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Abstract: Using the Sturm–Liouville theory in q-difference spaces, we prove the finite orthogonality
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the Favard theorem.
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1. Introduction

For α, β > −1, the Jacobi polynomials are defined as [1]

P(α,β)
n (x) =

(−1)n

2n n!
(1− x)−α(1 + x)−β dn

dxn

{
(1− x)α(1 + x)β(1− x2)n

}
. (1)

Another representation of Jacobi polynomials is as [2,3]

P(α,β)
n (x) =

(α + 1)n

n! 2F1

(
−n, n + α + β + 1

α + 1
1− x

2

)
=

(α + 1)n

n!

n

∑
k=0

(−n)k(α + β + 1)k
(α + 1)k

(1− x)k

2kk!
, (2)

where

(a)k :=
k−1

∏
j=0

(a + j), (a)0 := 1, (3)

and

rFs

(
a1, . . . , ar
b1, . . . , bs

z
)

:=
∞

∑
k=0

(a1)k . . . (ar)k
(b1)k . . . (bs)k

zk

k!
, (4)

in which a1, a2, . . . , ar, b1, b2, . . . , bs, z ∈ C and b1, . . . , bs 6= 0,−1,−2, · · · ,−(k− 1).
The weight function corresponding to Jacobi polynomials is known in statistics as the shifted

beta distribution
w(x; α, β) = (1− x)α(1 + x)β, x ∈ [−1, 1].

An interesting subclass of Jacobi polynomials is when α = −u + iv and β = −u− iv for i2 = −1
in (2), so that the real polynomials

J(u,v)
n (x) = (−i)nP(−u+iv,−u−iv)

n (ix), (5)

Mathematics 2020, 8, 1323; doi:10.3390/math8081323 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-4007-7075
https://orcid.org/0000-0002-6490-2877
http://dx.doi.org/10.3390/math8081323
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/8/1323?type=check_update&version=2


Mathematics 2020, 8, 1323 2 of 9

satisfy the equation

(1 + x2)J′′n (x) + 2((1− u)x + v)J′n(x)− n(n− 2u + 1)Jn(x) = 0. (6)

It is proved in [4] that {J(u,v)
n (x)} are finitely orthogonal with respect to the weight function

w(x; u, v) = (1 + x2)−u exp (2v arctan x),

on (−∞, ∞) and can be explicitly represented in form of hypergeometric functions as

J(u,v)
n (x) =

(−2i)n(1− u + iv)n

(n− 2u + 1)n
2F1

(
−n, n− 2u + 1

1− u + iv
1− ix

2

)
.

The so-called q-polynomials have found many applications in Eulerian series and continued
fractions [3], q-algebras and quantum groups [5–7], and q-oscillators [8–10]. See also [11,12] in this regard.

It has been acknowledged that the theory of q-special functions is essentially based on the relation

lim
q→1

1− qα

1− q
= α.

Hence, a basic number in q-calculus is defined as

[α]q =
1− qα

1− q
.

There is a q-analogue of the Pochhammer symbol (3) (called q-shifted factorial) as

(a; q)k :=
k−1

∏
j=0

(1− aqj), (a; q)0 := 1.

Moreover we have

(a; q)∞ =
∞

∏
k=0

(1− aqk) for 0 < |q| < 1,

and
(a1, a2, ..., am; q)∞ = (a1; q)∞(a2; q)∞...(am; q)∞. (7)

There exist several q-analogues of classical hypergeometric orthogonal polynomials that are
known as basic hypergeometric orthogonal polynomials [3].

In the present work, using the Sturm–Liouville theory in q-difference spaces, we prove that a
special case of big q-Jacobi polynomials is finitely orthogonal on (−∞, ∞). The big q-Jacobi polynomials
are defined as

Pn(x; a, b, c; q) = 3φ2

(
q−n, a b qn+1, x

a q, c q

∣∣∣ q; q
)

, (8)

where

rφs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣ q; z
)

:=
∞

∑
k=0

(a1; q)k . . . (ar; q)k
(b1; q)k . . . (bs; q)k

zk

(q; q)k

(
(−1)kq

k(k−1)
2

)1+s−r
, (9)

is known as the basic hypergeometric series.
Again, a1, a2, . . . , ar, b1, b2, . . . , bs, z ∈ C and b1, b2, . . . , bs 6= 1, q−1, q−2, · · · , q1−k.
Notice that [3] (p. 15)

lim
q→1

rφs

(
qa1 , . . . , qar

qb1 , . . . , qbs

∣∣∣ q; (q− 1)1+s−rz
)
= rFs

(
a1, . . . , ar
b1, . . . , bs

z
)

. (10)

On the other side, if we set c = 0, a = qα and b = qβ in (8) and then let q→ 1, we find the Jacobi
polynomials (2) as

lim
q→1

Pn(x; qα, qβ, 0; q) =
P(α,β)

n (2x− 1)

P(α,β)
n (1)

.
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Moreover, by referring to (8), one can define another family of big q-Jacobi polynomials [13] with
four free parameters as

P∗n (x; a, b, c, d; q) = Pn(qac−1x; a, b,−ac−1d; q) = 3φ2

(
q−n, abqn+1, qac−1x

aq,−qac−1d

∣∣∣ q; q
)

,

which yields
Pn(x; a, b, c; q) = P∗n (−q−1c−1x; a, b,−ac−1, 1; q).

Because a particular case of Jacobi polynomials (5) are called the pseudo Jacobi polynomials, it is
reasonable to similarly consider a special case of big q-Jacobi polynomials preserving the limit relation
as q→ 1. This means that the q-pseudo Jacobi polynomials will be derived by substituting

a = iq
1
2 (u−iv), b = −iq

1
2 (u+iv), c = iq

1
2 (−u+iv) and d = −iq

1
2 (−u−iv)

in a special case of the polynomials (8) as

Pn(cx; c/b, d/a, c/a; q) where a, b, c, d ∈ C and (ab)/(qcd) > 0,

so that

lim
q→1

Pn(iq
1
2 (−u+iv)x;−q−u,−q−u, q−u+iv; q) =

J(u,v)
n (x)

J(u,v)
n (i)

.

Therefore, the q-pseudo Jacobi polynomials are defined as

J(u,v)
n (x; q) = Pn(iq

1
2 (−u+iv)x;−q−u,−q−u, q−u+iv; q) = 3φ2

(
q−n, qu+n+1,−q1+u−ivx
−q1+ 1

2 (u−iv), iq1+ 1
2 (u−3iv)

∣∣∣ q; q

)
. (11)

The main aim of this paper is to apply a q-Sturm–Liouville theorem in order to obtain a finite
orthogonality for the real polynomials (11) on (−∞, ∞), which is a new contribution in the literature.

A regular Sturm–Liouville problem of continuous type is a boundary value problem of the form

d
dx

(
K(x)

dyn(x)
dx

)
+ λnw(x)yn(x) = 0, (K(x) > 0, w(x) > 0), (12)

which is defined on an open interval, say (γ1, γ2) with the boundary conditions

α1y(γ1) + β1y′(γ1) = 0 and α2y(γ2) + β2y′(γ2) = 0, (13)

where α1, α2 and β1, β2 are constant numbers and K(x), and w(x) in (12) are to be assumed continuous
functions for x ∈ [γ1, γ2]. The function w(x) is called the weight or density function.

Let yn and ym be two eigenfunctions of Equation (12). According to the Sturm–Liouville theory [14],
they have an orthogonality property with respect to the weight function w(x) under the given condition
(13), so that we have ∫ γ2

γ1

w(x)yn(x)ym(x)dx =

(∫ γ2

γ1

w(x)y2
n(x)dx)

)
δm,n, (14)

in which

δm,n =

{
0 (n 6= m),
1 (n = m).

There are generally two types of orthogonality for relation (14), i.e. infinitely orthogonality and
finitely orthogonality. In the finite case, one has to impose some constraints on n, while in the infinite
case, n is free up to infinity [4].
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By referring to the differential Equation (6), it is proved in [4] that

∫ ∞

−∞
(1 + x2)−u exp (2v arctan x)J(u,v)

n (x)J(u,v)
m (x)dx =

2π n! 22n+1−2u Γ(2u− n)
(2u− 2n− 1)Γ(u− n + iv)Γ(u− n− iv)

δm,n

⇔ m, n = 0, 1, 2, . . . , N = max{m, n} < u− 1
2

and v ∈ R,

where Γ(.) is the well-known gamma function.
Similarly, q-orthogonal functions can be solutions of a q-Sturm-Liouville problem in the form [15]

Dq
(
K(x; q)Dqyn(x; q)

)
+ λn,qw(x; q)yn(x; q) = 0, (K(x; q) > 0, w(x; q) > 0), (15)

where

Dq f (x) =
f (qx)− f (x)
(q− 1)x

(x 6= 0, q 6= 1),

and (15) satisfies a set of boundary conditions like (13). This means that if yn(x; q) and ym(x; q) are two
eigenfunctions of the q-difference Equation (15), they are orthogonal with respect to a weight function
w(x; q) on a discrete set [16].

Let ϕ(x) and ψ(x) be two polynomials of degree at most 2 and 1, respectively, as

ϕ(x) = ax2 + bx + c and ψ(x) = dx + e (a, b, c, d, e ∈ C, d 6= 0).

If {yn(x; q)}n is a sequence of polynomials that satisfies the q-difference equation [3]

ϕ(x)D2
qyn(x; q) + ψ(x)Dqyn(x; q) + λn,qyn(qx; q) = 0, (16)

where

D2
q( f (x)) =

f (q2x)− (1 + q) f (qx) + q f (x)
q(q− 1)2x2 ,

λn,q ∈ C and q ∈ R \ {−1, 0, 1}, then the following orthogonality relation holds∫ ρ2

ρ1

w(x; q)yn(x; q)ym(x; q)dqx =

(∫ ρ2

ρ1

w(x; q)y2
n(x; q)dqx

)
δn,m,

in which ∫ ρ2

ρ1

f (t)dqt = (1− q)
∞

∑
j=0

qj
(

ρ2 f (qjρ2)− ρ1 f (qjρ1)
)

,

and w(x; q) is a solution of the Pearson q-difference equation

Dq

(
w(x; q)ϕ(q−1x)

)
= w(qx; q)ψ(x). (17)

Note that w(x; q) is assumed to be positive and w(q−1x; q)ϕ(q−2x)xk for k ∈ N must vanish at
x = ρ1, ρ2.

If P̄n(x) = xn + · · · is a monic solution of Equation (16), the eigenvalue λn,q is explicitly derived as

λn,q = −
[n]q
qn (a[n− 1]q + d).

The q-integral as an inverse of the q-difference operator [3,17,18] is defined as∫ x

0
f (t)dqt = (1− q)x

∞

∑
j=0

qj f (qjx) (x ∈ R)
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provided that the series converges absolutely. Furthermore, we have∫ ∞

0
f (t)dqt = (1− q)

∞

∑
n=−∞

qn f (qn),

and ∫ ∞

−∞
f (t)dqt = (1− q)

∞

∑
n=−∞

qn ( f (qn) + f (−qn)) .

2. Finite Orthogonality of q-Pseudo Jacobi Polynomials

Let us consider the following q-difference equation(
q2−ux2+2 sin

(v
2

ln q
)

x + 1
)

D2
qyn(x; q)

+

(
qu − q2−u

1− q
x− 2 sin(

v
2

ln q)(q1− u
2 − q

u
2 )

)
Dqyn(x; q) + λ∗n,qyn(qx; q) = 0, (18)

with

λ∗n,q = −
[n]q
qn

(
q2−u[n− 1]q +

qu − q2−u

1− q

)
,

for n = 0, 1, 2, . . . and q ∈ R \ {−1, 0, 1}.
It is clear that

lim
q→1

λ∗n,q = −n(n− 2u + 1),

gives the same eigenvalues as in the continuous case (6).

Theorem 1. Let {J(u,v)
n (x; q)}n defined in (11) be a sequence of polynomials that satisfies the q-difference

Equation (18). Subsequently, we have∫ ∞

−∞
w(u,v)(x; q)J(u,v)

n (x; q)J(u,v)
m (x; q)dqx =

(∫ ∞

−∞
w(u,v)(x; q)

(
J(u,v)
n (x; q)

)2
dqx
)

δn,m,

where N < u− 1
2 for N = max{m, n} and the positive function w(u,v)(x; q) is a solution of the Pearson-type

q-difference equation

Dq

(
w(u,v)(x; q)

(
q2−ux2 + 2 sin( v

2 ln q)x + 1
))

=
(

qu−q2−u

1−q x− 2 sin( v
2 ln q)(q1− u

2 − q
u
2 )
)

w(u,v)(qx; q),

which is equivalent to
w(u,v)(x; q)
w(u,v)(qx; q)

=
qux2 − 2q

u
2 sin( v

2 ln q)x + 1

q−ux2 + 2q−
u
2 sin( v

2 ln q)x + 1
. (19)

Proof. First, according to [3] and referring to (7) it is not difficult to verify that

w(u,v)(x; q) =
(iq(u−iv)/2x,−iq(u+iv)/2x; q)∞

(iq(−u+iv)/2x,−iq(−u−iv)/2x; q)∞

= x−2u (−iq(−u+iv)/2x−1, iq(−u−iv)/2x−1; q−1)∞

(−iq(u−iv)/2x−1, iq(u+iv)/2x−1; q−1)∞
, (20)

is a solution of Equation (19).

Now, if Equation (18) is written in the self-adjoint form

Dq

(
w(u,v)(x; q)

(
q2−ux2 + 2 sin( v

2 ln q)x + 1
)

Dq J(u,v)
n (x; q)

)
+ λ∗n,qw(u,v)(qx; q)J(u,v)

n (qx; q) = 0, (21)
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and for m as

Dq

(
w(u,v)(x; q)

(
q2−ux2 + 2 sin( v

2 ln q)x + 1
)

Dq J(u,v)
m (x; q)

)
+ λ∗m,qw(u,v)(qx; q)J(u,v)

m (qx; q) = 0, (22)

by multiplying (21) by J(u,v)
m (qx; q) and (22) by J(u,v)

n (qx; q) and subtracting each other we get

(λ∗m,q − λ∗n,q)w
(u,v)(x; q)J(u,v)

m (x; q)J(u,v)
n (x; q)

= q2Dq

(
w(u,v)(q−1x; q)

(
q2−ux2 + 2 sin(

v
2

ln q)x + 1
)

Dq J(u,v)
n (q−1x; q)

)
J(u,v)
m (x; q)

− q2Dq

(
w(u,v)(q−1x; q)

(
q2−ux2 + 2 sin(

v
2

ln q)x + 1
)

Dq J(u,v)
m (q−1x; q)

)
J(u,v)
n (x; q). (23)

Hence, q-integration by parts on both sides of (23) over (−∞, ∞) yields

(λ∗m,q − λ∗n,q)
∫ ∞

−∞
w(u,v)(x; q)J(u,v)

m (x; q)J(u,v)
n (x; q)dqx

= q2
∫ ∞

−∞

{
Dq

(
w(u,v)(q−1x; q)

(
q2−ux2 + 2 sin(

v
2

ln q)x + 1
)

Dq J(u,v)
n (q−1x; q)

)
J(u,v)
m (x; q)

− Dq

(
w(u,v)(q−1x; q)

(
q2−ux2 + 2 sin(

v
2

ln q)x + 1
)

Dq J(u,v)
m (q−1x; q)

)
J(u,v)
n (x; q)

}
dqx

= q2
[
w(u,v)(q−1x; q)

(
q2−ux2 + 2 sin(

v
2

ln q)x + 1
)

×
(

Dq J(u,v)
n (q−1x; q)J(u,v)

m (x; q)− Dq J(u,v)
m (q−1x; q)J(u,v)

n (x; q)
) ]∞

−∞
. (24)

Because

max deg{Dq J(u,v)
n (q−1x; q)J(u,v)

m (x; q)− Dq J(u,v)
m (q−1x; q)J(u,v)

n (x; q)} = m + n− 1,

the left-hand side of (24) is zero if

lim
x→∞

w(u,v)(q−1x; q)
(

q2−ux2 + 2 sin(
v
2

ln q)x + 1
)

xm+n−1 = 0. (25)

By taking max{m, n} = N, relation (25) would be equivalent to

lim
x→∞

(−iq(−u+iv)/2x−1, iq(−u−iv)/2x−1; q−1)∞

(−iq(u−iv)/2x−1, iq(u+iv)/2x−1; q−1)∞
x2N−2u+1 = 0. (26)

Note that (26) is valid if and only if

2N + 1− 2u < 0 or N < u− 1
2

.

Therefore, the right-hand side of (24) tends to zero and∫ ∞

−∞
w(u,v)(x; q)J(u,v)

m (x; q)J(u,v)
n (x; q)dqx = 0,

if and only if m 6= n and N < u− 1
2 for N = max{m, n}.

Corollary 1. The finite polynomial set {J(u,v)
n (x; q)}N<u− 1

2
n=0 is orthogonal with respect to the weight function

(20) on (−∞, ∞).

2.1. Computing the Norm Square Value

According to (17), because J(u,v)
n (x; q) is a particular case of the big q-Jacobi polynomials, it satisfies

the recurrence relation [3]
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J̄(u,v)
n+1 (x; q) = (x− cn(u, v; q)) J̄(u,v)

n (x; q)− dn(u, v; q) J̄(u,v)
n−1 (x; q),

with the initial terms

J̄(u,v)
0 (x; q) = 1, J̄(u,v)

1 (x; q) = x +
2 sin( v

2 ln q)(1− q)(q2−u/2 + q1+u/2)

(qu − q2−u)
,

where

cn(u, v; q) =
2 sin( v

2 ln q)qn

(qu − q2n−2)(qu − q2n)

× {(qu − qn−1)
(

q−u/2[n]q(1 + q) + (q2−u/2 + q1+u/2)
)
− qn+1−u(1− qn+1)(q1−u/2 + qu/2)},

and

dn(u, v; q) =
(qn+1 − q2n+1)(qu − qn−u)

(1− q)2(qu − q2n−u−1)(qu − q2n−u)2(qu − q2n−u+1)

× {4 sin2(
v
2

ln q)qn−1−u/2(1− q)
(

1 + q− q2 + qu − q1+u − qn−1
) (

1− qn−u+1(1 + q− q2)− qn+1(1− q)
)

− (q4n−2u + 2q2n + q2u)}.

Now, by applying the Favard theorem [19] for the monic type of polynomials (11), we get

∫ ∞

−∞
w(u,v)(x; q) J̄(u,v)

m (x; q) J̄(u,v)
n (x; q)dqx =

(
µ0

n

∏
k=1

dk(u, v; q)

)
δn,m,

where

µ0 =
∫ ∞

−∞

(iq(u−iv)/2x,−iq(u+iv)/2x; q)∞

(iq(−u+iv)/2x,−iq(−u−iv)/2x; q)∞
dqx.

Hence, it remains to explicitly compute the above µ0. For this purpose, we can refer to the general
formula ([13] Formula 128)∫

z−qZ∪z+qZ

(ax, bx; q)∞

(cx, dx; q)∞
dqx =

(q, a/c, a/d, b/c, b/d; q)∞

(a b/(q c d); q)∞

θ(z−/z+; q)θ(c d z−z+; q)
θ(c z−; q)θ(d z−; q)θ(c z+; q)θ(d z+; q)

, (27)

in which
θ(x; q) = (x, q/x; q)∞.

Therefore, it is enough to replace z− = −1, z+ = 1 in (27) to finally obtain

µ0 =
(q, qu−iv,−qu,−qu, qu+iv; q)∞

(q2u−1; q)∞
×

(−1,−q,−qu,−qu+1; q)∞

(−iq
−u+iv

2 , iq
−u+iv

2 ,−iq
−u−iv

2 , iq
−u−iv

2 ,−iq1−−u+iv
2 , iq1−−u+iv

2 ,−iq1−−u−iv
2 , iq1−−u−iv

2 ; q)∞
.

For example, the set {J(21,1)
n (x; q)}20

n=0 is a finite sequence of q-orthogonal polynomials that satisfies
the orthogonality relation

∫ ∞

−∞

(iq(21−i)/2x,−iq(21+i)/2x; q)∞

(iq−(21−i)/2x,−iq−(21+i)/2x; q)∞
J̄(21,1)
m (x; q) J̄(21,1)

n (x; q)dqx =(
(q, q21−i,−q21,−q21, q21+i,−1,−q,−q21,−q22; q)∞

(q41,−iq
−21+i

2 , iq
−21+i

2 ,−iq
−21−i

2 , iq
−21−i

2 ,−iq
23−i

2 , iq
23−i

2 ,−iq
23+i

2 , iq
23+i

2 ; q)∞

n

∏
k=1

dk(21, 1; q)

)
δm,n

⇐⇒ m, n < 20,
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where

dk(21, 1; q) =
(qk+1 − q2k+1)(q21 − qk−21)

(1− q)2(q21 − q2k−22)(q21 − q2k−21)2(q21 − q2k−20)

× {4 sin2(
1
2

ln q)qk−23/2(1− q)
(

1 + q− q2 + q21 − q22 − qk−1
) (

1− qk−20(1 + q− q2)− qk+1(1− q)
)

− (q4k−42 + 2q2k + q42)}. (28)
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