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Abstract

In this thesis, we investigate the existence and regularity results of a ferroelectric phase-
field model, which is a state-of-the-art model arising in recent years from the engineering
area for the ferroelectric study. The ferroelectric phase-field model describes the rela-
tionship between the mechanical displacement u, the electric field φ and the spontaneous
polarization P . Mathematically, the model is given by a coupled differential system, by the
means that the mechanical displacement u and the electric field φ are given as the unique
solution of a second order elliptic system, whose coefficients will also depend on the spon-
taneous polarization P ; The dynamics of P will be given by the nonlinear evolutionary
law

−DPH(t,u, φ,P ) ∈ ∂Ψ(P ′), (LAW)

where Ψ(P ) is a convex and weakly lower semicontinuous dissipation functional, and H is
an entropy functional which contains a nonlinearity that is given as a quadratic function
of the gradient of (u, φ). We discuss two different cases by imposing different dissipation
functionals for the model.

We first consider the case that the dissipation functional Ψ(P ) is given as the sum

Ψ(P ) = Ψ1(P ) + β‖P ‖2L2 ,

where β is some given fixed positive constant and Ψ1 is a convex, weakly lower semicon-
tinuous and positively 1-homogenous functional. In this case, we will discretize the time
interval [0, T ] into subintervals with step size τ > 0 and construct certain time discrete
interpolant solutions corresponding to the discretization, which will satisfy a discrete ver-
sion of (LAW). We then use several variational identities and inequalities to show that by
pushing τ to zero, one obtains a weak limit of the time discrete interpolant solutions, which
turns out to be the actual solution (the so called viscous solution) of (LAW). Finally, by
using certain Γ-convergence theory, we are able to push β to zero to obtain a weak limit
of the (parameterized) viscous solutions, the so called vanishing viscosity solution, that
will also satisfy a parameterized evolutionary law derived from (LAW).

On the other hand, we will also consider the case

Ψ(P ) =
β

2
‖P ‖2L2

with some fixed β > 0. In this case, (LAW) is reduced to a coupled semilinear parabolic
system. We will then use the theory of maximal parabolic operators and fixed point
theorem to construct a unique local solution of (LAW). At the end, we show that by
setting β = 0 in the first case, one also obtains a global solution of (LAW) in the parabolic
case.





Zusammenfassung

In dieser Arbeit untersuchen wir Existenz- und Regularitätsresultate für ein ferroelek-
trisches Phasenfeldmodell auf dem aktuellen Stand der Wissenschaft, welches in den letz-
ten Jahren aus den ferroelektrischen Studien in den Ingenieurwissenschaften entstanden
ist. Das ferroelektrische Phasenfeldmodell beschreibt die Beziehung zwischen der mechani-
schen Verschiebung u, dem elektrischen Feld φ und der spontanen Polarisation P . Mathe-
matisch ist das Modell durch ein gekoppeltes Differentialgleichungssystem gegeben: Die
mechanische Verschiebung u und das elektrische Feld φ sind als die eindeutige Lösung
eines elliptischen Systems zweiter Ordnung angegeben, dessen Koeffizienten auch von der
spontanen Polarisation abhängig sind; Die Dynamik von P ist durch das nichtlineare
Evolutionsgesetz

−DPH(t,u, φ,P ) ∈ ∂Ψ(P ′) (LAW)

gegeben. Hier ist Ψ(P ) ein konvexes, schwach unterhalbstetiges Dissipationsfunktional; H
ist ein Entropiefunktional, das eine Nichlinearität in Form einer quadratischen Funktion
des Gradienten von (u, φ) enthält. Wir diskutieren zwei verschiedene Fälle, bei denen wir
unterschiedliche Dissipationsfunktionale zu Grunde legen.

Wir betrachten zunächst den Fall, in dem das Dissipationsfunktional Ψ(P ) als die
Summe

Ψ(P ) = Ψ1(P ) + β‖P ‖2L2

gegeben ist, wobei β eine festgelegte positive Konstante und Ψ1 ein konvexes, schwach
unterhalbstetiges und positiv 1-homogenes Funktional sind. In diesem Fall zerlegen wir
das Zeitintervall [0, T ] in Teilintervalle mit Schrittweite τ > 0 und konstruieren zeitdis-
krete Interpolationslösungen, die eine diskrete Version des Gesetzes (LAW) erfüllen. Mit
Hilfe einiger Variationsgleichungen und -Ungleichungen lässt sich mit verschwindender
Zeitschrittweite die Konvergenz der Interpolationslösungen zu einem schwachen Grenz-
wert zeigen, welcher dann eine Lösung von (LAW) ist. Da man β als künstlichen Vis-
kositätsparameter interpretieren kann, werden diese Lösungen auch Viskositätslösungen
genannt. Schließlich erhalten wir unter Verwendung von Γ-Konvergenztheorie (nach Um-
parametrisierung) einen schwachen Grenzwert der Viskositätslösungen für verschwinden-
des β. Dieser Grenzwert wird viskositätsverschwindende Lösung genannt und erfüllt ein
parametrisiertes Evolutionsgesetz, das von (LAW) abgeleitet wird.

Auf der anderen Seite betrachten wir auch den Fall

Ψ(P ) =
β

2
‖P ‖2L2

mit einer festgelegten Konstante β > 0. In diesem Fall lässt sich (LAW) auf ein gekoppeltes
semilineares parabolisches System reduzieren. Wir werden dann die Theorie der maximalen
parabolischen Operatoren und einen Fixpunktsatz verwenden, um eine eindeutige lokale
Lösung von (LAW) zu konstruieren. Schließlich zeigen wir auch, dass man durch Einsetzen
von β = 0 im ersten Fall eine globale Lösung von (LAW) für den parabolischen Fall erhält.
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Chapter 1

Introduction

This thesis is devoted to the study of a phase-field model for ferroelectric materials arising
from the engineering area. The study of ferroelectrics began with J. Valasek’s paper
[65], where the ferroelectric material Rochelle salt was studied and it was the first time
that a hysteresis curve, which describes the relation between the external electric field
and the polarization, was proposed. From 1942 to 1946, ferroelectrics were discovered
in the material Barium Titanate (BaTiO3) independently by scientists in USA, Russia
and Japan, which becomes one of the most important ferroelectric materials nowadays.
Thereafter, more and more ferroelectric materials have been found, and corresponding
ferroelectric study has been rapidly developed. For an introduction of the history of
ferroelectric materials, we refer to [11, 27].

We give a brief introduction of the physical principles which characterize the ferroelec-
tric materials. One can imagine that electric charge is distributed on certain dielectric
material. The electric charge can then be classified into two categories: applying an ex-
ternal electric field (denoted by E in the following) to the material, some of the electric
charge will move along the direction of the electric field and in this case, electric current
occurs. This part of electric charge is called the free charge. An example is the conductor
material, where the free charge has the dominating effect in the material; However, there
is also a part of electric charge which can only limitedly move under the application of an
external electric field. Such part of electric charge is called the bound charge. An example
is the insulator material, where the bound charge dominates the free charge and electric
current can barely happen by an existing external electric field. Physically, the bound
charge is described by a vector-valued physical variable P , whose direction is the direc-
tion pointing from the negative bound charge to the positive bound charge, and whose
absolute value stands for the electric dipole moment density. The letter P stands for the
word “polarization”, which is due to the fact that the direction of the bound charge is
tending to the same direction when increasing the strength of the external electric field
and the procedure can be seen as kind of polarization progress.

While in most dielectric materials, the polarization is a linear function of the electric
field, ferroelectric materials are those dielectric materials which show a nonlinear evolu-
tionary behavior. In particular, if one starts with zero initial polarization, increases the
electric field to saturation state and then decreases it to zero, the polarization will not
reduce to zero but equal a remaining nonzero part. In order to cancel out the remaining
polarization, one has to increase the strength of the external electric field, but with an
opposite direction as shown in Fig. 1.1. Therefore, the polarization will also depend on the
historical state of the electric field and such memory effect forms the so called ferroelectric
hysteresis loop.

1



Chapter 1

Figure 1.1: Polarization versus electric field [35].

On the other hand, piezoelectric effect is also obtained in ferroelectric materials. That
is, the mechanical potential and the electric potential can be mutually transformed to
each other. We use the Fig. 1.2 to give an explanation of the piezoelectricity. As we see,
electric charge is distributed on the piezoelectric body (the plates) as shown in Fig. 1.2.
Therefore, displacement or deformation of the piezoelectric body (for instance increasing
the distance between the surface plates, which are interpreted by the bold arrows drawn
in Fig. 1.2) will cause the occurrence of electric dipole moments, and hence the applied
electric field can be strengthened or weakened. Conversely, if an external electric field
is applied, the piezoelectric body can be compressed or stretched by the electric force
induced by the electric charge (for instance the forces indicated by the blue arrows given
in Fig. 1.2).

Figure 1.2: Piezoelectric plate separation by applying an external electric field.

Due to the mentioned properties, ferroelectric materials are widely used in capacitors,
sensors and other products with memory effects. For a more detailed introduction of
applications of ferroelectric materials, we refer to [35, 41, 66] and the references therein.

The following methods are mainly used for ferroelectric study:

1. Models with constitutive laws based on the second law of thermodynamics, which is
considered from a macroscopic viewpoint. See [57, 61].

2. Models which consider single ferroelectric grains, which is a model from a microscopic
viewpoint. See [4, 31].

3. Since ferroelectric materials show a nonlinear evolutionary behavior, which corres-
ponds to certain hysteresis looping curve, there are also models concerning the so
called Preisach operator, which is a basic tool for studying materials with hysteresis
behavior. See [5, 54].

Our model is based on the phase-field model given by [55], which is derived from the so
called Ginzburg-Landau-Devonshire-theory (see [43] and the references therein). In this

2



1.1. A brief introduction of the mathematical setting and methodologies Chapter 1

model, the domain switching effect is also taken into account (for a precise introduction
of the domain wall switching effect, we refer to Fig. 2.1 given in Section 2.4 below),
which plays an important role in the phase-field theory. Roughly speaking, in order to
describe such effect mathematically, certain gradient energy term is added to the model,
which is to indicate the interfacial energy between domain walls that separate polarization
vectors with different directions. Such modification makes the model here significantly
independent to the above mentioned ones and gives a more accurate description of the
physical principles about the ferroelectric materials.

1.1 A brief introduction of the mathematical setting and
methodologies

In Section 2.4, we will give a precise derivation of the main model studied in this thesis,
after we have introduced some necessary notation and definitions at the beginning of
Chapter 2. Nevertheless, we give a first description of the mathematical setting of the
main model for introductory purpose. The model involves three variables: the mechanical
displacement u, the electric field φ and the polarization P . The former two variables are
given by an elliptic piezo-system, with coefficients which are functions in variable P (see
(2.14) below). Thus roughly speaking, once P is given, the variable (u, φ) can be uniquely
determined by certain elliptic existence theory. Hence it suffices to find a solution P which
fulfills the evolutionary law

∂Ψ(P ′) 3 −DPH(t,u, φ,P ) (1.1)

(given as (2.14e) below), where −DPH is the system entropy corrsponding to P and Ψ is
the dissipation functional (for details see Section 2.4). In recent papers [47, 55], the dissip-
ation functional Ψ is assumed to be of polynomial growth. For the very special case that
Ψ is taken to be the absolute value functional (or L1-norm in variational expression), the
evolutionary law (1.1) is rate-independent, and existence result for the rate-independent
ferroelectric model, or more precisely, the existence of a so called energetic solution, is
already given in the seminal paper [50]. However, we are not able to directly apply the
result given in [50] to our model, due to the following reasons:

• We point out that the functional H given in (1.1) is in general not convex in P by
our model. Such nonconvexity is troublesome when we apply the energetic solution
ansatz given in [50]. More precisely, it is well known that the nonconvexity of the
energy functional in variable P will cause non physically reasonable occurrence of
jumps of the energetic solutions before critical times. We refer to [48] for a survey
of this phenomenon.

• Actual physical experiments [62] show that in general, the dissipation functional can
only be assumed to be rate-independent if the external loadings have a relatively low
frequency. For some materials, the rate-independence of the dissipation functional
can not hold even if the external loadings have low frequency [60].

The above mentioned reasons suggest a study with a dissipation functional Ψ of mixed
type, which admits the expression

Ψ = Ψ1 + βΨ2, (1.2)

where Ψ1 is the rate-independent part and Ψ2 is the rate-dependent part of the dissipation
functional Ψ (in this thesis, Ψ2 is assumed to be of polynomial growth of order 2, that is, a

3



Chapter 1 1.1. A brief introduction of the mathematical setting and methodologies

quadratic functional); β here is a positive constant, and scaling β gives us the opportunity
to control the rate-dependency of the dissipation functional on P , which makes it possible
to apply our model to either (approximately) rate-independent or rate-dependent systems.
On the other hand, as stated in [48], the rate-dependent part Ψ2 can be seen as kind of
viscosity, which delays the occurrence of jumps (that occur in the limiting case β → 0, see
Section 3.8) and gives a more physically accurate description of the jumping points of the
solution.

We mainly follow the lines of [39] to obtain existence results for the model with dis-
sipation functional of mixed type, namely, for every given fixed positive β, we utilize the
viscosity method given in [39] to obtain a global viscous solution P β of the evolutionary
law (1.1). More precisely, we construct time discrete interpolant solutions which satisfy
a discrete evolutionary law related to (1.1), and then show that such time discrete inter-
polant solutions converge weakly to the actual solution of the law (1.1) by using certain
Rothe’s approximation process.

We point out that the main difficulty to apply the vanishing viscosity method to our
model is the insufficient regularity of the solution (u, φ) given by the piezo-system. More
precisely, by using Lax-Milgram we can only expect that the solution (u, φ) is of class H1

in general. However, coupled nonlinearities appearing in the functional DPH will have
similar expression as the term |ε(u)|2|P |, where ε(u) = 1

2(∇u+∇uT ) is the small strain
tensor generated by u. Thus we need to estimate a product of Lebesgue functions of the
form L2 × L2 × Lp, and it is clear that no Hölder’s inequality is applicable to estimate
such product unless p =∞, which is not the case in our model.

To overcome such difficulties, we apply the regularity results given in [28] (Proposi-
tion 3.18 below) for elliptic systems to obtain higher integrability of the solution (u, φ)
of the piezo-system. More precisely, assuming Gröger-type geometric conditions on the
underlying domain Ω (see Section 2.1) and uniform boundedness of the coefficients of
the elliptic piezo-system, we are able to infer that the solution (u, φ) is of class W 1,p for
some p > 2, assuming that the external loadings are of class W−1,p. We also point out
that mixed boundary conditions (Dirichlet-Neumann or purely Dirichlet) are allowed in
this case, due to the geometric profile of the underlying domain that characterized by the
Gröger-type geometric conditions, which is another surprising result obtained from our
analysis. However, due to the lacking of certain Sobolev’s embedings in three dimensional
space, we need to replace the gradient energy term ‖∇P ‖2L2 by a fractional one for three
dimensional case, which is in order to guarantee that each P in the underlying space can
be embedded to Lp space for all p ∈ [1,∞), see Section 3.2 for details.

At the end, we will also push β to zero, with help of the arclength parametrization
and Γ-convergence theory given in [49], to investigate the limiting behavior of the viscous
model. It turns out that the arclength parameterized viscous solution (t̃β, P̃ β) (see Section
3.8) converges (within W 1,∞-weak-∗ topology) to some vanishing viscosity limit function
(t̃, P̃ ) as β → 0, which has certain physical interpretation in terms of rate-independent
content, see Section 3.9 for details. We postpone the details of the precise strategy for
proving the existence results of the main model to Section 2.4.1, since some necessary
definitions and mathematical notation, which are given in Chapter 2, have still to be
imposed.

On the other hand, we are also interested in the model with purely quadratic dissipation
functional, which is the one studied in [55]. To be more precise, the dissipation functional
Ψ is assumed to be equal to

Ψ(P ) =
β

2
|P |2

4



1.1. A brief introduction of the mathematical setting and methodologies Chapter 1

in local form, or

Ψ(P ) =
β

2
‖P ‖2L2

in variational expression, where β is in this case a fixed positive constant. Then, since Ψ is
differentiable in P , the evolutionary law (1.1) reduces to a semilinear parabolic equation

βP ′ = κ∆P + S(t,u, φ,P ), (1.3)

where κ is some positive constant and S is some nonlinear functional depending on
(t,u, φ,P ), see Section 4.1 for details. Again, since (u, φ) can be uniquely determined
by a given t and P , we can reduce our problem to finding a solution P of the equation
(1.3). Our strategy is to utilize the fixed point theorem given in [10] (stated as Theorem
4.3 in the following) to obtain local solutions of (1.3). The goal is then to show that
the contraction Assumption (S) in Theorem 4.3 is satisfied (where the Assumption (A) in
Theorem 4.3 is evident by our case).

For two dimensional case, the verification of Assumption (S) relies on a direct Hölder
type estimation of the difference of S(t,P 1) and S(t,P 2) in Assumption (S) for test func-
tions P 1 and P 2, which is inspired by the analysis for the model with dissipation functional
of mixed type. Thus Gröger-type geometric conditions and uniform boundedness of the
coefficients will be imposed. In this case, mixed boundary conditions are also allowed.

For three dimensional case, the elliptic regularity result Proposition 3.18, which plays
the main role in the analysis for two dimensional case, is no more applicable, since the
integrability of (u, φ) obtained from Proposition 3.18 is only expected to be greater than 2,
and the verification of Assumption (S) will require an integrability of (u, φ) larger than 3,
namely greater than the number of space dimension. Instead of assuming mixed boundary
type conditions, if we restrict ourselves to the case that the piezo-system admits overall
Dirichlet boundary conditions, then we are able to obtain that the integrability of (u, φ)
is greater than 3, assuming that the boundary of the domain is sufficiently smooth. More
precisely, a greater than 3 integrability of (u, φ) can be obtained by assuming that the
boundary of the domain is of class C1 [14] or the domain is a cuboid [1].

However, to show that Assumption (S) of Theorem 4.3 is satisfied for three dimensional
case, a direct difference comparison of S(t,P 1) and S(t,P 2) as done for the two dimen-
sional case is not straightforwardly applicable, since the inverse norm of the W 1,p

0 -W−1,p

isomorphism given by the piezo-system is in general no more uniform for all test functions
P by the application of the regularity results from [14] and [1]. We will utilize certain
continuity arguments inspired by [46] to solve this problem. In particular, no uniform
boundedness condition of the coefficients of the elliptic piezo-system is required, which is
another relaxation of conditions compared to the two dimensional case.

At the end, we will extend our local existence result to polyhedral domains, with
help of the elliptic regularity results given in [44] and assuming, in brief words, that the
Dirichlet boundary data is zero near the geometric singularities (edges and vertices) of the
polyhedral domain. See Assumption 4.51 for details.

On the other hand, by taking Ψ1 equal to zero in the mixed type case, we are able
to obtain a global solution of the model with quadratic dissipation functional, by using
the similar Rothe’s approximation method as the one for the model with mixed type
dissipation. In this case, uniform boundedness of the coefficients and replacement of the
gradient energy (in three dimensional space) will have to be imposed.

5



Chapter 1 1.2. Outline of the thesis

1.2 Outline of the thesis

In Chapter 2, we first introduce the mathematical notation appearing in this thesis, then we
give a precise derivation of the main model and a detailed explanation of the methodologies
for obtaining the main results of the thesis. In Chapter 3 we will deal with the model
with dissipation functional of mixed type. In Chapter 4 we will deal with the model with
quadratic dissipation functional. At the end, we will give a summary of the main results
in Chapter 5.

6



Chapter 2

Notation, definitions and basic
physics

2.1 Domain and boundary characterization

Domain with Lipschitz boundary

Let Ω ⊂ Rd with d ≥ 2 be a bounded domain. Then Ω is said to be a domain with
Lipschitz boundary, if for every point x ∈ ∂Ω there exists a neighborhood U ⊂ Rd of x,
a new coordinate system {y1, ...,yd} and a real positive number α > 0 such that

• U is an open cube which can be interpreted by the new coordinates

U = {(y1, ...,yd) : yi ∈ (−α, α), i = 1, ..., d}.

• There exists a Lipschitz function a : U ′ → R, where

U ′ = {y′ = (y1, ...,yd−1) : yi ∈ (−α, α), i = 1, ..., d− 1},

such that

|a(y′)| ≤ α

2
for all y′ ∈ U ′,

Ω ∩U = {y ∈ U : yd < a(y′)},
∂Ω ∩U = {y ∈ U : yd = a(y′)}.

G1-regular and G2-regular sets

We introduce the concept of the so called G1-regular and G2-regular sets, which are
originally given by Gröger [26] and are used to characterize the geometric profile of the
underlying domain Ω and its boundary ∂Ω: A set W ⊂ Rd is called G1-regular, if the
interior of W is a bounded domain and for every x ∈ ∂W , there exist U1,U2 ⊂ Rd and
a bi-Lipschitz transformation Φ : U1 → U2, such that x ∈ U1 and Φ(U1 ∩Ω) is one of
the following sets:

• M1 := {x ∈ Rd : |x| < 1,xd < 0},

• M2 := {x ∈ Rd : |x| < 1,xd ≤ 0},

• M3 := {x ∈M2 : xd < 0 or x1 > 0}.
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Chapter 2 2.2. Function spaces and subdifferential

If in addition the absolute value of the Jacobian of each local chart Φ is equal to one
almost everywhere, then the set is called G2-regular.

Remark 2.1. In this thesis we will mainly deal with regular sets W with the expression
W = Ω ∪ Γ, where Ω is the underlying bounded domain and Γ is a closed subset of
∂Ω. 4

l-sets

The following concept of an l-set is originally given by [33, Def. 1.1], which characterizes
the sufficient conditions for certain Sobolev extension theorem from partial boundary part
Γ ⊂ ∂Ω to the whole space Rd (see Lemma 3.8 below): Let l be a real number with
0 < l ≤ d. Let M ⊂ Rd be closed and ρ be the restriction of the l-dimensional Hausdorff
measure Hl to M . Then M is called a l-set, if there exist two positive constants c1, c2

that satisfy

∀x ∈M , r ∈ (0, 1) : c1r
l ≤ ρ

(
B(x, r) ∩M

)
≤ c2r

l,

where B(x, r) is the ball with center x and radius r in Rd.

2.2 Function spaces and subdifferential

Sobolev and Sobolev-Slobodeckij spaces

Let Ω ⊂ Rd be an open set. The Sobolev space W s,p(Ω) with non negative integer s and
real number p ∈ [1,∞] is defined by

W s,p(Ω) := {f ∈ Lp(Ω) : Dkf ∈ Lp(Ω) for |k| ≤ s}

with the norm

‖f‖W s,p(Ω) :=
∑
|k|≤s

‖Dkf‖Lp(Ω),

where Dk is the usual multi-differential symbol for a non negative integer multi-index k.
For noninteger s ∈ (0,∞) \N and p ∈ [1,∞), the Sobolev-Slobodeckij space W s,p(Ω) is
defined by

W s,p(Ω) := {f ∈W bsc,p(Ω) : ‖f‖W s,p(Ω) <∞},

where the norm ‖ · ‖W s,p(Ω) is defined by

‖f‖W s,p(Ω) := ‖f‖W bsc,p(Ω) +
∑
|k|=bsc

∫
Ω×Ω

|Dkf(x)−Dkf(y)|p

|x− y|d+p(s−bsc) dxdy

and b·c is the Gaußinteger function. For a closed set Γ ⊂ ∂Ω, the space W 1,p
Γ (Ω) with

p ∈ (1,∞) is defined as the closure of the space

{φ|Ω : φ ∈ C∞0 (Rd), supp(φ) ∩ Γ = ∅}

in the space W 1,p(Ω) w.r.t. the W 1,p-norm. The dual space of W 1,p
Γ (Ω) is denoted by

W−1,p′

Γ (Ω), where p′ is the Hölder conjugate of p with 1
p + 1

p′ = 1. We also write

Hs(Ω) = W s,2(Ω) and H1
Γ(Ω) = W 1,2

Γ (Ω).
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2.2. Function spaces and subdifferential Chapter 2

The dual space of H1
Γ(Ω) is denoted by H−1

Γ (Ω). For Γ = ∂Ω, W 1,p
Γ (Ω) and H1

Γ(Ω)

are denoted by W 1,p
0 (Ω) and H1

0 (Ω) and their dual spaces are denoted by W−1,p′(Ω)
and H−1(Ω) respectively. For most cases we will also neglect the symbol Ω in the norm
index for notational convenience, for instance ‖ · ‖L2(Ω) = ‖ · ‖L2 . For s ∈ [1, 2) and

P , P̄ ∈
(
Hs(Ω)

)d
, the bilinear form 〈P , P̄ 〉s is defined by

〈P , P̄ 〉s =


∫
Ω∇P : ∇P̄ dx, if s = 1;∫
Ω×Ω

(
∇P (x)−∇P (y)

)
:
(
∇P̄ (x)−∇P̄ (y)

)
|x−y|d+2(s−bsc) dxdy, if s 6= 1.

Here, for two matrices M ,N ∈ Rm×n, the symbol M : N is defined by

M : N :=
m∑
i=1

n∑
j=1

M ijN ij .

Sobolev trace space

Let Ω be a bounded domain with Lipschitz boundary. Then due to compactness of ∂Ω, one
can find a finite collection of local coordinate systems (U r, ar)

m
r=1, given by the definition

of domain with Lipschitz boundary, such that the local coordinate system covers ∂Ω. The

Sobolev trace space W
1− 1

p
,p

(∂Ω) for p ∈ (1,∞) is defined as the space of measurable
functions f : ∂Ω→ R such that

‖f‖
W

1− 1
p ,p(∂Ω)

:=
m∑
r=1

‖f
(
·, ar(·)

)
‖
W

1− 1
p ,p

(
a−1
r

(
ar(Ur)∩∂Ω

)) <∞.
Particularly, ‖ · ‖

W
1− 1

p ,p(∂Ω)
defines a norm on the space W

1− 1
p
,p

(∂Ω) and W
1− 1

p
,p

(∂Ω)

endowed with the norm ‖ · ‖
W

1− 1
p ,p(∂Ω)

is a Banach space. Moreover, the trace function tr

defined by

tr : W 1,p(Ω)→W
1− 1

p
,p

(∂Ω),

f |Ω 7→ f |∂Ω

is well-defined (which is understood as the unique linear extension of tr defined on C∞(Ω)
to W 1,p(Ω)) and surjective. For a proof of the mentioned properties related to the Sobolev
trace space and the trace operator, we refer to [51, Chap. 2].

Besov spaces

For a (d − 1)-set Γ ⊂ Rd and 0 < α < ∞, 1 ≤ p, q ≤ ∞, the symbol Bp,q
α (Γ) denotes

the Besov space with components α, p, q defined on the set Γ. The Besov spaces Bp,q
α (Γ)

are seen as the trace spaces of Besov spaces Bp,q
α (Rd) [34, Chap. V, 2.2], which can also

be defined as interpolation spaces of Lebesgue spaces and Sobolev spaces [2, Chap. 7] or
can be defined as the set of functions whose difference quotients are integrable of certain
orders [34, page 7]. In this thesis we use the definition of Besov space defined on (d−1)-set
from [34, Chap. V, 2.2]. Due to the complicated construction of Besov spaces defined on
submanifolds and its limited application in the thesis, we refer to [34, Chap. V, 2.2] for
the detailed definition of the Besov spaces.
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Chapter 2 2.3. Some more preliminary notation

2.3 Some more preliminary notation

Vector- and Gâteaux-derivatives

For a function f : Λ ⊂ Rm → Rn, where Λ is an open subset of Rm, the symbols Dxf(·),
∂xf(·) or ∂f

∂x(·) denote the usual derivative of f in the Euclidian space; for Banach spaces
X,Y and function f : X → Y , the symbol Dxf(·)[x̄] denotes the Gâteaux-differential of
f in direction x̄ ∈ X.

If Λ is an open subset of R, then the derivative of f will also be denoted by f ′, which
stands for the time derivative of f .

Vector divergence and divergence operator

For a vector function v : Ω ⊂ Rd → Rd, its divergence divv is defined by

divv :=
d∑
i=1

∂ivi.

For f ∈
(
Lp(Ω)

)d
, p ∈ (1,∞), the operator −Div :

(
Lp(Ω)

)d → (
W 1,p′(Ω)

)∗
is defined by

−Divf [g] :=

∫
Ω
f · ∇gdx

for all g ∈W 1,p′(Ω).

Linear mappings between finite dimensional spaces

For finite dimensional spaces V and W over the real field, we denote by Lin(V,W ) the
space of all linear mappings from V to W . If dim(V ) = dim(W ) = d, then Linsym(V,W )
denotes the space of all linear mappings from V to W whose matrix representation w.r.t.
the standard ordered basis in Rd is symmetric.

Linear and continuous functions between Banach spaces

For Banach spaces X and Y , we denote by L(X,Y ) the space of all functions f : X → Y
which are linear and continuous. If X = Y , then we define L(X) := L(X,X). We also
denote by LH(X,Y ) the subset of L(X,Y ) whose elements are additionally bijective.

Remark 2.2. Note that the set LH(X,Y ) is not a subspace, since for f ∈ LH(X,Y ),
0 = f + (−f) is not in LH(X,Y ). 4

Remark 2.3. Using open mapping theorem we know that f−1 ∈ LH(Y,X) for f ∈
LH(X,Y ), thus LH(X,Y ) is the collection of all linear homeomorphisms (for which the
word “LH” stands) from X to Y . 4

Subdifferential of a convex functional

Let f : X → R ∪ {+∞} be a convex function on a Banach space X which allows infinite
values. Then for x0 ∈ X the subdifferential ∂f(x0) is defined by

∂f(x0) := {f∗ ∈ X∗ : f(x) ≥ f(x0) + 〈f∗, x− x0〉X ∀x ∈ X},

where X∗ is the dual space of X and 〈·, ·〉X denotes the dual product of X and X∗. An
element in the subdifferential is called a subgradient. The convex function f is called
positively 1-homogeneous if f(λx) = λf(x) for all λ > 0 and x ∈ X.
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2.4. Model derivation Chapter 2

Remark 2.4. Taking x = 0 and λ = 2 in the condition f(λx) = λf(x) we immediately
see that f(0) = 0. 4

2.4 Model derivation

In this section and in the rest of the thesis, we will make extensive use of the following
physical quantities:

Time interval (0, T ) ⊂ [0,∞)

Ferroelectric body Ω ⊂ Rd, d ∈ {2, 3}
Mechanical displacement u : (0, T )×Ω→ Rd

Infinitesimal small strain tensor ε = ε(u) :=
1

2

(
∇u+∇uT

)
Electric potential φ : (0, T )×Ω→ R

Electric field E = E(φ) := −∇φ
Polarization P : (0, T )×Ω→ Rd

Cauchy stress tensor σ : (0, T )×Ω→ Linsym(Rd,Rd)

Dielectric displacement D : (0, T )×Ω→ Rd.

Elastic stiffness tensor C : Rd → Linsym(Rd×d,Rd×d) with Cklij = Clkji

Symmetric plastic strain tensor ε0 : Rd → Linsym(Rd,Rd)

Coupling effect tensor e : Rd → Lin(Rd×d,Rd)

Symmetric dielectric matrix ε : Rd → Linsym(Rd,Rd)

Remark 2.5. In this thesis, the tensors C, ε0, e, ε are assumed to be dependent on
the polarization P . Since P takes value in Rd, we will thus assume that these tensors
are defined on the domain Rd. Alternatively, these functions can also be assumed to be
functions defined on the underlying domain Ω, which is the case given in the recent paper
[38]. 4

Based on [55], we introduce the main phase-field model from the following physics. The
model describes the relationship between the mechanical displacement u, the electric field
E and the polarization P . During the modeling we generally assume that all functionals
are smooth and integrable, and limit and integration can always be interchanged.

Now we start to derive the precise model. Consider the problem on the time interval
(0, T ) with some T ∈ (0,∞). Assuming quasistatic state, we obtain from the Cauchy’s
momentum equation and the Gauss’ law given in the Maxwell’s equations that

−divσ = f1 in (0, T )×Ω, (2.1a)

divD = f2 in (0, T )×Ω, (2.1b)

where f1 is the mechanical volume force, f2 is the free space charge. Our next step is
to derive a precise expression formula for σ and D in terms of u, φ, P and to derive an
evolutionary law for the polarization P . This will be done with help of the second law
of thermodynamics. We first define the following physical quantities, which are necessary
notation and definitions for a reasonable mathematical formulation of the evolutionary
law of P :
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Chapter 2 2.4. Model derivation

1. The symbol G denotes the free energy, which is thought as the energy part stored
in the system and can be transformed to heat or dissipation. We adopt the explicit
formula for G given by [55]:

G = G1(u, φ,P ) + G2(P ),

which is a sum of two energy functionals. Here, the functional G1 corresponds to the
free energy part related to the mechanical displacement and free electric charge and
is defined by

G1(u, φ,P )

:=

∫
Ω
G1

(
ε(u),E(φ),P

)
dx

:=

∫
Ω

1

2
C(P )

(
ε(u)− ε0(P )

)
:
(
ε(u)− ε0(P )

)
−
(
e(P )

(
ε(u)

− ε0(P )
)

+
1

2
ε(P )E(φ) + P

)
·E(φ)dx,

(2.2)

where C, ε0, e, ε are assumed to be functions of the polarization P ∈ Rd; G2 corres-
ponds to the free energy part w.r.t. the polarization P . To model the energy part
G2, we use the fact that phase transition occurs in ferroelectric materials. More pre-
cisely, when applying an external electric field to the ferroelectric body, the direction
of the bound charge is aligned to the same direction of the electric field. Therefore
we obtain the ferroelectric phase transition phenomenon as shown in Fig. 2.1.

Figure 2.1: Phase transition phenomenon of the polarization [55].

A general tool for modeling phase transition phenomenon is the Ginzburg-Landau-
Devonshire-theory (for ferroelectrics see for instance [43]), which suggests that the
free energy is approximated by a polynomial ω (of some physically reasonable accur-
ate order, which is chosen to be of order six here due to [55]) and the corresponding
coefficients of ω can be calculated with help of the maximum dissipation principle.
We refer to [56] for the precise calculation method for the polynomial coefficients. On
the other hand, to include the interfacial effects between different phases, a gradient
energy term is suggested to be added into the energy functional. Thus we assume
that

G2(P ) = G2,GLD(P ) + G2,grad(P )

=:

∫
Ω
ω(P )dx+

∫
Ω

κ

2
|∇P |2dx,

(2.3)

where ω is a sixth order polynomial and κ is a positive constant.

2. The symbol U denotes the energy part which is done by the external loadings. Thus
we have

U =

∫
∂Ω
fS1 · u+ fS2 φ+ π · P dS +

∫
Ω
f1 · u− f2φ+ f3 · P dx, (2.4)
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2.4. Model derivation Chapter 2

where fS1 , f
S
2 are the mechanical force and free charge on the surface, π,f3 are the

surface and volume force related to P .

3. The symbol D denotes the system dissipation.

We generally assume that the work done by the external loadings is transformed to two
parts: one part is the dissipation, and another part is the energy part which is stored in
the system and can be dissipated. Due to the definition, the second part is exactly the
free energy part. Thus we obtain that

D = U − G.

Now the second law of thermodynamics states that the dissipation is always increasing,
which can be mathematically seen that its time derivative is always nonnegative. Therefore

D′ = U ′ − G′ ≥ 0.

Assuming quasistatic loadings, the derivatives of the external loadings can be neglected.
Thus due to chain rule we infer that the variable (u, φ,P ) should satisfy the inequality(∫

∂Ω
fS1 · u′ + fS2 φ

′ + π · P ′dS

+

∫
Ω
f1 · u′ − f2φ

′ + f3 · P ′dx
)
− d

dt
G(u, φ,P ) ≥ 0.

(2.5)

Our goal is to find (u, φ,P ) such that (2.1) and (2.5) are satisfied.

In the following we will simplify the equations (2.1) and (2.5) to the differential system
(2.14) given below by using appropriate balancing and constitutive ansatz, whose solution
will automatically be a solution of (2.1) and (2.5). It turns out that the simplified model
(2.14) exhibits a much clearer mathematical structure and hence it will be our main model
in the rest of the thesis. Denote by n the unit outer normal vector. Assuming the force
balance on boundary:

σn = fS1 , D · n = fS2 on (0, T )× ∂Ω,

we obtain using divergence theorem that∫
Ω
f1 · u′dx =

∫
Ω
−divσ · u′dx

=

∫
Ω
σ : ε(u′)dx−

∫
∂Ω
σn · u′dS

=

∫
Ω
σ : ε(u′)dx−

∫
∂Ω
fS1 · u′dS

or equivantly ∫
Ω
f1 · u′dx+

∫
∂Ω
fS1 · u′dS =

∫
Ω
σ : ε(u′)dx. (2.6)

Analogously we obtain that

−
∫

Ω
f2φ
′dx+

∫
∂Ω

fS2 φ
′dS =

∫
Ω
D · ∇φ′dx = −

∫
Ω
D ·E(φ′)dx. (2.7)
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Chapter 2 2.4. Model derivation

Now using chain rule we deduce that

d

dt
G(u, φ,P )

=

∫
Ω

∂G1

∂ε

(
ε(u),E(φ),P

)
: ε(u′) +

∂G1

∂E

(
ε(u),E(φ),P

)
·E(φ′)dx

+DPG(u, φ,P )[P ′].

(2.8)

Inserting (2.6), (2.7) and (2.8) into (2.5), we obtain that∫
Ω

(
σ − ∂G1

∂ε

)
: ε(u′)−

(
D +

∂G1

∂E

)
·E(φ′)dx

−
(
DPG(u, φ,P )[P ′]−

∫
Ω
f3(t) · P ′dx−

∫
∂Ω
π(t) · P ′dS

)
≥ 0.

(2.9)

A canonical ansatz (which is also a standard argument in rational continuum thermody-
namics, see [55, (9)]) that makes (2.9) satisfied is to assume that

σ =
∂G1

∂ε
= C(P )

(
ε(u)− ε0(P )

)
+ e(P )T∇φ, (2.10)

D = −∂G1

∂E
= e(P )

(
ε(u)− ε0(P )

)
− ε(P )∇φ+ P (2.11)

and

−DPH(t,u, φ,P )[P ′] ≥ 0, (2.12)

where

H(t,u, φ,P ) = G(u, φ,P )−
∫

Ω
f3(t) · P dx−

∫
∂Ω
π(t) · P dS.

The functional −DPH evaluated at P ′ can be understood as the entropy part involving the
polarization, and (2.12) reads that the entropy part concerning P is always increasing. In
order to guarantee (2.12), it suffices to assume that there exists a convex and non negative
dissipation functional Ψ such that Ψ(0) = 0 and

−DPH(t,u, φ,P ) ∈ ∂Ψ(P ′). (2.13)

Thus the variable (u, φ,P ) will satisfy (2.1) and (2.5) if (u, φ,P ) satisfies the following
differential system:

σ = C(P )
(
ε(u)− ε0(P )

)
+ e(P )T∇φ in (0, T )×Ω, (2.14a)

D = e(P )
(
ε(u)− ε0(P )

)
− ε(P )∇φ+ P in (0, T )×Ω, (2.14b)

divσ = f1 in (0, T )×Ω, (2.14c)

divD = f2 in (0, T )×Ω, (2.14d)

∂Ψ(P ′) 3 −DPH(t,u, φ,P ) in (0, T ). (2.14e)

In order to obtain physically and mathematically reasonable existence results, different
boundary and initial conditions and dissipation functionals Ψ will be imposed for (2.14),
which are formulated and discussed in the forthcoming content.
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2.4. Model derivation Chapter 2

2.4.1 An overview of the main results for dissipation functionals of two
different types

We discuss ferroelectric models with different dissipation functionals Ψ, where Ψ is given
by the expression (1.2). Here, we focus on two types of dissipation functionals which are
mostly studied in recent mathematical research: the dissipation functional of mixed type
and the dissipation functional of quadratic growth.

Viscous and vanishing viscosity solutions

Most of the ferroelectric models are rate-independent. The reason is that most of these
models utilize the so called Preisach operator to describe the ferroelectric hysteresis loop,
and the Preisach operator is rate-independent, see for instance [8]. However, smart actu-
ators and sensors are usually rate-dependent. The magnetostrictive actuators investigated
in [62] can be considered rate-independent if the external loading has smaller than 5Hz
frequency. For larger frequencies, the rate-independency is inappropriate any longer and
one must consider the model as a rate-dependent one. In [60] it is pointed out that piezo-
ceramics are rate-dependent even at low frequencies. These facts show that a reasonable
candidate of Ψ should include both rate-independent and- dependent effects. Thus in this
thesis, we analyse general dissipation functionals of the expression

Ψ(P ) = Ψ1(P ) + βΨ2(P ), (2.15)

where Ψ1,Ψ2 are non negative real valued convex functions defined on Rd with Ψ1(0) =
Ψ2(0) = 0 and β is some positive constant. In particular, Ψ1 is positively 1-homogeneous,
i.e.

∀λ > 0 ∀P ∈ Rd : Ψ(λP ) = λΨ(P )

and Ψ1 corresponds to the rate-independent dissipation part. On the other hand, Ψ2

corresponds to the rate-dependent part (namely it is not positively 1-homogeneous). In
recent papers [47, 55], this part is assumed to be of polynomial growth. Among all rate-
dependent dissipation functionals of polynomial growth, the quadratic one is of particular
interest, which is the most command one appearing in engineering simulation. In this
thesis we will thus assume that

Ψ2(P ) = |P |2.

We see that one may scale the size of β to control the rate dependence. If β = 0, the model
becomes fully rate-independent and the so called energetic solution for rate-independent
models has been given in [50]. For β > 0, we see that solutions given by this ansatz are
closely connected to the so called viscous solutions (see for instance [39] for an application
of the viscous method for the damage model). We utilize the same strategy as in [39] to
show the existence of viscous solutions. In what follows, we briefly outline the idea for
showing the existence of viscous solutions:

• From the constitutive law (2.14) it is natural to formulate a weak expression for the
piezo-system (assuming mixed boundary conditions on (u, φ) for (2.14a) to (2.14d))
by multiplying (2.14c) and (2.14d) with test function (ū, φ̄), which is given by (3.2a)
below. In this case, the underlying spaces for (u, φ,P ) are the corresponding Sobolev
spaces with certain orders. More precisely, we will be looking for solutions

(u, φ,P ) : (0, T )→
(
H1
∂Ωu(Ω)

)d ×H1
∂Ωφ

(Ω)×
(
H1(Ω)

)d
15
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for the problem (3.2). Also, the dissipation potentials Ψ1 and Ψ2 are generalized
to variational expressions, i.e., they are understood as functionals defined on the

underlying space
(
H1(Ω)

)d
for P (more precisely, these are integrals of the ones

given in (2.15) over Ω). On the other hand, in order to guarantee certain three di-
mensional Sobolev’s compact embeddings from Sobolev spaces into Lebesgue spaces
with sufficient integrability orders, the gradient energy has to be replaced by a frac-
tional energy term by the case d = 3 (for details, see Section 3.2). In this case, the

underlying space for P is replaced by
(
Hs(Ω)

)3
for some s ∈ [3

2 , 2).

Remark 2.6. A general question is if such replacement of gradient energy is phys-
ically acceptable. So far, no experimental and numerical results are given for the
ferroelectric model with a fractional gradient energy due to technical difficulties in-
volving fractional calculus. But the study with such a fractional gradient energy
might be of interest in the following sense: the gradient energy term ‖∇P ‖2L2 in-
dicates that the interaction effect between different bound charge is irrelevant of
their distance. However, an accurate physical description of the interaction between
bound charge is that the interaction effect is inversely proportional to the distance
of the bound charge. In order to indicate such inversely proportional effect, the
gradient energy term should be replaced by a fractional term, which gives a better
description of the interaction effect between different bound charge. 4

• Next, we see that the coefficient tensor B1 of the elliptic problem (2.14a) to (2.14d)
defined by (3.3) is not symmetric. This leads to the problem that when taking the
test function equal to the solution of the piezo-system to obtain a variational formu-
lation, the coupling terms of the variational problem will cancel out. In this case, the
minimizer of the variational problem is an Euler-Lagrange critical point correspond-
ing to a piezo-system without coupling effect. To solve this problem, we will use the
Legendre transform to formulate an equivalent variational problem (3.20) involving
the energy E given by (3.14), which takes the variable (u,D,P ) with divergence free
D of class L2, such that, roughly speaking, the energy E has a symmetric coefficient
tensor B2 (defined by (3.19)), which will guarantee the remanence of the coupling
terms. Now the new formulated energy E will have a unique global minimizer (u,D)
(since E is strict convex in (u,D)) for each P , and the minimization property of
(u,D) will be essential for the regularity results given in Section 3.5.

• Since the global minimizer (u,D) is uniquely determined for each P , one can for-
mulate an equivalent variational problem (3.34) for (3.20), which involves a reduced
energy functional I(t,P ) having only the variables t and P . In this case, we also
point out that Proposition 3.18 guarantees that the solution (u, φ) and the minim-
izer (u,D) are of class W 1,q ×W 1,q and W 1,q × Lq respectively for some q ∈ (2,∞)
if the domain is sufficiently regular (say, G1-regular) and the external loadings are
sufficiently smooth (roughly speaking, they are of class W−1,q), and this will en-
sure that the functionals H and DPH are well-defined by using certain Sobolev’s
embeddings and Hölder’s inequalities.

• Now we concentrate on the reduced problem (3.34). Using Rothe’s method one can
construct a sequence of time discrete interpolant solutions P̂ τ , P̄ τ ,P τ with time
finess τ > 0, which satisfy a discrete evolutionary law (3.60) derived from (3.34).
We will show that P̂ τ , P̄ τ ,P τ converge (up to subsequence) to some P β (within
certain weak topology and pointwise (in time) weak convergence due to the Helly’s
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selection theorem, see the proof of Theorem 3.30 below for details) as τ → 0 such
that

P β ∈ H1(0, T ;
(
Hs(Ω)

)d
).

From the previously mentioned weak convergence of P̂ τ , P̄ τ ,P τ to P β, the conver-
gence properties of functionals given by Corollary 3.24 below and the initial value
condition that DP I(0,P 0) is of class L2, we infer that P β is a solution of (3.34).
This completes the proof.

We are also interested in the behavior of P β as β tends to zero. To achieve this, we define
for a viscous solution P β the quantity

sβ(t) := t+

∫ T

0
‖P ′β(σ)‖Hsdσ

and let Sβ := sβ(T ). Define the arc length parametrization t̃β : [0, Sβ] → [0, T ] and

P̃ β : [0, Sβ]→
(
Hs(Ω)

)d
by

t̃β(σ) := s−1
β (σ),

P̃ β(σ) := P β

(
t̃β(σ)

)
.

One can show that {Sβ}β>0 is a bounded sequence (Lemma 3.33), thus up to a converging
subsequence of {Sβ}β>0 we have Sβ → S as β → 0 for some S ≥ T . Using the rescaling
argument given in [16] we may w.l.o.g. consider the parameterized trajectories on the fixed
time interval [0, S]. Particularly, t̃β and P̃ β satisfy the variational formulation (3.111).
Using certain Γ-convergence theory given in [48], it is possible to push β to 0 and the
arclength parametric solutions (t̃β, P̃ β) will converge to some vanishing viscosity solution
(t̃, P̃ ) (up to subsequence and within weak-∗-topology) such that

(t̃, P̃ ) ∈W 1,∞(0, S; [0, T ]×
(
Hs(Ω)

)d
)

and (t̃, P̃ ) satisfies a parametric limiting version (3.114) of (3.111). A vanishing viscosity
solution admits certain physical interpretation (see Section 3.9). Since H is in general not
convex in P , the vanishing viscosity solution differs from the energetic solutions given in
[50] at jumping points. See [48] for a survey of both solution concepts.

Dissipation functional with quadratic growth

On the other hand, we are also interested in the model given in [55], that is, Ψ1 in (2.15)
is constantly equal to zero. Thus we have (with a prefactor β

2 due to scaling convenience)

Ψ(P ) =
β

2
|P |2.

We will show local and global existence results. For local results, note that Ψ is now
differentiable in P , thus (2.14d) reduces to a semilinear parabolic equation

βP ′ = κ∆P + S(t,u, φ,P ) in (0, T )×Ω.

Here, the functional S(t,u, φ,P ) is defined by

S(t,u, φ,P ) = −DPG1

(
ε(u),E(φ),P

)
−DPω(P ) + f3(t),

17
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where G1, ω, f3 are the functionals given by (2.2), (2.3), (2.4) respectively. We will hence
look for a solution (u, φ,P ) which satisfies the differential system

σ = C(P )
(
ε(u)− ε0(P )

)
+ e(P )T∇φ in (0, T )×Ω, (2.16a)

D = e(P )
(
ε(u)− ε0(P )

)
− ε(P )∇φ+ P in (0, T )×Ω, (2.16b)

divσ = f1 in (0, T )×Ω, (2.16c)

divD = f2 in (0, T )×Ω, (2.16d)

βP ′ = κ∆P + S(t,u, φ,P ) in (0, T )×Ω. (2.16e)

Note again that (u, φ) can be uniquely determined by a given P , with help of certain
elliptic existence result. Thus we can reduce our problem to seeking a solution P of
(2.16e). In this case, S(t,u, φ,P ) can also be reduced to the functional S(t,P ) which
depends only on t and P . We utilize the idea given in [46], namely, we apply the fix point
theorem from [10] (Theorem 4.3 below), which is based on the Banach fixed point theorem
and the so called maximal parabolic property (see Definition 4.1), to obtain the existence
of local solutions. We will show that for certain p > d and r > 2p

p−d (depending on given
assumptions), (2.16e) has a unique local weak solution

P ∈W 1,r(0, T̂ ;
(
W−1,p
∂ΩP

(Ω)
)d

) ∩ Lr(0, T̂ ;
(
W 1,p
∂ΩP

(Ω)
)d

)

for some T̂ ∈ (0, T ], as long as the initial value P 0 satisfies the condition

P 0 ∈ (
(
W 1,p
∂ΩP

(Ω)
)d
,
(
W−1,p
∂ΩP

(Ω)
)d

) 1
r
,r.

In particular, P is also Hölder continuous w.r.t. time and space (see Proposition 4.13).
Inserting P to the elliptic system (2.16a) to (2.16d) involving u and φ, we easily obtain the
existence, uniqueness and regularity of (u, φ) (different from case to case due to different
imposed boundary conditions and given assumptions, thus we omit the details here due
to the tedious classification and refer to Chapter 4 for details). In what follows, we give
the precise methodologies for obtaining local existence results under different situations:

• We first consider the case that d = 2 and mixed boundary conditions are imposed for
(u, φ,P ). Using Proposition 3.18, the elliptic system (2.16a) to (2.16d) has a unique
weak solution (u, φ) for each given t and P , and the r.h.s. operator S(t,u, φ,P ) of
(2.16e) reduces to some functional S(t,P ) given by (4.24) which depends only on t
and P . Thus Theorem 4.3 is applicable to the equation

βP ′ = κ∆P + S(t,P ). (2.17)

In this case, it suffices to show that the Assumptions (A) and (S) of Theorem 4.3 are
satisfied under the given assumptions stated in Section 4.2. The verification of the
Assumption (A) is trivial by our case, thus only the fulfillment of the Assumption
(S) in Theorem 4.3 has to be checked. However, it turns out that the Assumption (S)
is in fact a statement of the Lipschitz continuity of S(t,P ) in the variable P , thus it
can be similarly proved as in the proofs of the regularity results given in Section 3.5.
We also point out that in order to apply Proposition 3.18, the uniform boundedness
of the coefficient tensor is necessary. However, the uniform boundedness of the
derivatives of the coefficient tensor is not needed anymore as it was in the case of
mixed type dissipation, since the underlying space for P is continuously embedded
to some Hölder space with certain order (thus uniformly bounded on Ω), while
the underlying space for P of the mixed type dissipation case is only embedded to
Lebesgue spaces with finite order.
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2.4. Model derivation Chapter 2

• Now we consider the case d = 3. In this case, Proposition 3.18 is no more applicable:
by imposing mixed boundary conditions on (u, φ) and assuming uniform bounded-
ness of the coeffcients, the solution (u, φ) of the elliptic system (2.16a) to (2.16d) is
expected to be of class W 1,q for some q > 2 under the application of Proposition 3.18.
However, the condition q > d = 3 is essential for our analysis, since from this con-
dition we infer that the term DP H̃, which is the most complicated and nonregular
summand in S(t,P ), is of class W−1,q and this will be necessary for the verification
of the Assumption (S) of Theorem 4.3.

If we restrict ourselves to the case that Dirichlet boundary conditions are imposed for
the elliptic system (2.16a) to (2.16d) and the underlying domain Ω has C1-boundary,
then we are able to infer the condition q > d = 3 by applying the regularity result
from [14, Lem. 2]. In other words, for each time point t and each P which is
uniformly continuous on Ω, the weak formulation given by (2.16a) to (2.16d) defines
an isomorphism from the space W 1,q

0 to W−1,q for all q ∈ (1,∞). In particular, unlike
the two dimensional case with mixed boundary conditions, no uniform boundedness
conditions of the coefficient tensors are needed for the application of [14, Lem. 2].
However, the inverse norm of the isomorphism from W 1,q

0 to W−1,q is in general no
more uniform in P (which was the case by Proposition 3.18), thus the proof for two
dimensional case can not be directly applied for the three dimensional case here. We
will use the continuity arguments given by [46] to fix this problem.

• A natural question is if we can obtain similar results for less regular domains in three
dimensional space, i.e., the boundary is less regular than C1. We see that the W 1,q

0

to W−1,q isomorphism property of the elliptic system (2.16a) to (2.16d) for some
q > d is essential for applying the existence results from [10]. If we restrict to a
cuboid, then the W 1,q

0 to W−1,q isomorphism property can be directly obtained by
using the Lp-regularity results with p > 3 given in [1]; for general polyhedrons, we
point out that the model given in [55] is closely related to Lamé operator and Laplace
operator. Then the corresponding Lp-regularity results can be obtained from [44],
which are based on some subtle spectral analysis near the geometric singularities of
a polyhedron (namely the edges and vertices). However, unlike the case for a cuboid,
since the regularity results of [44] rely on a self-adjoint elliptic operator theory, some
additional Dirichlet boundary conditions on P have to be imposed. We refer to
Section 4.4 for details.

We will also show global results: we apply similar Rothe’s method as the one applied
to the model with dissipation functional of mixed type to obtain global results. More
precisely, it suffices to set Ψ1 = 0 in the model with dissipation functional of mixed type
and then to apply the previously constructed Rothe’s approximation given in Chapter 3.
Thus uniform boundedness of the coefficients and their derivatives and replacement of the
gradient energy in 3D-case will still have to be imposed.
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Chapter 3

Existence results for dissipation
functional of mixed type

Throughout this chapter we assume that d ∈ {2, 3}.

3.1 Main problem formulation

First recall from (2.14) that

σ = C(P )
(
ε(u)− ε0(P )

)
+ e(P )T∇φ in (0, T )×Ω,

D = e(P )
(
ε(u)− ε0(P )

)
− ε(P )∇φ+ P in (0, T )×Ω

and (with appropriate sign changes of the equations for calculation convenience)

− divσ = f1 in (0, T )×Ω,

− divD = f2 in (0, T )×Ω,

0 ∈ ∂Ψβ(P ′) +DPH(t,u, φ,P ) in (0, T ).

We also impose the following mixed boundary conditions

u|∂Ωu = uD on (0, T )× ∂Ωu,

σn|∂Ωσ = t on (0, T )× ∂Ωσ,

φ|∂Ωφ
= φD on (0, T )× ∂Ωφ,

D · n|∂ΩD = ρ on (0, T )× ∂ΩD

and initial value condition

P (0) = P 0,

where ∂Ωu, ∂Ωσ, ∂Ωφ, ∂ΩD are subsets of ∂Ω. Assume also the existence of the functions
(uD, φD) : (0, T )×Ω→ Rd ×R with

uD|∂Ωu = uD on (0, T )× ∂Ωu, (3.1a)

φD|∂Ωφ
= φD on (0, T )× ∂Ωφ. (3.1b)

Then multiplying (2.14a) to (2.14d) with test function (ū, φ̄) and then integrating over Ω,
we obtain the following weak formulation of the main problem:

21



Chapter 3 3.1. Main problem formulation

Main Problem

Find (u, φ,P ) : (0, T )→
(
H1
∂Ωu

(Ω)
)d ×H1

∂Ωφ
(Ω)×

(
H1(Ω)

)d
such that

∫
Ω
B1

(
P (t)

)(ε(u(t)
)

∇φ(t)

)
:

(
ε̄
∇φ̄

)
dx = lt,P (t)(ū, φ̄), (3.2a)

0 ∈ DPH
(
t,u(t), φ(t),P (t)

)
+ ∂Ψβ

(
P ′(t)

)
, (3.2b)

P (0) = P 0 (3.2c)

for a.a. t ∈ (0, T ) and all (ū, φ̄) ∈
(
H1
∂Ωu

(Ω)
)d ×H1

∂Ωφ
(Ω), where ε

(
u(t)

)
, εD(t) and ε̄

are the small strain tensors corresponding to u(t), uD(t), ū and

B1(P ) =

(
C(P ) e(P )T

−e(P ) ε(P )

)
, (3.3)

lt,P (ū, φ̄) =

∫
Ω
f1(t) · ūdx+

∫
∂Ωσ

t(t) · ūdS −
(∫

Ω
f2(t)φ̄dx+

∫
∂ΩD

ρ(t)φ̄dS
)

−
∫

Ω

(
C(P )

(
εD(t)− ε0(P )

)
− eT (P )∇φD(t)

)
: ε̄dx

+

∫
Ω

(
e(P )

(
εD(t)− ε0(P )

)
− ε(P )∇φD(t) + P

)
· ∇φ̄dx,

(3.4)

H(t,u, φ,P ) =

∫
Ω
H
(
t, ε(u),∇φ,P

)
+ ω(P ) +

κ

2
|∇P |2dx

−
(∫

Ω
f3(t) · P dx+

∫
∂Ω
π(t) · P dS

)
,

(3.5)

Ψβ(P ) = Ψ1(P ) +
1

2
β‖P ‖2L2 =: Ψ1(P ) + Ψ2,β(P ) (3.6)

with

H(t, ε,∇φ,P ) =
1

2
C(P )

(
ε+ εD(t)− ε0(P )

)
:
(
ε+ εD(t)− ε0(P )

)
+
(
e(P )

(
ε+ εD(t)− ε0(P )

)
− 1

2
ε(P )

(
∇φ+∇φD(t)

)
+ P

)
·
(
∇φ+∇φD(t)

)
,

(3.7)

ω(P ) =


ψ0 + ψ1(P 2

1 + P 2
2) + ψ2(P 4

1 + P 4
2) + ψ3P

2
1P

2
2 + ψ4(P 6

1 + P 6
2), if d = 2;

ψ0 + ψ1(P 2
1 + P 2

2 + P 2
3) + ψ2(P 4

1 + P 4
2 + P 4

3)
+ψ3(P 2

1P
2
2 + P 2

2P
2
3 + P 2

1P
2
3) + ψ4(P 6

1 + P 6
2 + P 6

3), if d = 3,

(3.8)

where κ, β > 0 and ψ0 to ψ4 are given constants with ψ4 > 0.1

1The expression of ω is originally given in the paper [55].
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3.2. Replacement of the gradient energy Chapter 3

3.2 Replacement of the gradient energy

We point out that the proof of showing the existence of viscous solutions of (3.2) is based on
certain Rothe’s method. More precisely, we first construct certain time discrete interpolant
solutions and show a priori estimates for such solutions; then from the boundedness of the
sequence given by the time discrete interpolant solutions, one infers the weak convergence
(up to a subsequence) of the sequence of the time discrete interpolant solutions in some
Sobolev space, which leads to strong convergence in some Lebesgue space due to the
Sobolev’s compact embedding. However, we point out that ω is a polynomial of sixth
order, and it is well known that the embedding H1(Ω) ↪→ L6(Ω) is only continuous but
not compact in three dimensional space. Due to this reason we have to replace our gradient
energy term ‖∇P ‖2L2 by a fractional term of higher order in the three dimensional case.

Assumption 3.1. Let s ∈ [max{1, d2}, 2). The gradient energy G2,grad(P ) = κ
2‖∇P ‖

2
L2

appearing in (3.5) is replaced by

• G2,grad,s(P ) = κ
2‖∇P ‖

2
L2, if s = 1;

• G2,grad,s(P ) = κ
2

∫
Ω×Ω

|∇P (x)−∇P (y)|2
|x−y|d+2(s−bsc) dxdy, if s 6= 1.

Remark 3.2. At the first glance, such replacement of gradient energy is made artificially.
However, we believe that such replacement also makes sense from a physical viewpoint,
since the gradient energy term describes the interaction effect between the bound charge
of the ferroelectric material, whose strength should be inversely proportional to the dis-
tance between the bound charge, while by the original gradient energy term, such inverse
proportional relationship is neglected. 4

The Assumption 3.1 is kept for the rest of Chapter 3 and (3.5) is replaced by

H(t,u, φ,P ) =

∫
Ω
H(t, ε,∇φ,P )dx+ G2,grad,s(P )

−
(∫

Ω
f3(t) · P dx+

∫
∂Ω
π(t) · P dS

) (3.9)

and the underlying space for P is replaced by
(
Hs(Ω)

)d
.

3.3 Assumptions for the existence results

In order to guarantee the well-definedness of the main problem, we still need to solve
following problems:

• Existence of uD, φD given by (3.1);

• Well definedness of the integrals appearing in (3.2) to (3.4) and in (3.9);

• Well definedness of the Gâteaux-differential of H defined by (3.9) w.r.t. P .

We give the following assumptions, which guarantee that the above mentioned prerequis-
ites are fulfilled. Meanwhile, these assumptions will also be used to characterize the
preliminary conditions for the existence results given in Sections 3.7 and 3.8.

A1 Ω ⊂ Rd is a bounded domain with Lipschitz boundary, ∂Ωu∪̇∂Ωσ = ∂Ωφ∪̇∂ΩD =
∂Ω, ∂Ωu, ∂Ωφ are (d− 1)-sets, Ω∪ ∂Ωu,Ω∪ ∂Ωφ are G1-regular (c.f. Section 2.1).
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A2 C, e, ε0, ε (c.f. Section 2.4) defined on Rd are differentiable and uniformly Lipschit-
zian, their derivatives are also uniformly Lipschitzian.

A3 There exists some α > 0 such that

C(P )ε : ε ≥ α|ε|2,
ε(P )D ·D ≥ α|D|2,

sup
P∈Rd

(
|C(P )|+ |e(P )|+ |ε0(P )|+ |ε(P )|

)
<∞

uniformly for all P ∈ Rd, ε ∈ Linsym(Rd,Rd), D ∈ Rd.

A4 There exists some p∗ ∈ (2,∞) such that

f1 ∈ C1,1([0, T ];
(
L

p∗d
d+p∗ (Ω)

)d
),

t ∈ C1,1([0, T ];
(
L
p∗(d−1)

d (∂Ωσ)
)d

),

f2 ∈ C1,1([0, T ]; , L
p∗d
d+p∗ (Ω)),

ρ ∈ C1,1([0, T ];L
p∗(d−1)

d (∂ΩD)),

uD ∈ C1,1([0, T ];
(
B

1− 1
p∗

p∗,p∗ (∂Ωu)
)d

),

φD ∈ C1,1([0, T ];B
1− 1

p∗
p∗,p∗ (∂Ωφ)).

A5 There exists some q∗ ∈ (1,∞) such that

f3 ∈ C1,1([0, T ];
(
Lq
∗
(Ω)

)d
),

π ∈ C1,1([0, T ];
(
Lq
∗
(∂Ω)

)d
).

A6 There exist C > 0, C ′ ∈ R such that the polynomial ω defined by (3.8) satisfies

ω(P ) ≥ C|P |2 + C ′

for all P ∈ Rd.

A7 Ψ1 :
(
Hs(Ω)

)d → [0,∞) is convex, positively 1-homogeneous, weakly lower semi-

continuous in
(
Hs(Ω)

)d
and there exist d1, d2 > 0 such that for all P ∈

(
Hs(Ω)

)d
d1‖P ‖L1 ≤ Ψ1(P ) ≤ d2‖P ‖L1 . (3.11)

Remark 3.3. The uniform Lipschitz continuity of the coefficients given by Assumption
A2 also implies the uniform boundedness of their derivatives. 4

Remark 3.4. Note that t and ρ from Assumption A4 are of class
(
L
p∗(d−1)

d (∂Ω)
)d

and

L
p∗(d−1)

d (∂Ω) by extending t, ρ to t(x) = 0, ρ(y) = 0 for x ∈ ∂Ω\∂Ωσ and y ∈ ∂Ω\∂ΩD

respectively. With this trivial extension one infers that the embedding Lemma 3.5 below
can be applied to t and ρ. 4

First we present the Sobolev’s embedding Lemma 3.5. From this lemma we are able
to infer the following facts:
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3.3. Assumptions for the existence results Chapter 3

• The functionals given by Assumption A4 (except uD, φD, which are to be handled by

Lemma 3.8 below) are of class C1,1([0, T ];W−1,p∗

Γ ) (where Γ corresponds to different
Dirichlet boundary parts given by Assumption A1);

• The functionals from Assumption A5 are in the space C1,1,([0, T ];Y∗), where Y∗ is

the dual space of some Banach space Y such that the underlying set
(
Hs(Ω)

)d
of P

is compactly embedded to Y. Here, we have Y = L
q∗
q∗−1 and Y∗ = Lq

∗
corresponding

to Assumption A5.

The above mentioned statements will be essential for Proposition 3.18 and Corollary 3.24
given below.

Lemma 3.5. Let d ∈ {2, 3}. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary
and Γ ⊂ ∂Ω be a (d − 1)-set such that Ω ∪ Γ is G1-regular (see Section 2.1). Let also
s ∈ [max{1, d2}, 2). Then the following embeddings hold:

1. Lp(Ω) ↪→W−1,p
Γ (Ω) for p ∈ (2,∞) and p ∈ [ pdp+d ,∞];

2. Lp(∂Ω) ↪→W−1,p
Γ (Ω) for p ∈ (2,∞) and p ∈ [p(d−1)

d ,∞];

3. Hs(Ω) ↪→↪→ Lp(Ω) for all p ∈ [1,∞);

4. Hs(Ω) ↪→↪→ Lp(∂Ω) for all p ∈ [1,∞).

Proof. Let p ∈ (2,∞). Then the Hölder conjugate p′ of p is in the interval (1, 2). In
particular, p′ < 2 ≤ d. Next, we obtain the following Sobolev’s embedding relation

q ∈ [1,
dp′

d− p′
]⇒ 1− d

p′
≥ 0− d

q
.

Thus

q ∈ [1,
dp′

d− p′
]⇒W 1,p′

Γ (Ω) ⊂W 1,p′(Ω) ↪→ Lq(Ω).

On the other hand, one also obtains that

q ∈ [1,
dp′

d− p′
]⇔ q′ ∈ [

pd

p+ d
,∞].

Therefore using dual relation we obtain that

p ∈ [
pd

p+ d
,∞]⇒ Lp(Ω) ↪→W−1,p

Γ (Ω),

which completes the proof of the first statement. For the second statement, we obtain
from the Sobolev’s trace embedding [51, Chap. 2, Thm. 4.2] that

q ∈ [1,
p′(d− 1)

d− p′
]⇒W 1,p′

Γ (Ω) ⊂W 1,p′(Ω) ↪→ Lq(∂Ω).

On the other hand,

q ∈ [1,
p′(d− 1)

d− p′
]⇔ q′ ∈ [

p(d− 1)

d
,∞].
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Thus

p ∈ [
p(d− 1)

d
,∞]⇒ Lp(∂Ω) ↪→W−1,p

Γ (Ω),

which completes the proof of the second statement. Now since s− d
2 is always nonnegative

due to the definition of s, the third and fourth statements are evident. This completes the
desired proof.

Next, we obtain from Assumption A3 that ε(P ) ∈ Linsym(Rd,Rd) has a matrix inverse
ε−1(P ) ∈ Linsym(Rd,Rd) for all P ∈ Rd. We point out that since the the terms C(P )ε : ε
and ε(P )∇φ · ∇φ appearing in the functional H in (3.7) have opposite signs, variational
formulations based on H can not be coercive w.r.t. (ε,∇φ). To solve this problem, we
will apply certain Legendre transform to formulate a new equivalent variational problem
with symmetric coefficient tensor B2(P ) given by (3.19) below. We refer to Section 3.4
for details. It should also be indicated that the bottom right entry of B2(P ) is ε−1(P )
but not ε(P ) anymore. Hence similar statements as the ones given by the Assumptions
A2 and A3 should be formulated for the matrix ε−1(P ). We show that this is indeed true
as long as the Assumptions A2 and A3 hold.

Lemma 3.6. Let ε be a matrix that satisfies the Assumptions A2 and A3. Then ε−1 also
satisfies the Assumptions A2 and A3, with some elliptic constant α∗ > 0.

Proof. From the Assumptions A2 and A3 and basic linear algebra, one obtains immediately
that ε(P ) is an invertible matrix for all P ∈ Rd and ε−1(P ) is uniformly elliptic (with
elliptic constant α∗ > 0) and bounded for all P ∈ Rd. Since

Ed = ε(P )ε−1(P ),

where Ed is the d-dimensional unit matrix, we obtain from product rule that

0 =
(
DP ε(P )

)
ε−1(P ) + ε(P )

(
DP (ε−1)(P )

)
or

DP (ε−1)(P ) = −ε−1(P )DP ε(P )ε−1(P ).

Since ε−1(P ) and DP ε(P ) are uniformly bounded and Lipschitz continuous in P ∈ Rd,
we infer that DP ε

−1(P ) is also uniformly bounded and Lipschitz continuous in P ∈ Rd.
Thus ε−1 satisfies the Assumptions A2 and A3.

Remark 3.7. It is clear that the Assumption A3 holds for ε and ε−1 if we replace α and
α∗ by min{α, α∗}. Thus we can w.l.o.g. assume that α = α∗. 4

Now we show that the three conditions discussed at the beginning of Section 3.3 are
satisfied. The well-definedness of the integrals over Ω or subsets Γ of ∂Ω given in (3.2) to
(3.4) and in (3.9) are trivially obtained by the Assumptions A2 to A5 and the fact that
Hs(Ω) is continuously embedded to Lr(Ω) and Lr(∂Ω) for all r ∈ [1,∞). The existence
of uD and φD is ensured by the following lemma:

Lemma 3.8 ([34, Chap. 7]). Let F ⊂ Rd be a (d− 1)-set. Then there exists a continuous

extension from the Besov space B
1− 1

p
p,p (F ) to W 1,p(Rd) for all p ∈ (1,∞).
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From Lemma 3.8 we infer the embedding

B
1− 1

p
p,p (F ) ↪→W 1,p(Rd) ↪→W 1,p(Ω),

where the second embedding is the canonical restriction operator. This ensures the exist-

ence of uD and φD in the space
(
W 1,p∗(Ω)

)d×W 1,p∗(Ω) with trace value uD, φD on ∂Ωu

and ∂Ωφ respectively, where p∗ is the number given by the Assumption A4. In particular,
using Hölder’s inequality one obtains that the tensors ε(uD) and ∇φD are of class W−1,p∗

via the realization

ε(uD)[ū] =

∫
Ω
ε(uD) : ε(ū)dx,

∇φD[φ̄] =

∫
Ω
∇φD · ∇φ̄dx

for test function (ū, φ̄) of class W 1,(p∗)
′

with (p∗)
′

= p∗

p∗−1 .

At the end, we point out that the Gâteaux-differential DPH is not always well-defined
for all (u, φ) of class H1, since P is not necessarily essentially bounded on Ω for s = d

2 .
However, under the above given conditions, it can be shown that the solutions given by
(3.2a) are of class W 1,q for some q > 2 (see Lemma 3.19 below). Using this property, the
Gâteaux-differentiability of H w.r.t. P follows from Lemma A.8.

3.4 Equivalent energetic formulation and reduced energy

In order to apply the viscous method given in [39], our first step is to formulate a time
discrete minimization problem which is derived from the inclusion (3.2b). Therefore, one
expects that the solution (u, φ) of (3.2a) can be seen as some kind of “minimizer” of a
(quadratic in (u, φ)) energy functional. However, it seems unreasonable to take (u, φ)
as a minimizer due to the following reasons: First, the tensor B1(P ) given by (3.3) has
antidiagonals, this means that (u, φ) can not be the minimizer induced by the elliptic
problem (3.2a), since by setting the test function (ū, φ̄) equal to (u, φ) therein, the coupling
terms will cancel out; On the other hand, the terms C(P )ε : ε and ε(P )∇φ ·∇φ appearing
in the functional H in (3.7) have opposite signs, and therefore one obtains no coercivity
of the to be minimized functional w.r.t. P . We will apply certain Legendre transform to
formulate an equivalent problem such that the coercivity of the new formulated energy

functional is present. First, we define the function Dν : [0, T ] →
(
L2(Ω)

)d
as follows:

using Poincare’s inequality (see Lemma A.1) and Lax-Milgram we know that there exists
a uniquely determined φν : [0, T ]→ H1

∂Ωφ
(Ω) such that∫

Ω
∇φν(t) · ∇φ̄dx =

∫
Ω
f2(t)φ̄dx+

∫
∂ΩD

ρ(t)φ̄dS (3.12)

for a.a. t ∈ (0, T ) and all φ̄ ∈ H1
∂Ωφ

(Ω). Then we define Dν := ∇φν . In particular, using

Assumption A4 and applying Proposition 3.18 given below to the equation (3.12), we infer

that there exists some q∗ ∈ (2, p∗] such that Dν ∈ C1,1([0, T ];
(
Lq∗(Ω)

)d
) and

‖Dν‖C1,1([0,T ],Lq∗ (Ω))

≤C
(
‖f2‖

C1,1([0,T ],L
q∗d
d+q∗ (Ω))

+ ‖ρ‖
C1,1([0,T ],L

q∗(d−1)
d (∂ΩD))

)
.

(3.13)
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Here, p∗ is the number given by Assumption A4 and C is some positive constant depending
only on Ω and ∂Ωφ, where the dependence is deduced from Proposition 3.18. Next, we
define the energy functional E = E(t,u,D,P ) by

E(t,u,D,P ) = E1(t,u,D,P ) + E2(P )− l3(t,u,D,P ), (3.14)

where

E1(t,u,D,P ) :=

∫
Ω

1

2
B2(P )

(
ε(u) + εD(t)− ε0(P )
D +Dν(t)− P

)
:

(
ε(u) + εD(t)− ε0(P )
D +Dν(t)− P

)
dx

=:

∫
Ω
U1

(
t, ε(u),D,P

)
dx,

(3.15)

E2(P ) := G2,grad,s(P ) +

∫
Ω
ω(P )dx, (3.16)

l3(t,u,D,P ) :=
(∫

Ω
f1(t) · udx+

∫
∂Ωσ

t(t) · udS −
∫

Ω
∇φD(t) ·Ddx

)
+
(∫

Ω
f3(t) · P dx+

∫
∂Ω
π(t) · P dS

)
=: l13(t,u,D) + l23(t,P )

(3.17)

for u ∈
(
H1
∂Ωu

(Ω)
)d
, P ∈

(
Hs(Ω)

)d
and

D ∈MD :=
{
D ∈

(
L2(Ω)

)d
:

∫
Ω
D · ∇φdx = 0 ∀φ ∈ H1

∂Ωφ
(Ω)

}
, (3.18)

namely, D is divergence free in distributional sense. Here, ε(u) is the small strain tensor
generated by u and B2(P ) is defined by

B2(P ) =

(
C(P ) + eT (P )ε−1(P )e(P ) −eT (P )ε−1(P )

−ε−1(P )e(P ) ε−1(P )

)
. (3.19)

For the other terms defined in (3.12) to (3.19), see the variable list at the beginning of
Section 2.4. For the sake of simplicity we define

D̃ := D +Dν .

Notice also that B2(P ) is of class L∞(Ω; Lin(Rd×d × Rd,Rd×d × Rd)) for each P ∈(
Hs(Ω)

)d
due to Assumption A3.

Lemma 3.9. Let the Assumptions A1 to A6 be satisfied. Let q = (u,D,P ) : (0, T ) →(
H1
∂Ωu

(Ω)
)d ×MD ×

(
Hs(Ω)

)d
be a solution of the inclusion

0 ∈ DqE
(
t, q(t)

)
+ ∂Ψβ

(
P ′(t)

)
, P (0) = P 0 (3.20)

for a.a. t ∈ (0, T ). Then q induces a solution (u, φ,P ) of the laws (3.2). On the other
hand, if (u, φ,P ) solves (3.2), then (u, φ,P ) induces a solution q which solves (3.20) for
a.a. t ∈ (0, T ).
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Proof. Let us first suppose that q = (u,D,P ) is solution of (3.20). Since Ψβ is a functional
of a single variable P , we have

0 ∈ DuE
(
t, q(t)

)
,

0 ∈ DDE
(
t, q(t)

)
.

From Lemma A.7 we know that for each t ∈ [0, T ] and P ∈
(
Hs(Ω)

)d
, E(t,u,D,P ) is

Gâteaux-differentiable in (u,D). Thus using the Gâteaux-differentiability of E w.r.t. u
and D we know that the subdifferentiability is equivalent to differentiability, namely

0 = DuE
(
t, q(t)

)
,

0 = DDE
(
t, q(t)

)
.

By evaluating in test functions, we then easily derive that

0 =DuE
(
t,u(t),D(t),P (t)

)
[ū]

=

∫
Ω
C
(
P (t)

)(
ε
(
u(t)

)
+ εD(t)− ε0

(
P (t)

))
: ε̄− ε−1

(
P (t)

)(
D̃(t)− e

(
P (t)

)(
ε
(
u(t)

)
+ εD(t)− ε0

(
P (t)

))
− P (t)

)
·
(
e
(
P (t)

)
ε̄
)
dx−

(∫
Ω
f1(t) · ūdx+

∫
∂Ωσ

t(t) · ūdS
)
,

(3.21)

0 =DDE
(
t,u(t),D(t),P (t)

)
[D̄]

=

∫
Ω

(
ε−1
(
P (t)

)(
D̃(t)− e

(
P (t)

)(
ε
(
u(t)

)
+ εD(t)− ε0

(
P (t)

))
− P (t)

)
+∇φD(t)

)
· D̄dx

(3.22)

for all ū ∈
(
H1
∂Ωu

(Ω)
)d

and D̄ ∈ MD. Now recall that −Div :
(
L2(Ω)

)d → H−1
∂Ωφ

(Ω) is

defined by

−Div(T )[φ̄] =

∫
Ω
T · ∇φ̄dx

for φ̄ ∈ H1
∂Ωφ

(Ω). Define G := −Div. Then

KerG =
{
T ∈

(
L2(Ω)

)d
:

∫
Ω
T · ∇φdx = 0 ∀φ ∈ H1

∂Ωφ
(Ω)

}
= MD.

For an element l ∈ H−1
∂Ωφ

(Ω), using Poincare’s inequality and Lax-Milgram we know that

there exists a φl ∈ H1
∂Ωφ

(Ω) such that∫
Ω
∇φl · ∇φ̄dx = 〈l, φ̄〉H1

∂Ωφ
(Ω)

for all φ̄ ∈ H1
∂Ωφ

(Ω). Letting T = ∇φl, it follows that G is surjective and therefore

Ran(G) is closed in H−1
∂Ωφ

(Ω). Using (3.22) we obtain that

ε−1
(
P (t)

)(
D̃(t)−e

(
P (t)

)(
ε
(
u(t)

)
+εD(t)−ε0

(
P (t)

))
−P (t)

)
+∇φD(t) ∈ (KerG)⊥.
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Then from the closed range theorem it follows that

ε−1
(
P (t)

)(
D̃(t)− e

(
P (t)

)(
ε
(
u(t)

)
+ εD(t)− ε0

(
P (t)

))
− P (t)

)
+∇φD(t)

∈ (KerG)⊥ = RanG′,

where G′ is the adjoint of G. Since H1
∂Ωφ

(Ω) is a Hilbert space, we know that H1
∂Ωφ

(Ω) =(
H1
∂Ωφ

(Ω)
)∗∗

and there exists a −φ(t) ∈ H1
∂Ωφ

(Ω) such that∫
Ω

(
ε−1
(
P (t)

)(
D̃(t)− e

(
P (t)

)(
ε
(
u(t)

)
+ εD(t)− ε0

(
P (t)

))
− P (t)

)
+∇φD(t)

)
· T̄ dx

=G′
(
− φ(t)

)
[T̄ ] = G(T̄ )[−φ(t)] =

∫
Ω

(
−∇φ(t)

)
· T̄ dx

for all T̄ ∈
(
L2(Ω)

)d
. This implies that

ε−1
(
P (t)

)(
D̃(t)− e

(
P (t)

)(
ε
(
u(t)

)
+ εD(t)− ε0

(
P (t)

))
− P (t)

)
+∇φD(t) = −∇φ(t)

(3.23)
almost everywhere in Ω. Together with (3.21) and (3.22) we obtain that∫

Ω
C
(
P (t)

)(
ε
(
u(t)

)
+ εD(t)− ε0

(
P (t)

))
: ε̄+ e

(
P (t)

)T (∇φ(t) +∇φD(t)
)

: ε̄dx

=

∫
Ω
f1(t) · ūdx+

∫
∂Ωσ

t(t) · ūdS,

(3.24)

∫
Ω
e
(
P (t)

)(
ε
(
u(t)

)
+ εD(t)− ε0

(
P (t)

))
· ∇φ̄− ε

(
P (t)

)(
∇φ(t) +∇φD(t)

)
· ∇φ̄

+ P (t) · ∇φ̄dx

=

∫
Ω
f2(t)φ̄dx+

∫
∂ΩD

ρ(t)φ̄dS.

(3.25)

Subtract (3.25) from (3.24) and rearranging terms, we obtain (3.2a). Next, we utilize the
regularity result Lemma 3.19 from Section 3.5 given below to infer that D is of class Lp

for some p > 2: From Lemma 3.19 we obtain that under the Assumptions A1 to A6,
the solution (u, φ) is in fact of class W 1,p for some p > 2. Then using (3.23) one infers
immediately that D is of class Lp for some p > 2. Hence, from Lemma A.8 we obtain the
Gâteaux-differentiability of E(t,u,D,P ) in P . The derivative of E(t,u,D,P ) w.r.t. P
reads

DP E(t,u,D,P )[P̄ ]

=

∫
Ω
DPU1

(
t, ε(u),D,P

)
(P̄ ) +DPω(P )(P̄ )dx+ κ〈P , P̄ 〉s − l23(t, P̄ )

(3.26)

for P̄ ∈
(
Hs(Ω)

)d
. Define E := −(∇φ+∇φD) and

Û1(ε, D̃,P ) := U1(t, ε,D,P ),

Ĥ(ε,E,P ) := H(t, ε,∇φ,P ).
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Using direct calculation, we obtain from (3.23) and the derivative of Û1 w.r.t. D̃ that

E = DD̃Û1(ε, D̃,P ).

Define for E,P ∈ Rd and ε ∈ Linsym(Rd,Rd) the Legendre transform Û∗1 of Û1 w.r.t. E
by

Û∗1 (ε,E,P ) := sup
D̃∈Rd

{D̃ ·E − Û1(ε, D̃,P )}

From Lemma A.10 it follows

Û∗1 (ε,E,P ) + Û1(ε, D̃,P ) = D̃ ·E.

We obtain from direct calculation that

Ĥ(ε,E,P ) = Û1(ε, D̃,P )− D̃ ·E = −Û∗1 (ε,E,P ). (3.27)

Together with Lemma A.10 it follows

D̃ = DEÛ
∗
1 (ε,E,P ) = −DEĤ(ε,E,P ). (3.28)

Now, we point out that E can also be seen as a function of ε, D̃,P which is differentiable
w.r.t. P due to (3.23). Then from the chain rule we obtain that

DPU1(t, ε,D,P )

=DP Û1(ε, D̃,P )

=DEĤ(ε,E,P ) ·DPE + D̃ ·DPE +DP Ĥ(ε,E,P )

=
(
DEĤ(ε,E,P ) + D̃

)
·DPE +DP Ĥ(ε,E,P )

=DP Ĥ(ε,E,P )

=DPH(t, ε,∇φ,P ),

(3.29)

where the second equality comes from (3.27) and the chain rule and the fourth equality
from (3.28). Using (3.26) and (3.29), we infer that

DP E
(
t, q(t)

)
[P̄ ]

=

∫
Ω
DPH

(
t, ε
(
u(t)

)
,∇φ(t),P (t)

)
(P̄ ) +DPω

(
P (t)

)
(P̄ )dx+ κ〈P (t), P̄ 〉s − l23(t, P̄ )

=DPH
(
t,u(t), φ(t),P (t)

)
[P̄ ].

The law (3.20) implies immediately (3.2b)-(3.2c) and this completes the first part of the
proof. Now let (u, φ,P ) be a solution of (3.2). Define

D̃(t) := e
(
P (t)

)(
ε
(
u(t)

)
+εD(t)−ε0

(
P (t)

))
+P (t)−ε

(
P (t)

)(
∇φ(t)+∇φD(t)

)
. (3.30)

(3.25) implies that D(t) = D̃(t) − Dν(t) ∈ MD. (3.24), (3.30) imply (3.21), (3.22).
Together with (3.2b)-(3.2c) and (3.29), we see that q = (u,D,P ) is a solution of (3.20).
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Remark 3.10. One obtains the following bijective relation: First, let (u, φ,P ) be a solu-
tion of the problem (3.2). Let (u,D,P ) be the solution of (3.20), which is as constructed
in the second part of the proof of Lemma 3.9 andD is given as the difference of D̃ given by
(3.30) and Dν = ∇φν given by (3.12). Then we define the mapping L from the solutions
set of (3.2) to the solutions set of (3.20) by

L : (u, φ,P ) 7→ (u,D,P ).

In a converse way, given a solution (u,D,P ) of (3.20), one obtains a solution (u, φ,P )
of (3.2) as constructed in the first part of the proof of Lemma 3.9. We then define the
mapping J from the solutions set of (3.20) to the solutions set of (3.2) by

J : (u,D,P ) 7→ (u, φ,P ).

It is then easy to verified from the proof of Lemma 3.9 that L is a bijective function with
inverse J. 4

Remark 3.11. From (3.29) we obtain that if D and ∇φ are given via the relation (3.23),
then we obtain the identity

DPH(t, ε,∇φ,P ) = DPU1(t, ε,D,P ).

Dealing DPH and DPU1 as linear functionals which are evaluated at (t, ε,∇φ,P ) and
(t, ε,D,P ) respectively and map P̄ ∈ Rd to R, we obtain from the chain rule and simple
calculation the following useful identity

DPH(t, ε,∇φ,P )(P̄ )

=DPU1(t, ε,D,P )(P̄ )

=
1

2
DPB2(P )P̄

(
ε+ εD(t)− ε0(P )
D +Dν(t)− P

)
:

(
ε+ εD(t)− ε0(P )
D +Dν(t)− P

)
+ B2(P )

(
ε+ εD(t)− ε0(P )
D +Dν(t)− P

)
:

(
−DP ε0(P )P̄

−P̄

)
for P̄ ∈ Rd, which will be used several times in the rest of the thesis. 4

3.4.1 Reduced energy I

In what follows, we show that one can in fact deal with an equivalent problem to (3.20)
which concerns only the variable (t,P ).

Lemma 3.12. Let the Assumptions A1 to A6 be satisfied. Then for each t ∈ [0, T ] and P ∈(
Hs(Ω)

)d
, the functional E(t,u,D,P ) admits a unique minimizer

(
umin(t,P ),Dmin(t,P )

)
in
(
H1
∂Ωu

(Ω)
)d ×MD.

Proof. Let t ∈ [0, T ] and P ∈
(
Hs(Ω)

)d
be given. We first show the weak lower semi-

continuity of E(t,u,D,P ) w.r.t. (u,D). It suffices to show the uniform ellipticity of
B2(P ), i.e. to show that there exists a constant C > 0 such that

B2(P )

(
ε
D

)
:

(
ε
D

)
≥C
(
|ε|2 + |D|2

)
(3.31)

for all P ∈ Rd, ε ∈ Linsym(Rd,Rd) and D ∈ Rd. Indeed, the convexity of the integrand
U1 defined by (3.15) in (ε,D) follows from (3.31). Since ∇u→ ε(u) is linear, U1 is convex
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in (∇u,D). Since U1 is nonnegative, we obtain from [12, Thm. 3.23] (taking U1 = f ,
a = b = c = 0, q = 2 and ξ = (∇u,D) therein) that the weak lower semi-continuity of E1

follows from the convexity of the integrand U1 in (∇u,D). Since E2 depends only on P
and l3 is affine in (u,D), the weak lower semi-continuity of E in (u,D) follows. We refer
to Lemma A.6 for the proof of (3.31). Now due to Lemma A.6 and (3.15) we obtain that

E1(t,u,D,P ) ≥ C
(
‖ε(u) + εD(t)− ε0(P )‖2L2 + ‖D +Dν(t)− P ‖2L2

)
≥ C

(
‖ε(u)‖2L2 + ‖D‖2L2

)
+ µt,P

for some positive constant C and some real number µt,P , where µt,P depends on t and P .
Here, the last inequality is a direct consequence of the Young’s inequality. Due to Korn’s
inequality (Lemma A.2) it follows

E1(t,u,D,P ) ≥ C
(
‖ε(u)‖2L2 + ‖D‖2L2

)
+ µt,P

≥ C
(
‖u‖2H1 + ‖D‖2L2

)
+ µt,P .

Since E2 depends only on P and l3 is affine in (u,D) for each t and P , the coercivity of
E(t,u,D,P ) in (u,D) follows. Now the existence of a minimizer follows from Tonelli’s
abstract existence theorem.

It is still left to show the uniqueness of (umin,Dmin). First we point out that from
(3.31) we can even infer the strict convexity of U1 in (ε,D). Suppose that there are two
minimizers (u1,D1) and (u2,D2). Then estimating like in [12, Thm. 3.30, Step 2] (where
the strict convexity of U1 is utilized), we have ε(u1) = ε(u2) and D1 = D2 for a.a. x ∈ Ω.
But from Korn’s inequality we obtain immediately that

‖u1 − u2‖L2 ≤ C‖ε(u1 − u2)‖L2 = 0.

Thus u1 = u2 for a.a. x ∈ Ω and the uniqueness of the minimizer follows.

Now we define the reduced energy I by

I(t,P ) := E
(
t,umin(t,P ),Dmin(t,P ),P

)
(3.32)

and consider the following problem: Find P : (0, T )→
(
Hs(Ω)

)d
such that

0 ∈ DP I
(
t,P (t)

)
+ ∂Ψβ

(
P ′(t)

)
, P (0) = P 0 (3.33)

for a.a. t ∈ (0, T ).

Lemma 3.13. Let the Assumptions A1 to A6 be satisfied. Let P be a solution of (3.33).
Then P induces a solution q = (u,D,P ) of (3.20). On the other hand, if q is a solution
of (3.20), then q induces a solution P of (3.33).

Proof. Let q be a solution of (3.20). Then from the convexity of U1 in (ε,D) for fixed
t and P (deduced from the proof of Lemma 3.12) we also know that

(
u(t),D(t)

)
is the

unique minimizer of E
(
t,u(t),D(t),P (t)

)
(see for instance [12, Thm. 3.37, Step 2]), where

the uniqueness follows from Lemma 3.12. It follows that P is a solution of (3.33), which is
a direct consequence of (3.49) below. Now suppose that P is a solution of (3.33). Again
using [12, Thm. 3.37] it follows that

(
umin

(
t,P (t)

)
,Dmin

(
t,P (t)

))
is also a critical point

of the Gâteaux-differential of E
(
t,u,D,P (t)

)
w.r.t (u,D). Therefore, (umin,Dmin,P ) is

also a solution of (3.20).

Remark 3.14. Analogously as in Remark 3.10, if L̃ is the operator from the solutions set
of (3.20) to the solutions set of (3.33), and J̃ is the one from (3.33) to (3.20), where L̃, J̃
are constructed by the proof of Lemma 3.13, then L̃ is bijective with inverse J̃. 4

Due to Lemma 3.13 we have thus formulated an equivalent reduced problem. In what
follows, we will investigate the reduced problem given below:
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Reduced main problem

Find P : (0, T )→
(
Hs(Ω)

)d
such that

0 ∈ DP I
(
t,P (t)

)
+ ∂Ψβ

(
P ′(t)

)
, P (0) = P 0 for a.a. t ∈ (0, T ). (3.34)

Finally, we formulate the following proposition, which indicates that the inclusion
(3.34) can be equivalently interpreted as an integral identity or an integral inequality. The
idea is to make use of several equivalent formulations in subdifferential calculus involving
(3.34) (which are sometimes called the Fenchel’s formulas, see Lemma A.10). We refer the
details of the proof to [39].

Proposition 3.15 ([39, Prop. 3.1]). Let the Assumptions A1 to A7 be satisfied. Let

P ∈ H1(0, T ;
(
Hs(Ω)

)d
). Then the following statements are equivalent:

1. P is a solution of (3.34).

2. P fulfills for all 0 ≤ u ≤ t ≤ T the identity∫ t

u
Ψβ

(
P ′(τ)

)
dτ +

∫ t

u
Ψ∗β

(
−DP I

(
τ,P (τ)

))
dτ + I

(
t,P (t)

)
=I
(
u,P (u)

)
+

∫ t

u
∂tI
(
τ,P (τ)

)
dτ.

3. P fulfills for all 0 ≤ t ≤ T the inequality∫ t

0
Ψβ

(
P ′(τ)

)
dτ +

∫ t

0
Ψ∗β

(
−DP I

(
τ,P (τ)

))
dτ + I

(
t,P (t)

)
≤I
(
0,P (0)

)
+

∫ t

0
∂tI
(
τ,P (τ)

)
dτ.

3.5 Preliminary regularity results

As stated in Lemma A.8, for fixed given t ∈ [0, T ] and (u, φ,D) ∈
(
H1
∂Ωu

(Ω)
)d ×

H1
∂Ωφ

(Ω) × MD, the Gâteaux-differentiability of H(t,u, φ,P ) and E(t,u,D,P ) w.r.t.

P will be ensured if (u, φ,D) is of class (W 1,p)2 × Lp for some p > 2. We show that this
statement holds under the Assumptions A1 to A6.

Remark 3.16. In view of the equivalence Lemma 3.9, the following results are mostly
formulated only for the pair (u,D), since we are able to obtain similar results for the pair
(u, φ) via the relation (3.23), and the energy functional E having the variable (u,D) plays
the major role in the rest of this chapter. 4

Assumption 3.17 ([28, Def. 4.4]). Let Γ ⊂ ∂Ω be closed. There exists a linear, con-

tinuous extension operator E :
(
W 1,1

Γ (Ω)
)d → (

W 1,1(Rd)
)d

which simultaneously defines

a continuous extension operator E :
(
W 1,p

Γ (Ω)
)d → (

W 1,p(Rd)
)d

for all p ∈ (1,∞).

Due to [28] we know that under the condition that Ω ∪ Γ is G1-regular and Γ is a
(d− 1)-set, the Assumption 3.17 is satisfied.
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Based on Assumption 3.17, we introduce a useful regularity result (Proposition 3.18
below) from [28]. For 1 ≤ i ≤ m and Γi ⊂ ∂Ω we define the space

W1,p
Γ :=

m∏
i=1

W 1,p
Γi

(Ω).

For A ∈ L∞
(
Ω,Lin(Rm ×Rmd,Rm ×Rmd)

)
we define

〈A(u),v〉 :=

∫
Ω
A
(
u
∇u

)
:

(
v
∇v

)
dx

for u,v ∈W1,2
Γ .

Proposition 3.18 ([28, Thm. 6.2]). Let the Assumption 3.17 be satisfied for all Γi and
let all Γi be (d− 1)-sets. Furthermore, assume that there exists a positive constant η such
that

〈A(v),v〉 ≥ η‖v‖H1

for all v ∈ W1,2
Γ . Then there exists some p∗∗ > 2 such that for all p ∈ [2, p∗∗], A : v 7→

〈A(v), ·〉 defines a continuously invertible isomorphism from W1,p
Γ to W−1,p

Γ . In particular,
the norm of the inverse isomorphism operator depends only on the ellipticity constant η
and the L∞-norm of the coefficient tensor A.

Using Proposition 3.18 we obtain the following regularity result, which gives a sufficient
condition for Lemma A.8 that reveals the Gâteaux-differentiability of H(t,u, φ,P ) and
E(t,u,D,P ) in P :

Lemma 3.19. Let the Assumptions A1 to A6 be satisfied. Then there exists a con-

stant q ∈ (2,∞), such that for each t ∈ [0, T ] and P ∈
(
Hs(Ω)

)d
, the minimizer(

umin(t,P ),Dmin(t,P )
)

given by Lemma 3.12 is of class W 1,p × Lp for all p ∈ [2, q]
and satisfies the inequality

‖umin(t,P )‖W 1,p + ‖Dmin(t,P )‖Lp ≤ C
(
1 + Λ + ‖P ‖Lp

)
, (3.35)

where

Λ = ‖f1‖C1,1 + ‖f2‖C1,1 + ‖t‖C1,1 + ‖ρ‖C1,1 + ‖uD‖C1,1 + ‖φD‖C1,1 (3.36)

and the norm ‖ ·‖C1,1 is defined as the the norm ‖ ·‖C1,1,(0,T ;X ) for corresponding spaces X
given by the Assumption A4. In particular, C is uniform for all p ∈ [2, q] and independent
on the choice of P .

Proof. Recall that lt,P , the r.h.s. of (3.2a), is defined by

lt,P (ū, φ̄) =

∫
Ω
f1(t) · ūdx+

∫
∂Ωσ

t(t) · ūdS −
(∫

Ω
f2(t)φ̄dx+

∫
∂ΩD

ρ(t)φ̄dS
)

−
∫

Ω

(
C(P )

(
εD(t)− ε0(P )

)
− eT (P )∇φD(t)

)
: ε̄dx

+

∫
Ω

(
e(P )

(
εD(t)− ε0(P )

)
− ε(P )∇φD(t) + P

)
· ∇φ̄dx
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for test functions (ū, φ̄). We then write

lt,P =: l̂t,P −DivP .

Due to the Assumption A3, B1(P ) is essentially bounded on Ω and uniformly elliptic,
thus Korn’s and Poincaré’s inequalities imply the coercive condition 〈A(v),v〉 ≥ η‖v‖H1

in Proposition 3.18. From Lemma 3.5 and Lemma 3.8 it follows that lt,P is of class W−1,p

for all 2 ≤ p ≤ q for some q > 2: Indeed, using standard dual estimation and Hölder’s

inequality we see for ū ∈
(
W 1,p′(Ω)

)d
and φ̄ ∈W 1,p′(Ω) that

|l̂t,P (ū, φ̄)| ≤C
(
‖f1‖C1,1 + ‖t‖C1,1 + ‖f2‖C1,1 + ‖ρ‖C1,1

)(
‖ū‖W 1,p′ + ‖φ̄‖W 1,p′

)
+ C

(
‖εD‖C1,1 + ‖∇φD‖C1,1

)(
‖ε̄‖Lp′ + ‖∇φ̄‖Lp′

)
≤CΛ

(
‖ū‖W 1,p′ + ‖φ̄‖W 1,p′

)
.

On the other hand, −DivP is of class W−1,p for all 1 ≤ p <∞ due to Sobolev’s embedding.
Moreover, from Hölder’s inequality it follows that ‖ −DivP ‖W−1,p is bounded by ‖P ‖Lp .
Thus from Proposition 3.18 it follows that the solution (u, φ) of (3.2a) (for fixed t and P )
satisfies

‖u(t,P )‖W 1,p + ‖φ(t,P )‖W 1,p ≤ C
(
Λ + ‖P ‖Lp

)
(3.37)

for all 2 ≤ p ≤ q := min{p∗, p∗∗, q∗} with q > 2, where q∗ is defined by (3.13). Now (3.35)
follows from (3.23). The independence of C on P and p ∈ [2, q] follows directly from the
last statement of Proposition 3.18 and Assumption A3.

Using Proposition 3.18 one also obtains the differentiability of I w.r.t. t and P , which
is given in the forthcoming sections. Before stating these differentiability results we will
still need the following preliminary regularity lemma:

Lemma 3.20. Let the Assumptions A1 to A6 be satisfied. Then for all t1, t2 ∈ [0, T ],

P 1,P 2 ∈
(
Hs(Ω)

)d
and p ∈ [2, q), where q is given by Lemma 3.19, we have

‖umin(t1,P 1)− umin(t2,P 2)‖W 1,p + ‖Dmin(t1,P 1)−Dmin(t2,P 2)‖Lp
≤C
(
1 + Λ + ‖P 1‖Lq + ‖P 2‖Lq

)(
|t1 − t2|+ ‖P 1 − P 2‖Lr

)
,

(3.38)

where r := qp
q−p and Λ is defined by (3.36).

Proof. Let (ui, φi) be the solutions of (3.2a) with given pairs (ti,P i), i = 1, 2. Denote
also that εi = ε(ui). We obtain from (3.2a) that∫

Ω
B1(P 1)

(
ε1

∇φ1

)
:

(
ε̄
∇φ̄

)
dx = lt1,P 1(ū, φ̄), (3.39)∫

Ω
B1(P 2)

(
ε2

∇φ2

)
:

(
ε̄
∇φ̄

)
dx = lt2,P 2(ū, φ̄). (3.40)

Subtract (3.40) from (3.39) and rearranging terms, we have∫
Ω
B1(P 1)

(
ε1 − ε2

∇φ1 −∇φ2

)
:

(
ε̄
∇φ̄

)
dx

=(l̂t1,P 1 − l̂t2,P 2)(ū, φ̄) +

∫
Ω

(P 1 − P 2) · ∇φ̄dx−
∫

Ω

(
B1(P 1)− B1(P 2)

)( ε2

∇φ2

)
:

(
ε̄
∇φ̄

)
dx

= : I1 + I2 + I3.

(3.41)
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Divide I1 into two parts:

I1 = (l̂t1,P 1 − l̂t2,P 1) + (l̂t2,P 1 − l̂t2,P 2) =: I11 + I12.

It follows from standard dual estimation and the Assumption A4 that for ū ∈
(
W 1,p′(Ω)

)d
and φ̄ ∈W 1,p′(Ω)

|I11| ≤C|t1 − t2|
(
‖f1‖C1,1 + ‖t‖C1,1 + ‖f2‖C1,1 + ‖ρ‖C1,1

)(
‖ū‖W 1,p′ + ‖φ̄‖W 1,p′

)
+ C|t1 − t2|

(
‖εD‖C1,1 + ‖∇φD‖C1,1

)(
‖ε̄‖Lp′ + ‖∇φ̄‖Lp′

)
≤CΛ|t1 − t2|

(
‖ū‖W 1,p′ + ‖φ̄‖W 1,p′

)
.

For I12, it suffices to consider the following summands∫
Ω

(
C(P 1)− C(P 2)

)
εD(t2) : ε̄dx =: I121,∫

Ω

(
C(P 1)ε0(P 1)− C(P 2)ε0(P 2)

)
: ε̄dx =: I122

in I12, estimation of other summands in I12 can be deduced analogously. It follows that

|I121| ≤C
∫

Ω
|P 1 − P 2||εD(t2)||ε̄|dx

≤C‖P 1 − P 2‖Lr‖εD(t2)‖Lq‖ε̄‖Lp′
≤C‖P 1 − P 2‖Lr‖εD‖C1,1‖ε̄‖Lp′
≤CΛ‖P 1 − P 2‖Lr‖ε̄‖Lp′ ,

where r = qp
q−p > p and 1

r + 1
q + 1

p′ = 1. On the other hand,

|I122| ≤C
∫

Ω
|P 1 − P 2||ε̄|dx

≤C‖P 1 − P 2‖Lp‖ε̄‖Lp′
≤C‖P 1 − P 2‖Lr‖ε̄‖Lp′ .

We also obtain the following estimation:

|I2| ≤‖P 1 − P 2‖Lp‖∇φ̄‖Lp′ ≤ C‖P 1 − P 2‖Lr‖∇φ̄‖Lp′

and

|I3| ≤C‖P 1 − P 2‖Lr
(
‖ε2‖Lq + ‖∇φ2‖Lq

)(
‖ε̄‖Lp′ + ‖∇φ̄‖Lp′

)
≤C‖P 1 − P 2‖Lr

(
Λ + ‖P 2‖Lq

)(
‖ε̄‖Lp′ + ‖∇φ̄‖Lp′

)
,

where for the last inequality we have used the relation given by (3.37). Then applying
Proposition 3.18 to (3.41) we obtain that

‖u1 − u2‖W 1,p + ‖φ1 − φ2‖W 1,p

≤C
(
Λ + ‖P 2‖Lq

)(
|t1 − t2|+ ‖P 1 − P 2‖Lr

)
.

(3.42)

Now (3.38) follows from (3.23).

Remark 3.21. Since Λ given by (3.36) is uniquely determined by the Assumption A4,
we can w.l.o.g. assume that Λ is bounded by some positive constant C which does not
depend on the particular choice of u, φ, P in various inequalities. Thus in the rest of this
chapter, the symbol Λ is replaced by the positive constant C. 4
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3.5.1 Differentiability of I w.r.t. t

Lemma 3.22. Let the Assumptions A1 to A6 be satisfied. Then for every P ∈
(
Hs(Ω)

)d
,

t→ I(t,P ) is in C1,1([0, T ]) with

∂tI(t,P ) =

∫
Ω
B2(P )

(
ε
(
umin(t,P )

)
+ εD(t)− ε0(P )

Dmin(t,P ) +Dν(t)− P

)
:

(
ε′D(t)
D′ν(t)

)
dx

− l′3
(
t,umin(t,P ),Dmin(t,P ),P

)
.

(3.43)

Furthermore, for t1, t2, t ∈ [0, T ], P 1,P 2,P ∈
(
Hs(Ω)

)d
, p ∈ [2, q), where q is given by

Lemma 3.19, we have the inequalities

|∂tI(t,P )| ≤ C
(
1 + ‖P ‖Lq + ‖P ‖Σ

L(q∗)′
)
, (3.44)

where q∗ is defined by Assumption A5, (q∗)′ = q∗

q∗−1 and

‖P ‖Σ
L(q∗)′ := ‖P ‖L(q∗)′ (Ω) + ‖P ‖L(q∗)′ (∂Ω); (3.45)

|∂tI(t1,P 1)− ∂tI(t2,P 2)|
≤Cα(P 1,P 2)

(
|t1 − t2|+ ‖P 1 − P 2‖Lr1 + ‖P 1 − P 2‖Lr + ‖P 1 − P 2‖ΣL(q∗)′

)
,

(3.46)

where r1 = q
q−2 , r = qp

q−p and

α(P 1,P 2) = 1 + ‖P 1‖Lq + ‖P 2‖Lq + ‖P 1‖ΣL(q∗)′ + ‖P 2‖ΣL(q∗)′ .

Proof. Recall from (3.14) that

E = E1 + E2 − l3.

We first show the differentiability of E(t,u,D,P ) w.r.t. t for given fixed (u,D,P ) ∈(
H1(Ω)

)d × (L2(Ω)
)d × (Hs(Ω)

)d
and show that

∂tE
(
t,u,D,P

)
=

∫
Ω
B2(P )

(
ε(u) + εD(t)− ε0(P )
D +Dν(t)− P

)
:

(
ε′D(t)
D′ν(t)

)
dx

− l′3
(
t,u,D,P

)
.

Since E2 depends only on P , we only have to consider E1 and l3. It is straightforward to
show that the derivative of l3 is l′3 and we omit the details here. Now we calculate the
derivative of E1 w.r.t. t. It suffices to consider one side derivative (since the other side
can be deduced analogously), thus let h ∈ (0, ε] for some small ε > 0. It follows from the
chain rule that

1

h

(
E1(t+ h,u,D,P )− E1(t,u,D,P )

)
=

∫
Ω

∫ 1

0
B2(P )

(
ε(u) + εD(t+ σh)− ε0(P )
D +Dν(t+ σh)− P

)
:

(
ε′D(t+ σh)
D′ν(t+ σh)

)
dσdx

= :

∫
Ω

∫ 1

0
B2(P )J1,σ,h : J2,σ,hdσdx.
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We obtain from Hölder’s inequality and Fubini’s theorem that

∣∣∣ ∫
Ω

(∫ 1

0
B2(P )J1,σ,h : J2,σ,hdσ

)
− B2(P )

(
ε(u) + εD(t)− ε0(P )
D +Dν(t)− P

)
:

(
ε′D(t)
D′ν(t)

)
dx
∣∣∣

=
∣∣∣ ∫

Ω

∫ 1

0
B2(P )J1,σ,h : J2,σ,hdσdx−

∫
Ω

∫ 1

0
B2(P )J1,0,0 : J2,0,0dσdx

∣∣∣
=
∣∣∣ ∫

Ω

∫ 1

0
B2(P )(J1,σ,h − J1,0,0) : J2,σ,hdσdx+

∫
Ω

∫ 1

0
B2(P )J1,0,0 : (J2,σ,h − J2,0,0)dσdx

∣∣∣
≤C
(∫ 1

0
‖J1,σ,h − J1,0,0‖L2‖J2,σ,h‖L2 + ‖J2,σ,h − J2,0,0‖L2‖J1,0,0‖L2dσ

)
=:C

∫ 1

0
J̃(σ, h)dσ.

(3.47)

The Assumption A4 and (3.13) ensure that εD, Dν are of class C1,1([0, T ];L2), therefore
estimating J̃(σ, h) in terms of εD and Dν by using certain Hölder’s inequality (which
is derived from the penultimate line of (3.47), and we omit the details here due to its
straightforward but tedious calculation), we point out that J̃(σ, h) is uniformly bounded
on [0, 1] × [0, ε] and goes to zero as h → 0 for each σ ∈ [0, 1]. From the Lebesgue
dominated convergence theorem we infer that (3.47) goes to zero as h → 0, which shows
the differentiability of E1 w.r.t. t. Now we want to utilize the sup-inf arguments given
in [39, Lem. 2.4] to show the differentiability of I w.r.t. t. On the one hand, since
(u,D) = (umin,Dmin) is a minimizer, we obtain that

lim sup
h↘0

I(t+ h,P )− I(t,P )

h

≤ lim
h↘0

h−1
(
E
(
t+ h,umin(t,P ),Dmin(t,P ),P

)
− E

(
t,umin(t,P ),Dmin(t,P ),P

))
=∂tE

(
t,umin(t,P ),Dmin(t,P ),P

)
.

On the other hand, for h > 0 we obtain that

I(t+ h,P )− I(t,P )

h

≥h−1
(
E
(
t+ h,umin(t+ h,P ),Dmin(t+ h,P ),P

)
− E

(
t,umin(t+ h,P ),Dmin(t+ h,P ),P

))
=

∫
Ω

∫ 1

0
B2(P )

(
ε
(
umin(t+ h,P )

)
+ εD(t+ σh)− ε0(P )

Dmin(t+ h,P ) +Dν(t+ σh)− P

)
:

(
ε′D(t+ σh)
D′ν(t+ σh)

)
dσdx.

(3.48)

Now using the similar Hölder’s inequalities as the ones for estimating (3.47) we con-
clude that the last term of (3.48) converges to ∂tE

(
t,umin(t,P ),Dmin(t,P ),P

)
as h↘ 0.

Therefore we obtain the desired result.

It follows from standard dual estimation, (3.35) and Hölder’s inequality that (notice
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that 1 ≤ q′ ≤ 2 ≤ q)

|∂tI(t,P )| ≤
(
C

∫
Ω

(
1 + |ε(t,P )|+ |D(t,P )|+ |εD(t)|+ |Dν(t)|+ |P |

)
·
(
|ε′D(t)|+ |D′ν(t)|

)
dx
)

+ C
(
‖u(t,P )‖W 1,q′ + ‖D(t,P )‖Lq′ + ‖P ‖Σ

L(q∗)′
)

≤
(
C
(
1 + ‖ε(t,P )‖Lq + ‖D(t,P )‖Lq + ‖εD(t)‖Lq + ‖Dν(t)‖Lq + ‖P ‖Lq

)
·
(
‖ε′D(t)‖Lq′ + ‖D′ν(t)‖Lq′

))
+ C

(
‖u(t,P )‖W 1,q + ‖D(t,P )‖Lq + ‖P ‖Σ

L(q∗)′
)

≤
(
C
(
1 + ‖ε(t,P )‖Lq + ‖D(t,P )‖Lq + ‖εD(t)‖Lq + ‖Dν(t)‖Lq + ‖P ‖Lq

)
·
(
‖ε′D(t)‖Lq + ‖D′ν(t)‖Lq

))
+ C

(
‖u(t,P )‖W 1,q + ‖D(t,P )‖Lq + ‖P ‖Σ

L(q∗)′
)

≤C
(
1 + ‖P ‖Lq

)
+ C

(
1 + ‖P ‖Lq + ‖P ‖Σ

L(q∗)′
)

≤C
(
1 + ‖P ‖Lq + ‖P ‖Σ

L(q∗)′
)
,

where
(
ε(t,P ),D(t,P )

)
=
(
ε
(
umin(t,P )

)
,Dmin(t,P )

)
. Let

∂tI(t,P ) =: I(t,P )− l′3(t,umin(t,P ),Dmin(t,P ),P )

=: I(t,P ) + J(t,P ).

Define

Ii1,i2,i3 :=

∫
Ω
B2(P i1)

(
ε
(
umin(ti2 ,P i2)

)
+ εD(ti2)− ε0(P i2)

Dmin(ti2 ,P i2) +Dν(ti2)− P i2

)
:

(
ε′D(ti3)
D′ν(ti3)

)
dx.

It then reads

I(t1,P 1)− I(t2,P 2) = (I111 − I211) + (I211 − I221) + (I221 − I222).

Similarly as done previously, we obtain from (3.35), (3.38) and the Lipschitz continuity of
B2(P ) in P that

|I111 − I211|

≤C
∫

Ω
|P 1 − P 2|

(
1 + |ε1|+ |D1|+ |εD(t1)|+ |Dν(t1)|+ |P 1|

)
·
(
|ε′D(t1)|+ |D′ν(t1)|

)
dx

≤C‖P 1 − P 2‖Lr1
(
1 + ‖ε1‖Lq + ‖D1‖Lq‖+ ‖εD(t1)‖Lq + ‖Dν(t1)‖Lq + ‖P 1‖Lq

)
·
(
‖ε′D(t1)‖Lq + ‖D′ν(t1)‖Lq

)
≤C
(
1 + ‖P 1‖Lq + ‖P 2‖Lq

)
‖P 1 − P 2‖Lr1

≤C
(
1 + ‖P 1‖Lq + ‖P 2‖Lq

)
‖P 1 − P 2‖Lr1 ,
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where r1 := q
q−2 with 1

r1
+ 1

q + 1
q = 1 and (εi,Di) =

(
ε
(
umin(ti,P i)

)
,Dmin(ti,P i)

)
,

|I211 − I221| ≤C
∫

Ω

(
|ε1 − ε2|+ |D1 −D2|+ |εD(t1)− εD(t2)|

+ |Dν(t1)−Dν(t2)|+ |P 1 − P 2|
)
·
(
|ε′D(t1)|+ |D′ν(t1)|

)
dx

≤C
(
‖ε1 − ε2‖Lp + ‖D1 −D2‖Lp + ‖εD(t1)− εD(t2)‖Lp

+ ‖Dν(t1)−Dν(t2)‖Lp + ‖P 1 − P 2‖Lp
)(
‖ε′D(t1)‖Lq + ‖D′ν(t1)‖Lq

)
≤C
((

1 + ‖P 1‖Lq + ‖P 2‖Lq
)(
|t1 − t2|+ ‖P 1 − P 2‖Lr

)
+ |t1 − t2|+ ‖P 1 − P 2‖Lp

)
≤C
(
1 + ‖P 1‖Lq + ‖P 2‖Lq

)(
|t1 − t2|+ ‖P 1 − P 2‖Lr + ‖P 1 − P 2‖Lp

)
≤C
(
1 + ‖P 1‖Lq + ‖P 2‖Lq

)(
|t1 − t2|+ ‖P 1 − P 2‖Lr

)
,

|I221 − I222| ≤C
∫

Ω

(
1 + |ε2|+ |D2|+ |εD(t2)|+ |Dν(t2)|+ |P 2|

)
·
(
|ε′D(t1)− ε′D(t2)|+ |D′ν(t1)−D′ν(t2)|

)
dx

≤C
(
1 + ‖ε2‖Lq + ‖D2‖Lq + ‖εD(t2)‖Lq + ‖Dν(t2)‖Lq + ‖P 2‖Lq

)
·
(
‖ε′D(t1)− ε′D(t2)‖Lq + ‖D′ν(t1)−D′ν(t2)‖Lq

)
≤C|t1 − t2|

(
1 + ‖P 2‖Lq

)
≤C|t1 − t2|

(
1 + ‖P 1‖Lq + ‖P 2‖Lq

)
.

For the part J(t,P ), we write

J(t1,P 1)− J(t2,P 2)

=
(
J(t1,P 1)− J(t2,P 1)

)
+
(
J(t2,P 1)− J(t2,P 2)

)
=:J1 + J2.

Similarly, it follows

|J1| ≤C|t1 − t2|
(
‖u1‖W 1,q′ + ‖D1‖Lq′ + ‖P 1‖ΣL(q∗)′

)
≤C|t1 − t2|

(
‖u1‖W 1,q + ‖D1‖Lq + ‖P 1‖ΣL(q∗)′

)
≤C|t1 − t2|

(
1 + ‖P 1‖Lq + ‖P 2‖Lq + ‖P 1‖ΣL(q∗)′ + ‖P 2‖ΣL(q∗)′

)
,

|J2| ≤C
(
‖u1 − u2‖W 1,p + ‖D1 −D2‖Lp + ‖P 1 − P 2‖ΣL(q∗)′

)
≤C
(
(1 + ‖P 1‖Lq + ‖P 2‖Lq)

(
|t1 − t2|+ ‖P 1 − P 2‖Lr

)
+ ‖P 1 − P 2‖ΣL(q∗)′

)
≤C
(
1 + ‖P 1‖Lq + ‖P 2‖Lq

)(
|t1 − t2|+ ‖P 1 − P 2‖Lr + ‖P 1 − P 2‖ΣL(q∗)′

)
.

Sum up all, we obtain the desired result.

3.5.2 Differentiability of I w.r.t. P

Lemma 3.23. Let the Assumptions A1 to A6 be satisfied. Let

Ĩ(t,P ) := I(t,P )− 1

2
κ〈P ,P 〉s.
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Then for every t ∈ [0, T ], P → Ĩ(t,P ) is Gâteaux-differentiable in
(
Hs(Ω)

)d
and

DP Ĩ(t,P )[P̄ ]

=

∫
Ω
DPU1

(
t, ε
(
umin(t,P )

)
,Dmin(t,P ),P

)
(P̄ ) +DPω(P )(P̄ )dx− l23(t, P̄ )

(3.49)

for every P , P̄ ∈
(
Hs(Ω)

)d
. Furthermore, for t1, t2, t ∈ [0, T ], P 1,P 2, P̄ ∈

(
Hs(Ω)

)d
and

p ∈ (2, q), where q is given by Lemma 3.19, we have

∣∣DP Ĩ(t,P )[P̄ ]
∣∣ ≤ C(1 + ‖P ‖2Lq + ‖P ‖5L6

)(
‖P̄ ‖Lr1 + ‖P̄ ‖L6 + ‖P̄ ‖Σ

L(q∗)′
)
, (3.50)

where ‖P ‖Σ
L(q∗)′ is given by (3.45);

∣∣DP Ĩ(t1,P 1)[P̄ ]−DP Ĩ(t2,P 2)[P̄ ]
∣∣

≤Cγ(P 1,P 2)
(
|t1 − t2|+ ‖P 1 − P 2‖Lr + ‖P 1 − P 2‖Lr2 + ‖P 1 − P 2‖L6

)
·
(
‖P̄ ‖Lr2 + ‖P̄ ‖Lr3 + ‖P̄ ‖L6 + ‖P̄ ‖Σ

L(q∗)′
)
,

(3.51)

where r = qp
q−p , r1 = q

q−2 , r2 = 2q
q−2 , r3 = qp

qp−(q+p) and

γ(P 1,P 2) = 1 +
2∑
i=1

‖P i‖2Lq +
2∑
i=1

‖P i‖4L6 .

Proof. The proof of (3.49) is essentially the same as the proof of (3.43). Since the adoption
of the proof is straightforward but tedious, we omit the details here. Writing U1 in (3.49)
explicitly we obtain that

DP Ĩ(t,P )[P̄ ] =

∫
Ω

(1

2
DPB2(P )P̄

(
ε+ εD(t)− ε0(P )
D +Dν(t)− P

)
:

(
ε+ εD(t)− ε0(P )
D +Dν(t)− P

))
+
(
B2(P )

(
ε+ εD(t)− ε0(P )
D +Dν(t)− P

)
:

(
−DP ε0(P )P̄

−P̄

))
+
(
DPω(P )(P̄ )

)
dx+

(
− l23(t, P̄ )

)
= : I1 + I2 + I3 + I4,

(3.52)

where (ε,D) =
(
ε(umin),Dmin

)
. Then estimating similarly as in Lemma 3.20, we deduce
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that

|I1| ≤ C
∫

Ω
|P̄ |
(
1 + |ε|+ |D|+ |εD(t)|+ |Dν(t)|+ |P |

)2
dx

≤ C‖P ‖r1
(
1 + ‖ε‖Lq + ‖D‖Lq + ‖P ‖Lq

)2
≤ C

(
1 + ‖P ‖2Lq

)
‖P ‖r1 ,

|I2| ≤ C
∫

Ω
|P̄ |
(
1 + |ε|+ |D|+ |εD(t)|+ |Dν(t)|+ |P |

)
dx

≤ C‖P ‖r1
(
1 + ‖ε‖Lq + ‖D‖Lq + ‖P ‖Lq

)
≤ C

(
1 + ‖P ‖Lq

)
‖P ‖r1

≤ C
(
1 + ‖P ‖2Lq

)
‖P ‖r1 ,

|I3| ≤ C
∫

Ω

(
1 + |P |5

)
|P̄ |dx

≤ C
(
1 + ‖P ‖5L6

)
‖P̄ ‖L6 ,

|I4| ≤ C‖P̄ ‖ΣL(q∗)′ ,

where r1 = q
q−2 . Summing up we obtain (3.50). To obtain (3.51), we first estimate the

difference terms

∆1 =
∣∣I1(t1,P 1)[P̄ ]− I1(t2,P 2)[P̄ ]

∣∣,
∆2 =

∣∣I2(t1,P 1)[P̄ ]− I2(t2,P 2)[P̄ ]|.

It suffices to estimate the following summands

J1 =

∫
Ω
|P̄ ||P 1 − P 2|

(
1 + |ε1|+ |D1|+ |εD(t1)|+ |Dν(t1)|+ |P 1|

)2
dx

and

J2 =

∫
Ω
|P̄ |
(
1 + |ε1|+ |D1|+ |εD(t1)|+ |Dν(t1)|+ |P 1|

)
·
(
|ε1 − ε2|

+ |D1 −D2|+ |εD(t1)− εD(t2)|+ |Dν(t1)−Dν(t2)|+ |P 1 − P 2|
)
dx

given in ∆1 and ∆2, since the other summands can be estimated analogously. Here we
used the notation

(εi,Di) =
(
ε
(
umin(ti,P i)

)
,Dmin(ti,P i)

)
.

We then obtain from Hölder’s inequality that

|J1| ≤C‖P̄ ‖Lr2‖P 1 − P 2‖Lr2
(
1 + ‖ε1‖Lq + ‖D1‖Lq + ‖P 1‖Lq

)2
≤C‖P̄ ‖Lr2‖P 1 − P 2‖Lr2

(
1 + ‖P 1‖2Lq + ‖P ‖2Lq

)
,

|J2| ≤C‖P̄ ‖Lr3
(
1 + ‖ε1‖Lq + ‖D1‖Lq + ‖P 1‖Lq

)
·
(
‖ε1 − ε2‖Lp

+ ‖D1 −D2‖Lp + ‖εD(t1)− εD(t2)‖Lp + ‖Dν(t1)−Dν(t2)‖Lp + ‖P 1 − P 2‖Lp
)

≤C‖P̄ ‖Lr3
(
1 + ‖P 1‖2Lq + ‖P 2‖2Lq

)(
|t1 − t2|+ ‖P 1 − P 2‖Lr + ‖P 1 − P 2‖Lp

)
≤C‖P̄ ‖Lr3

(
1 + ‖P 1‖2Lq + ‖P 2‖2Lq

)(
|t1 − t2|+ ‖P 1 − P 2‖Lr

)
,
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where r = qp
q−p , r2 = 2q

q−2 and r3 = qp
qp−(q+p) with

1

r2
+

1

r2
+

1

q
+

1

q
= 1,

1

r3
+

1

q
+

1

p
= 1.

For I3, I4, it follows ∣∣I3(t1,P 1)[P̄ ]− I3(t2,P 2)[P̄ ]
∣∣

≤
∫

Ω
|DPω(P 1)−DPω(P 2)||P̄ |dx

≤C
∫

Ω

(
1 + |P 1|4 + |P 2|4

)
|P 1 − P 2||P̄ |dx

≤C
(
1 + ‖P 1‖4L6 + ‖P 2‖4L6

)
‖P 1 − P 2‖L6‖P̄ ‖L6 ,

∣∣I4(t1,P 1)[P̄ ]− I4(t2,P 2)[P̄ ]
∣∣

≤C|t1 − t2|‖P̄ ‖ΣL(q∗)′ .

Sum up all, we obtain (3.51).

Finally, using Lemma 3.22 and Lemma 3.23 we obtain the following sequential conver-
gence result, which will be essential in the analysis of the construction of viscous solutions.

Corollary 3.24. Let the Assumptions A1 to A6 be satisfied. Let tn → t and P n ⇀ P in(
Hs(Ω)

)d
as n→∞. Then we have

• lim infn→∞ I(tn,P n) ≥ I(t,P ).

• Ĩ(tn,P n)→ Ĩ(t,P ) as n→∞.

• ∂tI(tn,P n)→ ∂tI(t,P ) as n→∞.

• DP Ĩ(tn,P n)→ DP Ĩ(t,P ) strongly in [
(
Hs(Ω)

)d
]∗ as n→∞,

where the functional Ĩ is defined by Lemma 3.23 and [
(
Hs(Ω)

)d
]∗ is the dual space of

(Hs(Ω))d.

Proof. This is a direct consequence of Lemma 3.22, Lemma 3.23 and the compact embed-
dings given in Lemma 3.5.

3.6 Time discrete interpolant solutions

We now construct a sequence of time discrete interpolant solutions which are temporarily
piecewise affine interpolants and converge weakly to the desired solution of the main
problem (3.34). We first show the coerciveness of the functional I w.r.t. P .

Lemma 3.25. Let the Assumptions A1 to A6 be satisfied. Then I(t,P ) is coercive w.r.t.
P for all t ∈ [0, T ], i.e., there exist C > 0, C ′ ∈ R such that

I(t,P ) ≥ C‖P ‖2Hs + C ′ (3.53)

holds for all t ∈ [0, T ].
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Proof. Recall that

I(t,P ) = E
(
t,umin(t,P ),Dmin(t,P ),P

)
and

E = E1 + E2 − l3.

Since E1 is nonnegative due to its definition, we have

I(t,P ) ≥ E2(P )− l3(t,umin(t,P ),Dmin(t,P ),P ). (3.54)

Due to the Assumption A6 it follows that there is some C > 0 and C ′ ∈ R such that

E2(P ) ≥ C
(
〈P ,P 〉s + ‖P ‖2L2

)
+ C ′ = C‖P ‖2Hs + C ′, (3.55)

since
√
〈·, ·〉s + ‖ · ‖2

L2 defines an equivalent norm on
(
Hs(Ω)

)d
, see Lemma C.12. On the

other hand, it follows from (3.35), the Assumption A5 and the definition of l3 given by
(3.17) that

|l3
(
t,umin(t,P ),Dmin(t,P ),P

)
| ≤ C

(
1 + ‖P ‖Hs

)
≤ C + ε‖P ‖2Hs (3.56)

for arbitrary ε > 0, where the second inequality of (3.56) is deduced from Young’s in-
equality. Combining (3.55) and (3.56), we obtain that

I(t,P ) ≥ (C − ε)‖P ‖2Hs + C ′.

The coercivity follows immediately by choosing sufficiently small ε.

The following lemma will be essential for a Gronwall-type inequality (Lemma 3.28)
later on.

Lemma 3.26. Let the Assumptions A1 to A6 be satisfied. Then there exist constants

c0, c1 > 0 independent on P such that for all t ∈ [0, T ] and P ∈
(
Hs(Ω)

)d
|∂tI(t,P )| ≤ c1

(
I(t,P ) + c0

)
. (3.57)

Proof. We obtain that

|∂tI(t,P )| ≤ C
(
1 + ‖P ‖Hs

)
≤ C

(
1 + ‖P ‖2Hs

)
≤ C

(
1 + I(t,P )

)
,

where the first inequality comes from (3.44) and Sobolev’s embedding (see Lemma 3.5),
the second from Young’s inequality and the last from (3.53).

Lemma 3.27. Let the Assumptions A1 to A7 be satisfied and let Ψβ be the functional

defined by (3.6). Then for each t ∈ [0, T ], τ > 0 and P̄ ∈
(
Hs(Ω)

)d
, the functional

I(t,P ) + τΨβ(P−P̄τ ) has a minimizer P in
(
Hs(Ω)

)d
.

Proof. Since Ψβ is nonnegative, the functional I(t,P ) + τΨβ(P−P̄τ ) is coercive w.r.t. P
due to Lemma 3.25. From Corollary 3.24 and the definition of Ψβ we know that the

functional I(t,P ) + τΨβ(P−P̄τ ) is weakly lower semi-continuous. Then the existence of a
minimizer follows from Tonelli’s abstract existence theorem.
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In what follows, we will use certain Rothe’s method (analogous to the one given in [39])

to construct a viscous solution of (3.34) for every β > 0. Given β > 0, P 0 ∈
(
Hs(Ω)

)d
and a partition {0 = t0 < ... < tN = T} of [0, T ] with fineness τ = sup0≤k≤N−1(tk+1− tk),
the sequence (P τ

k)0≤k≤N is defined inductively by P τ
0 = P 0 and

P τ
k+1 ∈ ArgminP∈(Hs(Ω))d{I(tτk+1,P ) + τkΨβ

(P − P τ
k

τk

)
}

with τk := tτk+1 − tτk, k = 0, 1, ..., N − 1 (the existence of P τ
k+1 is guaranteed by Lemma

3.27). Since P τ
k+1 are chosen to be minimizers, it reads that

0 ∈ ∂Ψ1

(P τ
k+1 − P τ

k

τk

)
+ β

P τ
k+1 − P τ

k

τk
+DP I(tτk+1,P

τ
k+1). (3.58)

We define

P̄ τ (t) = P τ
k+1, for t ∈ (tτk, t

τ
k+1],

P τ (t) = P τ
k, for t ∈ [tτk, t

τ
k+1),

P̂ τ (t) = P τ
k +

t− tτk
τk

(P τ
k+1 − P τ

k), for t ∈ [tτk, t
τ
k+1],

τ(t) = τk, for t ∈ (tτk, t
τ
k+1),

t̄τ (t) = tτk+1, for t ∈ (tτk, t
τ
k+1],

tτ (t) = tτk, for t ∈ [tτk, t
τ
k+1).

(3.59)

Then (3.58) can be rewritten to

0 ∈ ∂Ψ1

(
P̂
′
τ (t)

)
+ βP̂

′
τ (t) +DP I

(
t̄τ (t), P̄ τ (t)

)
for a.a t ∈ (0, T ). (3.60)

Lemma 3.28. Let the Assumptions A1 to A7 be satisfied. Denote by ek := I(tk,P
τ
k),

k = 1, ..., N . Then we have

I(tk,P
τ
k) ≤ (e0 + c0)exp(c1tk)− c0 (3.61)

and

k∑
j=1

τj−1Ψβ

(P τ
j − P τ

j−1

τj−1

)
≤ (e0 + c0)exp(c1tk), (3.62)

where c0, c1 are defined by Lemma 3.26. In particular, ‖P τ
k‖Hs ≤ C with some positive

constant C for all k = 1, ..., N and all τ > 0.

Proof. The idea is to apply a discrete type Gronwall inequality to the inequality (3.57),
which is similarly done as in the proof of [19, Thm 3.2]. More precisely, one only has to

replace the dissipation functional D(zj−1, zj) in [19, Thm 3.2] by τjΨβ

(
P j−1−P j

τj

)
and the

proof of [19, Thm 3.2] still remains true. Since the adoption of the proof is trivial, we
refer the details to [19].

Lemma 3.29. Let the Assumptions A1 to A7 be satisfied. Let P̂ τ , P̄ τ , P τ be given as in
(3.59). Suppose also that DP I(0,P 0) is of class L2. Then there exist constants C,C ′ > 0
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such that

max{‖P̂ τ‖L∞(0,T ;(Hs(Ω))d), ‖P̄ τ‖L∞(0,T ;(Hs(Ω))d), ‖P τ‖L∞(0,T ;(Hs(Ω))d)} ≤ C, (3.63)

‖P̂ ′τ‖L2(0,T ;(L2(Ω))d) ≤
C√
β
, (3.64)

max{‖P̄ τ − P̂ τ‖L∞(0,T ;(Hs(Ω))d), ‖P τ − P̂ τ‖L∞(0,T ;(Hs(Ω))d)}

≤C
√
τ‖P̂ ′τ‖L2(0,T ;(Hs(Ω))d), (3.65)

∫ T

0
Ψ1(P̂

′
τ (t))dt+ Ψ2,β(P̂

′
τ (t))dt ≤ C, (3.66)

‖P̂ ′τ‖L2(0,T ;(Hs(Ω))d) ≤

√
C

β
+

1

β
‖DP I(0,P 0)‖2

L2 + C ′. (3.67)

Proof. (3.63) follows directly from Lemma 3.28, the coercivity of I and the definition of
P̂ τ , P̄ τ ,P τ . Using the definition of P̂ τ , we see that (3.62) implies that∫ T

0
Ψ1

(
P̂
′
τ (t)

)
dt+ Ψ2,β

(
P̂
′
τ (t)

)
dt ≤ C,

from which we obtain (3.66). Bounding the Ψ1-term in (3.66) from below by zero, we see
that

C ≥
∫ T

0
Ψ2,β

(
P̂
′
τ (t)

)
dt = β

∫ T

0
‖P̂ ′τ (t)‖2L2dt,

from which (3.64) follows. Next we show (3.65). Let t ∈ [tk−1, tk) and x ∈ Ω. From the
definition of the interpolant functions given by (3.59) we obtain that

P̄ τ (t,x)− P̂ τ (t,x)

=P τ
k(x)− P τ

k−1(x)− t− tk−1

τk−1

(
P τ
k(x)− P τ

k−1(x)
)

=
(
τk−1 − (t− tk−1)

)
P̂
′
τ (t,x)

and

∇P̄ τ (t,x)−∇P̂ τ (t,x)

=∇P τ
k(x)−∇P τ

k−1(x)− t− tk−1

τk−1

(
∇P τ

k(x)−∇P τ
k−1(x)

)
=
(
τk−1 − (t− tk−1)

)
∇P̂ ′τ (t,x).

Then for t ∈ [tk−1, tk) we have

|P̄ τ (t,x)− P̂ τ (t,x)|

≤τk−1|P̂
′
τ (t,x)| =

∫ tk

tk−1

|P̂ ′τ (σ,x)|dσ ≤
√
τ
(∫ tk

tk−1

|P̂ ′τ (σ,x)|2dσ
) 1

2 (3.68)
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and

|∇P̄ τ (t,x)−∇P̂ τ (t,x)|

≤τk−1|∇P̂
′
τ (t,x)| =

∫ tk

tk−1

|∇P̂ ′τ (σ,x)|dσ ≤
√
τ
(∫ tk

tk−1

|∇P̂ ′τ (σ,x)|2dσ
) 1

2
.

(3.69)

Replace ∇P̄ τ (t,x) and ∇P̂ τ (t,x) in (3.69) by ∇P̄ τ (t,x) − ∇P̄ τ (t,y) and ∇P̂ τ (t,x) −
∇P̂ τ (t,y) with x,y ∈ Ω respectively and then divide them by |x−y|d+2(s−bsc), we obtain
from the first inequality of (3.69) that∣∣(∇P̄ τ (t,x)−∇P̂ τ (t,x)

)
−
(
∇P̄ τ (t,y)−∇P̂ τ (t,y)

)∣∣
|x− y|d+2(s−bsc)

≤τk−1
|∇P̂ ′τ (t,x)−∇P̂ ′τ (t,y)|
|x− y|d+2(s−bsc)

=

∫ tk

tk−1

|∇P̂ ′τ (σ,x)−∇P̂ ′τ (σ,y)|
|x− y|d+2(s−bsc) dσ

≤
√
τ
(∫ tk

tk−1

( |∇P̂ ′τ (σ,x)−∇P̂ ′τ (σ,y)|
|x− y|d+2(s−bsc)

)2
dσ
) 1

2
.

(3.70)

Now squaring (3.68) to (3.70), integrating (3.68) and (3.69) over Ω w.r.t. x and (3.70)
over Ω2 w.r.t. (x,y), summing them up ((3.68) and (3.69) in the case s = 1, or (3.68)
and (3.70) in the case s 6= 1), and taking supremum over t ∈ [0, T ], we conclude that

sup
t∈[0,T ]

‖P̄ τ (t)− P̂ τ (t)‖2Hs ≤ τ
∫ T

0
‖P̂ ′τ (σ)‖2Hsdσ.

For P τ (t) one can show the same estimate similarly. Taking finally square roots on both
sides, it follows (3.65). It is left to show (3.67). First we state the following inequality
from [39, Prop. 4.1, (4.11)]:

β

2
‖P̂ ′τ (t)‖2L2 +

∫ t̄τ (t)

0
‖P̂ ′τ (σ)‖2Hsdσ

≤ 1

2β
‖DP I(0,P 0)‖2L2 +

∫ t̄τ (t)

0
‖P̂ ′τ (σ)‖2L2dσ

−
∫ t̄τ (t)

0

1

τ(σ)

〈
∆τ(σ)DP Ĩ

(
t̄τ (σ), P̄ τ (σ)

)
, P̂
′
τ (σ)

〉
Hs
dσ, (3.71)

where for a time partition τ and a function b which is constant on the intervals (tτi , t
τ
i+1),

the operator ∆τ(·)b(·) is defined by

∆τ(σ)b(σ) = b(σ)− b(σ′)

for σ ∈ (tτk, t
τ
k+1) and σ′ ∈ (tτk−1, t

τ
k), and for k = 0, ∆τ(σ)b(σ) = b(σ) − b(0), and 〈·, ·〉Hs

denotes the dual product in
(
Hs(Ω)

)d
; see also the notation given by (3.59). Instead of

giving the complete proof of (3.71), we would rather refer to [39, Prop. 4.1] for details
and introduce here only the basic idea of showing the inequality (3.71): writing

h̄τ (t) := βP̂
′
τ (t) +DP I

(
t̄τ (t), P̄ τ (t)

)
,
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we obtain from (3.60) that

−h̄τ (t) ∈ ∂Ψ1

(
P̂
′
τ (t)

)
.

Using the 1-homogeneity of Ψ1 we deduce that

∀ t ∈ (tτk, t
τ
k+1) : −Ψ1

(
P̂
′
τ (t
)
) = 〈h̄τ (t), P̂

′
τ (t
)
〉Hs ;

∀ r ∈ [0, T ] \ {tτ0 , ..., tτN} : Ψ1

(
P̂
′
τ (t
)
) ≥ 〈−h̄τ (r), P̂

′
τ (t
)
〉Hs .

Adding the both relations and then divide it by τ−1
i whence

0 ≥ τ−1
i 〈h̄τ (ρ)− h̄τ (σ), P̂

′
τ (ρ
)
〉Hs (3.72)

for ρ ∈ (tτi , t
τ
i+1) and σ ∈ (tτi−1, t

τ
i ). Summing (3.72) over i = 1, ..., k and estimating in a

subtle way (we omit the details here due to the complexity of calculation) we arrive finally
at (3.71). Next, we prove that∣∣∣ ∫ t̄τ (t)

0

1

τ(σ)

〈
∆τ(σ)DP Ĩ

(
t̄τ (σ), P̄ τ (σ)

)
, P̂
′
τ (σ)

〉
Hs
dσ
∣∣∣

≤ C
∫ t̄τ (t)

0
‖P̂ ′τ (σ)‖2L2dσ +

1

2

∫ t̄τ (t)

0
‖P̂ ′τ (σ)‖2Hsdσ + C ′.

(3.73)

We make use of the Ehrling’s lemma (see [67, Thm. 7.3, p.114]) to show (3.73), which is
given as follows: let X1, X2, X3 be normed spaces, A : X1 → X2 compact, T : X2 → X3 a
continuous injection. Then for every ρ > 0 there exists a constant Cρ with

‖Ax‖2 ≤ ρ‖x‖1 + Cρ‖TAx‖3

for all x ∈ X1. Taking 2 < p < ∞, X1 = Hs(Ω), X2 = Lp(Ω), X3 = L2(Ω) and A, T
the identity embeddings, we obtain from the Ehrling’s lemma (together with the fact that
Hs(Ω) is compactly embedded to L2(Ω)) that

‖P ‖2Lp ≤ Cρ‖P ‖2L2 + ρ‖P ‖2Hs (3.74)

for all P ∈
(
Hs(Ω)

)d
and all ρ > 0. Here Cρ > 0 is some positive constant depending on

ρ. By (3.51) and Sobolev’s embedding we obtain that∣∣〈DP Ĩ(t1,P 1)−DP Ĩ(t2,P 2), P̄ 〉Hs

∣∣
≤C‖P̄ ‖Hs

(
|t1 − t2|+ ‖P 1 − P 2‖Lr + ‖P 1 − P 2‖Lr2 + ‖P 1 − P 2‖L6

)
≤C‖P̄ ‖Hs

(
|t1 − t2|+ ‖P 1 − P 2‖Lp1

) (3.75)

for t1, t2 ∈ [0, T ], P 1,P 2, P̄ ∈
(
Hs(Ω)

)d
, where p1 := max{r, r2, 6} > 2 and r, r2 are given

by Lemma 3.23. Taking P 1 = P τ
k+1, P 2 = P τ

k, P̄ = P̂
′
τ (σ), t1 = tτk+1, t2 = tτk and divide

(3.75) by τ(σ) with σ ∈ (tτk, t
τ
k+1), we obtain from (3.59) that∣∣∣ 1

τ(σ)

〈
∆τ(σ)DP Ĩ

(
t̄τ (σ), P̄ τ (r)

)
, P̂
′
τ (σ)

〉
Hs

∣∣∣
≤C‖P̂ ′τ (σ)‖Hs

(
1 + ‖P̂ ′τ (σ)‖Lp1

)
≤ρ‖P̂ ′τ (σ)‖2Hs + Cρ

(
1 + ‖P̂ ′τ (σ)‖2Lp1

)
≤Cρ + CρCρ′‖P̂

′
τ (σ)‖2L2 + (ρ+ Cρρ

′)‖P̂ ′τ (σ)‖2Hs

(3.76)
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for any ρ, ρ′ > 0, where Cρ, Cρ′ > 0 are some positive constants depending on ρ, ρ′ respect-
ively. Here, the last inequality follows directly from (3.74) by setting p = p1 in (3.74).
Then (3.73) follows by choosing ρ + Cρρ

′ = 1
2 in (3.76) and then integrating both sides

of (3.76) over [0, t̄τ (t)] w.r.t. σ. Now estimating the last term of (3.71) by (3.73) and

neglecting β
2 ‖P̂

′
τ (t)‖2L2 in (3.71), we obtain that∫ t̄τ (t)

0
‖P̂ ′τ (σ)‖2Hsdσ ≤ C

∫ t̄τ (t)

0
‖P̂ ′τ (σ)‖2L2dσ +

1

β
‖DP I(0,P 0)‖2L2 + C ′. (3.77)

Finally, taking t = T in t̄τ (t) and using (3.64) to bound the first term in the r.h.s. of
(3.77), it follows (3.67).

3.7 Existence of viscous solutions

In the following we show the existence of viscous solution of (3.34) for each given β > 0.
The proof follows the lines of [39, Thm. 4.2].

Theorem 3.30. Let the Assumptions A1 to A7 be satisfied and β > 0 be an arbitrary

positive constant. Let {P̂ τ j}j∈N ⊂ H1(0, T ;
(
Hs(Ω)

)d
) be a sequence of piecewise affine

interpolants defined by (3.59) corresponding to β and with τ j → 0 as j → ∞. Suppose

also that P 0 ∈
(
Hs(Ω)

)d
and DP I(0,P 0) is of class L2. Then there exist a subsequence

{τ jk}k∈N of {τ j}j∈N and some P ∈ H1(0, T ;
(
Hs(Ω)

)d
) such that

• P̂ τ jk ⇀ P weakly in H1(0, T ;
(
Hs(Ω)

)d
) as k →∞;

• 0 ∈ DP I
(
t,P (t)

)
+ ∂Ψβ

(
P ′(t)

)
for a.a. t ∈ (0, T );

•
∫ t
u Ψ1

(
P ′(σ)

)
dσ = limk→∞

∫ t
u Ψ1

(
P̂
′
τ jk (σ)

)
dσ for all 0 ≤ u < t ≤ T .

Proof. We first make the convention that since we need to apply several times subsequence
argument, we do not relabel the indices of the subsequences which appear in the proof.

Due to (3.63), we know that {P̂ τ j}j∈N are uniformly bounded in L∞(0, T ;
(
Hs(Ω)

)d
) for

all j ∈ N, and therefore also in L2(0, T ;
(
Hs(Ω)

)d
), and due to (3.67), {P̂ ′τ j}j∈N are

also uniformly bounded in L2(0, T ;
(
Hs(Ω)

)d
) for all j ∈ N. It follows that {P̂ τ j}j∈N are

uniformly bounded inH1(0, T ;
(
Hs(Ω)

)d
) for all j ∈ N and hence there exist a subsequence

{τ j}j∈N and some P ∈ H1(0, T ;
(
Hs(Ω)

)d
) such that

P̂ τ j ⇀ P in H1(0, T ;
(
Hs(Ω)

)d
) as j →∞. (3.78)

Due to Lemma B.3 and (3.64) we infer that

P̂ τ j (t)→ P (t) in X for all t ∈ [0, T ] as j →∞, (3.79)

where X is an arbitrary Banach space with
(
Hs(Ω)

)d
↪→↪→ X ↪→

(
L2(Ω)

)d
. Due to (3.66)

and Lemma B.1 we know that there exist a subsequence {τ j}j∈N and some function

P 1 : (0, T )→
(
Hs(Ω)

)d
such that

P̂ τ j (t) ⇀ P 1(t) in
(
Hs(Ω)

)d
for all t ∈ [0, T ] as j →∞. (3.80)
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Due to the compact embeddings given by Lemma 3.5 we conclude that

P̂ τ j (t)→ P 1(t) in
(
L2(Ω)

)d
for all t ∈ [0, T ] as j →∞. (3.81)

Taking X =
(
L2(Ω)

)d
, we infer from (3.79) and (3.81) that P 1 = P . In particular,∫ t

u
Ψ1

(
P ′(σ)

)
dσ ≤ lim inf

j→∞

∫ t

u
Ψ1

(
P̂
′
τ j (σ)

)
dσ (3.82)

for all 0 ≤ u < t ≤ T due to Fatou’s lemma. On the other hand, (3.66) also implies that

there exist a subsequence {τ j}j∈N and some P 2 ∈ L2(0, T ;
(
L2(Ω)

)d
) such that

P̂
′
τ j ⇀ P 2 in L2(0, T ;

(
L2(Ω)

)d
) as j →∞.

We also know that P̂
′
τ j ⇀ P ′ in L2(0, T ;

(
Hs(Ω)

)d
) as j →∞ by (3.78). Since

(
Hs(Ω)

)d
is compactly embedded into

(
L2(Ω)

)d
, we deduce that

L2(0, T ;
(
Hs(Ω)

)d
) ↪→ L2(0, T ;

(
L2(Ω)

)d
),

see [17, Thm. 7.1.23]. From this we obtain that P 2 = P ′. Using the lower semi-continuity
of the L2-norm and Fatou’s lemma we infer that∫ t

u
Ψ2,β

(
P ′(σ)

)
dσ ≤ lim inf

j→∞

∫ t

u
Ψ2,β

(
P̂
′
τ j (σ)

)
dσ (3.83)

for all 0 ≤ u < t ≤ T . Using (3.65) we also conclude that

P̄ τ j (t),P τ j (t) ⇀ P (t) in
(
Hs(Ω)

)d
(3.84)

for all t ∈ [0, T ] as j → ∞. Having all these estimates and weak convergence results
in hand, we are now able to utilize a variational identity from [49, Thm. 4.10] for our
problem, which is given by (3.85) below and motivates the use of the integral identity and
inequality given by Proposition 3.15. We shall give here a sketch of the the proof for the
identity (3.85): applying the Fenchel’s formula (more precisely, the identity

f(x) + f∗(x∗) = 〈x∗, x〉X

given in Lemma A.10) to (3.60) with

f = Ψβ,

x = P̂
′
τ j (σ),

x∗ = −DP I
(
t̄τ j (σ), P̄ τ j (σ)

)
,

then integrating over [tτ j (u), t̄τ j (t)] w.r.t. σ and applying the chain rule and integration
by parts to rearrange the terms, we obtain that for 0 ≤ u < t ≤ T we have

I l1 + I l2 = Ir1 + Ir2 + Ir3 , (3.85)

where

I l1 + I l2

:=
[ ∫ t̄

τj
(t)

t
τj

(u)
Ψβ

(
P̂
′
τ j (σ)

)
+ Ψ∗β

(
−DP I

(
t̄τ j (σ), P̂ τ j (σ)

))
dσ
]

+
[
I
(
t̄τ j (t), P̄ τ j (t)

)]
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and

Ir1 + Ir2 + Ir3

:=
[
I
(
tτ j (u),P τ j (u)

)]
+
[ ∫ t̄

τj
(t)

t
τj

(u)
∂tI
(
σ,P τ j (σ)

)
dσ
]

+
[
−
∫ t̄

τj
(t)

t
τj

(u)

1

τ(σ)
R
(
t̄τ j (σ);P τ j (σ), P̄ τ j (σ)

)
dσ
]
,

where

R(t;P 1,P 2) := I(t,P 1)− I(t,P 2) + 〈DP I(t,P 2),P 2 − P 1〉Hs

for t ∈ [0, T ], P 1,P 2 ∈
(
Hs(Ω)

)d
. Using (3.75) we obtain that

|R(t;P 1,P 2)| = |
∫ 1

0
〈DP I(t,P 2)−DP I

(
t, (1− θ)P 1 + θP 2

)
,P 2 − P 1〉Hsdθ|

≤ 1

2

(
‖P 2 − P 1‖2Hs + C‖P 2 − P 1‖Lw‖P 2 − P 1‖Hs

)
≤ C‖P 2 − P 1‖2Hs

for some 2 < w <∞. Then∣∣∣ ∫ t̄
τj

(t)

t
τj

(u)

1

τ(σ)
R
(
t̄τ j (σ);P τ j (σ), P̄ τ j (σ)

)
dσ
∣∣∣

≤C
(

sup
t∈[0,T ]

‖P̄ τ j (t)− P τ j (t)‖Hs

)∫ t̄
τj

(t)

t
τj

(σ)
‖P̂ ′τ j (σ)‖Hsdσ.

(3.86)

Now setting the initial time point u in (3.85) to u = 0. Then we immediately infer that
Ir1 = I(0,P 0). Using Corollary 3.24 and (3.80) we obtain that

lim inf
j→∞

I l2 ≥ I
(
t,P (t)

)
.

Using Corollary 3.24 and (3.80) we also know that

DP I
(
t̄τ j (σ), P̂ τ j (σ)

)
⇀ DP I

(
σ,P (σ)

)
in [
(
Hs(Ω)

)d
]∗

for all σ ∈ (0, T ) as j →∞, where [
(
Hs(Ω)

)d
]∗ is the dual space of (Hs(Ω))d. Then using

(3.82), (3.83), (3.84), the weak lower semi-continuity of Ψ∗β (see Lemma A.9) and Fatou’s
lemma we obtain that

lim inf
j→∞

I l1 ≥
∫ t

0
Ψβ

(
P ′(σ)

)
+ Ψ∗β

(
−DP I

(
σ,P (σ)

))
dσ.

Using Corollary 3.24, (3.84) and Lebesgue dominated convergence theorem we also con-
clude that

lim
j→∞

Ir2 =

∫ t

0
∂tI
(
σ,P (σ)

)
dσ.

In view of (3.67), (3.65) and (3.86), we infer that limj→∞ I
r
3 = 0. Sum up all, we obtain

that ∫ t

0
Ψβ

(
P ′(σ)

)
+ Ψ∗β

(
−DP I

(
σ,P (σ)

))
dσ + I

(
t,P (t)

)
≤I(0,P 0) +

∫ t

0
∂tI
(
σ,P (σ)

)
dσ

(3.87)
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for all t ∈ [0, T ]. But due to Proposition 3.15, this inequality is equivalent to the statement
that P is a solution of (3.34). This completes the proof of the first and second statements
of Theorem 3.30. Again due to Proposition 3.15, the inequality (3.87) holds if and only if
it holds as an equality for all t ∈ [0, T ]. However, taking u = 0 in (3.82), if the inequality
(3.82) is strict, then the inequality (3.87) must also be strict in view of previous analysis.
Thus (3.82) must hold as an equality in the case u = 0 and t ∈ [0, T ]. But since t ∈ [0, T ]
is arbitrary chosen, by difference argument we infer that (3.82) holds as an equality for all
0 ≤ u < t ≤ T . To summarize, we actually have∫ t

u
Ψβ

(
P ′(σ)

)
+ Ψ∗β

(
−DP I

(
σ,P (σ)

))
dσ + I

(
t,P (t)

)
=I
(
u,P (u)

)
+

∫ t

u
∂tI
(
σ,P (σ)

)
dσ

and ∫ t

u
Ψ1

(
P ′(σ)

)
dσ = lim inf

j→∞

∫ t

u
Ψ1

(
(P̂

3
τ j )
′(σ)

)
dσ

for all 0 ≤ u < t ≤ T . Thus up to a subsequence we can even conclude that∫ t

u
Ψ1

(
P ′(σ)

)
dσ = lim

j→∞

∫ t

u
Ψ1

(
(P̂

3
τ j )
′(σ)

)
dσ (3.88)

for all 0 ≤ u < t ≤ T . This shows the validity of the third statement of Theorem 3.30.

Remark 3.31. In fact, arguing similarly as for (3.88), we can also obtain from (3.83) the
equality ∫ t

u
Ψ2,β

(
P ′(σ)

)
dσ = lim

j→∞

∫ t

u
Ψ2,β

(
P̂
′
τ j (σ)

)
dσ

and together with (3.88) also∫ t

u
Ψβ

(
P ′(σ)

)
dσ = lim

j→∞

∫ t

u
Ψβ

(
P̂
′
τ j (σ)

)
dσ

for all 0 ≤ u < t ≤ T . However, these equalities are useless for the vanishing viscosity
analysis given in the next section, since we will push the parameter β to zero and the above
mentioned identities involving β make no contribution in the limiting procedure. 4

Now having obtained a viscosity solution P , we obtain from Lemma 3.19 the existence
of the solution (u, φ) of the equation (3.2a). Consequently, we obtain from Lemma 3.9
the existence of the solution (u,D,P ) of (3.20). In particular, we have the following
regularity result for the functions u, φ, D:

Proposition 3.32. Let the Assumptions A1 to A7 be satisfied and β > 0 be a given

positive constant. Suppose also that P 0 ∈
(
Hs(Ω)

)d
and DP I(0,P 0) is of class L2. Let

P be the viscosity solution obtained from Theorem 3.30. Then the differential system
(3.2) and (3.20) admit a solution (u, φ,P ) and (u,D,P ) (u being identical in former and
latter) respectively such that

u ∈ H1(0, T ;
(
W 1,q
∂Ωu

(Ω)
)d

),

φ ∈ H1(0, T ;W 1,q
∂Ωφ

(Ω)),

D ∈ H1(0, T ;MD ∩
(
Lq(Ω)

)d
),

P ∈ H1(0, T ;
(
Hs(Ω)

)d
),

(3.89)
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where MD is the space defined by (3.18) and q ∈ (2,∞) is the number given by Lemma
3.19.

Proof. The existence of P with the claimed regularity given in (3.89) is deduced from
Theorem 3.30. Now inserting this P to (3.2a), we obtain from (3.37) given in the proof
of Lemma 3.19 that for all t ∈ [0, T ] we have

‖u
(
t,P (t)

)
‖W 1,q + ‖φ

(
t,P (t)

)
‖W 1,q ≤ C

(
Λ + ‖P (t)‖Lq

)
,

where Λ is defined by (3.36). From the Sobolev’s embedding

Lq ↪→ Hs

we obtain that

‖u
(
t,P (t)

)
‖W 1,q + ‖φ

(
t,P (t)

)
‖W 1,q ≤ C

(
Λ + ‖P (t)‖Hs

)
. (3.90)

Notice that C and Λ are independent on t ∈ [0, T ], where the former independence is
due to Lemma 3.19 and the latter is due to the fact that all external loadings given in
Assumption A4 have temporal C1,1-regularity. Then the claimed regularity of (u, φ) given
in (3.89) follows immediately from (3.90) and the regularity of P given in (3.89). Now the
regularity ofD follows immediately from the relation (3.23). This completes the proof.

3.8 Vanishing viscosity solution

In what follows, we investigate the behavior of the viscous solutions in the limiting case
β → 0. The following lemma will be crucial for our analysis.

Lemma 3.33. Let the Assumptions A1 to A7 be satisfied. Let β be a given positive
constant in (0, 1) and {τ}i=0,...,N−1 be an equidistant partition of [0, T ]. Let P̂ τ be as
defined by (3.59) corresponding to the given number β and the partition {τ}i=0,...,N−1.

Suppose also that P 0 ∈
(
Hs(Ω)

)d
and DP I(0,P 0) is of class L2. Then there exists some

c > 0 independent on β such that for all τ ≤ cβ we have∫ T

0
‖P̂ ′τ (σ)‖Hsdσ ≤ C <∞ (3.91)

for some constant C > 0 which is independent on β.

Proof. Choosing appropriate ρ, ρ′ in (3.76) such that ρ+Cρρ
′ = 1

2 in (3.76) and integrate
(3.76) over [0, t̄τ (t)] w.r.t. σ, we obtain that∫ t̄τ (t)

0

∣∣∣ 1

τ(σ)

〈
∆τ(σ)DP Ĩ

(
t̄τ (σ), P̄ τ (r)

)
, P̂
′
τ (σ)

〉
Hs

∣∣∣dσ
≤C

∫ t̄τ (t)

0
‖P̂ ′τ (σ)‖2L2dσ +

1

2

∫ t̄τ (t)

0
‖P̂ ′τ (σ)‖2Hsdσ + C ′.

(3.92)

Together with (3.71) we conclude that

β

2
‖P̂ ′τ (

t1
2

)‖2L2 ≤ C
∫ t̄τ (t)

0
‖P̂ ′τ (σ)‖2L2dσ +

1

2β
‖DP I(0,P 0)‖2L2 + C ′. (3.93)
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Now choose t = t1
2 = τ

2 and τ ≤ β
4C . Since P̂

′
τ is piecewise constant on (0, t1), we obtain

after rearranging terms that

β‖P̂ ′τ (
t1
2

)‖2L2 ≤
2

β
‖DP I(0,P 0)‖2L2 + C ′

⇒β‖P̂ ′τ (
t1
2

)‖L2 ≤ C
(
1 + ‖DP I(0,P 0)‖L2

)
.

(3.94)

Define mk := 1
2(tτk−1 + tτk), k ∈ {1, ..., N}. Using (3.74) and (3.76) (in this case, choose

X3 = L1 in the Ehrling’s lemma and replace the index L2 in (3.74) to L1) we obtain that∣∣∣1
τ

〈
DP Ĩ

(
tk, P̄ τ (mk)

)
−DP Ĩ

(
tk−1, P̄ τ (mk−1)

)
, P̂
′
τ (mk)

〉
Hs

∣∣∣
≤Cρ + CρCρ′‖P̂

′
τ (mk)‖2L1 + (ρ+ Cρρ

′)‖P̂ ′τ (mk)‖2Hs

≤1

2
‖P̂ ′τ (mk)‖2Hs + C

(
1 + ‖P̂ ′τ (mk)‖2L1

)
≤1

2
‖P̂ ′τ (mk)‖2Hs + C

(
1 + ‖P̂ ′τ (mk)‖L1Ψ1

(
P̂
′
τ (mk)

))
≤1

2
‖P̂ ′τ (mk)‖2Hs + C

(
1 + ‖P̂ ′τ (mk)‖L2Ψ1

(
P̂
′
τ (mk)

))
,

(3.95)

where we have chosen appropriate ρ, ρ′ such that ρ + Cρρ
′ = 1

2 and we have used the
fact that the norm ‖ · ‖L1 is equivalent to Ψ1(·) due to the Assumption A7 to deduce the
third inequality from the second inequality; notice also that we have used the fact that

‖P̂ ′τ (mk)‖L1 is bounded by ‖P̂ ′τ (mk)‖L2 (up to a prefactor) to deduce the last inequality.
We point out that (3.95) is exactly the same inequality as the second inequality given in
[39, p.600]. Thus, arguing similarly as in [39] (more precisely, from [39, (4.35)] to [39,
(4.36)]), we obtain that

2‖P̂ ′τ (mk)‖L2

(
‖P̂ ′τ (mk)‖L2 − ‖P̂ ′τ (mk−1)‖L2

)
+
τ

β

(
‖P̂ ′τ (mk)‖2L2) + ‖P̂ ′τ (mk)‖2Hs

)
≤4Cτ

β

(
1 + ‖P̂ ′τ (mk)‖L2Ψ1

(
P̂
′
τ (mk)

))
(3.96)

is valid for all 2 ≤ k ≤ N . (3.96) plays exactly the same role as [39, (4.36)], thus using a
refined Gronwall inequality of discrete type given in [39] (which makes use of (4.36) and
is used to derive the inequality (4.47) therein), and by setting τ < cβ with

c := min{ 1

4C
, 2},

we obtain from [39, Prop. 4.3, (4.47)] that

N∑
k=2

τ‖P̂ ′τ (mk)‖Hs ≤ C τ
β

(
T + β‖P̂ ′τ (m1)‖L2 +

N∑
k=2

τΨ1

(
P̂
′
τ (mk)

))
. (3.97)

Here, we point out that the constant C τ
β

in (3.98) is in general depending on the quantity τ
β ,

but due to the fact that τ < cβ, we see that τ
β is bounded by the constant c = min{ 1

4C , 2}
which is independent of β. Thus one may replace the constant C τ

β
by some universal

constant C which is independent of β and (3.97) becomes

N∑
k=2

τ‖P̂ ′τ (mk)‖Hs ≤ C
(
T + β‖P̂ ′τ (m1)‖L2 +

N∑
k=2

τΨ1

(
P̂
′
τ (mk)

))
. (3.98)
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Now taking t = t1
2 in (3.77) we obtain that

τ‖P̂ ′τ (m1)‖2Hs ≤ Cτ‖P̂
′
τ (m1)‖2L2 +

1

β
‖DP I(0,P 0)‖2L2 + C ′

⇒ τ‖P̂ ′τ (m1)‖Hs ≤ C
(

1 + τ‖P̂ ′τ (m1)‖L2 +

√
τ

β
‖DP I(0,P 0)‖L2

)
≤ C

(
1 + τ‖P̂ ′τ (m1)‖L2 + ‖DP I(0,P 0)‖L2

)
.

(3.99)

Adding this to (3.98) and using (3.94), we infer that∫ T

0
‖P̂ ′τ (σ)‖Hsdσ ≤ C

(
1 + ‖DP I(0,P 0)‖L2 +

∫ T

0
Ψ1

(
P̂
′
τ (σ)

)
dσ
)
≤ C, (3.100)

where we have also used the fact that∫ T

0
Ψ1

(
P̂
′
τ (σ)

)
dσ ≤ C

due to (3.66).

Now let P β ∈ H1(0, T ;
(
Hs(Ω)

)d
) be the solution given by Theorem 3.30 which is

approximated by the time discrete interpolant solutions with equidistant grids given in
Lemma 3.33. Due to Lemma 3.33 and the fact that P̂ τ converges to P β weakly in

H1(0, T ;
(
Hs(Ω)

)d
) as τ → 0 we conclude from (3.91) and Fatou’s lemma that

sup
β∈(0,1)

∫ T

0
‖P ′β(σ)‖Hsdσ ≤ C <∞ (3.101)

for some C > 0 which is independent on β. This motivates the so called arclength para-
metrization, which is given precisely in the following.

First, we define the quantity sβ(t) by

sβ(t) := t+

∫ t

0
‖P ′β(σ)‖Hsdσ (3.102)

for t ∈ [0, T ]. Let Sβ := sβ(T ). Define t̃β : [0, Sβ] → [0, T ] and P̃ β : [0, Sβ] →
(
Hs(Ω)

)d
by

t̃β(σ) := s−1
β (σ),

P̃ β(σ) := P β

(
t̃β(σ)

)
.

(3.103)

Furthermore, using the chain rule we obtain that

t̃′β(σ) + ‖P̃ ′β(σ)‖Hs = 1 for a.a. σ ∈ [0, Sβ]. (3.104)

According to (3.101) we infer that supβ∈(0,1) Sβ < ∞. On the other hand, Sβ ≥ T for
all β ∈ (0, 1) due to the definition of Sβ. Thus the family {Sβ}β∈(0,1) is bounded and
therefore has a converging subsequence {Sβj}j∈N. Denote this limit by S. Then Sβj → S
as j →∞ with S ≥ T . Hence w.l.o.g. we may consider the parameterized trajectories on
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the fixed time interval [0, S], in viewpoint of the scaling trick [16, Rem. 2.3]. Recall that
P β fulfills the equation∫ t

u
Ψβ

(
P ′β(σ)

)
+ Ψ∗β

(
−DP I

(
σ,P β(σ)

))
dσ + I

(
t,P β(t)

)
=I
(
u,P β(u)

)
+

∫ t

s
∂tI
(
σ,P β(σ)

)
dσ

(3.105)

for all 0 ≤ u < t ≤ T . From the inf-sup convolution formula [30, Thm. 2.3.2] (see also
[49, Rem. 2.4]) one obtains that

Ψ∗β(P ∗) =
1

2β
min

K∗∈∂Ψ1(0)
‖P ∗ −K∗‖2L2 (3.106)

for P ∗ ∈ [
(
Hs(Ω)

)d
]∗, where [

(
Hs(Ω)

)d
]∗ is the dual space of (Hs(Ω))d. This motivates

the definition

dist2

(
P ∗, ∂Ψ1(0)

)
:= min

K∗∈∂Ψ1(0)
‖P ∗ −K∗‖L2 (3.107)

for P ∗ ∈ [
(
Hs(Ω)

)d
]∗ and (3.105) can be rewritten to∫ t

u
Ψβ

(
P ′β(σ)

)
+

1

2β
dist2

2

(
−DP I

(
σ,P β(σ)

)
, ∂Ψ1(0)

)
dσ + I

(
t,P β(t)

)
=I
(
u,P β(u)

)
+

∫ t

s
∂tI
(
σ,P β(σ)

)
dσ.

(3.108)

Let (τ1, τ2) be an arbitrary subinterval of [0, S]. Applying variable transformation to
(3.103) we obtain that∫ τ2

τ1

Ψ1

(
P̃
′
β(σ)

)
+

β

2t̃′β(σ)
‖P̃ ′β(σ)‖2L2

+
t̃′β(σ)

2β
dist2

2

(
−DP I

(
t̃β(σ), P̃ β(σ)

)
, ∂Ψ1(0)

)
dσ + I

(
t̃β(τ2), P̃ β(τ2)

)
= I

(
t̃β(τ1), t̃β(τ1)

)
+

∫ τ2

τ1

∂tI
(
t̃β(σ), P̃ β(σ)

)
t̃′β(σ)dσ. (3.109)

The equation (3.109) suggests the following definition: define

Mβ : [0,∞)×
(
L2(Ω)

)d × [0,∞)→ [0,∞]

by

Mβ(α,v, η) =


Ψ1(v) + β

2α‖v‖
2
L2 + α

2βη
2, α > 0,

0, α = 0, v = 0, η ∈ [0,∞),
∞, otherwise.

(3.110)

Then (3.109) can be rewritten to∫ σ2

σ1

Mβ

(
t̃′β(σ), P̃

′
β(σ),dist2

(
−DP I

(
t̃β(σ), P̃ β(σ)

)
, ∂Ψ1(0)

))
dσ + I

(
t̃β(σ2), P̃ β(σ2)

)
=I
(
t̃β(σ1), P̃ β(σ1)

)
+

∫ σ2

σ1

∂tI
(
t̃β, P̃ β(σ)

)
t̃′β(σ)dσ

(3.111)
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for all 0 ≤ σ1 < σ2 ≤ S. This equation can be understood as an energy balance equality:
the term Mβ interprets the total dissipation of the system, the energy I at time points σ1

and σ2 stand for initial and end states of the evolution respectively, and ∂tI denotes the
power induced by the temporal changes in the system.

Our goal is to figure out what will happen to the system when the viscosity constant β
is getting smaller and smaller. We expect that both the arclength parameterized solution
(t̃β, P̃ β) and the functional Mβ would “converge” to some function (t̃, P̃ ) and some func-
tional M0 respectively. In particular, the limiting function and functional should satisfy
certain variation equality which is similar to the one given by (3.109). A general framework
for such study is the so called Γ-convergence theory. We make it precise in the following.
First we introduce the following lemma, which gives the precise expression of a reasonable
limiting functional M0 and its corresponding properties:

Lemma 3.34 ([48, Lem. 3.1]). Define M0 : [0,∞)×
(
L2(Ω)

)d × [0,∞)→ [0,∞] by

M0(α,v, η) =

{
Ψ1(v) + η‖v‖L2 , α = 0,
Ψ1(v) + I0(η), α > 0,

(3.112)

where I0 denotes the indicator function of the singleton {0}, i.e., I0(0) = 0 and I0(η) =∞
if η 6= 0. Then Mβ Γ-converges to M0 as β → 0 in the following sense:

• If (αβ,vβ, ηβ)→ (α,v, η) in [0,∞)×
(
L2(Ω)

)d × [0,∞), then

M0(α,v, η) ≤ lim inf
β→0

Mβ(αβ,vβ, ηβ).

• For all (α,v, η) in [0,∞)×
(
L2(Ω)

)d× [0,∞) there exist {(αβ,vβ, ηβ)}β>0 such that

(αβ, ηβ)→ (α, η) in [0,∞)2 , vβ ⇀ v in
(
L2(Ω)

)d
and

M0(α,v, η) ≥ lim sup
β→0

Mβ(αβ,vβ, ηβ)

as β → 0.

Furthermore, if for [a, b] ⊂ [0, S] we have

αβ → ᾱ in L1(a, b), vβ ⇀ v̄ in L1(a, b;
(
L2(Ω)

)d
)

and
lim inf
β→0

ηβ(σ) ≥ η̄(σ) for a.a. σ ∈ [a, b],

then ∫ b

a
M0

(
ᾱ(σ), v̄(σ), η̄(σ)

)
dσ ≤ lim inf

β→0

∫ b

a
Mβ

(
αβ(σ),vβ(σ), ηβ(σ)

)
dσ. (3.113)

Remark 3.35. The proof of Lemma 3.34 is originally formulated in [48, Lem. 3.1], where
all underlying sets therein are assumed to be subsets of finite dimensional spaces and
the situation differs from the setting stated in Lemma 3.34. However, using the Ioffe’s
theorem [32], the arguments given in [48, Lem. 3.1] can easily be developed to the ones
for an infinite dimensional setting, from which an infinite dimensional version of [48, Lem.
3.1] follows, namely the Lemma 3.34 stated here. See also [64] for more details about such
adoption. 4
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Next, we introduce the concept of a parameterized solution. We will show that the
previously constructed arclength parameterized viscous solutions converge (up to a sub-
sequence) to a parameterized solution within certain weak-∗-topology, see Theorem 3.38
below.

Definiton 3.36. A pair (t̃, P̃ ) ∈ Lip([0, S]; [0, T ] ×
(
Hs(Ω)

)d
) is called a parameterized

solution of the main problem if for all 0 ≤ σ1 < σ2 ≤ T∫ σ2

σ1

M0

(
t̃′(σ), P̃

′
(σ),dist2

(
−DP I

(
t̃′(σ), P̃

′
(σ)
)
, ∂Ψ1(0)

))
dσ + I

(
t̃(σ2), P̃ (σ2)

)
=I
(
t̃(σ1), P̃ (σ1)

)
+

∫ σ2

σ1

∂tI
(
t̃(σ), P̃ (σ)

)
t̃′(σ)dσ.

(3.114)

Here, the space Lip(X;Y ) denotes the set of all Lipschitz continuous functions from
X to Y for metric spaces X and Y .

Analogously to Proposition 3.15, the following lemma provides an equivalent formula-
tion for (3.114), in the sense of an inequality:

Lemma 3.37 ([39, Lem. 5.2]). Let the Assumptions A1 to A7 be satisfied. Then (3.114)
holds if and only if the “=” symbol is replaced by the “≤” symbol and σ1 is replaced by 0.

Having all these definitions and lemmas in hand, we are finally able to give the main
theorem involving the existence of a vanishing viscosity solution.

Theorem 3.38. Let the Assumptions A1 to A7 be satisfied. Then for every sequence
βn → 0 there exist a (not-relabeled) subsequence {βn}n∈N and some

(t̃, P̃ ) ∈W 1,∞(0, S; [0, T ]×
(
Hs(Ω)

)d
)

such that

(t̃βn , P̃ βn)
∗
⇀ (t̃, P̃ ) in W 1,∞(0, S; [0, T ]×

(
Hs(Ω)

)d
); (3.115)

t̃βn → t̃ in C([0, S]; [0, T ]); (3.116)

P̃ βn(σ) ⇀ P̃ (σ) in
(
Hs(Ω)

)d
for all σ ∈ [0, S]; (3.117)

t̃′(σ) + ‖P̃ ′(σ)‖Hs ≤ 1 for a.a. σ ∈ [0, S]. (3.118)

Moreover, (t̃, P̃ ) is a parameterized solution which fulfills (3.114).

Proof. From the relation (3.104) we know that the sequence {(t̃βn , P̃ βn)}n∈N is bounded

in W 1,∞(0, S; [0, T ]×
(
Hs(Ω)

)d
). Then up to a subsequence, (t̃βn , P̃ βn) weak-∗-converges

to some (t̃, P̃ ) ∈ W 1,∞(0, S; [0, T ×
(
Hs(Ω)

)d
]) as n→∞ and the corresponding conver-

gence relations (3.116) and (3.118) follow immediately. Now (3.117) can be obtained from
Lemma B.1 and (3.101). To see that (t̃, P̃ ) is a parameterized solution, we only need to
insert (t̃β, P̃ β) into (3.111), then using the continuity properties given by Corollary 3.24
and the properties deduced from the Γ-convergence theory given by Lemma 3.34 to push
β to zero and to obtain that∫ s

0
M0

(
t̃′(σ), P̃

′
(σ),dist2

(
−DP I

(
t̃′(σ), P̃

′
(σ)
)
, ∂Ψ1(0)

))
dσ + I

(
t̃(s), P̃ (s)

)
≤I
(
t̃(0), P̃ (0)

)
+

∫ s

0
∂tI
(
t̃(σ), P̃ (σ)

)
t̃′(σ)dσ

(3.119)
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is valid for all s ∈ [0, S], which is similarly done as in the proof of Theorem 3.30 (for a
complete proof of (3.119), we refer to [39, Thm 5.1]). Now using Lemma 3.37 we infer
that (t̃, P̃ ) is a parameterized solution.

In view of Lemma 3.9 and Lemma 3.13 we are able to define the corresponding para-
meterized solutions ũ, D̃, φ̃ as follows: the parameterized solution (ũ, φ̃) defined on [0, S]
is observed as the solution of (3.2a) by inserting (t,P ) =

(
t̃(σ), P̃ (σ)

)
in (3.2a) (the ex-

istence of
(
ũ(σ), φ̃(σ)

)
is at least pointwise ensured for every σ ∈ [0, S] in view of Lemma

3.19), and D̃ is then deduced from (3.23) by setting (u, φ) = (ũ, φ̃) (and of course also
setting t = t̃(σ) and P = P̃ (σ)) therein. We have the following regularity result w.r.t
ũ, D̃, φ̃:

Proposition 3.39. Let the Assumptions A1 to A7 be satisfied. Let ũ, D̃, φ̃ be the para-
meterized solutions which are defined previously from the parameterized solution (t̃, P̃ ),
where (t̃, P̃ ) is the parameterized solution given by Theorem 3.38. Let q > 2 be the num-
ber given by Lemma 3.19. Then for all p ∈ [2, q) we have

ũ ∈W 1,∞(0, S;
(
W 1,p
∂Ωu

(Ω)
)d

),

D̃ ∈W 1,∞(0, S;MD ∩
(
Lp(Ω)

)d
),

φ̃ ∈W 1,∞(0, S;W 1,p
∂Ωφ

(Ω)),

where the space MD is given by (3.18).

Proof. We first point out that for any open interval I ⊂ R and reflexive Banach spaces
X, it is well known that

W 1,∞(I;X) = Lip(I;X),

where Lip(I;X) is the space of all functions f : I → X which are Lipschitz continuous
w.r.t. t ∈ I. Thus to show the claimed regularity of ũ, D̃, φ̃, we only need to verify
the Lipschitz continuity of ũ, D̃, φ̃ w.r.t. σ ∈ (0, S). Let σ1, σ2 ∈ (0, S). Taking t1 =
t̃(σ1), t2 = t̃(σ2), P 1 = P̃ (σ1), P 2 = P̃ (σ2) in (3.38), we obtain that

‖ũ(σ1)− ũ(σ2)‖W 1,p + ‖φ̃(σ1)− φ̃(σ2)‖W 1,p

≤C
(
|t̃(σ1)− t̃(σ2)|+ ‖P̃ (σ1)− P̃ (σ2)‖Hs

)
≤C|σ1 − σ2|,

(3.120)

where the first inequality comes exactly from (3.38) and for the second inequality we have
used the fact from Theorem 3.38 that (t̃, P̃ ) has temporal regularity W 1,∞ on (0, S) (and
is thus Lipschitz continuous on (0, S)). From this we obtain the claimed regularity of ũ
and φ̃. The claimed regularity of D̃ then follows directly from (3.23). This completes the
proof.

3.9 Interpretation of a non-degenerate parameterized solu-
tion

In the final section of this chapter we want to discuss the physical interpretation of a
vanishing viscosity solution. For the sake of simplicity we focus here only on the paramet-
erized polarization P̃ . Similar results can be easily extended to ũ, D̃, φ̃ in a trivial way, in
view of Lemma 3.9 and Lemma 3.13. We first introduce the concept of a non-degenerate
Lipschitz pair:

60



3.9. Interpretation of a non-degenerate parameterized solution Chapter 3

Definiton 3.40. A Lipschitz pair (t̃, P̃ ) ∈ Lip(0, S; [0, T ] ×
(
Hs(Ω)

)d
) is called non-

degenerate, if

t̃′(σ) + ‖P̃ ′(σ)‖Hs > 0

for a.a. s ∈ (0, S).

If a parameterized solution is non-degenerate, then we obtain the following very useful
expression of a non-degenerate parameterized solution:

Proposition 3.41 ([49, Prop. 5.3, Cor. 5.4]). A non-degenerate Lipschitz pair (t̃, P̃ ) ∈
Lip(0, S; [0, T ]×

(
Hs(Ω)

)d
) is a parameterized solution of (3.114) if and only if there exists

a Borel function λ : (0, S)→ [0,∞) such that

0 ∈ ∂Ψ1

(
P̃
′
(σ)
)

+ λ(σ)P̃
′
(σ) +DP I

(
t̃(σ), P̃ (σ)

)
,

0 = t̃′(σ)λ(σ)

for a.a. σ ∈ (0, S).

The proof of Proposition 3.41 is again based on several equivalent formulations of the
variational identity (3.114), which is similar to the proof of Lemma 3.37. Particularly,
the non-degeneracy is essential, since the positivity of the time derivatives given by the
inequality

t̃′(σ) + ‖P̃ ′(σ)‖Hs > 0

implies certain monotonicity of the parameterized solution. However, such monotonicity
can in general not be obtained if the above inequality is replaced by equality.

From Proposition 3.41 we obtain the following interpretation of a non-degenerate para-
meterized solution:

• t̃′ > 0, P̃
′

= 0: this interprets that the polarization will not change as the time
increases, which corresponds to a sticking process.

• t̃′ > 0, P̃
′ 6= 0: in this case, we must have λ = 0, therefore we obtain that

0 ∈ ∂Ψ1

(
P̃
′
(σ)
)

+DP I
(
t̃(σ), P̃ (σ)

)
,

which corresponds to a rate-independent evolution.

• t̃′ = 0, P̃
′ 6= 0: The system has switched to a viscous regime. Since t̃′(σ) = 0, the

external time is frozen, which can be understood that the external time scale is much
slower than the internal time scale, and since P̃

′
(σ) 6= 0, it can be seen that a jump

occurs in the external time scale.

It remains an open question whether the solution given by Theorem 3.38 is non-
degenerate. In fact, it is shown in [49] that if the underlying set is finite dimensional,
then the parameterized solution is always non-degenerate. The idea of the proof is based
on the fact that all norms of a finite dimensional normed space are equivalent. Since this
does not hold for the infinite dimensional case, one can not obtain the same result by using
the method given by [49]. In order to get a non-degenerate parameterized solution, it is
suggested in [39] that one possibility would be to apply an alternative reparameterization
technique to obtain the non-degenerate property. Since this is out of scope of this thesis,
we will not discuss any details here.
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Chapter 4

Existence results for dissipation
functional of quadratic growth

In this chapter, we focus on the model with quadratic dissipation. In this case, since
the dissipation functional is differentiable in P , the problem (2.14e) reduces to a semilin-
ear parabolic type equation and the situation becomes totally different to the case with
dissipation functional of mixed type. Roughly speaking, we will give local and global
existence results for the problem (2.14) with quadratic dissipation functional, which are
briefly summarized as follows:

• We will utilize the idea given in [46] to obtain local solutions. More precisely, we
will use the Banach fixed point theorem given in [10] to construct local solutions.
At the end, we should infer that under the condition

P 0 ∈ (
(
W 1,p
∂ΩP

(Ω)
)d
,
(
W−1,p
∂ΩP

(Ω)
)d

) 1
r
,r,

the equation (2.14e) admits a unique local solution P with

P ∈W 1,r(0, T̂ ;
(
W−1,p
∂ΩP

(Ω)
)d

) ∩ Lr(0, T̂ ;
(
W 1,p
∂ΩP

(Ω)
)d

)

for some T̂ ∈ (0, T ], where p > d and r > 2p
p−d are some appropriate given constants.

Inserting the local solution P into (2.14), we obtain from certain elliptic existence
theory the existence of the solution (u, φ) of the piezo-system (2.14a) to (2.14d). The
corresponding regularity of (u, φ) is different from case to case due to the different
imposed boundary conditions, thus we will make this precise later on in the main
theorems respectively. Nevertheless we give a brief introduction to different cases
that we will deal with in the following.

• For two dimensional local existence result, we will be dealing with the piezo-system
(2.14a) to (2.14d) with mixed boundary conditions. Thus the uniform boundedness
of the coefficients will be needed, which guarantees the applicability of Proposition
3.18. For details we refer to Section 4.2

• For three dimensional case, the regularity result given by Proposition 3.18 for the
piezo-system with mixed boundary conditions is insufficient. In order to solve this
problem, we assume that the underlying domain Ω has C1-boundary and the bound-
ary parts corresponding to (u, φ) are overall Dirichlet. In this case, the regularity
result from [14] plays the role of Proposition 3.18, but gives a better regularity
of (u, φ) compared to the one given by Proposition 3.18. As a consequence, the
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coefficient tensor B1 need not be uniformly bounded on R3 anymore, which is a sig-
nificant improvement compared to the two dimensional case with mixed boundary
conditions. We refer to Section 4.3.4 for details.

• We should also point out that unlike in the Proposition 3.18, in three dimensional
case the inverse norm of the piezo-operator is not uniform for all admissible P from
the underlying space. In fact, the inverse norm will also depend on the modulus of
continuity of the function P in an implicit way, see for instance [21, Chap. 7]. We
will utilize the continuity arguments given in [46] to overcome such difficulty.

• We are also interested in existence results for less regular domains. Using the reg-
ularity results from [1], the existence result for domains with C1-boundary can be
extended to a cuboid (Section 4.3.5) in a natural way. For general polyhedrons and
the special piezo-system given by [55], we will utilize the regularity results given in
[44] to obtain existence results. See Section 4.4 for more details.

• We also want to give a comparison between the model of this thesis and the ther-
mistor model studied in [46]. The models deal with variables (u, φ,P ) and (ϕ, θ)
respectively. The strategies for both models are the same, namely, we reduce the
problem to a semilinear parabolic equation with single variable in P (and in θ in
the latter case), and then solve the semilinear parabolic equation using the result
from [10]. The main difference is that the variable (u, φ) in this thesis is given as
the solution of the piezo-system (vector-wise), while the variable ϕ in [46] is given
as the solution of an elliptic equation (scalar-wise), thus the analysis of this thesis
is significantly more complicated than the one given in [46]. We also point out that
certain continuity arguments are applied in [46] to obtain the contraction condition
in the Banach fixed point theorem from [10]. However, since the external loadings
related to the piezo-system given in this thesis will also depend on the variable P ,
a direct application of the continuity arguments given in [46] to our case is difficult
(notice that the external loadings related to the elliptic equation corresponding to
the variable ϕ in [46] are independent of θ). Instead, we will use a direct difference
comparison method to conclude such contraction condition, see Section 4.2 for de-
tails. We should also point out that it is still possible to modify the method in [46] to
fit our setting here, but the calculation is not getting simpler due to the complicated
expressions of the functionals given in this thesis.

• For the global case, we will apply the Rothe’s method given for the case with dissip-
ation functional of mixed type to obtain global results, by setting Ψ1 ≡ 0 in (3.6).
Therefore boundedness of the coefficients and their derivatives and replacement of
the gradient energy (see Assumption 3.1) will be essential for our analysis.

In the following we will also make extensive use of certain interpolation theory between
different function spaces. For the corresponding interpolation theory appearing in this
chapter, we refer to Appendix C for details.

4.1 Preliminaries

Let us first introduce the physical model. Due to [55], since the dissipation functional

Ψβ(P ) =
β

2
‖P ‖2L2(Ω)
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is differentiable in P , one obtains the following local equations:

σ = C(P )
(
ε(u)− ε0(P )

)
+ e(P )T∇φ in (0, T )×Ω, (4.1a)

D = e(P )
(
ε(u)− ε0(P )

)
− ε(P )∇φ+ P in (0, T )×Ω, (4.1b)

Σ = κ∇P in (0, T )×Ω, (4.1c)

divσ = f1 in (0, T )×Ω, (4.1d)

divD = f2 in (0, T )×Ω, (4.1e)

βP ′ = div Σ−DPH −DPω + f3 in (0, T )×Ω, (4.1f)

where H,ω are defined by (3.7) and (3.8). We also impose the following boundary and
initial value conditions:

u|∂Ωu = uD on (0, T )× ∂Ωu, (4.2a)

σn|∂Ωσ = t on (0, T )× ∂Ωσ, (4.2b)

φ|∂Ωφ
= φD on (0, T )× ∂Ωφ, (4.2c)

D · n|∂ΩD = ρ on (0, T )× ∂ΩD, (4.2d)

P |∂ΩP = PD on (0, T )× ∂ΩP , (4.2e)

Σn|∂ΩΣ
= π on (0, T )× ∂ΩΣ, (4.2f)

P (0) = P 0, (4.2g)

where ∂Ωu, ∂Ωσ, ∂Ωφ, ∂ΩD, ∂ΩP , ∂ΩΣ are subsets of ∂Ω, see also the notation given at
the beginning of Section 2.4.

4.1.1 Fixed point theorem

All of our local results will base on the fixed point theorem formulated in [10] (see also
[53]). To introduce the fixed point theorem, we need the following definition.

Definiton 4.1 ([10], [53, Def. 1.1], maximal parabolic regularity). Let J = (T0, T1) be
a time interval. Let X be a Banach space and A : dom(A) → X be a closed operator
with dense domain dom(A) ⊂ X. Suppose τ ∈ (1,∞). Then we say that A has maximal
parabolic Lτ (J ;X)-regularity if and only if for every f ∈ Lτ (J ;X) there is a unique
function w ∈W 1,τ (J ;X) ∩ Lτ

(
J ; dom(A)

)
which satisfies

w′(t) +Aw(t) = f(t) in X,

w(T0) = 0

for a.a. t ∈ J .

Remark 4.2. It is shown in [15] that if A has maximal parabolic Lτ0(J ;X)-regularity for
some τ0 ∈ (1,∞), then it has maximal parabolic Lτ (J ;X)-regularity for all τ ∈ (1,∞).
Thus in the following we will only speak of that A has maximal parabolic regularity. 4

The maximal parabolic regularity property motivates the following fixed point theorem,
which plays the main role in the analysis of local existence results:

Theorem 4.3 ([10], [53, Thm. 3.1]). Let Y,X be Banach spaces, Y ↪→ X densely and
let τ ∈ (1,∞). Suppose that A : J × (Y,X) 1

τ
,τ → L(Y,X) is continuous (where L(Y,X)

is defined in Section 2.3) and A(0, w0) satisfies maximal parabolic regularity on X with
dom

(
A(0, w0)

)
= Y for some w0 ∈ (Y,X) 1

τ
,τ . Let S : J×(Y,X) 1

τ
,τ → X be a Carathéodory

map, i.e., S(·, x) is measurable for each x ∈ (Y,X) 1
τ
,τ and S(t, ·) is continuous for a.a.

t ∈ J . Moreover, let S(·,0) be from Lτ (J ;X) and the following assumptions be satisfied:
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(A) For every M > 0, there exists a positive constant L(M) such that for all t ∈ J and
all w, w̄ ∈ (Y,X) 1

τ
,τ with max(‖w‖(Y,X) 1

τ ,τ
, ‖w̄‖(Y,X) 1

τ ,τ
) ≤M , we have

‖A(t, w)−A(t, w̄)‖L(Y,X) ≤ L(M)‖w − w̄‖(Y,X) 1
τ ,τ

;

(S) For every M > 0 there exists a function hM ∈ Lτ (J) such that for all w, w̄ ∈
(Y,X) 1

τ
,τ with max(‖w‖(Y,X) 1

τ ,τ
, ‖w̄‖(Y,X) 1

τ ,τ
) ≤M , it is true that

‖S(t, w)− S(t, w̄)‖X ≤ hM (t)‖w − w̄‖(Y,X) 1
τ ,τ

for a.a. t ∈ J .

Then there exists some Tmax ∈ J such that the problem

w′(t) +A
(
t, w(t)

)
w(t) = S

(
t, w(t)

)
in J ×X,

w(T0) = w0

admits a unique solution w ∈ W 1,τ (T0, T̂ ;X) ∩ Lτ (T0, T̂ ;Y ) on (T0, T̂ ) for every T̂ ∈
(T0, Tmax).

Here, the measurability of S(·, x) is understood as the Bochner-measurability, which
is given in the following definition:

Definiton 4.4. Let J ⊂ R be an interval and X be a Banach space. A function u : J → X
is called a simple function, if there are measurable sets Aj ⊂ J and constant values µj ∈ X
with j = 1, ..., n for some n ∈ N such that

u =
n∑
j=1

µj1Aj ,

where 1Aj is the indicator function of the set Aj. A function u : J → X is called measur-
able, if there exists a sequence {un}n∈N of simple functions from J to X such that

un(t)→ u(t) in X for a.a. t ∈ J.

4.1.2 Maximal parabolic regularity and resolvent estimates

For a closed and densely defined operator A : dom(A)→ X, the resolvent set ρ(A) ⊂ C is
defined as the set of all complex numbers λ ∈ C such that λ−A is bijective from dom(A)
to X and (λ − A)−1 is a linear and continuous operator on X, i.e., (λ − A)−1 ∈ L(X).
We obtain from a maximal parabolic regular operator the following very useful resolvent
property:

Theorem 4.5 ([15, Thm. 2.2]). Let X be some Banach space and A : dom(A) → X be
a closed and densely defined linear operator. Assume also that A has maximal parabolic
regularity in a finite interval J = (T0, T1). Then there exists some q ≥ 0 and some C > 0
such that

{λ ∈ C : Reλ ≥ q} ⊂ ρ(−A)

and

Reλ ≥ q⇒ ‖(λ+A)−1‖L(X) ≤
C

1 + |λ|
, (4.3)

where ρ(−A) is the resolvent set of −A. In particular, −A generates an analytic semigroup.
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For the definition of an analytic semigroup, we refer to [52, Chap. 2.5].
In what follows, we introduce the concept of the so called positive operator from [63,

1.14.1]. The definition formulated here is equivalent but slightly different to the original
one given in [63], which is due to the purpose of adjusting the model setting of this thesis.

Definiton 4.6 ([63, 1.14.1], positive operator). Let X be a Banach space and A : dom(A)→
X be a linear closed operator with dense domain dom(A) ⊂ X. The operator A is said to
be positive, if [0,∞) belongs to the resolvent set of −A and there exists a number C ≥ 0
such that

∀λ ∈ [0,∞) : ‖(λ+A)−1‖L(X) ≤
C

1 + λ
.

From Corollary 4.9 below we will see that the underlying operator A of the main
model (which is the vector-valued Laplace operator −∆) is a positive operator (more
precisely, this is achieved by taking the coefficient matrix µ in Corollary 4.9 equal to the
identity matrix). Such operators provide certain useful interpolation property involving
the fractional power of the operator and will be essential for the analysis of local results
in the following. For details, we refer to Lemma 4.10 below.

4.1.3 G2-regular set and maximal parabolic regularity

Here we want to give an explanation of how to apply the maximal parabolic regularity to
our model. For our case, the operator A is the three dimensional Laplace operator −∆
defined for the polarization P , which motivates the application of the results given in [29].
We first set up the system formulated in [29]. Let Ω ⊂ Rd be the underlying bounded
domain and Γ ⊂ ∂Ω be a relatively closed part of the boundary with positive surface
measure. The to be investigated operator A is defined by

A = −∇ · µ∇ : H1
Γ(Ω)→ H−1

Γ (Ω).

Here, µ is a symmetric, real coefficient function µ : Ω → Rd×d which is measurable and
essentially bounded in Ω. In particular, µ is uniformly elliptic, i.e., there exists a constant
c > 0 such that

yTµ(x)y ≥ c|y|2

for all y ∈ Rd and a.a. x ∈ Ω. We obtain the maximal parabolic regularity of A from the
following theorem:

Theorem 4.7 ([29, Thm. 5.4]). Let Ω ∪ Γ be G2-regular (c.f. Section 2.1). Let q̃ :=
supM, where

M := {q ∈ [2,∞) : −∇ · µ∇+ 1 : W 1,q
Γ (Ω)→W−1,q

Γ (Ω)

is linear, continuous and invertible}.

Then A = −∇ · µ∇ has maximal parabolic regularity for X = W−1,q
Γ (Ω) and dom(A) =

W 1,q
Γ (Ω) for all q ∈ [2, q̃∗), where

q̃∗ =

{
∞, if q̃ ≥ d,
(1
q̃ −

1
d)−1, if q̃ ∈ [1, d).

(4.4)

Due to [25] we know that if Ω∪Γ is G2-regular, then q̃ > 2. Thus from the definition
of q̃∗ from Theorem 4.7 we obtain immediately the following result:
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Corollary 4.8. Let Ω∪Γ be G2-regular and d ∈ {2, 3}. Then A = −∇·µ∇ has maximal
parabolic regularity with X = W−1,q

Γ (Ω) and dom(A) = W 1,q
Γ (Ω) for all{

q ∈ [2,∞), if d = 2;
q ∈ [2, 6], if d = 3.

(4.5)

Proof. For d = 2 the result is evident. For q̃ > 2 in Theorem 4.7 and d = 3 we obtain that
q̃∗ = (1

q̃ −
1
d)−1 > 6. This completes the proof.

We have already introduced the concept of positive operators (Definition 4.6). In what
follows, we show that the maximal parabolic regular operator A = −∇ · µ∇ is indeed a
positive operator, which follows from the estimate (4.6) below:

Corollary 4.9. Let Ω ∪ Γ be G2-regular and d ∈ {2, 3}. Let q be a number satisfying
(4.5). Then there exists some Cq > 0 depending on q such that

‖(−∇ · µ∇+ λ)−1‖
L
(
W−1,q

Γ (Ω)
) ≤ Cq

1 + λ
(4.6)

for all λ ≥ 0.

Proof. Since q is a number that satisfies (4.5), the operator −∇·µ∇ is maximal parabolic
regular due to Corollary 4.8, and we deduce from Theorem 4.5 that there exists some
q ≥ 0 such that

‖(−∇ · µ∇+ λ)−1‖
L
(
W−1,q

Γ (Ω)
) ≤ Cq

1 + |λ|

for all Reλ ≥ q. If q = 0, then we are done. Otherwise let q > 0 and consider λ ∈ R with
0 ≤ λ ≤ q (here we consider the closed interval [0, q] but not [0, q), since the compactness
of the interval [0, q] will be utilized in the remaining part of the proof). From the uniform
ellipticity of µ one deduces immediately from Lax-Milgram that for every λ ≥ 0, the
operator

−∇ · µ∇+ λ : H1
Γ(Ω)→ H−1

Γ (Ω)

is in LH
(
H1

Γ(Ω), H−1
Γ (Ω)

)
(see Section 2.3 for the definition of the set LH(X,Y ) for

Banach spaces X and Y ). One easily verifies from Sobolev’s embedding that

H1
Γ(Ω) ↪→W−1,q

Γ (Ω) ↪→ H−1
Γ (Ω),

as long as q satisfies (4.5). Thus

‖(−∇ · µ∇+ λ)−1‖
L
(
W−1,q

Γ (Ω)
)

= sup
f∈W−1,q

Γ (Ω)\{0}
‖(−∇ · µ∇+ λ)−1f‖

W−1,q
Γ (Ω)

/‖f‖
W−1,q

Γ (Ω)

≤C sup
f∈W−1,q

Γ (Ω)\{0}
‖(−∇ · µ∇+ λ)−1f‖

W−1,q
Γ (Ω)

/‖f‖H−1
Γ (Ω)

≤C sup
f∈W−1,q

Γ (Ω)\{0}
‖(−∇ · µ∇+ λ)−1f‖H1

Γ(Ω)/‖f‖H−1
Γ (Ω)

≤C sup
f∈H−1

Γ (Ω)\{0}
‖(−∇ · µ∇+ λ)−1f‖H1

Γ(Ω)/‖f‖H−1
Γ (Ω)

=C‖(−∇ · µ∇+ λ)−1‖
L
(
H−1

Γ (Ω),H1
Γ(Ω)

).

(4.7)
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On the other hand, due to [58, CH.III.8] we know that the mapping LH(X,Y ) 3 B 7→
B−1 ∈ LH(Y,X) is continuous. Thus the mapping

λ 7→ (−∇ · µ∇+ λ)−1

is as composition of

[0,∞) 3 λ 7→
− ∇ · µ∇+ λ ∈ LH

(
H1

Γ(Ω), H−1
Γ (Ω)

)

and

LH
(
H1

Γ(Ω), H−1
Γ (Ω)

)
3 −∇ · µ∇+ λ 7→

(−∇ · µ∇+ λ)−1 ∈ LH
(
H−1

Γ (Ω), H1
Γ(Ω)

)
continuous from [0,∞) to LH

(
H−1

Γ (Ω), H1
Γ(Ω)

)
. Since [0, q] is a compact set, we obtain

that

max
λ∈[0,q]

(
1 + λ

)
‖(−∇ · µ∇+ λ)−1‖

L
(
H−1

Γ (Ω),H1
Γ(Ω)

) <∞.
Together with (4.7) we obtain that

max
λ∈[0,q]

(
1 + λ

)
‖(−∇ · µ∇+ λ)−1‖

L
(
W−1,q

Γ (Ω)
) <∞.

This implies the claim.

For a positive operator A, one can define its fractional power operator Am for appro-
priate complex numbers m, see for instance [63, Chap. 1.15.1]. In particular, we have the
following useful interpolation result involving the fractional power Am, which will be used
several times in the rest of this chapter:

Lemma 4.10 ([63, Chap. 1.15.2]). Let X be a Banach space and A : dom(A) → X be a
positive operator in the sense of Definition 4.6. Then(

X,dom(A)
)

1
2
,1
⊂ dom(A

1
2 ),

where dom(A
1
2 ) is the definition domain of the fractional power operator A

1
2 of A.

Here,
(
X,dom(A)

)
1
2
,1

denotes the real interpolation space of X and dom(A) with index

(1
2 , 1). For a precise definition, we refer to Appendix C.

4.1.4 Some more embedding and regularity results

In what follows, we show that the underlying space for P is continuously embedded to
some Hölder space. The Hölder continuity of P will ensure us to apply similar differ-
ence estimation arguments as the ones given in Section 3.5 to verify the condition (S) in
Theorem 4.3.
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Lemma 4.11. Let d ∈ {2, 3} and Ω ⊂ Rd be a bounded domain. Let ∂ΩP ⊂ ∂Ω be a
(d− 1)-set and Ω ∪ ∂ΩP be G2-regular. Then for all{

(p, d) ∈ (2,∞)× {2} or
(p, d) ∈ (3, 6]× {3} (4.8)

and r ∈ ( 2p
p−d ,∞), the space (

(
W 1,p
∂ΩP

(Ω)
)d
,
(
W−1,p
∂ΩP

(Ω)
)d

) 1
r
,r is continuously embedded into

the space
(
W 1−2p,p
∂ΩP

(Ω)
)d

for some p ∈ (1
r ,

p−d
2p ). Consequently, we have the embedding(

W 1−2p,p
∂ΩP

(Ω)
)d
↪→
(
Cδ(Ω)

)d
(4.9)

with δ = 1− 2p− d
p ∈ (0, 1).

Remark 4.12. From Lemma 4.11 we infer in particular that every P from the space

(
(
W 1,p
∂ΩP

(Ω)
)d
,
(
W−1,p
∂ΩP

(Ω)
)d

) 1
r
,r is also an element of

(
W 1−2p,p
∂ΩP

(Ω)
)d

, which implies par-

ticularly that P |∂ΩP = 0. 4

Proof. From the condition that p ∈ (1
r ,

p−d
2p ) we obtain immediately that

δ = 1− 2p− d

p
∈ (0, 1).

Thus (4.9) follows immediately from Sobolev’s embedding theorem. It is left to show that
there exists some p ∈ (1

r ,
p−d
2p ) such that

(
(
W 1,p
∂ΩP

(Ω)
)d
,
(
W−1,p
∂ΩP

(Ω)
)d

) 1
r
,r ↪→

(
W 1−2p,p
∂ΩP

(Ω)
)d
.

We utilize the same idea given in [46, Lem. A.1] to prove the claim. Let τ ∈ (0, p−d2p ). We
obtain that

(
(
W 1,p
∂ΩP

(Ω)
)d
,
(
W−1,p
∂ΩP

(Ω)
)d

)τ,1

=(
(
W 1,p
∂ΩP

(Ω)
)d
,
((
W 1,p
∂ΩP

(Ω)
)d
,
(
W−1,p
∂ΩP

(Ω)
)d)

1
2
,1

)2τ,1

=(
(
W 1,p
∂ΩP

(Ω)
)d
,
((
W−1,p
∂ΩP

(Ω)
)d
,
(
W 1,p
∂ΩP

(Ω)
)d)

1
2
,1

)2τ,1

=(
(
W 1,p
∂ΩP

(Ω)
)d
,
((
W−1,p
∂ΩP

(Ω)
)d
, dom(−∆)

)
1
2
,1

)2τ,1,

(4.10)

where the first equality comes from the reiteration theorem [63, Chap. 1.10.2] (by setting

E0 = W 1,p
∂ΩP

(Ω), E1 =
(
W 1,p
∂ΩP

(Ω),W−1,p
∂ΩP

(Ω)
)

1
2
,1
,

A0 = W 1,p
∂ΩP

(Ω), A1 = W−1,p
∂ΩP

(Ω),

θ0 = 0, θ1 =
1

2
, p = 1, λ = 2τ

therein), the second from the property that

(X,Y )θ,q = (Y,X)1−θ,q (4.11)

for Banach spaces X,Y , see Theorem C.5, and the last equality from the fact that(
W 1,p
∂ΩP

(Ω)
)d

= dom(−∆),
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where dom(−∆) is defined as the domain of the operator−∆ :
(
W 1,p
∂ΩP

(Ω)
)d → (

W−1,p
∂ΩP

(Ω)
)d

.
If we define

A = −∇ · µ∇ := −∆

(or equivalently µ = Id ), then the coefficient function µ is symmetric, essentially bounded
and uniformly elliptic on Ω. Thus from Corollary 4.9 and Lemma 4.10 we obtain that((

W−1,p
∂ΩP

(Ω)
)d
,dom(−∆)

)
1
2
,1
↪→ dom

(
(−∆)

1
2
)
. (4.12)

From [63, 1.15.2, (b)] we infer that (−∆)−
1
2 is a linear and bounded operator on

(
W−1,p
∂ΩP

(Ω)
)d

.
Thus from [52, Thm. 2.6.8, (a)] we obtain that

dom
(
(−∆)

1
2
)

= Ran
(
(−∆)−

1
2
)

= (−∆)−
1
2

((
W−1,p
∂ΩP

(Ω)
)d)

, (4.13)

where Ran
(
(−∆)−

1
2

)
denotes the range of (−∆)−

1
2 on

(
W−1,p
∂ΩP

(Ω)
)d

. From [29, Thm. 4.3]
it follows that

(−∆)−
1
2

((
W−1,p
∂ΩP

(Ω)
)d)

↪→
(
Lp(Ω)

)d
. (4.14)

Finally, from (4.12) to (4.14) we conclude that((
W−1,p
∂ΩP

(Ω)
)d
, dom(−∆)

)
1
2
,1
↪→
(
Lp(Ω)

)d
. (4.15)

It follows that

(
(
W 1,p
∂ΩP

(Ω)
)d
,
(
W−1,p
∂ΩP

(Ω)
)d

)τ,1

↪→(
(
W 1,p
∂ΩP

(Ω)
)d
,
(
Lp(Ω)

)d
)2τ,1

=(
(
Lp(Ω)

)d
,
(
W 1,p
∂ΩP

(Ω)
)d

)1−2τ,1

↪→[
(
Lp(Ω)

)d
,
(
W 1,p
∂ΩP

(Ω)
)d

]1−2τ

=
(
W 1−2τ,p
∂ΩP

(Ω)
)d
,

(4.16)

where the first embedding comes from (4.10) and (4.15), the first equality is obtained by
using (4.11), the second embedding comes from the fact that

(X,Y )θ,1 ↪→ [X,Y ]θ,

see Theorem C.10, and the second equality is deduced from [23, Thm. 3.1] (notice that
τ is in (0, p−d2p ), which implies in particular that 1 − 2τ > d

p >
1
p and consequently that

1 − 2τ 6= 1
p , being the condition of [23, Thm. 3.1]). Now from the second and third

properties of Theorem C.5 we infer that(
W 1,p
∂ΩP

(Ω),W−1,p
∂ΩP

(Ω)
)

1
r
,r
↪→
(
W 1,p
∂ΩP

(Ω),W−1,p
∂ΩP

(Ω)
)

1
r
,1

↪→
(
W 1,p
∂ΩP

(Ω),W−1,p
∂ΩP

(Ω)
)
τ,1

for τ ∈ (1
r , 1), since W 1,p

∂ΩP
(Ω) ⊂ W−1,p

∂ΩP
(Ω). The condition on r implies that the interval

(1
r ,

p−d
2p ) is not empty, thus one can choose some p ∈ (1

r ,
p−d
2p ) ⊂ (0, p−d2p ) such that (4.16)

is valid. This completes the proof.
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At the end, we would like to close this section by showing that the local solutions P
deduced from the local existence results (Theorem 4.22, Theorem 4.39 etc. given below)
are also Hölder continuous w.r.t. both time and space.

Proposition 4.13. Let d ∈ {2, 3} and Ω ⊂ Rd be a bounded domain with Lipschitz
boundary. Let ∂ΩP ⊂ ∂Ω be a (d − 1)-set and Ω ∪ ∂ΩP be G2-regular. Then for (p, d)
satisfying (4.8) and r ∈ ( 2p

p−d ,∞), the embedding

W 1,r(J ;
(
W−1,p
∂ΩP

(Ω)
)d

) ∩ Lr(J ;
(
W 1,p
∂ΩP

(Ω)
)d

) ↪→ Cδ(J̄ ;
(
Cδ(Ω)

)d
)

is valid for each interval J ⊂ R with some δ ∈ (0, 1).

Proof. From [3, Thm. 3] we have the embedding

W 1,r(J ;
(
W−1,p
∂ΩP

(Ω)
)d

) ∩ Lr(J ;
(
W 1,p
∂ΩP

(Ω)
)d

) ↪→ Cs−
1
r (J̄ ;

((
W−1,p
∂ΩP

(Ω),W 1,p
∂ΩP

(Ω)
)
θ,1

)d
)

for s ∈ (1
r , 1) and θ ∈ [0, 1− s). From Theorem C.5 we have(

W−1,p
∂ΩP

(Ω),W 1,p
∂ΩP

(Ω)
)
θ,1

=
(
W 1,p
∂ΩP

(Ω),W−1,p
∂ΩP

(Ω)
)

1−θ,1.

Notice that 1 − θ ∈ (s, 1] and s ∈ (1
r , 1) and 1 − θ, s can be arbitrary chosen in these

intervals. The condition on r implies that 1
r <

p−d
2p , thus one can choose s sufficiently

small and θ sufficiently large such that s ∈ (1
r ,

p−d
2p ) and 1− θ ∈ (s, p−d2p ] ⊂ (0, p−d2p ). Then

(4.16) is satisfied and we obtain that(
W 1,p
∂ΩP

(Ω),W−1,p
∂ΩP

(Ω)
)

1−θ,1 ↪→ C
1−2(1−θ)− d

p (Ω).

Choosing δ := min{s− 1
r , 1− 2(1− θ)− d

p} ∈ (0, 1) we obtain the desired result.

4.2 2D-local existence result for Gröger-regular domains

In this section we consider the case d = 2. First, we give the Assumptions B1 to B4 in the
following, which give us sufficient conditions to formulate a weak form corresponding to
the coupled elliptic-parabolic differential system (4.1). It turns out that the Assumptions
B1 to B4 are also sufficient for proving the existence of a local solution of the differential
system (4.1). We make this precise in the following.

4.2.1 Assumptions and weak formulation

B1 Ω ⊂ R2 is a bounded domain with Lipschitz boundary, ∂Ωu∪̇∂Ωσ = ∂Ωφ∪̇∂ΩD =
∂ΩP ∪̇∂ΩΣ = ∂Ω, ∂Ωu, ∂Ωφ, ∂ΩP are 1-sets, Ω ∪ ∂Ωu,Ω ∪ ∂Ωφ are G1-regular,
Ω ∪ ∂ΩP is G2-regular (c.f. Section 2.1).

B2 C, e, ε0, ε (c.f. Section 2.4) are differentiable on R2 and their derivatives are locally
Lipschitzian on R2; C, e, ε0, ε are uniformly bounded on R2, i.e.,

Ξ := sup
P∈R2

{
|C(P )|, |e(P )|, |ε0(P )|, |ε(P )|

}
<∞;

ω : R2 → R (c.f. Section 2.4) is a polynomial of sixth order with constant coefficients.
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B3 There exists some α > 0 such that for all P ∈ R2, ε ∈ Linsym(R2,R2), D ∈ R2

C(P )ε : ε ≥ α|ε|2,
ε(P )D ·D ≥ α|D|2.

B4 There exist p∗ ∈ (2,∞) and r∗ ∈ [1,∞), such that

f1 ∈ L2r∗
(
0, T ;

(
L

2p∗
p∗+2 (Ω)

)2)
,

f2 ∈ L2r∗
(
0, T ;L

2p∗
p∗+2 (Ω)

)
,

f3 ∈ Lr
∗(

0, T ;
(
L

2p∗
p∗+2 (Ω)

)2)
,

t ∈ L2r∗
(
0, T ;

(
L
p∗
2 (∂Ωu)

)2)
,

ρ ∈ L2r∗
(
0, T ;L

p∗
2 (∂ΩD)

)
,

π ∈ Lr∗
(
0, T ;

(
L
p∗
2 (∂ΩP )

)2)
,

uD ∈ L2r∗
(
0, T ;

(
B

1− 1
p∗

p∗,p∗ (∂Ωu)
)2)

,

φD ∈ L2r∗
(
0, T ;B

1− 1
p∗

p∗,p∗ (∂Ωφ)
)
,

PD ∈W 1,r∗
(
0, T ;

(
B

1− 1
p∗

p∗,p∗ (∂ΩP )
)2)

.

Remark 4.14. Using Lemma 3.8 we infer that there exist uD, φD, PD such that

uD ∈ L2r∗
(
0, T ;

(
W 1,p∗(Ω)

)2)
, uD|∂Ωu = uD,

φD ∈ L2r∗
(
0, T ;W 1,p∗(Ω)

)
, φD|∂Ωφ

= φD,

PD ∈W 1,r∗
(
0, T ;

(
W 1,p∗(Ω)

)2)
, PD|∂ΩP = PD.

In particular, from Lemma 3.5 and the analysis given below Lemma 3.8 we obtain that

f1, t, ε(uD) ∈ L2r∗
(
0, T ;

(
W−1,p∗

∂Ωu
(Ω)

)2)
,

f2, ρ, ∇φD ∈ L2r∗
(
0, T ;W−1,p∗

∂Ωφ
(Ω)

)
,

f3, π ∈ Lr
∗(

0, T ;
(
W−1,p∗

∂ΩP
(Ω)

)2)
,

PD, ∆PD ∈W 1,r∗
(
0, T ;

(
W−1,p∗

∂ΩP
(Ω)

)2)
,

where ε(uD) is the small strain tensor generated by uD. 4

Remark 4.15. We point out that unlike the case with dissipation functional of mixed type
(Chapter 3), the leading component of the polynomial ω need not be positive, since we
will not use any kind of variational method involving minimizers to conclude the existence
of P (and thus no coercivity will be used, which requires the positivity of the leading
component of ω). 4

We point out that the variables u, φ, P given in the differential system (4.1) and (4.2)
admit Dirichlet boundary conditions uD, φD, PD respectively. Replacing u, φ, P , P 0 in
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(4.1) and (4.2) by ũ, φ̃, P̃ , P̃ 0 and writing

ũ = u+ uD,

φ̃ = φ+ φD,

P̃ = P + PD,

P̃ 0 = P 0 + PD(0),

we obtain from (4.1) and (4.2) the transformed differential system

σ = C(P̃ )
(
ε(ũ)− ε0(P̃ )

)
+ e(P̃ )T∇φ̃ in (0, T )×Ω, (4.18a)

D = e(P̃ )
(
ε(ũ)− ε0(P̃ )

)
− ε(P̃ )∇φ̃+ P̃ in (0, T )×Ω, (4.18b)

Σ = κ∇P̃ in (0, T )×Ω, (4.18c)

divσ = f1 in (0, T )×Ω, (4.18d)

divD = f2 in (0, T )×Ω, (4.18e)

βP̃
′
= div Σ−DP H̃ −DP ω̃ + f3 in (0, T )×Ω (4.18f)

and

u|∂Ωu = 0 on (0, T )× ∂Ωu, (4.19a)

σn|∂Ωσ = t on (0, T )× ∂Ωσ, (4.19b)

φ|∂Ωφ
= 0 on (0, T )× ∂Ωφ, (4.19c)

D · n|∂ΩD = ρ on (0, T )× ∂ΩD, (4.19d)

P |∂ΩP = 0 on (0, T )× ∂ΩP , (4.19e)

Σn|∂ΩΣ
= π on (0, T )× ∂ΩΣ, (4.19f)

P (0) = P 0 = P̃ 0 − PD(0), (4.19g)

where H̃ and ω̃ in (4.18f) are defined by

H̃(t,u, φ,P ) = H
(
t, ε(u),∇φ,P + PD(t)

)
,

ω̃(t,P ) = ω
(
P + PD(t)

)
and H and ω are defined by (3.7) and (3.8). Using (4.18) and (4.19) we give the weak
formulation which is to be investigated in the following: Find (u, φ,P ) : (0, T ) →(
H1
∂Ωu

(Ω)
)2 ×H1

∂Ωφ
(Ω)×

(
H1
∂ΩP

(Ω)
)2

such that∫
Ω
B1

(
P (t) + PD(t)

)(ε(u(t)
)

∇φ(t)

)
:

(
ε(ū)
∇φ̄

)
dx = lt,P (t)+PD(t)(ū, φ̄), (4.20a)

βP ′(t)− κ∆P (t) = S
(
t,u(t), φ(t),P (t)

)
in
(
H−1
∂ΩP

(Ω)
)2
, (4.20b)

P (0) = P 0 (4.20c)

for a.a t ∈ (0, T ) and all (ū, φ̄) ∈
(
H1
∂Ωu

(Ω)
)2 ×H1

∂Ωφ
(Ω), where

S(t,u, φ,P ) = −Q(t,u, φ,P )−
(
βP ′D(t)− κ∆PD(t)− f3(t)− π(t)

)
, (4.21)

B1, lt,P are defined by (3.3) and (3.4) and Q is defined by

Q(t,u, φ,P )[P̄ ]

=

∫
Ω
DP H̃

(
t,u, φ,P

)
(P̄ ) +DP ω̃(t,P )(P̄ )dx

=

∫
Ω
DPH

(
t,u, φ,P + PD(t)

)
(P̄ ) +DPω

(
P + PD(t)

)
(P̄ )dx

(4.22)
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for P̄ ∈
(
H1
∂ΩP

(Ω)
)2

.

Remark 4.16. While thanks to the Assumption B2, the tensor B1(P ) is uniformly
bounded w.r.t. P ∈ R2 (and hence the l.h.s. of (4.20a) is well-defined for all (u, φ), (ū, φ̄)

in
(
H1
∂Ωu

(Ω)
)2 × H1

∂Ωφ
(Ω)), we point out that the coefficient tensor DPB1 defined by

(3.3) (which appears in DP H̃ here) need not be uniformly bounded on R2. This differs
from the case with dissipation functional of mixed type studied in Chapter 3, where the
uniform boundedness condition on DPB1 is also imposed. This is due to the fact that
the underlying space of the latter case is only embedded to some Lebesgue space of finite
order and therefore not necessarily bounded on Ω, while the underlying space for P in
the former case is embedded to some Hölder space defined on Ω, see Lemma 4.11 given
previously. 4

Remark 4.17. At this moment we have defined the functional S as a functional taking
the variable (t,u, φ,P ), which still differs from the one given in Theorem 4.3, since S
therein is a functional having only the variable (t,P ). However, we will see that under
certain conditions, the variable (u, φ) is uniquely determined by a given pair (t,P ), which
is seen as the unique solution of (4.20a), see Lemma 4.19 below. In this case, we can define

S(t,P ) = S
(
t,u(t,P ), φ(t,P ),P

)
and Theorem 4.3 is applicable. 4

A first fundamental question is the well-definedness of the integrals appearing in (4.20a)
and Q(t,u, φ,P ). In our proof of local existence result, we will deal with uniformly

continuous P (more precisely, P is in the underlying space (
(
W 1,p
∂ΩP

(Ω)
)2
,
(
W−1,p
∂ΩP

(Ω)
)2

) 1
r
,r

with p > 2 and r > 2p
p−2 , which is embedded to some Hölder space

(
Cδ(Ω)

)2
with some

δ > 0, see Lemma 4.11). Also, one can obtain from (4.29) below that (t,x) 7→ PD(t,x) is
uniformly continuous on [0, T ]×Ω. Thus the coefficient tensors appearing in Assumption
B2 and their derivatives evaluated at P̃ = P + PD will also be uniformly continuous on
[0, T ]×Ω, and one can therefore verify that the regularity Lemma A.8 is still applicable.
Hence we obtain the well-definedness of the integrals in (4.20a) and of Q(t,u, φ,P ). We
summarize this result in the following lemma without giving a proof, since this is only a
straightforward but tedious verification of the conditions of Lemma A.8.

Lemma 4.18. Let the Assumptions B1 to B4 be satisfied. Then the integrals∫
Ω
B1(P̂ )

(
ε(u)
∇φ

)
:

(
ε(ū)
∇φ̄

)
dx

and ∫
Ω
DP H̃

(
t,u, φ,P

)
(P̄ ) +DP ω̃(t,P )(P̄ )dx

are well-defined for a.a. t ∈ (0, T ), all measurable P̂ : R2 → R2, (u, φ), (ū, φ̄) ∈(
H1
∂Ωu

(Ω)
)2 ×H1

∂Ωφ
(Ω) and all P , P̄ ∈

(
C(Ω)

)2
.

4.2.2 Admissible pair of parameters

In order to formulate the main result Theorem 4.22 we still need to give the definition
of an admissible pair of parameters. The definition of an admissible pair is based on the
following regularity result, which is a direct consequence of Proposition 3.18:
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Lemma 4.19. Let the Assumptions B1 to B3 be satisfied. For a measurable function
P : Ω→ R2 and a number q ∈ [1,∞] with Hölder conjugate q′, the operator LP is defined
by

LP (u, φ)[ū, φ̄] :=

∫
Ω
B1(P )

(
ε(u)
∇φ

)
:

(
ε(ū)
∇φ̄

)
dx

for (u, φ) ∈
(
W 1,q
∂Ωu

(Ω)
)2 ×W 1,q

∂Ωφ
(Ω) and (ū, φ̄) ∈

(
W 1,q′

∂Ωu
(Ω)

)2 ×W 1,q′

∂Ωφ
(Ω). Then there

exists some p∗ ∈ (2,∞) such that LP is linear, continuous and bijective from(
W 1,q
∂Ωu

(Ω)
)2 ×W 1,q

∂Ωφ
(Ω) to

(
W−1,q
∂Ωu

(Ω)
)2 ×W−1,q

∂Ωφ
(Ω)

for all q ∈ [2, p∗]. In particular, the norm CP of the inverse operator L−1
P is uniformly

bounded by some positive constant C∗ for all measurable P and q ∈ [2, p∗], and C∗, p∗
depend only on the upper bound Ξ of the coefficients given in Assumption B2 and the
elliptic constant α given in Assumption B3 but not on the particular choice of P .

Proof. One sees that the coefficient tensor B1(P ) of LP is measurable, since B1 is continu-
ous on R2. Also, B1(P ) is bounded above by some positive constant CΞ (depending only
on Ξ) for all measurable P . On the other hand, LP is elliptic w.r.t. the elliptic constant
α given in Assumption B3 for all measurable P . Thus the conditions of Proposition 3.18
are satisfied and the claim follows immediately by applying Proposition 3.18 to LP .

Motivated by Lemma 4.11 and Lemma 4.19, we give the following definition of an
admissible pair of parameters:

Definiton 4.20. A pair (p, r) is called admissible, if the pair (p, r) satisfies

p ∈ (2, p∗),

where p∗ is the number given by Lemma 4.19, and

r ∈ (
2p

p− 2
,∞).

Remark 4.21. In Theorem 4.22 we will assume that the pair (p∗, r∗) given in Assumption
B4 satisfies p∗ ≥ p and r∗ ≥ r. We point out that such assumption is legit and makes
sense from the following viewpoint: notice that in Lemma 4.19 we have only used the
Assumptions B1 to B3, thus an admissible pair is independent on the Assumption B4. It
is namely legit that we first choose an admissible pair (p, r) due to the Assumptions B1
to B3, and then determine the components (p∗, r∗) given in the Assumption B4. 4

4.2.3 Local existence result for Gröger-regular domains

Having given all the preliminaries, we are able to state our main result as follows:

Theorem 4.22. Let the Assumptions B1 to B3 be satisfied and β, κ in (4.20) be given
positive constants. Let (p, r) be an admissible pair in the sense of Definition 4.20. Let the
Assumption B4 be satisfied with p∗ ∈ [p,∞) and r∗ ∈ [r,∞). Assume also that

P 0 ∈ (
(
W 1,p
∂ΩP

(Ω)
)2
,
(
W−1,p
∂ΩP

(Ω)
)2

) 1
r
,r.
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Then the differential system (4.20) has a unique local solution (u, φ,P ) in the time interval
(0, T̂ ) for some 0 < T̂ ≤ T such that

u ∈ L2r∗(0, T̂ ;
(
W 1,p̂
∂Ωu

(Ω)
)2

),

φ ∈ L2r∗(0, T̂ ;W 1,p̂
∂Ωφ

(Ω)),

P ∈W 1,r(0, T̂ ;
(
W−1,p
∂ΩP

(Ω)
)2

) ∩ Lr(0, T̂ ;
(
W 1,p
∂ΩP

(Ω)
)2

),

(4.23)

where p∗ is given by Lemma 4.19 and p̂ := min{p∗, p∗}.

Remark 4.23. Notice that we have different temporal exponents 2r∗ and r and spatial
exponents p̂ and p for (u, φ) and P respectively. The reason is that the regularity of (u, φ)
follows from Lemma 4.19, while the regularity of P is deduced from Theorem 4.3. 4

Proof. For the sake of simplicity we assume that β = κ = 1, since the size of β and κ has
no influence on the results. We formulate the following notation, which corresponds to
the one given in Theorem 4.3:

A(t,P ) ≡ −∆,

τ = r,

Y =
(
W 1,p
∂ΩP

(Ω)
)2
,

X =
(
W−1,p
∂ΩP

(Ω)
)2

and

S(t,P ) = S
(
t,u(t,P ), φ(t,P ),P

)
= −Q

(
t,u(t,P ), φ(t,P ),P

)
−
(
P ′D(t)−∆PD(t)− f3(t)− π(t)

)
,

(4.24)

where
(
u(t,P ), φ(t,P )

)
is the unique weak solution of the differential equation

LP+PD(t)

(
u(t,P ), φ(t,P )

)
= lt,P+PD(t) (4.25)

with LP+PD(t) defined by Lemma 4.19 and lt,P+PD(t) defined by (3.4). Here we insist

on the notation S(t,P ) but not define a new functional S̃(t,P ), which is for the pur-
pose of avoiding unnecessary redundant notation, see also Remark 4.17. The existence,
uniqueness and regularity of

(
u(t,P ), φ(t,P )

)
are deduced from Lemma 4.19 (to see that

Lemma 4.19 is applicable, we refer to Step 1c below). In particular,
(
u(t,P ), φ(t,P )

)
is

uniquely determined by a given pair (t,P ), thus S(t,P ) is well-defined. Having defined
this notation, we utilize Theorem 4.3 to show that the equation

P ′(t) +A
(
t,P (t)

)
= S

(
t,P (t)

)
with initial value P 0 has the claimed unique local solution P given in (4.23). We first
give the following statements corresponding to part of the conditions from Theorem 4.3,
which is relatively easier to verify:

1. From Corollary 4.8 it follows immediately that Y ↪→ X densely, A(0,P 0) = −∆
satisfies maximal parabolic regularity on X with dom

(
A(0,P 0)

)
= Y and A(t,P )

is continuous from [0, T ] × (Y,X) 1
τ
,τ to L(Y,X) (since A is constantly valued and

equal to −∆).

2. Since A is constantly equal to −∆, the validity of (A) in Theorem 4.3 is evident.
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3. Now we show that

S(t, ·) : (Y,X) 1
τ
,τ → X

is continuous for a.a. t ∈ [0, T ]. Let P ∈ (Y,X) 1
τ
,τ be arbitrary. For ε > 0 define

Oε(P ) := {P̄ ∈ (Y,X) 1
τ
,τ : ‖P − P̄ ‖(Y,X) 1

τ ,τ
< ε}. (4.26)

Thus to show the continuity, it suffices to show that

lim
ε→0

sup
P̄∈Oε(P )

‖S(t,P )− S(t, P̄ )‖X = 0. (4.27)

But this turns out to be a direct consequence of the Assumption (S) of Theorem 4.3,
which will be shown in the rest part of the proof below and we do not repeat here.

It is left to show that

• given fixed P in (Y,X) 1
τ
,τ , the mapping t 7→ S(t,P ) is Bochner-measurable,

• the validity of (S) in Theorem 4.3 and

• S(·,0) is from Lr(0, T ;X).

We will show these statements in the following steps:

Step 1: Bochner-measurability of t 7→ S(t,P )

Let P ∈ (Y,X) 1
τ
,τ be given and denote by W the space

W :=
(
W 1,p
∂Ωu

(Ω)
)2 ×W 1,p

∂Ωφ
(Ω). (4.28)

Define

g1
P (t,u, φ) := S(t,u, φ,P )

and

g2
P (t) := L−1

P+PD(t)(lt,P+PD(t)) ∈W

for t ∈ [0, T ] and (u, φ) ∈ W , where L−1
P+PD(t) and lt,P+PD(t) are defined according to

(4.25). Notice that
S(t,P ) = g1

P

(
t, g2

P (t)
)
.

We claim that if

1. g1
P : [0, T ] ×W → X is Carathéodory in the sense that t 7→ g1

P (t,u, φ) is Bochner-
measurable for all (u, φ) ∈W and (u, φ) 7→ g1

P (t,u, φ) is continuous for a.a. t ∈ [0, T ]
and

2. g2
P : [0, T ]→W is Bochner-measurable,

then t 7→ S(t,P ) : [0, T ] → X is Bochner-measurable. Indeed, this follows immediately
from Lemma D.3 by setting f = g1

P and g = g2
P therein. We show 1. and 2. in three

steps.
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Step 1a: Bochner-measurability of t 7→ g1
P (t,u, φ)

Recall from (4.21) and (4.22) that

g1
P (t,u, φ) = S

(
t,u, φ,P

)
= −Q(t,u, φ,P )−

(
P ′D(t)−∆PD(t)− f3(t)− π(t)

)
and

Q(t,u, φ,P ) = DP H̃(t,u, φ,P ) +DP ω̃(t,P ).

The Bochner-measurability of P ′D, ∆PD, f3, π follow directly from Assumption B4, we
thus still need to verify the Bochner-measurability of DP H̃ and DP ω̃ from [0, T ] to X for
a given (u, φ,P ) ∈W ×(Y,X) 1

τ
,τ . First we point out that we are not able to directly work

with the space (Y,X) 1
τ
,τ , since P + PD need not be an element in the space (Y,X) 1

τ
,τ .

But from Lemma 4.11 we know on the one hand that (Y,X) 1
τ
,τ ↪→

(
C(Ω)

)2
; on the other

hand, from Remark 4.14 we obtain that for all t ∈ [0, T ]

PD(t) ∈
(
W 1,p∗(Ω)

)2
↪→
(
C

1− 2
p∗ (Ω)

)2
↪→
(
C(Ω)

)2
,

since 1− 2
p∗ ∈ (0, 1), which is deduced from p∗ > 2. Together with the fact that

W 1,w(0, T ;Z) ↪→ C([0, T ];Z)

for all Banach spaces Z and all w ∈ [1,∞] (see [18, Sec. 5.9.2, Thm.2]), we conclude that

PD ∈ C([0, T ];
(
C

1− 2
p∗ (Ω)

)2
) ↪→ C([0, T ];

(
C(Ω)

)2
). (4.29)

This particularly implies that P + PD(t) ∈
(
C(Ω)

)2
for all t ∈ [0, T ]. Hence in the rest

part of Step 1, we will work with P in the underlying space
(
C(Ω)

)2
. Once we have shown

the Bochner-measurability of DP H̃ and DP ω̃ taking variable P in the space
(
C(Ω)

)2
, we

will obtain the Bochner-measurability of DP H̃ and DP ω̃ taking variable P in the space
(Y,X) 1

τ
,τ , since (Y,X) 1

τ
,τ is a subspace of

(
C(Ω)

)2
.

We first show the Bochner-measurability of DP ω̃. Recall that

DP ω̃(t,P ) = DPω
(
P + PD(t)

)
.

In view of Lemma D.3, we only need to show that the mapping DPω :
(
C(Ω)

)2 →(
W−1,p
∂ΩP

(Ω)
)2

is continuous. Let ε > 0 and P ∈
(
C(Ω)

)2
. Let P̂ ∈ Oε(P ), where Oε(P ) is

given by (4.26) with the replacement that the set (Y,X) 1
τ
,τ therein is replaced by

(
C(Ω)

)2
.

Then estimating similarly as in (4.52) below by setting P 1 = P , P 2 = P̂ and PD = 0
therein we obtain that ∣∣∣ ∫

Ω
DPω(P )(P̄ )−DPω(P̂ )(P̄ )dx

∣∣∣
≤C‖P − P̂ ‖L∞‖P̄ ‖W 1,p′

≤Cε‖P̄ ‖W 1,p′

for P̄ ∈
(
W 1,p′

∂ΩP
(Ω)

)2
, where in the last inequality we have used the definition of the set

Oε(P ). By taking ε to zero we obtain immediately the continuity of DPω from
(
C(Ω)

)2
to
(
W−1,p
∂ΩP

(Ω)
)2

.
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Next, we show the Bochner-measurability of DP H̃. If we define

h(t,u, φ,P ) = DPH
(
t, ε(u),∇φ,P

)
,

where H is defined by (3.7), then from Remark 3.11 we obtain that∫
Ω
h(t,u, φ,P )(P̄ )dx

=

∫
Ω

1

2
DPB2(P )P̄

(
ε(u) + εD(t)− ε0(P )

D(t)

)
:

(
ε(u) + εD(t)− ε0(P )

D(t)

)
+ B2(P )

(
ε(u) + εD(t)− ε0(P )

D(t)

)
:

(
−DP ε0(P )P̄

−P̄

)
dx

(4.30)

for P̄ ∈
(
W 1,p′

∂ΩP
(Ω)

)2
, where ε(u), εD(t) are the small strain tensors generated by u and

uD(t) respectively and

D(t) = −ε(P )
(
∇φ+∇φD(t)

)
+ e(P )

(
ε(u) + εD(t)− ε0(P )

)
.

For the tensors and functions B2, ε0, e, ε appeared in the above expression, we refer to
Section 2.4, (3.12) and (3.19). An additional remark should be made here: in fact, the
integral given in (4.30) should be given in terms using the tensors B1(P ) and DPB1(P ) but
not B2(P ) and DPB1(P ), due to the explicit expression of the function H given by (3.7).
However, due to Remark (3.11), the expression (4.30) gives an equivalent formulation of
the function DPH in terms using B2(P ) and DPB2(P ). There are two reasons of insisting
on the expression (4.30): first, it is quite cumbersome to formulate a new functional using
the tensors B1(P ) and DPB1(P ), due to the enormous number of parameters given in this
thesis. Since the expression (4.30) has already appeared in the study given in Chapter 3,
this will save us much work for reformulating several new notation; On the other hand,
many estimates given in Chapter 3 can also be directly utilized in this case, thanks to the
expression given in (4.30).

From (4.30) we obtain that

DP H̃(t,u, φ,P ) = h
(
t, ĥ(t)

)
,

where
ĥ(t) :=

(
u, φ,P + PD(t)

)
.

Thus similarly as previously done, in view of Lemma D.3 it suffices to show that h(t,u, φ,P )
is a Carathéodory function in the following sense:

• h(·,u, φ,P ) : [0, T ] → X is Bochner-measurable for all (u, φ,P ) ∈ W ×
(
C(Ω)

)2
and

• h(t, ·) : W ×
(
C(Ω)

)2 → X is continuous for a.a. t ∈ [0, T ].

To see the Bochner-measurability of h(·,u, φ,P ), we first point out that the functions
u, φ, P can be seen as constants (in corresponding function spaces), since they are inde-
pendent on t. From the expression of h(t,u, φ,P ) given in (4.30) we see that h(t,u, φ,P )
is nothing else but a sum of several products of constants and Bochner-measurable func-
tions, which is again Bochner-measurable. One thing has still to be clarified, namely, we
still need to show that these products, or more precisely, the integrands in the r.h.s. of
(4.30), are realized as elements in the space X =

(
W−1,p
∂ΩP

(Ω)
)2

, which is to guarantee the
compatibility of the products (of constants and Bochner-measurable functions) with the
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underlying space X. It suffices to show that for a.a. t ∈ [0, T ], the first integral in the

r.h.s. of (4.30) is bounded by C‖P̄ ‖W 1,p′ for P̄ ∈
(
W 1,p′

∂ΩP
(Ω)

)2
, with some positive con-

stant C; the estimation for the second integral is analogous. First we point out that since
P : Ω→ R2 is continuous on Ω and DPB2, e, ε are continuous on R2 due to Assumption
B2, DPB2(P ), e(P ), ε(P ) are as composition of continuous functions also continuous on
Ω, thus also uniformly bounded on Ω, since Ω is compact. Hence the first integrand in
the (4.30) is bounded by

C|P̄ |
(
1 + |ε(u)|+ |εD(t)|+ |∇φ|+ |∇φD(t)|

)2
.

From Assumption B4 we know that εD(t) and ∇φD(t) are of class Lp for a.a. t ∈ [0, T ].
On the other hand, for p > 2, simple calculation shows that the Sobolev relation

1− 2

p′
≥ 0− 2

p/(p− 2)

is equivalent to
(
√

2− 1)p ≥ −2,

which is obviously true for p > 2. Thus we conclude the Sobolev embedding

W 1,p′ ↪→ L
p
p−2 .

Finally, using the following Hölder relation

1

p
+

1

p
+
p− 2

p
= 1

we obtain that∫
Ω
|P̄ |
(
1 + |ε(u)|+ |εD(t)|+ |∇φ|+ |∇φD(t)|

)2
dx

≤C
∫

Ω
|P̄ |
(
1 + |ε(u)|2 + |εD(t)|2 + |∇φ|2 + |∇φD(t)|2

)
dx

≤C‖P̄ ‖
L

p
p−2

(
1 + ‖ε(u)‖2Lp + ‖εD(t)‖2Lp + ‖∇φ‖2Lp + ‖∇φD(t)‖2Lp

)
≤C‖P̄ ‖W 1,p′

(
1 + ‖ε(u)‖2Lp + ‖εD(t)‖2Lp + ‖∇φ‖2Lp + ‖∇φD(t)‖2Lp

)
≤C‖P̄ ‖W 1,p′

for a.a. t ∈ [0, T ], since u, uD, φ, φD are thought to be given fixed functions. This
completes the proof of the Bochner-measurability of h(·,u, φ,P ). It is left to show the

continuity of h(t, ·). Let (u, φ,P ) ∈ W ×
(
C(Ω)

)2
be some given function and (û, φ̂, P̂ )

be in the set Oε with an arbitrary but fixed ε > 0, where Oε is given by (4.26) with the

replacement that the set (Y,X) 1
τ
,τ therein is replaced by W ×

(
C(Ω)

)2
. Hence to show

the continuity of h(t, ·), it suffices to show that there exists some C > 0 such that for all

P̄ ∈
(
W 1,p′

∂ΩP
(Ω)

)2
and for all ε, say, in (0, 1], we have∫
Ω

(
h(t,u, φ,P )− h(t, û, φ̂, P̂ )

)
(P̄ )dx ≤ Cε‖P̄ ‖W 1,p′ . (4.31)

Using telescoping principle we can rewrite h(t,u, φ,P )− h(t, û, φ̂, P̂ ) as a sum of several
summands, such that each summand is a product of the following terms:

• components of
(
ε(u),∇φ,P

)
or
(
ε(û),∇φ̂, P̂

)
;
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• tensors evaluated at P or P̂ , e.g. DPB2(P̂ );

• difference of components, e.g. ε(u)− ε(û), DPB2(P )−DPB2(P̂ ).

In particular, the term of the third type occurs exactly once in each product. The term(
DPB2(P )−DPB2(P̂ )

)
P̄

(
ε(u) + εD(t)− ε0(P )

D

)
:

(
ε(u) + εD(t)− ε0(P )

D

)
(4.32)

is being an example. In order to avoid unnecessary duplicate and tedious calculation, we
shall only estimate the term (4.32) here, the other terms appearing in the telescoping sum
generated by the difference h(t,u, φ,P ) − h(t, û, φ̂, P̂ ) are being estimated analogously.
First, we point out that similarly as argued in the step of showing continuity of P →
DPω(P ), the tensors ε0(P ), e(P ), ε(P ) appearing in (4.32) are uniformly bounded for
all x ∈ Ω. Next, we obtain that

‖P̂ ‖L∞(Ω) =‖P̂ − P + P ‖L∞(Ω)

≤‖P̂ − P ‖L∞(Ω) + ‖P ‖L∞(Ω)

≤ε+ ‖P ‖L∞(Ω)

≤C + ε,

(4.33)

since P can be thought as a given fixed function. Thus P (x) and P̂ (x) are uniformly
bounded by the positive constant C + ε for all x ∈ Ω and P̂ ∈ Oε. From Assumption B2
we know that DPB2 is locally Lipschitz continuous on R2, thus it is Lipschitz continuous
on the R2-ball

BC+ε := {x ∈ R2 : |x| ≤ C + ε}.

We denote the Lipschitz constant of DPB2 on the ball BC+ε by Lε. Note that since
BC+ε1 ⊂ BC+ε2 if ε1 < ε2, we can w.l.o.g. assume that Lε is uniformly bounded by some
positive constant C (e.g. taking C = L1+C) for all ε ∈ (0, 1]. We thus obtain that

|DPB2

(
P (x)

)
−DPB2

(
P̂ (x)

)
| ≤ C|P (x)− P̂ (x)|

for all x ∈ Ω. Therefore we obtain the following upper bound

C
(
|P − P̂ |

)
· |P̄ | ·

(
1 + |ε(u)|+ |∇φ|+ |εD(t)|+ |∇φD(t)|

)2 (4.34)

for (4.32). Now we estimate the integral of (4.34) over Ω. First, using the fact that p > 2
we obtain from Sobolev’s embedding relation

1− 2

p′
= 0− 1/

( p

p− 2

)
> 0− 2/

( p

p− 2

)
that

(
W 1,p′

∂ΩP
(Ω)

)2
↪→
(
L

p
p−2 (Ω)

)2
. We also obtain that

‖
(
ε(û),∇φ̂

)
‖Lp(Ω) =‖

(
ε(û),∇φ̂

)
−
(
ε(u),∇φ

)
+
(
ε(u),∇φ

)
‖Lp(Ω)

≤‖
(
ε(û),∇φ̂

)
−
(
ε(u),∇φ

)
‖Lp(Ω) + ‖

(
ε(u),∇φ

)
‖Lp(Ω)

≤ε+ ‖
(
ε(u),∇φ

)
‖Lp(Ω)

≤C + ε.

(4.35)

Finally, using the Hölder relation

p− 2

p
+

1

p
+

1

p
= 1
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we obtain that∫
Ω

(4.34) dx

≤C‖P̄ ‖
L

p
p−2
‖P − P̂ ‖L∞

(
1 + ‖ε(u)‖2Lp + ‖∇φ‖2Lp + ‖εD(t)‖2Lp + ‖∇φD(t)‖2Lp

)
≤C‖P̄ ‖W 1,p′‖P − P̂ ‖L∞

(
1 + ‖ε(u)‖2Lp + ‖∇φ‖2Lp + ‖εD(t)‖2Lp + ‖∇φD(t)‖2Lp

)
≤C(C + ε)2ε‖P̄ ‖W 1,p′

≤Cε‖P̄ ‖W 1,p′

by considering ε ∈ (0, 1]. From this we finally obtain (4.31) and consequently the continuity
of h(t, ·), and the proof of Step 1a is complete.

Step 1b: Continuity of (u, φ) 7→ g1
P (t,u, φ)

Notice that
g1
P (t,u, φ) = h(t,u, φ,P ).

Thus the proof of Step 1b is already contained in the proof of showing the continuity of
h(t, ·) previously and nothing has to be shown.

Step 1c: Bochner-measurability of t 7→ g2
P (t)

Recall that

g2
P (t) := L−1

P̃ (t)
(lt,P̃ (t)) =

(
u(t), φ(t)

)
,

where P̃ (t) = P + PD(t) and LP̃ (t) and lt,P̃ (t) are defined according to Lemma 4.19 and

(4.25). Due to Lemma 4.11 and (4.29), P̃ : t →
(
C(Ω)

)2
is Bochner-measurable and

P̃ (t) : Ω→ R2 is measurable for all t ∈ [0, T ], where the latter statement is to guarantee
that Lemma 4.19 is applicable. We also recall that (p, r) is an admissible pair in the sense
of Definition 4.20 and the Assumption B4 is satisfied with p∗ ∈ [p,∞) and r∗ ∈ [r,∞). In
particular, the number p̂ is defined by

p̂ := min{p∗, p∗},

where p∗ is given by Lemma 4.19. Now due to Assumption B4 we know that lt,P̃ (t) defined

by (3.4) and evaluated at P̃ (t) in the second component is an element of
(
W−1,q
∂Ωu

(Ω)
)2 ×

W−1,q
∂Ωφ

(Ω) for all q ∈ [2, p̂] and a.a. t ∈ [0, T ]. Thus one concludes from Lemma 4.19

the existence and uniqueness of u(t) and φ(t) in the spaces
(
W 1,q
∂Ωu

(Ω)
)2

and W 1,q
∂Ωφ

(Ω)

respectively for all q ∈
[
2, p̂
]

and a.a. t ∈ [0, T ]. From previous analysis we know that

P̃ : [0, T ]→
(
C(Ω)

)2
is Bochner-measurable. Also we know from Assumption B4 that

l·,P̃ (·) : [0, T ]→
(
W−1,p
∂Ωu

(Ω)
)2 ×W−1,p

∂Ωφ
(Ω)

is Bochner-measurable, since p is in (2, p̂] due to the definition of an admissible pair, see
Definition 4.20. Thus due to Definition 4.4, there exist simple functions {P̃ n}n∈N and
{ln}n∈N defined on [0, T ] such that

P̃ n(t)→ P̃ (t) in
(
C(Ω)

)2
for a.a. t ∈ [0, T ], (4.36)

ln(t)→ lt,P̃ (t) in
(
W−1,p
∂Ωu

(Ω)
)2 ×W−1,p

∂Ωφ
(Ω) for a.a. t ∈ [0, T ]. (4.37)
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Let t ∈ [0, T ] be chosen such that (4.36) and (4.37) are satisfied. In this case we assume
that the sequence {P̃ n(t,x)}n∈N and P̃ (t,x) are bounded by some positive constant M
uniformly for all x ∈ Ω. Let

(
u1
n(t), φ1

n(t)
)

be the solution of the elliptic system

LP̃ (t)

(
u1
n(t), φ1

n(t)
)

= ln(t),

whose existence is ensured by Lemma 4.19. Then

LP̃ (t)

(
u(t)− u1

n(t), φ(t)− φ1
n(t)

)
= lt,P̃ (t) − ln(t).

From Lemma 4.19 we obtain that

‖u1
n(t)− u(t)‖W 1,p + ‖φ1

n(t)− φ(t)‖W 1,p ≤ C∗‖lt,P̃ (t) − ln(t)‖W−1,p , (4.38)

where C∗ is given by Lemma 4.19. Thus, for an arbitrary ε > 0 we infer that for all
sufficiently large n it holds

‖u1
n(t)− u(t)‖W 1,p + ‖φ1

n(t)− φ(t)‖W 1,p ≤
ε

2
.

Now let
(
un(t), φn(t)

)
be the solution of

LP̃n(t)

(
un(t), φn(t)

)
= ln(t), (4.39)

whose existence is again ensured by Lemma 4.19. Then

LP̃ (t)

(
u1
n(t), φ1

n(t)
)

= ln(t) = LP̃n(t)

(
un(t), φn(t)

)
,

which implies

LP̃ (t)

(
u1
n(t)− un(t), φ1

n(t)− φn(t)
)

= (LP̃n(t) − LP̃ (t))
(
un(t), φn(t)

)
.

From Lemma 4.19 we infer that

‖un(t)− u1
n(t)‖W 1,p + ‖φn(t)− φ1

n(t)‖W 1,p

≤C∗‖(LP̃n(t) − LP̃ (t))
(
un(t), φn(t)

)
‖W−1,p

≤LMC∗‖P̃ (t)− P̃ n(t)‖L∞
(
‖un(t)‖W 1,p + ‖φn(t)‖W 1,p

)
≤LMC∗‖P̃ (t)− P̃ n(t)‖L∞ ·

(
C∗‖ln(t)‖W−1,p

)
(4.40)

where LM is the Lipschitz constant of B1 constrained on the ball in R2 with center 0 and
radius M (which is valid due to Assumption B2) and the last inequality comes from the
application of Lemma 4.19 to the equation (4.39). Due to (4.37), ‖ln(t)‖W−1,p is bounded
for all n ∈ N, thus for all sufficiently large n we obtain from (4.36) and (4.40) that

‖un(t)− u1
n(t)‖W 1,p + ‖φn(t)− φ1

n(t)‖W 1,p ≤
ε

2
.

Together with (4.38) we infer that

‖un(t)− u(t)‖W 1,p + ‖φn(t)− φ(t)‖W 1,p ≤ ε

for all sufficiently large n. But since P̃ n and ln are simple functions, we know that un
and φn are also simple functions. This implies the Bochner-measurability of

(
un(t), φn(t)

)
and completes the proof of Step 1c. Consequently we have proved the desired Step 1.
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Step 2: Validity of condition (S)

We recall the condition (S): Let M > 0 be arbitrary. Then we need to show that there
exists some hM ∈ Lr(0, T ), such that for all P 1,P 2 ∈ (Y,X) 1

τ
,τ with

max{‖P 1‖(Y,X) 1
τ ,τ
, ‖P 2‖(Y,X) 1

τ ,τ
} ≤M

we have

‖S(t,P 1)− S(t,P 2)‖X ≤ hM (t)‖P 1 − P 2‖(Y,X) 1
τ ,τ
. (4.41)

We will utilize the same idea as the one for the regularity results given in Section 3.5 to
show (4.41), namely, the Lipschitz estimate (4.41) on bounded subsets of (Y,X) 1

τ
,τ will rely

on a corresponding difference estimate of the solutions
(
(ui(t), φi(t)

)
of the piezo-system

LP̃ i(t)
(
ui(t), φi(t)

)
= lt,P̃ i(t) (4.42)

for i = 1, 2. From Lemma 4.11 we deduce that the set

V := {P ∈ (Y,X) 1
τ
,τ : ‖P ‖(Y,X) 1

τ ,τ
≤M}

is a bounded subset of
(
L∞(Ω)

)2
. Thus w.l.o.g. up to a prefactor we may also assume

that

‖P ‖L∞(Ω) ≤M (4.43)

for all P ∈ V. From (4.29) we know that PD is in the space
(
L∞([0, T ]×Ω)

)2
. Thus

‖P̃ ‖L∞([0,T ]×Ω) = ‖P + PD‖L∞([0,T ]×Ω) ≤ ‖P ‖L∞(Ω) + ‖PD‖L∞([0,T ]×Ω)

≤M + ‖PD‖L∞([0,T ]×Ω)

≤M ′

for some M ′ > 0 depending on M . Using Assumption B2 we can find some positive CM
such that

sup
P∈R3,|P |≤M ′

{
LDPC,LDP e,LDP ε0 ,LDP ε,LDP ε−1 ,

|DPC(P )|, |DP e(P )|, |DP ε0(P )|, |DP ε(P )|, |DP ε−1(P )|,

|C(P )|, |e(P )|, |ε0(P )|, |ε(P )|, |ε−1(P )|,
}
≤ CM ,

where L◦ are the corresponding local Lipschitz constants of the derivatives. Define

h(t) :=‖f1(t)‖
L

2p
p+2

+ ‖t(t)‖
L
p
2

+ ‖f2(t)‖
L

2p
p+2

+ ‖ρ(t)‖
L
p
2

+ ‖uD(t)‖
B

1− 1
p

p,p

+ ‖φD(t)‖
B

1− 1
p

p,p

.
(4.44)

For convention we will use KM to stand for some positive constant which depends only
on M for various inequalities. Let P 1, P 2 ∈ V and (ui, φi) be given by (4.42) for i = 1, 2.
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We also define εi = ε(ui). Recall that lt,P (ū, φ̄) is defined by

lt,P (ū, φ̄) =

∫
Ω
f1(t) · ūdx+

∫
∂Ωσ

t(t) · ūdS

−
∫

Ω

(
C(P )

(
εD(t)− ε0(P )

)
− eT (P )∇φD(t)

)
: ε̄dx

−
(∫

Ω
f2(t)φ̄dx+

∫
∂ΩD

ρ(t)φ̄dS
)

+

∫
Ω

(
e(P )

(
εD(t)− ε0(P )

)
− ε(P )∇φD(t) + P

)
· ∇φ̄dx

(4.45)

for (ū, φ̄) ∈
(
W 1,p′

∂Ωu
(Ω)

)2 × W 1,p′

∂Ωφ
(Ω). It follows from (4.45), Hölder’s inequality and

standard dual estimation that

|lt,P i+PD(t)(ū, φ̄)|
≤
(
‖f1(t)‖

L
2p
p+2

+ ‖t(t)‖
L
p
2

+ ‖f2(t)‖
L

2p
p+2

+ ‖ρ(t)‖
L
p
2

)(
‖ū‖W 1,p′ + ‖φ̄‖W 1,p′

)
+
(
CM

(
‖εD(t)‖Lp + ‖∇φD(t)‖Lp

)
+ C · C2

M

)(
‖ε̄‖Lp′ + ‖∇φ̄‖Lp′

)
+ ‖P i + PD(t)‖Lp‖∇φ̄‖Lp′

≤
(
C
(
1 + C2

M

)(
1 + h(t)

)
+ C

(
1 + ‖P i‖L∞

))(
‖ū‖W 1,p′ + ‖φ̄‖W 1,p′

)
≤
(
C
(
1 + C2

M

)(
1 + h(t)

)
+ CM ′

)(
‖ū‖W 1,p′ + ‖φ̄‖W 1,p′

)
≤
(
CM ′

(
1 + C2

M

)(
1 + h(t)

))(
‖ū‖W 1,p′ + ‖φ̄‖W 1,p′

)
≤KM

(
1 + h(t)

)(
‖ū‖W 1,p′ + ‖φ̄‖W 1,p′

)
.

(4.46)

Thus we obtain from Lemma 4.19 that

‖ui‖W 1,p + ‖φi‖W 1,p ≤ C∗KM

(
1 + h(t)

)
≤ KM

(
1 + h(t)

)
, i = 1, 2. (4.47)

We use the same idea as the one for deriving (4.47) to estimate u1 − u2 and φ1 − φ2:
analogous to (3.41) we obtain that∫

Ω
B1

(
P̃ 1(t)

)( ε1 − ε2

∇φ1 −∇φ2

)
:

(
ε̄
∇φ̄

)
dx

=
[
(l̂t,P̃ 1(t) − l̂t,P̃ 2(t))(ū, φ̄)

]
+
[ ∫

Ω
(P 1 − P 2) · ∇φ̄dx

]
−
[ ∫

Ω

(
B1

(
P̃ 1(t)

)
− B1

(
P̃ 2(t)

))( ε2

∇φ2

)
:

(
ε̄
∇φ̄

)
dx
]

= : I1 + I2 + I3.

(4.48)

Now the estimation of u1 − u2 and φ1 − φ2 follow from the application of Lemma 4.19
to the differential operator given in the first line of (4.48) (namely, replacing ui and φi in
(4.47) by u1−u2 and φ1−φ2 respectively) with r.h.s. given by the second and third lines
of (4.48). Hence we need to estimate I1, I2, I3. To estimate I1, it suffices to consider the
terms ∫

Ω

(
C(P 1)− C(P 2)

)
εD(t) : ε̄dx =: I11,∫

Ω

(
C(P 1)ε0(P 1)− C(P 2)ε0(P 2)

)
: ε̄dx =: I12,
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which are summands of the difference l̂t,P̃ 1(t)− l̂t,P̃ 2(t), and estimation for the other terms

in the difference l̂t,P̃ 1(t) − l̂t,P̃ 2(t) can be deduced analogously. It follows on the one hand
that

|I11| ≤CM
∫

Ω
|P 1 − P 2||εD(t)||ε̄|dx

≤CM‖P 1 − P 2‖L∞‖εD(t)‖Lp‖ε̄‖Lp′
≤CMh(t)‖P 1 − P 2‖L∞‖ε̄‖Lp′ .

On the other hand,

|I12| ≤C2
M

∫
Ω
|P 1 − P 2||ε̄|dx

≤C2
M‖P 1 − P 2‖Lp‖ε̄‖Lp′

≤CC2
M‖P 1 − P 2‖L∞‖ε̄‖Lp′ .

We also obtain that

|I2| ≤‖P 1 − P 2‖Lp‖∇φ̄‖Lp′ ≤ C‖P 1 − P 2‖L∞‖∇φ̄‖Lp′

and

|I3| ≤CM‖P 1 − P 2‖L∞
(
‖ε2‖Lp + ‖∇φ2‖Lp

)(
‖ε̄‖Lp′ + ‖∇φ̄‖Lp′

)
≤KM

(
1 + h(t)

)
‖P 1 − P 2‖L∞

(
‖ε̄‖Lp′ + ‖∇φ̄‖Lp′

)
.

(4.49)

Therefore from Lemma 4.19 and (4.47) we obtain that

‖u1 − u2‖W 1,p + ‖φ1 − φ2‖W 1,p

≤C∗
(
CMh(t) + CC2

M + C +KM

(
1 + h(t)

))
‖P 1 − P 2‖L∞

≤KM

(
1 + h(t)

)
‖P 1 − P 2‖L∞ .

(4.50)

With these in hand, we are ready to estimate the difference of S(t,P i) for i = 1, 2. Recall
from (4.24) that

S(t,P ) = −Q
(
t,u(t,P ), φ(t,P ),P

)
−
(
P ′D(t)−∆PD(t)− f3(t)− π(t)

)
and from (4.22) and Remark 3.11 that

Q(t,u, φ,P )[P̄ ]

=

∫
Ω

1

2
DPB2

(
P̃ (t)

)
P̄

(
ε(u) + εD(t)− ε0

(
P̃ (t)

)
D(t)

)
:

(
ε(u) + εD(t)− ε0

(
P̃ (t)

)
D(t)

)
+ B2

(
P̃ (t)

)(ε(u) + εD(t)− ε0
(
P̃ (t)

)
D(t)

)
:

(
−DP ε0

(
P̃ (t)

)
P̄

−P̄

)
+DPω

(
P̃ (t)

)
(P̄ )dx,

(4.51)

where

D(t) = −ε
(
P̃ (t)

)(
∇φ+∇φD(t)

)
+ e
(
P̃ (t)

) (
ε(u) + εD(t)− ε0

(
P̃ (t)

))
.

Since the terms P ′D, ∆PD, f3, π depend only on t, we only need to consider the three
integrands in (4.51). Since ω, the third term of (4.51), is a sixth order polynomial, it
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is smooth and its derivative is locally Lipschitzian. Denote this Lipschitz constant for

P ∈ R3, |P | ≤M ′ by LM ′ . Then for P̄ ∈
(
W 1,p′

∂ΩP
(Ω)

)2
we have∣∣∣ ∫

Ω
DPω(P̃ 1(t))(P̄ )−DPω

(
P̃ 2(t)

)
(P̄ )dx

∣∣∣
≤LM ′

∫
Ω
|P 1 − P 2||P̄ |dx

≤LM ′‖P 1 − P 2‖Lp‖P̄ ‖Lp′
≤CLM ′‖P 1 − P 2‖L∞‖P̄ ‖W 1,p′

≤KM‖P 1 − P 2‖L∞‖P̄ ‖W 1,p′ .

(4.52)

Analogously as estimating I1 given in (4.48), to estimate the first two complicated sum-
mands in (4.51), it suffices to estimate the following terms:

J1 =

∫
Ω
|P̄ |
(
1 + |ε1| + |∇φ1| + |εD(t)| + |∇φD(t)| + |P 1|

)2|P 1 − P 2|dx

and

J2 =

∫
Ω
|P̄ |
(
1 + |ε1|+ |∇φ1|+ |εD(t)|+ |∇φD(t)|+ |P 1|

)
·
(
|ε1 − ε2|+ |∇φ1 −∇φ2|+ |P 1 − P 2|

)
dx.

It follows from Hölder’s inequality that

|J1| ≤ C
(
1 + ‖ε1‖Lp + ‖∇φ1‖Lp + ‖εD(t)‖Lp + ‖∇φD(t)‖Lp

)2‖P 1 − P 2‖L∞‖P̄ ‖
L

p
p−2

≤ CKM

(
1 +KM

(
1 + h(t)

)
+ h(t)

)2
‖P 1 − P 2‖L∞‖P̄ ‖W 1,p′

= CKM

((
1 +KM

)(
1 + h(t)

))2
‖P 1 − P 2‖L∞‖P̄ ‖W 1,p′

≤ KM

(
1 + h(t)

)2‖P 1 − P 2‖L∞‖P̄ ‖W 1,p′

(4.53)

and

|J2| ≤ C
(
1 + ‖ε1‖Lp + ‖∇φ1‖Lp + ‖εD(t)‖Lp + ‖∇φD(t)‖Lp

)
·
(
‖ε1 − ε2‖Lp

+ ‖∇φ1 −∇φ2‖Lp + ‖P 1 − P 2‖Lp
)
‖P̄ ‖

L
p
p−2

≤ CKM

(
1 +KM

(
1 + h(t)

)
+ h(t)

)(
KM

(
1 + h(t)

)
‖P 1 − P 2‖L∞

)
‖P̄ ‖W 1,p′

≤ CKM

(
1 + h(t)

)2‖P 1 − P 2‖L∞‖P̄ ‖W 1,p′

≤ KM

(
1 + h(t)

)2‖P 1 − P 2‖L∞‖P̄ ‖W 1,p′ .

(4.54)

Sum up all, we obtain that

‖S(t,P 1)− S(t,P 2)‖X ≤ hM (t)‖P 1 − P 2‖L∞
≤ hM (t)‖P 1 − P 2‖(Y,X) 1

τ ,τ

(4.55)

with

hM (t) = KM

(
1 + h(t)

)2
.

From Assumption B4 and Lemma D.5 we immediately infer that hM ∈ Lr(0, T ). This
shows the validity of (S).
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Step 3: Verification of S(t,0) ∈ Lr(0, T ;X)

From the definition of S(t,P ) we obtain that

S(t,0) = −Q
(
t,u(t,0), φ(t,0),0

)
−
(
P ′D(t)−∆PD(t)− f3(t)− π(t)

)
.

Due to Assumption B4 we infer that

P ′D, ∆PD, f3, π ∈ Lr(0, T ;X).

Thus we only need to consider the term Q. We obtain from (4.51) that

Q(t,u, φ,0)[P̄ ]

=

∫
Ω

1

2
DPB2

(
PD(t)

)
P̄

(
ε(u) + εD(t)− ε0

(
PD(t)

)
D0(t)

)
:

(
ε(u) + εD(t)− ε0

(
PD(t)

)
D0(t)

)
+ B2

(
PD(t)

)(ε(u) + εD(t)− ε0
(
PD(t)

)
D0(t)

)
:

(
−DP ε0

(
PD(t)

)
P̄

−P̄

)
+DPω

(
PD(t)

)
(P̄ )dx

with

D0(t) = −ε
(
PD(t)

)(
∇φ+∇φD(t)

)
+ e
(
PD(t)

) (
ε(u) + εD(t)− ε0

(
PD(t)

))
.

Write (
u(t), φ(t)

)
= L−1

PD(t)

(
lt,PD(t)

)
,

ε(t) = ε
(
u(t)

)
,

that is,
(
u(t), φ(t)

)
is chosen as the solution of the piezo-system corresponding to the pair

(t,P ) = (t,0) and the external loading lt,PD(t). Setting M = 0 in (4.46) we obtain that

|lt,PD(t)(ū, φ̄)| ≤ K0

(
1 + h(t)

)(
‖ū‖W 1,p′ + ‖φ̄‖W 1,p′

)
.

for (ū, φ̄) ∈
(
W 1,p′

∂Ωu
(Ω)

)2 ×W 1,p′

∂Ωφ
(Ω). Together with Lemma 4.19 we obtain that

‖ε(t)‖Lp + ‖∇φ(t)‖Lp
≤‖u(t)‖W 1,p + ‖φ(t)‖W 1,p

≤C∗K0

(
1 + h(t)

)
=:C

(
1 + h(t)

)
.

Finally, using the Hölder relation

p− 2

p
+

1

p
+

1

p
= 1

we obtain that

Q(t,u(t), φ(t),PD(t))[P̄ ]

≤C
(∫

Ω
|P̄ |
(
1 + |ε(t)|+ |∇φ(t)|+ |εD(t)|+ |∇φD(t)|+ |PD(t)|

)2
+ |P̄ |

(
1 + |ε(t)|+ |∇φ(t)|+ |εD(t)|+ |∇φD(t)|+ |PD(t)|

)
dx
)

≤C
∫

Ω
|P̄ |
(
1 + |ε(t)|+ |∇φ(t)|+ |εD(t)|+ |∇φD(t)|+ |PD(t)|

)2
dx

≤C‖P̄ ‖
L

p
p−2

(
1 + ‖ε(t)‖2Lp + ‖∇φ(t)‖2Lp + ‖εD(t)‖2Lp + ‖∇φD(t)‖2Lp + ‖PD(t)‖2Lp

)
≤C
(
1 + h2(t)

)
‖P̄ ‖

L
p
p−2

≤C
(
1 + h2(t)

)
‖P̄ ‖W 1,p′

(4.56)
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for P̄ ∈
(
W 1,p′

∂ΩP
(Ω)

)2
, where for the last inequality we have used the Sobolev’s embedding

relation

1− 2

p′
≥ 0− 2/

( p

p− 2

)
.

From Assumption B4 and Lemma D.5 we infer that

h2(t) ∈ Lr(0, T ).

Hence we obtain that
S(·,0) ∈ Lr(0, T ;X),

which completes the proof of Step 3.
Finally, from Theorem 4.3 one obtains a unique local solution

P ∈W 1,r(0, T̂ ;
(
W−1,p
∂ΩP

(Ω)
)2

) ∩ Lr(0, T̂ ;
(
W 1,p
∂ΩP

(Ω)
)2

)

of the system

P ′(t)−∆P (t) = S
(
t,P (t)

)
(4.57)

on the time interval (0, T̂ ) for some T̂ ∈ (0, T ]. Inserting the pair
(
t,P (t)

)
into (4.25)

we obtain the solution pair
(
u(t), φ(t)

)
. To complete the proof we still need to show that

the solution (u, φ) has the claimed regularity given by (4.23). First we point out that the
inequality (4.46) is originally derived for P ∈ (Y,X) 1

τ
,τ , but since we have only used the

property that P is uniformly continuous on Ω, which is derived from Lemma 4.11, we see
that (4.46) is also valid for P ∈

(
C(Ω)

)2
. On the other hand, using the embedding

W 1,r(0, T̂ ;
(
W−1,p
∂ΩP

(Ω)
)d

) ∩ Lr(0, T̂ ;
(
W 1,p
∂ΩP

(Ω)
)d

) ↪→ Cδ([0, T̂ ];
(
Cδ(Ω)

)d
)

from Proposition 4.13, we see that the local solution P of (4.57) is also an element of(
C([0, T ] ×Ω)

)2
. This implies that P (t) is in the space

(
C(Ω)

)2
for all t ∈ [0, T ]. Thus

(4.46) is in this case still applicable. We still need to clarify that the constant KM in (4.46)
is uniform for a.a. t ∈ [0, T ] by inserting the local solution P into (4.46). Notice that
when we consider (4.46) for P ∈ (Y,X) 1

τ
,τ , M is some positive constant which depends

only on ‖P ‖(Y,X) 1
τ ,τ

. But we see that such dependence is realized via the relation (4.43),

namely, we actually have used the dependence of M on ‖P ‖L∞ . Thus if we consider P as

the local solution of (4.57), we find out that since P is in the space
(
C([0, T ]×Ω)

)2
, KM

is uniform for a.a. t ∈ [0, T ] by inserting the local solution P into (4.46). In this case,
since P is given as a fixed function, we are also able to say that KM is bounded by some
positive constant C which is uniform for a.a. t ∈ [0, T ] and x ∈ Ω. Next, from Assumption
B4 and Lemma D.5 we infer that the function h(t) given in (4.44) is in L2r∗(0, T̂ ). Thus
from (4.46) we obtain immediately that

l·,P̃ (·) ∈ L
2r∗(0, T̂ ;

(
W−1,p̂
∂Ωu

(Ω)
)2 ×W−1,p̂

∂Ωφ
(Ω)) (4.58)

and for a.a. t ∈ [0, T ] we have

‖lt,P̃ (t)‖W−1,p̂ ≤ C
(
1 + h(t)

)
(4.59)

by setting p = p̂ in (4.46). Consequently, from Lemma 4.19 we obtain that for a.a.
t ∈ [0, T ] we have (

u(t), φ(t)
)
∈
(
W 1,p̂
∂Ωu

(Ω)
)2 ×W 1,p̂

∂Ωφ
(Ω)
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and

‖
(
u(t), φ(t)

)
‖W 1,p̂ ≤ C∗‖lt,P̃ (t)‖W−1,p̂ ≤ C∗C

(
1 + h(t)

)
,

where the last inequality is due to (4.59) and C∗ is given by Lemma 4.19 (notice particularly
that C∗ is even uniform for all measurable P : Ω→ R2 due to the last statement of Lemma
4.19). Together with the fact that h ∈ L2r∗(0, T̂ ) we obtain immediately that

(u, φ) ∈ L2r∗(0, T̂ ;
(
W 1,p̂
∂Ωu

(Ω)
)2 ×W 1,p̂

∂Ωφ
(Ω)),

which is the desired regularity of (u, φ) given in (4.23). This completes the proof of
Theorem 4.3.

4.3 3D-local existence results for domains with C1-boundary
and for cuboids

In this section we will present the local existence result for the case d = 3. Here, the main
difficulty is the insufficient regularity of the solution (u, φ) given by the piezo-problem
(4.20). More precisely, in order to guarantee that the functional Q given by (4.22) is of
class W−1,p

∂ΩP
for some p > d = 3, the solution (u, φ) of (4.20) is required to be of class

W 1,p. However, this can not be obtained in general for the piezo-problem by imposing
mixed boundary conditions. As we see, the result given by Proposition 3.18 shows that
the value of p is expected to be close to 2.

If we restrict ourself to the Dirichlet boundary case, then the result given by [14]
guarantees that the solution (u, φ) of the piezo-problem is of class W 1,p

0 for some p > 3,
by assuming that the underlying domain Ω has C1-boundary and the external loadings
corresponding to the piezo-problem are sufficiently regular (roughly speaking, they should
be of class W−1,p). However, the norm of the inverse piezo-operator in this case will not
only depend on the upper bound of the coefficient tensors, but also on their modulus
of continuity, see for instance [21, Chap. 7]. Therefore, the method introduced in last
section for two dimensional case to show the validity of (S) of Theorem 4.3 is not directly
applicable for three dimensional case. We will use the continuity arguments given in [46]
to fix this problem.

Particularly, we see that regularity result Proposition 4.33 given below, valid for do-
mains with C1-boundary, will play the essential role for the proof of Theorem 4.39. We
point out that the results given in [1] provide us an analogue of Proposition 4.33 for a
cuboid domain. We will then use similar regularity result as Proposition 4.33, namely
the Proposition 4.41 below, to extend the results from Theorem 4.39 for domains with
C1-boundary to the ones for cuboid domains, see Theorem 4.44 below.

4.3.1 Assumptions and weak formulation

C1 Ω ⊂ R3 is a bounded domain with C1 boundary, ∂Ωu = ∂Ωφ = ∂ΩP ∪̇∂ΩΣ = ∂Ω,
∂ΩP is a 2-set and Ω ∪ ∂ΩP is G2-regular (c.f. Section 2.1).

C2 C, e, ε0, ε (c.f. Section 2.4) are differentiable functions on R3 and their derivatives
are locally Lipschitzian on R3; ω : R3 → R (c.f. Section 2.4) is a polynomial of sixth
order with constant coefficients.
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C3 There exists some α > 0 such that for all P ∈ R3, ε ∈ Linsym(R3,R3), D ∈ R3

C(P )ε : ε ≥ α|ε|2,
ε(P )D ·D ≥ α|D|2.

C4 There exist p∗ ∈ (3,∞) and r∗ ∈ [1,∞) such that

f1 ∈ L2r∗(0, T ;
(
L

3p∗
p∗+3 (Ω)

)3
),

f2 ∈ L2r∗(0, T ;L
3p∗
p∗+3 (Ω)),

f3 ∈ Lr
∗
(0, T ;

(
L

3p∗
p∗+3 (Ω)

)3
),

π ∈ Lr∗(0, T ;
(
L

2p∗
3 (∂ΩP )

)3
),

uD ∈ L2r∗(0, T ;
(
W

1− 1
p∗ ,p

∗
(∂Ω)

)3
),

φD ∈ L2r∗(0, T ;W
1− 1

p∗ ,p
∗
(∂Ω)),

PD ∈W 1,r∗(0, T ;
(
B

1− 1
p∗

p∗,p∗ (∂ΩP )
)3

).

Remark 4.24. Distinguished to the two dimensional case, one sees that no uniform
boundedness conditions are imposed for the coefficients in the three dimensional case.
The reason is that the regularity result given by [14] guarantees that the regularity of the
solution (u, φ) given by the piezo-elliptic problem (4.62a) is as good as the r.h.s. function
lt,P̃ (t) and independent of the upper bound of the coefficient tensor B1(P ), as long as P

is uniformly continuous on Ω, which will be the case in the following. 4

Remark 4.25. From Lemma 3.8 and Sobolev’s trace theorem we infer that there exist
uD, φD, PD such that

uD ∈ L2r∗(0, T ;
(
W 1,p∗(Ω)

)3
), uD|∂Ω = uD,

φD ∈ L2r∗(0, T ;W 1,p∗(Ω)), φD|∂Ω = φD,

PD ∈W 1,r∗(0, T ;
(
W 1,p∗(Ω)

)3
), PD|∂ΩP = PD.

From Lemma 3.5 and the analysis given below Lemma 3.8 we obtain that

f1, ε(uD) ∈ L2r∗
(
0, T ;

(
W−1,p∗(Ω)

)3)
,

f2, ∇φD ∈ L2r∗
(
0, T ;W−1,p∗(Ω)

)
,

f3, π ∈ Lr
∗(

0, T ;
(
W−1,p∗

∂ΩP
(Ω)

)3)
,

PD, ∆PD ∈W 1,r∗
(
0, T ;

(
W−1,p∗

∂ΩP
(Ω)

)3)
,

where ε(uD) is the small strain tensor generated by uD. 4

Remark 4.26. Analogously as done in (4.29), we obtain from the conditions p∗ ∈ (3,∞)
and

PD ∈W 1,r∗(0, T ;
(
W 1,p∗(Ω)

)3
)

that
PD ∈ C([0, T ];

(
C

1− 3
p∗ (Ω)

)3
) ↪→ C([0, T ];

(
C(Ω)

)3
). (4.61)

4
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Recall from Section 4.2.1 that H̃ and ω̃ are defined by

H̃(t,u, φ,P ) = H
(
t, ε(u),∇φ,P + PD(t)

)
and

ω̃(t,P ) = ω
(
P + PD(t)

)
,

where H and ω are given by (3.7) and (3.8). Then using the same notation as the one
given in Section 4.2.1, we give the following weak formulation which is to be investigated:
Find (u, φ,P ) : (0, T )→

(
H1

0 (Ω)
)4 × (H1

∂ΩP
(Ω)

)3
such that

∫
Ω
B1

(
P (t) + PD(t)

)(ε(u(t)
)

∇φ(t)

)
:

(
ε(ū)
∇φ̄

)
dx = lt,P (t)+PD(t)(ū, φ̄), (4.62a)

βP ′(t)− κ∆P (t) = S
(
t,u(t), φ(t),P (t)

)
in
(
H−1
∂ΩP

(Ω)
)3
, (4.62b)

P (0) = P 0 (4.62c)

for a.a. t ∈ (0, T ) and all (ū, φ̄) ∈
(
H1

0 (Ω)
)4

, where

S(t,u, φ,P ) = −Q
(
t,u, φ,P

)
−
(
βP ′D(t)− κ∆PD(t)− f3(t)− π(t)

)
,

B1, lt,P are defined by (3.3) and (3.4) and Q is defined by

Q(t,u, φ,P )[P̄ ]

=

∫
Ω
DP H̃

(
t,u, φ,P

)
(P̄ ) +DP ω̃(t,P )(P̄ )dx

=

∫
Ω
DPH

(
t,u, φ,P + PD(t)

)
(P̄ ) +DPω

(
P + PD(t)

)
(P̄ )dx

for P̄ ∈
(
H1
∂ΩP

(Ω)
)3

.

Remark 4.27. We should also point out that in this case, the terms t and ρ given in
lt,P from (3.4) are irrelevant, since we are dealing with the piezo-problem with overall
Dirichlet boundary conditions. 4

Imitating Lemma 4.18 we present the following regularity result:

Lemma 4.28. Let the Assumptions C1 to C4 be satisfied. Then the integrals∫
Ω
B1

(
P + PD(t)

)(ε(u)
∇φ

)
:

(
ε(ū)
∇φ̄

)
dx

and ∫
Ω
DP H̃

(
t,u, φ,P

)
(P̄ ) +DP ω̃(t,P )(P̄ )dx

are well-defined for a.a. t ∈ (0, T ), all (u, φ), (ū, φ̄) ∈
(
H1

0 (Ω)
)4

and all P , P̄ ∈
(
C(Ω)

)3
.
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4.3.2 Strongly elliptic differential system

We first set up the system introduced in [14]. Let n,N ∈ N. Let Ω ⊂ Rn be a bounded
domain. For i, j = 1, ..., N and α, ι = 1, ..., n let the measurable functions fαi , gi : Ω→ R

and coefficients Aαι
ij ∈ L∞(Ω) be given. We look for solutions u : Ω → RN of the

differential system

(Lu)i :=
N∑
j=1

n∑
α,ι=1

−∂α(Aαι
ij ∂ιu

j) =
n∑

α=1

−∂αfαi + gi ∀i = 1, ..., N. (4.63)

In the following we use the Einstein summation convention: the Σ summation symbol will
be neglected, the Greek indices α and ι are always summed from 1 to n and Latin indices
i and j are summed from 1 to N . We also use the notation

Lu := −Div(A∇u) = −Divf + g

to interpret the differential system (4.63). In the following, we give the definition of a
strongly elliptic differential system and additional related definitions. For more details,
we also refer to [21, Chap. 3.4] and [45, Chap. 4].

Definiton 4.29 (Strong ellipticity, coerciveness and weak solution). Let L be the differ-
ential operator defined by (4.63) with coefficient tensor A.

• The operator L or the coefficient tensor A is called strongly elliptic or said to satisfy
the Legendre-Hadamard condition, if there exists some constant ν > 0 such that

Aαι
ij (x)ξαξιζ

iζj ≥ ν|ξ|2|ζ|2 ∀ξ ∈ Rn, ζ ∈ RN and a.e. x ∈ Ω.

• The operator L or the coefficient tensor A is called coercive or said to satisfy the
G̊arding’s inequality, if there exist constants c, C > 0 such that

∀u ∈
(
H1

0 (Ω)
)N

:

∫
Ω
Aαι
ij ∂ιu

j∂αu
idx ≥ c‖u‖2H1 − C‖u‖2L2 .

• A function u ∈
(
H1(Ω)

)N
is called a weak solution of (4.63), if

∀u ∈
(
H1

0 (Ω)
)N

:

∫
Ω
Aαι
ij ∂ιu

j∂αū
idx =

∫
Ω
fi∂αū

i + giū
idx.

From Lemma 4.30 and Lemma 4.31 given below we obtain that the piezo-operator
defined by (4.62a) is strongly elliptic.

Lemma 4.30 ([45, Thm. 4.6]). Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary
and assume that the coefficient tensor A is uniformly continuous on Ω. Then A is strongly
elliptic if and only if it is coercive.

Lemma 4.31. Let the Assumptions C1 to C3 be satisfied. Let P ∈
(
C(Ω)

)3
and let the

differential system
LP :

(
H1

0 (Ω)
)4 → (

H−1(Ω)
)4

be given by

LP (u, φ)
[
(ū, φ̄)

]
:=

∫
Ω
B1(P )

(
ε(u)
∇φ

)
:

(
ε(ū)
∇φ̄

)
dx

for (u, φ), (ū, φ̄) ∈
(
H1

0 (Ω)
)4

. Then for all P ∈
(
C(Ω)

)3
, LP is strongly elliptic on(

H1
0 (Ω)

)4
.
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Proof. Using the Poincaré’s and Korn’s inequalities we obtain that∫
Ω
B1(P )

(
ε
∇φ

)
:

(
ε
∇φ

)
dx

=

∫
Ω
C(P )ε : ε+ ε(P )∇φ · ∇φdx

≥α
(
‖ε‖2L2 + ‖∇φ‖2L2

)
≥C
(
‖u‖2H1 + ‖φ‖2H1

)
for (u, φ) ∈

(
H1

0 (Ω)
)4

, where α is given by the Assumption C3 and we used the Poincaré’s
and Korn’s inequalities to infer the last inequality. Since P is uniformly continuous on
Ω and C, e, ε0, ε are continuous on the whole R3 due to Assumption C2, B1

(
P (x)

)
is

uniformly continuous in x ∈ Ω. Now Lemma 4.30 ensures that the given differential
system is strongly elliptic.

We will utilize the following regularity result to infer higher integrability of the solution
(u, φ) of the piezo-system:

Lemma 4.32 ([14, Lem. 2]). Let Ω ⊂ Rn be a domain with C1-boundary. Let the
coefficient tensor A be uniformly continuous on Ω and strongly elliptic. Let p ∈ (1,∞), q ∈
(1, n) and f ∈ Lp, g ∈ Lq. Then the differential system

−Div(A∇u) = −Divf + g

admits a weak solution u ∈
(
H1

0 (Ω)
)N

and u is of class W 1,s with s = min(p, nq
n−q ) and

‖u‖W 1,s ≤ C
(
‖f‖Lp + ‖g‖Lq

)
.

We now give our regularity result for the piezo-system:

Proposition 4.33. Let the Assumptions C1 to C3 be satisfied. Let P ∈
(
C(Ω)

)3
and

p ∈ (3,∞). Let also l ∈
(
W−1,p(Ω)

)4
. Let LP be the differential operator defined by

LP (u, φ) := −Div

(
B1(P )

(
ε(u)
∇φ

))
for (u, φ) ∈

(
H1

0 (Ω)
)4

and consider the differential equation

LP (u, φ) = l. (4.64)

Then (4.64) has a unique weak solution (u, φ) ∈
(
W 1,p

0 (Ω)
)4

and

‖u‖W 1,p + ‖φ‖W 1,p ≤ CP ‖l‖W−1,p , (4.65)

where CP is some positive constant depending on P .

Proof. The existence and uniqueness of the weak solution follow directly from Lax-Milgram.
Since P is uniformly continuous on Ω and the coefficient tensor B1(P ) is continuous in
P ∈ R3 due to Assumption C2, the coefficient tensor B1(P ) is therefore uniformly con-
tinuous on Ω. Thus the conditions of Lemma 4.32 are satisfied and consequently, the
weak solution (u, φ) will be of class W 1,p due to Lemma 4.32 (notice that one can choose
q ∈ (1, n) as close as possible to n such that q < p and nq

n−q in Lemma 4.32 is sufficiently
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large). The corresponding Lp-estimate follows also immediately from Lemma 4.32. Since
the proof of Lemma 4.32 is based on the so called freezing technique for coefficients, we
should point out that the norm of the inverse operator L−1

P also depends on the modulus
of continuity of the coefficients (we also refer to [21, Chap. 7] for more details). Since the
modulus of continuity of the coefficients B1(P ) depends also on P , the dependence of L−1

P

on P follows immediately.

Remark 4.34. From Lemma 4.11 we see that the underlying space for P , namely the
space (

(
W 1,p
∂ΩP

(Ω)
)3
,
(
W−1,p
∂ΩP

(Ω)
)3

) 1
r
,r with some p ∈ (3, 6] and r > 2p

p−3 , is continuously

embedded to some Hölder space. On the other hand, due to (4.61) we also know that
PD is uniformly continuous on [0, T ] ×Ω. Thus the uniform continuity of P̃ = P + PD

on [0, T ]×Ω is obtained and Proposition 4.33 is applicable by evaluating LP at P
!

= P̃ ,
which will be the case in the proof of Theorem 4.39 below. 4

Remark 4.35. Since the Proposition 4.33 plays the same role for three dimensional case
as Lemma 4.19 for two dimensional case, we see that given t ∈ [0, T ], P ∈

(
C(Ω)

)3
and

assuming that lt,P+PD(t) is of class
(
W−1,p(Ω)

)4
for some p > 3, the functional S(t,P )

defined by

S(t,P ) = S
(
t,u(t,P ), φ(t,P ),P

)
= −Q

(
t,u(t,P ), φ(t,P ),P

)
−
(
βP ′D(t)− κ∆PD(t)− f3(t)− π(t)

)
,

(4.66)

where
(
u(t,P ), φ(t,P )

)
is the unique weak solution of the differential equation

−Div

(
B1

(
P + PD(t)

)(ε(u(t,P )
)

∇φ(t,P )

))
= lt,P+PD(t),

actually belongs to (W−1,p
∂ΩP

(Ω)
)3

, meaning that the operator S(t,P ) is mapped to the
right underlying space given in Theorem 4.3. 4

4.3.3 Uniform boundedness of the piezo-operator and admissible pair of
parameters

As mentioned previously, the norm of the inverse piezo-operator will also depend on the
modulus of continuity of the coefficients. However, we have the following important obser-
vations which make it possible to directly utilize the results from Section 4.2 to the case
here:

• The underlying space (Y,X) 1
τ
,τ of P is continuously embedded into some Hölder

space due to Lemma 4.11 and

• a Hölder space is compactly embedded to the space of uniformly continuous func-
tions, see for instance [22, Lem. 6.33].

Inspired by these observations and the continuity arguments given in [46, Cor. 3.24],
we are able to give the following regularity result, which enables us to make use of the
arguments given in Section 4.2:

Lemma 4.36. Let the Assumptions C1 to C3 be satisfied and let p ∈ (3,∞). Let M be a

pre-compact subset of
(
C(Ω)

)3
. Define for P ∈M the operator LP by

LP (u, φ)[ū, φ̄] :=

∫
Ω
B1(P )

(
ε(u)
∇φ

)
:

(
ε(ū)
∇φ̄

)
dx
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for (u, φ) ∈
(
W 1,p

0 (Ω)
)4

and (ū, φ̄) ∈
(
W 1,p′

0 (Ω)
)4

. Then LP is linear, continuous and

bijective from
(
W 1,p

0 (Ω)
)4

to
(
W−1,p

0 (Ω)
)4

. In particular, the norm CP of the inverse
operator L−1

P is uniformly bounded by some positive constant C∗ for all P ∈ M and C∗

depends only on the number p and the set M.

Proof. W.l.o.g. we may assume that M is compact, since a set is always contained in its
own closure. First we show that the mapping

(
C(Ω)

)3 3 P 7→ J(P ) :=

(
−Div

(
B1(P )

(
ε(·|u)
∇ · |φ

)))−1

∈ LH
((
W−1,p(Ω)

)4
,
(
W 1,p

0 (Ω)
)4)

is well-defined and continuous, where LH(X,Y ) denotes the set of linear homeomorphisms
between Banach spaces X and Y . On the one hand, using similar estimation as the one
given by (4.49) we infer that the mapping

(
C(Ω)

)3 3 P 7→ −Div

(
B1(P )

(
ε(·|u)
∇ · |φ

))
∈ LH

((
W 1,p

0 (Ω)
)4
,
(
W−1,p(Ω)

)4)
is continuous (that the image is in fact a linear homeomorphism follows from Proposition
4.33). On the other hand, due to [58, CH. III.8], the mapping LH(X,Y ) 3 B 7→ B−1 ∈
LH(Y,X) is continuous. Then the claim follows, since the mapping J is a composition of
continuous functions. Now since J is continuous and M is compact, we see that J(M) is

a bounded subset of L
((
W−1,p(Ω)

)4
,
(
W 1,p

0 (Ω)
)4)

. In particular we obtain that

C∗ = sup
P∈M

‖J(P )‖
L(W−1,p,W 1,p

0 )
<∞.

This completes the proof.

In order to formulate the main theorem, we still need to give here the definition of an
admissible pair:

Definiton 4.37. We call a pair (p, r) admissible, if p ∈ (3, 6] and r ∈ ( 2p
p−3 ,∞).

Remark 4.38. Compared to the admissible pairs given by Definition 4.20 for two dimen-
sional case with overall mixed boundary conditions, we point out that thanks to Propos-
ition 4.33, we do not have an upper bound p∗ (which does exist in the two dimensional
case due to Lemma 4.19) for p here. However, in order to utilize Lemma 4.11, we still
need to assume that p is not greater than 6. 4

4.3.4 Local existence result for domains with C1-boundary

In the following, we state the local existence result for three dimensional domains with C1-
boundary. As discussed at the beginning of Chapter 4, the indirect continuity arguments
given in [46] can not be directly applied to our case here, since the external loadings of
our model will also depend on the variable P . Instead of modifying the arguments given
in [46] to fit our setting (which is still possible but tedious), we will use the continuity
results given by Lemma 4.36 to show that certain uniform boundedness arguments of the
inverse piezo-operator utilized in the proof of Theorem 4.22 still remain valid for the case
here.
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Theorem 4.39. Let the Assumptions C1 to C3 be satisfied and β, κ in (4.62) be given
positive constants. Let (p, r) be an admissible pair in the sense of Definition 4.37 and let
the Assumption C4 be satisfied for some p∗ ∈ [p,∞) and r∗ ∈ [r,∞). Assume also that

P 0 ∈ (
(
W 1,p
∂ΩP

(Ω)
)3
,
(
W−1,p
∂ΩP

(Ω)
)3

) 1
r
,r.

Then the differential system (4.62) has a unique local solution (u, φ,P ) in the time interval
(0, T̂ ) for some 0 < T̂ ≤ T such that

u ∈ L2r∗(0, T̂ ;
(
W 1,p∗

0 (Ω)
)3

),

φ ∈ L2r∗(0, T̂ ;W 1,p∗

0 (Ω)),

P ∈W 1,r(0, T̂ ;
(
W−1,p
∂ΩP

(Ω)
)3

) ∩ Lr(0, T̂ ;
(
W 1,p
∂ΩP

(Ω)
)3

).

(4.67)

Remark 4.40. Compared to the two dimensional case, we see that (u, φ) has an im-
proved spatial regularity in the three dimensional case (in the sense that (u, φ) has higher
integrability). The reason is that the Proposition 4.33 guarantees that the integrability of
the three dimensional solution (u, φ) is as large as the the r.h.s. functional of the piezo-
system, while the one in two dimensional case will also depend on the upper bound of the
coefficients of the piezo-system due to Lemma 4.19. 4

Proof. Writing P̃ (t) = P + PD(t), we give the following notation according to Theorem
4.3:

A(t,P ) ≡ −κ∆,

τ = r,

Y =
(
W 1,p
∂ΩP

(Ω)
)3
,

X =
(
W−1,p
∂ΩP

(Ω)
)3

and

S(t,P ) = S
(
t,u(t,P ), φ(t,P ),P

)
= −Q

(
t,u(t,P ), φ(t,P ),P

)
−
(
βP ′D(t)− κ∆PD(t)− f3(t)− π(t)

)
,

where
(
u(t,P ), φ(t,P )

)
is the unique W 1,2

0 -weak solution of the differential equation

LP̃ (t)

(
u(t,P ), φ(t,P )

)
= lt,P̃ (t), (4.68)

where LP̃ (t) is defined by Lemma 4.36 and lt,P̃ (t) is defined by (3.4). Having defined this
notation, we utilize Theorem 4.3 to show that the equation

P ′(t) +A
(
t,P (t)

)
= S

(
t,P (t)

)
with initial value P 0 has the claimed unique local solution P given by (4.67). The proof
is essentially the same as the proof for Theorem 4.22, all we need to do is to let the
statements given in the proof of Theorem 4.22, which make use of the constant C∗ given
by Lemma 4.19, make use of the constant C∗ from Lemma 4.36 instead. More precisely,
we should replace the constant C∗ appearing in Step 1c, Step 2 and Step 3 in the proof
of Theorem 4.22 by the constant C∗ from Lemma 4.36 and show that such replacement is
applicable. We make this precise in the following.
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Reverification of Step 1c

Recall from (4.36) that

P̃ n(t)→ P̃ (t) in
(
C(Ω)

)2
for a.a. t ∈ [0, T ].

Here we have used the fact that the constant C∗ from Lemma 4.19 is a uniform upper
bound for all inverse piezo-operators L−1

P̃n(t)
and L−1

P̃ (t)
, where t ∈ [0, T ] here is chosen

such that (4.36) is valid for this chosen t. Notice we have used the set
(
C(Ω)

)2
in (4.36).

However, this is due to the fact that the constant C∗ from Lemma 4.19 is uniform for all
inverse piezo-operators L−1

P with arbitrary measurable functions P : Ω→ R2 and for the
purpose of calculation convenience. In fact, due to Lemma 4.11 and (4.61) we know that

P̃ ∈ C([0, T ];
(
Cδ(Ω)

)3
)

for some δ ∈ (0, 1). Thus due to the definition of Bochner-measurability given in Definition
4.4 we actually have the relation

P̃ n(t)→ P̃ (t) in
(
Cδ(Ω)

)3
for a.a. t ∈ [0, T ]. (4.69)

Let t ∈ [0, T ] be chosen such that (4.69) is valid for such t. Then define

M1 =M1,t := {P̃ n(t) : n ∈ N} ∪ {P̃ (t)}.

From the convergence due to (4.69) we know that M1 is a bounded subset of
(
Cδ(Ω)

)3
.

Since Ω is a bounded domain in R3, we know that M1 is pre-compact in
(
C(Ω)

)3
due

to [22, Lem. 6.33]. Thus the conditions of Lemma 4.36 are satisfied and we obtain from
Lemma 4.36 a positive constant C1,t,∗ ∈ (0,∞) corresponding to the set M1 and the
number p such that

max{sup
n∈N
‖L−1
P̃n(t)

‖
L(W−1,p,W 1,p

0 )
, ‖L−1

P̃ (t)
‖
L(W−1,p,W 1,p

0 )
} ≤ C1,t,∗ <∞. (4.70)

We should also point out that C1,t,∗ depends also on t. However, the Bochner-measurability
is given as a local definition, that is, we only need to concentrate on the value of C1,t,∗

for a given t ∈ [0, T ], for which (4.69) is valid; the overall behavior of C1,t,∗ running over
admissible t ∈ [0, T ] is of no interest here (at least within Step 1c for showing the Bochner-
measurability). Thus, we are able to replace the number C∗ by C1,t,∗ in this case, and the
proof of Step 1c will remain true due to (4.70).

Reverification of Step 2

In Step 2, we have first defined the set

V = {P ∈ (Y,X) 1
τ
,τ : ‖P ‖(Y,X) 1

τ ,τ
≤M}

with some given positive constant M . Consequently, the underlying set M2 was defined
by

M2 := {P + PD(t) : P ∈ V, t ∈ [0, T ]}.
In Step 2 we have namely used the fact that C∗ is a uniform upper bound of the inverse
piezo-operators L−1

P for all P ∈ M2. From Lemma 4.11 and (4.61) we see that M2 is

a bounded subset of
(
Cδ(Ω)

)3
for some δ ∈ (0, 1), and from [22, Lem. 6.33] we infer

immediately that M2 is pre-compact in
(
C(Ω)

)3
. The same argument as the one for the

reverification of Step 1c given in Theorem 4.22 will hence still remain valid for the case
here, when we replace the constant C∗ therein by the positive constant C2,∗ derived from
Lemma 4.36 corresponding to M2 and p.
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Reverification of Step 3

In Step 3, the underlying set M3 was defined by

M3 = {PD(t) : t ∈ [0, T ]}.

Due to (4.61), the set M3 is a bounded subset of
(
Cδ(Ω)

)3
, and we obtain some positive

constant C3,∗ derived from Lemma 4.36 corresponding toM3 and p, which should replace
the constant C∗ in the original proof of Step 3. In this case, the proof of Step 3 will still
remain valid.

Sum up all the reverification results, we see that all the steps from Theorem 4.22 can
be adopted to the case here, and consequently we obtain from Theorem 4.3 a unique local
solution

P ∈W 1,r(0, T̂ ;
(
W−1,p
∂ΩP

(Ω)
)3

) ∩ Lr(0, T̂ ;
(
W 1,p
∂ΩP

(Ω)
)3

)

of the system

P ′(t)−∆P (t) = S
(
t,P (t)

)
(4.71)

on the time interval (0, T̂ ) for some T̂ ∈ (0, T ]. Inserting the pair
(
t,P (t)

)
into (4.68) we

obtain the solution pair
(
u(t), φ(t)

)
. To complete the proof we still need to show that the

solution (u, φ) has the claimed regularity given by (4.67). We make use of Lemma 4.36 as
follows: we define the set

M := {P (t) + PD(t) : t ∈ [0, T ]},

where P is the local solution given by (4.71). Then similarly argued as at the end of the
proof of Theorem 4.22, using the regularity result from Proposition 4.13 and (4.61) we

immediately infer that M is a bounded subset of
(
Cδ(Ω)

)3
with some δ ∈ (0, 1). Thus

M is pre-compact in
(
C(Ω)

)3
due to [22, Lem. 6.33] and Lemma 4.36 is applicable. We

hence obtain the positive constant C∗ from Lemma 4.36 corresponding toM and p∗ (and
note that not p here!). In particular, the definition of C∗ implies that

‖
(
u(t), φ(t)

)
‖
W 1,p∗

0
≤ C∗‖lt,P̃ (t)‖W−1,p∗ (4.72)

for a.a. t ∈ (0, T̂ ). Arguing as in (4.58), we obtain that

l·,P̃ (·) ∈ L
2r∗(0, T̂ ;

(
W−1,p∗

∂Ωu
(Ω)

)2 ×W−1,p∗

∂Ωφ
(Ω)).

Note that C∗ is independent on t ∈ [0, T̂ ]. Thus from (4.72) we obtain immediately that

‖(u, φ)‖L2r∗ (0,T̂ ;W 1,p∗ ) ≤ C
∗‖l·,P̃ (·)‖L2r∗(0,T̂ ;W−1,p∗ ) <∞, (4.73)

which completes the desired proof.

4.3.5 Local existence result for cuboids

We point out that the regularity result Proposition 4.33 is essential for the proof of The-
orem 4.39. Using Proposition 4.41 given below, which is an analogue of Proposition 4.33
but for the case that Ω is an open cuboid, we are able to obtain similar existence results
(Theorem 4.44 below) for a cuboid domain.
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To state the regularity result Proposition 4.41, we first recall from Section 4.3.2 that a
linear differential system L with in Ω essentially bounded coefficients Aαι

ij and defined by

Lu = −∂α(Aαι
ij ∂ιu

j) (4.74)

is called strongly elliptic, if there exists some constant ν > 0 such that

Aαι
ij (x)ξαξιζ

iζj ≥ ν|ξ|2|ζ|2 ∀ξ ∈ Rn, ζ ∈ RN and a.e. x ∈ Ω.

Proposition 4.41. Let Ω ⊂ Rn be an open cuboid. Assume that the coefficients Aαι
ij

given in (4.74) are Hölder continuous on Ω for some Hölder exponent α ∈ (0, 1). Let also
u be a W 1,2

0 -weak solution (see Definition 4.29) of the differential system

Lu = l,

where L is the strongly elliptic differential operator defined by (4.74) and l is some linear
functional of class W−1,p for some p ∈ [2,∞). Then the weak solution u is of class W 1,p.
In particular, there exists some positive constant C, depending on the number p and the
coefficient tensor related to L, such that for all l of class W−1,p we have

‖u‖W 1,p ≤ C‖l‖W−1,p .

Proof. The claim for a cube is proved by [1, Thm. 3.1]. Then the claim for a cuboid follows
by using the transformation arguments given in the proof of [1, Thm. 2.2, Step 1B], which
is applicable, since for a cuboid and a cube we can always find a C∞-diffeomorphism
mapping one to another (translation, rotation, rescaling).

Next, we formulate a version of Lemma 4.36 for a cuboid domain:

Lemma 4.42. Let the Assumptions C1 to C3 be satisfied, except that the domain Ω is
assumed to be an open cuboid. Let p ∈ (3,∞). Let alsoM be a bounded subset of

(
Cδ(Ω)

)3
with some δ ∈ (0, 1). Define for P ∈M the operator LP by

LP (u, φ)[ū, φ̄] :=

∫
Ω
B1(P )

(
ε(u)
∇φ

)
:

(
ε(ū)
∇φ̄

)
dx

for (u, φ) ∈
(
W 1,p

0 (Ω)
)4

and (ū, φ̄) ∈
(
W 1,p′

0 (Ω)
)4

. Then LP is linear, continuous and

bijective from
(
W 1,p

0 (Ω)
)4

to
(
W−1,p

0 (Ω)
)4

. In particular, the norm CP of the inverse
operator L−1

P is uniformly bounded by some positive constant C∗ for all P ∈ M and C∗

depends only on the number p and the set M.

Remark 4.43. Notice in Lemma 4.42 we have assumed that M is a bounded subset of
some Hölder space, which is slightly different than the condition that M is pre-compact
in
(
C(Ω)

)3
given in Lemma 4.36. This is due to the fact that the Hölder continuity of the

coefficient tensor is a necessary condition of Proposition 4.41. 4

Proof. Notice that since M is bounded in some Hölder space, it is still pre-compact in(
C(Ω)

)3
due to [22, Lem. 6.33]. Thus the proof follows immediately when one replaces

Proposition 4.33 by Proposition 4.41 in the proof of Lemma 4.36.

With this lemma in hand, we can state our main result as follows:
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Theorem 4.44. Let the assumptions of Theorem 4.39 be satisfied, except that the domain
Ω is assumed to be an open cuboid. Then the differential system (4.62) has a unique local
solution (u, φ,P ) in the time interval (0, T̂ ) for some 0 < T̂ ≤ T such that

u ∈ L2r∗(0, T̂ ;
(
W 1,p∗

0 (Ω)
)3

),

φ ∈ L2r∗(0, T̂ ;W 1,p∗

0 (Ω)),

P ∈W 1,r(0, T̂ ;
(
W−1,p
∂ΩP

(Ω)
)3

) ∩ Lr(0, T̂ ;
(
W 1,p
∂ΩP

(Ω)
)3

).

(4.75)

Proof. The proof follows immediately when one replaces Lemma 4.36 by Lemma 4.42 in
the proof of Theorem 4.22.

4.4 3D-local existence result for polyhedral domains

In this section, we will give an existence proof to the special model introduced in [55],
which is one of the state-of-the-art models arising from recent years for ferroelectric study.
We have the following important observations from the precise model setting given in [55]:

• The coefficient tensors C(P ), e(P ), ε(P ) given in [55] are polynomials in P up to
order six. Since the coefficients are polynomials, we point out that the coefficients
and their derivatives are particularly smooth and locally Lipschitzian on R3. Thus
the Assumption C2 is satisfied for these coefficients.

• We obtain that these coefficients are closely related to the Lamé operator and Laplace
operator when the presenting polarization P is equal to 0. This is precisely given
as follows: let Ω ⊂ R3 be a bounded domain. Recall that the piezo-operator LP is
defined by

LP (u, φ)[ū, φ̄] :=

∫
Ω
B1(P )

(
ε(u)
∇φ

)
:

(
ε(ū)
∇φ̄

)
dx. (4.76)

Due to [55], the coefficient tensor B1(P ) at P = 0 is given by

B1(0) =

(
λE3 ⊗E3 + 2µ1 0

0 γE3

)
, (4.77)

where E3 is the identity matrix in R3×3, 1 is the identity tensor in the space
Lin(R3×3,R3×3) and λ, µ, γ are some given fixed constants. A differential system
with the upper left coefficient tensor of (4.77) is the so called Lamé operator, while
the bottom right coefficient tensor in (4.77) corresponds to the Laplace operator.
This motivates the application of the regularity results from [44], in which the Lamé
operator and Laplace operator are well studied.

We also point out that the regularity results given in [44] are derived for polyhedral
domains, which means that we are able to extend the results for an underlying domain
with C1-boundary or for a cuboid presented in last section to the ones for a polyhedral
domain. In what follows, we will thus first give the definition of a polyhedral domain.

4.4.1 Polyhedral domains

In order to introduce the regularity results given in [44], we first need the following defin-
itions from [44]:
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Dihedron

Definiton 4.45. Let (r, φ) ∈ (0,∞) × (0, 2π] be the polar coordinate of a non zero two
dimensional point x′ = (x1,x2), i.e. r = |x′| and

x′ =

(
r cosφ
r sinφ

)
.

The two dimensional wedge W with open angle θ ∈ (0, 2π] is defined by

W := {x′ = (x1,x2) : r ∈ (0,∞), φ ∈ (0, θ)}.

The dihedron D ⊂ R3 with open angle θ is then defined by

D :=W ×R.

Cone

Definiton 4.46. A cone K ⊂ R3 is defined by

K := {x ∈ R3 − {0} : x/|x| ∈ Γ},

where Γ is a subdomain on the three dimensional unit sphere S2 such that

∂Γ = Γ̄1 ∪ ... ∪ Γ̄k

for some k ∈ N≥3, where Γi are pairwise disjoint and non curvewise collinear open arcs
on the unit sphere.

An illustration of a dihedron and a cone is given in Fig. 4.1.

Figure 4.1: An illustration of a dihedron (left) and a cone (right).

Polyhedral domain

Definiton 4.47. A bounded domain Ω ⊂ R3 is said to be a polyhedral domain, if

1. The boundary ∂Ω is a disjoint union of smooth open two dimensional manifolds
Fj , j = 1, ..., l (the faces of Ω), smooth open curves Kj , j = 1, ...,m (the edges of Ω)
and vertices xj ∈ R3, j = 1, ..., k.

2. For every x ∈ Kj there exist a neighborhood Ux ⊂ R3 of x and a C∞-diffeomorphism
ιx such that ιx maps Ux ∩Ω onto Dx ∩ B1, where Dx is a dihedron and B1 is the
unit ball in R3.
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3. For every vertex xj there exist a neighborhood U j ⊂ R3 of xj and a C∞-diffeomorphism
ιj such that ιj maps U j ∩Ω onto Kj ∩B1, where Kj is a cone.

Having these definitions in hand, we are able to formulate the assumptions for the
main result, which are given in the next section.

4.4.2 Assumptions and weak formulation

D1 Ω ⊂ R3 is a polyhedral domain with Lipschitz boundary, ∂Ωu = ∂Ωφ = ∂ΩP ∪̇∂ΩΣ =
∂Ω, ∂ΩP is a 2-set, Ω ∪ ∂ΩP is G2-regular (c.f. Section 2.1).

D2 C, e, ε0, ε (c.f. Section 2.4) are differentiable functions on R3 and their derivatives
are locally Lipschitzian on R3; ω : R3 → R (c.f. Section 2.4) is a polynomial of sixth
order with constant coefficients; there exist positive constants λ, µ, γ such that(

C(0) e(0)T

−e(0) ε(0)

)
=

(
λE3 ⊗E3 + 2µ1 0

0 γE3

)
.

D3 There exists some α > 0 such that for all P ∈ R3, ε ∈ Linsym(R3,R3), D ∈ R3

C(P )ε : ε ≥ α|ε|2,
ε(P )D ·D ≥ α|D|2.

D4 There exist p∗ ∈ (3,∞) and r∗ ∈ [1,∞) such that

f1 ∈ L2r∗(0, T ;
(
L

3p∗
p∗+3 (Ω)

)3
),

f2 ∈ L2r∗(0, T ;L
3p∗
p∗+3 (Ω)),

f3 ∈ Lr
∗
(0, T ;

(
L

3p∗
p∗+3 (Ω)

)3
),

π ∈ Lr∗(0, T ;
(
L

2p∗
3 (∂ΩP )

)3
),

uD ∈ L2r∗(0, T ;
(
W

1− 1
p∗ ,p

∗
(∂Ω)

)3
),

φD ∈ L2r∗(0, T ;W
1− 1

p∗ ,p
∗
(∂Ω)),

PD ∈W 1,r∗(0, T ;
(
B

1− 1
p∗

p∗,p∗ (∂ΩP )
)3

).

Remark 4.48. As mentioned previously, since the coefficients C(P ), e(P ), ε(P ) given
in [55] are polynomials in P ∈ R3 up to order 6, they are particularly smooth and locally
Lipschitzian on R3, thus Assumption D2 is compatible with the setting given in [55]. 4

Remark 4.49. Similarly as in Section 4.3, from Lemma 3.8 and Sobolev’s trace theorem
we infer that there exist uD, φD, PD such that

uD ∈ L2r∗(0, T ;
(
W 1,p∗(Ω)

)3
), uD|∂Ω = uD,

φD ∈ L2r∗(0, T ;W 1,p∗(Ω)), φD|∂Ω = φD,

PD ∈W 1,r∗(0, T ;
(
W 1,p∗(Ω)

)3
), PD|∂ΩP = PD.

104



4.4. 3D-local existence result for polyhedral domains Chapter 4

and consequently we obtain that

f1, ε(uD) ∈ L2r∗
(
0, T ;

(
W−1,p∗(Ω)

)3)
,

f2, ∇φD ∈ L2r∗
(
0, T ;W−1,p∗(Ω)

)
,

f3, π ∈ Lr
∗(

0, T ;
(
W−1,p∗

∂ΩP
(Ω)

)3)
,

PD, ∆PD ∈W 1,r∗
(
0, T ;

(
W−1,p∗

∂ΩP
(Ω)

)3)
,

where ε(uD) is the small strain tensor generated by uD. 4

Analogously as in Section 4.3, writting

H̃(t,u, φ,P ) = H
(
t, ε(u),∇φ,P + PD(t)

)
and

ω̃(t,P ) = ω
(
P + PD(t)

)
,

where H and ω are given by (3.7) and (3.8), we state the following weak formulation: Find

(u, φ,P ) : (0, T )→
(
H1

0 (Ω)
)4 × (H1

∂ΩP
(Ω)

)3
such that∫

Ω
B1

(
P (t) + PD(t)

)(ε(u(t)
)

∇φ(t)

)
:

(
ε(ū)
∇φ̄

)
dx = lt,P (t)+PD(t))(ū, φ̄), (4.79a)

βP ′(t)− κ∆P (t) = S
(
t,u(t), φ(t),P (t)

)
in
(
H−1
∂ΩP

(Ω)
)3
, (4.79b)

P (0) = P 0 (4.79c)

for a.a. t ∈ (0, T ) and all (ū, φ̄) ∈
(
H1

0 (Ω)
)4

, where

S(t,u, φ,P ) = −Q(t,u, φ,P )−
(
βP ′D(t)− κ∆PD(t)− f3(t)− π(t)

)
,

B1, lt,P are defined by (3.3) and (3.4) and Q is defined by

Q(t,u, φ,P )[P̄ ]

=

∫
Ω
DP H̃

(
t,u, φ,P

)
(P̄ ) +DP ω̃(t,P )(P̄ )dx

=

∫
Ω
DPH

(
t,u, φ,P + PD(t)

)
(P̄ ) +DPω

(
P + PD(t)

)
(P̄ )dx.

The following result is an analogue of Lemma 4.28 given in Section 4.3:

Lemma 4.50. Let the Assumptions D1 to D4 be satisfied. Then the integrals∫
Ω
B1

(
P + PD(t)

)(ε(u)
∇φ

)
:

(
ε(ū)
∇φ̄

)
dx

and ∫
Ω
DP H̃

(
t,u, φ,P

)
(P̄ ) +DP ω̃(t,P )(P̄ )dx

are well-defined for a.a. t ∈ (0, T ), all (u, φ), (ū, φ̄) ∈
(
H1

0 (Ω)
)4

and all P , P̄ ∈
(
C(Ω)

)3
.
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Additional assumptions on geometric singularities of the polyhedral domain

We recall that the coefficient tensor B1(P ) of the piezo-system is given by

B1(P ) =

(
C(P ) e(P )T

−e(P ) ε(P )

)
.

Our goal is to derive a regularity result for a polyhedral domain, which plays the same
role as Proposition 4.33 and Proposition 4.41 for domains with C1-boundary and cuboid
domains respectively. The difficulty is the lacking regularity of the weak solution (u, φ)
of the piezo-problem near the singularities of a polyhedral domain. The method applied
for domains with C1-boundary or cuboid are no longer applicable anymore, since the
boundary is not smooth, the open angle of a dihedron is in general not equal to π/2 and
the cone is locally not diffeomorph to a cuboid corner. Our plan is to apply the method
given by [44], where certain so called operator pencils corresponding to an elliptic system
are created to solve the problems, and the regularity of the weak solution of the elliptic
system near the singularities will depend only on the local geometry of these singularities.

However, since the regularity results in [44] are based on some subtle spectral analysis,
the self-adjointness of the piezo-operator LP , or more precisely, the symmetry of B1(P ),
is essential. We see from (4.77) that B1(P ) is in general not symmetric unless P = 0. In
order to apply the results from [44], we need the following assumption:

Assumption 4.51. Let Ω be a polyhedral domain. Denote by Sing1
Ω the set of singularities

of a polyhedral domain Ω, i.e.,

Sing1
Ω := {x ∈ ∂Ω : x is a vertex or lies on an edge}.

We also define

Sing2
Ω := {x ∈ ∂Ω : x is a point on some open edge and θx = π/2},

where θx is the open angle of the dihedron Dx defined in Definition 4.47, that is, the set
of edge points having π

2 -open angle;

Sing3
Ω := {x ∈ ∂Ω : x is a vertex and Kx ∩B1 is C∞-diffeomorph to Kc ∩B1},

where Kx is the cone defined in Definition 4.47, B1 is the unit ball, Kc is the cone formed
by the positive x,y, z-axis, that is, the set of cube-corner-like vertices. Finally, we define

SingΩ := Sing1
Ω − Sing2

Ω − Sing3
Ω.

Then we assume that SingΩ ⊂ ∂ΩP and

∀x ∈ SingΩ ∀t ∈ (0, T ) : PD(t,x) = 0, (4.80)

where ∂ΩP and PD are defined in (4.2).

An illustration of points in Sing2
Ω and Sing3

Ω is given in Fig. 4.2.

Remark 4.52. From (4.61) we see that PD ∈ C([0, T ];
(
Cδ(Ω)

)3
) for some δ ∈ (0, 1),

thus (4.80) is a well-defined condition under the Assumptions D1 to D4. 4
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Figure 4.2: An illustration of a point x ∈ Sing2
Ω (left) and a point x ∈ Sing3

Ω (right), where the point x at the r.h.s.
is given as the origin of the coordinate system (x1,x2,x3).

Now due to the Assumption 4.51, we see that for P ∈
(
C(Ω)

)3
with P |∂ΩP = 0 we

have

∀x ∈ SingΩ ∀t ∈ (0, T ) : P̃ (t,x) = P (x) + PD(t,x) = 0. (4.81)

Due to Assumption D2 we obtain that

∀x ∈ SingΩ ∀t ∈ (0, T ) : B1

(
P̃ (t,x)

)
= B1(0) =

(
λE3 ⊗E3 + 2µ1 0

0 γE3

)
. (4.82)

Therefore the piezo-operator LP defined by (4.76) will reduce to a composition of Lamé
operator and Laplace operator without coupling terms, and hence the results given in [44]
are applicable.

Remark 4.53. Roughly speaking, the Assumption 4.51 is to guarantee that the piezo-
operator LP will have “good” behavior near the geometric singularities. However, in this
case, neighbored Neumann-Neumann boundary condition is in general not allowed, since
in this case, the singularities will also be contained in the Neumann boundary part and the
piezo-operator LP can not reduce to a “good” part at such singularities. See for instance
Example 4.54 below for details. 4

4.4.3 Some examples of admissible and non-admissible polyhedral do-
mains and boundary conditions

In this section we give some examples of admissible and non-admissible polyhedral domains
and boundary conditions. These examples will give us a better understanding in the given
assumptions, especially in the ones given by Assumption 4.51.

Example 4.54. In this example we want to show that even two polyhedrons have same
shape, they can be either admissible or non-admissible polyhedral domains by imposing
different boundary conditions. We make this precise in the following. In Fig. 4.3, two
polyhedrons with same shape are given. The polyhedrons are composed by a pyramid
and a cuboid. The neighbored (open) red faces on each polyhedron denote the Neumann
boundary parts respectively, and the remaining (closed) white parts are the Dirichlet
boundaries. Since ∂ΩP in Assumption D1 is assumed to be a 2-set (see Section 2.1 for a
definition of an l-set), the (open) edge corresponding to the neighbored red Neumann faces
(namely the open yellow segment in Fig. 4.3) is also a part of the Neumann boundary.
Due to the Assumption 4.51, the left one is an admissible candidate, while the right one
is not allowed for our case, since the open angle of the red neighbored faces of the left one
is π/2 and of the right one is not equal to π/2. This shows that the Neumann boundaries
are generally separated in the sense that they do not share a common edge. 4
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Figure 4.3: Two polyhedrons with same shape but different boundary conditions.

Example 4.55. In this example we give a precise illustration of the set SingΩ. We consider
the polyhedral domain given by Example 4.54. Then the set SingΩ is the collection of
points on the red (open) edges and green points in Fig. 4.4. 4

Figure 4.4: The set SingΩ of the polyhedral domain given in Example 4.54.

Example 4.56. We point out that not all polyhedral domains do have Lipschitz boundary.
The domain in Fig. 4.5 is a classical counter example. It is clear that the domain is a
polyhedral domain. However, it is not a domain with Lipschitz boundary in the sense
that the Lipschitz boundary condition (see Section 2.1) does not hold at the point Q. To
see this, we first point out that the uniform cone property (see [24, Def. 1.2.2.1]) does
not hold at the point Q; On the other hand, it is a well-known result that the uniform
cone property is equivalent to the Lipschitz boundary condition, see for instance [24, Thm.
1.2.2.2]. 4

Figure 4.5: A polyhedral domain whose boundary is not Lipschitzian.

Example 4.57. We also want to show that non-convex polyhedral domains which fulfill
the Assumption D1 do exist. An example is for instance the Fichera corner as shown in
Fig. 4.6. As presented in the picture, a Fichera corner can be formed by removing a
cuboid, which is a part of a larger cuboid and near a corner of the larger cuboid, from
this larger cuboid. In Fig. 4.6, different boundary conditions are also imposed, where
the red parts denote the (open) Neumann boundary part and white parts denote the
(closed) Dirichlet boundary part. Particularly, the dashed line segments are contained in
the Neumann boundary part. Then the Fichera corner given at the l.h.s. is an admissible
candidate, since the dihedron related to the dashed segment has an open angle π

2 , while
the one at the r.h.s. is non-admissible, since the dihedron related to the dashed segment
has an open angle 3π

2 6=
π
2 . 4
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Figure 4.6: An illustration of Fichera corners with different boundary conditions.

4.4.4 Regularity result for strongly elliptic system on polyhedral domain
and admissible pair of parameters

We first introduce the regularity result from [44], stated in Lemma 4.58 below. Based on
this result, we will apply the perturbation arguments given in [40, Lem. A.18] to obtain
Proposition 4.59 given below, which plays the similar role as Proposition 4.33 but for
polyhedral domains.

Lemma 4.58. Let λ, µ, γ be given positive constants. Let also the differential operator L
be defined by

L :
(
H1

0 (Ω)
)4 → (

H−1(Ω)
)4
,

L(u, φ)[ū, φ̄] :=

∫
Ω
λtr
(
ε(u)

)
tr
(
ε(ū)

)
+ 2µε(u) : ε(ū) + γ∇φ · ∇φ̄dx

for (u, φ), (ū, φ̄) ∈
(
H1

0 (Ω)
)4

. Then there exists some p̃ ∈ (3,∞) such that L is linear,

continuous and invertible from the space
(
W 1,p

0 (Ω)
)4

to its dual
(
W−1,p(Ω)

)4
for all p ∈

[2, p̃].

Proof. This follows immediately from [44, Thm. 4.3.2] and [44, Thm. 4.3.3] and the
explanation text below the proofs therein.

Finally we state our main regularity result, the Proposition 4.59:

Proposition 4.59. Let the Assumptions D1 to D3 be satisfied. Let P ∈
(
C(Ω)

)3
with

P |SingΩ
= 0, where the set SingΩ is defined by Assumption 4.51. Define the operator LP

by

LP :
(
H1

0 (Ω)
)4 → (

H−1(Ω)
)4
,

LP (u, φ)[ū, φ̄] :=

∫
Ω
B1(P )

(
ε(u)
∇φ(t)

)
:

(
ε(ū)
∇φ̄

)
dx

(4.83)

for (u, φ), (ū, φ̄) ∈
(
H1

0 (Ω)
)4

. Then there exists some p∗ ∈ (3, 6] such that the operator

LP is linear, continuous and invertible from
(
W 1,p

0 (Ω)
)4

to
(
W−1,p(Ω)

)4
for all p ∈ [2, p∗].

Proof. We follow the lines of [40, Lem. A.18] to show the claim. Consider a point x ∈ Ω.
Let L0

P be the piezo-operator defined by (4.83), but with fixed constant coefficient tensor
B1

(
P (x0)

)
fixing at x0 = x. First we want to show that for each x ∈ Ω, there always

exist some neighborhood Ux of x and some px ∈ (3,∞) such that for all p ∈ [2, px] we
have

L0
P is linear, continuous and invertible from(
W 1,p

0 (Ux ∩Ω)
)4

to
(
W−1,p(Ux ∩Ω)

)4
.

(4.84)

If x is in the interior, then the claim follows from Proposition 4.33, since Ux ⊂⊂ Ω can
be chosen as an open ball. If x is on an open face, then due to Definition 4.47, x is on a
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smooth open two dimensional manifold. Thus we know that there exist some neighborhood
Ux of x and a C∞-diffeomorphism ι such that ι maps Ux ∩Ω onto an open cube C. But
due to the transformation arguments given in [1, Thm. 2.2, Step 1B], (4.84) is equivalent
to the W 1,p

0 to W−1,p isomorphism property of the differential operator with transformed
coefficient tensor B (defined by [1, (2.22)], which is still strongly elliptic due to [1, (2.25)])
on C, and the isomorphism property on a cube follows immediately from Proposition 4.41.

Finally, we consider a point x ∈ Sing1
Ω, where Sing1

Ω is defined in Assumption 4.51.

1. If x ∈ Sing2
Ω ∪ Sing3

Ω, where Sing2
Ω, Sing3

Ω are defined in Assumption 4.51, then due
to the definition of Sing2

Ω and Sing3
Ω we know that there exists a neighborhood Ux

such that the intersection Ux ∩Ω is C∞-diffeomorph to an open cuboid. Then the
claim follows from Proposition 4.41, by using the similar transformation arguments
as the ones for the points on a face given previously.

2. If x ∈ SingΩ, where SingΩ is defined in Assumption 4.51, then due to (4.82), the
operator L0

P will reduce to the operator L defined in Lemma 4.58. Due to the
Definition 4.47 of a polyhedral domain, we know that there exists a neighborhood
Ux of x such that Ux ∩ Ω is still a polyhedral domain with Lipschitz boundary.
Then the claim follows from Lemma 4.58. This completes the proof of (4.84).

To finish the proof we will still need the following local regularity argument: for P ∈(
C(Ω)

)3
, l ∈

(
W−1,p(Ω)

)4
with p ∈ [2, 6], let (u, φ) be the unique W 1,2

0 -solution of

LP (u, φ) = l in Ω,

whose existence and uniqueness are guaranteed by Lax-Milgram. Consider a point x ∈ Ω.
Let η : R3 → R be a real valued smooth function such that supp(η) ⊂ Ux, where Ux is
as defined in (4.84). We also assume that p ≤ px, where px is defined by (4.84). Define

w := (u, φ),

v := (ū, φ̄)

and rewriting LP (u, φ)[ū, φ̄] as

LP (u, φ)[ū, φ̄] =

∫
Ω
Aαι
ij ∂ιw

j∂αv
idx (4.85)

with coefficient tensor A, as described in Section 4.3.2. For v ∈
(
C∞0 (Ux∩Ω)

)4
we obtain

that ∫
Ux∩Ω

Aαι
ij ∂ι(ηw)j∂αv

idx

=

∫
Ux∩Ω

Aαι
ij (∂ιη)wj∂αv

i +Aαι
ij η∂ιw

j∂αv
idx

=

∫
Ux∩Ω

Aαι
ij (∂ιη)wj∂αv

i︸ ︷︷ ︸
=:l1(v)

+Aαι
ij ∂ιw

j∂α(ηv)i︸ ︷︷ ︸
=:l(ηv)

+
(
−Aαι

ij ∂ιw
j(∂αη)vi

)
︸ ︷︷ ︸

=:l2(v)

dx

=l(ηv) + l1(v) + l2(v) =: l̃(v),

(4.86)

where l(ηv) is understood as l evaluated at the extension of ηv on whole Ω such that
the extension is zero on Ω \ Ux. From fundamental calculus one obtains the Sobolev’s
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embedding relations

q ∈ [2, 6]⇒ 1− 3

2
≥ 0− 3

q
,

q ∈ [2, 6]⇒ 0− 3

2
≥ −1− 3

q
.

From the Sobolev’s embedding one then verifies that for q ∈ [2, 6], Div(u, φ) and ∇(u, φ)
are of class W−1,q if (u, φ) is of class H1. Thus l1, l2 are of class W−1,q for q ∈ [2, 6].
Consequently we infer that l̃ is of class W−1,q iff l is of class W−1,q for q ∈ [2, 6]. Since P
is uniformly continuous on Ω, the coefficient tensor A is also uniformly continuous on Ω.
Letting q = p (notice that p ≤ 6), we then obtain from Hölder’s inequality that

‖l̃‖(W−1,p(Ux∩Ω))4 ≤ C(‖l‖(W−1,p(Ω))4 + ‖(u, φ)‖(Lp(Ω))4 + ‖∇(u, φ)‖(L2(Ω))4). (4.87)

Additionally we obtain that η(u, φ) is the W 1,2
0 −solution of

LP
(
η(u, φ)

)
= l̃ in Ux ∩Ω.

Define the tensor B1(P )∗ on Ux ∩Ω by

B1(P )∗(y) :=

{
B1

(
P (x)

)
, y ∈ (Ux ∩Ω) \Brx(x);

B1

(
P (y)

)
, y ∈ (Ux ∩Ω) ∩Brx(x),

where Brx(x) with cl
(
Brx(x)

)
⊂ Ux is the open ball with center x and radius rx (to

be determined). Denote by L∗P the piezo-operator with the coefficient tensor B1(P )∗.
Using Hölder’s inequality, the fact that the coefficient tensor B1 is continuous on R3 from
Assumption D2 and that P is uniformly continuous on the whole Ω, we obtain that there
exists sufficiently small rx > 0 such that

‖L∗P − L0
P ‖L((W 1,p

0 (Ux∩Ω))4,(W−1,p(Ux∩Ω))4)
‖(L0

P )−1‖
L((W−1,p(Ux∩Ω))4,(W 1,p

0 (Ux∩Ω))4)

≤C‖B1

(
P (·)

)
− B1

(
P (x)

)
‖L∞(Brx (x)∩Ω)‖(L0

P 0
)−1‖

L((W−1,p(Ux∩Ω))4,(W 1,p
0 (Ux∩Ω))4)

< 1.

(4.88)

Here, we used the fact that B1(P ) is uniformly continuous on Ω. Therefore using the
small perturbation theorem [36, Chap. 4, Thm. 1.16] and (4.84) we infer that L∗P is

linear, continuous and invertible from
(
W 1,p

0 (Ux ∩ Ω)
)4

to
(
W−1,p(Ux ∩ Ω)

)4
for all

p ∈ [2, px]. If we additionally let supp(η) ⊂ Brx(x), then we deduce that η(u, φ) is the

W 1,2
0 -solution of

L∗P
(
η(u, φ)

)
= l̃ in Ux ∩Ω.

This shows that η(u, φ) is of class W 1,p on Ux ∩Ω for all p ∈ [2,min{px, 6}].
Now we are ready to finish the desired proof. Since Ω is a bounded domain in R3, we

can find some s ∈ N such that Ω ⊂ ∪si=1Brxi (xi) with xi ∈ Ω. Let Uxi , pxi be defined as

in the proof of (4.84) such that cl
(
Brxi (xi)

)
⊂ Uxi . Define

p∗ := min{px1 , ..., pxs , 6} ∈ (3, 6]

and let p ∈ [2, p∗]. Let {ηi}si=1 be a partition of unity subordinated to {Brxi (xi)}
s
i=1.

Then there is a corresponding l̃i of class W−1,p, similarly defined as in (4.86), such that
ηi(u, φ) is the W 1,2

0 -solution of

L∗P
(
ηi(u, φ)

)
= l̃i in Uxi ∩Ω.
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We obtain that

‖(u, φ)‖
(W 1,p

0 (Ω))4

≤
s∑
i=1

‖ηi(u, φ)‖
(W 1,p

0 (Uxi∩Ω))4

≤C
s∑
i=1

‖l̃i‖(W−1,p(Uxi∩Ω))4

≤C(‖l‖(W−1,p(Ω))4 + ‖(u, φ)‖(Lp(Ω))4 + ‖∇(u, φ)‖(L2(Ω))4) <∞.

(4.89)

This completes the proof of the main claim.

Finally, to formulate the main result of this section given below we will need to give the
definition of an admissible pair for the case here, which is similarly defined as in Definition
4.20 and 4.37:

Definiton 4.60. A pair (p, r) is called admissible, if p ∈ (3, p∗] and r ∈ (p,∞), where
p∗ ∈ (3, 6] is the number given by Proposition 4.59.

4.4.5 Local existence result for polyhedral domains

Theorem 4.61. Let the Assumptions D1 to D3 and Assumption 4.51 be satisfied and
β, κ in (4.79) be given positive constants. Let (p, r) be an admissible pair in the sense
of Definition 4.60. Let the Assumption D4 be satisfied with p∗ ∈ [p,∞) and r∗ ∈ [r,∞).
Assume also that

P 0 ∈ (
(
W 1,p
∂ΩP

(Ω)
)3
,
(
W−1,p
∂ΩP

(Ω)
)3

) 1
r
,r.

Then the differential system (4.79) has a unique local solution (u, φ,P ) in the time interval
(0, T̂ ) for some 0 < T̂ ≤ T such that

u ∈ L2r∗(0, T̂ ;
(
W 1,p̂

0 (Ω)
)3

),

φ ∈ L2r∗(0, T̂ ;W 1,p̂
0 (Ω)),

P ∈W 1,r(0, T̂ ;
(
W−1,p
∂ΩP

(Ω)
)3

) ∩ Lr(0, T̂ ;
(
W 1,p
∂ΩP

(Ω)
)3

),

(4.90)

where p∗ is given by Proposition 4.59 and p̂ := min{p∗, p∗}.

Remark 4.62. Compared to Theorem 4.39 and Theorem 4.44, we point out that the
integrability exponent of (u, φ) is p̂ but not p∗. This is due to the lacking regularity from
Proposition 4.59, while from Proposition 4.33 and Proposition 4.41 we see that the solution
(u, φ) will have the same integrability exponent as the one the external forces have if the
domain has C1-boundary or the domain is a cuboid. 4

Proof. In view of the proof of Theorem 4.39 and Theorem 4.44, we only need to show that
Proposition 4.59 is applicable for all admissible functions P̃ . More precisely, since we will
apply Proposition 4.59 to the differential piezo-operator LP̃ (t) with underlying function

P̃ (t) = P + PD(t) with P ∈ (Y,X) 1
τ
,τ (where the space (Y,X) 1

τ
,τ is being similarly

defined as given previously, see e.g. the proof of Theorem 4.39), we need to show that for
all P ∈ (Y,X) 1

τ
,τ and all t ∈ [0, T ] we have

P̃ (t)|SingΩ
= 0, (4.91)
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where (4.91) is being a prerequisite of Proposition 4.59. To show this, we first obtain from
Assumption 4.51 that

SingΩ ⊂ ∂ΩP .

But from Remark 4.12 we see that for P ∈ (Y,X) 1
τ
,τ we have

P |∂ΩP = 0

and therefore

P |SingΩ
= 0. (4.92)

Combining (4.92) and (4.80), we immediately obtain (4.91), which completes the desired
proof.

4.5 Global existence result based on the Rothe’s method

In this section, we utilize the Rothe’s method given in Chapter 3 to show global results.
Throughout this section, the space dimension d is supposed to be an element of the set
{2, 3} and the dissipation potential Ψβ is defined by

Ψβ(P ) =
β

2
‖P ‖2L2 .

Also, the gradient energy replacement Assumption 3.1 for a given s ∈ [max{1, d2}, 2) is

kept for this section. We formulate our main problem: Find P : (0, T )→
(
Hs(Ω)

)d
such

that

0 ∈ DP I
(
t,P (t)

)
+ ∂Ψβ

(
P ′(t)

)
, P (0) = P 0 (4.93)

for a.a. t ∈ (0, T ), where I is as defined in (3.32).

Theorem 4.63. Let the Assumptions A1 to A6 be satisfied. Suppose also that P 0 ∈(
Hs(Ω)

)d
and DP I(0,P 0) is of class L2. Then for every β > 0 the differential system

(4.93) admits a solution P ∈ H1(0, T ;
(
Hs(Ω)

)d
).

Proof. We only need to clarify that the proof of Theorem 3.30 also works for the current
case (namely setting Ψ1 = 0 in Theorem 3.30) without using the Assumption A7. We recall

the explicit statement given in the Assumption A7: Ψ1 :
(
Hs(Ω)

)d → [0,∞) is assumed

to be convex, positively 1-homogeneous, weakly lower semi-continuous in
(
Hs(Ω)

)d
and

there exist d1, d2 > 0 such that for all P ∈
(
Hs(Ω)

)d
d1‖P ‖L1 ≤ Ψ1(P ) ≤ d2‖P ‖L1 . (4.94)

Notice that Ψ1 = 0 is still non negative, convex, positively 1-homogeneous and weakly

lower semi-continuous in
(
Hs(Ω)

)d
, but (4.94) does not hold anymore. Having a look at

the proof of Theorem 3.30, the Assumption A7 is used for Lemmas 3.27, 3.28, 3.29 and
B.1. In Lemmas 3.27 and 3.28, only the non negativity and weak lower semi-continuity of
Ψ1 have been used; in Lemma 3.29, only the positive 1-homogeneity of Ψ1 has been used;
Lemma B.1 is to guarantee that the equation (3.82) is satisfied, namely∫ t

s
Ψ1

(
P ′(σ)

)
dσ ≤ lim

τ→0

∫ t

s
Ψ1

(
(P̂

2
τ )′(σ)

)
dσ.

But this trivially holds for Ψ1 = 0. Thus the proof for Theorem 3.30 also works for the
problem (4.93) and we obtain the desired result.
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Corresponding to the solution P , we are able to obtain a solution (u, φ,D) given from
(3.2) and (3.20). Similarly as stated in Proposition 3.32, we obtain the following regularity
result for (u, φ,D):

Proposition 4.64. Let the Assumptions A1 to A6 be satisfied and β > 0 be a given

positive constant. Suppose also that P 0 ∈
(
Hs(Ω)

)d
and DP I(0,P 0) is of class L2. Let

P be the solution of (4.93) obtained from Theorem 4.63. Then the differential system
(3.2) and (3.20) admit a solution (u, φ,P ) and (u,D,P ) (u being identical in former and
latter) respectively such that

u ∈ H1(0, T ;
(
W 1,q
∂Ωu

(Ω)
)d

),

φ ∈ H1(0, T ;W 1,q
∂Ωφ

(Ω)),

D ∈ H1(0, T ;MD ∩
(
Lq(Ω)

)d
),

P ∈ H1(0, T ;
(
Hs(Ω)

)d
),

(4.95)

where MD is the space defined by (3.18) and q ∈ (2,∞) is the number given in Lemma
3.19.

Proof. The proof is being identical as the proof of Proposition 3.32 and we thus omit the
details here.
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Summary and comparison of the
main results

We close the thesis by giving the Table 5.1 in the following, which gives a comparison
of the main results given in the thesis for different model settings. Some supplementary
explanation is made for Table 5.1 as follows:

• The dimension number d is always a number in the set {2, 3}. The domain Ω ⊂ Rd
is always assumed to be a bounded domain with Lipschitz boundary.

• ∂Ωu, ∂Ωφ, ∂ΩP and ∂Ωσ, ∂ΩD, ∂ΩΣ correspond to the Dirichlet boundary and
Neumann boundary of u, φ, P respectively. ∂Ωu, ∂Ωφ, ∂ΩP are always (d − 1)-
sets (see Section 2.1). In particular, we assume that ∂Ωu∪̇∂Ωσ = ∂Ωφ∪̇∂ΩD =
∂ΩP ∪̇∂ΩΣ = ∂Ω

• For the definition of the G1-regular and G2-regular sets, we refer to Section 2.1.

• The replacement of gradient energy is referred to Assumption 3.1.

• The functional Ψ1 is always assumed to satisfy the Assumption A7.

• For the definitions of the coefficient tensors and external loadings, we refer to Section
2.4.

• Due to the relation of D and ∇φ given by (3.23) we will only deal with the variable
φ within the Table 5.1.

• For the construction of the vanishing viscosity solution (t̃, ũ, φ̃, P̃ ), we refer to Section
3.8.
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Table 5.1: Comparison of the main results for different models

Model with the dissipation functional
Ψ(P ) = Ψ1(P ) + β‖P ‖2L2(Ω)

Model with the dissipation functional

Ψ(P ) = β
2 ‖P ‖

2
L2(Ω)

Local or
Global solution

Global Local, d = 2 Local, d = 3 Global

Dirichlet or
Neumann or
Mixed b.c.

Mixed for u, φ
Neumann for P

Mixed for u, φ, P
Dirichlet for u, φ

Mixed for P
Mixed for u, φ
Neumann for P

Regularity and boundedness
of the coefficient tensors

C, e, ε0, ε
differentiable

uniformly bounded
uniformly Lipschitzian

DPC, DP e, DP ε
0, DP ε

uniformly bounded
uniformly Lipschitzian

ω is a polynomial of sixth order and
∃C > 0, C ′ ∈ R : ω(P ) ≥ C|P |2 + C ′

C, e, ε0, ε
differentiable

uniformly bounded
locally Lipschitzian

DPC, DP e, DP ε
0, DP ε

locally Lipschitzian

ω is a polynomial of sixth order

C, e, ε0, ε
differentiable

locally Lipschitzian

DPC, DP e, DP ε
0, DP ε

locally Lipschitzian

ω is a polynomial of sixth order

C, e, ε0, ε
differentiable

uniformly bounded
uniformly Lipschitzian

DPC, DP e, DP ε
0, DP ε

uniformly bounded
uniformly Lipschitzian

ω is a polynomial of sixth order and
∃C > 0, C ′ ∈ R : ω(P ) ≥ C|P |2 + C ′

Characterization of domain
and boundaries

Ω ∪ ∂Ωu G1-regular
Ω ∪ ∂Ωφ G1-regular

Ω ∪ ∂Ωu G1-regular
Ω ∪ ∂Ωφ G1-regular
Ω ∪ ∂ΩP G2-regular

Ω ∪ ∂ΩP G2-regular;

Ω has C1-boundary or is a cuboid
or

Ω is a polyhedral domain and
Ω and PD satisfy Assumption 4.51

Ω ∪ ∂Ωu G1-regular
Ω ∪ ∂Ωφ G1-regular

Replacement of gradient
Both are possible if d = 2

Yes if d = 3
No No

Both are possible if d = 2
Yes if d = 3

Admissible pair (p, r) Not relevant

p ∈ (2, p∗], r ∈ ( 2p
p−2 ,∞)

p∗ is given by Lemma 4.19

p ∈ (3, p∗], r ∈ ( 2p
p−3 ,∞)

p∗ = 6 if Ω has C1-boundary or
Ω is a cuboid;

p∗ is given by Proposition 4.59 if
Ω is a polyhedral domain and

Ω and PD satisfy Assumption 4.51

Not relevant

Initial value P 0

P 0 ∈
(
Hs(Ω)

)d ∧DP I(0,P 0) ∈
(
L2(Ω)

)d
Here, s ∈ [max{1, d2}, 2)

P 0 ∈ (
(
W 1,p
∂ΩP

(Ω)
)2
,
(
W−1,p
∂ΩP

(Ω)
)2

) 1
r
,r P 0 ∈ (

(
W 1,p
∂ΩP

(Ω)
)3
,
(
W−1,p
∂ΩP

(Ω)
)3

) 1
r
,r

P 0 ∈
(
Hs(Ω)

)d ∧DP I(0,P 0) ∈
(
L2(Ω)

)d
Here, s ∈ [max{1, d2}, 2)

Regularity of external loadings

f1 ∈ C1,1([0, T ];
(
L

p∗d
p∗+d (Ω)

)d
)

t ∈ C1,1([0, T ];
(
L
p∗(d−1)

d (∂Ωσ)
)d

)

f2 ∈ C1,1([0, T ]; , L
p∗d
p∗+d (Ω))

ρ ∈ C1,1([0, T ];L
p∗(d−1)

d (∂ΩD))

uD ∈ C1,1([0, T ];
(
B

1− 1
p∗

p∗,p∗ (∂Ωu)
)d

)

φD ∈ C1,1([0, T ];B
1− 1

p∗
p∗,p∗ (∂Ωφ))

f3 ∈ C1,1([0, T ];
(
Lq
∗
(Ω)

)d
)

π ∈ C1,1([0, T ];
(
Lq
∗
(∂Ω)

)d
)

Here, p∗ ∈ (2,∞) and q∗ ∈ (1,∞)

f1 ∈ L2r∗
(
0, T ;

(
L

2p∗
p∗+2 (Ω)

)2)
f2 ∈ L2r∗

(
0, T ;L

2p∗
p∗+2 (Ω)

)
f3 ∈ Lr

∗(
0, T ;

(
L

2p∗
p∗+2 (Ω)

)2)
t ∈ L2r∗

(
0, T ;

(
L
p∗
2 (∂Ωu)

)2)
ρ ∈ L2r∗

(
0, T ;L

p∗
2 (∂ΩD)

)
π ∈ Lr∗

(
0, T ;

(
L
p∗
2 (∂ΩP )

)2)
uD ∈ L2r∗

(
0, T ;

(
B

1− 1
p∗

p∗,p∗ (∂Ωu)
)2)

φD ∈ L2r∗
(
0, T ;B

1− 1
p∗

p∗,p∗ (∂Ωφ)
)

PD ∈W 1,r∗
(
0, T ;

(
B

1− 1
p∗

p∗,p∗ (∂ΩP )
)2)

Here, p∗ ∈ [p,∞) and r∗ ∈ [r,∞)

f1 ∈ L2r∗
(
0, T ;

(
L

3p∗
p∗+3 (Ω)

)3)
f2 ∈ L2r∗

(
0, T ;L

3p∗
p∗+3 (Ω)

)
f3 ∈ Lr

∗(
0, T ;

(
L

3p∗
p∗+3 (Ω)

)3)
π ∈ Lr∗

(
0, T ;

(
L

2p∗
3 (∂ΩP )

)3)
uD ∈ L2r∗

(
0, T ;

(
B

1− 1
p∗

p∗,p∗ (∂Ωu)
)3)

φD ∈ L2r∗
(
0, T ;B

1− 1
p∗

p∗,p∗ (∂Ωφ)
)

PD ∈W 1,r∗
(
0, T ;

(
B

1− 1
p∗

p∗,p∗ (∂ΩP )
)3)

Here, p∗ ∈ [p,∞) and r∗ ∈ [r,∞)

f1 ∈ C1,1([0, T ];
(
L

p∗d
p∗+d (Ω)

)d
)

t ∈ C1,1([0, T ];
(
L
p∗(d−1)

d (∂Ωσ)
)d

)

f2 ∈ C1,1([0, T ]; , L
p∗d
p∗+d (Ω))

ρ ∈ C1,1([0, T ];L
p∗(d−1)

d (∂ΩD))

uD ∈ C1,1([0, T ];
(
B

1− 1
p∗

p∗,p∗ (∂Ωu)
)d

)

φD ∈ C1,1([0, T ];B
1− 1

p∗
p∗,p∗ (∂Ωφ))

f3 ∈ C1,1([0, T ];
(
Lq
∗
(Ω)

)d
)

π ∈ C1,1([0, T ];
(
Lq
∗
(∂Ω)

)d
)

Here, p∗ ∈ (2,∞) and q∗ ∈ (1,∞)

Regularity of solution
(u, φ,P )

From Proposition 3.32:

u ∈ H1(0, T ;
(
W 1,q
∂Ωu

(Ω)
)d

)

φ ∈ H1(0, T ;W 1,q
∂Ωφ

(Ω))

P ∈ H1(0, T ;
(
Hs(Ω)

)d
)

Here, q ∈ (2,∞) is given by Lemma 3.19

From Theorem 4.22:

u ∈ L2r∗(0, T̂ ;
(
W 1,p̂
∂Ωu

(Ω)
)2

)

φ ∈ L2r∗(0, T̂ ;W 1,p̂
∂Ωφ

(Ω))

P ∈W 1,r(0, T̂ ;X) ∩ Lr(0, T̂ ;Y )

Here, T̂ ∈ (0, T ],

X =
(
W−1,p
∂ΩP

(Ω)
)2

,

Y =
(
W 1,p
∂ΩP

(Ω)
)2

,

p̂ = {p∗, p∗}

From see Theorem 4.39, 4.44 and 4.61:

If Ω has C1-boundary or
Ω is a cuboid, then

u ∈ L2r∗(0, T̂ ;
(
W 1,p∗

∂Ωu
(Ω)

)2
)

φ ∈ L2r∗(0, T̂ ;W 1,p∗

∂Ωφ
(Ω))

P ∈W 1,r(0, T̂ ;X) ∩ Lr(0, T̂ ;Y );

If Ω is a polyhedral domain and
Ω and PD satisfy Assumption 4.51, then

u ∈ L2r∗(0, T̂ ;
(
W 1,p̂
∂Ωu

(Ω)
)2

)

φ ∈ L2r∗(0, T̂ ;W 1,p̂
∂Ωφ

(Ω))

P ∈W 1,r(0, T̂ ;X) ∩ Lr(0, T̂ ;Y )

Here, T̂ ∈ (0, T ],

X =
(
W−1,p
∂ΩP

(Ω)
)3

,

Y =
(
W 1,p
∂ΩP

(Ω)
)3

,

p̂ = {p∗, p∗}

From Theorem 4.63:

u ∈ H1(0, T ;
(
W 1,q
∂Ωu

(Ω)
)d

)

φ ∈ H1(0, T ;W 1,q
∂Ωφ

(Ω))

P ∈ H1(0, T ;
(
Hs(Ω)

)d
)

Here, q ∈ (2,∞) is given by Lemma 3.19

Uniqueness of solution
(u, φ,P )

Unknown Yes Yes Unknown

Behavior as β → 0

From Proposition 3.39: Vanishing viscosity solution

(t̃, ũ, φ̃, P̃ ) exists, with

t̃ ∈W 1,∞(0, S; [0, T ])

ũ ∈W 1,∞(0, S;
(
W 1,q
∂Ωu

(Ω)
)d

)

φ̃ ∈W 1,∞(0, S;W 1,q
∂Ωφ

(Ω))

P̃ ∈W 1,∞(0, S;
(
Hs(Ω)

)d
))

Here, S is some positive number
with S ∈ [T,∞) and q is

given by Lemma 3.19

Not relevant Not relevant Not relevant
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Basic calculus

A.1 Inequalities

Lemma A.1 (Poincaré’s inequality). Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded domain with
Lipschitz boundary and let Γ ⊂ ∂Ω be a (d − 1)-set with positive surface measure. Then
there exists a constant cP > 0 such that for all φ ∈ H1

Γ(Ω)

‖φ‖H1 ≤ cP ‖∇φ‖L2 .

Lemma A.2 (Korn’s inequality). Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded domain with
Lipschitz boundary and let Γ ⊂ ∂Ω be a (d − 1)-set with positive surface measure. Then
there exists a constant cK > 0 such that for all u ∈ (H1

Γ(Ω))d

‖u‖H1 ≤ cK‖ε(u)‖L2 .

To show these, we need the following lemmas:

Lemma A.3. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded domain with Lipschitz boundary.

• Let V ⊂ H1(Ω) be a closed subset such that

φ ∈ V,∇φ = 0⇒ φ = 0. (A.1)

Then there exists some c1 > 0 such that for all φ ∈ V

‖∇φ‖L2 ≥ c1‖φ‖L2 . (A.2)

• Let V ⊂
(
H1(Ω)

)d
be a closed subset such that

u ∈ V, ε(u) = 0⇒ u = 0.

Then there exists some c2 > 0 such that for all u ∈ V

‖ε(u)‖L2 ≥ c2‖u‖L2 .

Proof. The proof is based on a contradiction proof and embedding theorems. We refer to
[18, Chap. 5.8, Thm. 1] and [20, Prop. 3] for details. We also refer to [37, Lem 1.11] for
a complete proof.
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Lemma A.4. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded domain with Lipschitz boundary and
let Γ ⊂ ∂Ω be a (d − 1)-set with positive surface measure. Then the spaces V1 = H1

Γ(Ω)
and V2 = (H1

Γ(Ω))d fulfill the conditions (A.1) and (A.2) respectively.

Proof. That the space H1
Γ(Ω) is a closed subspace of H1(Ω) is a direct consequence of

the trace theorem, see for instance the proof of [9, Thm. 6.3-4]. Now let φ ∈ H1
Γ(Ω) with

∇φ = 0. For ε > 0, let ηε be the standard mollifier having support in the closed ball

B̄ε(0) = {x ∈ Rd : |x| ≤ ε}.

Let x ∈ Ω be an arbitrary point in Ω. Choose ξ ∈ (0,∞) sufficiently small such that
the closed ball B̄ξ(x) centered at x with radius ξ lies in Ω, i.e. B̄ξ(x) ⊂ Ω. Then for all
sufficiently small ε we have φ ∗ ηε ∈ C∞

(
Bξ(x)

)
and

∇(φ ∗ ηε) = (∇φ) ∗ ηε = 0,

whence φ ∗ ηε is constant in Bξ(x). Now let {εn}n∈N be a (sufficiently small) vanishing
sequence, i.e. εn → 0 as n → ∞. Then φ ∗ ηεn converges to φ in L2

(
Bξ(x)

)
as n → ∞.

Thus up to a subsequence, φ ∗ ηεn converges to φ a.e. in Bξ(x) as n→∞. But φ ∗ ηεn is
constant in Bξ(x), therefore φ is a.e. constant in Bξ(x) and we conclude that φ is locally
a.e. constant in Ω. Since Ω is connected, this implies that φ is a.e. constant in Ω, see
for instance [7, Lem. 6.3]. Since Ω has Lipschitz boundary, the trace of φ is well-defined,
and since Γ has positive measure, if φ is not constantly equal to zero a.e. in Ω, then φ is
constantly equal to some non zero number a.e. on Γ (w.r.t. the corresponding Hausdorff
measure on Γ), which is a contradiction to the fact that φ ∈ H1

Γ(Ω). Thus φ ≡ 0 a.e. in Ω
and H1

Γ(Ω) satisfies the property (A.1). That the condition (A.2) fulfills follows directly
from the proof of [9, Thm. 6.3-4].

Lemma A.5 ([45, Thm. 10.2]). Let Ω be a bounded domain with Lipschitz boundary.

Then there exists some c > 0 such that for all u ∈
(
H1(Ω)

)d
‖ε(u)‖L2 + ‖u‖L2 ≥ c‖∇u‖L2 .

Proof of Lemma A.1 and A.2. The Poincaré’s inequality follows directly from Lemma A.3
and A.4. Now we obtain that

‖ε(u)‖L2 ≥ c
(
‖ε(u)‖L2 + ‖u‖L2

)
≥ c‖∇u‖L2 ≥ c‖u‖H1 ,

where the first inequality follows from Lemma A.3, the second from Lemma A.5 and the
last one is the Poincaré’s inequality.

Lemma A.6. Let d ∈ N and let the Assumptions A2 and A3 be satisfied. Then there
exists a constant µ > 0 such that

B2(P )

(
ε
D

)
:

(
ε
D

)
≥µ
(
|ε|2 + |D|2

)
for all P ∈ Rd, ε ∈ Linsym(Rd,Rd),D ∈ Rd.

Proof. It follows from Assumption A3 that

B2(P )

(
ε
D

)
:

(
ε
D

)
=C(P )ε : ε+ ε−1(P )

(
D − e(P )ε

)
:
(
D − e(P )ε

)
≥α
(
|ε|2 + |D − e(P )ε|2

)
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for ε ∈ Linsym(Rd,Rd) and D ∈ Rd. If ε = 0, the claim follows; otherwise we write
|e(P )ε|2 = ν|ε|2, then

ν :=
|e(P )ε|2

|ε|2
≤ C1

for some positive constant C1, since e is uniformly bounded on R3 due to Assumption A3.
It follows

B2(P )

(
ε
D

)
:

(
ε
D

)
≥α
(
|ε|2 + |D − e(P )ε|2

)
≥α
(
|ε|2 + |D|2 + |e(P )ε|2 − 2|D||e(P )ε|

)
≥α
((

1 + ν(1− 1

ν ′
)
)
|ε|2 + (1− ν ′)|D|2

)
for all ν ′ > 0, where the last inequality follows from Young’s inequality, applied to the
term 2|D||e(P )ε|. Let

1 + ν(1− 1

ν ′
) > 0 ∧ 1− ν ′ > 0,

that is

1 > ν ′ >
ν

ν + 1
.

Since ν
ν+1 is monotone increasing in ν and ν ≤ C1, we can take ν ′ as

ν ′ :=
1

2
(1 +

C1

C1 + 1
) =

2C1 + 1

2C1 + 2
.

Now it follows

B2(P )

(
ε
D

)
:

(
ε
D

)
≥α
((

1 + ν(1− 1

ν ′
)
)
|ε|2 + (1− ν ′)|D|2

)
≥α
((

1− ν

2C1 + 1

)
|ε|2 +

|D|2

2C1 + 2

)
≥α
((

1− C1

2C1 + 1

)
|ε|2 +

|D|2

2C1 + 2

)
=α
( C1 + 1

2C1 + 1
|ε|2 +

|D|2

2C1 + 2

)
.

Take

µ := min
{
α, αmin{ C1 + 1

2C1 + 1
,

1

2C1 + 2
}
}
> 0,

we obtain that

B2(P )

(
ε
D

)
:

(
ε
D

)
≥µ
(
|ε|2 + |D|2

)
and the claim follows.
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A.2 Differentiability and integrability of functionals

Lemma A.7. Let d ∈ {2, 3} and let the Assumptions A1 to A6 be satisfied. Let s ∈
[max{1, d2}, 2) be some given number. Let E(t,u,D,P ) be given by (3.14). Then for each

t ∈ [0, T ] and P ∈
(
Hs(Ω)

)d
, E
(
t,u,D,P

)
is Gâteaux-differentiable w.r.t. (u,D) on(

H1
∂Ωu

(Ω)
)d ×MD.

Proof. Recall that

E(t,u,D,P ) = E1(t,u,D,P ) + E2(P )− l3(t,u,D,P ),

where E1, E2, l3 are defined by (3.15) to (3.17). The differentiability of l3 and E2 w.r.t.

(u,D) on
(
H1
∂Ωu

(Ω)
)d×MD are being trivial, thus we only need to consider the term E1.

Now recall that

E1(t,u,D,P ) =

∫
Ω

1

2
B2(P )

(
ε(u) + εD(t)− ε0(P )
D +Dν(t)− P

)
:

(
ε(u) + εD(t)− ε0(P )
D +Dν(t)− P

)
dx

=

∫
Ω
U1

(
t, ε(u),D,P

)
dx.

Define

BP (

(
u
D

)
,

(
v
E

)
) :=

∫
Ω
B2(P )

(
ε(u)
D

)
:

(
ε(v)
E

)
dx (A.3)

for (u,D) ∈
(
H1(Ω)

)d×MD, where MD is the space defined by (3.18). Then BP defines

a continuous bilinear form on the space
(
H1(Ω)

)d ×MD due to the Assumptions A1 to
A3. We then obtain the Gâteaux-differentiability of the quadratic functional

BP (

(
u
D

)
,

(
u
D

)
)

on
(
H1(Ω)

)d ×MD. Since U1

(
t, ε(u),D,P

)
is a multiple of the integrand given in (A.3)

with u = v and D = E (and up to constant translation for fixed (t,P )), the Gâteaux-
differentiability of E1(t,u,D,P ) w.r.t. (u,D) follows immediately from the Gâteaux-

differentiability of the quadratic functional BP (

(
u
D

)
,

(
u
D

)
) w.r.t. (u,D) on

(
H1(Ω)

)d×
MD.

Lemma A.8. Let d ∈ {2, 3} and let the Assumptions A1 to A6 be satisfied. Let s ∈
[max{1, d2}, 2) be some given number. Let H(t,u, φ,P ) and E(t,u,D,P ) be defined by
(3.5) and (3.14) respectively. Then

(1) For each p > 2 and each (t,u, φ) ∈ [0, T ]×
(
W 1,p(Ω)

)d ×W 1,p(Ω), H(t,u, φ,P ) is

Gâteaux-differentiable w.r.t. P ∈
(
Hs(Ω)

)d
and

DPH(t,u, φ,P )[P̄ ]

=

∫
Ω

(
DPH(t,u, φ,P ) +DPω(P )

)
(P̄ )dx+ κ〈P , P̄ 〉s − l23(t, P̄ )

for all P̄ ∈
(
Hs(Ω)

)d
.
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(2) For each p > 2 and each (t,u,D) ∈ [0, T ] ×
(
W 1,p(Ω)

)d × (Lp(Ω))d, E
(
t,u,D,P

)
is Gâteaux-differentiable w.r.t. P ∈

(
Hs(Ω)

)d
and

DP E
(
t,u,D,P

)
[P̄ ]

=

∫
Ω

(
DPU1

(
t,u,D,P

)
+DPω(P )

)
(P̄ )dx+ κ〈P , P̄ 〉s − l23(t, P̄ )

for all P̄ ∈
(
Hs(Ω)

)d
, where U1 is defined by (3.15).

Proof. It suffices to show the second statement, the proof for the first statement is being
identical. The differentiability of l23 and of the fractional gradient term 〈P ,P 〉s are being
trivial, we thus only need to consider the energy terms E1 and E2, namely the energy
integrals with integrands U1 and ω respectively. For the polynomial ω, it follows

|ω(P )| ≤ C(1 + |P |6),

|DPω(P )| ≤ C(1 + |P |5),

|D∇Pω(P )| = 0.

Thus the conditions 3.32 and 3.35 in [12] are fulfilled and due to the proof of [12, Thm.

3.37], we obtain the Gâteaux-differentiability of E2(P ) w.r.t. P in space
(
H1(Ω)

)d
. Since(

Hs(Ω)
)d ⊂ (H1(Ω)

)d
, we also obtain the differentiability of E2(P ) w.r.t. P on

(
Hs(Ω)

)d
.

For E1, it follows from the chain rule that for P̄ ∈
(
Hs(Ω)

)d
and h ∈ R6=0

1

h

(
E1(t,u,D,P + hP̄ )− E1

(
t,u,D,P

))
=

∫
Ω

∫ 1

0

1

2
DPB2(P + σhP̄ )P̄

(
ε(u) + εD(t)− ε0(P + σhP̄ )
D +Dν(t)− (P + σhP̄ )

)
:

(
ε(u) + εD(t)− ε0(P + σhP̄ )
D +Dν(t)− (P + σhP̄ )

)
+ B2(P + σhP̄ )

(
ε(u) + εD(t)− ε0(P + σhP̄ )
D +Dν(t)− (P + σhP̄ )

)
:

(
−DP ε0(P + σhP̄ )P̄

−P̄

)
dσdx

=:

∫
Ω

∫ 1

0
I1 + I2 dσdx.

(A.4)

For the notation of the coefficient tensors and the function Dν appearing in (A.4) we refer
to Section 2.4 and (3.12). Since I1, I2 converge pointwise to the corresponding integrands
as h→ 0, it suffices to show that |I1|, |I2| ≤ I for some I ∈ L1([0, 1]×Ω) and then to apply
the Lebesgue dominated convergence theorem for h → 0. It follows from the triangular
inequality and Cauchy-Schwarz that

|I1| ≤ C|P̄ |
(
1 + |εD(t)|+ |Dν(t)|+ |ε(u)|+ |D|+ |P |+ |P̄ |

)2
=: J1,

|I2| ≤ C|P̄ |
(
1 + |εD(t)|+ |Dν(t)|+ |ε(u)|+ |D|+ |P |+ |P̄ |

)
=: J2.

Since ε(u) and D are of class Lp for some p > 2, the Hölder’s inequality implies that

‖J1‖L1([0,1]×Ω) ≤ C‖P̄ ‖Lα
(
1 + Λ + ‖ε(u)‖Lp + ‖D‖Lp + ‖P ‖Lp + ‖P̄ ‖Lp

)2
,

‖J2‖L1([0,1]×Ω) ≤ C‖P̄ ‖Lα
(
1 + Λ + ‖ε(u)‖Lp + ‖D‖Lp + ‖P ‖Lp + ‖P̄ ‖Lp

)
,

where α := p
p−2 and Λ is the constant defined by (3.36) (also notice that P belongs to the

class Lp for all p ∈ [1,∞) due to the Sobolev’s embedding Hs ↪→ Lp for s ≥ d
2). Then we

obtain the desired result.
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A.3 Properties of convex functional and subdifferential

Lemma A.9 (Fenchel-Moreau). Let X be a reflexive Banach space and f : X → R∪{+∞}
be a proper, convex, lower semi-continuous function. Then f∗, the Legendre-transform of
f , is proper, convex, lower semi-continuous and f = f∗∗

Proof. We refer to [68, Thm. 2.3.3].

Lemma A.10. Let X be a reflexive Banach space and f : X → R ∪ {+∞} be a proper,
convex, lower semi-continuous function. Then the following statements are equivalent:

• x∗ ∈ ∂f(x);

• x ∈ ∂f∗(x∗);

• f(x) + f∗(x∗) = 〈x∗, x〉X ;

• f(x)− 〈x∗, x〉X ≤ f(z)− 〈x∗, z〉X for all z ∈ X.

In particular, for x ∈ ∂f∗(x∗), x∗ ∈ ∂f(x), we always have

f(x) + f∗(x∗) ≥ 〈x∗, x〉X .

Proof. For the first four statements we refer to [12, Thm. 2.48]. For the last statement
we refer to [68, Thm. 2.3.1].
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Helly’s selection theorem and
Simon’s embedding

In what follows, we introduce the Helly’s selection theorem and Simon’s embedding from
[42] and [59] respectively. These regularity and embedding results will be essential for the
proof of Theorem 3.30.

Lemma B.1 (Helly’s selection theorem). Let Ω ⊂ Rd be a bounded domain with Lipschitz
boundary. Let Ψ1 : Rd → R be some given functional such that Ψ1 satisfies the Assump-

tion A7. Let A be a weakly compact subset of
(
Hs(Ω)

)d
. If a sequence {P n}n∈N ⊂

H1(0, T ;
(
Hs(Ω)

)d
) satisfies

sup
n∈N

∫ T

0
Ψ1

(
P ′n(τ)

)
dτ ≤ C

for some constant C > 0 and

∀n ∈ N ∀t ∈ [0, T ] : P n(t) ∈ A,

then there exist a subsequence {P nk}k∈N of {P n}n∈N, a function ϕ∞ : [0, T ] → R and

some P : (0, T )→
(
Hs(Ω)

)d
such that the following hold:

• ϕnk(t) :=
∫ t

0 Ψ1

(
P ′nk(τ)

)
dτ → ϕ∞(t) for all t ∈ [0, T ] as k →∞;

• P nk(t) ⇀ P (t) ∈ A in
(
Hs(Ω)

)d
for all t ∈ [0, T ] as k →∞.

If in addition that P ∈ H1(0, T ;
(
Hs(Ω)

)d
), then∫ t1

t0

Ψ1

(
P ′(τ)

)
dτ ≤ ϕ∞(t1)− ϕ∞(t0)

for all 0 ≤ t0 < t1 ≤ T .

Proof. This is a direct consequence of the Helly’s selection theorem given in [42, Thm.
3.2]. We only need to check that the condition (A4) in [42, Thm. 3.2] is fulfilled, which is
given as follows: let {P n}n∈N be a sequence in A and

min{Ψ1(P n − P ),Ψ1(P − P n)} → 0 (B.1)

as n → ∞, then it follows that P n ⇀ P in
(
Hs(Ω)

)d
as n → ∞. We show that under

the condition (B.1), every subsequence of {P n}n∈N has a weak converging subsequence
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and all possible weak limits are equal to P . Let {P nj}j∈N be a subsequence of {P n}n∈N.
Since {P n}n∈N ⊂ A, we know that there is a weak converging subsequence {P njl

}l∈N
of {P nj}j∈N which converges to a limit P 1 ∈

(
Hs(Ω)

)d
as l → ∞. Due to Sobolev’s

embedding (Lemma 3.5), P njl
→ P 1 in

(
L1(Ω)

)d
as l → ∞. But from the Assumption

A7 and (B.1) we also know that P njl
→ P in

(
L1(Ω)

)d
as l→∞, therefore P 1 = P and

consequently the condition (A4) is fulfilled.

Remark B.2. In the proof of Theorem 3.30, we need not only the weak convergence of a
bounded sequences in certain reflexive Banach spaces, but also pointwise convergence of
integrands having variable in t, which motivates the use of Lemma B.1. 4

The next lemma shows that certain compactness of a set of functions follows from the
uniform boundedness of its elements’ derivatives.

Lemma B.3 ([59, Cor. 4], Simon’s embedding). Let X ↪→↪→ B ↪→ Y , X,B, Y Banach
spaces. Let M be a bounded subset in L∞(0, T ;X) and ∂M

∂t = {∂f∂t : f ∈ M} be bounded
in Lr(0, T ;Y ) for some r > 1. Then M is relatively compact in C(0, T ;B).
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Basics of interpolation theory

In this chapter, we introduce several useful results concerning the interpolation theory
between function spaces. The following definitions and results are mainly cited from [6]
and [63].

C.1 Real interpolation

In order to define real interpolation spaces we need the following preliminaries: Let A0, A1

be compatible topological vector spaces, i.e., there exists a Hausdorff topological vector
space U such that A0, A1 are subspaces of U . In this case, A0 ∩ A1 and A0 + A1 are
well-defined.

Proposition C.1. Let A0, A1 be compatible normed vector spaces. Then A0 ∩ A1 and
A0 +A1 are normed vector spaces with norms

‖a‖A0∩A1 = max
(
‖a‖A0 , ‖a‖A1

)
,

‖a‖A0+A1 = inf
a=a0+a1

(
‖a0‖A0 + ‖a1‖A1

)
respectively. Moreover, if A0, A1 are complete, then A0∩A1 and A0+A1 are also complete.

Now we are able to give the precise definition of the real interpolation space between
two spaces. There are two ways to define the real interpolation: The K-method and the
J-method. Nevertheless, one can show that interpolation spaces defined by both methods
are in general the same spaces with equivalent norms.

Proposition C.2 (K-method). Let A0, A1 be compatible Banach spaces. For t > 0 and
a ∈ A0 +A1 let

K(a, t;A0, A1) := inf
a=a0+a1

{
‖a0‖A0 + t‖a1‖A1

}
.

For 0 < θ < 1, 1 ≤ q <∞ define

‖a‖θ,q,K :=
(∫ ∞

0

1

t

(
t−θK(a, t;A0, A1)

)q
dt
) 1
q

and for θ ∈ [0, 1]
‖a‖θ,∞,K := sup

t>0
t−θK(a, t;A0, A1).

Then

(A0, A1)θ,q,K :=
{
a ∈ A0 +A1 : ‖a‖θ,q,K <∞

}
125



Appendix C C.1. Real interpolation

with the norm ‖ · ‖θ,q,K is a normed subspace of A0 +A1. The space (A0, A1)θ,q,K is called
the interpolation space induced by (A0, A1) of components (θ, q) by the K-method.

Proposition C.3 (J-method). Let A0, A1 be compatible Banach spaces. For t > 0 and
a ∈ A0 ∩A1 let

J(a, t;A0, A1) := max
{
‖a0‖A0 , t‖a1‖A1

}
.

For 0 < θ < 1, 1 ≤ q <∞ define

Φθ,q,J(a) :=
(∫ ∞

0

1

t

(
t−θJ(a, t;A0, A1)

)q
dt
) 1
q

and for θ ∈ [0, 1]
Φθ,∞,J(a) := sup

t>0
t−θJ(a, t;A0, A1).

The space (A0, A1)θ,q,J is defined as the space of elements a ∈ A0+A1 which can be written
as

a =

∫ ∞
0

u(t)
dt

t
(C.1)

and
Φθ,q,J(u) <∞, (C.2)

where u : (0,∞) → A0 ∩ A1 is some Bochner-measurable function (see Definition D.1
below) with values in A0 ∩ A1. Then (A0, A1)θ,q,J is a normed subspace of A0 + A1 with
the norm

‖a‖θ,q,J := inf{Φθ,q,J(u) : u satisfies (C.1) and (C.2)}.
The space (A0, A1)θ,q,J is called the interpolation space induced by (A0, A1) of components
(θ, q) by the J-method.

The following theorem shows that both interpolation spaces are in general the same
spaces with equivalent norms.

Theorem C.4. If θ ∈ (0, 1) and q ∈ [1,∞], then (A0, A1)θ,q,K = (A0, A1)θ,q,J with
equivalent norms.

Let θ ∈ (0, 1) and q ∈ [1,∞]. Due to Theorem C.4 we are thus able to denote by
(A0, A1)θ,q the real interpolation space without referring to K-method or J-method.

C.1.1 Basic properties of real interpolation spaces

Theorem C.5. Let θ ∈ (0, 1) and q ∈ [1,∞]. Let (A0, A1) be a compatible pair. Then we
have

• (A0, A1)θ,q = (A1, A0)1−θ,q;

• (A0, A1)θ,q ⊂ (A0, A1)θ,r if q ≤ r;

• A1 ⊂ A0 ⇒ (A0, A1)θ1,q ⊂ (A0, A1)θ2,q if θ2 < θ1.

Moreover, if A0, A1 are complete, then (A0, A1)θ,q is also complete.

Theorem C.6 (Reiteration theorem). Let (A0, A1) be a compatible Banach spaces pair.
Let θ1, θ2, η ∈ (0, 1), q1, q2, q ∈ [1,∞] and

θ = (1− η)θ1 + ηθ2.

Then (
(A0, A1)θ1,q1 , (A0, A1)θ2,q2

)
η,q

= (A0, A1)θ,q.
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C.2 Complex interpolation

Given compatible pair (A0, A1), the linear space F(A0, A1) is the space of functions f :
C → A0 + A1 which are analytic in the strip S = {z ∈ C : Re z ∈ (0, 1)}, continuous on
the closure of S and satisfy the following conditions:

1. {f(z) : z ∈ S} is a bounded subset of A0 +A1;

2. {f(it) : t ∈ R} is a bounded subset of A0;

3. {f(1 + it) : t ∈ R} is a bounded subset of A1.

Then the space F(A0, A1) is a Banach space with the norm

‖f‖F(A0,A1) = max
{

sup
t∈R
‖f(it)‖A0 , sup

t∈R
‖f(1 + it)‖A1

}
.

Proposition C.7 (Complex interpolation). For θ ∈ (0, 1), the complex interpolation space
[A0, A1]θ is the set of elements x ∈ A0 + A1 such that x = f(θ) for some f ∈ F(A0, A1).
[A0, A1]θ is a normed linear subspace of A0 +A1 with the norm

‖x‖[A0,A1]θ = inf
{
‖f‖F(A0,A1) : x = f(θ), f ∈ F(A0, A1)

}
.

C.2.1 Basic properties of complex interpolation spaces

Theorem C.8. Let (A0, A1) be a compatible pair. Then

• [A0, A1]θ = [A1, A0]1−θ;

• A1 ⊂ A0 ⇒ [A0, A1]θ1 ⊂ [A0, A1]θ2 if θ2 < θ1.

Moreover, if A0, A1 are complete, then [A0, A1]θ is also complete.

Theorem C.9 (Reiteration theorem). Let (A0, A1) be a compatible Banach spaces pair.
Let θj ∈ (0, 1), j = 1, 2. Define

Xj = [A0, A1]θj .

Suppose that A0 ∩A1 is dense in A0, A1 and X1 ∩X2. Then for all η ∈ [0, 1] we have

[X1, X2]θ = [A0, A1]θ,

where θ = (1− η)θ1 + ηθ2.

C.3 Relation between real and complex interpolation

Theorem C.10. Let (A0, A1) be a complete compatible pair. Let θ ∈ (0, 1). Then

(A0, A1)θ,1 ⊂ [A0, A1]θ ⊂ (A0, A1)θ,∞. (C.3)

Theorem C.11. Let (A0, A1) be a complete compatible pair. Let 0 < θ1 < θ2 < 1, η ∈
(0, 1), θ = (1− η)θ1 + ηθ2 and p ∈ [1,∞]. Then(

[A0, A1]θ1 , [A0, A1]θ2

)
η,p

= (A0, A1)θ,p.

Moreover, if there exist p1, p2 ∈ [1,∞] such that 1/p = (1− η)/p1 + η/p2, then[
(A0, A1)θ1,p1 , (A0, A1)θ2,p2

]
η

= (A0, A1)θ,p.
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C.4 Equivalent norms on Hs(Ω)

Lemma C.12. Let d ∈ N≥2 and Ω ⊂ Rd be a bounded domain with Lipschitz boundary.
Let s ∈ (1, 2). Then the norm ‖ · ‖s defined by

‖f‖s :=
(
‖f‖2L2(Ω) +

∫
Ω

∫
Ω

|∇f(x)−∇f(y)|
|x− y|d+2(s−bsc) dxdy

) 1
2

defines an equivalent norm on Hs(Ω).

Proof. It suffices to show that ‖ · ‖Hs(Ω) ≤ C‖ · ‖s. By expanding terms within norms we
only need to show that

‖f‖H1 ≤ C‖f‖s
for all f ∈ Hs(Ω). From [45, Thm. B.8] we obtain the real interpolation identity

(L2(Ω), Hs(Ω))θ,2 = H1(Ω) (C.4)

with θ = s−1 ∈ (1
2 , 1). On the other hand, using [6, Chap. 3.5, (1)] we obtain from (C.4)

that

‖f‖H1 ≤ C‖f‖1−θ
L2 ‖f‖θHs .

for f ∈ Hs(Ω). We also define

|f |s :=
(∫

Ω

∫
Ω

|∇f(x)−∇f(y)|
|x− y|d+2(s−bsc) dxdy

) 1
2
.

Then using Young’s inequality we obtain that

‖f‖L2 + ‖∇f‖L2 = ‖f‖H1

≤ C‖f‖1−θ
L2 ‖f‖θHs

= C‖f‖1−θ
L2 (‖f‖L2 + ‖∇f‖L2 + |f |s)θ

≤ Cε‖f‖L2 + ε(‖f‖L2 + ‖∇f‖L2 + |f |s)

for f ∈ Hs(Ω) and arbitrary ε > 0, where Cε > 0 is some positive constant depending on
ε. Choosing for instance ε = 1

2 and rearranging terms, we obtain the desired result.
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Appendix D

Concepts of measurability and
Carathéodory functions

We have introduced the concept of Bochner-measurability in Definition 4.4. If the image
set X is separable, then we are able to formulate different but equivalent measurability
concepts to the Bochner-measurability. We indicate that this will be the case in our
problem, since the underlying sets under consideration in our problem are all separable.
The motivation of imposing different measurability concepts is that the problems can
sometimes be dealt much easier when we use the equivalent measurability definitions
other than the original one. We make all these concepts precise in the following. Here we
will also generalize the concept of Bochner-measurability from the one given in Definition
4.4 to the one defined for a general finite measure space (Ω,Σ, µ). For simplicity we will
also assume that all Banach spaces and metric spaces are over the real field R, which is
sufficient for the purpose of this thesis.

Definiton D.1 ([13]). Let (Ω,Σ, µ) be a measure space and X be a metric space. Let
f : Ω → X be a function. Then f is said to be Borel-measurable if f is (Σ,BX)-
measurable, where BX is the Borel σ-algebra generated by the open subsets of X. Suppose
in addition that (Ω,Σ, µ) is a finite measure space and X is a Banach space. Then

• f is said to be Bochner-measurable or strongly measurable, if there exists a
sequence {fn}n∈N of simple functions such that fn → f in X µ-a.e. By simple
function we mean a function g : Ω → X such that g(t) =

∑k
i=1 1Ai(t)xi for t ∈ Ω,

where k ∈ N, Ai are sets in Σ and xi are elements in X.

• f is said to be weakly measurable, if for all x∗ ∈ X∗ the function t 7→ 〈x∗, f(t)〉
is (Σ,BR)-measurable, where BR is the Borel σ-algebra on R.

We have the following result due to Pettis, which states that all measurability concepts
are equivalent, as long as (Ω,Σ, µ) is a finite measure space and X is a separable Banach
space:

Theorem D.2 ([13, Cor. 3.10.5]). If (Ω,Σ, µ) is a finite measure space and X is a
separable Banach space, then all the definitions of measurable functions given in Definition
D.1 are equivalent.

The following result states that a Carathéodory function maps measurable functions
to measurable functions.
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Lemma D.3 ([13, Cor. 2.5.24, Prop. 2.5.27]). Let (Ω,Σ, µ) be a σ-finite measurable
space, X be a separable metric space and Y be a metric space. Denote also by BX and
BY the Borel σ-algebras corresponding to X and Y respectively. Let f : Ω×X → Y be a
Carathéodory function in the sense that

• t 7→ f(t, x) is (Σ,BY )-measurable for all x ∈ X and

• x 7→ f(t, x) is continuous for µ-a.a. t ∈ Ω.

Then if g : Ω→ X is (Σ,BX)-measurable, then t 7→ f(t, g(t)) is (Σ,BY )-measurable.

Remark D.4. In view of Theorem D.5, the Borel-measurability used in Lemma D.3 can
be replaced by Bochner-measurability or weak measurability, if (Ω,Σ, µ) is a finite measure
space and X, Y are separable Banach spaces. 4

We end up this chapter by giving the following very useful result for the special case
where Ω = [0, T ] with T ∈ (0,∞), Σ is the Lebesgue σ-algebra on [0, T ] and X is a Banach
space:

Lemma D.5 ([17, Lem. 7.1.10]). Let f : [0, T ] → X be Bochner-measurable. Then
t 7→ ‖f(t)‖X : [0, T ]→ R is Lebesgue-measurable.
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