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Appendices - Supplementary materials 
Appendix-A Swat Model-Setup, Calibration and Validation 

App-A.I Spatial input data and SWAT model setup 
In the current study “ArcSWAT-2012”, which is an ArcGIS-ArcView extension and graphical 

user input interface for the SWAT-model, is used. The SWAT-input data employed here include: a 
void-filled, and hydrologically conditioned, 3 arc-seconds (=90x90m2)- spatial resolution digital 
elevation model (DEM) from Hydro-SHEDS [1], FAO-UNESCO global soil map [2] and “Global Land 
Cover Characterization (GLCC) at 1 km spatial resolution [3]. During the watershed delineation 
process, the study area with a size of 165611 km2 was configured into 173 sub-basins, divided further 
into a total of 2825 discrete HRUs. The major catchments of UIB, which were modeled separately 
during calibration and validation, included Gilgit, Hunza, Astor, Shigar, Shyok, while the remaining 
parts of UIB were divided in to three regions (1) parts of UIB upstream of Kharmong gauge station; 
(2) Parts of UIB between Kharmong and Shatyal gauge station; and (3) UIB downstream of Shatyal, 
up to Bisham Qila. (App-B) 

App-A.II Model calibration and validation setup 

The SWAT model was calibrated and validated against daily discharge data individually for 
each of its five (5) major tributaries (Hunza, Gilgit, Astor, Shigar and Shyok rivers), for parts of UIB 
(except the tributaries) inside Pakistan’s boundary and for UIB (situated in India China and Nepal) 
covering area upstream of Kharmong gauge station.   

The Sequential Uncertainty Fitting SUFI-2 algorithm [4] of the SWAT-CUP program [4] was 
used for parameter optimization. This algorithm is capable of mapping all uncertainties (parameters, 
inputs, conceptual model, etc) in terms of parameter ranges, as the procedure attempts to cover most 
of the measured data within the 95% prediction uncertainty (95PPU), which is calculated at the 2.5% 
and 97.5% levels of the cumulative distribution of all simulated output values. During this process, 
the user first assigns tangible ranges to a set of calibration parameters, where both (the ranges and 
the selection of calibration parameter) are guided by literature, specific knowledge of the study area 
and the parameters sensitivity analysis. Once this is done, sets of samples (as many as intended 
simulations) are drawn from the parameter ranges through Latin hypercube sampling, followed by 
SWAT model simulation using each of the set, and finally processed for the evaluation of the objective 
function, i.e. some normalized squared sum of the residuals between observed and simulated 
streamflow discharge (see below).  

To quantify the goodness of model performance for the selected ranges and parameter, in 
terms of calibration/ uncertainty levels, two indices P-factor and the R-factor were used. P-factor is 
the percentage of data that is bracketed by the 95PPU band (range from 0 to 1, where 1 shows that all 
the prediction are within the 95PPU Band), while R-factor is the average width of the 95PPU band 
divided by the standard deviation of the measured variable (0 to ∞, with 0 showing perfect match) 
[5–7]. 

For evaluation of calibration /validation results, the SUFI-2 algorithm allow users to select 
from a range of different objective functions, such as R2, percent bias (PBIAS), Nash–Sutcliffe 
efficiency (NSE) or Kling-Gupta efficiency (KGE). The objective function can easily be reassigned in 
the post processing step if required [4]. The current study used NSE as the main objective function, 
but the results were also evaluated based on R2, PBIAS and KGE of the calibration/validation results 
as well as the P- factor and the R-factor.  

Further information of SWAT setup as well as calibration & validation are given in App-B to 
App-H 
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Appendix-B UIB extent, elevation and major catchments 

Appendix-C UIB soil classes 

Appendix-D UIB Landuse classes 
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Appendix-E SWAT model default parameter values and parameter ranges used in SWAT-CUP 

Parameter 
SWAT 

Component 
Description of the parameter 

Default 

Value 
Range 

SFTMP BSN Snowfall temperature. 1 -20 20 

SMTMP BSN Snow melt base temperature. 0.5 -20 20 

SMFMX BSN Maximum melt rate for snow during year (occurs on summer solstice). 4.5 0 20 

SMFMN BSN Minimum melt rate for snow during the year (occurs on winter solstice). 4.5 0 20 

TIMP BSN Snow pack temperature lag factor. 1 0 1 

SNOCOVMX BSN Minimum snow water content that corresponds to 100% snow cover. 1 0 500 

SNO50COV BSN Snow water equivalent that corresponds to 50% snow cover. 0.5 0 1 

ESCO BSN/HRU Soil evaporation compensation factor. 0.95 0 1 

EPCO BSN/HRU Plant uptake compensation factor. 1 0 1 

SURLAG BSN Surface runoff lag time. 4 0 24 

SHALLST GW Initial depth of water in the shallow aquifer (mm). 1000 0 50000 

DEEPST GW Initial depth of water in the deep aquifer (mm). 2000 0 50000 

GW_DELAY GW Groundwater delay (days). 31 0 500 

ALPHA_BF GW Baseflow alpha factor (days). 0.048 0 1 

GWQMN GW 
Treshold depth of water in the shallow aquifer required for return flow to 

occur (mm). 
1000 0 5000 

GW_REVAP GW Groundwater "revap" coefficient. 0.02 0.02 0.2 

REVAPMN GW Threshold depth of water in the shallow aquifer for "revap" to occur (mm). 750 0 500 

RCHRG_DP GW Deep aquifer percolation fraction. 0.05 0 1 

GWHT GW Initial groundwater height (m). 1 0 25 

GW_SPYLD GW Initial depth of water in the shallow aquifer (mm). 0.003 0 0.4 

OV_N HRU Manning's "n" value for overland flow. 0.15 0.01 30 

SLSOIL HRU Slope length for lateral subsurface flow. 0   

CH_N2 RTE Manning's "n" value for the main channel. 0.014 -0.01 0.3 

CH_K2 RTE Effective hydraulic conductivity in main channel alluvium. 0 -0.01 500 

ALPHA_BNK RTE Baseflow alpha factor for bank storage. 0 0 1 

SUB_SFTMP SNO Snowfall temperature. 1 -20 20 

SUB_SMTMP SNO Snow melt base temperature. 0.5 -20 20 

SUB_SMFMX SNO Maximum melt rate for snow during year (occurs on summer solstice). 4.5 0 20 

SUB_SMFMN SNO Minimum melt rate for snow during the year (occurs on winter solstice). 4.5 0 20 

SUB_TIMP SNO Snow pack temperature lag factor. 1 0 1 

CN2 MGT SCS runoff curve number f Variable 35 98 

SOL_K SOL Saturated hydraulic conductivity. Variable 0 2000 

SOL_AWC SOL Available water capacity of the soil layer. Variable 0 1 

SNOEB SUB Initial snow water content in elevation band. Variable 0 999999 

CH_S1 SUB Average slope of tributary channels. Variable 0.0001 10 

CH_L1 SUB Longest tributary channel length in subbasin. Variable 0.05 20 

CH_S2 RTE Average slope of main channel. Variable -0.001 10 

CH_L2 RTE Length of main channel. Variable -0.05 500 
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TLAPS SUB Temperature lapse rate. 6 -10 10 

PLAPS SUB Precipitation lapse rate. 0 -1000 1000 

CH_K1 SUB Effective hydraulic conductivity in tributary channel alluvium . 0 0 300 

CH_N1 SUB Manning's "n" value for the tributary channels. 0.014 0.01 30 
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Appendix-F Calibrated parameters values for different catchments of UIB 

Basin (r-relative/v-replace)_Parameter_(slope class) Value Basin (r-relative/v-replace)_Parameter_(slope class) Value 

A
st

or
 

CN2 0 09

K
ac

hu
ra

/S
hi

ga
r 

CN2 1 86
OV N h 0 09 HRU SLP h 0 93
PLAPS b 0 25 OV N h 3 64
SLSUBBSN h 0 5 5 15 0 04 SLSUBBSN h 0 5 5 15 2 87
SLSUBBSN h 15 30 30 50 50 9999 1 27 CH K1 b 0 76
SOL AWC(1) l 0 25 CH K2 t 7 68
SOL K(1) l 0 31 CH N1 b 0 17
ALPHA BF 0 43 DEEPST 2 29
ALPHA BNK t 0 25 GW DELAY 0
CH K2 t 226 53 GW REVAP 0 1
CH N2 t 0 22 GWQMN 115 92
GW DELAY 79 16 RCHRG DP 0 44
GW REVAP 0 04 REVAPMN 38 24
SLSOIL h 74 1 SLSOIL h 0 23
SNO50COV b 0 59 SUB SFTMP() 283 25
SNOCOVMX b 56 6 SUB SMFMN() 0 31
SUB SMFMN() 1 65 SUB SMFMX() 8828
SUB SMFMX() 5 56 SUB SMTMP() 0 15
TIMP b 0 09 SUB TIMP() 1556 62
TLAPS b 6 04 TLAPS b 319 82
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it 

CN2 1 42
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)

CN2 0 39
PLAPS b 0 36 PLAPS b 0 33
SOL AWC() l 6 63 ALPHA BF 0 32
SOL K() l 5 ALPHA BNK t 0 57
ALPHA BNK t 0 09 CH K1 b 87 1
CH K1 b 0 49 CH K2 t 23 23
CH K2 t 0 23 CH N2 t 0 13
CH N1 b 0 13 GW DELAY 1 64
CH S1 b 310 63 GW REVAP 0 15
DEEPST 0 25 GW SPYLD 0 23
EPCO h 0 33 RCHRG DP 0 19
ESCO h 245 35 REVAPMN 187 13
GW REVAP 0 23 SNO50COV b 0 4
RCHRG DP 78 77 SNOCOVMX b 274 44
REVAPMN 0 82 SUB SFTMP() 2 96
SHALLST 0 85 SUB SMFMN() 2 22
SLSOIL h 30 55 SUB SMFMX() 3 7
SUB SMFMX() 0 44 SUB SMTMP() 0 61
SUB SMTMP() 3918 08 SURLAG b 1 46
TLAPS b 12710 57 TLAPS b 8 92
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CN2 0 58
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(b
et

w
ee

n 
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t a

t 
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h
d
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l)

CN2 0 5
HRU SLP h 0 7 PLAPS b 0 46
OV N h 0 18 ALPHA BF 0 33
SLSUBBSN h 15 30 30 50 50 9999 0 48 ALPHA BNK t 0 49
SOL K() l 0 61 CH K1 b 81 79
TLAPS b 0 15 CH K2 t 24 47
ALPHA BF 0 55 CH N2 t 0 14
ALPHA BNK t 0 77 GW DELAY 2 37
CH K2 t 118 23 GW REVAP 0 15
CH N2 t 0 29 GW SPYLD 0 21
CH S1 b 7 45 RCHRG DP 0 16
CH S2 t 0 01 REVAPMN 242 37
GW DELAY 23 69 SNO50COV b 0 4
SLSOIL h 74 35 SNOCOVMX b 230 51
SNO50COV b 0 62 SUB SFTMP() 3 03
SUB SFTMP() 3 14 SUB SMFMN() 2 13
SUB SMFMN() 2 05 SUB SMFMX() 3 48
SUB SMFMX() 3 54 SUB SMTMP() 0 82
SUB SMTMP() 3 51 SURLAG b 1 5
SUB TIMP() 0 84 TLAPS b 8 2

K
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HRU SLP h 0 16

Sh
yo

k 

CN2 0 72
SOL K(1) l 0 44 HRU SLP h 0 00
ALPHA BF 0 81 REVAPMN 115 36
ALPHA BNK t 0 19 SLSUBBSN h 0 5 5 15 0 08
CH K2 t 135 6 SLSUBBSN h 15 30 30 50 50 9999 3 09
CH N2 t 0 25 SOL AWC() l 0 95
DEEPST 16356 23 ALPHA BF 0 04
ESCO b 0 3 ALPHA BNK t 0 26
GW DELAY 32 08 CH N2 t 0 22
GW REVAP 0 07 CH S1 b 1 16
OV N h 0 53 CH S2 t 1 02
SFTMP b 2 87 DEEPST 3904 91
SHALLST 2537 33 GW DELAY 26 48
SLSOIL h 196 01 GW REVAP 0 15
SMFMN b 1 43 GWQMN 4639 57
SMFMX b 9 14 RCHRG DP 0 15
SMTMP b 1 83 SFTMP b 4 48
SNO50COV b 0 5 SHALLST 4961 73
TIMP b 0 68 SUB SMFMX() 3 27
TLAPS b 8 16 SURLAG b 7 40

Appendix-G SWAT modeled flows and observed flow for calibration and validation periods, at 
different catchment outlets in UIB 
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Gauge station 
(river) 

SWAT modeled flows and observed flow at different catchment outlets in UIB 

Gilgit 
(Gilgit) 

Danyor 
(Hunza) 

Doyan 
(Astor) 

Yugo 
(Shyok) 

Kharmong 
(Indus) 

Kachura 
(Indus) 

Shatyal 
(Indus) 

Bisham Qila 
(Indus) 
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Appendix-H Response surface regression / methodology (RSM) 

Response surface regression / methodology (RSM) was developed by Box and collaborators 
in the 1950s [8](Gilmour, 2006), and its use has been widely reported in various texts [9](Bezerra 
2008). RSM consists of a group of mathematical / statistical techniques which searches for 
relationships between two or more explanatory variables and a response variable. To achieve this 
objective, the system is described in terms of linear or higher-order polynomial functions while 
exploring different (modeling and displacing) experimental conditions, and fits the model function 
in a non-linear least squares procedure to the response variable. 

The NCSS program / software, which has been used in the current study, fits a polynomial 
regression model using cross-product terms of variables which can be raised up to the third power. 
NCSS then calculates the maximum or minimum of the response surface. The program also has an 
option in the variable selection feature that helps one to find the most parsimonious hierarchical 
model. 

In case of RSM, several strategies can be adopted during variable selection and model 
building in the regression analysis, such as: backward elimination, forward selection, stepwise, all 
possible regressions, and more. NCSS adopts a specific strategy in dealing with hierarchical models. 
The strategy may be outlined as follows: 

1. Begin with the most complicated model desired.  
2. Search through all terms, identify those that are not essential to maintain the hierarchical 

constraint on the model. The identified group of terms is available for removal.  
3. Check each of the available terms to find how much R2 is decreased if they are removed?  
4. Remove the term that decreases R2 the least. Return to step 2.  
5. If no available term can be identified that reduces R2 by an amount which is less than the 

specified cutoff value, the model selection procedure is terminated. 
Further details of RSM and NCSS can be found at [9–11] in the reference list. 
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