, α), b1 = −2a0(β, α)−K(β, α) + 4
(α + 1)5

α + 3
, b0 = a0(β, α).

The largest zero

B
(2)
3,6,0 =

1

2b2

(−b1 +
√
b2

1 − 4b0b2)

of G2,6,0 is a lower bound of xn,n and is sharper than the bound (2.7). Some numerical
simulations are done in Table 2.1 to illustrate how sharp are the bounds derived from our
recurrence equations.

n n = 4 n = 12 n = 19 n = 100

α α = −0.9 α = 30.9 α = 30.9 α = −0.5

β β = −0.8 β = −0.8 β = 32.8 β = 30

zero xn,1 -0.966815724842541 -0.999156791323282 -0.682 -0.951

bound B(1)
4,0,8 -0.966815724842536 -0.999156791323269 -0.677 -0.94998

bound B(1)
3,0,6 -0.966815719 -0.9991567909 -0.657 -0.946

bound (2.8) -0.96674 -0.9991545 -0.55 -0.92

bound (2.7) 0.984109 -0.05 0.59 0.99990427

bound B(2)
3,6,0 0.98411889115 0.1083 0.687 0.9999055189

bound B(2)
4,8,0 0.98411889130462334 0.1369 0.7058 0.99990552024133

zero xn,n 0.98411889130462342 0.1414 0.7102 0.99990552024165

Table 2.1: Comparison of the bounds for the extreme zeros of the Jacobi polynomials
P

(α,β)
n (x)



24 Classical orthogonal polynomials of a continuous and a discrete variable

Krasikov [2006] proved that if α ≥ β > −1, then for n ≥ 5

xn,1 < A+ 9(1− A2)2/3(2R)−1/3, (2.9)

and for n ≥ 56,
xn,n > B − 9(1−B2)2/3(2R)−1/3, (2.10)

where

s = α + β + 1, q = α− β, r = 2n+ α + β + 1, R =
√

(r2 − q2 + 2s+ 1)(r2 − s2),

and
A = −R + q(s+ 1)

r2 + 2s+ 1
, B =

R− q(s+ 1)

r2 + 2s+ 1
.

In Table 2.2, we compare the bounds (2.9), (2.10), B(1)
3,0,6, B

(2)
3,6,0 under the hypothesis of

(2.9), (2.10).

n n = 10 n = 56 n = 75 n = 100

α α = 0.5 α = 75 α = 50 α = −0.5

β β = −0.8 β = 13 β = −0.1 β = −0.8

xn,1 -0.995905277982168 -0.98178 -0.9997329012 -0.999955987905

bound B(1)
4,0,8 -0.995905277982118 -0.98168 -0.999732900 -0.9999559833

bound B(1)
3,0,6 -0.995905276236077 -0.9809 -0.99973287 -0.99995598788

bound (2.9) -0.994901948730266 -0.971 -0.99954 -0.999945

bound (2.10) n/a 0.577 0.789 0.999808

bound B(2)
3,6,0 0.954222147582673 0.616 0.819 0.9998762585

bound B(2)
4,8,0 0.954244065608416 0.6468 0.8338 0.9998762603419

xn,n 0.954244105748079 0.660 0.8394 0.9998762603423

Table 2.2: Comparison of the bounds (2.9), (2.10), B(1)
3,0,6, B

(2)
3,6,0 of P (α,β)

n (x)

We note from various numerical simulations that for the Jacobi polynomials, sharpest
bounds for xn,1 are the smallest zero of Gk−1,0,2k, k ≥ 2 in (2.5) and we get sharpest
bounds for xn,n by taking the largest zero of Gk−1,2k,0, k ≥ 2 in (2.5).

2.2 The Laguerre polynomials
The Laguerre polynomials

L(α)
n (x) =

(α + 1)n
n!

1F1

 −n

α + 1

∣∣∣∣∣∣x
, α > −1,

are orthogonal w.r.t. w(x) = xαe−x on (0,∞). The monic Laguerre polynomials will be
denoted by L̃(α)

n (x) = (−1)nn!L
(α)
n (x).
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2.2.1 Interlacing of the zeros

The following mixed recurrence equations (that we recover using our implementations)
are valid (see e.g. [Driver and Jordaan, 2007], [Driver and Jordaan, 2011, Eq. (4)])

L̃(α)
n (x) = L̃(α+1)

n (x) + nL̃
(α+1)
n−1 (x); (2.11)

(α + n+ 1)L̃(α)
n (x) = (α + 1)L̃(α+2)

n (x) + n(x+ α + 1)L̃
(α+2)
n−1 (x);

xL̃(α+1)
n (x) = −(n− x)L̃(α)

n (x)− n(n+ α)L̃
(α)
n−1(x);

xL̃
(α+1)
n−1 (x) = L̃(α)

n (x) + (n+ α)L̃
(α)
n−1(x); (2.12)

x2L̃
(α+2)
n−1 (x) = (x+ α + 1)L̃(α)

n (x) + (α + 1)(n+ α)L̃
(α)
n−1(x);

(n+ α + 1)L̃(α)
n (x) = (α + 1)L̃(α+1)

n (x) + nxL̃
(α+2)
n−1 (x).

The following interlacing properties are derived from the first two preceding equations.

Theorem 2.4 (see [Driver and Jordaan, 2007]). Let α > −1, and let 0 < xn,1 < . . . <

xn,n be the zeros of L(α)
n (x), let 0 < yn,1 < . . . < yn,n be the zeros of L(α+1)

n (x) while
0 < Yn,1 < . . . < Yn,n are the zeros of L(α+2)

n (x). Then for i ∈ {1, 2, . . . , n− 1},

(a) xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1,

(b) xn,i < Yn,i < Yn−1,i < xn,i+1 < Yn,i+1,

(c) xn,i < xn−1,i < yn−1,i < Yn−1,i < xn,i+1,

(d) xn,i < yn,i < Yn,i < Yn−1,i < xn,i+1 < yn,i+1 < Yn,i+1.

Let 0 < zn,1 < . . . < zn,n be the zeros of L(α+t)
n (x) where 0 < t < 2, then 0 < xn,i <

zn,i < Yn,i, i = 1, 2, . . . , n. However, as shown by Driver and Jordaan [2007], the zeros of
L

(α+3)
n (x) and L

(α)
n (x), as well as the zeros of L(α+2)

n (x) and L
(α)
n−1(x) do not interlace in

general for α > −1.
Using our implementations, we recover the equations obtained in [Driver and Jordaan,

2011, Eqs. (5), (9), (12)]:

L
(α)
n+1(x) =

(n+ α + 1− x)L
(α)
n (x)

n+ 1
−
xL

(α+1)
n−1 (x)

n+ 1
;

L
(α)
n+1(x) =

(α− x+ 1) (α + 1 + n)L
(α)
n (x)

(n+ 1) (α + 1)
−

x2L
(α+2)
n−1 (x)

(n+ 1) (α + 1)
;

L
(α+3)
n−2 (x) = −n ((−n+ 1)x+ (α + 2) (α + 1))L

(α)
n (x)

x3

+
(α + n) ((−α− n− 1)x+ (α + 2) (α + 1))L

(α)
n−1(x)

x3
;

L
(α+4)
n−2 (x) = −n ((−n+ 1)x2 − 2 (n− 1) (α + 2)x+ (α + 3) (α + 2) (α + 1))L

(α)
n (x)

x4

+
(α + 2) (α + n) ((−α− 2n− 1)x+ (α + 3) (α + 1))L

(α)
n−1(x)

x4
; (2.13)

(n+ 1)L
(α)
n+1(x) = (α + 2n+ 1− x)L(α)

n (x)− (n+ α)L
(α)
n−1(x). (2.14)

Driver and Jordaan [2011] derived from the latter equations the following results:
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Theorem 2.5 (see [Driver and Jordaan, 2011]). (a) The zeros of L(α)
n−1, together with

the point α + 1 + 2n, interlace with the zeros of L(α)
n+1;

(b) The zeros of L(α+1)
n−1 , together with the point α + 1 + n, interlace with the zeros of

L
(α)
n+1;

(c) The zeros of L(α+2)
n−1 , together with the point α + 1, interlace with the zeros of L(α)

n+1;

(d) The zeros of L(α+3)
n−1 , together with the point (α+1)(α+2)

n+α+2
, interlace with the zeros of

L
(α)
n+1;

(e) The zeros of L(α+4)
n−1 , together with the point (α+1)(α+3)

2n+α+3
, interlace with the zeros of

L
(α)
n+1.

Remark 2.6. The extra interlacing points in (d) and (e), respectively, are the upper
bounds for the smallest zero xn+1,1 of the Laguerre polynomial L(α)

n+1 obtained in [Gupta and
Muldoon, 2007, Eqs. (2.9) and (2.10)], namely xn+1,1 <

(α+1)(α+2)
n+α+2

and xn+1,1 <
(α+1)(α+3)

2n+α+3
.

2.2.2 Quasi-orthogonality

Substituting α by α− 1 in (2.11) and (2.12) yields, respectively,

L̃(α−1)
n (x) = L̃(α)

n (x) + nL̃
(α)
n−1(x);

xL̃
(α)
n−1(x) = L̃(α−1)

n (x) + (n+ α− 1)L̃
(α−1)
n−1 (x).

Therefore L̃(α−j)
n (x) can be written as a linear combination of L̃(α)

n (x), L̃
(α)
n−1(x), . . . , L̃

(α)
n−j(x).

Theorem 2.7 (see [Brezinski et al., 2004], [Driver and Muldoon, 2015]). (i) Let j−2 <
α < j − 1, j ∈ {1, . . . , n − 1} such that α − j < −1. The Laguerre polynomials
L̃

(α−j)
n (x) are quasi-orthogonal of order j on (0,∞) with respect to the weight func-

tion xαe−x. L̃(α−j)
n (x) has at least (n− j) positive real zeros.

(ii) If −1 < α < 0 and xn,i, i ∈ {1, . . . , n} and yn,i, i ∈ {1, . . . , n} denote, respectively,
the zeros of L̃(α)

n (x) and L̃(α−1)
n (x), then

yn,1 < 0 < xn,1 < xn−1,1 < yn,2 < xn,2 < . . . < xn−1,n−1 < yn,n < xn,n,

yn−1,1 < yn,1 < 0 < yn,2 < yn−1,2 < . . . < yn,n−1 < yn−1,n−1 < yn,n.

From the equations

(n− 1)(α + n− 1)L̃
(α)
n−2(x) = −L̃(α)

n (x)− (α + 2n− 1− x)L̃
(α)
n−1(x),

(n− 1)xL̃
(α+1)
n−2 (x) = −L̃(α)

n (x)− (n+ α− x)L̃
(α)
n−1(x),

(n− 1)x2L̃
(α+2)
n−2 (x) = −(α + 1)L̃(α)

n (x)− (α + 1− x)L̃
(α)
n−1(x),

Driver and Muldoon [2015] derived the following results.

Theorem 2.8 (see [Driver and Muldoon, 2015]). Let n− 2 ∈ N, α fixed, −2 < α < −1,
and suppose L̃(α)

n (x) is the sequence of Laguerre polynomials.
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1. The zeros of xL̃(α)
n−2, together with the point α + 2n − 1, interlace with the zeros of

L̃
(α)
n (x) provided L̃(α)

n−2(x) and L̃(α)
n (x) are co-prime.

2. Stieltjes interlacing does not hold between the zeros of L̃(α)
n−2(x) and L̃(α)

n (x).

3. The n−2 simple, positive zeros of L̃(α+1)
n−2 (x), together with the point n+α, interlace

with the n− 1 positive zeros of L̃(α)
n (x) if L̃(α+1)

n−2 (x) and L̃(α)
n (x) are co-prime.

4. For 2 ≤ t ≤ 4, the n− 2 simple, positive zeros of L̃(α+t)
n−2 (x) interlace with the n− 1

positive zeros of L̃(α)
n (x).

5. For the negative zero xn,1 of L̃(α)
n (x), the chain of inequalities

α+1 <
α + 1

n
<

(α + 1)(α + 3)

α + 2n+ 1
< xn,1 < (α+1)

( α + 2

n(n+ α + 1)

)1/2

<
(α + 1)(α + 2)

α + n+ 1
< 0,

is valid.

2.2.3 Bounds of the extreme zeros

Using our code, we get equations of type

f(x)L
(α+s)
n−k (x) = H(x)L(α)

n (x)+Gk−1,s(x)L
(α)
n−1(x), k = 2, 3, . . . , s ∈ {0, 1, . . . , 2k}, (2.15)

satisfied by the Laguerre polynomials. Let B(1)
k,s , B

(2)
k,s be the smallest and the largest

zero of Gk−1,s, respectively. For k = 2 and s = 3, we recover the upper bound B
(1)
2,3 =

(α + 1)(α + 2)

n+ α + 1
for the smallest zero xn,1 of L(α)

n (x) obtained by Hahn (cf. [Hahn, 1933])

and for s = 4 the upper bound B(1)
2,4 =

(α + 1)(α + 3)

2n+ α + 1
for xn,1 given by Szegő [Szegő, 1975,

Eq. (6.31.12)]. For k = 2 and s = 0, we have the natural bound B(1)
2,0 = 2n+α−1 obtained

by Szegő (cf. [Szegő, 1975]). For k = 3 and s = 5 and s = 0, respectively, we recover the
equations given in [Driver and Jordaan, 2012, Eqs. (4) and (6)] which provided a strict
upper bound B(1)

3,5 for the smallest zero xn,1 of L(α)
n and a lower bound B(2)

3,0 for the largest
zero xn,n of L(α)

n , respectively. For k = 3 and s = 6, we get

x6L
(α+6)
n−3 (x) = H(x)L(α)

n (x) + (n+ α)
(

(α + 3)(3n(n+ α + 1) + (α + 1)2)x2

− 2(α + 2)3(α + 2n+ 1)x+ (α + 1)5

)
L

(α)
n−1(x).

This equation provides for xn,1 the upper bound

xn,1 < B
(1)
3,6 =

1

3n(n+ α + 1) + (α + 1)2

(
(α + 2)(α + 4)(α + 2n+ 1)

−
√

(α + 2)(α + 4)
(

(α2 + 6α + 17)n2 + (α + 1) (α2 + 6α + 17)n− (α + 2) (α + 1)2
))
.

(2.16)
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Numerical simulations indicate that (2.16) is sharper than the upper bound given in
[Driver and Jordaan, 2012, Eq. (5)] but could not be compared with the bound

xn,1 < V 2 +
9V 4/3

(U2 − V 2)1/3(2− 27δ2/3)
, if δ <

1

50
, (2.17)

given in Krasikov [2006] for

U =
√
n+ α + 1 +

√
n, V =

√
n+ α + 1−

√
n, δ =

1

n
+

1

α + 1
. (2.18)

Note that the condition δ < 1
50

with α > −1 is valid for n ≥ 51. However, for k = 4 and
s = 8 in (2.15), it turns out that the smallest zero B(1)

4,8 of the polynomial

G3,8(x) = (α + 4) (α + 2n+ 1)
(
α2 + 2αn+ 2n2 + 5α + 2n+ 6

)
x3

− (α + 3)3

(
3α2 + 10αn+ 10n2 + 9α + 10n+ 6

)
x2

+ 3 (α + 2)5 (α + 2n+ 1)x− (α + 1)7

is a more accurate upper bound for xn,1 compared to (2.16), and for k = 4 and s = 0 in
(2.15), the largest zero B(2)

4,0 of the polynomial

G3,0(x) = x3 − 3(2n+ α− 3)x2 + (10n2 + 10(α− 3)n+ 3(α− 3)2)x

− (α + 2n− 3)(2n2 + 2(α− 3)n+ (α− 2)2)

is an accurate lower bound for xn,n, the largest zero of L(α)
n (x), compared to the lower

bound [Driver and Jordaan, 2012, Eq. (7)].
Krasikov [2006] showed that for n ≥ 30, and U, V given in (2.18),

xn,n >

U2 − 9U4/3

2(U2−V 2)1/3
, if α ≤ 2(3 + 2

√
3)n− 1,

U2 − 9U4/3

(U2−V 2)1/3(2−3n−2/3)
, otherwise.

(2.19)

This bound of xn,n is sharper than B(2)
4,0 but if we take (k, s) = (7, 0), we get from simula-

tions that the largest zero B(2)
7,0 of G6,0 is sharper than the bound in (2.19). In Table 2.3,

we compare B(1)
4,8 , B

(2)
4,0 , the lower bound 3n− 4 for xn,n obtained by Neumann [1921], the

lower bound zn,0 := 4n+ α− 16
√

2n given by Bottema [1931], the upper bound

xn,1 < zn,1 :=
(α + 1) (α + 2) (α + 4) (2n+ α + 1)

(α + 1)2 (α + 2) + (5α + 11)n (n+ α + 1)

obtained by [Gupta and Muldoon, 2007, Eq. (2.11)], (2.19) and the bound B(2)
7,0 .

We observe from the simulations that the sharpest upper bounds (compared to the
existing ones) for xn,1 are obtained for s = 2k, k ≥ 4 and the sharpest lower bounds for
xn,n for s = 0 and k ≥ 4. We also observe as in [Gupta and Muldoon, 2007] that the
upper bounds for xn,1 will be sharpest for α close to −1.
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n, α 5, −0.9 13, 340.56 21, 65.3 101, −0.9

zero xn,1 0.020777151319288 251.82 27.677 0.00103830995555334

bound B(1)
4,8 0.020777151319291 259.04 28.59 0.00103830995555361

bound zn,1 0.020777504961963 309.59 36.616 0.0010383284039825

bound zn,0 n/a 310.98 45.61 175.69

bound 3n− 4 11 35 59 299

bound B(2)
4,0 11.1133332 453.62 161.88 338.20

bound (2.19) 7.94 443.001 166.78 370.93

bound B(2)
7,0 11.1262992 469.109 172.19 371.24

zero xn,n 11.1262992 469.74 172.77 377.13

Table 2.3: Comparison of the bounds for the extreme zeros of the Laguerre polynomials
L

(α)
n (x)

2.3 The Bessel polynomials
The Bessel polynomials

yn(x;α) = 2F0

−n, n+ α + 1

−

∣∣∣∣∣∣−x2
, n = 0, 1, . . . , N, α < −2N − 1,

are orthogonal on (0,∞) w.r.t. w(x) = xαe−
2
x . The monic Bessel polynomials are given

by ỹn(x;α) = 2n

(n+α+1)n
yn(x;α).

2.3.1 Interlacing of the zeros

The following mixed recurrence equations are valid.

ỹn(x;α− 1) = ỹn(x;α) +
2n

(α + 2n)(α + 2n− 1)
ỹn−1(x;α);

ỹn(x;α− 2) =
α + 2n− 1

α + n− 1
ỹn(x;α)− n((α + 2n)x− 2)

(α + 2n)(α + n− 1)
ỹn−1(x;α);

ỹn(x;α− 2) =
α + 2n− 1

α + n− 1
ỹn(x;α− 1)− nx

α + n− 1
ỹn−1(x;α).

It follows that

Theorem 2.9. Let n = 0, 1, . . . , N , α < −2N − 1 and x ∈ (0,∞). Let 0 < xn,1 <
. . . < xn,n be the zeros of ỹn(x;α), 0 < yn,1 < . . . < yn,n be the zeros of ỹn(x;α − 1) and
0 < Yn,1 < . . . < Yn,n be the zeros of ỹn(x;α− 2). Then for i ∈ {1, 2, . . . , n− 1},

(a) yn,i < xn,i < xn−1,i < yn,i+1 < xn,i+1,

(b) Yn,i < xn,i < xn−1,i < Yn,i+1 < xn,i+1,
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(c) Yn,i < yn,i < xn,i < xn−1,i < Yn,i+1 < yn,i+1 < xn,i+1.

Remark 2.10. We deduce from the latter theorem that yn,i < yn−1,i < xn−1,i < yn,i+1,
Yn,i < Yn−1,i < xn−1,i < Yn,i+1 and Yn,i < yn−1,i < xn−1,i < Yn,i+1.

2.3.2 Quasi-orthogonality

For the Bessel polynomials, the following recurrence equation is valid:

ỹn(x;α + 1) =
x (α + 1 + 2n) (α + 2n)− 2n

x (α + 1 + 2n) (α + 2n)
ỹn(x;α)

+
4n(α + n)

x(α + 1 + 2n) (α− 1 + 2n) (α + 2n)2 ỹn−1(x;α).

Therefore, the polynomial ỹn(x;α + k) (k ≥ 1) is not quasi-orthogonal with respect to
xαe−

2
x , on (0,∞), since it cannot be written as a linear combination of the polynomials

ỹn(x;α), ỹn−1(x;α), . . ., ỹn−k(x;α).

2.3.3 Bounds of the extreme zeros

We use equations of type

f(x)yn−k(x;α + s) = H(x)yn(x;α) +Gk−1,s(x)yn−1(x;α), s ∈ {0, 1, . . . , 2k}, (2.20)

to find the bounds of the extreme zeros xn,1 and xn,n of the Bessel polynomials yn(x;α).
Let B(1)

k,s , B
(2)
k,s be the smallest and the largest zeros of Gk−1,s, respectively. For k = 3 and

s = 0, we derive the lower bound B(2)
3,0 of xn,n given by

B
(2)
3,0 =

2α + 4n− 4

(α + 2n− 4)5

(
− α (α + 2n− 1) (α + 2n− 3) +

(
(1− α− 2n) (α + 2n− 3)

×
(
(n− 1)α3 +

(
5n2 − 10n+ 1

)
α2 + 8n (n− 1) (n− 2)α + 4n2 (n− 2)2) )1/2)

.

The upper bound

B
(1)
3,6 = −2

α + 3 +
√
−αn− n2 + α− n+ 3

α2 + αn+ n2 + 5α + n+ 6
for xn,1 is obtained for k = 3 and s = 6. As we can observe from the simulations in Table
2.4 for k = 4, the sharpest bounds for xn,1 are obtained for s = 2k, k ≥ 4, and for s = 0,
k ≥ 4, we get sharpest bounds for xn,n.

2.4 The Hahn polynomials
The Hahn polynomials

Qn(x;α, β,N) = 3F2

−n,−x, n+ 1 + α + β

α + 1,−N

∣∣∣∣∣∣ 1
, n = 0, 1, 2, . . . , N,

α > −1 and β > −1, or α < −N and β < −N,

are orthogonal w.r.t. w(x) =
(
α+x
x

)(
β+N−x
N−x

)
, x = 0, 1, . . . , N . The monic Hahn polynomials

will be denoted by Q̃n(x;α, β,N) = (α+1)n(−N)n
(n+α+β+1)n

Qn(x;α, β,N).
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n, α 4, −20 10, −25 50, −305 100, −205

zero xn,1 0.080626 0.05438 0.003997 0.0052

bound B(1)
4,8 0.08097 0.0558 0.00437 0.0058

bound B(1)
3,6 0.084899 0.06 0.0048 0.0066

bound B(2)
3,0 0.287 1.699 0.019 14.07

bound B(2)
4,0 0.291999 1.71575 0.0214 14.2335

zero xn,n 0.29213 1.7161 0.02284 14.23786

Table 2.4: Comparison of the bounds for the extreme zeros of the Bessel polynomials
yn(x;α)

2.4.1 Interlacing of the zeros

Using our implementations, we show that the Hahn polynomials are solutions of the
following recurrence equations [Jordaan and Toókos, 2009]:

Q̃n(x;α, β,N) = Q̃n(x;α + 1, β,N) +
n (n+ β) (N − n+ 1)

(2n+ α + β) (2n+ α + β + 1)
Q̃n−1(x;α + 1, β,N);

(2.21)

Q̃n(x;α, β,N) = Q̃n(x;α, β + 1, N)− n (α + n) (N − n+ 1)

(2n+ α + β) (2n+ α + β + 1)
Q̃n−1(x;α, β + 1, N);

(2.22)

Q̃n(x;α, β + 1, N) = Q̃n(x;α + 1, β,N) +
n (−n+ 1 +N)

2n+ α + β + 1
Q̃n−1(x;α + 1, β + 1, N).

Some mixed recurrence relations satisfied by the Hahn polynomials are also given in
[Levit, 1967] as well as some separation theorems. Jordaan and Toókos [2009] derived the
following interlacing properties.

Theorem 2.11 (see [Jordaan and Toókos, 2009]). Let α, β > −1 and let 0 < xn,1 < . . . <
xn,n be the zeros of Qn(x;α, β,N), 0 < yn,1 < . . . < yn,n be the zeros of Qn(x;α+k, β,N),
0 < zn,1 < . . . < zn,n be the zeros of Qn(x;α, β + s,N), 0 < tn,1 < . . . < tn,n be the zeros
of Qn(x;α + k, β + s,N) where 0 < k, s ≤ 1. Then for i = 1, 2, . . . , n− 1,

(a) xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1,

(b) zn,i < xn,i < zn−1,i < zn,i+1 < xn,i+1,

(c) zn,i < xn,i < yn,i < tn−1,i < zn,i+1 < xn,i+1 < yn,i+1.

Remark 2.12. (i) The interlacing order given in [Jordaan and Toókos, 2009, Thm.
5.1] should read pi < ti < qi < pi+1 < ti+1 and not ti < pi < qi < ti+1 < pi+1 where
ti, pi, qi are, respectively, the zeros of Qn(x;α, β,N), Qn(x;α, β+s,N), Qn−1(x;α, β+
s,N) in increasing order with 0 < s ≤ 1.

(b) From (a) and (b), we deduce, respectively, the interlacing xn,i < xn−1,i < yn−1,i <
xn,i+1 and xn,i < zn−1,i < xn−1,i < xn,i+1, i = 1, 2, . . . , n− 1.
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2.4.2 Quasi-orthogonality

Substituting α by α − 1 in (2.21) and β by β − 1 in (2.22) yields (see [Johnston et al.,
2016])

Q̃n(x;α− 1, β,N) = Q̃n(x;α, β,N) +
n (n+ β) (N − n+ 1)

(2n+ α + β − 1) (2n+ α + β)
Q̃n−1(x;α, β,N);

(2.23)

Q̃n(x;α, β − 1, N) = Q̃n(x;α, β,N)− n (α + n) (N − n+ 1)

(2n+ α + β − 1) (2n+ α + β)
Q̃n−1(x;α, β,N).

(2.24)

Replacing β by β − 1 in (2.23) and using (2.24), we get

Q̃n(x;α− 1, β − 1, N) = Q̃n(x;α, β,N)− n (α− β) (N − n+ 1)

(2n+ α− 2 + β) (α + β + 2n)
Q̃n−1(x;α, β,N)

− n (n− 1 + α) (N − n+ 1) (n− 1) (n+ β − 1) (N − n+ 2)

(2n− 3 + α + β) (2n+ α− 2 + β)2 (2n+ α + β − 1)
Q̃n−2(x;α, β,N).

Johnston et al. [2016] deduced the following results.

Theorem 2.13 (cf. [Johnston et al., 2016]). (i) Let N ∈ N with n ∈ {0, 1, . . . , N}.
Then for α > −1, β > −1 and k, l ∈ N fixed with k + l < N such that α− k < −1,
β − l < −1, the sequence of Hahn polynomials {Q̃n(x;α − k, β − l, N)} is quasi-
orthogonal of order k + l with respect to

(
α+x
x

)(
β+N−x
N−x

)
, x = 0, 1, . . . , N and the

polynomials have at least n− (k + l) real, distinct zeros in the interval (0, N).

(ii) For n ∈ {2, 3, . . .}, let xn,i, i ∈ {1, 2, . . . , n} be the zeros of Q̃n(x;α, β,N), yn,i, i ∈
{1, 2, . . . , n} be the zeros of Q̃n(x;α− 1, β,N) and zn,i, i ∈ {1, 2, . . . , n} be the zeros
of Q̃n(x;α, β − 1, N). Then
for β > −1, −1 < α < 0, yn,1 < 0 < xn,1 < xn−1,1 < yn,2 < xn,2 < . . . < xn−1,n−1 <
yn,n < xn,n;
for α > −1, −1 < β < 0, xn,1 < zn,1 < xn−1,1 < xn,2 < zn,2 < . . . < xn−1,n−1 <
xn,n < N < zn,n.

(iii) For n ∈ {2, 3, . . .} and α, β > −1, the zeros of Q̃n−1(x;α, β,N) interlace with the
zeros of the second-order quasi-orthogonal polynomial

(a) Q̃n(x;α− 1, β − 1, N) for −1 < α, β < 0;

(b) Q̃n(x;α− 2, β,N) for −1 < α < 0, β > −1;

(c) Q̃n(x;α, β − 2, N) for α > −1, −1 < β < 0.

2.4.3 Bounds of the extreme zeros

For the Hahn polynomials, we use, for k = 2, 3, . . . , s1 + s2 ∈ {0, 1, . . . , 2k}, equations of
the form

f(x)Qn−k(x;α + s1, β + s2, N) = H(x)Qn(x;α, β,N) +Gk−1,s1,s2(x)Qn−1(x;α, β,N).
(2.25)
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Let B(1)
k,s1,s2

, B(2)
k,s1,s2

be the smallest and the largest zeros of Gk−1,s1,s2 , respectively. The
case k = 2 was already studied in [Jooste et al., 2017] and the bounds derived from that
case are not accurate as the one obtained for k = 3. In fact, for k ≥ 3 in (2.25), sharpest
upper bounds for xn,1 are the smallest zeros of Gk−1,2k,0 and sharpest lower bound for xn,n
are the largest zeros of Gk−1,0,2k as shown in Table 2.5 for k = 3. From the simulations,
the bounds we get for k = 3, s1 = 2k, s2 = 0, are already sharper than the ones given in
[Krasikov and Zarkh, 2009] for α ≥ β > −1 or α ≤ β ≤ −N − 1:

xn,1 <
(n+ α)(N − n+ 1)

α + β + 1
(2.26)

<
N(n+ α) + (n+ β)(n− 1)

2n+ α + β
< xn,n. (2.27)

n, α 5, 10 5, 200 5, 10.5 100, 3

β, N 2, 5 2, 30 10, 30 −0.5, 1000

zero xn,1 0.1659 23.219 5.0265 0.036

bound B(1)
3,6,0 0.47 23.435 5.67 2.105

bound (2.26) 1.15 26.256 18.74 n/a

bound B(1)
2,4,0 1.41 24.736 9.00092 5.802

bound B(2)
2,0,4 2.726 26.638 21.419 995.2478

bound B(2)
3,0,6 4.01 28.417 24.699 997.649

bound (2.27) 4.68 29.14 17.21 n/a

zero xn,n 4.9975 29.998 25.3339 999.9999

Table 2.5: Comparison of the bounds for the extreme zeros of the Hahn polynomials
Qn(x;α, β,N)

2.5 The Krawtchouk polynomials

The Krawtchouk polynomials

Kn(x; p,N) = 2F1

−n,−x
−N

∣∣∣∣∣∣ 1

p

, n = 0, 1, 2, . . . , N, 0 < p < 1,

are orthogonal w.r.t. w(x) =
(
N
x

)
px(1 − p)N−x, x = 0, 1, . . . , N . The monic Krawtchouk

polynomials will be denoted by K̃n(x; p,N) = (−N)np
nKn(x; p,N).
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2.5.1 Interlacing of the zeros

The following mixed recurrence equations are valid. Note that the two equations are given
in [Jordaan and Toókos, 2009] but with a misprint in each equation.

K̃n(x; p,N) = K̃n(x; p,N − 1)− npK̃n−1(x; p,N − 1);

K̃n(x; p,N) =
N − np+ 1− x
N − x+ 1

K̃n(x; p,N + 1)

+
np (1− p) (N − n+ 2)

N + 1− x)
K̃n−1(x; p,N + 1).

In addition to the first equation, Chihara and Stanton [1990] also derived the equations

K̃n(x; p,N) = K̃n(x+ 1; p,N)− nK̃n−1(x; p,N − 1);

K̃n(x; p,N) = K̃n(x− 1; p,N − 1) + n(1− p)K̃n−1(x− 1; p,N − 1).

It follows that

Theorem 2.14 (see [Chihara and Stanton, 1990], [Jordaan and Toókos, 2009] ). Let
p ∈ (0, 1) and n = 0, 1, . . . , N . If 0 < xn,1 < . . . < xn,n < N are the zeros of Kn(x; p,N),
0 < yn,1 < . . . < yn,n < N + 1 are the zeros of Kn(x; p,N + 1) and 0 < zn,1 < . . . < zn,n <
N − 1 are the zeros of Kn(x; p,N − 1) then, for i = 1, 2, . . . , n− 1,

(a) zn,i < xn,i < zn−1,i < zn,i+1 < xn,i+1 ⇔ xn,i < yn,i < xn−1,i < xn,i+1 < yn,i+1,

(b) yn,i < xn,i + 1 < xn−1,i + 1 < yn,i+1 < xn,i+1 + 1,

(c) xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1 when n ≤ 1
p
.

With counterexamples, Jordaan and Toókos [2009] showed that the zeros ofKn(x; p,N)
and Kn(x; p,N + t) do not interlace in general when t is an integer greater than 1 and
the zeros of Kn(x; p,N) and Kn−1(x; p,N + 1) or those of Kn(x; p,N − 2) do not also
generally interlace.

2.6 The Meixner polynomials

The Meixner polynomials are defined by

Mn(x; γ, µ) = 2F1

−n,−x
γ

∣∣∣∣∣∣ 1− 1

µ

, γ > 0, 0 < µ < 1,

and are orthogonal w.r.t. w(x) = (γ)x
x!
µx for x = 0, 1, . . . . The monic Meixner family is

denoted by M̃n(x; γ, µ) = (γ)nµn

(µ−1)n
Mn(x; γ, µ).
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2.6.1 Interlacing of the zeros

Our implementation yields the equations (cf. [Jordaan and Toókos, 2009])

M̃n(x; γ, µ) = M̃n(x; γ + 1, µ) +
nµ

1− µ
M̃n−1(x; γ + 1, µ); (2.28)

M̃n(x; γ, µ) =
γ + n(1− µ)

n+ γ
M̃n(x; γ + 2, µ)

+
µn ((µ− 2) γ + (n+ x+ 1) (µ− 1))

(µ− 1) (n+ γ)
M̃n−1(x; γ + 2, µ).

Jordaan and Toókos [2009] derived from the latter equations the following interlacing
property.

Theorem 2.15 (see [Jordaan and Toókos, 2009]). Let γ > 0, 0 < µ < 1 and let 0 <
xn,1 < xn,2 < . . . < xn,n be the zeros of Mn(x; γ, µ) and 0 < yn,1 < yn,2 < . . . < yn,n be the
zeros of Mn(x; γ + t, µ) where 0 < t ≤ 2. Then

xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1, i = 1, 2, . . . , n− 1.

Moreover, they show that this interlacing is not valid in general for shifts of t > 2 or
t < 0.

2.6.2 Quasi-orthogonality

We substitute γ by γ − 1 in (2.28) to get

M̃n(x; γ − 1, µ) = M̃n(x; γ, µ) +
nµ

1− µ
M̃n−1(x; γ, µ),

from which we deduce the equation

M̃n(x; γ − 2, µ) = M̃n(x; γ, µ)− 2n
µ

µ− 1
M̃n−1(x; γ, µ) + n(n− 1)

µ2

(µ− 1)2
M̃n−2(x; γ, µ).

It follows that

Theorem 2.16 (see [Jooste et al., 2013]). Let 0 < µ < 1 and 0 < γ < 1.

1. The Meixner polynomialsMn(x; γ−k, µ) with k = 1, 2, . . . , n−1 are quasi-orthogonal
of order k with respect to the weight function (γ)x

x!
µx on (0,∞).

2. The Meixner polynomials Mn(x; γ− k, µ) with −k < γ < −k+ 1 have at least n− k
zeros in (0,∞) when k = 1, 2, . . . , n− 1.

3. If 0 < γ < 1, then the smallest zero of Mn(x; γ − 1, µ) is negative.

4. If 0 < γ < 1 and n > γ−2
µ−1

then all the zeros of Mn(x; γ − 2, µ) are nonnegative and
simple.
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2.6.3 Bounds of the extreme zeros

We use recurrence equations of the form

f(x)Mn−k(x; γ + s, µ) = H(x)Mn(x; γ, µ) +Gk−1,s(x)Mn−1(x; γ, µ), s ∈ {0, 1, . . . , 2k}
(2.29)

satisfied by the Meixner polynomials. For k = 2, we recover the recurrence equations
given in [Jooste and Jordaan, 2014] and the bounds derived from these equations:

xn,1 < zn,1 =
(n+ γ)2 (n− 1 + µ (3 + γ − 3n))− µ2n (n− 1) ((n+ γ + 1)µ− 4 γ − 3n− 3)

(1− µ) (γ (γ + 2n+ 1)− n (µ2n− µ2 − n− 1))
(2.30)

< zn,2 =
γ µ+ (n− 1) (µ+ 1)

1− µ
< xn,n. (2.31)

Moreover, for k = 3 and s = 0, we deduce the bound

zn,2 < Zn,2 =
2 γ µ+ (2n− 3) (µ+ 1) +

√
4µn (γ + n− 3)− 4 γ µ+ µ2 + 10µ+ 1

2(1− µ)
< xn,n.

k = 3, s = 6 yield the bound

xn,1 < Zn,1 =
A−
√
B

2 (1− µ) ((n+ γ)3 − (n− 2)3 µ
3)
< zn,1,

with

A = −µ3 (n− 2)3 ((2µ− 4)n+ (µ− 3) (2 γ + 3)) + (n+ γ)3 ((−4µ+ 2)n+ 2 γ µ+ 9µ− 3) ,

B = −µ6 (n− 2)2
3

(
− µ2 +

(
−4 γ n− 4n2 + 4 γ + 14

)
µ+ 24 γ2 + 48 γ n+ 24n2 + 48 γ

+ 48n− 1
)

+ 2µ3 (n− 2)3 (n+ γ)3

( (
30n2 − 60n+ 17

)
µ2 +

(
−40 γ n− 40n2 + 40 γ + 50

)
µ

+ 30 γ2 + 60 γ n+ 30n2 + 60 γ + 60n+ 17
)

+ (n+ γ)2
3

( (
−24n2 + 48n+ 1

)
µ2

+
(
4 γ n+ 4n2 − 4 γ − 14

)
µ+ 1

)
.

We provide in Table 2.6 numerical examples to illustrate these bounds.

n, γ, µ 8, 0.09, 0.99 15, 20, 0.5 100, 20, 0.5 100, 0.09, 0.99

zero xn,1 1.118068 2 2.9× 10−13 0.0555

bound Zn,1 1.118078 6.06 18.75 0.0756

bound Zn,2 1959.6293 90.93 468.36 29415.91

zero xn,n 2114.696 106.44 589.77 37133.5

Table 2.6: Comparison of the bounds for the extreme zeros of the Meixner polynomials
Mn(x; γ, µ)



Chapter 3

Classical q-orthogonal polynomials

This chapter is devoted to the interlacing properties, the quasi-orthogonality of classical
q-orthogonal polynomials. The bounds of their extreme zeros are also given. The results
of this chapter can be found in the joint works by Tcheutia et al. [2018a], Tcheutia et al.
[2018b] and Jooste et al.. The equations from which the bounds of the extreme zeros are
derived can be found in the Maple file associated to this work.

3.1 Introduction
Let 0 < q < 1. The classical q-orthogonal polynomials were introduced by Hahn [1949]
and can be written in terms of basic hypergeometric series [Gasper and Rahman, 2004],
as introduced by Heine [1847]. These polynomials are associated especially to quantum
groups (cf. [Koelink and Koornwinder, 1989], [Koornwinder, 1990], [Koornwinder, 1994]),
as introduced in [Drinfeld, 1987], [Woronowicz, 1987]. We list the systems of monic q-
orthogonal polynomials considered in this chapter (cf. [Koekoek et al., 2010]).

1. Big q-Jacobi polynomials

P̃n(x;α, β, γ; q) =
(αq; q)n(γq; q)n

(αβqqn; q)n
3φ2

q−n, αβqn+1, x

αq, γq

∣∣∣∣∣∣ q; q
, (3.1)

with 0 < αq < 1, 0 ≤ βq < 1 and γ < 0, x ∈ (γq, αq);

2. q-Hahn polynomials

Q̃n(x̄;α, β,N |q) =
(αq; q)n(q−N ; q)n

(αβqqn; q)n
3φ2

q−n, αβqn+1, x̄

αq, q−N

∣∣∣∣∣∣ q; q
,

with x̄ = q−x, n ∈ {0, 1, . . . , N}, 0 < αq < 1 and 0 < βq < 1 or α > q−N and
β > q−N , x̄ ∈ (1, q−N);

3. Little q-Jacobi polynomials

p̃n(x;α, β|q) = (−1)nq(
n
2) (αq; q)n

(αβqqn; q)n
2φ1

q−n, αβqn+1

αq

∣∣∣∣∣∣ q; qx
,

with 0 < αq < 1, βq < 1, x ∈ (0, 1);
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4. q-Meixner polynomials

M̃n(x̄; β, γ; q) = (−1)nq−n
2

γn(βq; q)n 2φ1

q−n, x̄
βq

∣∣∣∣∣∣ q;−q
n+1

γ

,
with x̄ = q−x, 0 ≤ βq < 1, γ > 0, x̄ ∈ (1,∞);

5. q-Krawtchouk polynomials

K̃n(x̄; p,N ; q) =
(q−N ; q)n
(−pqn; q)n

3φ2

q−n, x̄,−pqn
q−N , 0

∣∣∣∣∣∣ q; q
,

with x̄ = q−x and n ∈ {0, 1, . . . , N}, p > 0, x̄ ∈ (1, q−N);

6. q-Laguerre polynomials

L̃(α)
n (x; q) =

(−1)n(qα+1; q)n
qn(n+α) 1φ1

 q−n

qα+1

∣∣∣∣∣∣ q;−qn+α+1x

, α > −1, x ∈ (0,∞);

7. Alternative q-Charlier or q-Bessel polynomials

ỹn(x;α; q) =
(−1)nq(

n
2)

(−αqn; q)n
2φ1

q−n,−αqn
0

∣∣∣∣∣∣ q; qx
, α > 0, x ∈ (0, 1);

8. Al-Salam-Carlitz I polynomials

Ũ (α)
n (x; q) = (−α)nq(

n
2) 2φ1

q−n, x−1

0

∣∣∣∣∣∣ q; qxα
, α < 0, x ∈ (α, 1);

9. Al-Salam-Carlitz II polynomials

Ṽ (α)
n (x; q) = (−α)nq−(n2) 2φ0

q−n, x
−

∣∣∣∣∣∣ q; q
n

α

, 0 < αq < 1, x ∈ (1,∞).

3.2 The big q-Jacobi polynomials
The sequence of big q-Jacobi polynomials {P̃n(x;α, β, γ; q)} is orthogonal for 0 < αq < 1,
0 ≤ βq < 1 and γ < 0 with respect to the continuous weight function w(x) = (α−1x,γ−1x;q)∞

(x,βγ−1x;q)∞
,

on the interval (γq, αq). As the parameter α decreases to αq, the interval in which the
zeros lie decreases to (γq, αq2) and we can deduce that the zeros of P̃n(x;α, β, γ; q) decrease
as α decreases to αq. Similarly, as γ increases to γq, the zeros will increase, since the
interval in which the zeros lie reduces to (γq2, αq).
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3.2.1 Interlacing properties

We have P̃n(x;α, β, γ; q) =
∞∑

k=−∞

F , where, by (3.1),

F :=
(αq, γq; q)n(q−n, αβqn+1, x; q)kq

k

(αβqn+1; q)n(αq, γq, q; q)k
.

Using our codes with qMixRec1(F,q,k,P(n),0,alpha,0,1,0), qMixRec1(F,q,k,P(n),
0,beta,0,1,0) and qMixRec2(F,q,k,P(n),0,alpha,0,beta,1,1,0,0,1), respectively,
we get the following recurrence equations (see the Maple file which can be downloaded
from http://www.mathematik.uni-kassel.de/~tcheutia/).

Proposition 3.1. The following mixed recurrence equations are valid:

P̃n(x;α, β, γ; q) = P̃n(x;αq, β, γ; q) +
α q (qn − 1) (β qn − 1) (γ qn − 1)

(αβ q2n+1 − 1) (αβ q2n − 1)
P̃n−1(x;αq, β, γ; q);

(3.2a)

P̃n(x;α, β, γ; q) = P̃n(x;α, βq, γ; q)

− αβ qn+1 (α qn − 1) (γ qn − 1) (qn − 1)

(αβ q2n+1 − 1) (αβ q2n − 1)
P̃n−1(x;α, βq, γ; q); (3.2b)

P̃n(x;α, βq, γ; q) = P̃n(x;αq, β, γ; q) +
αq(qn − 1)(γqn − 1)

αβq2n+1 − 1
P̃n−1(x;αq, βq, γ; q). (3.2c)

From the latter equations, we deduce the interlacing properties of the zeros given by

Theorem 3.2. Let 0 < αq < 1, 0 ≤ βq < 1, γ < 0 and denote the zeros of P̃n(x;α, β, γ; q)
by γq < xn,1 < xn,2 < · · · < xn,n < αq, the zeros of P̃n(x;αq, β, γ; q) by yn,1 < yn,2 <
· · · < yn,n, the zeros of P̃n(x;α, βq, γ; q) by zn,1 < zn,2 < · · · < zn,n and the zeros of
P̃n(x;αq, βq, γ; q) by tn,1 < tn,2 < · · · < tn,n. Then, for each i ∈ {1, 2, . . . , n− 1},

(a) yn,i < xn,i < yn−1,i < yn,i+1 < xn,i+1 ,

(b) xn,i < zn,i < zn−1,i < xn,i+1 < zn,i+1 ,

(c) yn,i < xn,i < zn,i < tn−1,i < yn,i+1 < xn,i+1 < zn,i+1.

Proof . Let 0 < αq < 1, 0 ≤ βq < 1, γ < 0. Since 0 < q < 1, it follows that qn − 1 < 0,
αqn − 1 < 0, βqn − 1 < 0, αβq2n − 1 < 0, αβq2n+1 − 1 < 0 and γqn − 1 < 0.

(a) Since P̃n(x;αq, β, γ; q) and P̃n−1(x;αq, β, γ; q) belong to the same orthogonal se-
quence, their zeros interlace and the interlacing property (1.1) is satisfied. (3.2a) is
in the form of (1.2), i.e.,

fn(x) = a(x)pn(x) + b(x)qn−1(x),

with a(x) = 1 and, taking into consideration the restrictions on the parameters,
b(x) is a negative constant and the interlacing follows from Corollary 1.3 (b).

(b) The polynomials P̃n(x;α, βq, γ; q) and P̃n−1(x;α, βq, γ; q) belong to the same or-
thogonal sequence and their zeros satisfy (1.1). (3.2b) is in the form of (1.2) with
a(x) = 1 and taking into consideration the restrictions on the parameters, b(x) is a
positive constant. The result follows from Corollary 1.3 (a).

http://www.mathematik.uni-kassel.de/~tcheutia/
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(c) In (b) we have proved that the zeros of P̃n(x;α, β, γ; q) and P̃n−1(x;α, βq, γ; q) in-
terlace for all α such that 0 < αq < 1, from which we can deduce that the zeros of
P̃n(x;αq, β, γ; q) and P̃n−1(x;αq, βq, γ; q) interlace, satisfying (1.1). Equation (3.2c)
is in the form of (1.2) with a(x) = 1 and taking into consideration the restrictions on
the parameters, b(x) is a negative constant. Applying Corollary 1.3 (b), we obtain
yn,i < zn,i < tn−1,i < yn,i+1 < zn,i+1 for each i ∈ {1, 2, . . . , n − 1}. Furthermore,
yn,i < xn,i < zn,i for each i ∈ {1, 2, . . . , n} (from (a) and (b)), and the required
combined interlacing follows.

�

Corollary 3.3. For each i ∈ {1, 2, . . . , n− 1},

(a) xn,i < yn−1,i < xn−1,i < xn,i+1 ,

(b) xn,i < xn−1,i < zn−1,i < xn,i+1.

Proof . We obtain the results by combining the interlacing of the zeros of P̃n(x;α, β, γ; q)
and P̃n−1(x;α, β, γ; q) with the results proved in Theorem 3.2 (a) and (b), respectively. �

Remark 3.4. (i) In general, the zeros of P̃n(x;α, β, γ; q) do not interlace with the zeros
of P̃n(x;α, β, γq; q) or with the zeros of P̃n−1(x;α, β, γq; q). For example, when n =
4, α = 1, β = 3, γ = −5, q = 0.14, the zeros of P̃n(x;α, β, γ; q) are {−0.6993,
−0.1066, 0.0198, 0.1353}, the zeros of P̃n(x;α, β, γq; q) are {−0.0992, 0.0000, 0.0071,
0.1407} and the zeros of P̃n−1(x;α, β, γq; q) are {−0.0978, 0.0056, 0.1399};

(ii) When β = 0 in the definition of the monic big q-Jacobi polynomials, we obtain
the monic big q-Laguerre polynomials, i.e., P̃n(x;α, 0, γ; q) = P̃n(x;α, γ; q) [Koekoek
et al., 2010, Eq. (14.5.13)]. The interlacing property of the zeros of the big q-
Laguerre polynomials, as α decreases to αq, can thus be obtained from the result
obtained for the big q-Jacobi polynomials. Furthermore, we have P̃n(x;α, β; q) =
P̃n(x; β, α; q) and the interlacing property as β increases to βq follows directly.
The interlacing results of Theorem 3.2 and Corollary 3.3 are therefore valid, where
xn,i, yn,i, zn,i, tn,i, i ∈ {1, 2, . . . , n} are the zeros of P̃n(x;α, γ; q), P̃n(x;αq, γ; q),
P̃n(x;α, γq; q) and P̃n(x;αq, γq; q), respectively.

3.2.2 Quasi-orthogonality

The first two recurrence equations in the following proposition follow from (3.2a) and
(3.2b), with α and β replaced by α

q
and β

q
, respectively. The big q-Jacobi polynomials

are orthogonal for γ < 0, and by replacing γ by γ
q
, 0 < q < 1, we obtain the polynomial

P̃n(x;α, β, γ
q
; q) of which all the parameters are still in the regions where orthogonality is

guaranteed and we will therefore not consider a q-shift of γ.
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Proposition 3.5.

P̃n(x;
α

q
, β, γ; q) = P̃n(x;α, β, γ; q) +

αq (qn − 1) (β qn − 1) (γ qn − 1)

(αβ q2n − 1) (αβ q2n − q)
P̃n−1(x;α, β, γ; q);

(3.3a)

P̃n(x;α,
β

q
, γ; q) = P̃n(x;α, β, γ; q)− αβqn+1 (qn − 1) (αqn − 1) (γqn − 1)

(αβ q2n − 1) (αβ q2n − q)
P̃n−1(x;α, β, γ; q);

(3.3b)

P̃n(x;α,
β

q
,
γ

q
; q) = P̃n(x;α, β, γ; q)− (qn − 1) (α qn − 1) (−αβ qn + γ)

(αβ q2n − 1) (αβ q2n−1 − 1)
P̃n−1(x;α, β, γ; q).

(3.3c)

Corollary 3.6.

P̃n(x;
α

q
,
β

q
, γ; q) = P̃n(x;α, β, γ; q) (3.4)

− αq (αβq2n − βqn+1 − βqn + q) (qn − 1) (γqn − 1)

(αβ q2n − 1) (αβ q2n − q2)
P̃n−1(x;α, β, γ; q)

− α2β (qn − 1) (βqn − q) (αqn − q) (γqn − 1) (γqn − q) (qn − q) qn+3

(αβ q2n − q2)2 (αβ q2n − q3) (αβ q2n − q)
P̃n−2(x;α, β, γ; q).

Proof . By replacing β with β
q
in (3.3a), we obtain an equation involving polynomials

P̃n(x; α
q
, β
q
, γ; q), P̃n(x;α, β

q
, γ; q) and P̃n−1(x;α, β

q
, γ; q). We use (3.3b) to replace the latter

two polynomials and, after simplifying, we obtain (3.4). �
We will start by proving the quasi-orthogonality of the sequence {P̃n(x; α

qk
, β, γ; q)}∞n=0.

In order to ensure that the parameter α
qk

is not in the region where orthogonality is
guaranteed, we fix α > 1 with 0 < αq < 1, such that α

qk
> 1, k ∈ {1, 2, . . . , n− 1}.

Theorem 3.7. Let k, l,m ∈ N0 , α, β, γ ∈ R, 0 < αq < 1, 0 ≤ βq < 1 and γ < 0. The
sequence of big q-Jacobi polynomials

(i) {P̃n(x; α
qk
, β, γ; q)}n≥0, α > 1, is quasi-orthogonal of order k ≤ n− 1 with respect to

w(x) on the interval (γq, αq) and the polynomials have at least (n− k) real, distinct
zeros in (γq, αq);

(ii) {P̃n(x;α, β
qm
, γ; q)}n≥0, β > 1, is quasi-orthogonal of order m ≤ n − 1 with respect

to w(x) on (γq, αq) and the polynomials have at least (n−m) real, distinct zeros in
(γq, αq);

(iii) {P̃n(x;α, β
ql
, γ
ql

; q)}n≥0, β > 1, is quasi-orthogonal of order l ≤ n − 1 with respect
to w(x) on (γq, αq) and the polynomials have at least (n− l) real, distinct zeros in
(γq, αq);

(iv) {P̃n(x; α
qk
, β
qm
, γ; q)}n≥0, α, β > 1 is quasi-orthogonal of order k + m ≤ n − 1 with

respect to w(x) on (γq, αq) and the polynomials have at least n−(k+m) real, distinct
zeros in (γq, αq).

Proof .
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(i) Fix α > 1 such that 0 < αq < 1. From Lemma 1.4 and (3.3a), it follows that
P̃n(x; α

q
, β, γ; q) is quasi-orthogonal of order one on (γq, αq) and according to Lemma

1.6, at least (n − 1) zeros of P̃n(x; α
q
, β, γ; q) lie in the interval (γq, αq). By itera-

tion, we can express P̃n(x; α
qk
, β, γ; q) as a linear combination of P̃n(x;α, β, γ; q),

P̃n−1(x;α, β, γ; q), . . . , P̃n−k(x;α, β, γ; q), and from Lemma 1.4 we deduce that
P̃n(x; α

qk
, β, γ; q) is quasi-orthogonal of order k on (γq, αq). It follows from Lemma

1.6 that at least (n− k) zeros of P̃n(x; α
qk
, β, γ; q) are in (γq, αq).

(ii)-(iii) Fix β > 1 such that 0 < βq < 1. The proofs follow in exactly the same way as the
proof of (i), by using (3.3b) and (3.3c), together with Lemmas 1.4 and 1.6.

(iv) Fix α > 1, β > 1 such that 0 < αq < 1 and 0 < βq < 1. From (3.4), P̃n(x; α
q
, β
q
, γ; q)

can be written as a linear combination of P̃n(x;α, β, γ; q), P̃n−1(x;α, β, γ; q) and
P̃n−2(x;α, β, γ; q), and it follows from Lemma 1.4 that each polynomial P̃n(x; α

q
, β
q
, γ; q),

n ∈ {1, 2, . . . }, is quasi-orthogonal of order two on (γq, αq). From Lemma 1.6,
we know that at least (n − 2) zeros of P̃n(x; α

q
, β
q
, γ; q) lie in (γq, αq). By itera-

tion, we can express P̃n(x; α
qk
, β
qm
, γ; q) as a linear combination of P̃n(x;α, β, γ; q),

P̃n−1(x;α, β, γ; q), . . . , P̃n−(k+m)(x;α, β, γ; q), and the results follow directly from
Lemmas 1.4 and 1.6.

�
In order to determine the location of the zeros of the order one and order two quasi-

orthogonal systems, we use a q-analogue of the Vandermonde identity, namely

2φ1

q−n, b
c

∣∣∣∣∣∣ q; q
 =

( c
b
; q)n

(c; q)n
bn [Gasper and Rahman, 2004, Eq. (1.5.3)]. (3.5)

Theorem 3.8. Let n ∈ N , α, β, γ ∈ R, such that 0 < αq, βq < 1 and γ < 0. Suppose
xn,j, j ∈ {1, 2, . . . , n} denote the zeros of P̃n(x;α, β, γ; q), yn,j, j ∈ {1, 2, . . . , n} the zeros of
P̃n(x; α

q
, β, γ; q), zn,j, j ∈ {1, 2, . . . , n} the zeros of P̃n(x;α, β

q
, γ; q), vn,j, j ∈ {1, 2, . . . , n}

the zeros of P̃n(x; α
q
, β
q
, γ; q) and wn,j, j ∈ {1, 2, . . . , n} the zeros of P̃n(x;α, β

q
, γ
q
; q). Then,

(i) when we fix α > 1, such that 0 < αq < 1,

γq < xn,1 < yn,1 < xn−1,1 < xn,2 < yn,2 < xn−1,2 < · · · < xn−1,n−1 < xn,n < yn,n;

(ii) when we fix β > 1, such that 0 < βq < 1,

zn,1 < γq < xn,1 < xn−1,1 < zn,2 < xn,2 < · · · < xn−1,n−1 < zn,n < xn,n < αq;

(iii) when we fix β > 1, such that 0 < βq < 1, we also have

wn,1 < xn,1 < xn−1,1 < wn,2 < xn,2 < · · · < xn−1,n−1 < wn,n < xn,n < αq;

(iv) when we fix α, β > 1, such that 0 < αq, βq < 1, all the zeros of P̃n(x; α
q
, β
q
, γ; q) are

real and distinct and vn,1 < γq.
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Proof .

(i) From (3.3a), we obtain an = αq(qn−1)(βqn−1)(γ qn−1)
(αβ q2n−q)(αβ q2n−1)

< 0, and the interlacing result, as
well as the location of yn,1, follows from Lemma 1.8 (i).

(ii) From (3.3b), we obtain an = −αβ qn+1(qn−1)(α qn−1)(γ qn−1)
(αβ q2n−1)(αβ q2n−q) , which is positive when

taking into consideration the values of the parameters. The interlacing result, as
well as the location of yn,n, follows from Lemma 1.8 (ii).

The polynomial P̃n(x;α, β, γ; q) evaluated at x = γq, can be written in terms of a
2φ1-hypergeometric function. We apply (3.5), and simplify, to obtain

fn(γq) =
P̃n(γq;α, β, γ; q)

P̃n−1(γq;α, β, γ; q)
=
α (αβ qn − 1) (β qn − 1) (γ qn − 1) qn+1

(αβ q2n − q) (αβ q2n − 1)
(3.6)

and by taking into account the values of the parameters, this expression is negative.
Since

−an − fn(γq) = −α (β − 1) (γ qn − 1) qn+1

αβ q2n − q
< 0,

the result follows from Lemma 1.7 (i).

(iii) From (3.3c), we obtain an = − (qn−1)(α qn−1)(−αβ qn+γ)q
(αβ q2n−q)(αβ q2n−1)

> 0, and the interlacing result,
as well as the location of wn,n, follows from Lemma 1.8 (ii).

(iv) Fix α > 1 and β > 1 such that 0 < αq < 1 and 0 < βq < 1. We use (3.4), with an
the coefficient of P̃n−1(x;α, β, γ; q) and bn the coefficient of P̃n−2(x;α, β, γ; q). By
taking into account the values of the parameters,

bn = −α
2β (qn − 1) (βqn − q) (αqn − q) (γqn − 1) (γqn − q) (qn − q) qn+3

(αβ q2n − q2)2 (αβ q2n − q3) (αβ q2n − q)
< 0,

and it follows from [Brezinski et al., 2004, Theorem 4] that vn,j, j ∈ {1, 2, . . . , n},
are real.

In order to determine the location of vn,1 and vn,n, we use [Joulak, 2005, Theorem
9]. Since

fn(γq)fn−1(γq) + anfn−1(γq) + bn =
P̃n(γq;α, β, γ; q)

P̃n−1(γq;α, β, γ; q)
+ an

P̃n−1(γq;α, β, γ; q)

P̃n−2(γq;α, β, γ; q)
+ bn

=
α2 (β − 1) (γqn − 1) (βqn − q) (γqn − q) qn+2

(αβ q2n − q2) (αβ q2n − q3)
< 0,

it follows that vn,1 < γq. Furthermore,

fn(αq)fn−1(αq) + anfn−1(αq) + bn

=−(αqn − q) (α2βq2n − αγqn+1 − αβqn − αqn+1 + γqn+1 + αq) (γ − αβ) qn+2

(αβq2n − q3) (αβq2n − q2)

and since the sign of this expression varies as the parameters vary within the regions
applicable, we cannot determine the position of vn,n.
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�

Remark 3.9. (i) From Theorem 3.7 (i) we know that the polynomial P̃n(x; α
q
, β, γ; q), α >

1, is quasi-orthogonal of order one and an interlacing result is proved in Theorem
3.8(i), but the location of the extreme zero yn,n, with respect to (γq, αq), is not fixed,
since the sign of

− an − fn(αq) = an −
P̃n(αq;α, β, γ; q)

P̃n−1(αq;α, β, γ; q)

=−(−α2q2nβ + αβ qn + qnα γ + α qn − γ qn − α) q

α β q2n − q
(3.7)

changes as the parameters vary within the region applicable.

(ii) When β = 0 in the definition of the big q-Jacobi polynomials (3.1), we obtain the big
q-Laguerre polynomials, i.e., P̃n(x;α, 0, γ; q) = P̃n(x;α, γ; q) [Koekoek et al., 2010,
(14.5.13)] and we can use (3.3a) with β = 0. Let xn,j, j ∈ {1, 2, . . . , n}, be the zeros
of P̃n(x;α, γ; q) and yn,j, j ∈ {1, 2, . . . , n}, the zeros of P̃n(x; α

q
, γ; q). When β = 0

in (3.7), we obtain

−an − fn(αq) = an −
P̃n(αq;α, γ; q)

P̃n−1(αq;α, γ; q)
= γqn(α− 1) + α (qn − 1) < 0,

taking into consideration that α > 1, 0 < αq < 1 and γ < 0, and

fn(γq) + an =
P̃n(γq;α, γ; q)

P̃n−1(γq;α, γ; q)
+ an = α qn (γ qn − 1) + an = α (γ qn − 1) < 0.

We thus have fn(γq) < −an < fn(αq) and according to Lemma 1.7 (iii), all the zeros
of the order one quasi-orthogonal polynomial P̃n(x; α

q
, γ; q), α > 1, lie in (γq, αq).

Furthermore, since an < 0, it follows from Lemma 1.8 (ii) that

γq < xn,1 < yn,1 < xn−1,1 < xn,2 < yn,2 < xn−1,2 < · · · < xn−1,n−1 < xn,n < yn,n < αq.

3.2.3 Bounds of the extreme zeros

The big q-Jacobi polynomials P̃n(x;α, β, γ; q) satisfied equations of the type

f(x)P̃n−k(x;αqs1 , βqs2 , γ; q) = H(x)P̃n(x;α, β, γ; q) +Gk−1,s1,s2(x)P̃n−1(x;α, β, γ; q),

with s1 + s2 ∈ {0, 1, . . . , 2k}. Let B(1)
k,s1,s2

and B(2)
k,s1,s2

be the smallest and the largest zero
of Gk−1,s1,s2 , respectively. For k = 2, the best upper bound for xn,1 is B(1)

2,0,4, the zero of
G1,0,4, and the best lower bound for xn,n is B(2)

2,4,0, the zero of G1,4,0. We observe from
numerical simulations that the sharpest bounds for xn,1 are the smallest zeros B(1)

k,0,2k of
Gk−1,0,2k and the sharpest bounds of xn,n are the largest zeros B(2)

k,2k,0 of Gk−1,2k,0.

3.3 The q-Hahn polynomials
The q-Hahn polynomials Q̃n(x̄;α, β,N |q) with x̄ = q−x and n ∈ {0, 1, . . . , N} are orthogo-
nal on (1, q−N) with respect to the discrete weight w(x) = (αq,q−N ;q)x

(q,β−1q−N ;q)x(αβq)x
for 0 < αq < 1

and 0 < βq < 1 or α > q−N and β > q−N .
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3.3.1 Interlacing properties
Proposition 3.10.

Q̃n(x;α, β,N |q) = Q̃n(x;αq, β,N |q) +
α (qn − 1) (β qn − 1)

(
qn − qN+1

)
qN (αβ q2n+1 − 1) (αβ q2n − 1)

Q̃n−1(x;αq, β,N |q);

(3.8a)

Q̃n(x;α, β,N |q) = Q̃n(x;α, βq,N |q)

+
αβ qn−N

(
qN+1 − qn

)
(α qn − 1) (qn − 1)

(αβ q2n+1 − 1) (αβ q2n − 1)
Q̃n−1(x;α, βq,N |q); (3.8b)

Q̃n(x;α, βq,N |q) = Q̃n(x;αq, β,N |q) +
α(qn − 1)(qn − qN+1)

qN (αβq2n+1 − 1)
Q̃n−1(x;αq, βq,N |q); (3.8c)

Q̃n (x;α, β,N |q) =

(
αβq2n+1 − 1

) (
αβqN+2(αqn+1 − 1)− αqN−n+2(qn − 1)− (αq − 1)

)
(αqn+1 − 1) (αβqn+1 − 1) (αβqn+N+2 − 1)

× Q̃n(x;αq, β,N |q) +
αq (βqn − 1)

(
qn − q1+N

)
(qn − 1)

(
αq2 − x

)
qn (αqn+1 − 1) (αβqn+1 − 1) (αβqn+N+2 − 1)

Q̃n−1(x;αq2, β,N |q).

(3.8d)

Theorem 3.11. Let 0 < βq < 1, 0 < αq < 1, n ∈ {0, 1, . . . , N}. We denote the zeros of
Q̃n(x;α, β,N |q) by 1 < xn,1 < xn,2 < · · · < xn,n < q−N , the zeros of Q̃n(x;αq, β,N |q) by
yn,1 < yn,2 < · · · < yn,n, the zeros of Q̃n(x;α, βq,N |q) by zn,1 < zn,2 < · · · < zn,n and the
zeros of Q̃n(x;αq, βq,N |q) by tn,1 < tn,2 < · · · < tn,n. Then, for i ∈ {1, 2, . . . , n− 1},

(a) xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1,

(b) zn,i < xn,i < zn−1,i < zn,i+1 < xn,i+1,

(c) zn,i < xn,i < yn,i < tn−1,i < zn,i+1 < xn,i+1 < yn,i+1.

Proof . Let 0 < βq < 1, 0 < αq < 1, n ∈ {0, 1, . . . , N}. Since 0 < q < 1, it follows that
qn − 1 < 0, βqn − 1 < 0, αβq2n − 1 < 0 and αβq2n+1 − 1 < 0. Furthermore, qm < qn for
m > n and consequently qN+1 − qn < 0.

The two polynomials on the right-hand side of each of the equations (3.8a) and (3.8b)
belong to the same orthogonal sequence, therefore their zeros interlace and satisfy the
interlacing property (1.1). Each of these equations are thus in the form of (1.2) with
a(x) = 1. Furthermore,

(a) in (3.8a), b(x) > 0 on (1, q−N) and the required interlacing follows from Corollary
1.3 (a);

(b) b(x) in (3.8b) is a negative constant and the result follows from Corollary 1.3 (b);

(c) From the interlacing of the zeros of Q̃n(x;α, βq,N |q) and Q̃n−1(x;α, βq,N |q) for all
α such that 0 < αq < 1 (from (b)), the interlacing of the zeros of Q̃n(x;αq, β, γ; q)
and Q̃n−1(x;αq, βq, γ; q) follows directly. Equation (3.8c) is in the form of (1.2)
with a(x) = 1 and taking into consideration the restrictions on the parameters, b(x)
is a positive constant. Applying Corollary 1.3 (a), we obtain zn,i < yn,i < tn−1,i <
zn,i+1 < yn,i+1 for each i ∈ {1, 2, . . . , n − 1}. Furthermore, it follows from (a) and
(b) that zn,i < xn,i < yn,i for each i ∈ {1, 2, . . . , n}, and the required combined
interlacing follows.
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�

Corollary 3.12. For each i ∈ {1, 2, . . . , n− 1},
(a) xn,i < xn−1,i < yn−1,i < xn,i+1,

(b) xn,i < zn−1,i < xn−1,i < xn,i+1.

Proof . We obtain the results by combining the interlacing of the zeros of Q̃n(x;α, β,N |q)
and Q̃n−1(x;α, β,N |q) with the results proved in Theorem 3.11 (a) and (b), respectively.
�

Remark 3.13. (i) When we let β = 0 in the definition of the monic q-Hahn polyno-
mials, we obtain the monic affine q-Krawtchouk polynomials [Koekoek et al., 2010,
Section 14.16] K̃Aff

n (x̄;α,N ; q), orthogonal on (1, q−N) if 0 < αq < 1. The inter-
lacing results in Theorem 3.11 (a) and Corollary 3.12 (a) follow from (3.8a) (with
β = 0), where xn,i and yn,i, i ∈ {1, 2, . . . , n} are the zeros of K̃Aff

n (x̄;α,N ; q) and
K̃Aff
n (x̄;αq,N ; q), respectively. Furthermore, when we let β = 0 in (3.8d), we find

that
xn,i < yn,i < Yn−1,i < xn,i+1 < yn,i+1,

for each i ∈ {1, 2, . . . , n−1}, where Yn,i, i ∈ {1, 2, . . . , n} are the zeros of K̃Aff
n (x̄;αq2, N ; q);

(ii) Since limα→∞ Q̃n(x;α, β,N |q) = K̃qtm
n (x; β,N ; q) [Koekoek et al., 2010, Section

14.14], we obtain from (3.8b), the equation

K̃qtm
n (x; β,N ; q) = K̃qtm

n (x; βq,N ; q) +

(
qN+1 − qn

)
(qn − 1)

βq2n+N+1
K̃qtm
n−1(x; βq,N ; q),

from which the interlacing results in Theorem 3.11 (b) and Corollary 3.12 (b) follow
directly, where xn,i and zn,i, i ∈ {1, 2, . . . , n} are the zeros of the monic quantum q-
Krawtchouk polynomials K̃qtm

n (x; β,N ; q) and K̃qtm
n (x; βq,N ; q), respectively.

3.3.2 Quasi-orthogonality

We will consider the case 0 < αq, βq < 1. The following equations follow from (3.8a) and
(3.8b), with α and β replaced by α

q
and β

q
, respectively.

Q̃n(x̄;
α

q
, β,N |q) = Q̃n(x̄;α, β,N |q) +

α (qn − 1) (βqn − 1)
(
qn − qN+1

)
qN (αβ q2n − 1) (αβ q2n − q)

Q̃n−1(x̄;α, β,N |q);

(3.9a)

Q̃n(x̄;α,
β

q
,N |q) = Q̃n(x̄;α, β,N |q)−

αβ
(
qn − qN+1

)
(αqn − 1)(qn − 1)

(αβq2n − 1) (αβ q2n − q) qN−n
Q̃n−1(x̄;α, β,N |q).

(3.9b)

Corollary 3.14.

Q̃n(x̄;
α

q
,
β

q
,N |q) = Q̃n(x̄;α, β,N |q) (3.10)

−
α (αβq2n − βqn+1 − βqn + q) (qn − 1)

(
qn − qN+1

)
(αβ q2n − q2) (αβ q2n − 1) qN

Q̃n−1(x̄;α, β,N |q)

−
α2βqn+1 (qn − 1) (βqn − q)

(
qn − qN+1

)
(αqn − q) (qn − q)

(
qn − qN+2

)
(αβ q2n − q2)2 (αβ q2n − q) (αβ q2n − q3) q2N

Q̃n−2(x̄;α, β,N |q).
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Theorem 3.15. Let k,m,N ∈ N0, n ∈ {0, 1, 2, . . . , N}, α, β,∈ R. For 0 < αq < 1 and
0 < βq < 1, the sequence of q-Hahn polynomials

(i) {Q̃n(x̄; α
qk
, β,N |q)}Nn=0, with α > 1, is quasi-orthogonal of order k ≤ n − 1 with

respect to the discrete weight w(x) on the interval (1, q−N) and the polynomials have
at least (n− k) real, distinct zeros in (1, q−N);

(ii) {Q̃n(x̄;α, β
qm
, N |q)}Nn=0, β > 1, is quasi-orthogonal of order m ≤ n− 1 with respect

to w(x) on (1, q−N) and the polynomials have at least (n−m) real, distinct zeros in
the interval (1, q−N);

(iii) {Q̃n(x̄; α
qk
, β
qm
, N |q)}Nn=0, α, β > 1, is quasi-orthogonal of order k + m ≤ n − 1 with

respect to w(x) on (1, q−N) and the polynomials have at least n − (k + m) real,
distinct zeros in (1, q−N).

Proof .

(i) Fix α > 1, β ∈ R, such that 0 < αq < 1, 0 < βq < 1. From Lemma 1.4 and (3.9a),
it follows that Q̃n(x̄; α

q
, β,N |q) is quasi-orthogonal of order one on (1, q−N). From

Lemma 1.6 we know that at least (n− 1) zeros of Q̃n(x̄; α
q
, β,N |q) lie in the interval

(1, q−N). By iteration, we can express Q̃n(x̄; α
qk
, β,N |q) as a linear combination of

Q̃n(x̄;α, β,N |q), Q̃n−1(x̄;α, β,N |q), . . . , Q̃n−k(x̄;α, β,N |q), and the results follow
from Lemmas 1.4 and 1.6.

(ii) Fix β > 1, α ∈ R, such that 0 < αq < 1, 0 < βq < 1. The quasi-orthogonality
follows in the same way as in (i), by using (3.9b).

(iii) Fix α > 1 and β > 1 such that 0 < αq < 1 and 0 < βq < 1. From (3.10), we
see that Q̃n(x̄; α

q
, β
q
, N |q) can be written as a linear combination of Q̃n(x̄;α, β,N |q),

Q̃n−1(x̄;α, β,N |q) and Q̃n−2(x̄;α, β,N |q) and it follows from Lemma 1.4 that the
sequence Q̃n(x̄; α

q
, β
q
, γ; q) is quasi-orthogonal of order two on (1, q−N). By itera-

tion, we can express Q̃n(x̄; α
qk
, β
qm
, N |q) as a linear combination of Q̃n(x̄;α, β,N |q),

Q̃n−1(x̄;α, β,N |q), . . . , Q̃n−(k+m)(x̄;α, β,N |q), and the result follows directly from
Lemma 1.4. It follows from Lemma 1.6 that at least n−(k+m) zeros of Q̃n(x̄; α

qk
, β
qm
, γ; q)

lie in the interval (1, q−N).

�

Theorem 3.16. Let N ∈ N0, n ∈ {0, 1, 2, . . . , N}, α, β ∈ R, 0 < αq, βq < 1, and let
xn,j, j ∈ {1, 2, . . . , n}, denote the zeros of Q̃n(x̄;α, β,N |q), yn,j, j ∈ {1, 2, . . . , n}, the zeros
of Q̃n(x̄; α

q
, β,N |q) and zn,j, j ∈ {1, 2, . . . , n}, the zeros of Q̃n(x̄;α, β

q
, N |q). Then

(i) if α > 1, yn,1 < 1 < xn,1 < xn−1,1 < yn,2 < xn,2 < · · · < xn−1,n−1 < yn,n < xn,n <
q−N ;

(ii) if β > 1, 1 < xn,1 < zn,1 < xn−1,1 < xn,2 < zn,2 < · · · < xn−1,n−1 < xn,n < q−N <
zn,n.

Proof .
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(i) From (3.9a) we obtain the value an =
α (qn−1)(β qn−1)(qn−qN+1)
qN (αβ q2n−1)(αβ q2n−q) , which is positive when

we take into consideration the values of the parameters. The interlacing result, from
which we can deduce the location of yn,n, follows from Lemma 1.8 (ii).

In order to prove that yn,1 does not lie in the interval of orthogonality, i.e., yn,1 < 1,
we use the fact that

3φ2

q−n, αβqn+1, 1

αq, q−N

∣∣∣∣∣∣ q; q
 = 1 since (1; q)n =

1, if n = 0

0, if n 6= 0

and Lemma 1.7. Consider

fn(1) =
Q̃n(1;α, β,N |q)
Q̃n−1(1;α, β,N |q)

= −
(α qn − 1) (αβ qn − 1)

(
qn − qN+1

)
(αβ q2n − 1) (αβ q2n − q)

,

which is negative for the appropriate parameter values. We thus have

−an − fn(1) =
(α− 1)

(
qn − qN+1

)
(αβ q2n − q) qN

< 0,

i.e., −an < fn(1) < 0, and the result follows from Lemma 1.7 (i).

(ii) From (3.9b) we obtain an = −
αβ

(
qn − qN+1

)
(α qn − 1) (qn − 1) qn

(αβ q2n − 1) (αβ q2n − q) qN
, which is neg-

ative. The interlacing result, from which we can deduce the location of zn,1, follows
from Lemma 1.8 (i).

The polynomial Q̃n(x̄;α, β,N |q) evaluated at x̄ = q−N , can be written in terms of
a 2φ1-hypergeometric function. We apply (3.5), and simplify, to obtain

fn(q−N) =
Q̃n(q−N ;α, β,N |q)
Q̃n−1(q−N ;α, β,N |q)

= −
α (β qn − 1) (αβ qn − 1)

(
−qN+1 + qn

)
qn

(αβ q2n − q) (αβ q2n − 1) qN
.

When taking into consideration the values of the parameters,

−an − fn(q−N) = −
α (β − 1)

(
qn − qN+1

)
qn

(αβ q2n − q)qN
< 0

and the result follows from Lemma 1.7 (ii).

�

Remark 3.17. We cannot say anything about the location of the zeros of Q̃n(x̄; α
q2
, β,N |q),

since the coefficient of Q̃n−2(x̄;α, β,N |q), in the equation

Q̃n(x̄;
α

q2
, β,N |q) = Q̃n(x̄;α, β,N |q) +

α (q + 1) (qn − 1) (βqn − 1)
(
qn − qN+1

)
(αβq2n − q2) (αβq2n − 1) qN

Q̃n−1(x̄;α, β,N |q)

+
(αq)2 (qn − 1) (βqn − q)

(
qn − qN+1

)
(qn − q) (βqn − 1)

(
qn − qN+2

)
(αβq2n − q2)2 (αβq2n − q) (αβq2n − q3) q2N

Q̃n−2(x̄;α, β,N |q),

that can be obtained from (3.9a), is positive (cf. [Brezinski et al., 2004, Theorem 4]).
The same is true for the location of the zeros of Q̃n(x̄;α, β

q2
, N |q) and the equation can be

found in the accompanying Maple file.



3.3 The q-Hahn polynomials 49

Theorem 3.18. Let N ∈ N0, n ∈ {0, 1, 2, . . . , N}, α, β > 1. All the zeros of Q̃n(x̄; α
q
, β
q
, N |q)

are real and distinct and if zn,j, j ∈ {1, 2, . . . , n}, are the zeros of Q̃n(x̄; α
q
, β
q
, N |q), then

zn,1 < 1 and q−N < zn,n.

Proof . Fix α > 1 and β > 1 such that 0 < αq < 1 and 0 < βq < 1. We use (3.10)
with an the coefficient of Q̃n−1(x̄;α, β,N |q) and bn the coefficient of Q̃n−2(x̄;α, β,N |q).
By taking into account the values of the parameters, we see that

bn = −
α2β (β qn − q)

(
qn − qN+1

) (
qn − qN+2

)
(α qn − q) (qn − 1) (qn − q) qn+1

(αβ q2n − q) (αβ q2n − q3) (αβ q2n − q2)2 q2N
< 0,

and it follows from [Brezinski et al., 2004, Theorem 4] that zn,j, j ∈ {1, 2, . . . , n}, are real.
In order to determine the location of zn,1 and zn,n, we use [Joulak, 2005, Theorem 9].

Since

fn(1)fn−1(1) + anfn−1(1) + bn =
Q̃n(1;α, β,N |q)
Q̃n−2(1;α, β,N |q)

+ an
Q̃n−1(1;α, β,N |q)
Q̃n−2(1;α, β,N |q)

+ bn

=
(α− 1) (α qn − q)

(
qn − qN+2

) (
qn − qN+1

)
q

(αβ q2n − q2) (αβ q2n − q3) q2N

< 0,

it follows that zn,1 < 1. Furthermore,

fn(q−N)fn−1(q−N)+anfn−1(q−N)+bn =
α2 (β − 1) (β qn − q)

(
qn − qN+1

) (
qn − qN+2

)
qn

(αβ q2n − q2) (αβ q2n − q3) q2N
< 0

and q−N < zn,n. �

Remark 3.19. (i) When we let β = 0 in the definition of the q-Hahn polynomials,
we obtain the affine q-Krawtchouk polynomials [Koekoek et al., 2010, Section 14.16]
K̃Aff
n (x̄;α,N ; q), orthogonal on (1, q−N) if 0 < αq < 1. When we fix α > 1, such

that 0 < αq < 1, the quasi-orthogonality of the polynomials K̃Aff
n (x̄; α

qk
, N ; q), k < n,

on (1, q−N) follows directly from (3.10), with β = 0. If xn,j, j ∈ {1, 2, . . . , n}, denote
the zeros of K̃Aff

n (x̄;α,N ; q) and yn,j, j ∈ {1, 2, . . . , n}, the zeros of K̃Aff
n (x̄; α

q
, N ; q),

the interlacing result in Theorem 3.16 (i) follows.

(ii) Since limα→∞ Q̃n(x;α, p,N |q) = K̃qtm
n (x; p,N ; q), [Koekoek et al., 2010, Section

14.14], we obtain from (3.9b), the equation

K̃qtm
n

(
x;
p

q
,N ; q

)
= K̃qtm

n (x; p,N ; q) +

(
qN+1 − qn

)
(qn − 1)

pq2n+N
K̃qtm
n−1(x; p,N ; q).

For q−N < p < q−N+1, the quantum q-Krawtchouk polynomials K̃qtm
n (x; p

qk
, N ; q)

are quasi-orthogonal of order k < n and the interlacing result in Theorem 3.16
(ii) follows, where xn,j, j ∈ {1, 2, . . . , n}, denote the zeros of K̃qtm

n (x; p,N ; q) and
zn,j, j ∈ {1, 2, . . . , n}, the zeros of K̃qtm

n

(
x; p

q
, N ; q

)
.
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3.3.3 Bounds of the extreme zeros

The q-Hahn polynomials P̃n(x;α, β, γ; q) satisfy equations of the type

f(x)Q̃n−k(x;αqs1 , βqs2 , N |q) = H(x)Q̃n(x;α, β,N |q) +Gk−1,s1,s2(x)Q̃n−1(x;α, β,N |q),

with s1 + s2 ∈ {0, 1, . . . , 2k}. Let B(1)
k,s1,s2

and B(2)
k,s1,s2

be the smallest and the largest zero
of Gk−1,s1,s2 , respectively. For k = 2, 3, . . ., the best upper bound for xn,1 is B(1)

k,2k,0, the
zero of Gk−1,2k,0, and the best lower bound for xn,n is B(2)

k,0,2k, the zero of Gk−1,0,2k.

3.4 The little q-Jacobi polynomials

The little q-Jacobi polynomials p̃n(qx;α, β|q) are orthogonal with respect to the discrete
weight w(x;α, β) = (βq;q)x(αq)x

(q;q)x
for 0 < αq < 1, βq < 1 on (0, 1).

3.4.1 Interlacing properties

Proposition 3.20.

p̃n(x;α, β|q) = p̃n(x;αq, β|q) +
α qn (qn − 1) (β qn − 1)

(αβ q2n+1 − 1) (αβ q2n − 1)
p̃n−1(x;αq, β|q); (3.11a)

p̃n(x;α, β|q) = p̃n(x;α, βq|q)− αβ q2n (qn − 1) (α qn − 1)

(αβ q2n+1 − 1) (αβ q2n − 1)
p̃n−1(x;α, βq|q); (3.11b)

p̃n(x;α, β|q) =
(α q − 1) (αβ q2n+1 − 1) p̃n(x;αq2, β|q)

(α qn+1 − 1) (αβ qn+1 − 1)

+
α q (qn − 1) (βqn − 1) ((αβq2n+2 − 1)x+ qn (α q − 1)) p̃n−1(x;αq2, β|q)

(α qn+1 − 1) (αβq2n+2 − 1) (αβ qn+1 − 1)
; (3.11c)

p̃n(x;α, β|q) = −(αβ qn+1(qn − 1) + 1− β qn+1) (αβ q2n+1 − 1) p̃n(x;α, βq|q)
(β qn+1 − 1) (αβ qn+1 − 1)

+
αβ q2n (β q2x− 1) (qn − 1) (α qn − 1) p̃n−1(x;α, βq2|q)

(β qn+1 − 1) (αβ qn+1 − 1)
; (3.11d)

p̃n(x;α, βq|q) = p̃n(x;αq, β|q) +
α qn (qn − 1)

β α q2n+1 − 1
p̃n−1(x;αq, βq|q). (3.11e)

For equations (3.11d) and (3.11e), one can also refer to [Gochhayat et al., 2016, Eqs.
(9), (10)], respectively.

Theorem 3.21. Let 0 < αq < 1 and βq < 1 and denote the zeros of p̃n(x;α, β|q) by
0 < xn,1 < xn,2 < · · · < xn,n < 1, the zeros of p̃n(x;αq, β|q) by yn,1 < yn,2 < · · · < yn,n,
the zeros of p̃n(x;αq2, β|q) by Yn,1 < Yn,2 < · · · < Yn,n, the zeros of p̃n(x;α, βq|q) by
zn,1 < zn,2 < · · · < zn,n, the zeros of p̃n(x;α, βq2|q) by Zn,1 < Zn,2 < · · · < Zn,n and the
zeros of p̃n(x;αq, βq|q) by tn,1 < tn,2 < · · · < tn,n. Then, for i ∈ {1, 2, . . . , n− 1},

(a) xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1,

(b) zn,i < xn,i < zn−1,i < zn,i+1 < xn,i+1 if β > 0 and xn,i < zn,i < zn−1,i < xn,i+1 <
zn,i+1 if β < 0,
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(c) xn,i < yn,i < Yn,i < Yn−1,i < xn,i+1 < yn,i+1 < Yn,i+1,

(d) xn,i < zn,i < Zn−1,i < xn,i+1 < zn,i+1 if β < 0,

(e) zn,i < yn,i < tn−1,i < zn,i+1 < yn,i+1 if β < 0.

Proof . Let 0 < αq < 1 and βq < 1. We note that, since 0 < q < 1, qn − 1 < 0,
αqn − 1 < 0, βqn − 1 < 0, αβqn − 1 < 0, for all positive integers n.

The polynomials on the right-hand side of each of the equations (3.11a) and (3.11b)
belong to the same orthogonal sequence, therefore their zeros interlace and satisfy the
property (1.1). Each of these equations are thus in the form of (1.2), i.e.,

fn(x) = a(x)pn(x) + b(x)qn−1(x),

with a(x) = 1. Furthermore,

(a) b(x) in (3.11a) is a positive constant (w.r.t. x) and the result follows from Corollary
1.3 (a);

(b) taking into consideration the restrictions on the parameters, b(x) in (3.11b) is a
positive constant if β < 0 and b(x) is negative when β > 0. The result follows from
applying Corollary 1.3 to the different situations.

(c) The polynomials p̃n(x;αq2, β|q) and p̃n−1(x;αq2, β|q) belong to the same orthogonal
sequence and their zeros satisfy (1.1). (3.11c) is in the form of (1.2) and taking into
consideration the restrictions on the parameters, a(x) is a positive constant.

b(x) =
α q (qn − 1) (βqn − 1)

(α qn+1 − 1) (αβq2n+2 − 1) (αβ qn+1 − 1)

((
αβq2n+2 − 1

)
x+ qn (α q − 1)

)
=−k2

((
αβq2n+2 − 1

)
x+ qn (α q − 1)

)
, k ∈ R,

represents a linear function with derivative −k2(αβq2n+2 − 1) > 0, intersecting the
x-axis at x = −qn(α q−1)

(αq) (βq)q2n−1
< 0 for βq < 1. b(x) is thus positive on (0, 1) and from

Corollary 1.3 (a) we deduce that xn,i < Yn,i < Yn−1,i < xn,i+1 < Yn,i+1 for each
i ∈ {1, 2, . . . , n − 1}. Furthermore, by replacing α with αq in (3.11a), we obtain
yn,i < Yn,i < Yn−1,i < yn,i+1 < Yn,i+1 for each i ∈ {1, 2, . . . , n− 1} and by combining
these two interlacing results with the fact that xn,i < yn,i for each i ∈ {1, 2, . . . , n},
the required interlacing follows.

(d) Let β < 0. By replacing β with βq in (3.11b), we obtain zn,i < Zn,i < Zn−1,i <
zn,i+1 < Zn,i+1 for each i ∈ {1, 2, . . . , n − 1} and equation (3.11d) is in the form of
(1.2). Under the condition that β < 0, the coefficient of p̃n(x;α, βq|q) is a positive
constant. The coefficient of p̃n−1(x;α, βq2|q) is

b(x) =
αβ q2n (qn − 1) (α qn − 1)

(β qn+1 − 1) (αβ qn+1 − 1)

(
β q2x− 1

)
= −k2

(
βq2x− 1

)
, k ∈ R,

that represents a linear function with positive derivative, intersecting the negative
x-axis and b(x) is thus positive on (0, 1). The result follows from Corollary 1.3 (a).
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(e) Assume β < 0. From (b) we know that the zeros of p̃n(x;α, β|q) and p̃n−1(x;α, βq|q)
interlace. By replacing α by αq, it follows that yn,i < tn−1,i < yn,i+1 for each
i ∈ {1, 2, · · · , n − 1}. Equation (3.11e) is in the form of (1.2) with a(x) = 1
and, taking into consideration the restrictions on the parameters, b(x) is a positive
constant. The result follows from Corollary 1.3 (a).

�

Corollary 3.22. For each i ∈ {1, 2, . . . , n− 1},

(a) xn,i < xn−1,i < yn−1,i < xn,i+1,

(b) xn,i < zn−1,i < xn−1,i < xn,i+1 if β > 0 and xn,i < xn−1,i < zn−1,i < xn,i+1 if β < 0,

(c) xn,i < zn,i < yn,i < xn,i+1 < zn,i+1 < yn,i+1 if β < 0.

Proof .

(a) We combine the interlacing of the zeros of p̃n(x;α, β|q) and p̃n−1(x;α, β|q) with the
results proved in Theorem 3.21 (a) to obtain the required interlacing.

(b) We combine the interlacing of the zeros of p̃n(x;α, β|q) and p̃n−1(x;α, β|q) with the
result of Theorem 3.21 (b).

(c) Let β < 0. This result follows from the interlacing proved in Theorem 3.21 (a), (b)
and (e).

�

Remark 3.23. (i) We note that our results differ from the interlacing results for the lit-
tle q-Jacobi polynomials, given in [Gochhayat et al., 2016, Section 3]. In [Gochhayat
et al., 2016, Theorem 2], the values of x, given as the zeros of the polynomial
pn(x;α, β|q), are actually the zeros y of the polynomial pn(qy;α, β|q). The same
is true for the interlacing results in [Gochhayat et al., 2016, Theorems 4,5,6 and 7];

(ii) When β = 0 in the definition of the little q-Jacobi polynomials, we obtain the little
q-Laguerre (or Wall) polynomials p̃n(x;α|q), that are orthogonal on (0, 1) when 0 <
αq < 1. The interlacing results in Theorem 3.21 (a) and (c) and Corollary 12
(a) follow from (3.11a) and (3.11c) (with β = 0), where xn,i, yn,i and Yn,i, i ∈
{1, 2, . . . , n} are the zeros of p̃n(x;α|q), p̃n(x;αq|q) and p̃n(x;αq2|q), respectively.

3.4.2 Quasi-orthogonality

Consider the recurrence equations (cf. (3.11a) and (3.11b))

p̃n

(
x;
α

q
, β|q

)
= p̃n(x;α, β|q) +

α qn (qn − 1) (β qn − 1)

(αβ q2n − 1) (αβ q2n − q)
p̃n−1(x;α, β|q); (3.12a)

p̃n

(
x;α,

β

q
|q
)

= p̃n(x;α, β|q)− αβ q2n (qn − 1) (α qn − 1)

(αβ q2n − 1) (αβ q2n − q)
p̃n−1(x;α, β|q). (3.12b)
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Corollary 3.24.

p̃n

(
x;
α

q
,
β

q
|q
)

= p̃n(x;α, β|q)− α qn (αβ q2n − qn+1β − β qn + q) (qn − 1)

(αβ q2n − q2) (αβ q2n − 1)
p̃n−1(x;α, β|q)

− α2βq3n+1 (qn − 1) (β qn − q) (α qn − q) (qn − q)
(αβ q2n − q2)2 (αβ q2n − q) (αβ q2n − q3)

p̃n−2(x;α, β|q). (3.13)

Theorem 3.25. Let k,m ∈ N0, α, β ∈ R. For 0 < αq < 1 and 0 < βq < 1, the sequence
of little q-Jacobi polynomials

(i) {p̃n(x; α
qk
, β|q)}n≥0, with α > 1, is quasi-orthogonal of order k ≤ n− 1 with respect

to w(x) = (βq;q)x(αq)x

(q;q)x
on the interval (0, 1) and the polynomials have at least (n− k)

real, distinct zeros in (0, 1);

(ii) {p̃n(x;α, β
qm
|q)}n≥0, β > 1, is quasi-orthogonal of order m ≤ n − 1 with respect to

w(x) on (0, 1) and the polynomials have at least (n−m) real, distinct zeros in (0, 1);

(iii) {p̃n(x; α
qk
, β
qm
|q)}n≥0, α, β > 1, is quasi-orthogonal of order k + m ≤ n − 1 with

respect to w(x) on (0, 1) and the polynomials have at least n− (k+m) real, distinct
zeros in (0, 1).

Proof .

(i) Fix α > 1, β ∈ R, such that 0 < αq < 1, 0 < βq < 1. From Lemma 1.4 and (3.12a),
it follows that p̃n(x; α

q
, β|q) is quasi-orthogonal of order one on (0, 1). By iteration,

we can express p̃n(x; α
qk
, β|q) as a linear combination of p̃n(x;α, β|q), p̃n−1(x;α, β|q),

. . . , p̃n−k(x;α, β|q), and the result follows from Lemma 1.4. The location of the
(n−k) real, distinct zeros of p̃n(x; α

qk
, β|q), k ∈ {1, 2, . . . , n−1}, follows from Lemma

1.6.

(ii) Fix β > 1, α ∈ R, such that 0 < αq < 1, 0 < βq < 1. The quasi-orthogonality
follows in the same way as in (i), by using (3.12b).

(iii) Fix α > 1 and β > 1 such that 0 < αq < 1 and 0 < βq < 1. From (3.13), we see that
p̃n(x; α

q
, β
q
|q) can be written as a linear combination of p̃n(x;α, β|q), p̃n−1(x;α, β|q)

and p̃n−2(x;α, β|q), and it follows from Lemma 1.4 that the sequence p̃n(x; α
q
, β
q
|q) is

quasi-orthogonal of order two on (0, 1). By iteration, we can express p̃n(x; α
qk
, β
qm
|q)

as a linear combination of p̃n(x;α, β|q), p̃n−1(x;α, β|q), . . . , p̃n−(k+m)(x;α, β|q), and
the results follow directly from Lemmas 1.4 and 1.6.

�

Theorem 3.26. Let α, β,∈ R, 0 < αq, βq < 1, and suppose xn,j, j ∈ {1, 2, . . . , n},
denote the zeros of p̃n(x;α, β|q), yn,j, j ∈ {1, 2, . . . , n}, the zeros of p̃n(x; α

q
, β|q) and

zn,j, j ∈ {1, 2, . . . , n}, the zeros of p̃n(x;α, β
q
|q). Then

(i) if α > 1, yn,1 < 0 < xn,1 < xn−1,1 < yn,2 < · · · < xn−1,n−1 < yn,n < xn,n < 1;

(ii) if β > 1, 0 < xn,1 < zn,1 < xn−1,1 < xn,2 < · · · < xn−1,n−1 < xn,n < 1 < zn,n.

Proof .
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(i) From (3.12a) we obtain the value an = α(qn−1)(β qn−1)qn

(αβ q2n−1)(αβ q2n−q) > 0. The interlacing
result, as well as the position of yn,n, follows from Lemma 1.8 (ii).

To obtain the position of yn,1 we use Lemma 1.7 and when we consider the given
parameter values,

fn(0) =
p̃n(0;α, β|q)
p̃n−1(0;α, β|q)

= − (αβ qn − 1) (α qn − 1) qn

(αβ q2n − 1) (αβ q2n − q)
< 0.

We thus have
−an − fn(0) =

qn (α− 1)

αβ q2n − q
< 0

and the result follows from Lemma 1.7 (i).

(ii) From (3.12b), we obtain the value an = − αβ(qn−1)(α qn−1)q2n

(αβ q2n−1)(αβ q2n−q) < 0. The interlacing
result, as well as the position of zn,1, follows from Lemma 1.8 (i).

To obtain the position of zn,n, we use Lemma 1.7, and when we consider the given
parameter values,

fn(1) =
p̃n(1;α, β|q)
p̃n−1(1;α, β|q)

= −α (β − 1) q2n

αβ q2n − q
> 0.

We thus have
−an − fn(1) = −α (β − 1) q2n

αβ q2n − q
> 0

and it follows from Lemma 1.7 (ii) that 1 < zn,n.

�

Theorem 3.27. Let α, β > 1. All the zeros of p̃n(x; α
q
, β
q
|q), denoted by zn,j, j ∈ {1, 2, . . . , n},

are real and distinct and zn,1 < 0 and 1 < zn,n.

Proof . Fix α > 1 and β > 1 such that 0 < αq < 1 and 0 < βq < 1. We use (3.13), with
an the coefficient of p̃n−1(x;α, β|q) and bn the coefficient of p̃n−2(x;α, β|q). By taking into
account the values of the parameters, we see that

bn = −α
2β (β qn − q) (α qn − q) (qn − 1) (qn − q) q3n+1

(αβ q2n − q) (αβ q2n − q3) (αβ q2n − q2)2 < 0,

and it follows from [Brezinski et al., 2004, Theorem 4] that zn,j, j ∈ {1, 2, . . . , n}, are real
and distinct.

In order to determine the location of zn,1 and zn,n, we use [Joulak, 2005, Theorem 9].
Since

fn(0)fn−1(0) + anfn−1(0) + bn =
(α− 1) (α qn − q) q2n+1

(αβ q2n − q3) (αβ q2n − q2)
< 0,

it follows that zn,1 < 1. Furthermore,

fn(1)fn−1(1) + anfn−1(1) + bn =
α2 (β − 1) (β qn − q) q3n

(αβ q2n − q2) (αβ q2n − q3)
< 0,

and 1 < zn,n. �
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Remark 3.28. (i) From (3.12a) we obtain

p̃n

(
x;
α

q2
, β|q

)
=p̃n(x;α, β|q) +

α qn (q + 1) (qn − 1) (β qn − 1)

(αβ q2n − q2) (αβ q2n − 1)

× p̃n−1(x;α, β|q) + bnp̃n−2(x;α, β|q),

with
bn =

α2q2n+2 (qn − 1) (β qn − q) (qn − q) (β qn − 1)

(αβ q2n − q2)2 (αβ q2n − q) (αβ q2n − q3)

and
Cn − bn =

q2n+1 (α− q) (qn − q) (βqn − q)α
(αβq2n − q3) (αβq2n − q2)2 ,

where −Cn is the coefficient of p̃n−2(x;α, β|q) in the three-term recurrence equation
of the little q-Jacobi polynomials [Koekoek et al., 2010, (14.12.4)]. Since Cn < bn,
there is an interlacing between (n − 2) zeros of p̃n(x; α

q2
, β|q) and the (n − 1) zeros

of p̃n−1(x;α, β|q) (cf. [Joulak, 2005, Theorem 15]).

(ii) When β = 0 in the definition of the little q-Jacobi polynomials, we obtain the little
q-Laguerre (or Wall) polynomials p̃n(x;α|q), that are orthogonal on (0, 1) when 0 <
αq < 1. The quasi-orthogonality of {p̃n(x; α

qk
|q)}n≥0, for k < n, when α > 1,

0 < αq < 1, follows directly from (3.12a) (with β = 0). The location of the zeros of
the order one quasi-orthogonal polynomial p̃n(x; α

q
|q) is given in Theorem 3.26 (i),

where xn,j, j ∈ {1, 2, . . . , n}, denote the zeros of p̃n(x;α|q) and yn,j, j ∈ {1, 2, . . . , n},
the zeros of p̃n(x; α

q
|q).

3.4.3 Bounds of the extreme zeros

For the little q-Jacobi polynomials p̃n(x;α, β|q), we have equations of type

f(x)p̃n−k(x;αqs1 , βqs2|q) = H(x)p̃n(x;α, β|q) +Gk−1,s1,s2(x)p̃n−1(x;α, β|q),

with s1 + s2 ∈ {0, 1, . . . , 2k}. Let B(1)
k,s1,s2

and B(2)
k,s1,s2

be the smallest and the largest zero
of Gk−1,s1,s2 , respectively. For k = 2, we obtain

α q3x4 (qn − q) (β qn − q)
(
αβ q2n − 1

)2 (
αβ q2n − q

)
p̃n−2(x;αq4, β|q)

= a2(x)p̃n(x;α, β|q) + q2n(αq2 − 1)(αqn − 1)(αβqn − 1)G1,4,0(x)p̃n−1(x;α, β|q),

with

a2(x) =
(
αβ q2n−1; q

)
2
q
(
α qx (qn − q) (β qn − q)

((
αβ q2n − 1

)
q2x+ (q + 1)

(
α q2 − 1

)
qn
)

+ q2n (α q; q)3

)
and G1,4,0(x) = Ax+B so that

xn,1 ≤ B
(1)
2,4,0 = −B

A
=

(α q3 − 1) (α q − 1) qn−1

(αβ q2n+1 + 1)(αq2 + 1)− α qn+1(β + 1)(q + 1)
.

For k = 3, the best upper bound for xn,1 is

xn,1 < B
(1)
3,6,0 =

(
−b−

√
b2 − 4ac

)
/(2a),
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with

a = q3
(
α2q6 + α q3 + 1

) (
α2β2q4n+2 + 1

)
− α qn+4

(
α q3 + 1

)
(β + 1)

(
q2 + q + 1

)
×
(
αβ q2n+1 + 1

)
+ α q2n+4

(
α2β q6 + q

(
β q + q2 + q + 1

) (
β q2 + β q + β + q

)
α + β

)
,

b = −qn+1
(
α q2 − 1

) (
α q4 − 1

) (
αβ

(
α q3 + 1

)
q2n+1 − α

(
q2 + 1

)
(β + 1) qn+1 + α q3 + 1

)
× (q + 1) , c = q2n

(
α q5 − 1

)
(α q − 1)

(
α q4 − 1

) (
α q2 − 1

)
.

The best upper bounds for xn,1 are the smallest zeros B(1)
k,2k,0, k ≥ 4. However, we remark

that we don’t obtain good bounds for the largest zeros from our mixed recurrence relations.

n, q 10, 0.4 5, 0.4 15, 0.9 20, 0.98

α, β 0.2, 0.3 2.1, 2.4 0.5, -3.4 0.1, -5

zero xn,1 0.000229210625 0.00273372029 0.0367 0.288

bound B(1)
3,6,0 0.00022921089 0.00273372034 0.0374 0.318

bound B(1)
2,4,0 0.0002307 0.0027371 0.046 0.4049

Table 3.1: Bounds for the extreme zeros of the little q-Jacobi polynomials p̃n(x;α, β|q)

Remark 3.29. In [Gupta and Muldoon, 2007, Eq. (4.2) and Eq. (4.3)], the bounds of
the smallest zero x̃n,1 of the little q-Jacobi polynomials p̃n((1−q)x;α, β|q) (that we denote
here by GM4.2 and GM4.3 for [Gupta and Muldoon, 2007, Eq. (4.2)] and [Gupta and
Muldoon, 2007, Eq. (4.3)], respectively) were given. As shown in Table 3.2, the upper
bound 1

1−qB
(1)
3,6,0 is more accurate than the upper bounds obtained in [Gupta and Muldoon,

2007, Eq. (4.2) and Eq. (4.3)].

n, q 10, 0.4 5, 0.4 15, 0.9 20, 0.98

α, β 0.2, 0.3 2.1, 2.4 0.5, -3.4 0.1, -5

zero xn,1/(1− q) 0.0003820177 0.004556200485 0.367 14.3998

bound 1
1−qB

(1)
3,6,0 0.00038201816 0.004556200569 0.374 15.9198

bound GM4.3 0.0004186 0.0045692 0.4698 21.382

bound GM4.2 0.000527796 0.004898 0.709 24.2655

Table 3.2: Bounds for the extreme zeros of the little q-Jacobi polynomials p̃n((1 −
q)x;α, β|q)

3.5 The q-Meixner polynomials
We note that in the definition of the q-Meixner polynomials, we set x̄ = q−x, i.e., x = ln x̄

− ln q
,

and as x increases on (0,∞), x̄ will increase on (1,∞). The variable x in our equations
thus represents x̄ in the definition of the polynomials and for 0 < βq < 1 and γ > 0, the
polynomial M̃n(x; β, γ; q) is orthogonal on (1,∞).
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3.5.1 Interlacing properties

Proposition 3.30.

M̃n(x; β, γq; q) = M̃n(x; β, γ; q) + γ q−2n+1 (qn − 1) (βqn − 1) M̃n−1(x; β, γ; q); (3.14a)

M̃n(x; β, γq2; q) = −(β γ q (qn − 1)− qγ − 1) qnM̃n(x; β, γ; q)

γq + qn

+
γ q−n+1 (βqn − 1) (qn − 1) (γ β q + qnx+ γq + 1) M̃n−1(x; β, γ; q)

γq + qn
; (3.14b)

M̃n(x; β, γ; q) =
(γ β q + qnx) M̃n(x; βq, γ; q)

qn(γ β q + x)
− γ β (qn + γ) (qn − 1)

q3n−2(γ β q + x)
M̃n−1(x; βq, γ; q);

(3.14c)

M̃n(x; β, γq; q) = M̃n(x; βq, γ; q)− γq−2n+1 (qn − 1) M̃n−1(x; βq, γ; q). (3.14d)

Theorem 3.31. Let 0 < βq < 1 and γ > 0 and denote the zeros of M̃n(x; β, γ; q) by
1 < xn,1 < xn,2 < · · · < xn,n <∞, the zeros of M̃n(x; βq, γ; q) by yn,1 < yn,2 < · · · < yn,n,
the zeros of M̃n(x; β, γq; q) by zn,1 < zn,2 < · · · < zn,n and the zeros of M̃n(x; β, γq2; q) by
Zn,1 < Zn,2 < · · · < Zn,n. Then, for i ∈ {1, 2, . . . , n− 1},

(a) zn,i < xn,i < xn−1,i < zn,i+1 < xn,i+1,

(b) Zn,i < xn,i < xn−1,i < Zn,i+1 < xn,i+1,

(c) zn,i < xn,i < yn,i < yn−1,i < zn,i+1 < xn,i+1 < yn,i+1.

Proof . Let 0 < βq < 1 and γ > 0. Since 0 < q < 1, it follows that qn − 1 < 0 and
βqn − 1 < 0.

The polynomials on the right-hand side of each of the equations (3.14a) - (3.14d)
belong to the same orthogonal sequence, therefore their zeros interlace and satisfy the
property (1.1). Each of these equations thus is in the form of (1.2) with

(a) a(x) = 1 and b(x) > 0 in (3.14a) and the required interlacing follows from Corollary
1.3 (a);

(b) a(x) > 0 in (3.14b) and, taking in consideration the restrictions on the parameters,

b(x) =
γ (βqn − 1) (qn − 1)

qn−1(γq + qn)
(qnx+ γ β q + γq + 1)

is a linear function with positive derivative and is positive on (1,∞). The interlacing
follows from Corollary 1.3 (a);

(c) Taking into consideration the restrictions on the parameters, the coefficients of both
polynomials on the right-hand side of (3.14c) are positive on (1,∞), and following
Corollary 1.3 (a), xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1 for each i ∈ {1, 2, . . . , n− 1}.
Furthermore, the coefficients of both polynomials on the right-hand side of (3.14d)
are positive constants and applying Corollary 1.3 (a) for a second time, we obtain
zn,i < yn,i < yn−1,i < zn,i+1 < yn,i+1 for each i ∈ {1, 2, . . . , n− 1}. It is known, from
(a), that zn,i < xn,i for each i ∈ {1, 2, . . . , n}, and the required combined interlacing
follows.
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�

Corollary 3.32. For i ∈ {1, 2, . . . , n− 1},

(a) zn,i < zn−1,i < xn−1,i < yn−1,i < zn,i+1,

(b) Zn,i < Zn−1,i < xn−1,i < Zn,i+1,

(c) zn,i < xn,i < xn−1,i < yn−1,i < zn,i+1 < xn,i+1.

Proof .

(a) The result follows from Theorem 3.31 (c) and the interlacing of the zeros of M̃n(x; β, γq; q)
and M̃n−1(x; β, γq; q).

(b) The result follows from Theorem 3.31 (b) and the interlacing of the zeros of M̃n(x; β, γq2; q)
and M̃n−1(x; β, γq2; q).

(c) We combine the interlacing of the zeros of M̃n(x; β, γ; q) and M̃n−1(x; β, γ; q) with
the result of Theorem 3.31 (c) to obtain the required interlacing.

�

Remark 3.33. (i) In general, the zeros of M̃n(x; β, γ; q) and M̃n−1(x; β, γq; q) do not
interlace. These polynomials satisfy

M̃n−1(x; β, γq; q) = −q
2n−1M̃n(x; β, γ; q)

γ q + qn
+
b(x)M̃n−1(x; β, γ; q)

q (γ q + qn)

with b(x) = q2nx+γ q (βqn + qn − 1) , which represents a linear function that changes
sign on (1,∞) for 0 < βq < 1 and γ > 0. For example, when n = 2, β =
1, γ = 5, q = 0.1, the zeros of M̃n(x; β, γ; q) are {42.15, 5413.85} and the zero of
M̃n−1(x; β, γq; q) is {5.50};

(ii) When β = 0 in the definition of the q-Meixner polynomials, we obtain the q-Charlier
polynomials C̃n(x; γ; q). The interlacing results in Theorem 3.31 (a) and (b) and
Corollary 3.32 (b) follow from (3.14a) and (3.14b) (with β = 0), where xn,i, yn,i
and Zn,i, i ∈ {1, 2, . . . , n}, are the zeros of C̃n(x; γ; q),C̃n(x; γq; q) and C̃n(x; γq2; q),
respectively.

3.5.2 Quasi-orthogonality

The q-Meixner polynomials M̃n(x̄; β, γ; q) with x̄ = q−x, are orthogonal with respect to

the discrete weight (βq;q)xγxq
(x2)

(q,−βγq;q)x , when 0 ≤ βq < 1, γ > 0, x̄ ∈ (1,∞), and satisfy

M̃n

(
x̄;
β

q
, γ; q

)
=

(qnx+ β γ)

(β γ + x)qn
M̃n(x̄; β, γ; q)− βγ (qn + γ) (qn − 1) q

(β γ + x)q3n
M̃n(x̄; β, γ; q).

The polynomial M̃n(x̄; β
qk
, γ; q), k < n, is not quasi-orthogonal with respect to (βq;q)xγxq

(x2)
(q,−βγq;q)x ,

on (1,∞), since it cannot be written as a linear combination of the polynomials M̃n(x̄; β, γ; q),
M̃n−1(x̄; β, γ; q), . . . , M̃n−k(x̄; β, γ; q). Since γ > 0, we also have γ

q
> 0 or γq > 0 and the

sequences M̃n(x̄; β, γ
q
; q) or M̃n(x̄; β, γq; q), are orthogonal on (1,∞) for 0 ≤ βq < 1. We

therefore do not consider q-shifts of γ.
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3.5.3 Bounds of the extreme zeros

The q-Meixner polynomials M̃n(x̄; β, γ; q) satisfy recurrence relations of type

f(x)M̃n−k(x; β, γq−s; q) = H(x)M̃n(x; β, γ; q)+Gk−1,s(x)M̃n−1(x; β, γ; q), s ∈ {0, 1, . . . , 2k}.

Let B(1)
k,s and B

(2)
k,s be the smallest and the largest zero of Gk−1,s(x), respectively. The

bounds xn,1 < B
(1)
k,2k and xn,n > B

(2)
k,0 are more accurate for k = 2, 3, . . .. We have

B
(2)
3,0 = (−b+

√
b2 − 4c)/2 with

b = q1−2n
(
qnγ β − γ q2 + qnγ − qn − γ

)
(q + 1) , c = q−2n+3

(
β2γ2 + β γ2 − β γ

+ γ2 − γ + 1
)
− q−n+2γ β − q3−4nγ

(
q2 + q + 1

)
(qnγ β + qnγ − γ q − qn) .

The expression for the bound B(1)
3,6 is huge and will not be displayed here. However, we

have in Table 3.3 some values of the bounds for some random parameters.

n, q, β, γ 5, 0.5, 0.15, 3 10, 0.9, 0.1, 0.5 20, 0.98, 0.05, 25

zero xn,1 4.26295 1.048 12.061

bound B(1)
4,8 4.263796 1.12 12.698

bound B(1)
3,6 4.299 1.27 14.08

bound B(2)
3,0 2415.251 10.78 100.04

bound B(2)
4,0 2415.757878 11.28 109.65

zero xn,n 2415.757968 11.35 114.32

Table 3.3: Bounds for the extreme zeros of the q-Meixner polynomials M̃n(x̄; β, γ; q)

3.6 The q-Krawtchouk polynomials
The q-Krawtchouk polynomials K̃n(x̄; p,N ; q) with x̄ = q−x and n ∈ {0, 1, . . . , N},

are orthogonal for p > 0 with respect to the discrete weight w(x) =
(q−N ; q)x(−p)x

(q; q)x
on

(1, q−N).

3.6.1 Interlacing properties

Proposition 3.34.

K̃n(x; p,N ; q) = K̃n(x; pq,N ; q) +
pqn

(
qN+1 − qn

)
(qn − 1)

qN (1 + pq2n) (q + pq2n)
K̃n−1(x; pq,N ; q); (3.15a)

K̃n(x; p,N ; q) =
(pq2n + 1)

(
pqN+1 + 1

)
K̃n(x; pq2, N ; q)

(pqn + 1) (pqn+N+1 + 1)

+
p (qn − 1)

(
qN+1 − qn

) (
qN (pq2n+1 + 1)x+ qn

(
pq1+N + 1

))
K̃n−1(x; pq2, N ; q)

qN (pqn + 1) (pqn+N+1 + 1) (pq2n+1 + 1)
.

(3.15b)
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Theorem 3.35. Let p > 0, n ∈ {0, 1, . . . , N} and denote the zeros of K̃n(x; p,N ; q)
by 1 < xn,1 < xn,2 < · · · < xn,n < q−N , the zeros of K̃n(x; pq,N ; q) by yn,1 < yn,2 <
· · · < yn,n and the zeros of K̃n(x; pq2, N ; q) by Yn,1 < Yn,2 < · · · < Yn,n. Then, for each
i ∈ {1, 2, . . . , n− 1},

(a) xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1,

(b) xn,i < Yn,i < Yn−1,i < xn,i+1 < Yn,i+1.

Proof . Let p > 0, n ∈ {0, 1, . . . , N}. We note that qn − 1 < 0 and since qm < qn for
m > n, qN+1 − qn < 0. Since the polynomials on the right-hand side of both equations
(3.15a) and (3.15b) belong to the same orthogonal sequences, their zeros interlace and
both these equations are in the form of (1.2). The required interlacing follows from
Corollary 1.3 (a), since

(a) both a(x) and b(x) in (3.15a) are positive constants;

(b) taking into account the restrictions on the parameters, it is clear that a(x) is a
positive constant and b(x) > 0 represents a linear function that does not change
sign on (1, q−N).

�

Corollary 3.36. For i ∈ {1, 2, . . . , n− 1},

(a) xn,i < xn−1,i < yn−1,i < xn,i+1,

(b) xn,i < yn,i < Yn,i < Yn−1,i < xn,i+1 < yn,i+1 < Yn,i+1.

Proof .

(a) The result follows directly from Theorem 3.35 (a) and the interlacing of the zeros
of K̃n(x; p,N ; q) and K̃n−1(x; p,N ; q).

(b) When we replace p by pq in (3.15a), we obtain, using the same argument as in the
proof of Theorem 3.35 (a), that yn,i < Yn,i < Yn−1,i < yn,i+1 < Yn,i+1, for each
i ∈ {1, 2, . . . , n− 1}. We combine this with the interlacing results in Theorem 3.35
(a) and (b), which leads to the required result.

�

3.6.2 Quasi-orthogonality

The polynomials K̃n(x̄; p
qk
, N ; q) are orthogonal for p > 0 with respect to

(q−N ; q)x(
−p
qk

)x

(q; q)x
on (1, q−N). By iterating the equation

Kn

(
x̄;
p

q
,N ; q

)
= Kn(x̄; p,N ; q)−

p (qn − 1)
(
qn − qN+1

)
qn+1

(q2np+ q) (q2np+ q2) qN
Kn−1(x̄; p,N ; q),

we can write K̃n(x̄; p
qk
, N ; q) as a linear combination of the polynomials K̃n−j(x̄; p,N ; q), j ∈

{0, 1, . . . , k}, and the polynomials K̃n(x̄; p
qk
, N ; q) are also quasi-orthogonal for p > 0 on

(1, q−N) with respect to w(x).
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3.6.3 Bounds of the extreme zeros

The polynomials K̃n(x; p,N ; q) verify equations of type

f(x)K̃n−k(x; pqs, N ; q) = H(x)K̃n(x; p,N ; q) +Gk−1,s(x)K̃n−1(x; p,N ; q),

with s ∈ {0, 1, . . . , 2k}. Let B(1)
k,s , B

(2)
k,s be the smallest and the largest zeros of Gk−1,s,

respectively. For k = 3 and s = 6, we derive the upper bound B
(1)
3,6 = − b1+

√
b21−4a1c1

2a1
of

xn,1 with

a1 = q2N
(
pq2n + q

) (
q4 + pq2n

) (
q5 + pq2n

) (
pq2n + q2

)
, b1 = −

(
q4 + q2np

)
(q + 1)

×
(
q2np+ q2

)
qn+N+1

((
q2np− q3

) (
qNp− 1

)
+ p

(
q2 + 1

) (
qN+1 + 1

)
qn
)
,

c1 =
(
q4np2 + q6

)
q2n+3

(
q2Np2 − qNp+ 1

)
+ p

(
q2np− q3

) (
qN+1 + 1

) (
qNp− 1

)
q3+3n

×
(
q2 + q + 1

)
− p
(
p2q2+2N − p

(
qN+2 + qN+1 + qN + 1

) (
qN+2 + q2 + q + 1

)
+ q2

)
q4+4n,

and for s = 0 the lower bound B(2)
3,0 =

(
−b2 +

√
b2

2 − 4a2c2

)
/(2a2) of xn,n with

a2 =
(
p2q2N+6 − pqN+3 + 1

) (
q4np2 + 1

)
q2N+3

+ p
(
q2np− 1

) (
qN+1 + 1

) (
pqN+3 − 1

)
qn+2N+3

(
q2 + q + 1

)
−
(
1 + p2q2N+6 − q

(
qN+2 + q2 + q + 1

) (
qN+2 + qN+1 + qN + 1

)
p
)
pq2n+2N+3,

b2 = −
(
pqN+2 + 1

) (
pqN+4 + 1

) ((
q2np− 1

) (
pqN+3 − 1

)
+ p

(
q2 + 1

) (
qN+1 + 1

)
qn
)

× (q + 1) qn+N+1, c2 = q2n
(
pqN+2 + 1

) (
pqN+5 + 1

) (
pqN+4 + 1

) (
pqN+1 + 1

)
.

As shown in Table 3.4 for k = 4, the accurate bounds for xn,1 are the smallest zeros B(1)
k,2k

of Gk−1,2k and the accurate bounds for xn,n are the largest zeros B(2)
k,0 of Gk−1,0.

n, p, N, q 10, 7, 15, 0.9 5, 0.5, 10, 0.98 20, 1, 20, 0.85

zero xn,1 1.022 1.048 1.140878

bound B(1)
4,8 1.084 1.051 1.1410586

bound B(1)
3,6 1.1996 1.06 1.14539

bound B(2)
3,0 4.069 1.18 1.56

bound B(2)
4,0 4.4699 1.204 1.91

zero xn,n 4.685 1.218 25.8

Table 3.4: Bounds for the extreme zeros of the q-Krawtchouk polynomials K̃n(x; p,N ; q)

3.7 The q-Laguerre polynomials

The q-Laguerre polynomials L̃(α)
n (x; q) are orthogonal for α > −1 on (0,∞) with respect

to the weight function w(x) = xα

(−x;q)∞
. In [Moak, 1981], relations between different

sequences of q-Laguerre polynomials are provided and interlacing results between the
zeros of different sequences of these polynomials are given in [Jordaan and Toókos, 2010],
[Moak, 1981].
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3.7.1 Interlacing properties

Proposition 3.37.

L̃(α)
n (x; q) = L̃(α+1)

n (x; q)− q−2n−α (qn − 1) L̃
(α+1)
n−1 (x; q) (cf. [Moak, 1981, Eq. (4.12)]);

(3.16a)

L̃(α)
n (x; q) =

(qα+1 − 1) qnL̃
(α+2)
n (x; q)

qn+α+1 − 1
+

(qn+α+1x− qα+1 + 1) (qn − 1) L̃
(α+2)
n−1 (x; q)

qn+α+1(qn+α+1 − 1)
.

(3.16b)

Theorem 3.38. Let α > −1. We denote the zeros of L̃(α)
n (x; q) by 0 < xn,1 < xn,2 <

· · · < xn,n < ∞, the zeros of L̃(α+1)
n (x; q) by yn,1 < yn,2 < · · · < yn,n and the zeros of

L̃
(α+2)
n (x; q) by Yn,1 < Yn,2 < · · · < Yn,n. Then, for i ∈ {1, 2, . . . , n− 1},

(a) xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1 (cf. [Moak, 1981, Theorem 3]),

(b) xn,i < Yn,i < Yn−1,i < xn,i+1 < Yn,i+1.

Proof . Let α > −1. We note that qn − 1 < 0 and qn+α − 1 < 0.

(a) Since L̃
(α+1)
n (x; q) and L̃

(α+1)
n−1 (x; q) belong to the same orthogonal sequence, the

interlacing property (1.1) is satisfied and (3.16a) is in the form of (1.2). Both a(x)
and b(x) are positive constants and the result follows from Corollary 1.3 (a).

(b) The polynomials L̃(α+2)
n (x; q) and L̃

(α+2)
n−1 (x; q) belong to the same orthogonal se-

quence, which implies (1.1) is satisfied and equation (3.16b) is in the form of (1.2).
For the given values of the parameters, a(x) is a positive constant and

b(x) =
qn − 1

qn+α+1(qn+α+1 − 1)

(
qn+α+1x− qα+1 + 1

)
> 0

on (0,∞) and the interlacing follows from Corollary 1.3 (a).

�

Corollary 3.39. For i ∈ {1, 2, . . . , n− 1},

(a) xn,i < xn−1,i < yn−1,i < Yn−1,i < xn,i+1,

(b) xn,i < yn,i < Yn,i < Yn−1,i < xn,i+1 < yn,i+1 < Yn,i+1.

Proof .

(a) See [Jordaan and Toókos, 2010, Theorem 5.1].

(b) When we replace α by α + 1 in (3.16a), we obtain, using the same argument as in
the proof of Theorem 3.38 (a), that yn,i < Yn,i < Yn−1,i < yn,i+1 < Yn,i+1, for each
i ∈ {1, 2, . . . , n− 1}. We combine this with the results in Theorem 3.38 (a) and (b)
to obtain the result.

�

Remark 3.40. In [Jordaan and Toókos, 2010], the result in Corollary (3.39) (a) is ex-
tended to also include a continuous shift of the parameter α. Furthermore, examples are
provided to show that, in general, interlacing breaks down between the zeros of: L̃(α)

n (x; q)

and L̃(α+3)
n (x; q), L̃(α)

n (x; q) and L̃(α+3)
n−1 (x; q) and L̃(α+1)

n (x; q) and L̃(α)
n−1(x; q).
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3.7.2 Quasi-orthogonality

Consider the equation (cf. [Moak, 1981, Eq. (4.12)] and (3.16a)

L̃(α−1)
n (x; q) = L̃(α)

n (x; q)− (qn − 1) q

q2n+α
L̃

(α)
n−1(x; q). (3.17)

Theorem 3.41. Let k ∈ N0 and α ∈ R. For −1 < α < 0 and k ∈ {1, 2, . . . , n − 1},
the sequence of q-Laguerre polynomials {L̃(α−k)

n (x; q)}n≥0 is quasi-orthogonal of order k
on the interval (0,∞) with respect to w(x) and the polynomials have at least (n− k) real,
distinct zeros in (0,∞).

Proof . Fix −1 < α < 0. From Lemma 1.4 and (3.17) it follows that L̃(α−1)
n (x; q) is quasi-

orthogonal of order one on (0,∞). By iteration, we can express L̃(α−k)
n (x; q) as a linear

combination of L̃(α)
n (x; q), L̃

(α)
n−1(x; q), . . . , L̃

(α)
n−k(x; q), and the result follows from Lemma

1.4. The location of the (n − k) real, distinct zeros of L̃(α−k)
n (x; q), k ∈ {1, 2, . . . , n − 1},

follows from Lemma 1.6. �

Theorem 3.42. Let −1 < α < 0 and denote the zeros of L̃(α)
n (x; q) by xn,j, j ∈ {1, 2, . . . , n},

and the zeros of L̃(α−1)
n (x; q) by yn,j, j ∈ {1, 2, . . . , n}. Then

yn,1 < 0 < xn,1 < xn−1,1 < yn,2 < xn,2 < · · · < xn−1,n−1 < yn,n < xn,n.

Proof . From (3.17), we obtain the value an = −(qn−1)q
q2n+α

> 0. The interlacing result, as
well as the position of yn,n, follows from Lemma 1.8 (ii).

To obtain the position of yn,1, we use Lemma 1.7, and when we consider the given
parameter values,

fn(0) =
(qn+α − 1) q

q2n+α
< 0.

We thus have

−an − fn(0) = −(qα − 1) q

qn+α
< 0

and since −an < fn(0) < 0, the result follows from Lemma 1.7 (i). �

3.7.3 Bounds of the extreme zeros

The q-Laguerre polynomials L̃(α)
n (x; q) are solution of equations of type

f(x)L̃
(α+s)
n−k (x; q) = H(x)L̃(α)

n (x; q) +Gk−1,s(x)L̃
(α)
n−1(x; q), s ∈ {0, 1, . . . , 2k}. (3.18)

Let B(1)
k,s , B

(2)
k,s be the smallest and the largest zeros of Gk−1,s, respectively. For k = 3 and

s = 0, we derive the lower bound B(2)
3,0 of xn,n given by

xn,n > B
(2)
3,0 =

1

2q2n+α

(
q (q + 1)

(
q2 + 1− qα+n − qn

)
+
(

(1 + q)2 q2
(
qαqn − q2 + qn − 1

)2

− 4 q2n+3
(
q2α + 1 + qα

)
+ 4 (qα + 1) qn+3

(
1 + q + q2

)
− 4 q4

(
1 + q + q2

) )1/2)
,
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and for s = 6 the upper bound B(1)
3,6 of xn,1 given by

xn,1 < B
(1)
3,6 = −b+

√
b2 − 4ac

2a
,

where

a =
((
q6+2α + qα+3 + 1

)
q2n −

(
q2 + q + 1

) (
qnqαq3 + qn − q

))
q2α+3,

b =
(
qα+n+3 − q2 + qn − 1

)
qα+1 (q + 1)

(
qα+2 − 1

) (
qα+4 − 1

)
,

c =
(
qα+2 − 1

) (
qα+4 − 1

) (
qα+5 − 1

) (
qα+1 − 1

)
.

As shown in Table 3.5 for k = 4, the sharpest bounds for xn,1 are the smallest zeros B(1)
k,2k

of Gk−1,2k and the sharpest bounds of xn,n are the largest zeros B(2)
k,0 of Gk−1,0.

n, α, q 10, −0.9, 0.8 20, 65, 0.95 40, −0.95, 0.9

zero xn,1 0.00524429273450741 11.31 0.0005479977042140575

bound B(1)
4,8 0.00524429273450819 11.54 0.0005479977042140596

bound B(1)
3,6 0.0052442928 12.46 0.0005479977053

bound B(2)
3,0 110.1179 461.13 9496.159

bound B(2)
4,0 111.79 498.71 10012.19

zero xn,n 111.83 509.576 10086.19

Table 3.5: Bounds for the extreme zeros of the q-Laguerre polynomials L̃(α)
n (x; q)

Remark 3.43. Gupta and Muldoon [2007] considered the q-Laguerre polynomials

L(α)
n ((1− q)x; q) =

(qα+1; q)n
(q; q)n

1φ1

 q−n

qα+1

∣∣∣∣∣∣ q;−qn+α+1(1− q)x

, α > −1, x ∈ (0,∞).

As shown in Table 3.6, our upper bounds for the smallest zero xn,1/(1 − q) of L(α)
n ((1 −

q)x; q) are sharper than the bounds given in [Gupta and Muldoon, 2007, Eq. (4.8) and
(4.9)] (that we denote here by GM4.8 and GM4.9, respectively, for the bound [Gupta and
Muldoon, 2007, Eq. (4.8)] and [Gupta and Muldoon, 2007, (4.9)]). Moreover, in Gupta
and Muldoon [2007] lower bounds for the largest zeros x̃n,n were not given whereas we
obtain significant lower bounds for the largest zeros xn,n/(1− q).
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n, α, q 10, −0.9, 0.8 20, 65, 0.95 40, −0.95, 0.9

zero x̃n,1 0.026221463672537 226.22 0.005479977042140575

bound 1
1−qB

(1)
4,8 0.02622146367254 230.84 0.005479977042140596

bound 1
1−qB

(1)
3,6 0.0262214643551 249.19 0.005479977053

bound GM4.9 0.0262386 317.63 0.005481029

bound GM4.8 0.02718 431.105 0.0056003

bound 1
1−qB

(2)
3,0 550.5895 9222.6 94961.59

bound 1
1−qB

(2)
4,0 558.955 9974.2 100121.92

zero x̃n,n 559.15 10191.51 10086.19

Table 3.6: Bounds for the extreme zeros of the q-Laguerre polynomials L̃(α)
n ((1− q)x; q)

3.8 The alternative q-Charlier or q-Bessel polynomials

3.8.1 Interlacing properties

Proposition 3.44.

ỹn(x;α; q) = ỹn(x;αq; q)− α q2n (qn − 1)

(q + α q2n) (1 + α q2n)
ỹn−1(x;αq; q); (3.19a)

ỹn(x;α; q) =
(αq2n + 1) ỹn(x;αq2; q)

α qn + 1
− α qn (qn − 1) ((α q2n+1 + 1)x+ qn) ỹn−1(x;αq2; q)

(α q2n+1 + 1) (α qn + 1)
.

(3.19b)

Theorem 3.45. Let α > 0. We denote the zeros of ỹn(x;α; q) by 0 < xn,1 < xn,2 < · · · <
xn,n < 1, the zeros of ỹn(x;αq; q) by zn,1 < zn,2 < · · · < zn,n and the zeros of ỹn(x;αq2; q)
by Zn,1 < Zn,2 < · · · < Zn,n. Then, for i ∈ {1, 2, . . . , n− 1},

(a) xn,i < zn,i < zn−1,i < xn,i+1 < zn,i+1,

(b) xn,i < Zn,i < Zn−1,i < xn,i+1 < Zn,i+1.

Proof . Let α > 0. The polynomials on the right-hand side of each of the equations
(3.19a) and (3.19b) belong to the same orthogonal sequence and their zeros satisfy (1.1),
therefore these equations are in the form of (1.2). Taking into consideration the values of
the parameters,

(a) both a(x) and b(x) in (3.19a) are positive constants and the result follows from
Corollary 1.3 (a).

(b) a(x) in (3.19b) is a positive constant and b(x) represents a linear function that does
not change sign on (0, 1) and the interlacing follows from Corollary 1.3 (a).

�

Corollary 3.46. For i ∈ {1, 2, . . . , n− 1},
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(a) xn,i < xn−1,i < zn−1,i < Zn−1,i < xn,i+1,

(b) xn,i < zn,i < Zn,i < Zn−1,i < xn,i+1 < zn,i+1 < Zn,i+1.

Proof .

(a) The result follows from Theorem 3.45 (a) and (b) and the interlacing of the zeros
of ỹn(x;α; q) and ỹn−1(x;α; q).

(b) When we replace α by αq in (3.19a), we deduce that zn,i < Zn,i < Zn−1,i < zn,i+1 <
Zn,i+1 and we combine this with the interlacing results in Theorem 3.45 (a) and (b)
to obtain the required result.

�

3.8.2 Quasi-orthogonality

The polynomials ỹn(qx;α; q) are orthogonal for α > 0 with respect to w(x) =
αx

(q; q)x
q(

x+1
2 )

on (0,∞). By iterating the equation

ỹn(x̄;
α

q
; q) = ỹn(x̄;α; q)− αq2n+1 (qn − 1) ỹn−1(x̄;α; q)

(αq2n + q) (αq2n + q2)
,

where x̄ = qx ∈ (0, 1), we can write ỹn(x̄; α
qk

; q) as a linear combination of the polynomials
ỹn−j(x̄;α; q), j ∈ {0, 1, . . . , k}, and the polynomials ỹn(x̄; α

qk
; q) are also quasi-orthogonal

for α > 0 on (0, 1) with respect to w(x).

3.8.3 Bounds of the extreme zeros

The polynomials ỹn(x;α; q) are solutions of recurrence equations of type

f(x)ỹn−k(x;αqs; q) = H(x)ỹn(x;α; q) +Gk−1,s(x)ỹn−1(x;α; q), s ∈ {0, 1, . . . , 2k}.

Let B(1)
k,s be the smallest zero of Gk−1,s. For k = 3, the best upper bound for xn,1 is

xn,1 < B
(1)
3,6 =

(
−b−

√
b2 − 4ac

)
/(2a),

with

a = q4n+3α2 − q3+n
(
q2nα− 1

) (
q2 + q + 1

)
α + q2n+3

(
q3α + q2α + α q − 1

)
α + q3,

b = qn+1
(
−qn+2α + q2nα− α qn − 1

)
(q + 1) , c = q2n.

The best upper bounds for xn,1 are the zeros B(1)
k,2k, as shown for k = 4 in Table 3.7.

3.9 The Al-Salam-Carlitz I polynomials

The Al-Salam-Carlitz I polynomials Ũ (α)
n (x; q) are orthogonal for α < 0 on (α, 1) with

respect to the weight function w(x) = (qx, qx
α

; q)∞.
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n, α, q 5, 5, 0.45 20, 50, 0.9 50, 5, 0.95

zero xn,1 0.03536656765 0.0079156 0.0314

bound B(1)
4,8 0.03536656789 0.007974 0.0323

bound B(1)
3,6 0.0353685 0.0084 0.0349

Table 3.7: Bounds for the extreme zeros of the alternative q-Charlier ỹn(x;α; q)

3.9.1 Interlacing properties

Proposition 3.47.

Ũ (α)
n (x; q) = Ũ (αq)

n (x; q) + α(qn − 1)Ũ
(αq)
n−1 (x; q). (3.20)

Theorem 3.48. Let α < 0 and denote the zeros of Ũ (α)
n (x; q) by α < xn,1 < xn,2 < · · · <

xn,n < 1 and the zeros of Ũ (αq)
n (x; q) by αq < yn,1 < yn,2 < · · · < yn,n < 1. Then, for

i ∈ {1, 2, . . . , n− 1}, xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1.

Proof . Let α < 0. Since Ũ (αq)
n (x; q) and Ũ

(αq)
n−1 (x; q) belong to the same orthogonal

sequence, the interlacing property (1.1) is satisfied and (3.21) is in the form of (1.2).
Taking into consideration the values of the parameters, a(x) > 0 and b(x) > 0 are
constants on (α, 1) and the result follows from Corollary 1.3 (a). �

Corollary 3.49. For i ∈ {1, 2, . . . , n− 1}, xn,i < xn−1,i < yn−1,i < xn,i+1.

Proof . The result follows from Theorem 3.48 and the interlacing of the zeros of Ũ (α)
n (x; q)

and Ũ (α)
n−1(x; q). �

In general, the zeros of Ũ (α)
n (x; q) do not interlace with the zeros of Ũ (αq2)

n (x; q) or with
the zeros of Ũ (αq2)

n−1 (x; q). For example, when n = 2, α = −16 and q = 0.9, the zeros of
Ũ

(α)
n (x; q) are {−15.77,−12.78}, the zeros of Ũ (αq2)

n (x; q) are {−12.64,−10.08} and the
zero of Ũ (αq2)

n−1 (x; q) is {−11.96}.

3.9.2 Quasi-orthogonality

The polynomials Ũ
( α
qk

)

n (x; q), k < n, are orthogonal with respect to w(x) = (qx, q
k+1x
α

; q)∞
on the interval ( α

qk
, 1) and we will prove that they are quasi-orthogonal with respect to

w(x) on (α, 1). Using the equation

Ũ
(α
q

)
n (x; q) = Ũ (α)

n (x; q) + αq−1(qn − 1)Ũ
(α)
n−1(x; q), (3.21)

we deduce that

Ũ
( α
q2

)

n (x; q) = Ũ (α)
n (x; q) +

α (qn − 1) (q + 1)

q2
Ũ

(α)
n−1(x; q) +

α2 (qn − 1) (qn − q)
q4

Ũ
(α)
n−2(x; q).

(3.22)

Theorem 3.50. Let k ∈ N0 and α < 0. The sequence of Al-Salam-Carlitz I polynomials

{Ũ
( α
qk

)

n (x; q)}n≥0 is quasi-orthogonal with respect to w(x) on (α, 1) and the polynomials
have at least (n− k) real, distinct zeros in (α, 1).
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Proof . From Lemma 1.4 and (3.21) it follows that Ũ
(α
q

)
n (x; q) is quasi-orthogonal of order

one on (α, 1). By iteration, we can express Ũ
( α
qk

)

n (x; q) as a linear combination of Ũ (α)
n (x; q),

Ũ
(α)
n−1(x; q), . . . , Ũ (α)

n−k(x; q), and the result follows from Lemma 1.4. The location of the

(n − k) real, distinct zeros of Ũ
( α
qk

)

n (x; q), k ∈ {1, 2, . . . , n − 1}, follows from Lemma 1.6.
�

Remark 3.51. We can also obtain (3.21) from the generating function [Koekoek et al.,
2010, Eq. (14.24.10)] of the Al-Salam-Carlitz I polynomials

(t, αt; q)∞
(xt; q)∞

=
∞∑
n=0

U
(α)
n (x; q)

(q; q)n
tn, (3.23)

from which it follows that

(t, α
qk
t; q)∞

(xt; q)∞
=
∞∑
n=0

U

(
α

qk

)
n (x; q)

(q; q)n
tn, k ∈ {1, 2, . . .}. (3.24)

From the relation
(a; q)∞

(aqn; q)∞
= (a; q)n,

we obtain, when a = α
qk
t and n = k,(

α

qk
t; q

)
∞

=

(
α

qk
t; q

)
k

(αt; q)∞.

By using (3.23), (3.24) becomes

(
α

qk
t; q

)
k

∞∑
n=0

U
(α)
n (x; q)

(q; q)n
tn =

∞∑
n=0

U

(
α

qk

)
n (x; q)

(q; q)n
tn, k ∈ {1, 2, . . .}.

Expanding
(
α
qk
t; q
)
k
and equating powers of t yields U

(
α

qk

)
n (x; q) as a linear combination

of U (α)
n−j(x; q), j ∈ {0, 1, . . . , k}. In particular, for k = 1 and k = 2, we get (3.21) and

(3.22), respectively.

Theorem 3.52. Let α < 0 and denote the zeros of Ũ (α)
n (x; q) by xn,j, j ∈ {1, 2, . . . , n},

and the zeros of Ũ
(α
q

)
n (x; q) by yn,j, j ∈ {1, 2, . . . , n}. Then

(i) α
q
< yn,1 < xn,1 < xn−1,1 < yn,2 < · · · < xn−1,n−1 < yn,n < xn,n < 1 and, addition-

ally, if α < qn

qn−1
, then yn,1 < α < xn,1;

(ii) (n− 2) zeros of Ũ
( α
q2

)

n (x; q) interlace with the n zeros of Ũ (α)
n (x; q) if α < qn+1

qn−1
.

Proof .
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(i) From (3.21) we obtain the value an = α(qn−1)
q

> 0. The interlacing result, as well
as the position of yn,n, follows from Lemma 1.8 (ii). The position of yn,1 cannot be
determined, since

fn(α) =
Ũ

(α)
n (α; q)

Ũ
(α)
n−1(α; q)

= −qn−1 < 0

and the sign of

−an − fn(α) = −α(qn − 1)

q
+ qn−1 =

α(1− qn) + qn

q

varies as the parameters vary within the allowed regions. However, if α < qn

qn−1
,

then −an < fn(α) < 0 and from Lemma 1.7(i), it follows that yn,1 < α.

(ii) The coefficient of Ũ (α)
n−2(x; q) in (3.22) is

bn =
(qn − 1) (qn − q)α2

q4
.

From the three-term recurrence equation of the Al-Salam-Carlitz I polynomials
[Koekoek et al., 2010, Eq. (14.24.4)]

Ũ (α)
n (x; q) =

(
x− qn (α + 1)

q

)
Ũ

(α)
n−1(x; q)− α qn (qn − q)

q3
Ũ

(α)
n−2(x; q),

we obtain Cn = α qn(qn−q)
q3

and since

bn − Cn =
α (qn − q) (α qn − qn+1 − α)

q4
> 0

when α < qn+1

qn−1
, the interlacing result follows from [Joulak, 2005, Theorem 15 (ii)].

�

3.9.3 Bounds of the extreme zeros

Finding inner bounds by using Theorem 1.11 is not possible for the Al-Salam Carlitz
I polynomial system {Ũ (α)

n (x; q)}n≥0, since the polynomials Ũ (α)
n (x; q) are orthogonal for

α < 0 on (α, 1) and shifting α to αqk will result in a change of the interval of orthogonality.

3.10 The Al-Salam-Carlitz II polynomials

3.10.1 Interlacing properties

Proposition 3.53.

Ṽ (αq)
n (x; q) = Ṽ (α)

n (x; q)− α q(qn − 1)q−nṼ
(α)
n−1(x; q); (3.25a)

Ṽ (αq2)
n (x; q) =

(
αqn+1 + 1− α q

)
Ṽ (α)
n (x; q)− αq−n+1 (qn − 1) (qnx+ 1− α q) Ṽ (α)

n−1(x; q).
(3.25b)
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Theorem 3.54. Let 0 < αq < 1. Denote the zeros of Ṽ (α)
n (x; q) by 1 < xn,1 < xn,2 <

· · · < xn,n < ∞, the zeros of Ṽ (αq)
n (x; q) by yn,1 < yn,2 < · · · < yn,n and the zeros of

Ṽ
(αq2)
n (x; q) by Yn,1 < Yn,2 < · · · < Yn,n. Then, for i ∈ {1, 2, . . . , n− 1},

(a) yn,i < xn,i < xn−1,i < yn,i+1 < xn,i+1,

(b) Yn,i < xn,i < xn−1,i < Yn,i+1 < xn,i+1.

Proof . Let 0 < αq < 1. Since Ṽ (α)
n (x; q) and Ṽ (α)

n−1(x; q) belong to the same orthogonal
sequence, the interlacing property (1.1) is satisfied and both (3.25a) and (3.25b) are in
the form of (1.2).

(a) Taking into consideration the values of the parameters, both the coefficients of
Ṽ

(α)
n (x; q) and Ṽ

(α)
n−1(x; q) in (3.25a) are positive constants and the result follows

from Corollary 1.3 (a).

(b) Taking into consideration the restrictions on the parameters, a(x) in (3.25b) is a
positive constant and b(x) = α(1−qn)

qn−1 (qnx− α q + 1) represents a linear function with
positive values on (1,∞). The result follows from Corollary 1.3 (a).

�

Corollary 3.55. For i ∈ {1, 2, . . . , n− 1},

(a) yn,i < yn−1,i < xn−1,i < yn,i+1,

(b) Yn,i < yn,i < xn,i < xn−1,i < Yn,i+1 < yn,i+1 < xn,i+1,

(c) Yn,i < Yn−1,i < xn−1,i < Yn,i+1.

Proof .

(a) The result follows from Theorem 3.54 (a) and the interlacing of the zeros of Ṽ (αq)
n (x; q)

and Ṽ (αq)
n−1 (x; q).

(b) By replacing α with αq in (3.25a), we obtain Yn,i < yn,i < yn−1,i < Yn,i+1 < yn,i+1.
We combine this with the interlacing results in Theorem 3.54 (a) and (b) to obtain
the required result.

(c) The result follows directly from Theorem 3.54 (b) and the interlacing of the zeros
of Ṽ (αq2)

n (x; q) and Ṽ (αq2)
n−1 (x; q).

�

Remark 3.56. In general, the zeros of Ṽ (α)
n (x; q) and Ṽ (αq)

n−1 (x; q) do not interlace. These
polynomials satisfy

Ṽ
(αq)
n−1 (x; q) = −qn−1Ṽ (α)

n (x; q) + b(x)Ṽ
(α)
n−1(x; q)

with b(x) = q−1 (qnx− α q), a function that changes sign on (1,∞) for 0 < αq < 1.
However, when we restrict α in such a way that 0 < αq < qn < 1, the zeros interlace as
follows: xn,i < yn−1,i < xn−1,i < xn,i+1 for each i ∈ {1, 2, . . . , n− 1}.
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3.10.2 Quasi-orthogonality

The Al-Salam-Carlitz II polynomials Ṽ (α)
n (x̄; q) with x̄ = q−x, are orthogonal with respect

to the discrete weight w(x) = qx
2
αx

(q;q)x(αq;q)x
, when 0 ≤ αq < 1, x̄ ∈ (1,∞), and satisfy

Ṽ
(αq )
n (x; q) = −(qnx− α)

(α− x)qn
Ṽ (α)
n (x; q)− αq (qn − 1)

(α− x)q2n
Ṽ

(α)
n−1(x; q).

The polynomial Ṽ
(
α

qk

)
n (x; q), k < n, is not quasi-orthogonal with respect to w(x), on

(1,∞), since it cannot be written as a linear combination of the polynomials Ṽ (α)
n (x; q),

Ṽ
(α)
n−1(x; q), . . . , Ṽ

(α)
n−k(x; q).

3.10.3 Bounds of the extreme zeros

The Al-Salam Carlitz II polynomials Ṽ (α)
n (q−x; q) are orthogonal for 0 < αq < 1 on (0,∞)

with respect to

w(x;α) =
qx

2
αx

(q; q)k(αq; q)k
and

w(x;αq−k)

w(x;α)
=

(
1
α
q−x; q

)
k(

1
α

; q
)
k

= ck(q
−x;α)

is a polynomial of degree k in the variable q−x. However, when we substitute α with
αq−k, k ∈ {1, 2, . . . }, the condition 0 < αq < 1 is not satisfied. Therefore, finding inner
bounds by using Theorem 1.11 is not possible for the Al-Salam Carlitz II polynomials
Ṽ

(α)
n (q−x; q).



Chapter 4

Classical orthogonal polynomials on
quadratic and q-quadratic lattices

The aim of this chapter is to study the quasi-orthogonality and the interlacing proper-
ties of the zeros of some families of classical orthogonal polynomials on quadratic and
q-quadratic lattices. Starting from the hypergeometric representations of classical orthog-
onal polynomials, we get mixed recurrence equations they satisfied. In converse, if we
have for example the three-term recurrence equations satisfied by a classical orthogonal
polynomial family on quadratic or q-quadratic lattices, can we recover its hypergeometric
representation? In this chapter, we implement an algorithm to identify classical orthog-
onal polynomials on a quadratic or a q-quadratic lattice from their recurrence relations
(see [Tcheutia, 2019]).

4.1 Introduction

Foupouagnigni showed in [Foupouagnigni, 2008] that classical orthogonal polynomials on
a quadratic or q-quadratic lattice satisfy a second-order divided difference equation of the
form

φ(x(s))D2
xpn(x(s)) + ψ(x(s))SxDxpn(x(s)) + λnpn(x(s)) = 0, (4.1)

where φ(x) = ax2 + bx + c, ψ(x) = dx + e (d 6= 0), are polynomials of degree at most 2
and of degree one, respectively, the operators Dx and Sx are given by

Dxf(x(s)) =
f(x(s+ 1

2
))− f(x(s− 1

2
))

x(s+ 1
2
)− x(s− 1

2
)

, Sxf(x(s)) =
f(x(s+ 1

2
)) + f(x(s− 1

2
))

2
,

and x(s) is a quadratic or q-quadratic lattice defined by [Magnus, 1995]

x(s) =

c1q
s + c2q

−s + c3 if 0 < q < 1,

c4s
2 + c5s+ c6 if q = 1,

c1, . . . , c6 ∈ C.

Note that (4.1) is equivalent to a difference or q-difference equation of the form (see
[Koekoek et al., 2010, chaps. 9, 14])

λny(x(s)) = B(s)y(x(s+ 1))− (B(s) +D(s))y(x(s)) +D(s)y(x(s− 1)), (4.2)
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with

φ(x(s)) = −1

2

(
x(s+

1

2
)− x(s− 1

2
)
)(

(x(s+ 1)− x(s))B(s) + (x(s)− x(s− 1))D(s)
)
,

ψ(x(s)) = (x(s)− x(s+ 1))B(s) + (x(s)− x(s− 1))D(s).

Following the work by Foupouagnigni [2008], Njionou Sadjang et al. [2015b] proved that
the Wilson and the continuous dual Hahn polynomials are solutions of a divided-difference
equation of the form

φ(x)D2
xpn(x) + ψ(x)SxDxpn(x) + λnpn(x) = 0, (4.3)

where the operators Sx and the Wilson operator (see [Cooper, 2002], [Ismail and Stanton,
2012]) Dx are defined by

Dxf(x) =
f
(
x+ i

2

)
− f

(
x− i

2

)
2ix

, Sxf(x) =
f
(
x+ i

2

)
+ f
(
x− i

2

)
2

.

Using the same approach, Tcheutia et al. [2017] derived a divided–difference equation of
type

φ(x)δ2
xpn(x) + ψ(x)Sxδxpn(x) + λnpn(x) = 0, (4.4)

satisfied by the continuous Hahn and the Meixner–Pollaczek polynomials, where the dif-
ference operator δx (see [Olver et al., 2010, p. 436], compare [Koekoek et al., 2010, p. 201
and 214], [Njionou Sadjang, 2013], [Njionou Sadjang et al., 2015a], [Tratnik, 1989, Eq.
(1.15)]) is defined as follows:

δxf(x) =
f
(
x+ i

2

)
− f

(
x− i

2

)
i

.

(4.3) and (4.4) are equivalent to the difference equation (see [Koekoek et al., 2010, chap.
9])

λny(x) = B(x)y(x+ i)− (B(x) +D(x))y(x) +D(x)y(x− i), (4.5)

with

φ(x) = x((2x+ i)B(x) + (2x− i)D(x)), ψ(x) = −i((2x+ i)B(x)− (2x− i)D(x)),

and
φ(x) =

1

2
(B(x) +D(x)), ψ(x) = −i(B(x)−D(x)),

respectively.
The coefficients of the divided-difference equations given in the forms (4.1), (4.3) or

(4.4) can be used for instance to compute the three–term recurrence relation or some
structure formulae, from which one can derive the inversion coefficients of classical or-
thogonal polynomials on a quadratic and a q-quadratic lattice (see e. g. [Foupouagnigni
et al., 2013], [Njionou Sadjang et al., 2015b], [Tcheutia, 2014], [Tcheutia et al., 2017] and
references therein).

The hypergeometric and the basic hypergeometric representations of classical orthog-
onal polynomials on a quadratic or a q-quadratic lattice are given below (see [Koekoek
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et al., 2010] for more details):
1. Askey-Wilson

pn(x; a, b, c, d|q) =
(ab, ac, ad; q)n

an
4φ3

q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad

∣∣∣∣∣∣ q; q
, x = cos θ,

with pn(x; a, b, c, d|q) = 2n(abcdqn−1; q)np̃n(x; a, b, c, d|q);

2. q-Racah

Rn(µ(x);α, β, γ, δ|q) = 4φ3

q−n, αβqn+1, q−x, γδqx+1

αq, βδq, γq

∣∣∣∣∣∣ q; q
, n = 0, 1, . . . , N,

where
µ(x) := q−x + γδqx+1, αq = q−N or βδq = q−N or γq = q−N ,

with a nonnegative integer N and

Rn(µ(x);α, β, γ, δ|q) =
(αβqn+1; q)n

(αq, βδq, γq; q)n
R̃n(µ(x);α, β, γ, δ|q);

3. Continuous dual q-Hahn

pn(x; a, b, c|q) =
(ab, ac; q)n

an
3φ2

q−n, aeiθ, ae−iθ
ab, ac

∣∣∣∣∣∣ q; q
, x = cos θ,

with pn(x; a, b, c|q) = 2np̃n(x; a, b, c|q);
4. Continuous q-Hahn

pn(x; a, b, c, d; q) =
(abe2iθ̂, ac, ad; q)n

(aeiθ̂)n
4φ3

q−n, abcdqn−1, aei(θ+2θ̂), ae−iθ

abe2iθ̂, ac, ad

∣∣∣∣∣∣∣ q; q
,

x = cos(θ + θ̂), with pn(x; a, b, c, d; q) = 2n(abcdqn−1; q)np̃n(x; a, b, c, d; q);

5. Dual q-Hahn

Rn(µ(x); γ, δ,N |q) = 3φ2

q−n, q−x, γδqx+1

γq, q−N

∣∣∣∣∣∣ q; q
, n = 0, 1, . . . , N,

where µ(x) := q−x + γδqx+1, with R̃n(µ(x); γ, δ,N |q) = (γq, q−N ; q)nRn(µ(x); γ, δ,N |q);
6. Al-Salam-Chihara

Qn(x; a, b|q) =
(ab; q)n
an

3φ2

q−n, aeiθ, ae−iθ
ab, 0

∣∣∣∣∣∣ q; q
, x = cos θ,
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with Qn(x; a, b|q) = 2nQ̃n(x; a, b|q);
7. q-Meixner-Pollaczek

Pn(x; a|q) = a−ne−inθ̂
(a2; q)n
(q; q)n

3φ2

q−n, aei(θ+2θ̂), ae−iθ

a2, 0

∣∣∣∣∣∣ q; q
, x = cos(θ + θ̂),

with Pn(x; a|q) =
2n

(q; q)n
P̃n(x; a|q);

8. Continuous q-Jacobi

P (α,β)
n (x|q) =

(qα+1; q)n
(q; q)n

4φ3

q−n, qn+α+β+1, q
α
2

+ 1
4 eiθ, q

α
2

+ 1
4 e−iθ

qα+1,−q α+β+1
2 ,−q α+β+2

2

∣∣∣∣∣∣ q; q
, x = cos θ,

with P (α,β)
n (x|q) =

2nq(α
2

+ 1
4

)n(qn+α+β+1; q)n

(q,−q 1
2

(α+β+1),−q 1
2

(α+β+2); q)n
P̃ (α,β)
n (x|q);

9. Continuous q-Ultraspherical / Rogers

Cn(x; β|q) =
(β2; q)n
(q; q)n

β−
n
2 4φ3

q−n, β2qn, β
1
2 eiθ, β

1
2 e−iθ

βq
1
2 ,−β,−βq 1

2

∣∣∣∣∣∣ q; q
, x = cos θ,

with Cn(x; β|q) =
2n(β; q)n

(q; q)n
C̃n(x; β|q);

10. Dual q-Krawtchouk

Kn(λ(x); c,N |q) = 3φ2

q−n, q−x, cqx−N
q−N , 0

∣∣∣∣∣∣ q; q
, n = 0, 1, . . . , N,

where λ(x) := q−x + cqx−N , with K̃n(λ(x); c,N |q) = (q−N ; q)nKn(λ(x); c,N |q);
11. Continuous big q-Hermite

Hn(x; a|q) = a−n3φ2

q−n, aeiθ, ae−iθ
0, 0

∣∣∣∣∣∣ q; q
, x = cos θ, with Hn(x; a|q) = 2nH̃n(x; a|q);

12. Continuous q-Laguerre

P (α)
n (x|q) =

(qα+1; q)n
(q; q)n

3φ2

q−n, q α2 + 1
4 eiθ, q

α
2

+ 1
4 e−iθ

qα+1, 0

∣∣∣∣∣∣ q; q
, x = cos θ,

with P (α)
n (x|q) =

2nq(α
2

+ 1
4

)n

(q; q)n
P̃ (α)
n (x|q);
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13. Wilson

Wn(x2; a, b, c, d) = (a+b)n(a+c)n(a+d)n4F3

−n, n+ a+ b+ c+ d− 1, a+ ix, a− ix

a+ b, a+ c, a+ d

∣∣∣∣∣∣ 1
,

with Wn(x2; a, b, c, d) = (−1)n(n+ a+ b+ c+ d− 1)nW̃n(x2; a, b, c, d);

14. Racah

Rn(λ(x);α, β, γ, δ) = 4F3

−n, n+ α + β + 1,−x, x+ γ + δ + 1

α + 1, β + δ + 1, γ + 1

∣∣∣∣∣∣ 1
, n = 0, 1, . . . , N,

where

λ(x) = x(x+ γ + δ + 1), α + 1 = −N or β + δ + 1 = −N or γ + 1 = −N

with a nonnegative integer N , and

Rn(λ(x);α, β, γ, δ) =
(n+ α + β + 1)n

(α + 1)n(β + δ + 1)n(γ + 1)n
R̃n(λ(x);α, β, γ, δ);

15. Continuous dual Hahn

Sn(x2; a, b, c) = (a+ b)n(a+ c)n3F2

−n, a+ ix, a− ix

a+ b, a+ c

∣∣∣∣∣∣ 1
,

with Sn(x2; a, b, c) = (−1)nS̃n(x2; a, b, c);
16. Continuous Hahn

pn(x; a, b, c, d) = in
(a+ c)n(a+ d)n

n!
3F2

−n, n+ a+ b+ c+ d− 1, a+ ix

a+ c, a+ d

∣∣∣∣∣∣ 1
,

with pn(x; a, b, c, d) =
(n+ a+ b+ c+ d− 1)n

n!
p̃n(x; a, b, c, d);

17. Dual Hahn

Rn(λ(x); γ, δ,N) = 3F2

−n,−x, x+ γ + δ + 1

γ + 1,−N

∣∣∣∣∣∣ 1
, n = 0, 1, . . . , N,

where λ(x) = x(x+ γ + δ + 1), R̃n(λ(x); γ, δ,N) = (γ + 1)n(−N)nRn(λ(x); γ, δ,N);
18. Meixner-Pollaczek

P (λ)
n (x; θ) =

(2λ)n
n!

einθ2F1

−n, λ+ ix

2λ

∣∣∣∣∣∣ 1− e−2iθ

, P (λ)
n (x; θ) =

(2 sin θ)n

n!
P̃ (λ)
n (x; θ).
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4.2 Interlacing properties of the zeros of some families
of classical orthogonal polynomials on quadratic
and q-quadratic lattices

4.2.1 The Wilson polynomials

The Wilson polynomials W̃n(x2; a, b, c, d) are orthogonal on (0,∞) with respect to

w(x; a, b, c, d) =

∣∣∣∣Γ(a+ ix)Γ(b+ ix)Γ(c+ ix)Γ(d+ ix)

Γ(2ix)

∣∣∣∣2 , (4.6)

for Re(a, b, c, d) > 0 and non-real parameters occur in conjugate pairs. Furthermore, the
weight function is clearly independent of the order in which the parameters a, b, c and d
occur. By shifting b to b + 1, c to c + 1 or d to d + 1, the same interlacing results are
obtained as by shifting a to a + 1. We note that the polynomial Wn(x2; a, b, c, d) has n
zeros in (0,∞), namely x2

n,1, x
2
n,2, . . . , x

2
n,n. Let W̃n(x2) = W̃n(x2; a, b, c, d).

Proposition 4.1.

W̃n(x2; a, b, c, d) = W̃n(x2; a+ 1, b, c, d) (4.7a)

+
n(c+ d+ n− 1)(b+ d+ n− 1)(b+ c+ n− 1)

(2n+ a+ b+ c+ d− 2)(2n+ a+ b+ c+ d− 1)
W̃n−1(x2; a+ 1, b, c, d);

W̃n(x2; a, b+ 1, c, d) = W̃n(x2; a+ 1, b, c, d) (4.7b)

+
n(b− a)(c+ d+ n− 1)

2n+ a+ b+ c+ d− 1
W̃n−1(x2; a+ 1, b+ 1, c, d).

Theorem 4.2. Suppose a, b, c, d > 0. Denote the zeros of W̃n(x2; a, b, c, d) by x2
n,1 <

x2
n,2 < · · · < x2

n,n, the zeros of W̃n(x2; a+ 1, b, c, d) by x(a)2

n,1 < x
(a)2

n,2 < · · · < x
(a)2

n,n , the zeros
of W̃n(x2; a, b + 1, c, d) by x(b)2

n,1 < x
(b)2

n,2 < · · · < x
(b)2

n,n , the zeros of W̃n(x2; a + 1, b + 1, c, d)

by x(a,b)2

n,1 < x
(a,b)2

n,2 < · · · < x
(a,b)2

n,n . Then,

(a) x2
n,i < x

(a)2

n,i < x
(a)2

n−1,i < x2
n,i+1 < x

(a)2

n,i+1;

(b) if b− a > 0, x(b)2

n,i < x
(a)2

n,i < x
(a,b)2

n−1,i < x
(b)2

n,i+1 < x
(a)2

n,i+1, and
if b− a < 0, x(a)2

n,i < x
(b)2

n,i < x
(a,b)2

n−1,i < x
(a)2

n,i+1 < x
(b)2

n,i+1.

Proof . Suppose a, b, c, d are positive real numbers.

(a) Since W̃n(x2; a, b, c, d) and W̃n−1(x2; a, b, c, d) belong to the same orthogonal se-
quence, their zeros interlace and (4.7a) is in the form of (1.2), with a(x) = 1 and
b(x) > 0. The result follows from Corollary 1.3 (a).

(b) Equation (4.7b) is in the form of (1.2), with a(x) = 1, b(x) < 0 if b− a < 0 and the
result follows from Corollary 1.3 (b), b(x) > 0 if b − a > 0 and the result follows
from Corollary 1.3 (a).

�
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4.2.2 The Racah polynomials

The Racah polynomials R̃n(λ(x);α, β, γ, δ), n ∈ {0, 1, 2, . . . , N}, with λ(x) = x(x + γ +
δ + 1), are orthogonal on (0, N) with respect to the weight function

w(x) =
(α + 1)x(β + δ + 1)x(γ + 1)x(γ + δ + 1)x((γ + δ + 3)/2)x
(−α + γ + δ + 1)x(−b+ γ + 1)x(δ + 1)x((γ + δ + 1)/2)x

if α + 1 = −N or β + δ + 1 = −N or γ + 1 = −N with N a nonnegative integer. Since
shifting γ or δ will change λ(x), we will only consider shifts in α and β.

Proposition 4.3.

R̃n(λ(x);α, β, γ, δ) = R̃n(λ(x);α + 1, β, γ, δ) (4.8a)

− (β + n) (β + δ + n) (γ + n)n

(2n+ α + β + 1) (2n+ α + β)
R̃n−1(λ(x);α + 1, β, γ, δ);

R̃n(λ(x);α, β, γ, δ) = R̃n(λ(x);α, β + 1, γ, δ) (4.8b)

− (α + n) (α− δ + n) (γ + n)n

(2n+ α + β + 1) (2n+ α + β)
R̃n−1(λ(x);α, β + 1, γ, δ);

R̃n(λ(x);α, β + 1, γ, δ) = R̃n(λ(x);α + 1, β, γ, δ) (4.8c)

+
n (γ + n) (α− β − δ)

2n+ α + β + 1
R̃n−1(λ(x);α + 1, β + 1, γ, δ).

From the latter equations, we can make some assumptions on the parameters α, β, γ
to derive interlacing properties of the zeros of the Racah polynomials.

4.2.3 The continuous Hahn polynomials

The continuous Hahn polynomials P̃n(x; a, b, c, d) are orthogonal on R with respect to
w(x) = Γ(a + ix)Γ(b + ix)Γ(c − ix)Γ(d − ix) for Re(a, b, c, d) > 0, c = ā and d = b̄. We
have for this family equations like

P̃n(x; a, b, c, d) = P̃n(x; a+ 1, b, c, d)

+
ni (b+ c+ n− 1) (b+ d+ n− 1)

(2n+ a+ b+ c+ d− 2) (2n+ a+ b+ c+ d− 1)
P̃n−1(x; a+ 1, b, c, d);

P̃n(x; a, b+ 1, c, d) = P̃n(x; a+ 1, b, c, d)

+
ni (b− a)

2n+ a+ b+ c+ d− 1
P̃n−1(x; a+ 1, b+ 1, c, d).

Like in the latter equations, there is the complex i appearing in the second term of
the right-hand sides of the mixed recurrence equations satisfied by the continuous Hahn
polynomials. Therefore, we can not apply our method to deduce the interlacing properties
of the zeros of P̃n(x; a, b, c, d).
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4.2.4 The Askey-Wilson polynomials

The weight function of the Askey-Wilson polynomials

w(x; a, b, c, d|q) =
1√

1− x2

∣∣∣∣ (e2iθ; q)∞
(aeiθ, beiθ, ceiθ, deiθ; q)∞

∣∣∣∣2 , (4.9)

is independent of the order of the parameters a, b, c and d and by shifting b to bq, c to cq
or d to dq, we obtain the same interlacing results as by shifting a to aq.

Proposition 4.4.

p̃n(x; a, b, c, d|q) = p̃n(x; aq, b, c, d|q) (4.10a)

− a(1− qn)(1− cdqn−1)(1− bdqn−1)(1− bcqn−1)

2(1− abcdq2n−1)(1− abcdq2n−2)
p̃n−1(x; aq, b, c, d|q),

p̃n(x; a, bq, c, d|q) = p̃n(x; aq, b, c, d|q) +
(b− a)(1− qn)(1− cdqn−1)

2(1− abcdq2n−1)
p̃n−1(x; aq, bq, c, d|q).

(4.10b)

Theorem 4.5. Suppose a, b, c, d are real and max(|a|, |b|, |c|, |d|) < 1. Denote the zeros
of p̃n(x; a, b, c, d|q) by −1 < xn,1 < xn,2 < · · · < xn,n < 1, the zeros of p̃n(x; aq, b, c, d|q) by
−1 < x

(a)
n,1 < x

(a)
n,2 < · · · < x

(a)
n,n < 1, the zeros of p̃n(x; a, bq, c, d|q) by −1 < x

(b)
n,1 < x

(b)
n,2 <

· · · < x
(b)
n,n < 1, the zeros of p̃n(x; aq, bq, c, d|q) by −1 < x

(a,b)
n,1 < x

(a,b)
n,2 < · · · < x

(a,b)
n,n < 1.

Then,

(a) if −1 < a < 0, xn,i < x
(a)
n,i < x

(a)
n−1,i < xn,i+1 < x

(a)
n,i+1, and

if 0 < a < 1, x(a)
n,i < xn,i < x

(a)
n−1,i < x

(a)
n,i+1 < xn,i+1;

(b) if b− a > 0, x(b)
n,i < x

(a)
n,i < x

(a,b)
n−1,i < x

(b)
n,i+1 < x

(a)
n,i+1, and

if b− a < 0, x(a)
n,i < x

(b)
n,i < x

(a,b)
n−1,i < x

(a)
n,i+1 < x

(b)
n,i+1.

Proof . Suppose a, b, c, d are real and max(|a|, |b|, |c|, |d|) < 1. Then max(|ac|, |ad|, |bc|,
|bd|, |cd|, |abcd|) < 1 and, for n ∈ N, 1−acqn > 0, 1− bcqn > 0, 1− bdqn > 0, 1− cdqn > 0
and 1 − abcdqn > 0. Since p̃n(x; aq, b, c, d|q) and p̃n−1(x; aq, b, c, d|q) belong to the same
orthogonal sequence, their zeros interlace and (4.10a) is in the form of (1.2), with a(x) = 1
and

(a) b(x) > 0 if −1 < a < 0 and the result follows from Corollary 1.3 (a) and b(x) < 0 if
0 < a < 1 and the result follows from Corollary 1.3 (b).

(b) Since by shifting b to bq, we obtain the same interlacing results as by shifting a
to aq and we have xn,i < x

(b)
n,i < x

(b)
n−1,i < xn,i+1 < x

(b)
n,i+1 if −1 < b < 0, and

x
(b)
n,i < xn,i < x

(b)
n−1,i < x

(b)
n,i+1 < xn,i+1 if 0 < b < 1. By replacing a by aq, it follows

that x(a)
n,i < x

(a,b)
n−1,i < x

(a)
n,i+1 for each i ∈ {1, 2, . . . , n − 1}. Equation (4.10b) is in

the form of (1.2), with a(x) = 1, b(x) < 0 if b − a < 0 and the result follows from
Corollary 1.3 (b), b(x) > 0 if b−a > 0 and the result follows from Corollary 1.3 (a).

�
The following result follows directly:
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Corollary 4.6. For i ∈ {1, 2, . . . , n− 1},

(a) if −1 < a < 0 and 0 < b < 1, x(b)
n,i < xn,i < x

(a)
n,i < x

(a,b)
n−1,i < x

(b)
n,i+1 < xn,i+1 < x

(a)
n,i+1;

(b) if −1 < b < 0 and 0 < a < 1, x(a)
n,i < xn,i < x

(b)
n,i < x

(a,b)
n−1,i < x

(a)
n,i+1 < xn,i+1 < x

(b)
n,i+1.

Remark 4.7. The following systems of polynomials follow from the Askey-Wilson poly-
nomials:

(i) By setting d = 0, we obtain the monic continuous dual q-Hahn polynomials p̃n(x; a, b, c|q),
x = cos θ, orthogonal on (−1, 1) with respect to w(x; a, b, c, 0|q) in (4.9) where a, b, c
are real and max(|a|, |b|, |c|) < 1;

(ii) By setting c = d = 0, we obtain the monic Al-Salam Chihara polynomials Q̃n(x; a, b|q),
x = cos θ, orthogonal on (−1, 1) with respect to w(x; a, b, 0, 0|q) in (4.9) where a, b
are real and max(|a|, |b|) < 1;

(iii) By setting b = c = d = 0, we obtain the monic continuous big q-Hermite polynomials
H̃n(x; a|q), x = cos θ, orthogonal on (−1, 1) with respect to w(x; a, 0, 0, 0|q) in (4.9)
where a is real and |a| < 1.

(iv) By the substitutions θ → θ + φ, a → aeiφ, b → beiφ, c → ce−iφ and d → de−iφ we
obtain the monic continuous q-Hahn polynomials p̃n(x; a, b, c, d; q), x = cos (θ + φ),
orthogonal on (−π, π) with respect to

w(cos (θ + φ) ; a, b, c, d|q) =

∣∣∣∣ (e2i(θ+φ); q)∞
(aei(θ+φ), bei(θ+φ), ceiθ, deiθ; q)∞

∣∣∣∣2 ,
if c = a and d = b and, if a and b are real and max(|a|, |b|) < 1, or if b = a and
|a| < 1. Using the above substitution in (4.10a), we obtain

p̃n(x; a, b, c, d; q) = p̃n(x; aq, b, c, d; q)

− a(1− qn)(eiφ − cdqn−1e−iφ)(1− bdqn−1)(1− bcqn−1)

2(1− abcdq2n−1)(1− abcdq2n−2)
p̃n−1(x; aq, b, c, d; q)

and we can not apply our method to deduce the interlacing properties of the zeros of
p̃n(x; a, b, c, d; q), since it is not possible to determine if eiφ − cdqn−1e−iφ is positive
or negative.

Corollary 4.8. Suppose a, b, c, d are real and max(|a|, |b|, |c|, |d|) < 1. Then for each of
the systems in (i) - (iii) above, we have, for i ∈ {1, 2, . . . , n− 1},

(a) xn,i < yn,i < yn−1,i < xn,i+1 < yn,i+1 if −1 < a < 0;

(b) yn,i < xn,i < yn−1,i < yn,i+1 < xn,i+1 if 0 < a < 1,

where −1 < xn,1 < xn,2 < · · · < xn,n < 1 are the zeros of the polynomial p̃n(x; a, b, c|q) in
(i) (Q̃n(x; a, b|q), H̃n(x; a|q)), and −1 < yn,1 < yn,2 < · · · < yn,n < 1 are the zeros of the
polynomial with a shifted to aq, i.e., p̃n(x; aq, b, c|q) (Q̃n(x; aq, b|q), H̃n(x; aq|q)).
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4.2.5 The q-Racah polynomials

The q-Racah polynomials are orthogonal on (0, N) if αq = q−N or βδq = q−N or γq =
q−N , and N a nonnegative integer. In order to prove interlacing results, we make some
assumptions on the parameters.

Proposition 4.9.

R̃n(µ(x);α, β, γ, δ|q) = R̃n(µ(x);αq, β, γ, δ|q) (4.11a)

− αq(1− q
n)(1− βqn)(1− γqn)(1− βδqn)

(1− αβq2n)(1− αβq2n+1)
R̃n−1(µ(x);αq, β, γ, δ|q);

R̃n(µ(x);α, β, γ, δ|q) = R̃n(µ(x);α, βq, γ, δ|q) (4.11b)

+
βq(1− qn)(1− αqn)(1− γqn)(αqn − δ)

(1− αβq2n)(1− αβq2n+1)
R̃n−1(µ(x);α, βq, γ, δ|q).

Theorem 4.10. We denote the zeros of R̃n(µ(x);α, β, γ, δ|q) by µ(0) < µn,1 < µn,2 <

· · · < µn,n < µ(N), the zeros of R̃n(µ(x);αq, β, γ, δ|q) by µ(0) < µ
(α)
n,1 < µ

(α)
n,2 < · · · <

µ
(α)
n,n < µ(N) and the zeros of R̃n(µ(x);α, βq, γ, δ|q) by µ(0) < µ

(β)
n,1 < µ

(β)
n,2 < · · · < µ

(β)
n,n <

µ(N) and we assume that (1− αβq2n)(1− αβq2n+1) > 0, γq < 1 and 0 < δq < 1.

(a) Let αq = q−N > 1. If βq < 1 and βδq < 1, then, for i ∈ {1, 2, . . . , n − 1},
µ

(α)
n,i < µn,i < µ

(α)
n−1,i < µ

(α)
n,i+1 < µn,i+1;

(b) Let βδq = q−N > 1. If αq < 1 and αqn < δ, then, for i ∈ {1, 2, . . . , n − 1},
µ

(β)
n,i < µn,i < µ

(β)
n−1,i < µ

(β)
n,i+1 < µn,i+1.

Proof . The polynomials on the right-hand side of both equations (4.11a) and (4.11b)
belong to the same orthogonal sequences, their zeros interlace and these equations are
both in the form of (1.2), with a(x) = 1.

(a) Let αq = q−N > 1 and assume that βq < 1 and βδq < 1. Then 1 − βδqn > 0, i.e.,
b(x) < 0 and the result follows from Corollary 1.3 (b);

(b) Let βδq = q−N > 1 and assume that αq < 1 and αqn < δ. Then b(x) is a negative
constant and the result follows from Corollary 1.3 (b).

�

Remark 4.11. When we take β = 0, γq = q−N and δ → αδqN+1 in the definition of the
q-Racah polynomials, we obtain the monic dual q-Hahn polynomials, i.e.,

R̃n(µ(x);α, 0, q−N−1, αδqN+1|q) = R̃n(µ(x);α, δ,N |q), n ∈ {0, 1, . . . , N},

with µ(x) = q−x + αδqx+1, and (4.11a) becomes

R̃n(µ(x);α, δ,N |q) = R̃n(µ(x);αq, δ,N |q)−αq(1− qn)(1− qn−N−1)R̃n−1(µ(x);αq, δ,N |q),

with 0 < αq < 1 and 0 < δq < 1, and, since −αq(1 − qn)(1 − qn−N−1) > 0, the zeros
interlace as follows:

µn,i < µ
(α)
n,i < µ

(α)
n−1,i < µn,i+1 < µ

(α)
n,i+1, i ∈ {1, 2, . . . , n− 1},

where µn,i are the zeros of R̃n(µ(x);α, δ,N |q) and µ
(α)
n,i , i ∈ {1, 2, . . . , n}, the zeros of

R̃n(µ(x);αq, δ,N |q).
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For the monic dual q-Hahn polynomials we also get the following results.

Proposition 4.12.

R̃n(µ(x);α, δq,N |q) = R̃n(µ(x);αq, δ,N |q) (4.12a)

+ αq−N(1− qn)(qn − qN+1)R̃n−1(µ(x);αq, δ,N |q);

R̃n(µ(x);α, δq,N |q) =
1− αδ qx+N+3−n

1− αδqx+N+3
R̃n(µ(x);αq, δq,N |q) (4.12b)

+
α (1− qn)

(
qn − qN+1

) (
1− δ qN+2−n)

qN(1− α δqx+N+3)
R̃n−1(µ(x);αq, δq,N |q).

Theorem 4.13. Let n ∈ {0, 1, . . . , N}, 0 < αq < 1 and 0 < δq < 1, and denote the
zeros of R̃n(µ(x);α, δq,N |q) by µ(0) < µ

(δ)
n,1 < µ

(δ)
n,2 < · · · < µ

(δ)
n,n < µ(N), the zeros

of R̃n(µ(x);αq, δ,N |q) by µ(0) < µ
(α)
n,1 < µ

(α)
n,2 < · · · < µ

(α)
n,n < µ(N) and the zeros of

R̃n(µ(x);αq, δq,N |q) by µ(0) < µ
(α,δ)
n,1 < µ

(α,δ)
n,2 < · · · < µ

(α,δ)
n,n < µ(N). Then, for i ∈

{1, 2, · · · , n− 1},

(a) µ(δ)
n,i < µ

(α)
n,i < µ

(α)
n−1,i < µ

(δ)
n,i+1 < µ

(α)
n,i+1,

(b) µ(δ)
n,i < µ

(α,δ)
n,i < µ

(α,δ)
n−1,i < µ

(δ)
n,i+1 < µ

(α,δ)
n,i+1.

Proof . Let 0 < αq < 1 and 0 < δq < 1. Then 1 − αδqj > 0, 1 − αqj > 0, 1 − δqj > 0
if j > 0 and equations (4.12a)–(4.12b) are in the form of (1.2) and under the given
assumptions, the results follows from Corollary 1.3 (a). �

4.3 Quasi-orthogonal polynomials on quadratic and q-
quadratic lattices

4.3.1 The Wilson polynomials
Proposition 4.14.

W̃n(x2; a− 1, b, c, d) = W̃n(x2) +
n(c+ d+ n− 1)(b+ d+ n− 1)(b+ c+ n− 1)

(2n+ a+ b+ c+ d− 2)(2n+ a+ b+ c+ d− 3)
W̃n−1(x2);

(4.13a)

W̃n(x2; a, b− 1, c, d) = W̃n(x2) +
n(c+ d+ n− 1)(a+ d+ n− 1)(a+ c+ n− 1)

(2n+ a+ b+ c+ d− 2)(2n+ a+ b+ c+ d− 3)
W̃n−1(x2);

(4.13b)

W̃n(x2; a, b, c− 1, d) = W̃n(x2) +
n(a+ d+ n− 1)(b+ d+ n− 1)(a+ b+ n− 1)

(2n+ a+ b+ c+ d− 2)(2n+ a+ b+ c+ d− 3)
W̃n−1(x2);

(4.13c)

W̃n(x2; a, b, c, d− 1) = W̃n(x2) +
n(a+ c+ n− 1)(b+ c+ n− 1)(a+ b+ n− 1)

(2n+ a+ b+ c+ d− 2)(2n+ a+ b+ c+ d− 3)
W̃n−1(x2).

(4.13d)

Theorem 4.15. Let a, b, c and d be such that Re(a, b, c, d) > 0. Consider k1, k2, k3, k4 ∈
{0, 1, . . . , n − 1}, such that k1 + k2 + k3 + k4 ≤ n − 1. The sequence {W̃n(x2; a − k1, b −
k2, c − k3, d − k4)}n≥0, with 0 < Re(a) < 1 (if k1 6= 0), 0 < Re(b) < 1 (if k2 6= 0),
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0 < Re(c) < 1 (if k3 6= 0) and 0 < Re(d) < 1 (if k4 6= 0), is quasi-orthogonal of order
k1 + k2 + k3 + k4 ≤ n− 1 with respect to the weight w(x) on (0,∞) and the polynomials
have at least n− (k1 + k2 + k3 + k4) real, distinct zeros in (0,∞).

Proof . Fix a such that 0 < Re(a) < 1. From Lemma 1.4 and (4.13a), it follows that
W̃n(x2; a− 1, b, c, d) is quasi-orthogonal of order one on (0,∞). By iteration, we can ex-
press W̃n(x2; a− k, b, c, d) as a linear combination of W̃n(x2; a, b, c, d), W̃n−1(x2; a, b, c, d),
. . . , W̃n−k(x

2; a, b, c, d) and from Lemma 1.4 it follows that W̃n(x2; a − k, b, c, d), 0 <
Re(a) < 1, is quasi-orthogonal of order k ≤ n−1 on (0,∞). Furthermore, from Lemma 1.6
we know that at least (n−k) real, distinct zeros of W̃n(x2; a−k, b, c, d), k ∈ {1, 2, . . . , n−1},
lie in (0,∞), i.e., at least (n− k) of the zeros (xn,1)2, (xn,2)2, . . . , (xn,n)2, lie in (0,∞).

When we fix the parameter b, (or c, d) such that 0 < Re(b) < 1 (or 0 < Re(c) < 1, 0 <
Re(d) < 1), we can prove in the same way, using (4.13b) (or (4.13c), (4.13d)), that the
polynomial W̃n(x2; a, b − k, c, d) (alternatively W̃n(x2; a, b, c − k, d), or W̃n(x2; a, b, c, d −
k)) is quasi-orthogonal of order k on (0,∞). Using an iteration process, we can write
W̃n(x2; a − k1, b − k2, c − k3, d − k4) with 0 < Re(a) < 1 (if k1 6= 0), 0 < Re(b) < 1 (if
k2 6= 0), 0 < Re(c) < 1 (if k3 6= 0) and 0 < Re(d) < 1 (if k4 6= 0), in the form of (1.5) and
the results follow from Lemmas 1.4 and 1.6. �

Theorem 4.16. Consider a, b, c, d, such that Re(b, c, d) > 0, 0 < Re(a) < 1 and non-
real parameters occur in conjugate pairs. Let x2

n,i, i ∈ {1, 2, . . . , n}, denote the zeros of
W̃n(x2; a, b, c, d) and y2

n,i, i ∈ {1, 2, . . . , n}, the zeros of W̃n(x2; a− 1, b, c, d). Then

y2
n,1 < x2

n,1 < x2
n−1,1 < y2

n,2 < x2
n,2 < · · · < x2

n−1,n−1 < y2
n,n < x2

n,n.

Proof . From (4.13a), we obtain an = n(c+d+n−1)(b+d+n−1)(b+c+n−1)
(2n+a+b+c+d−2)(2n+a+b+c+d−3)

, which is positive and
the interlacing result, as well as the position of y2

n,n, follows from Lemma 1.8 (ii). �

4.3.2 The Racah polynomials

Proposition 4.17.

R̃n(λ(x);α− 1, β, γ, δ) = R̃n(λ(x);α, β, γ, δ) (4.14a)

− (β + n) (β + δ + n) (γ + n)n

(2n+ α + β) (2n+ α + β − 1)
R̃n−1(λ(x);α, β, γ, δ);

R̃n(λ(x);α, β − 1, γ, δ) = R̃n(λ(x);α, β, γ, δ) (4.14b)

− (α + n) (α− δ + n) (γ + n)n

(2n+ α + β) (2n+ α + β − 1)
R̃n−1(λ(x);α, β, γ, δ).

Theorem 4.18. Let k ∈ {1, 2, . . . , n− 1}. The sequence of Racah polynomials

(i) {R̃n(λ(x);α− k, β, γ, δ)}Nn=0, with α = −N − 1, is quasi-orthogonal of order k with
respect to the weight w(x) on (0, λ(N)) and the polynomials have at least (n − k)
real, distinct zeros in (0, λ(N));

(ii) {R̃n(λ(x);α, β − k, γ, δ)}Nn=0, with β = −N − δ − 1, is quasi-orthogonal of order
k with respect to the weight w(x) on (0, λ(N)) and the polynomials have at least
(n− k) real, distinct zeros in (0, λ(N)).



84 Classical orthogonal polynomials on quadratic and q-quadratic lattices

Proof .

(i) Let α = −N − 1. From Lemma 1.4 and (4.14a), it follows that R̃n(λ(x);α −
1, β, γ, δ) is quasi-orthogonal of order one on (0, λ(N)). By iteration, we can express
R̃n(λ(x);α−k, β, γ, δ) as a linear combination of R̃n(λ(x);α, β, γ, δ), R̃n−1(λ(x);α, β, γ, δ),
. . . , R̃n−k(λ(x);α, β, γ, δ) and the result follows from Lemma 1.4. Furthermore,
from Lemma 1.6 we know that at least (n− k) real, distinct zeros of R̃n(λ(x);α −
k, β, γ, δ), k ∈ {1, 2, . . . , n− 1}, lie in (0, λ(N)).

(ii) Let β = −N − δ− 1. The result follows in the same way from (4.14b) and Lemmas
1.4 and 1.6.

�
As in the case of the q-Racah polynomials, we obtain different interlacing results for

values of n larger than N
2

+ 1, that we show in the next theorem.

Theorem 4.19. Consider n ≤ N and let xn,i, i ∈ {1, 2, . . . , n} denote the zeros of
R̃n(λ(x);α, β, γ, δ), yn,i, i ∈ {1, 2, . . . , n}, the zeros of R̃n(λ(x);α− 1, β, γ, δ) and zn,i, i ∈
{1, 2, . . . , n}, the zeros of R̃n(λ(x);α, β − 1, γ, δ). Then, for n > N

2
+ 1,

(i) if α = −N − 1 and β > 0, δ > 0, γ > 0, we have

0 < xn,1 < yn,1 < xn−1,1 < xn,2 < yn,2 < · · · < xn−1,n−1 < xn,n < yn,n;

(ii) if β = −N − δ − 1 and α > 0, γ > 0, α− δ > 0, we have

0 < xn,1 < zn,1 < xn−1,1 < xn,2 < zn,2 < · · · < xn−1,n−1 < xn,n < zn,n.

Proof . Under the above hypotheses, the coefficients of R̃n(λ(x);α, β, γ, δ) in (4.14a) and
(4.14b) are negative and the interlacing results follow from Lemma 1.8 (i). �

4.3.3 The continuous Hahn polynomials

Proposition 4.20.

P̃n(x; a− 1, b, c, d) = P̃n(x; a, b, c, d) (4.15a)

+
i (b+ c+ n− 1) (b+ d+ n− 1)n

(2n+ a+ b+ c+ d− 3) (2n+ a+ b+ c+ d− 2)
P̃n−1(x; a, b, c, d);

P̃n(x; a, b− 1, c, d) = P̃n(x; a, b, c, d) (4.15b)

+
i (a− 1 + d+ n) (a− 1 + c+ n)n

(2n+ a+ b+ c+ d− 3) (2n+ a+ b+ c+ d− 2)
P̃n−1(x; a, b, c, d);

P̃n(x; a, b, c− 1, d) = P̃n(x; a, b, c, d) (4.15c)

− i (b+ d+ n− 1) (a− 1 + d+ n)n

(2n+ a− 3 + b+ c+ d) (2n+ a− 2 + b+ c+ d)
P̃n−1(x; a, b, c, d);

P̃n(x; a, b, c, d− 1) = P̃n(x; a, b, c, d) (4.15d)

− i (b+ c+ n− 1) (a− 1 + c+ n)n

(2n+ a− 3 + b+ c+ d) (2n+ a− 2 + b+ c+ d)
P̃n−1(x; a, b, c, d).
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Corollary 4.21.

P̃n(x; a− 1, b, c− 1, d) = P̃n(x)− i (a+ d− b− c) (b+ d+ n− 1)n

(2n+ a− 4 + b+ c+ d) (2n+ a− 2 + b+ c+ d)
P̃n−1(x)

+
(b+ d+ n− 2) (a− 2 + d+ n) (n− 1) (b+ c− 2 + n) (b+ d+ n− 1)n

(2n− 5 + a+ b+ c+ d) (2n+ a− 4 + b+ c+ d)2 (2n+ a− 3 + b+ c+ d)
P̃n−2(x); (4.16a)

P̃n(x; a, b− 1, c, d− 1) = P̃n(x) +
i (a+ d− b− c) (a− 1 + c+ n)n

(2n− 4 + a+ b+ c+ d) (2n+ a− 2 + b+ c+ d)
P̃n−1(x)

+
n (a+ d+ n− 2) (a− 1 + c+ n) (b+ c+ n− 2) (a+ c+ n− 2) (n− 1)

(2n− 5 + a+ b+ c+ d) (2n− 4 + a+ b+ c+ d)2 (2n+ a− 3 + b+ c+ d)
P̃n−2(x). (4.16b)

Theorem 4.22. Consider a, b, c, d such that Re(a, b, c, d) > 0, c = ā and d = b̄. Consider
k1, k2, k3, k4 ∈ {0, 1, . . . , n − 1}, such that k1 + k2 + k3 + k4 ≤ n − 1. The sequence of
continuous Hahn polynomials {P̃n(x; a− k1, b− k2, c− k3, d− k4)}n≥0, with 0 < Re(a) =
Re(c) < 1 (if k1 6= 0), 0 < Re(b) = Re(d) < 1 (if k2 6= 0), 0 < Re(a) = Re(c) <
1 (if k3 6= 0) and 0 < Re(b) = Re(d) < 1 (if k4 6= 0), is quasi-orthogonal of order
k1 + k2 + k3 + k4 ≤ n− 1 with respect to the weight w(x) on R and the polynomials have
at least n− (k1 + k2 + k3 + k4) real, distinct zeros.

Proof . Fix a and c such that 0 < Re(a) = Re(c) < 1. From Lemma 1.4 and (4.15a),
it follows that P̃n(x; a− 1, b, c, d) is quasi-orthogonal of order one on R. By iteration, we
can express P̃n(x; a−k, b, c, d) as a linear combination of P̃n(x; a, b, c, d), P̃n−1(x; a, b, c, d),
. . . , P̃n−k(x; a, b, c, d) and it follows from Lemma 1.4 that P̃n(x; a − 1, b, c, d) is quasi-
orthogonal of order one on R. By using an iteration process, we can write P̃n(x; a −
k, b, c, d) as a linear combination of orthogonal continuous Hahn polynomials and it is
quasi-orthogonal of order k ≤ n−1. Furthermore, from Lemma 1.6 we know that at least
(n−k) zeros of P̃n(x; a−k, b, c, d), k ∈ {1, 2, . . . , n−1}, are real and distinct. In the same
way, using (4.15c), we can prove that P̃n(x; a, b, c− k, d), 0 < Re(a) = Re(c) < 1 is quasi-
orthogonal of order k ≤ n− 1 on R. By fixing b and d such that 0 < Re(b) = Re(d) < 1,
we can prove the quasi-orthogonality of P̃n(x; a, b− k, c, d) and P̃n(x; a, b− k, c, d), using
(4.15b), (4.15d) and Lemma 1.4.

Using an iteration process, we can write P̃n(x; a− k1, b− k2, c− k3, d− k4), with 0 <
Re(a) = Re(c) < 1 (if k1 6= 0), 0 < Re(b) = Re(d) < 1 (if k2 6= 0), 0 < Re(a) = Re(c) < 1
(if k3 6= 0) and 0 < Re(b) = Re(d) < 1 (if k4 6= 0), as a linear combination of orthogonal
continuous Hahn polynomials and the results follow from Lemmas 1.4 and 1.6. �

Theorem 4.23. Consider a, b, c, d such that Re(a, b, c, d) > 0, c = ā and d = b̄.

(i) Let 0 < Re(a) = Re(c) < 1. Then n − 2 zeros of P̃n(x; a − 1, b, c − 1, d) interlace
with the zeros of P̃n−1(x; a, b, c, d);

(ii) Let 0 < Re(b) = Re(d) < 1. Then n − 2 zeros of P̃n(x; a, b − 1, c, d − 1) interlace
with the zeros of P̃n−1(x; a, b, c, d).

Proof . In this proof −Cn refers to the coefficient of P̃n−2(x; a, b, c, d) in the three-term re-
currence equation of the continuous Hahn polynomials (cf. [Koekoek et al., 2010, (9.4.3)]),
involving the polynomials P̃n(x; a, b, c, d), P̃n−1(x; a, b, c, d) and P̃n−2(x; a, b, c, d).

(i) Let 0 < Re(a), Re(c) < 1. We consider the coefficient bn of P̃n−2(x; a, b, c, d) in
(4.16a). Then

Cn − bn =
(a+ c− 2) (n− 2 + b+ d) (a+ d+ n− 2) (n− 1) (b+ c+ n− 2)

(2n− 5 + a+ b+ c+ d) (2n− 4 + a+ b+ c+ d)2 ,
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and when we take into consideration the specific restrictions on the parameters, we
observe that Cn < bn and the result follows from [Joulak, 2005, Theorem 15 (ii)].

(ii) Let 0 < Re(b), Re(d) < 1 and let bn be the coefficient of P̃n−2(x; a, b, c, d) in (4.16b).
Then

Cn − bn =
(b+ d− 2) (n− 1) (b+ c+ n− 2) (a+ d+ n− 2) (a+ c+ n− 2)

(2n− 5 + a+ b+ c+ d) (2n− 4 + a+ b+ c+ d)2 < 0,

when we take into consideration the specific restrictions on the parameters and the
result follows from [Joulak, 2005, Theorem 15 (ii)].

�

4.3.4 The Askey-Wilson polynomials

We will now fix a > 0 such that q < |a| < 1 and for these values of a, the polynomial
p̃n(x; a, b, c, d|q) is orthogonal on (−1, 1) with respect to w(x; a, b, c, d|q) defined in (4.9).
In what follows, we assume that |a| = max(|a|, |b|, |c|, |d|) < 1. Should this not be the
case, the order in which the parameters occur, can be changed.

We will thus only consider the equations in which a is shifted to a
qk
> 1 (or a

qk
< −1

should a < 0), and we will prove that the polynomials p̃n(x; a
qk
, b, c, d|q), k ∈ {1, 2, . . . , n−

1}, are quasi-orthogonal of order k on (−1, 1). We use the equation

p̃n(x;
a

q
, b, c, d|q) = p̃n(x; a, b, c, d|q) (4.17)

− aq (qn − 1) (cdqn − q) (bdqn − q) (bcqn − q)
2 (abcdq2n − q3) (abcdq2n − q2)

p̃n−1(x; a, b, c, d|q).

Theorem 4.24. Let a, b, c, d be real, or they occur in complex conjugate pairs if complex,
and max(|a|, |b|, |c|, |d|) < 1, and let w(x; a, b, c, d|q) be as defined in (4.9). For a such
that q < |a| < 1, the sequence of Askey-Wilson polynomials {p̃n(x; a

qk
, b, c, d|q)}n≥0 is

quasi-orthogonal of order k < n with respect to the weight w(x; a, b, c, d|q) on the interval
(−1, 1) and the polynomials have at least (n− k) real, distinct zeros in (−1, 1).

Proof . Suppose q < |a| < 1. From Lemma 1.4 and (4.17), it follows that p̃n(x; a
q
, b, c, d|q)

is quasi-orthogonal of order one on (−1, 1). By iteration, we can express p̃n(x; a
qk
, b, c, d|q)

as a linear combination of p̃n(x; a, b, c, d|q), p̃n−1(x; a, b, c, d|q), . . . , p̃n−k(x; a, b, c, d|q) and
the result follows from Lemma 1.4. The location of the (n − k) real, distinct zeros of
p̃n(x; a

qk
, b, c, d|q), k ∈ {1, 2, . . . , n− 1}, follows from Lemma 1.6. �

Theorem 4.25. Let a, b, c, d be real, or they occur in complex conjugate pairs if complex.
Suppose |a| = max(|a|, |b|, |c|, |d|) < 1, q < |a| < 1 and let xn,i, i ∈ {1, 2, . . . , n}, denote
the zeros of p̃n(x; a, b, c, d|q) and yn,i, i ∈ {1, 2, . . . , n}, the zeros of p̃n(x; a

q
, b, c, d|q). Then

(i) if a > 0, −1 < xn,1 < yn,1 < xn−1,1 < xn,2 < yn,2 < · · · < xn−1,n−1 < xn,n < yn,n;

(ii) if a < 0, yn,1 < xn,1 < xn−1,1 < yn,2 < xn,2 < · · · < xn−1,n−1 < yn,n < xn,n < 1.

Proof . Suppose |a| = max(|a|, |b|, |c|, |d|) < 1. The coefficient of p̃n−1(x; a, b, c, d|q) in
(4.17) is

an = −aq (qn − 1) (cdqn − q) (bdqn − q) (bcqn − q)
2 (abcdq2n − q3) (abcdq2n − q2)

.
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(i) Consider the case a > 0 and fix a such that q < a < 1. Then an < 0 for the given
parameter values and the interlacing result, as well as the position of yn,1, follows
from Lemma 1.8 (i).

(ii) Now we consider the case a < 0 and fix a such that −1 < a < −q. Then an > 0 and
the interlacing result, as well as the position of yn,n, follows from Lemma 1.8 (ii).

�

4.3.5 The q-Racah polynomials

The q-Racah polynomials R̃n(µ(x);α, β, γ, δ|q) with µ(x) = q−x + γδqx+1, are orthogonal
for n ∈ {0, 1, . . . , N}, with respect to the discrete weight function

w(x) =
(αq, βδq, γq, γδq; q)x(1− γδq2x+1)

(q, γδq
α
, γq
β
, δq; q)x(αβq)x(1− γδq)

for αq = q−N or βδq = q−N or γq = q−N , where N is a nonnegative integer. Shifting
the parameter γ or δ will change µ(x) and we will only consider shifts of α and β. From
(4.11a) and (4.11b) we obtain

R̃n(µ(x);
α

q
, β, γ, δ|q) = R̃n(µ(x);α, β, γ, δ|q) (4.18a)

− αq(1− q
n)(1− βqn)(1− γqn)(1− βδqn)

(1− αβq2n)(q − αβq2n)
R̃n−1(µ(x);α, β, γ, δ|q);

R̃n(µ(x);α,
β

q
, γ, δ|q) = R̃n(µ(x);α, β, γ, δ|q) (4.18b)

+
βq(1− qn)(1− αqn)(1− γqn)(αqn − δ)

(1− αβq2n)(q − αβq2n)
R̃n−1(µ(x);α, β, γ, δ|q).

Theorem 4.26. Let k ∈ {1, 2, . . . , n− 1}. The sequence of q-Racah polynomials

(i) {R̃n(µ(x); α
qk
, β, γ, δ|q)}Nn=0, with α = q−N−1, is quasi-orthogonal of order k with

respect to the weight w(x) on (µ(0), µ(N)) and the polynomials have at least (n−k)
real, distinct zeros on (µ(0), µ(N));

(ii) {R̃n(µ(x);α, β
q
, γ, δ|q)}Nn=0, with β = q−N−1

δ
, is quasi-orthogonal of order k with re-

spect to the weight w(x) on (µ(0), µ(N)) and the polynomials have at least (n − k)
real, distinct zeros on (µ(0), µ(N)).

Proof .

(i) Let α = q−N−1. From Lemma 1.4 and (4.18a), it follows that R̃n(µ(x); α
q
, β, γ, δ|q)

is quasi-orthogonal of order one on (µ(0), µ(N)). By iteration, we can express
R̃n(µ(x); α

qk
, β, γ, δ|q) as a linear combination of R̃n(µ(x);α, β, γ, δ|q), R̃n−1(µ(x);α,

β, γ, δ|q), . . . , R̃n−k(µ(x);α, β, γ, δ|q) and the result follows from Lemma 1.4. Fur-
thermore, from Lemma 1.6 we know that at least (n − k) real, distinct zeros of
R̃n(µ(x); α

qk
, β, γ, δ), k ∈ {1, 2, . . . , n− 1}, lie in (µ(0), µ(N)).

(ii) Let β = q−N−1

δ
. The result follows in the same way from (4.18b) and Lemmas 1.4

and 1.6.
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�
For values of n larger than N

2
+ 1, we obtain the following interlacing results.

Theorem 4.27. Consider n ≤ N and let xn,i, i ∈ {1, 2, . . . , n}, denote the zeros of
R̃n(µ(x);α, β, γ, δ|q), yn,i, i ∈ {1, 2, . . . , n}, the zeros of R̃n(µ(x); α

q
, β, γ, δ|q) and zn,i,

i ∈ {1, 2, . . . , n}, the zeros of R̃n(µ(x);α, β
q
, γ, δ|q). Then, for n > N

2
+ 1,

(i) if α = q−N−1 and βq < 1, γq < 1, βδq < 1,

µ(0) < xn,1 < yn,1 < xn−1,1 < xn,2 < yn,2 < · · · < xn−1,n−1 < xn,n < yn,n;

(ii) if β = q−N−1

δ
and αq < 1, γq < 1, α

δ
q < 1, we have

µ(0) < xn,1 < zn,1 < xn−1,1 < xn,2 < zn,2 < · · · < xn−1,n−1 < xn,n < zn,n.

Proof . Under the above hypotheses, the coefficients of R̃n−1(µ(x);α, β, γ, δ|q) in (4.18a)
and (4.18b) are negative and the interlacing results follow from Lemma 1.8 (i). �

4.4 Three-term recurrence equations satisfied by clas-
sical orthogonal polynomials on a quadratic or a
q-quadratic lattice

Every orthogonal polynomial system {pn(x)}n≥0 satisfies a three-term recurrence relation
of the type

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x) (n = 0, 1, 2, . . . , p−1 ≡ 0), (4.19)

with CnAnAn−1 > 0. Moreover, Favard’s theorem [Chihara, 1978, Section 4] states that
the converse is true. Starting from a difference equation of type (4.2) or (4.5) given in
[Koekoek et al., 2010], we deduce the divided-difference equation of type (4.1), (4.3) or
(4.4) satisfied by each classical orthogonal polynomial on a quadratic or q-quadratic lattice.
Some of them can be found in [Foupouagnigni, 2008], [Njionou Sadjang et al., 2015b],
[Tcheutia et al., 2017]. They will also be recovered using the algorithms implemented in
the next section with the three-term recurrence relation given as input. Considering the
divided-difference equations of type (4.1), (4.3) or (4.4) as input, we recall in this section
a general method to derive three–term recurrence relations (4.19) for classical orthogonal
polynomials on a quadratic or a q-quadratic lattice in terms of the coefficients a, b, c, d, e
of the given polynomials φ(x) = ax2 + bx+ c and ψ(x) = dx+ e.

The polynomial basis (xn)n≥0 is not appropriate for the operators Dx, Dx and δx
(see e. g. [Foupouagnigni, 2008], [Witte, 2015]). From the definitions of the classical
orthogonal polynomials on a quadratic or a q-quadratic lattice, the natural polynomial
bases appropriate for the operator Dx are the bases {Bn(a, x)}n≥0, {ξn(γ, δ, µ(x))}n≥0 and
{χn(γ, δ, λ(x))}n≥0 defined by

Bn(a, x) = (aqs; q)n(aq−s; q)n =
n−1∏
k=0

(1− 2axqk + a2q2k), n ≥ 1, B0(a, x) ≡ 1, (4.20)



4.4 Three-term rec. eq. satisfied by C.O.P. on a quadratic or a q-quadratic lattice 89

where x = x(s) = cos θ =
qs + q−s

2
, qs = eiθ;ξn(γ, δ, µ(x)) = (q−x; q)n(γδqx+1; q)n =

n−1∏
k=0

(1 + γδq2k+1 − µ(x)qk), n ≥ 1,

ξ0(γ, δ, µ(x)) ≡ 1,

(4.21)

with µ(x) = q−x + γδqx+1;χn(γ, δ, λ(x)) = (−x)n(x+ γ + δ + 1)n =
n−1∏
k=0

(
k(γ + δ + k + 1)− λ(x)

)
, n ≥ 1,

χ0(γ, δ, λ(x)) ≡ 1,

(4.22)

for λ(x) = x(x+ γ + δ + 1). The basis {ϑn(a, x)}n≥0 defined by

ϑn(a, x) = (a+ ix)n(a− ix)n; (4.23)

is appropriate for the operator Dx whereas the corresponding basis for δx is {(a +
ix)n}n≥0. The elements of the basis {Bn(a, x)}n≥0, {(a + ix)n}n≥0, {ξn(γ, δ, µ(x))}n≥0

or {χn(γ, δ, λ(x))}n≥0 are polynomials of degree n in the variables x, x, µ(x) or λ(x),
respectively, and the elements of the basis {ϑn(a, x)}n≥0 are polynomials of degree n in
the variable x2.

4.4.1 Polynomials expanded in the basis {ϑn(α, x)}n≥0

In this basis are expanded the Wilson polynomials Wn(x2; a, b, c, d) and the continuous
dual Hahn polynomials Sn(x2; a, b, c). The procedure to find the coefficients of the recur-
rence equation (4.19) (with x substituted by x2) in terms of the coefficients a, b, c, d, e of
φ(x) and ψ(x) is as follows (cf. [Foupouagnigni et al., 2013], [Koepf and Schmersau, 1998],
[Koepf and Schmersau, 2002], [Njionou Sadjang et al., 2015b], [Tcheutia et al., 2017]):

1. Substitute

pn(x) := pn(x2) = knϑn(α, x) + k′nϑn(α, x) + k′′nϑn−2(α, x) + . . . (4.24)

in the divided-difference equation (4.3) (with x substituted by x2). Next multiply
this equation by ϑ1(α, x) and use the relations [Njionou Sadjang et al., 2015b]

ϑ1(α, x)D2
xϑn(α, x) = η(n)η(n− 1)ϑn−1(α, x),

ϑ1(α, x)SxDxϑn(α, x) = η(n)

(
β(α +

1

2
, n− 1)ϑn−1(α, x) + ϑn(α, x)

)
,

ϑ1(α, x)ϑn(α, x) = ν(α, n)ϑn(α, x) + ϑn+1(α, x),

with
η(n) = n, β(α, n) = −n(n+ α− 1

2
), ν(α, n) = −(n2 + 2αn).

2. To eliminate the terms x2ϑn(α, x) and x4ϑn(α, x), use twice the relation [Njionou Sad-
jang et al., 2015b]

x2ϑn(α, x) = −(n+ α)2ϑn(α, x) + ϑn+1(α, x). (4.25)
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3. Equate the coefficients of ϑn+1(α, x) to get λn = −n((n− 1)a+ d) in (4.3), and the
coefficients of ϑn(α, x) and ϑn−1(α, x) to get k′n/kn, k′′n/kn ∈ Q(n), respectively.

4. Substitute the expression of pn given by (4.24) in the recurrence relation (4.19)
(with x substituted by x2) and use (4.25). By equating the coefficients of ϑn+1(α, x),
ϑn(α, x), ϑn−1(α, x), we get An, Bn and Cn, respectively, in terms of kn, k′n and k′′n.

5. Substituting the values of k′n and k′′n given in step 3 in these equations yields the
three unknowns in terms of a, b, c, d, e, n, kn−1, kn, kn+1.

Proposition 4.28. Let pn(x) := pn(x2) = knϑn(α, x) + k′nϑn(α, x) + k′′nϑn−2(α, x) +
. . . (n ∈ N0) be a family of polynomial solutions of the divided-difference equation (4.3).
Then the recurrence equation (4.19) (with x substituted by x2) holds with

kn
kn+1

An = 1,

kn
kn+1

Bn = −n (n− 1) a (2 an2 − 2 an+ 4nd− 2 b− d)− nd (2 b+ d− 2nd) + e (2 a− d)

((2n− 2) a+ d) (2 an+ d)
,

kn−1

kn+1

Cn =
n (an− 2 a+ d)

(2 an− a+ d) (2 an− 3 a+ d) (2 an− 2 a+ d)2 ×
{

(n− 1)6 a3 + (n− 1) db2

+
(
−2 (n− 1)4 b+ 3 (n− 1)5 d− 4 c (n− 1)2) a2 +

(
−2 (n− 1)2 d2 + de

)
b+ (−en− c+ e) d2

+
(
(n− 1)2 b2 − 4 (n− 1)3 db+ 3 (n− 1)4 d2 − (n− 1) (en+ 4 c− e) d− e2

)
a+ (n− 1)3 d3

}
.

4.4.2 Polynomials expanded in the basis {(α + ix)n}n≥0

The polynomials expanded in this basis are the continuous Hahn polynomials pn(x; a, b, c, d)

and the Meixner-Pollaczek polynomials P (λ)
n (x; θ). The action of the operators δx and Sx

on the basis (α + ix)n is given by [Tcheutia et al., 2017]

(α + ix)δ2
x(α + ix)n = −n(n− 1)(α + ix)n−1;

(α + ix)Sxδx(α + ix)n = ni(α + ix)n −
n(n− 1)

2
i(α + ix)n−1;

(α + ix)(α + ix)n = (α + ix)n+1 − n(α + ix)n;

x(α + ix)n = −i(α + ix)n+1 + i(n+ α)(α + ix)n.

We suppose that

pn(x) = kn(α + ix)n + k′n(α + ix)n−1 + k′′n(α + ix)n−2 + . . . .

Using the same approach as in Section 4.4.1, it follows that λn = −n((n − 1)a + d) in
(4.4) and the following result holds.

Proposition 4.29. Let pn(x) = kn(α+ix)n+k′n(α+ix)n−1 +k′′n(α+ix)n−2 + . . . (n ∈ N0)
be a family of polynomial solutions of the divided-difference equation (4.4). Then the
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recurrence equation (4.19) is valid with

kn
kn+1

An = i,

kn
kn+1

Bn = i
(2 bn2 − 2 bn− 2 e) a+ d (2 bn+ e)

(2 an− 2 a+ d) (2 an+ d)
,

kn−1

kn+1

Cn = n
{
− 8n (n− 2) (n− 1)4 a5 +

(
− 4

(
7n2 − 13n+ 2

)
(n− 1)3 d

+ 32 cn (n− 2) (n− 1)2
)
a4 +

(
− 8n (n− 2) (n− 1)2 b2 − 2

(
19n2 − 34n+ 10

)
× (n− 1)2 d2 + 16 c (n− 1)

(
5n2 − 9n+ 2

)
d+ 8 e2n (n− 2)

)
a3

+
(
− 4 (n− 1)

(
5n2 − 9n+ 2

)
db2 − 8 en (n− 2) db+

(
72n2 − 128n+ 48

)
d2c

− (n− 1) (5n− 3) (5n− 6) d3 + (12n− 8) e2d
)
a2 +

(
− 4 (4n− 3) (n− 1) d2b2

+ (−12n+ 8) ed2b+ (28n− 24) d3c− (8n− 7) (n− 1) d4 + 4 e2d2
)
a

+ (−4n+ 4) d3b2 − 4 bd3e+ (1− n) d5 + 4 cd4
}

/{
4 (2 an− 2 a+ d)2 (2 an− 3 a+ d) (2 an+ d) (2 an− a+ d)

}
.

4.4.3 Polynomials expanded in the basis { χn(γ, δ, λ(x))}n≥0

In this basis, we have the Racah polynomials Rn(λ(x);α, β, γ, δ), the Dual Hahn poly-
nomials Rn(λ(x); γ, δ,N). We get by direct computations the action of the operators Dx

and Sx on χn(γ, δ, λ(x)) given by

χ1(γ, δ, λ(x)) D2
x χn(γ, δ, λ(x)) = η(n)η(n− 1) χn−1(γ, δ, λ(x)),

χ1(γ, δ, λ(x)) SxDx χn(γ, δ, λ(x)) = η(n)

(
β(

1

2
, γ, δ, n− 1) χn−1(γ, δ, λ(x)) + χn(γ, δ, λ(x))

)
,

χ1(γ, δ, λ(x)) χn(γ, δ, λ(x)) = ν(γ, δ, n) χn(γ, δ, λ(x)) + χn+1(γ, δ, λ(x)),

λ(x) χn(γ, δ, λ(x)) = µ(γ, δ, n) χn(γ, δ, λ(x))− χn+1(γ, δ, λ(x)),

where

µ(γ, δ, n) = n(n+ γ + δ + 1), ν(γ, δ, n) = −n(n+ γ + δ + 1),

β(a, γ, δ, n) =
−n(2n+ γ + δ + 2a)

2
, η(n) = −n.

We set

pn(x) := pn(λ(x)) = kn χn(γ, δ, λ(x)) + k′n χn−1(γ, δ, λ(x)) + k′′n χn−2(γ, δ, λ(x)) + . . . ,

use the latter structure relations satisfied by χn(γ, δ, λ(x)), and proceed as in Section 4.4.1
to get λn = −n((n− 1)a+ d) in (4.1) and the following result.
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Proposition 4.30. Let pn(x) := pn(λ(x)) = kn χn(γ, δ, λ(x)) + k′n χn−1(γ, δ, λ(x)) +
k′′n χn−2(γ, δ, λ(x)) + . . . (n ∈ N0) be a family of polynomial solutions of the divided-
difference equation (4.1) (where φ(x) ← φ(λ(x)) and ψ(x) ← ψ(λ(x))). Then the recur-
rence equation (4.19) (with x← λ(x)) is valid with

kn
kn+1

An = −1,

kn
kn+1

Bn = −an (n− 1) (2 an2 − 2 an+ 4 dn+ 2 b− d) + 2 bdn+ n (2n− 1) d2 + de− 2 ae

(2 an− 2 a+ d) (2 an+ d)
,

kn−1

kn+1

Cn = − n (an− 2 a+ d)

4 (2 an− a+ d) (2 an− 3 a+ d) (2 an− 2 a+ d)2 ×
{

(4 c+ (−4n+ 4) e) d2

+
(
− 8 (n− 1)4 b+ 4 (n− 1)3 (2 δ2 + 4 δ γ + 2 γ2 − 3n2 + 4 δ + 4 γ + 6n− 1

)
d

+ 16 c (n− 1)2
)
a2 +

(
(n− 1)2 (5 δ2 + 10 δ γ + 5 γ2 − 12n2 + 10 δ + 10 γ + 24n− 7

)
d2

− 4 (n− 1)2 b2 − 16 (n− 1)3 db+
(
(16n− 16) c− 4 e (n− 1)2) d+ 4 e2

)
a

+ 4 (n− 1)4 (n+ δ + γ) (−n+ 2 + δ + γ) a3 + (−4n+ 4) db2

+
(
−8 (n− 1)2 d2 − 4 de

)
b+ (n− 1) (−2n+ 3 + δ + γ) (2n− 1 + δ + γ) d3

}
.

4.4.4 Polynomials expanded in the basis {Bn(α, x)}n≥0

The following polynomial families are expanded in the basis {Bn(α, x)}: the Askey-Wilson
polynomials pn(x; a, b, c, d|q), the continuous dual q-Hahn polynomials pn(x; a, b, c|q), the
continuous q-Hahn polynomials pn(x; a, b, c, d; q), the Al-Salam-Chihara polynomials
Qn(x; a, b|q), the q-Meixner-Pollaczek polynomials Pn(x; a|q), the continuous q-Jacobi
polynomials P (α,β)

n (x|q), the continuous q-ultraspherical/Rogers polynomials Cn(x; β|q),
the continuous big q-Hermite polynomials Hn(x; a|q), the continuous q-Laguerre polyno-
mials P (α)

n (x|q). The procedure to find the coefficients of the recurrence equation (4.19)
in terms of the coefficients a, b, c, d, e of φ(x) and ψ(x) is as in Section 4.4.1:

1. Substitute

pn(x) = knBn(α, x) + k′nBn−1(α, x) + k′′nBn−2(α, x) + . . . (4.26)

in the divided-difference equation (4.1). Next multiply this equation by B1(α, x)
and use the relations [Foupouagnigni et al., 2013]

B1(α, x)D2
xBn(α, x) = η(α, n)η(α

√
q, n− 1)Bn−1(α, x), (4.27)

B1(α, x)SxDxBn(α, x) = η(α, n) (β1(α
√
q, n− 1)Bn−1(α, x) + β2(n− 1)Bn(α, x)) ,

(4.28)
B1(α, x)Bn(α, x) = ν1(α, n)Bn(α, x) + ν2(n)Bn+1(α, x), (4.29)

with

η(α, n) =
2α(1− qn)

q − 1
, β1(α, n) =

1

2
(1− α2q2n−1)(1− q−n),

β2(n) =
1

2
+

1

2qn
, ν1(α, n) = (1− q−n)(1− α2qn), ν2(n) = q−n.
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2. To eliminate the terms xBn(α, x) and x2Bn(α, x), use the relations [Foupouagnigni
et al., 2013]

xBn(α, x) = µ1(α, n)Bn(α, x) + µ2(α, n)Bn+1(α, x), (4.30)
x2Bn(α, x) = µ2

1(α, n)Bn(α, x) + µ2(α, n)(µ1(α, n) + µ1(α, n+ 1))Bn+1(α, x)

+ µ2(α, n)µ2(α, n+ 1)Bn+2(α, x), (4.31)

with

µ1(α, n) =
1 + α2q2n

2αqn
, µ2(α, n) =

−1

2αqn
.

3. Equating the coefficients of Bn+1(α, x) gives

λn = −1

2

(qn − 1)
(
2
√
q (qn − q) a+ (q − 1) (qn + q) d

)
qn (q − 1)2 . (4.32)

Equating the coefficients ofBn(α, x) andBn−1(α, x) gives k′n/kn, k′′n/kn ∈ Q(qn,
√
q).

4. Substitute the expression of pn given by (4.26) in the recurrence relation (4.19) and
use (4.30). By equating the coefficients of Bn+1(α, x), Bn(α, x), Bn−1(α, x), we get
An, Bn and Cn, respectively, given as

An
kn
kn+1

=
1

µ2(α, n)
, Bn

kn
kn+1

= −µ2(α, n− 1)k′n
µ2(α, n)kn

+
k′n+1

kn+1

− µ1(α, n)

µ2(α, n)
, (4.33)

Cn
kn−1

kn+1

=− µ2(α, n− 1)(k′n)2

µ2(α, n)k2
n

+
µ2(α, n− 2)k′′n
µ2(α, n)kn

−
k′′n+1

kn+1

+
k′nk

′
n+1

knkn+1

(4.34)

− (µ1(α, n)− µ1(α, n− 1))k′n
µ2(α, n)kn

.

5. Substituting the values of k′n and k′′n given in step 3 in these equations yields the three
unknowns given in terms of α, a, b, c, d, e, n, kn−1, kn, kn+1, for N = qn, Q =

√
q,

by:
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kn
kn+1

An = −2αN,

kn
kn+1

Bn = 2αN2
{(( (

−2Q3 − 2Q
)
b+

(
Q4 − 2Q2 + 1

)
e
) (
Q2d+ 2Qa− d

)
N2

−
(
Q2 + 1

) ( ((
−2Q5 + 4Q3 − 2Q

)
e− 4Q4b− 4Q2b

)
a+

(
Q6 −Q4 −Q2 + 1

)
de

+
(
2Q5b− 4Q3b+ 2Qb

)
d
)
N −Q2

((
−2Q3 − 2Q

)
b+

(
Q4 − 2Q2 + 1

)
e
) (
Q2d− 2Qa− d

) )}/{((
Q2d+ 2Qa− d

)
N2 +Q6d− 2Q5a−Q4d

) ((
Q2d+ 2Qa− d

)
N2 +Q2d− 2Qa− d

)}
,

kn−1

kn+1

Cn = α2N2 (N − 1)
( (
Q2d+ 2Qa− d

)
N +Q6d− 2Q5a−Q4d

){( (
Q2d+ 2Qa− d

)3
N6

− 4Q3
(
Q2d+ 2Qa− d

)2
(a+ 2 c)N5 +Q4

(
Q2d+ 2Qa− d

) (
Q4d2 − 4Q4e2 − 4Q2a2 + 16Q2b2

− 2Q2d2 + 8Q2e2 + d2 − 4 e2
)
N4 − 8Q7

(
Q4ad2 + 2Q4ae2 − 4Q4bde+ 2Q4cd2 − 4Q2a3

− 8Q2a2c+ 8Q2ab2 − 2Q2ad2 − 4Q2ae2 + 8Q2bde− 4Q2cd2 + ad2 + 2 ae2 − 4 bde+ 2 cd2
)
N3

−Q8
(
Q2d− 2Qa− d

) (
Q4d2 − 4Q4e2 − 4Q2a2 + 16Q2b2 − 2Q2d2 + 8Q2e2 + d2 − 4 e2

)
N2

− 4Q11
(
Q2d− 2Qa− d

)2
(a+ 2 c)N −Q12

(
Q2d− 2Qa− d

)3
)}

/{
Q2
((
Q2d+ 2Qa− d

)
N2 +Q6d− 2Q5a−Q4d

)2
( (
Q2d+ 2Qa− d

)
N2

+Q4d− 2Q3a−Q2d
) ((

Q2d+ 2Qa− d
)
N2 +Q8d− 2Q7a−Q6d

)}
.

4.4.5 Polynomials expanded in the basis {ξn(γ, δ, µ(x))}n≥0

The polynomials represented in this basis are: the q–Racah polynomialsRn(µ(x);α, β, γ, δ|q),
the dual q–Hahn polynomials Rn(µ(x); γ, δ,N |q), the dual q–Krawtchouk polynomials
Kn(µ(x); c,N |q). By direct computations, we have the structure relations

ξ1(γ, δ, µ(x))D2
xξn(γ, δ, µ(x)) = η(1, n)η(

√
q, n− 1)ξn−1(γ, δ, µ(x));

ξ1(γ, δ, µ(x))SxDxξn(γ, δ, µ(x)) = η(1, n)
(
β1(
√
q, γ, δ, n− 1)ξn−1(γ, δ, µ(x))

+ β2(n− 1)ξn(γ, δ, µ(x))
)

;

ξ1(γ, δ, µ(x))ξn(γ, δ, µ(x)) = ν1(γ, δ, n)ξn(γ, δ, µ(x)) + ν2(n)ξn+1(γ, δ, µ(x));

µ(x)ξn(γ, δ, µ(x)) = µ1(γ, δ, n)ξn(γ, δ, µ(x)) + µ2(n)ξn+1(γ, δ, µ(x));

where

µ1(γ, δ, n) =
1 + γδq2n+1

qn
, µ2(n) =

−1

qn
, ν1(γ, δ, n) = (1− q−n)(1− γδqn+1), ν2(n) = q−n,

β1(a, γ, δ, n) =
1

2
(1− a2γδq2n)(1− q−n), β2(n) =

1 + qn

2qn
, η(a, n) =

a(1− qn)

q − 1
.

We suppose now that

pn(x) := pn(µ(x)) = knξn(γ, δ, µ(x)) + k′nξn−1(γ, δ, µ(x)) + k′′nξn−2(γ, δ, µ(x)) + . . . .
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To get the coefficients An, Bn and Cn of (4.19), we proceed as in Section 4.4.4 and obtain
λn given by (4.32) and for N = qn, Q =

√
q,

kn
kn+1

An = −N,

kn
kn+1

Bn = N2
{( ((

−2Q3 − 2Q
)
b+

(
Q4 − 2Q2 + 1

)
e
) (
Q2d+ 2Qa− d

)
N2

−
(
Q2 + 1

) (
−2

(
Q4e+ 2Q3b− 2Q2e+ 2Qb+ e

)
Qa+ d

(
Q2 − 1

)2 (
Q2e+ 2Qb+ e

))
N

−Q2
((
−2Q3 − 2Q

)
b+

(
Q4 − 2Q2 + 1

)
e
) (
Q2d− 2Qa− d

) )}/{((
Q2d+ 2Qa− d

)
N2 +Q6d− 2Q5a−Q4d

) ((
Q2d+ 2Qa− d

)
N2 +Q2d− 2Qa− d

)}
,

kn−1

kn+1

Cn = (N − 1)N2
( (
−2Q5 + 2NQ

)
a+

(
Q6 −Q4 +NQ2 −N

)
d
)

×
{(
δ γ
(
Q2d+ 2Qa− d

)3
N6 − 2Q

(
Q2d+ 2Qa− d

)2 (
2Q2aδ γ + c

)
N5

+Q2
(
Q2d+ 2Qa− d

) (
γ Q2

((
Q2d− d

)2 − 4Q2a2
)
δ −

(
Q2e− e

)2
+ 4Q2b2

)
N4

− 4Q5
(((

Q2d− d
)2 − 4Q2a2

)
c+ 2 γ Q2a

((
Q2d− d

)2 − 4Q2a2
)
δ +

(
Q4e2 + 4Q2b2 − 2Q2e2

+ e2
)
a− 2 bde

(
Q2 − 1

)2
)
N3 −Q6

(
Q2d− 2Qa− d

) (
γ Q2

((
Q2d− d

)2 − 4Q2a2
)
δ + 4Q2b2

−
(
Q2e− e

)2
)
N2 − 2Q9

(
Q2d− 2Qa− d

)2 (
2Q2aδ γ + c

)
N − γ Q12δ

(
Q2d− 2Qa− d

)3
)}

/{((
Q2d+ 2Qa− d

)
N2 +Q8d− 2Q7a−Q6d

) ( (
Q2d+ 2Qa− d

)
N2

+Q4d− 2Q3a−Q2d
) ((

Q2d+ 2Qa− d
)
N2 +Q6d− 2Q5a−Q4d

)2
}
.

4.5 Extension of the algorithms implemented in the
Maple package retode

As shown in the last section 4.4, the classical orthogonal polynomials on a quadratic or a
q-quadratic lattice satisfy a recurrence equation

pn(x) = (Anx+Bn)pn(x)− Cnpn−1(x),

with An, Bn, Cn given explicitly. If a holonomic recurrence equation (i. e. linear, homo-
geneous with polynomial coefficients)

qn(x)pn+2(x) + rn(x)pn+1(x) + sn(x)pn(x) = 0 (qn(x), rn(x), sn(x) ∈ Q[n, x]), (4.35)

is given as input, the Maple implementations rec2ortho of Koorwinder and Swarttouw
or retode of Koepf and Schmersau can identify its solution which is a (linear trans-
formation of a) classical orthogonal polynomial system of a continuous, a discrete or a
q-discrete variable, if applicable. The two implementations rec2ortho and retode do not
handle classical orthogonal polynomials on a quadratic or q-quadratic lattice. Alhaidari
[2017] (see also [Alhaidari, 2019]) submitted (as open problem during the 14th Interna-
tional Symposium on Orthogonal Polynomials, Special Functions and Applications) two
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polynomials defined by their three-term recurrence relations and initial values. He was
interested by the derivation of their weight functions, generating functions, orthogonality
relations, etc.. Motivated by this open problem and as suggested in the comments by
Van Assche [2019], our aim in this section is to implement, using the same approach as
Koepf and Schmersau [2002], algorithms to test whether a given holonomic recurrence
equation has classical orthogonal polynomial solutions on a quadratic or a q-quadratic
lattice. The algorithms were explicitly given and explained in [Koepf and Schmersau,
2002] for classical orthogonal polynomials of a continuous, a discrete or a q-discrete vari-
able and we will adapt them here for classical orthogonal polynomials on a quadratic or
a q-quadratic lattice according to the basis in which the polynomials are expanded.

4.5.1 Polynomials expanded in the basis {ϑn(α, x)}n≥0

Algorithm 1 (cf. [Koepf and Schmersau, 2002, Algorithms 1 and 2]). This algorithm
takes as input a holonomic three-term recurrence equation of type (4.35) and decides if
it has (a linear transformation of) classical orthogonal polynomial solutions expanded in
the basis {ϑn(α, x)}n≥0, and returns its divided-difference equation if applicable.

1. Input: A holonomic three-term recurrence equation

qn(x)pn+2(x) + rn(x)pn+1(x) + sn(x)pn(x) = 0 (qn(x), rn(x), sn(x) ∈ Q[n, x]).

2. Shift: Shift by max{n ∈ N0 | n is a zero of either qn−1(x) or sn(x)}+1 if necessary.

3. Rewriting: Rewrite the recurrence equation in the form

pn+1(x) = tn(x)pn(x) + un(x)pn−1(x) (tn(x), un(x) ∈ Q(n, x)).

If either tn(x) is not a polynomial of degree one in x or un(x) is not a constant with
respect to x, return “no classical orthogonal polynomial solution exists";
exit.

4. Linear transformation: Use the linear transformation x 7→ (x − g)/f with un-
knowns f and g to rewrite the recurrence equation.

5. Standardization: Rewrite the latter recurrence equation as

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x) (An, Bn, Cn ∈ Q(n), An 6= 0). (4.36)

Since kn
kn+1

An = 1 in Proposition 4.28, define

kn+1

kn
:= An =

vn
wn

(vn, wn ∈ Q[n]).

6. Make monic: Since pn(x) = knp̃n(x) where p̃n(x) is the monic family, we can rewrite
(4.36) as

p̃n+1(x) = (x+ B̃n)p̃n(x)− C̃np̃n−1(x),

with B̃n :=
Bn

An
∈ Q(n) and C̃n :=

Cn
AnAn−1

∈ Q(n),
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and bring these rational functions in lowest terms. According to Proposition 4.28, if
the degree of the numerator of B̃n is larger than 4, if the degree of the denominator
of B̃n is larger than 2, if the degree of the numerator of C̃n is larger than 8, or if
the degree of the denominator of C̃n is larger than 4, then return “no classical
orthogonal polynomial solution exists".

7. Polynomial identities: Set

B̃n =
kn
kn+1

Bn, C̃n =
kn−1

kn+1

Cn,

with the right-hand sides given in Proposition 4.28, in terms of the unknowns
a, b, c, d, e. Multiply these identities by their common denominators, and bring
them therefore in polynomial form.

8. Equating coefficients: Equate the coefficients of the powers of n in the two re-
sulting equations. This results in a nonlinear system in the unknowns a, b, c, d, e, f
and g. Solve this system by Gröbner bases methods. If the system has no solution
or only one with a = d = 0, then return ‘no classical orthogonal polynomial
solution exists"; exit.

9. Output: Return the solution vector (a, b, c, d, f, g) of the last step, the divided-
difference equation (4.3) together with the information kn+1

kn
and y = fx+ g.

Example 4.31. For the first example, we consider the three-term recurrence equation
satisfied by the Wilson polynomials

W̃n(x2) := W̃n(x2; a, b, c, d) =
Wn(x2; a, b, c, d)

(a+ b)n(a+ c)n(a+ d)n

given by [Koekoek et al., 2010, Eq. (9.1.4)]

−(a2 + x2)W̃n(x2) = AnW̃n+1(x2)− (An + Cn)W̃n(x2) + CnW̃n−1(x2),

where

An =
(n+ a+ b+ c+ d− 1) (n+ a+ b) (n+ a+ c) (n+ a+ d)

(2n+ a+ b+ c+ d− 1) (2n+ a+ b+ c+ d)
,

Cn =
n (n+ b+ c− 1) (n+ b+ d− 1) (n+ c+ d− 1)

(2n+ a+ b+ c+ d− 2) (2n+ a+ b+ c+ d− 1)
.

Using our implementation, the result is obtained by
> A[n]:=(n+a+b+c+d-1)*(n+a+b)*(n+a+c)*(n+a+d)/((2*n+a+b+c+d-1)
> *(2*n+a+b+c+d))

An :=
(n+ a+ b+ c+ d− 1) (n+ a+ b) (n+ a+ c) (n+ a+ d)

(2n+ a+ b+ c+ d− 1) (2n+ a+ b+ c+ d)
> C[n]:=n*(n+b+c-1)*(n+b+d-1)*(n+c+d-1)/((2*n+a+b+c+d-2)
> *(2*n+a+b+c+d-1))

Cn :=
n (n+ b+ c− 1) (n+ b+ d− 1) (n+ c+ d− 1)

(2n+ a+ b+ c+ d− 2) (2n+ a+ b+ c+ d− 1)
> RecWilson:= -(a^2+x)*p(n)=A[n]*p(n+1)-(A[n]+C[n])*p(n)+C[n]*p(n-1):
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> strict:=true:
> REtoWilsonDE(subs(n=n+1, RecWilson),p(n),x)

‘Warning: parameters have the values‘,
{
a = a, b = −a (ab+ ac+ ad+ cb+ bd+ cd) ,

c = a2bcd, d = a2 + ab+ ac+ ad, e = −a2bc− a2bd− a2cd− abcd
}

[ (
abcd− abx− acx− adx− cbx− bdx− cdx+ x2

)
DD (DD (p (n, x) , x) , x)

− (abc+ abd+ acd+ bcd− ax− bx− cx− dx)SS (DD (p (n, x) , x) , x)

−n (n+ a+ b+ c+ d− 1) p (n, x) = 0,

kn+1

kn
= − (2n+ a+ b+ c+ d− 1) (2n+ a+ b+ c+ d)

(n+ a+ b+ c+ d− 1) (n+ a+ b) (n+ a+ c) (n+ a+ d)

]
,

which gives the divided-difference equation of the Wilson polynomials (see [Njionou Sad-
jang et al., 2015b, Thm. 2.5]), as well as the term ratio kn+1/kn. Here SS and DD stand
for Sx and Dx, respectively.

Example 4.32. Alhaidari [2017] encountered two families of orthogonal polynomials on
the real line defined by their three-term recurrence relations and initial values. The first
system is given by

cos θH(µ,ν)
n (z;α, θ) =

(
z sin θ

[(
n+

µ+ ν + 1

2

)2

+ α

]

+
ν2 − µ2

(2n+ µ+ ν)(2n+ µ+ ν + 2)

)
H(µ,ν)
n (z;α, θ) +

2(n+ µ)(n+ ν)

(2n+ µ+ ν)(2n+ µ+ ν + 1)

×H(µ,ν)
n−1 (z;α, θ) +

2(n+ 1)(n+ µ+ ν + 1)

(2n+ µ+ ν + 1)(2n+ µ+ ν + 2)
H

(µ,ν)
n+1 (z;α, θ), (4.37)

with 0 ≤ θ ≤ π, µ, ν > −1, α ∈ R and initial values H(µ,ν)
0 (z;α, θ) = 1, H(µ,ν)

−1 (z;α, θ) = 0.
The second system is

zG(µ,ν)
n (z;σ) =

(
(σ +B2

n)

[
µ2 − ν2

(2n+ µ+ ν)(2n+ µ+ ν + 2)
+ 1

]
− 2n(n+ ν)

2n+ µ+ ν

− (µ+ 1)2

2

)
G(µ,ν)
n (z;σ)− (σ +B2

n−1)
2(n+ µ)(n+ ν)

(2n+ µ+ ν)(2n+ µ+ ν + 1)
G

(µ,ν)
n−1 (z;σ)

− (σ +B2
n)

2(n+ 1)(n+ µ+ ν + 1)

(2n+ µ+ ν + 1)(2n+ µ+ ν + 2)
G

(µ,ν)
n+1 (z;σ), (4.38)

with Bn = n + 1 + µ+ν
2
, µ, ν > −1 and σ ∈ R and initial values G(µ,ν)

0 (z;σ) = 1,
G

(µ,ν)
−1 (z;σ) = 0.

Our implementation with
> BB:=n->n+1+(mu+nu)/2:
> recOpen2:=z*p(n)=((sigma+BB(n)^2)*((mu^2-nu^2)/((2*n+mu+nu)
> *(2*n+mu+nu+2))+1)-2*n*(n+nu)/(2*n+mu+nu)-(mu+1)^2/2)*p(n)
> -(sigma+BB(n-1)^2)*2*(n+mu)*(n+nu)/((2*n+mu+nu)*(2*n+mu+nu+1))*p(n-1)
> -(sigma+BB(n)^2)*2*(n+1)*(n+mu+nu+1)/((2*n+mu+nu+1)*(2*n+mu+nu+2))*p(n+1):
> strict:=false:
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> REtoWilsonDE(subs(n=n+1, recOpen2),p(n),z)
returns six divided-difference equations (see the Maple file associated to this work) for
the second recurrence equation (4.38):(

z2 +
(
µ2 − 2σ − 3

)
z +

1

4
(µ− 1)2 (µ2 + 2µ+ 4σ + 1

))
D2
zPn(z/2)

+ (4 z + 2 (µ− 1) (µ+ 2σ + 1))SzDzPn(z/2)− 4n(n+ 1)Pn(z/2) = 0 (ν = −µ),
(4.39)

(
z2 +

(
µ2 + 2µ− 2σ + 1

)
z +

1

4
(µ+ 1)2 (µ2 + 2µ+ 4σ + 1

))
D2
zPn(z/2)

− 4σ (µ+ 1)SzDzPn(z/2)− 4n(n− 1)Pn(z/2) = 0 (ν = −µ− 2), (4.40)

(
a2z2 +

((
µ2 + 2µ− 2σ + 1

)
a2 − d (µ+ 1) a− 1

2
d2

)
z

+
1

4
(µ+ 1)2 ((µ2 + 2µ+ 4σ + 1

)
a2 − 2 d (µ+ 1) a+ d2

) )
D2
zPn(z/2)

+
(
2 adz − (µ+ 1)

(
4 a2σ − d (µ+ 1) a+ d2

))
SzDzPn(z/2)

− 4na((n− 1)a+ d)Pn(z/2) = 0 (a 6= 0, d 6= 0) (ν = −µ− 2 + d/a), (4.41)

((4 ν + 1) z − 1

2
ν2)D2

zPn(2z) + (ν2 + ν − 2z)SzDzPn(2z) + nPn(2z) = 0, (4.42)

ν 6= −1
4
with σ = 0, µ = ν − 1,(

(4 ν + 3) z − 1

2
ν (ν + 1)

)
D2
zPn(2z) + (ν2 + 2ν − 2z +

1

2
)SzDzPn(2z) + nPn(2z) = 0,

(4.43)

ν 6= −3
4
with σ = −1

4
, µ = ν,(

(4 ν + 5) z − 1

2
(ν + 1)2

)
D2
zPn(2z) + (ν2 + 3ν − 2z + 2)SzDzPn(2z) + nPn(2z) = 0,

(4.44)

ν 6= −5
4
with σ = 0, µ = ν + 1. By comparison with the Wilson divided-difference

equation, we deduce from the first three divided-difference equations (4.39)–(4.41) that

G(µ,ν)
n (z;σ) = constant×Wn(z/2; a, b, c, d)

where a, b, c, d are permutations of elements of the set

{1

2
(−µ+ 1),

1

2
(−µ+ 1),

1

2
(µ+ 1) +

√
−σ, 1

2
(µ+ 1)−

√
−σ},

{1

2
(µ+ 1),

1

2
(µ+ 1),−1

2
(µ+ 1) +

√
−σ,−1

2
(µ+ 1)−

√
−σ},

{1

2
(µ+ 1),

1

2
(µ+ 1),

1

2
(δ − µ− 1) +

√
−σ, 1

2
(δ − µ− 1)−

√
−σ},
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for the first equation (4.39), the second equation (4.40), and the third equation (4.41) in
which the parameters a = 1, d = δ, respectively. This brings therefore a new parameter
δ in the definition of the polynomial G(µ,ν)

n (z;σ) and we also remark that for d = 0 and
a = 1 in the third equation (4.41), we recover the second equation (4.40). For the value
d = δ = 2µ+2, we recover (from the identification of (4.41) with the Wilson polynomials)
the solution

G(µ,µ)
n (z;σ) =

Wn(z/2; a, b, c, d)

n!(a+ b)n(a+ d)n

given in [Van Assche, 2019] where a = c = µ+1
2
, b = µ+1

2
+
√
−σ and d = µ+1

2
−
√
−σ.

Comparing the last three equations (4.42)–(4.44) with the divided-difference equation of
the continuous dual Hahn polynomials Sn(2z; a, b, c), we deduce that

G(ν−1,ν)
n (z; 0) = constant× Sn(2z; a, b, c),

with a = c = ν, b = 1
2
, or a = b = ν, c = 1

2
or b = c = ν, a = 1

2
, i. e., a, b, c are

permutations of elements of the set {ν, ν, 1
2
};

G(ν,ν)
n (z;−1/4) = constant× Sn(2z; a, b, c),

where a, b, c are permutations of elements of the set {ν + 1, ν, 1
2
};

G(ν+1,ν)
n (z; 0) = constant× Sn(2z; a, b, c),

where a, b, c are permutations of the elements of the set {ν + 1, ν + 1, 1
2
}.

4.5.2 Polynomials expanded in the basis {(α + ix)n}n≥0

The steps of the algorithm in this case agree with those given in Section 4.5.1. In steps 5
and 7, we use Proposition 4.29 whereas in step 6, the algorithm will return “no classical
orthogonal polynomial solution exists" if the degree of the numerator or the de-
nominator of B̃n is larger than 2, if the degree of the numerator of C̃n is larger than 7, or
if the degree of the denominator of C̃n is larger than 5.

Example 4.33. As example here, starting from the three-term recurrence equations (RE)
[Koekoek et al., 2010, Eq. (9.4.3)] and [Koekoek et al., 2010, Eq. (9.7.3)] satisfied by the
continuous Hahn and the Meixner-Pollaczek polynomials, respectively, and using our im-
plementation with REtoContHahnDE(subs(n=n+1, RE), p(n), x), we recover the divided-
difference equations of type (4.4) satisfied by both families (see [Tcheutia et al., 2017, prop.
4]). In the output in this case, SS and DD stand for Sx and δx, respectively.

4.5.3 Polynomials expanded in the basis { χn(γ, δ, λ(x))}n≥0

We proceed as in the algorithm of Section 4.5.1. Here, in steps 5 and 7, we use Propo-
sition 4.30 whereas in step 6, the algorithm will return “no classical orthogonal
polynomial solution exists" if the degree of the numerator of B̃n is larger than 4,
if the degree of the denominator of B̃n is larger than 2, if the degree of the numerator of
C̃n is larger than 8, or if the degree of the denominator of C̃n is larger than 4.



4.5 Extension of the algorithms implemented in the Maple package retode 101

Example 4.34. If we call RE the three-term recurrence equation of the Racah or the dual
Hahn polynomials given, respectively, by [Koekoek et al., 2010, Eq. (9.2.3)] and [Koekoek
et al., 2010, Eq. (9.6.3)], then with our implementation REtoRacahDE(subs(n=n+1, RE),
p(n),x), we get the divided-difference equation satisfied by both families (see the associated
Maple file).

Remark 4.35. From our implementations of sections 3.1., 3.2 and 3.3, we get for the
recurrence equation (4.37) the following:

> RE:=1/2*(y+y^(-1))*p(n)=(z/(2*I)*(y-y^(-1))*((n+(mu+nu+1)/2)^2+alpha)+
(nu^2-mu^2)/((2*n+mu+nu)*(2*n+mu+nu+2)))*p(n)
> +2*(n+mu)*(n+nu)/((2*n+mu+nu)*(2*n+mu+nu+1))*p(n-1)
> +2*(n+1)*(n+mu+nu+1)/((2*n+mu+nu+1)*(2*n+mu+nu+2))*p(n+1):
> strict:=false:
> REtoWilsonDE(subs(n=n+1, RE), p(n), z)

‘Warning: parameters have the values‘, {a = a, α = α, b = b, c = c, d = d, }
{e = e, f = 0, g = g, µ = µ, ν = ν, y = 1}

‘Warning: parameters have the values‘, {a = a, α = α, b = b, c = c, d = d, }
{e = e, f = 0, g = g, µ = µ, ν = ν, y = 1}

[[DD (DD (p (n, g) , z) , z) +
(dg + e)SS (DD (p (n, g) , z) , z)

ag2 + bg + c
− n (an− a+ d) p (n, g)

ag2 + bg + c
= 0], ]

We get the same answer using
> REtoRacahDE(subs(n=n+1, RE),p(n),z)

and
> REtoContHahnDE(subs(n=n+1, RE),p(n),z)

We deduce from our implementations (which return the solution H(µ,ν)
n (z;α, θ) ≡ 0) that

the polynomial family H(µ,ν)
n (z;α, θ) satisfying the recurrence equation (4.37) is not related

(by a linear transformation) to a known classical orthogonal polynomial sequence on a
quadratic lattice expanded in the basis {ϑn(α, x)}, {(α + ix)n} or { χn(γ, δ, λ(x))}. This
recurrence equation may lead to a new family of orthogonal polynomials. This problem by
Alhaidari remains then open.

4.5.4 Polynomials expanded in the basis {Bn(α, x)}n≥0

Algorithm 2 (see [Koepf and Schmersau, 2002, Algorithm 3]). This algorithm takes as
input a holonomic three-term recurrence equation of type (4.35) and decides if it has (a
linear transformation of) classical orthogonal polynomial solutions expanded in the basis
{Bn(α, x)}n≥0, and returns its divided-difference equation if applicable.

1. Input: A holonomic three-term recurrence equation

qn(x)pn+2(x) + rn(x)pn+1(x) + sn(x)pn(x) = 0 (qn(x), rn(x), sn(x) ∈ Q[qn,
√
q, x]) .

2. Shift: Shift by max{n ∈ N0 | n is a zero of either qn−1(x) or sn(x)}+1 if necessary.

3. Rewriting: Rewrite the recurrence equation in the form

pn+1(x) = tn(x)pn(x) + un(x)pn−1(x) (tn(x), un(x) ∈ Q(qn,
√
q, x)) .
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If either tn(x) is not a polynomial of degree one in x or un(x) is not a constant with
respect to x, return “no classical orthogonal polynomial solution exists";
exit.

4. Linear transformation: Rewrite the recurrence equation by the linear transfor-
mation x 7→ (x− g)/f with unknowns f and g.

5. Standardization: Rewrite the latter recurrence equation as

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x) (An, Bn, Cn ∈ Q(qn,
√
q), An 6= 0) .

In Section 4.4.4, we get kn
kn+1

An = −2αqn from which we define

kn+1

kn
:= − 1

2αqn
An =

vn
wn

(vn, wn ∈ Q[qn,
√
q]) .

6. Make monic: Since pn(x) = knp̃n(x), the last recurrence equation becomes

p̃n+1(x) = ((−2αqn)x+ B̃n)p̃n(x)− C̃np̃n−1(x),

with B̃n :=
Bn

An
∈ Q(qn,

√
q) and C̃n :=

Cn
AnAn−1

∈ Q(qn,
√
q).

If the degree (w. r. t. N := qn) of the numerator of B̃n is larger than 3, if the
degree of the denominator of B̃n is larger than 4, or if the degree of the numerator
or the denominator of C̃n is larger than 8, then return “no classical orthogonal
polynomial solution exists".

7. Polynomial identities: Set

B̃n =
kn
kn+1

Bn, C̃n =
kn−1

kn+1

Cn,

with the right-hand sides given in Section 4.4.4, in terms of the unknowns a, b, c, d, e.
Multiply these identities by their common denominators, and bring them therefore
in polynomial form.

8. Equating coefficients: Equate the coefficients of the powers of N = qn in
the two resulting equations. This results in a nonlinear system in the unknowns
a, b, c, d, e, f and g. Solve this system by Gröbner bases methods. If the system
has no solution or only one with a = d = 0, then return ‘no classical orthogonal
polynomial solution exists"; exit.

9. Output: Return the solution vector (a, b, c, d, f, g) of the last step, the divided-
difference equation (4.1) together with the information kn+1

kn
and y = fx+ g.

Example 4.36. As illustrative example, we use our implementation to find the divided-
difference equation of type (4.1) satisfied by the continuous Hermite polynomials.

> recContinuousqHermite:=2*x*p(n)=p(n+1)+(1-q^n)*p(n-1)

recContinuousqHermite := 2 xp (n) = p (n+ 1) + (1− qn) p (n− 1)

> strict:=true:
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> REtoAskeyWilsonDE(subs(n=n+1, recContinuousqHermite), p(n),q, x)

[1/2
(
2x2 − 1

)
DD (DD (p (n, x) , x) , x)− 2

xSS (DD (p (n, x) , x) , x)
√
q

q − 1

+ 2
q3/2 (−1 + qn) p (n, x)

qn (q − 1)2 = 0,
kn+1

kn
= 2]

In the result, SS and DD stand for Sx and Dx, respectively. The results for the other
families can be found in the accompanying Maple file.

4.5.5 Polynomials expanded in the basis {ξn(γ, δ, µ(x))}n≥0

The steps of the algorithm in this case agree with those given in Section 4.5.4. In steps 5
and 7, we use the results from Section 4.4.5 whereas in step 6, the algorithm will return “no
classical orthogonal polynomial solution exists" if the degree of the numerator
of B̃n is larger than 3, if the degree of the denominator of B̃n is larger than 4, if the degree
of the numerator or the denominator of C̃n is larger than 8.

Example 4.37. If we consider for example the recurrence equation RE for the q-Racah,
dual q-Hahn, dual q-Krawtchouk polynomials given, respectively, by [Koekoek et al., 2010,
Eq. (14.2.3)], [Koekoek et al., 2010, Eq. (14.7.3)], [Koekoek et al., 2010, Eq. (14.17.3)],
we use our implementation REtoqRacahDE(subs(n=n+1,RE), p(n), x, q) to get the
divided-difference equations satisfied by the three families of polynomials and the prod-
uct γδ.

Note: The Maple implementation retode by Koepf and Schmersau has been updated
with our extension to classical orthogonal polynomials on a quadratic or a q-quadratic
lattice. The package retode.mpl and a worksheet retodedemo.mw containing the three-
term recurrence equations of Section 4.4 and the examples for all the classical orthogonal
polynomials on a quadratic or a q-quadratic lattice can be obtained from http://www.
mathematik.uni-kassel.de/~tcheutia/.

http://www.mathematik.uni-kassel.de/~tcheutia/
http://www.mathematik.uni-kassel.de/~tcheutia/
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