ces

Matthias Mimler and Joerg A. Priess

Center for Environmental
Systems Research

CESR-PAPER 2

kassel .

U
university
press \V/

CESR - Paper 2

Center for Environmental
System Research

ces

Matthias Mimler, Joerg A. Priess

Design and implementation
of a generic modeling framework -
a platform for integrated land use modeling

kassel .

U
university Vv
press

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet tber
http://dnb.d-nb.de abrufbar

ISBN 978-3-89958-467-7
URN: urn:nbn:de:0002-4675
© 2008, kassel university press GmbH, Kassel

www.upress.uni-kassel.de

Druck und Verarbeitung: Unidruckerei der Universitat Kassel
Printed in Germany

Contents

1. Introduction
2. Requirements

3. System design features
3.1. Aspects of software quality
3.2. Separation of implementation and application
3.3. Technologies applied in SITE

4. System architecture
4.1. Existing standards and architectures for integrated modeling
4.2. SITE system domain architecture

5. Implementation of the SITE system domain components
5.1. System core engine.
5.1.1. Simulation environment
5.1.2. Simulation dynamics
5.1.3. Summary
5.2. Model calibration and model testing components
53. Clients
5.3.1. Graphical user interface
5.3.2. Command-lineclient
5.4. Import/export, database connectivity
5.5. Integration of third-party models
55.1. Clientside
55.2. Serverside
5.6. Extendibility and portability issueso

6. Discussion
7. Conclusions and outlook
Bibliography

A. System/application domain interface documentation

12
12
13
15

18
18
22

25
25
25
32
35
35
38
38
41
41
41
44
45
45

46
49
51

56

Contents

1. Introduction

Land-use as “the total of arrangement, activities and inputs that people undertake in a certain
land cover type”, in contrast to land-cover being the “observed physical and biological cover of
the earth’s land, as vegetation or man-made features” (FAO, 1999), is a crucial link between
human activities and the natural environment and one of the main driving forces of global
environmental change (Lambin et al., 2000). Large parts of the terrestrial land surface are
used for agriculture, forestry, settlements and infrastructure. Concerns about land-use and
land-cover change first emerged on the agenda of global environmental change research several
decades ago when the research community became aware that land-surface processes influence
climate (Lambin et al., 2006). While the focus in the beginning lay on the surface-atmosphere
energy exchanges determined by modified surface albedo (Ottermann, 1974; Charney and
Stone, 1975; Sagan et al., 1979), the view later on shifted to terrestrial ecosystems acting as
sources and sinks of carbon (Woodwell et al., 1983; Houghton et al., 1985). A broader range
of impacts of land-use change on ecosystems was identified since then. Besides being a major
influencing factor on climate (Brovkin et al., 1999), land-use meanwhile is regarded the most
important factor influencing both biodiversity and biogeochemical cycles on the global scale
(Sala et al., 2000). To close the circle, land-use itself is strongly influenced by environmental
conditions like climate and soil quality, affecting e.g. suitability for certain crop types and thus
affecting agricultural use or biomass production (Mendelsohn and Dinar, 1999; Wolf et al.,
2003).

Given the importance of land-use, it is essential to understand the interactions between the
multitude of influential factors and resulting land use patterns. An essential methodology to
study and quantify such interactions is provided by the adoption of land-use models. With
land-use models it is possible to analyze the complex structure of linkages and feedbacks and
to determine the relevance of driving forces (Heistermann et al., 2006). Land-use models
are used to project how much land is used where and for what purpose considering different
boundary conditions. After several years of research, land-use modeling has become an im-
portant technique for the projection of alternative pathways into the future, for conducting
experiments that test our understanding of key processes, and for describing these processes
quantitatively (Lambin et al., 2000). Since land-use change models represent part of the com-
plexity of land-use systems, they offer the possibility to test the sensitivity of land-use patterns
to changes in selected variables. Through scenario building, they additionally allow testing of
the stability of linked social and ecological systems (Veldkamp and Lambin, 2001).

In the past years a multitude of land-use models have been developed addressing different
applications, regions and scales. According to Lambin et al. (2000) land-use change modeling
has to address at least one of the following three problems. The first problem is to identify the
environmental or socio-economic variables that actually cause land-use changes. The second
problem is to find out at which location land-use change does occur. Besides using spatially
explicit representation, this question can also be answered using economic location theory
(Irwin and Geoghegan, 2001). The third target is to answer to what amount land-use changes
do occur.

1. Introduction

Implementing a model technically implies to formulate it in a set of computer instructions.
Two complementary possibilities to achieve this are to either reuse and adapt an existing model
that resembles the actual modeling task, or by programming a new model. It is obvious that
both ways have several advantages and drawbacks. Reusing an existing model definitely saves
cost and time. However, it is likely that a model created for a different though potentially
similar task needs to be adapted to a certain degree. This might not always be possible
to achieve in a satisfying manner as too many compromises might need to be accepted.
Programming a new model by using a general-purpose programming language (e.g. C++,
Fortran) will definitely result in a tailor-made application, but this approach is usually cost-
and time-intensive depending on the complexity of the desired application. In addition one
will usually be able to identify certain structure in the model, that can be equally used in
other applications. For cellular automata (CA) models, e.g., the underlying cell lattice is such
a generic structure, which only differs among models in its size and the spatial resolution it
represents. The actual differences of CA models lie in their transition rules and constraints.

Another complication is caused by the fact that landscape ecologists, planners and modelers,
i.e. the persons actually developing models, are not necessarily programmers. To provide
efficient model development and model adoption conditions, model developers should be able
to transform their conceptual models into computer simulations without having to implement
them in a general-purpose computer language or at least without having to deal with specific
details of software development, e.g. memory management. This conflict has been recognized
by the modeling community in the past years and a number of possible solutions, in the
following termed modeling environments, have been proposed to “untangle the beauty of a
model from the beast of its implementation on a computer” (Fall and Fall, 2001).

Fig. 1.1 shows several examples of existing modeling environments along a spectrum of
specificity. On the left lie general purpose programming languages, opposed to complete spe-
cific models on the right edge whose possibilities for adaption are restricted to a number of
adjustable parameters. Along that gradient, a number of solutions is listed. Examples on the
left side are program-level support tools. Simscript and DEVS (Clark, 1992; De Vasconcelos
and Zeigler, 1993) are extensions to programming languages providing modeling functional-
ity. EcoSim (Lorek and Sonnenschein, 1998) is a software library that reduces complexity by
providing modeling functionality, thus enabling model developers to concentrate on writing
high-level code, i.e. rule set and model parameterization. A similar concept is pursued for
multi-agent simulation by Swarm (Minar et al., 1996), which additionally provides a set of
graphical tools for display and analysis of modeling results. The use of the latter solutions still
requires programming knowledge. They can reduce development time and cost, but result in
specialized modeling applications.

In contrast to program-level support tools, model-level support tools can assist model con-
struction without requiring the creation of source code (Fall and Fall, 2001). FORSUM (Frelich
and Lorimer, 1991) and STORM (Krauchi, 1995) are applications that implement a template
for a set of similar modeling applications. Portability to other applications is enabled by pro-
viding an extensive set of parameters for which values or definitions can be altered. Flexibility
is increased with approaches like LANDIS (Mladenoff et al., 1996) and TELSA (Klenner et al.,
1997) that provide extended features like user-definable spatial layers or variables.

Largest flexibility combined with minimum programming requirements is given by tools that
provide model-level support for classes of models rather than individual model types. Examples
can be found in the middle of the spectrum depicted by Fig. 1.1. Different approaches are used

1. Introduction

General- [DEVs| [Swarm| [sELES| [Ramas] [LANDIS|[FORSUM [Complete
purpusg | || Model with a
programming |,— . e , | few adjustable
languages _||SimScript] [EcoSim] [SME |[SpaMod] [TELSA] [STORM]| | jurameters
Program-level Support Model-level Support
General Purpose - Very Flexible Special Purpose

Large Class of Models is possible Built-in Assumptions

Higher Cost Easier & Faster
Imperative Implementation Construction

Figure 1.1.: Spectrum of approaches to implementing spatial landscape models (Fall and Fall, 2001).

to achieve this target. SpaMod (Gao, 1996), for example, enables high-level formulation of
mathematical models through differential equations which are automatically translated into C
code and subsequently linked to the system run-time environment, thus creating a simulation
tool. SME (Maxwell and Costanza, 1997) uses a similar technique as it provides a high-level
language for the specification of modular spatio-temporal models that is later translated into
C++ code and linked to the SME run-time environment. STELLA (Costanza et al., 1998),
suitable for non-spatial simulations, allows to freely design a model via building blocks on a
graphical user interface. SELES (Fall and Fall, 2001) supports spatially explicit, CA-based
land-use modeling applications by providing the necessary generic infrastructure, in particular
the simulation grid. For the formulation of application rule sets, Fall and Fall (2001) developed
a domain-specific language. This language enables a rule set developer to concentrate on the
actual modeling task and fulfills a number of specific criteria like simplicity, flexibility capability
modularity, transparency, efficiency, reusability, adaptability and communicability.

The increased use of models in ecological sciences, the advent of modeling environments
and frameworks and the trend toward integrated systems of models from different disciplines
imply increasing complexity regarding the implementation as software. A number of concepts
for handling software complexity is provided from computer science. In particular, modulariza-
tion, object-oriented design and encapsulation of models by means of components with clearly
defined interfaces are of specific interest (Argent, 2004). Modularization and object-oriented
design contribute to an improved quality of the implementation of single models. The cre-
ation of model components can help to facilitate model coupling and assembling of integrated
systems. The advantages of a component-based design are numerous. For example, making
changes in the implementation of one particular model will not affect other parts of an inte-
grated system due to encapsulation. Models responsible for specific processes in the integrated
system can simply be replaced by other models, provided they have the same interface.

In the past years, studies on synergies between environmental modeling and computer sci-
ence have been conducted and object- and component-oriented tools and designs have entered
the field of land-use modeling (Maxwell and Costanza, 1997; Fall and Fall, 2001). Villa and
Costanza (2000) adopted a component-based software architecture for their Simulation Net-
work Interface (SNI), emphasizing the advantages of encapsulated complexity, exchangeability
and reusability of single models. In a similar manner, the DEVS framework was advanced

1. Introduction

to enable the definition of components (Filippi and Bisgambiglia, 2004). In a study focusing
on forest landscape modeling, He et al. (2002) experienced that the use of component-based
model integration supports scientists with few expertise in computer science in building com-
plex, but still manageable applications. In the future, integrated models could be constructed
from models implemented as components in a so called “plug and play” approach, where a
model component such as a water balance algorithm could simply be replaced by an alternative
component (Argent, 2004). Modern tools that support the development of component-based
architectures like Microsoft's .Net offer information about components using meta data and
introspection. ICMS (Interactive Component Modeling System) (Rahman et al., 2004) takes
advantage of these features to improve usability of modeling frameworks by generating self-
documenting components and custom meta data. In the combination with other advantages
of modern programming platforms (e.g. multi-language development, web enabled models),
Rahman et al. (2004) see strong impulses for model developers and uses.

In this paper, we present the design, development and implementation of a new framework
supporting spatially explicit land-use modeling, the SITE (Simulation of Terrestrial Environ-
ments) framework. It resembles the SELES framework (Fall and Fall, 2001) in that it provides
basic data structures like the simulation grid and a framework managing cell attributes. How-
ever, we discovered, that proprietary domain-specific languages are indeed simple, but still do
not provide enough flexibility to handle certain modeling tasks with complex rule sets. In such
cases, the possibilities of a full-fledged programming language might be required. Modern
scripting languages are able to bridge this gap of providing a maximum of flexibility and at the
same time being simple enough to be handled by non-programmers. Scripting languages are
typically run by interpreters and thus can be integrated in other applications such as modeling
frameworks. In addition, it is possible to write language extensions with which it is possible to
introduce data structures specific to land-use modeling (e.g. simulation grid, cells, attributes).
Using this strategy, on rather extends a full-fledged programming language to a domain-specific
language instead of taking the effort to create a new one. SITE defines an extended version
of the widely used Python scripting language for the formulation of transition rules.

Compared to most existing land-use modeling environments, SITE functionality does not
confine itself to managing the execution of land-use models and respective simulation runs. It
furthermore integrates tools that are crucial for modeling into its generic framework. Among
them are a component for model testing (via various map-comparison algorithms), a compo-
nent for model calibration using optimization heuristics (e.g. genetic algorithms) and func-
tionality enabling the interactive handling of scenarios. In the following paragraphs, the design
and implementation of the SITE modeling framework will be presented.

2. Requirements

Land-use dynamics are driven by a variety of factors, biophysical as well as socio-economic.
Therefore, comprehensive research on land-use dynamics needs to be organized in interdis-
ciplinary projects. Figure 2.1 shows the structure of the Global Land Project (GLP, 2005),
which is a long-term research framework for land systems and a structural template for re-
gional projects. Figure 2.1 delineates the large variety of interactions between the earth
system, terrestrial subsystems and land use. A more detailed view of interactions between
the socio-economic and the biophysical subsystem and their influence on land-use is provided
by Figure 2.2. It is the challenge of integrated land-use modeling to include the insights of
different sectoral views and disciplines and their respective interactions for the simulation and
assessment of land-use changes.

garth System
T21 T1.3
Land Systemg
Social T1.2 Ecological “;,
Systems _> T2.2 Systems %,
Popidatic £ jsochermistry %
snomic g.% Land Use & ﬁg : y
: =8 Management @ = £
ot nal !-S S B 5-‘}
= w

-
[*)
p S

[

T2.

‘ T3.1 Critical pathways of change ¢

T3.2 Vulnerability and resilience of land systems
T3.3 Effective governance for sustainability

m=p T1. Dynamics of land systems
== T2. Consequences of land system change
= T3, Integrating analysis and modelling for land sustainability

Figure 2.1.: Analytical structure of the interdisciplinary Global Land Project (GLP, 2005).

2. Requirements

Socio-economic setting

! i Regional
Regional Nat}o_nar Cultural Bl Global
policies policies setling e economy
\ Rural and urban PUDUJ?thH
communities . S . growtn,
immigration

Invastment of
labor and capital
Crop and agroforestry
systems
Generation of products from

agriculture, forestry, service
and local industry

SOCI0-

Landscape ECONOMIC
mosaic > AND
) ECOLOGICAL
STABILITY

Generation of natural resources
and ecosystem services

fluxes

Biogeochemical l

Natural systems, ecosystems)1— dism?::rirr?ées

s

Geo-
marphelogy

Landsca
Sail Climate Flora Fauna histl:h",fp,E

Natural environment

Figure 2.2.: Interactions between socio-economic (upper half) and natural (lower half) systems. The
landscape mosaic is strongly determined by both domains and is a major influencing factor for socio-

economic and ecological stability (STORMA, 2003).

2. Requirements

According to that, the main target in the development of SITE was to create a land-
use modeling framework capable of integrating scientific results of the STORMA! research
project. STORMA is an interdisciplinary long-term project funded by the German Research
Foundation. The target is to analyze the stability of rainforest margins in a research area in
Central Sulawesi, Indonesia (STORMA, 2003). The proposed modeling outline for STORMA
is guided by a similar scheme as the Global Land Project. The nature of SITE, being an
integrative tool in the context of STORMA and potentially other similar research projects,
directly implies a number of requirements with respect to the system design. In turn, certain
technical demands result from the scientific requirements. In the following, these requirements
and technical issues will be identified and defined.

Integrated modeling

The requirement of integrated modeling capability was implied directly by the definition of
SITE, being a framework for modeling land-use changes in an interdisciplinary research context.
Along with generic applicability, it can be considered the most important demand.

Integrated modeling is already established in the land use modeling community (Alcamo
et al., 1998; Voinov et al., 1999; White and Engelen, 1997, 2000; Oxley et al., 2004; Van Delden
et al., 2007). When reviewing literature on regional land-use modeling frameworks, however,
it is noticeable that there are approaches that either support the implementation of models
(Gao, 1996; Fall and Fall, 2001) or ones that enable integration or combination of existing
models (He et al., 2002; Filippi and Bisgambiglia, 2004; Argent, 2004).

Following project requirements, the framework needed to enable both model development
on the application side and interfacing capabilities to existing models. The only comprehensive
solution for both providing a generic modeling platform and integrated modeling is GEON-
AMICA (Engelen et al., 1999; Oxley et al., 2004; Van Delden et al., 2007), which, however, is
a commercial product. In addition, model integration in the context of the STORMA project
additionally required high flexibility concerning feed back mechanisms from sub models to the
actual land-use model as a basis for further decision making (Priess et al., 2007). Conse-
quently, interfaces that allow model integration in SITE had to include functionality to feed
back results to the calling instance. To handle possible performance problems regarding run-
time that can arise from model coupling, the SITE interface was designed to enable parallel
processing if allowed by the modeling methodology.

Generic platform

The definition of SITE as a framework for land-use modeling implies that it needs to provide
a generic platform for operating land-use modeling applications. As a generic platform, the
use of SITE is not restricted exclusively to STORMA. The framework is also suitable for other
similar research projects with an interdisciplinary outline.

A generic modeling framework is mainly characterized by the separation of the actual mod-
eling application (rule set specification) from the implementation of structures that are shared
by all potential models that can be operated within the framework. For spatially explicit mod-
els, these structures basically are the simulation grid, the single grid cells and structures for the
handling of cell attributes. Model-specific values, like the grid dimensions as well as concrete

1SFB 552 “Stability of rainforest margins in Indonesia” (STORMA, 2003)

2. Requirements

attributes and attribute values characterizing grid cells are in turn specified by the modeling
application. Connection to the data structures supplied by the framework is established via
a specific interface. For the implementation of the model itself, a variety of solutions are
imaginable. Costanza et al. (1998) used a graphical front end for the definition of model
semantics. Another solution is the introduction of an application specific programming or
description language (Fall and Fall, 2001). With GEONAMICA (Engelen et al., 1999), also
a commercial product is available that supports both model definition and model integration.
In the SITE framework, a scripting language, the functionality of which the functionality was
specifically extended to match land-use modeling demands, was chosen for the task of imple-
menting modeling applications. The main advantage of a framework is that model developers
can concentrate entirely on their modeling task, ignoring implementation details. Thus, a
faster and more efficient formulation of land-use models is possible. This is of specific interest
for interdisciplinary working environments, in which model demands are likely to be altered
frequently throughout the communication process among different parties. It also facilitates
the execution of further case studies and the development of model prototypes since model
code can be rapidly altered without having to consider any side effects on implementation
details.

Integration of calibration methodology

Modeling practice reveals the necessity for model calibration. This field is widely discussed
among the scientific community (Boumans et al., 2001; Oliva, 2003; Straatman et al., 2004).
Despite its importance, there is no framework available yet, that implements calibration as an
integral part. As a novelty, the goal of allowing rapid and effective development of land-use
models and model integration was extended to also include model calibration. The design of
the system even allows for a simultaneous calibration of different component models, which
are both influencing land allocation (e.g. the land-use model and the biophysical sub model).
Generic model calibration in SITE is based on parameter optimization with respect to an objec-
tive function. Consequently, beside optimization algorithms or heuristics, additional methods
serving as objective functions needed to be integrated. The SITE calibration procedures use
map comparison algorithms as objective function. The quality of simulation and calibration
results is benchmarked based on reference maps.

Integration of scenario handling

As simulations of land-use dynamics are generally conducted under specific scenario assump-
tions, SITE was required to provide functionality to handle scenario information. Like calibra-
tion functionality, the handling of scenarios is not explicitly addressed by available modeling
frameworks. SITE was designed to explicitly represent the handling of quantified representa-
tions of scenarios in its implementation. In addition, the scenario implementation supports
interactive use of scenarios, during which simulations can be stopped to examine if simulation
targets have been achieved. Based on this intermediate analysis, scientists can alter the un-
derlying scenario (e.g. by adjusting management parameters), thus simulating the interaction
of policy makers. This method was proposed by Alcamo et al. (2006) to overcome one of
the major limitations of the current scenario methodology and is currently implemented in no
other modeling framework.

2. Requirements

Usability and cummunicability

As an integrative tool, SITE was required to be able to transport insights back to all other par-
ties involved in the respective research project. To increase the acceptance among participating
scientists, especially of those with backgrounds which are not easily related to computer sci-
ence, it was crucial that the modeling system was designed for simple handling and transparent
delineation of the modeling concept. Moreover, it needed to be capable of communicating its
modeling and simulation results. In recent approaches, model developers became increasingly
aware of this fact and introduced different solutions ranging from display of the simulation grid
(Fall and Fall, 2001) to graphical tools for editing and viewing the model structure (Costanza
et al., 1998; Filippi and Bisgambiglia, 2004). For SITE, a detailed graphical user interface
(GUI) was implemented that facilitates model operation and understanding by e.g. providing
3-dimensional multiple views of the simulation grid.

Besides model operation, also model development, which usually involves programming,
can be simplified, thus increasing usability by enlarging the potential user community. Graph-
ical model builders (Costanza et al., 1998; Filippi and Bisgambiglia, 2004) are attractive
but potentially inflexible approaches to this task, since they typically force specific modeling
methodology. For SITE, we took advantage of the large potential that lies in modern scripting
languages, which are powerful but nonetheless relatively simple and extendable programming
tools.

As there is practically no restriction to the number of model parameters and settings for
SITE applications, it is likely that single simulation runs cannot be reproduced, as the selected
parameter values for an earlier simulation are not saved persistently. This situation conflicts
with the requirement of communicability of modeling results. To overcome this limitation of
existing frameworks, this feature was integrated in the SITE usability concept.

Expandability

Although expandability is a general requirement of state-of-the-art software development, it
was of specific interest for the development of SITE, as it strongly supports long-term usability
of the framework, which is of particular importance in projects with an envisaged duration of
12 to 15 years. One particular benefit from creating expandable software lies in facilitating
the integration of new features, which keeps the system open for new developments and
allows long-term use of the system. This way, a system is also prepared to effectively handle
short-term demands. In the context of the SITE framework, two aspects were of special
importance. The first was the established understanding of expandability by means of keeping
the basic system open for the integration of further functionality. This goal could mainly be
achieved by the adoption of modern software development concepts, such as component design,
implementation by object oriented programming and the heavy use of design patterns. The
second aspect addressed the interface between generic system implementation and application
(i.e. simulation rule sets).

Summary

The listed requirements were derived from the demands implied by the application of the frame-
work in interdisciplinary projects. They revealed, that such a land-use modeling framework
had to be a generic platform for operating land-use models. The system had to be capable of

2. Requirements

Table 2.1.: Comparison of SITE to selected spatial modeling frameworks with respect to the requirements identified for a generic framework for
integrated land-use modeling.

SELES
(Fall and Fall,
2001)

DEVS/JDEVS
(Filippi and Bisgambiglia,
2004)

SimuMap
(Pullar, 2004)

Eclpss
(Wenderholm,
2005)

GEONAMICA
(Engelen et al., 1999)

SITE
(this study)

Purpose

Integrated mod-
eling

Generic land-
use modeling
platform

Integrated cali-
bration

Scenario han-
dling

Usability/ Com-
municability

Software avail-

ability

Land-use model-
ing

No

Yes (using a
domain-specific
language)

No

Implicit?

GUI available

Upon request

Environmental modeling

Yes

No

No

Implicit (experimental
frames)

Detailed GUI, graphical

model builder

Free for non-commercial
use

Spatial modeling
of environmental
processes

No

Yes (propri-
etary language
MapScript, ma-
nipulates rasters

based on map
algebra)

No

No

GUI including
graphical model
builder

Upon request

Grid-based
ecosystem mod-
eling

Yes, capable of
parallel process-
ing
Yes

No

No

Detailed GUI

Free

Dynamic land-use model-
ing and spatial decision
support

Yes

Yes (CA-based)

No

Yes

Detailed GUI

Commercial

Integrated land-
use modeling

Yes, capable of
parallel process-
ing

Yes (grid-based,
using an ex-
tended scripting
language)

Yes

Explicit rep-
resentation,
interactive han-
dling

Detailed GUI

Free, upon re-
quest

?In SELES, a simulation scenario is defined as a complete set of initial state information and the definition of landscape event.

10

2. Requirements

integrating sub models and of feeding back sub model results for further decision-making. In
addition, we identified specific requirements concerning usability and communicability of mod-
eling results. Further requirements were consequence of drawbacks we recognized in existing
frameworks, such as the integration of calibration functionality and the explicit representation
of scenarios. An analysis of published modeling environments revealed that existing generic
approaches do satisfy single requirements, but not their entirety (see Table 2.1). With SITE,
we present a holistic approach for a generic framework for spatially explicit land-use modeling.
The system was designed to overcome some of the limitations of previous approaches. Major
innovations in the field of land-use modeling are the the high degree of integration of compo-
nents of the land system, the integration of calibration functionality allowing the simultaneous
calibration of interacting component models.

11

3. System design features

3.1. Aspects of software quality

As mentioned above, with the SITE land-use modeling framework it is intended to provide
a generic platform for performing regional land-use change modeling and simulation tasks.
Especially the aspect of generic enforces a number of specific design features on which the
implementation of the framework is based.

The task of creating a generic platform for running different land-use change models implies
the development of complex software. Handling software complexity is a focus of research
of its own (Gamma et al., 1995). One basic method to handle complexity is encapsulation,
which means specific tasks are implemented in separate modules. To allow interaction of
such modules, a way for communication by defining adequate interfaces has to be established.
Thus, by altering functionality in one module, only the module itself is affected. Following
this strategy in the process of software development leads to component-oriented design for
the entire system and object-oriented design for the implementation of single components.

Modularizing software also is a way to create more robust software and thus contribute to the
achievement of a certain level of quality. As a matter of fact, the SITE framework needs to meet
a high level of software quality since it is intended to be used over a longer time period and for a
larger number of applications. Software quality is defined by the non-functional requirements
of the system and is not obvious from the catalog of functional requirements. Important
non-functional requirements are, amongst others, changeability, interoperability, efficiency,
reliability (error tolerance, robustness), testability and reusability (Buschmann et al., 1998). A
comprehensive collection to gauge software quality that should not only be respected during
software architecture development but also in all other phases of the development process, is
given by the international standard ISO 9126. Table 3.1 gives a short description of the quality
criteria defined by 1SO 9126.

Apart from a few minor sub attributes listed in ISO 9126, this standard was crucial in the
development of the SITE framework. For instance, SITE development is not critical concerning
security issues. Maturity, to mention another aspect, must of course be achieved over time and
adoption in a number of projects. Other features like usability or changeability can already
be found in the list of system requirements. The SITE system is designed to show a high
usability both in aspects of user-friendliness by providing a graphical user interface and being
able to house a wide range of different modeling tasks due to the establishment of a generic
structure.

A central focus lies on the maintainability of the SITE system. The capability to enable a
large number of modeling applications implies that the software might be utilized over a longer
period in time and thus has to be administered accordingly. It can also be expected that the
persons being in charge of the maintenance change over time. Multiple applications will most
probably raise the need to change and expand the system. Due to these reasons the design
will be characterized by strong modularization of the software, resulting in a component-based
implementation and the use of object-oriented analysis.

12

3. System design features

Table 3.1.: Software quality attributes defined by the international standard ISO/IEC 9126

Attribute Sub-attributes

Functionality: A set of attributes that bear on the Suitability, Accuracy, Interoperability, Compliance,
existence of a set of functions and their specified Security

properties. The functions are those that satisfy

stated or implied needs.

Reliability: A set of attributes that bear on the capa- Maturity, Recoverability, Fault Tolerance
bility of software to maintain its level of performance
under stated conditions for a stated period of time.

Usability: A set of attributes that bear on the effort Learnability, Understandability, Operability
needed for use, and on the individual assessment of
such use, by a stated or implied set of users.

Efficiency: A set of attributes that bear on the re- Time Behavior, Resource Behavior
lationship between the level of performance of the

software and the amount of resources used, under

stated conditions.

Maintainability: A set of attributes that bear on the Stability, Analysability, Changeability, Testability
effort needed to make specified modifications.

Portability: A set of attributes that bear on the abil- Installability, Replaceability, Adaptability
ity of software to be transferred from one environ-
ment to another.

3.2. Separation of implementation and application

One main target in the development of the SITE regional land-use modeling framework is to
provide a generic platform for implementing regional land-use models of different character
and running the respective simulations. This goal is achieved by strictly separating the units
dealing with project specific aspects and the units providing functionality for all applications.
In the following paragraphs, the unit housing all generic functionality will be referred to as the
system domain, while the project-specific unit will be named the application domain (Fig. 3.1).
Analogous to that, it will further be distinguished between system developer and application
developer. Defining such a separation implies accepting a number of compromises, since
modeling projects might be very specific in some details and thus it may not be possible
to provide a generic platform for all eventualities that may arise. In consequence, the way
of separation is strongly determined by what the parties involved in the design of the SITE
system define as relevant to all modeling studies.

Utilizing a system design which strictly distinguishes between system and application domain
has a number of advantages that compensate for extra efforts required by implementing the
desired generic. Since the system provides elements needed by all applications, the application
developer will not have to deal with them, save time and efforts and can focus on his or
her specific application. Thus, generic functionality will not be implemented repeatedly and
redundancy will be avoided. In addition, multiple applications using the same system will lead
to a robust system implementation exhibiting a minimal number of errors and consequently
improving its reliability.

13

3. System design features

1 1
System domain : S » Application domain
1 1
Cell 'R '
Grid v Qo
» 28 . Application
1 g £ s rule set
Attr 1 o9
Attr 2 . £ £ .
LS :
Attr n 1 = [
A . 1 g 1
ttributes N7 '

Figure 3.1.: Separation of the SITE framework into system domain and application domain. The
system domain provides generic data structures that are used and initialized by applications.

A second advantage is the possibility to administrate the implementations of system and
application separately. In case there is no separation, making changes to either a system- or
application-specific feature means altering the whole implementation. System and application
domain disjunction will avoid this and thus contribute to error prevention and improved quality
of both system and application.

For a definition of the system domain of the SITE framework, it is necessary to recall the
classification of land use models and modeling techniques. The SITE system is designed to
support regional land-use models. Besides scale differences concerning the rules and processes
underlying land-use models on the continental or global scale, regional land-use models usually
also differ in aspects like data volume (which is usually smaller) or the representation of the
spatial data. The SITE modeling framework is capable of supporting all regional land-use
models following the criteria listed below. These features and respective data structures are
an integral part of the SITE system domain and all functionality for their maintenance is
implemented there.

e Spatial explicitness based on cellular automata: The way in which spatial data is repre-
sented in a model is a basic feature which determines the data structures of the modeling
system. One could think of a solution which puts the representation of spatial informa-
tion in the responsibility of the application domain, but that would result in increasing
complexity when implementing the respective application code and hence collide which
design features like usability or efficiency. Cellular automata based models are numer-
ous and very prominent in the community, so this confinement proves to be a good
compromise.

e Georeference based on coordinate systems: This means that each grid cell represents a
piece of land of the same size or a size that can be derived by a functional dependency
(based on cell position, e.g. dependent on geographic latitude). In its current state,
however, the SITE model only supports rectangular coordinate systems (e.g. UTM), but
it can be easily extended to support other coordinate systems as well.

There are no restrictions with respect to the spatial resolution of the model, i.e. the value

14

3. System design features

can be freely defined by the application. All other criteria used in the classification of land-use
modeling systems can be addressed in the application domain.

Based on this definition of responsibilities the system domain can be configured. As a central
data structure, it houses a class representing a two-dimensional grid of application-defined size
and resolution plus respective iteration functionality and methods to access each grid position.
Every single grid cell needs to be represented by an own instance of a data structure which
specifically addresses the problem of handling cell attributes. Analogous to grid size and
resolution, the number of attributes, their names and data types are only known at run-time
as soon as an application is selected. Hence attribute handling must be implemented in a highly
dynamic manner. The definition of attributes must be conducted via the system-application
interface.

The grid-cell-attribute complex provides the main data structures needed for modeling and
simulation functionality. Besides that, one could think of additional data structures and re-
spective functionalities that are useful for modeling tasks and can be provided by the system
domain for use in applications such as the aggregation of cells to clusters based on application-
defined rules. Despite of the fact, that such functionalities can be implemented as part of
an application, there are cases where an implementation as generic service by the system side
proves as useful. The SITE system domain houses such functionality, which will be described
and discussed below.

The data structures for the grid, cells and attributes represent the static aspect of the SITE
system domain. For simulation dynamics, the system domain also needs to provide respective
functionality. Since the SITE system integrates cellular automata (CA) as the fundament for
land-use modeling and simulation, it must also provide the basic operations typically performed
by CA (Weimar, 1997; White et al., 1997). Three basic CA operations were implemented:

e Initialization: This operation is performed upon connecting an application to the system
domain. The basic procedures during initialization are (i) to create a grid with size and
resolution defined by the application, (ii) create the required number of attributes and
(iii) set their initial values. Depending on the application, additional procedures can be
carried out during the initialization step.

e Start simulation step: This system domain operation signals the application to start
executing the code containing the logic for performing a simulation step.

e Allocation of new attribute values: In CA, the actual assignment of new attribute val-
ues is done after finishing a simulation step, so this task is done automatically by the
framework as soon as the respective application code has been executed. Nevertheless,
an application might require that attribute value changes become effective immediately,
thus the system /application interface comprises a respective method.

Until now, only the term simulation step was used, but no actual time was assigned to
that. The definition of simulation time and the appropriate temporal resolution depend on the
model in use and have to be defined in the application domain.

3.3. Technologies applied in SITE

Due to the strict separation of the SITE framework into system domain and application do-
main, different technologies can be used for the implementation of each module. However,

15

3. System design features

System domain Application domain
* C++ code

* Component-based

* Load-time linked DLLs

* Standard libraries (STL)

* Embedded Python interpreter

* Python code

* Exposed system domain
classes

* Extensions for specific
modelling functionality

Sys. / App. interface
boost::python library

Figure 3.2.: Technology used for the implementation of the SITE framework's system and application
domains. The system domain is C++ software capable to interpret application code programmed in
Python. The interfacing between the two domains is implemented using the Boost Python library.

a minimum compliance between both domains is required. Following the strategy of provid-
ing generic functionality for a number of yet undefined modeling applications means that the
system domain must provide a possibility to load application code and execute it. A number
of technical options are available to achieve this aim. In the SITE framework the code of
the system domain is written in the C++ language, embedding an interpreter for the Python
scripting language. The Python language is used to code modeling applications (Fig. 3.2).

Due to the requirement that the SITE system has to run on standard PC hardware and shall
be made available to different research groups, it was developed on the Win32 platform. The
entire handling of the software is compliant with the Windows philosophy.

System domain

For the implementation of the system domain the C++ programming language was selected.
As an object-oriented language it allows a structured implementation ensuring further expand-
ability combined with high efficiency concerning run time and system resources. Although
portability (e.g. to a Linux platform) was not a major design goal, the effort necessary for
porting the system to another platform is reduced to a minimum by using libraries that are
provided for both platforms respectively.

The system domain consists of a number of components with each component being re-
sponsible for specific tasks. However, due to portability reasons, no technology like COM was
adopted to wrap the component binaries. Instead, each component is built as a Windows dy-
namic link library (DLL) with a clearly defined interface. This facilitates porting since a similar
concept known as shared libraries is applied on Linux platforms. On startup of the system
domain, the components are load-time linked and invoked by either a GUI or a command line
application.

To enable the execution of Python application code, the system domain embeds an ap-
propriate interpreter and provides all respective functionality like Python language extensions
to expose system domain data structures (especially the grid-cell-attribute framework) to the
application domain.

16

3. System design features

The system domain also includes a number of libraries providing basic data structures and
functionality. One example is a wrapper library which provides access to the xerces DOM
(document object model) implementation which in turn provides an interface to access XML
files. The SITE system domain uses XML for configuration files and to save and restore system
states.

Application domain

SITE modeling applications need to be coded in the Python scripting language. It is an
excellent tool for the formulation of rules, processes and logic to describe the rules underlying
a land-use model. Since it is a full object-oriented programming language, there are no
limitations with respect to the complexity of an application rule set. In addition, Python has
a very large user community and is also used as a scripting language for commercial software
packages (e.g. ESRI's ArcView GIS software).

The Python language can be extended by using its C API. In the SITE framework such ex-
tensions have been created to make the data structures for the grid, cells and attributes defined
in the system domain available on the application domain. In addition, the implementation
of such extensions is especially useful when time critical operations have to be performed.
Functionality used on the Python side is in fact carried out by a C or C++ module. The SITE
framework provides such extensions for time-critical operations like the calculation of distance
maps.

System/application domain interface

As described above, generic data structures and functionality are exposed to the application
domain via the system/application interface. With its C API, Python already offers a solution
to implement this interface. However, being a low-level interface, it is relatively complicated
and error-prone to utilize this API. Due to this reason and the fact that Python is widely
used, there are a number of libraries which support the exposure of functionality coded in
C++ to the Python language. In the SITE framework, the Boost Python library was used.
Boost Python is a subset of the Boost library, which itself is a collection of free libraries that
extend the functionality of the C++ programming language. Boost Python offers a concise
syntax for exposing whole C++ classes and the necessary subset of methods. Especially this
property makes it favorable for use in the SITE framework as compared against tools like SWIG
(Simplified Wrapper and Interface Generator) where exposing of classes can only be achieved
indirectly by a workaround. A detailed description of the SITE system/application interface is
provided in appendix A.

17

4. System architecture

The objective of software design is to develop an adequate software architecture that meets the
predefined requirements. In its Unified Modeling Language Specification, the Object Manage-
ment Group (OMG) has defined the term Architecture as an organized structure and associated
behavior of a system which can be decomposed recursively into different parts. These parts
interact and include classes, components and subsystems (OMG, 1999). This definition of
an architecture considers aspects like the fragmentation of the entire system into multiple
components, communication between single components and relations of components among
each other. An appropriate definition of software architecture which matches the context of
SITE framework development is provided by Endejan (2003), where software architecture is
the basic structure of a software system that describes an assemblage of defined components
interacting via interfaces. The architecture specifies the components’ scope and their rela-
tionships among each other. A component is defined as an enclosed binary software module
that implements application-oriented and semantically mated functionality that is provided to
clients via interfaces (Balzert, 2000).

4.1. Existing standards and architectures for integrated modeling

As discussed in chapter 1, integrated land-use modeling is a tool of in increasing importance
throughout the scientific community. A number of models already exists and consequently,
there have already been efforts to bring the different modeling approaches together regarding
both modeling concepts and underlying technology.

Beside the International Organization for Standardization (ISO) there are other organizations
which have issued recommendations or standards for the technical realization of integrated
modeling systems that are also relevant for land-use modeling. Among those, the Institute of
Electrical and Electronic Engineers (IEEE), the World Wide Web Consortium (W3C) and the
Open Geospatial Consortium (OGC, the former OpenGIS Consortium) are the most relevant
ones.

High Level Architecture (HLA)

The High Level Architecture is an architecture to combine interacting sub models to aggregated
models pursuing the target to significantly increase the interoperability of simulation models
(Kuhl et al., 1999). It was originally developed for military applications but is increasingly
adopted in the civil domain (Schulze et al., 1999; Lindenschmidt et al., 2005). In the year 2000
it became an IEEE standard. Since HLA is a generic architecture it only provides functionality
to increase the interoperability of simulation models. This functionality is encapsulated in the
HLA run-time infrastructure (RTI). There are several commercial implementations of the RTI
available.

18

4. System architecture

NIST/ECMA reference model

Having been developed as an architecture to integrate different applications in the context of
computer aided software engineering (CASE), the NIST/ECMA reference model provides an
extendable framework to establish communication among single applications and a consistent
graphical user interface for data representation. The problem of the consistent integration
of data and software that led to the development of this architecture is comparable to those
arising when setting up an integrated modeling framework. Chen and Norman (1992) provide
further information on the NIST /ECMA reference model. The NIST/ECMA reference model
was one basis for the development of the reference architecture issued by the Open Geospatial
Consortium.

Open distributed processing reference model

Since single components of an integrated modeling system do not necessarily have to run on
the same machine, one has to consider the possible distributed character of the system. A
distributed system makes special demand to the underlying software architecture, therefore
ISO created a framework to facilitate and encourage the creation of standards for such dis-
tributed systems and published it as the standard ISO/IEC 10746-(1 to 4). Four basic elements
are postulated for standardization: System description using object-oriented analysis, system
description via five separate but related viewpoints (enterprise viewpoint, computational view-
point, information viewpoint, engineering viewpoint and technology viewpoint), the definition
of a system-infrastructure to ensure transparency regarding the distribution of applications
and finally a framework to assert that the system is compliant to the respective ISO standard.
An application of the open distributed processing reference model is the OpenGIS service ar-
chitecture introduced below. Further information is provided by Farooqui et al. (1995) and
Schiirmann (1995).

OpenGIS service architecture

The OpenGlIS service architecture (Percivall, 2002), issued by the Open Geospatial Consortium,
is a technical reference model. It has been taken over by the International Organization for
Standardization as standard 1ISO 19119 in April 2001. It assumes that underlying target systems
are distributed and implemented using object-oriented analysis. It provides a taxonomy for
geographic services and regulates how platform-independent specification for services have to
be created and how to derive respective platform-dependent specifications. The goals pursued
by the OpenGIS service architecture standard are to

e provide an abstract framework, that allows the development of specific services,
e enable interoperable services by standardization of interfaces,

e support the development of service catalogs through the definition of meta data of
services,

e enable the separation of specific data and services,

e allow the use of services from one provider to work on data of another provider,

19

4. System architecture

e define an abstract framework, that can be implemented in different manners.

The OpenGIS service architecture refers to the Open Distributed Processing Reference
Model by adopting four of the five viewpoints defined there. Viewpoints considered are the
computational, information, engineering and technological viewpoint. The enterprise view-
point is described in other parts of the ISO 19100 series of standards (e.g. in the ISO 19101
reference model). For a detailed description and discussion of this and the above introduced
architectures, see Endejan (2003).

SISA architecture

Based on a review of existing architectures for integrated modeling, Endejan (2003) developed
an architecture for a system for integrated simulation-based assessment (SISA). He defines a
system for integrated simulation-based assessment as a software system that combines both
data and simulation models from different disciplines dealing with the “system earth” in a
consistent frame and that computes and provides new data describing state and possible
long-term changes of the “system earth”. This is basically done to support policy-makers.
Referring to the quality of assessment results the consistent frame is considered being of
special importance since it contributes to the transparency and comprehensibility of results.

Figure 4.1 gives an overview over the SISA architecture. Not considering a component
implementing the client side of whatever kind (e.g. command line or GUI), the architecture
features twelve different components.

Simulation System The simulation system component is the central component. It is
responsible for computation, storage and propagation of simulation results. For the
propagation of results it features a specific interface which ensures interoperability and
reusability of the simulation system.

Simulation-Run Manager The Simulation-Run Manager ensures comprehensibility and re-
produceability of simulation results. Its responsibility lie in both managing the specifi-
cation of simulation runs and propagating them to the actual simulation system.

Data Access This component contributes to data integration and the allocation of simula-
tion results. Services to transform data to make them consistent with the data format
required by the simulation system are also assigned to it. Thus, the data access com-
ponent supports requirements such as interoperability and ex changeability.

Database System The actual data used during simulation runs are housed in the data-
base system component which encapsulates database functionality. Beside having an
interface providing common database access operations, it features a separate interface
for performing queries. Nevertheless, data are not accessed directly by the simulation
system, this is done via the data access component which serves as an integration layer
and performs necessary data transformations.

Catalog Manager One function of a system for integrated simulation-based assessment is
the provision of meta data describing data sets used for simulation. Since indexing of
resource meta data can be seen as an independently functionality inside a SISA, this
functionality is implemented as a separate component responsible for the management
and delivery of meta data concerning SISA resources.

20

4. System architecture

SI9 Snaa
«wasAg» «wa)shg»

sjasejeq

L L]

L

sasn

[}qfkenoosiggal

S$S800e UBd
1

§S800E Ued

sasn

wuoysuel] ejed|

Buissasoud o1ydeiboan

19Beuep yse|

$991A19g Buissaosoud

uone|noje)

uone|nojen
Js)weledos9)|

o Aumni

Jabeuepse] |

» SS900Y eleQq
waysAsgal

19)SOAIRH BJEPEISN

Q Wiojsuel] ejeq|
wayshsaal

sisAjeuy [9polN
sisAleuypoNWIS|

m.% $S900YIED)|

) A

sisAjeuy

sisAjeuy|

A

A

A 4
$S800Y
nss;
1sAg uonenwig Unseyuis| J1abeuep Gojeyen
|ouoQuIS|

1abeuep)|

EINEIS DY

A T), A

uoneoyoads ;
unyuig| |

Jabeuepy uny-uone|nwig
JabeuepunywIg|

Q Aenoosiaien|

AK1anoosigooq|
uonejuswnsoqg
JabBeuepooq|

A

Ll

) Jo1seneHaNI

Figure 4.1.: Architecture of a system for integrated simulation-based assessment (SISA) as proposed

by Endejan (2003).

Arrows referring to complete components instead of single interfaces denote

dependency to all interfaces of the respective component.

21

4. System architecture

Metadata Harvester There is a conflict between centrally managing meta data and storing
them locally. The first option is favorable for the integration inside a SISA while the
latter one can be advantageous in other aspects since it is sensible to store meta data
at the same location as the data they describe. The implementation of a meta data
harvester can solve this conflict. The harvester is a program that automatically searches
the a defined file system for the desired meta data and thus can simulate a central
storage for the catalog manager component.

Documentation While management of meta data lies in the responsibility of the catalog
manager, the documentation component administrates all information about executed
simulation runs and underlying scenarios. In addition it gives model users information
about the handling of the system.

Utility This is a component reserved for any kind of data processing that can be realized
independent from the simulation system.

Task Manager The single components in the SISA provide reusable operations which natu-
rally can be used by all other components inside the framework. To facilitate the use
of these services, functionality for the claim and control of services should be provided.
Thus, the task manager component is responsible for the program controlled invocation
of other SISA services.

Geographic Processing This component provides services for geographic data processing
and can encapsulate an existing GIS system or implement GIS functionality itself.

Model Analysis The responsibility of this component is to manage procedures to analyze
model behavior like sensitivity or uncertainty analysis. Usually this is done by altering
specific model parameters and evaluate their influence on the simulation result. Respec-
tive functionality is implemented here.

Analysis Set up upon data processing services and services provided by the data access compo-
nent the analysis component is responsible for supporting the model user in the analysis
of simulation results.

Realization of the described SISA architecture can be achieved using simple technical tools
and free software as has been proven by Endejan (2003) who set up a SISA to run the
GLASS (Global Assessment of Security) integrated model (Alcamo et al., 2001). Especially
the meta data framework and the simulation run manager component contribute significantly
to increased transparency and reproducibility of simulation runs. Applying the simulation
system interfaces to sub models leads to improved reusability and interoperability among sub
models. In addition, the information provided by the documentation component has proven
useful for a transparent assessment.

4.2. SITE system domain architecture

The SISA architecture provides a well suited template for the development of the SITE architec-
ture. Many features of SISA match well with the requirements listed for the SITE framework.

22

4. System architecture

System core engine

IModelTest Q ISmitnEnv

ModelTest SmitnEnvironment

ICalibration ISmltnDynamics

Calibration ------------------------ 1 SmitnDynamics

CmdLine F---------- 1

Clients

Figure 4.2.: Architecture of the SITE system domain. Each displayed component represents a binary
entity. While the client components are executable files, the functional components are realized as
DLLs and are linked to the GUI ore CmdLine component respectively.

However, the SITE architecture has to be a more compact solution due to requirements con-
cerning ease of use or ease of distribution. In particular, this means that SITE components
are more closely coupled than their SISA counterparts. Nevertheless, loose coupling of com-
ponents like in a SISA is not required due to the basic design feature of the SITE system,
which is its separation into a system and application domain. For applications, there is only a
minimum of constraints and thus it is imaginable to implement a SISA-based architecture in
the SITE application domain. In contrast to SITE, the simulation system component inside
the SISA architecture already represents an application.

Figure 4.2 shows the architecture of the SITE system domain. Four components are defined
to house all necessary functionality and to meet the defined requirements. In addition, two
client components are specified. For model development, performing simulation runs and
presentation tasks, a graphical user interface is provided that features a variety of possibilities to
work with an application interactively. For elaborate tasks like performing multiple simulations
or a calibration run, a command line client is provided which enables the use of SITE inside
a batch processing framework. A detailed description of the client components is given in
section 5.3.

The components SmitnEnvironment (simulation environment) and SmitnDynamics (simu-
lation dynamics) are the central building blocks of the SITE system domain and together will

23

4. System architecture

be referred to as the system core engine in the following. Component SmitnEnvironment is
responsible for managing all static aspects of the simulation. It provides all data structures
necessary for representing spatially explicit modeling data. In particular, these are classes that
make grid, grid cell and cell attribute functionality available for use in the application domain.
Other classes support the application-defined organization of grid cells into layers determined
by attribute values. For the grid class adequate iterators for different purposes (e.g. entire
grid iteration, attribute layer-specific iteration, moving window iteration) are supplied. The
component exposes its functionality via the ISmltnEnv interface.

As can be assumed by its name, the SmtinDynamics component, to be utilized via the
ISmitnDynamics interface, implements all functionality dealing with dynamic aspects of a
simulation. On one side, this is a framework for the basic cycle of cellular automata operations
(initialization, simulation step, attribute allocation). On the other side, since change rules are
project-specific and thus are integral part of an application, the Sm/tnDynamics component is
the instance where the system /application interface (which is technically the connection of the
SITE system C++ part to the Python scripts) is implemented. In addition to the interfacing
technology the component features extensions to the Python language that have been found
useful and can be expanded respectively. The SmitnDynamics component operates on the
data structures provided by SmitnEnvironment using the ISmitnEnv interface.

In addition to the basic simulation functionality, the system domain provides other generic
services supporting quality aspects of modeling applications. Functionality to assess the quality
of simulation results through a number of map comparison algorithms that work on categorical
data is implemented in the ModelTest component. It is designed for simple expandability
and its functionality is exposed via the IModelTest interface. The featured map comparison
algorithms work on grid cell attributes representing the classification and thus operate on the
data structures implemented in the SmitnEnvironment component via its ISmltnEnv interface.

The Calibration component provides methodology for automated calibration of application
rule sets. Basically, it is a collection of algorithms that are capable of finding optimal or ade-
quate solutions for an application-defined parameter set with respect to an objective function
(currently it only includes the implementation of genetic algorithms). The implementation
is analogous to the implementation of the ModelTest component and allows simple integra-
tion of new algorithms. The evaluation of candidate solutions created by an optimization
algorithm is based on map comparison algorithms provided by the ModelTest component.
Therefore there is a dependency of component Calibration from component ModelTest which
is accessed via its IModelTest interface. Due to the fact that performing model calibration
using an optimization algorithm means running multiple simulations (one for each candidate
parameter set), the Calibration component must be enabled to repeatedly start simulation
runs with altered parameter sets until an application-defined termination criterion is met. To
ensure this, a dependency of the Calibration component to the SmitnDynamics component
via its ISmltnDynamics interface is defined. For details on the Calibration component see
section 5.2.

As has already been noted, all SITE system domain components are either compiled into
dynamic link libraries (DLLs) or executable files. No higher level technology like COM or .Net
for the component definition has been used, since this is not imperative due to all components
being implemented in the C++ language and their rather close coupling. Each component
specifies exactly one interface. Exchangeability of components on the binary level is given
provided that interfaces are identical.

24

5. Implementation of the SITE system domain components

In this section all components that are part of the SITE system domain architecture introduced
in section 4.2 will be described in detail especially regarding their static structure, dynamic
behavior and they way they are interfaced among each other. In class diagrams, not all methods
and class members will be displayed. Instead, there will be a focus on methods contributing
to component interfacing and to exposure of functionality to the application domain.

5.1. System core engine

5.1.1. Simulation environment

The SmltnEnvironment component contains and provides all data structures that are required
to run cellular automata-based spatially explicit land use change simulations. It can be seen as
the main component of the SITE framework since it implements the largest share of generic
modeling functionality. As a consequence, it is also the most complex component of the SITE
system, both regarding the number of implemented classes and the relations among classes.
Most other components depend directly or indirectly from SmltnEnvironment.

The overall class layout is displayed in figure 5.1. Inside the Smi/tnEnvironment component
four functional parts can be identified: The actual simulation grid, a framework for managing
and handling of attribute data and data structures for the representation of information layers
determined by cell attribute values. The fourth part contains different iterators that enable
the operation on the main functional classes and provide adequate access to them.

Since the main characteristic of applications designed to be operated by the SITE framework
is the spatial explicitness represented by a cellular automata approach, the central functional
part is the cluster of classes referred to as the simulation grid, with the Grid class being the
fundamental data structure. Figure 5.2 displays the static structure of this part in more detail
together with class methods and class members involved. The Grid class acts as entry point
to all SmitnEnvironment objects, implements a two-dimensional rectangular array of cells and
defines a number of methods to enable access to grid information and single cells. The size
of the simulation grid, its georeference and spatial resolution are dynamic and defined by an
actual application. Georeferencing is handled in class GeoRef which is owned by Grid. Class
GeoRef provides a small number of methods to specify georeference and to perform simple
scaling calculations. In the current version, georeferencing must be based on UTM (Universal
Transverse Mercator; see Snyder, 1987) coordinates. The single grid positions are instances
of the class Cell aggregated in the Grid class. Cell instances basically contain a reference to
an instance of class AttrSet (attribute set) describing the overall cell state and a number of
methods to provide access to attribute values.

Regions examined in land use change simulations typically do not have the shape of a
rectangle. The two-dimensional cell array implemented in the Grid class therefore represents
the smallest possible bounding box for the application region. Consequently, not all grid cells
are part of the project regions and have to be marked as invalid. In SITE framework, only valid

25

5. Implementation of the SITE system domain components

Iterator imulation gri
terators S ulatio g d AttrDscr P > AttrStat
GeoRef 1 1
{ 1.% 1
Griditr
1 1 1
1 1
Grid AttrMngr Histogram
>———— .
GridWnditr 1 1 1

CellNghbltr || cell AttrSet Attributes

Thematic layers

=y
*
-

CellClstrlitr CellClstr %‘ Layer __| ClstrAlgr
1 1 g >
1 1 1 %
Layerltr ClstrAlgrClsfy| |[ClstrAlgrEqualAttrVal| |CistrAlgrConditional

Figure 5.1.: Class diagram showing the overall static structure and class relations of the Smltn-
Environment component. For clarity reasons class methods and data members are not displayed.

cells have a reference (realized by a pointer to class AttrSet) to an attribute set. This is the
criterion checked in the Cell.IsValid() method. Thereisa 1 — 0..1 relation between the classes
Cell and AttrSet and no attribute values are managed for invalid cells. As pictured in figure
5.2, the Cell class defines methods to directly access a cell's x and y coordinate and its cell ID
(X(), Y(), Getld()). These three criteria are internally handled as normal attributes and could
also be accessed using the method GetAttrVal(attrName), but since they represent integral
information for every cellular automata-based simulation, these methods are hard coded and
respective attributes in applications must be named accordingly (OBJECTID, x, y)). Attribute
values are returned using a Variant data type.

Although class Grid provides direct access to single cells by specifying cell coordinates,
this is not the usual procedure when analyzing the grid and applying land use change rules.
Typically, only valid cells are of interest in such an analysis and each cell has to be accessed.
Therefore a safe way to traverse all valid cells of the grid has to be established. This is done by

26

5. Implementation of the SITE system domain components

Gridltr GridWnditr CellNghbltr
-pGrid : Grid -pGrid : Grid -iCellX/Y : int _
AR AttrSet

+Frst() +Frst() -pGrid : Grid

+Next() +Next() +Frst()

+Cont() : boolean +Cont() : boolean +Next() 0.1

+Crnt() : Cell +Crnt() : Cell +Cont() : boolean

+Crnt() : Cell
1 1]
1
1 1 1 1 1
GeoRef
-dGeoULX : double Grid Cell
Iﬂgiggi . ;’;’L‘El'fj 1 1 | PpGeoRef: GeoRef -pAttrSet : AttrSet
—— -arCell : Cell +IsValid() : boolean
:gettgeoldtill\\({m}élx/yt))l ’-!S!zex int ® +SetAttrVal(in attrName, in value)
+S:tG:gRes(in(r)e§)ou © -iSizeY : int 1 * |+GetAttrVal(in attrName) : Variant
+GetGeoRes() : doubl *Init() +X/Y() : Variant
etGeoRes() - double +GetCell(in x, in y) : Cell +Getld() : Variant

+GridToGeoX/Y (in gridX) : double .
+GetGeoSize(in size) : double

Figure 5.2.: Detailed class layout of the SITE simulation grid. Class methods and members involved
in the grid representation are displayed.

implementing iterator classes (applying the iterator design pattern; see Gamma et al., 1995)
that can be configured to traverse the grid in a way required by the application. Three different
iterators are offered. The Gridltr class encapsulates functionality to iterate the entire grid.
By default, invalid cells are ignored. This iterator can be configured to only return cells that
serve as start cells for iterations handled by the second iterator, GridWhndltr. This iterator
traverses the cells of a rectangular grid subset while the subset size is defined by the current
application. Combining these first two iterators, a moving window iteration is possible. This
service is used in the Validation component for map comparison algorithms that utilize such
moving windows. The third iterator, CellNghbltr, traverses all neighbor cells of a given center
cell (specified by its grid coordinates). It can be configured to apply Von-Neumann (4-pixel) or
Moore (8-pixel) neighborhood. Extended Moore neighborhood is currently not implemented
but the system can be easily extended.

All iterator classes implement the same interface which consists of the methods Frst() (set
iterator to first element of underlying object collection), Next() (step iterator to next element),
Cont() (check if current element is valid or if there is a current element at all) and Crnt()
(return the current element of whatever type). Using this interface, iterators can easily be
employed in C++ for and while loops. Depending on the purpose of the iterator and the
complexity of the underlying object set, there are additional methods for configuration. All
iterator classes are available globally throughout the SITE system and iterator objects are
instantiated when needed. They require a reference to the underlying object set and establish
a directed association of the multiplicity 1 — 1.

The attribute framework of the SITE SmitnEnvironment component is designed to enable
generic handling of cell attributes while causing a minimum number of restrictions for ap-
plications. The only restriction so far is that an application must specify three attributes
representing describing the cell ID and a cell's x and y-coordinate on the simulation grid.
Figure 5.3 depicts the class layout of the attribute framework. It shows a straightforward
implementation approach by associating an attribute set object (instance of class AttrSet) to
each valid grid cell object to retain the attribute values for the respective cell, thus establish-

27

5. Implementation of the SITE system domain components

AttrMngr AttrDscr
Grid -tAttrSetList : AttrSet -strName : String
-pAttrMngr : AttrMngr -tAttrDscrMap -ilndx : int
+GetAttrMngr() :AttrMngr‘%+RgstrAm(in attrName) : int -pColorMap : ColorMap
+ResetAttrState() 1 1 [+IsRgstrAttr(in attrName) : boolean 1 -pStat : AttrStat
+ApplyAttrVals() +GetAttrindx(in attrName) : int 1 +GetName() : String
+GetAttrDscr(in attrName) : AttrDscr - +GetAttrindx() : int

+GetColorMap() : ColorMap)|
1 +GetAttrStat() : AttrStat
+IsCategorial() : boolean

1.* ; 1

AttrSet

1

-vAttrValCrnt : Variant AttrStat
Cell -vAttrValNew : Variant
-pAttrSet -vAttrVallnit : Variant +UpdtAdd(in value)
+IsValid() : boolean +Reset() 1 +UpdtRmv(in value)
+SetAttrVal(in attrName, in value) 1 0..1 |+ApplyChng() +Updt(in attrName, in grid, in init)
+GetAttrVal(in attrName) : Variant +SetVal(in attrName, in value, in applyNow)

+GetVal(in attrName, in init) : Variant
+HasAttr(in attrName) : boolean ColorMap

1

Figure 5.3.: Detailed class layout of the SITE attribute framework. Classes Grid and Cell are also
shown since they serve as entry points to the attribute framework; for those classes only methods
and members dealing with handling of attributes are displayed.

ing a 1 — 0..1 relationship between the classes Cell and AttrSet. To allow easy handling of
attributes on the application side, it is reasonable to address specific attributes by their names,
i.e. by using an ID of string type. However, using a map for associating attribute names to
attribute values inside the multitude of AttrSet objects is not advisable as attribute names
would have to be stored for each instance of AttrSet which results in high redundancy and
an increased consumption of memory. This is even more problematic when meta information
for each attribute has to be managed. A more efficient way to store attribute values, both
regarding memory usage and access time, is to use a vector as container for attribute val-
ues. Attribute values thus have to be addressed by an index. In the SITE attribute framework
implementation, management of attribute data lies in the responsibility of the three classes At-
trMngr (attribute manager), AttrSet (attribute set, attribute values for one cell) and AttrDscr
(attribute descriptor, attribute meta data).

The grid object delegates management of attributes and attribute data to an instance of
class AttrMngr. The attribute manager is the central object of the attribute framework. It
aggregates all AttrSet and AttrDscr instances, handles adding of new attributes (also during
simulation runs) and mediates between AttrSet and AttrDscr objects. Each attribute has to be
registered by the AttrMngr instance. On registration of an attribute, specified by the attribute
name, an AttrDscr object is created to maintain meta information for the attribute. To store
AttrDscr objects the attribute manager uses a map that associates the attribute name with
the actual descriptor object. On creation of a new attribute, an index is assigned to it by
which respective cell attribute values can be accessed from the data vectors encapsulated in
AttrSet objects. This index is stored as part of the attribute meta data. Meta data maintained
by the descriptor objects additionally includes the reference to an attribute-specific statistics
object providing basic descriptive statistics and to a color map object for categorially-scaled
attributes (see figure 5.4 for attribute framework dynamics).

To access an attribute value for a cell, the respective member function (GetAttrVal())
is called using the attribute name. This request is forwarded to the AttrSet object. The
attribute set object retrieves the index of the specified attribute from the attribute manager

28

5. Implementation of the SITE system domain components

] |]
| I I
| | I
T T T
| I I
| I I
| I I
set attribute value at | ! !
position specified by | | |
index } : :

| I I

| I I

| I I

| I I

| I I

| | I

Cell AttrSet 0 AttrMngr AttrDscr AttrSet i
i i i i i
I | | I I

Setval() | | | |
| | I I
IsRgstrAttr() : : :
. ! | |
I I I
| 1 I
: true/false : :
: SSREEEEEEE - ! !
| I 1 1
I | I I
alt ! GetAttrindx() ! ! !
I = I I
[true] : GetAttrindx() : :
1 P 1
i i
| I
I I
index
: . U !
i index | '
I < ________________ T I I
I | I I
R — A S | R
I | I I
I | I I
[false]
| AddAttr() | | |
: grow vectors } : :
| [| | |
| | 1 l
: RgstrAttr() } : :
I P I I
: CreateAndInit() : :
| » |
i i
I I
| AddAttr() [
I ! !
I T
1 index grow vectors of all other AttrSet objects
I I
! K-mmmmmmm e
I
|
i
i SetVal()
I
I
I
I
I
I
I
I
I
I
1

Figure 5.4.: Dynamics implemented in the SITE attribute framework. When accessing an attribute
(in this case to set an attribute value), it is first checked, whether the attribute is registered or not.
For registered attributes, the AttrMngr object derives the index of the attribute values by accessing
the attribute meta data object of type AttrDscr. For yet unregistered attributes, a new meta data
object is created and an index is assigned. In addition, the data vectors managed by AttrSet objects
must be enlarged.

and accesses the desired attribute value. The AttrSet class encapsulates three different data
vectors. The first vector (vAttrValCrnt) contains the attribute values at the current point in
time of the simulation. In cellular automata, new attribute values are not necessarily applied
directly; this is done after finishing the respective simulation step. Attribute values to be
allocated after finishing a simulation step are stored in vector vAttrValNew. To replace the
current values with the marked new values, the SITE framework calls the ApplyChg() (apply
change) method for each AttrSet instance at the end of a simulation step. Delaying attribute
value allocation to the end of a simulation step is not mandatory. To specify whether to
directly allocate a value or not, the AttrSet::SetVal() method provides the applyNow flag.
The third vector (vAttrVallnit) is used to store initial attribute values (value of creation time).
This functionality is desirable for use in application rule sets, for map comparisons and for
the possibility to reset a simulation to its initial state. If an attribute is not registered but

29

5. Implementation of the SITE system domain components

Cell AttrMngr
-tLayerMap : Layer
+CreateLayer(in name) : Layer|
+HasLayer(in name) : boolean
+GetlLayer(in name) : Layer
1.*
1
0..*
1.%
Layer
CellClstr -tClstrMap : CellClstr Layerltr
oLayer - Layer 1.0 1 |-pClstrAlgr : ClstrAlgr 1 1 [pCistrMap : CellClstr
_vCellRef : Cell H+ClstrByEqualAttrVal() : ClstrAlgrEqualAttrVal +Frst()
- +ClstrByClsfy() : ClstrAlgrClsfy +Next()
:gi?gjs”t(li?tézllll)() - Cell +ClstrByCond() : ClstrAlgrConditional +Cont() : boolean
. +DoClustering() +Crnt() : CellClstr
+GetClstr(in id) : CellClstr

1
1 1

CellClstritr *
-pCellClstr : CellClstr
+Frst() ClstrAlgr
+Next()
+Cont() : boolean +AssgnCell(in cell) : int
+Crnt() : Cell +Reset()
+CalcFit(in cell, in clstrID) : double
AN
ClstrAlgrCisfy ClstrAlgrEqualAttrVal ClstrAlgrConditional
+CreateClss(in attrName, in min, in max, in width) +SetClstrAttr(in attrName) :g;z%zﬁ:ﬁﬁgg le\(/iilylg\}:stirr,:lg?tqr%éjnmzi?r; i/nam:;(’)

Figure 5.5.: Detailed class layout of the SITE thematic layers implementation together with the three
available clustering algorithms.

requested by the application, the attribute manager creates a new attribute, respective meta
information and access index, and enlarges the data vectors for all attribute sets.

Simulation grid and attribute framework represent the basic generic functionality that has
to be provided for cellular automata-based simulation systems. Technically, it is possible to
implement all other functionality in the application domain. However, there are other features
that can be seen as fundamental to a great extend so that it is reasonable to provide respective
structures by the system domain. Throughout the development of the STORMA application
based on the SITE framework it became obvious that it is very useful to aggregate grid cells
to cell clusters that are themselves organized in thematic layers. For the clustering cells, it
is possible to specify similarity measures (cluster algorithms). Based on such a clustering it
is possible to e.g. aggregate grid cells that belong to the same spatial unit (determined by
an identical attribute value representing the ID of the respective spatial unit) enabling an
application to specifically analyze single spatial units. Another important application is the
aggregation of similar cells resulting in a significant reduction of the amount of data for time
consuming processing by only performing computations for representative cells.

Figure 5.5 depicts the implementation of thematic layers. Since a thematic layer and the cell
clusters it consists of is determined by a selection of attributes and respective attribute values,
objects representing thematic layers are composed in the AttrMngr instance. The attribute

30

5. Implementation of the SITE system domain components

manager object establishes a 1 — 0..n relationship resulting in an arbitrary number of layers
that can be instantiated by an application. In addition, it implements an interface to create
and access thematic layers; this interface is exposed to the application side (see appendix A for
a complete description of the system/application domain interface). On creation of a thematic
layer, a unique string ID (layer name) has to be specified by the application.

An instance of class Layer is the representative for an actual thematic layer. It consists of
a collection of cell clusters (instances of class CellClstr) and a specification of how to assign
single grid cells to cell clusters. This specification is provided by a clustering algorithm object
(instance of class ClstrAlgr). The Layer interface is exposed to the application domain and
consists of methods to select the clustering algorithm, to start the actual clustering and to
access single cell clusters after their creation. The process of the actual assignment of grid
cells to cell clusters (the actual clustering) is decoupled from the specification of the underlying
clustering algorithm. This is necessary to enable the recalculation of a thematic layer for the
case that attribute values for grid cells have changed after a simulation step.

The SmitnEnvironment component implements three different clustering algorithms each
represented by a respective class. The three algorithm classes are derived from the base class
ClstrAlgr which declares an interface for assigning cells to clusters, resetting the clustering
process and calculating how good a given cell matches a cell cluster. Method AssgnCell()
takes a cell as argument and return the ID of the cluster to which the cell has been added.
Method CalcFit() takes a cell and a cluster ID and returns a value between 0 (not in cluster) and
1 (ideal fit) describing how good the passed cell represents the cluster. The public interfaces
of the algorithm classes themselves consist of methods to parameterize the clustering process
and are exposed to the application domain.

The simplest algorithm, ClstrAlgrEqualAttrVal, is configured by an attribute name; for this
attribute it reads the value for all cells and assigns cells with equal values for the specified at-
tribute to respective clusters. Using this algorithm, it is possible to e.g. create a thematic layer
representing administrative units like districts or villages (provided that cells have attributes
like district ID or village ID). Due to the nature of clustering, each cell assigned to a cluster
is a perfect representative.

The second clustering algorithm, ClstrAlgrClsfy, executes cell assignment through classifica-
tion. Using the CreateClss() method, an application can specify value intervals for an arbitrary
attribute, thus defining classes. Other attributes value intervals can be added by repeatedly
calling this method. Two cells are assigned to the same cluster if they fall in the same value
interval for all specified attributes. How well a cell fits to a cluster depends on how its respec-
tive attribute values lie relative to their intervals. A value close to an interval border leads to
a decreased fitness value.

The third clustering algorithm (ClstrAlgrConditional) is an extension of ClstrAlgrClsfy.
Based on an initial classification an application can establish further evaluation for specific
outcomes of the initial classification by defining conditions to be evaluated for those results.
To formulate such conditions it provides a set of methods called AddCondition() (equal-
ity /inequality, larger than, less than) in addition to the CreateClss() method, each implement-
ing a comparison to an application-defined value determining the decision tree path. For the
ongoing tree paths below the conditional nodes, further classification of values can be de-
fined. Decision trees can be of arbitrary depth. In contrast to class ClstrAlgrClsfy, methods
require the current level in the decision tree as argument. This algorithm is especially useful
if clustering has to be specific to categories (e.g. land use classes).

31

5. Implementation of the SITE system domain components

Each thematic layer manages at least one cell cluster (composition of multiplicity 1 — 1..n).
Each cluster can be identified by a unique ID assigned by the clustering algorithm during its
creation. The CellClstr class defines methods to add new cells and to access the cell which
is the best representative of the respective cluster. Each CellClstr instance hold references
to all grid cells assigned to it. Each single grid cell, in turn, can be assigned to only one
cluster for each thematic layers but to more than one cluster in different layers. Cell clusters
can be accessed directly by their ID or via an instance of Layerltr, an iterator that traverses
all CellClstr object of a thematic layer. Access to cells aggregated by CellClstr instances is
provided by a specific iterator (CellClstrltr).

5.1.2. Simulation dynamics

The handling of all dynamic aspects of a simulation lies exclusively in the responsibility of
the SmitnDynamics (simulation dynamics) component. It operates on the data structures
provided by component SmitnEnvironment, hence the dependency of SmitnDynamics from
SmitnEnvironment defined in the overall layout of components. Dynamic aspects include
performing actual simulation steps and providing scenario data as well as the storage and
export of simulation data for single time steps. In the implementation of the Sm/tnDynamics
component three major sections can be identified: a central instance representing the entire
application rule set functionality inside the system domain, a framework for handling the
different kinds of dynamic information and functionality for interfacing the application rule set
implementation with the system domain, i.e. the integration of the Python interpreter.

Figure 5.6 depicts the class layout of the SITE Sm/tnDynamics component. An application
inside the SITE framework is represented by a single instance of class RuleSet. This object
provides access to the underlying data structures implemented in the SmitnEnvironment com-
ponent, to all other objects managing dynamic information and to objects representing the
integration of the Python scripting language. As the representative of an application’s sim-
ulation logic, it also provides the necessary methods to control simulation runs. The Load()
method is used to import a user-specified rule set script into the framework. The initialization
of the rule set script is done explicitly using the Init() method. An imported rule set script can
be executed repeatedly through the use of a reset mechanism invoked by method Reset(). An
arbitrary number of simulation steps can be performed through the DoSmltnStep() method
which accepts the number of simulation steps as an argument.

The integration of the Python scripting language together with the establishment of infor-
mation exchange between the Python (application domain) and C++ (system domain) side
is delegated to a set objects of classes encapsulating both the low level Python C API and the
boost::python library. The central class in this context is PythonEmbd (Python embedding)
which is instantiated once. The rule set object holds and manages a reference to this instance.
The python embedding class contains the Python interpreter which is initialized and terminated
by the class methods StartUp() and ShutDown(). A SITE rule set script must contain two
functions called Initialize() and SimulationStep() featuring initialization logic and simulation
rules for one time step respectively. To run a simulation, the SITE system domain calls these
functions on the application side through the PythonEmbd methods CallFnctlinitialize() and
CallFnctSmitnStep().

In addition to the invocation of these basic functions, the Python integration framework
establishes the exchange of information between the SITE system and application domain.

32

5. Implementation of the SITE system domain components

+Initialization data 1
MySQLDB
1 +Scenario data

ModelProxy

0..*
1
1 1
TimeSeriesMngr ModelProxyMngr Scno

-pGrid : Grid
-strExportPath : String

+InitTimeSeries(in attributes)

-tModelMap : ModelProxy
+CreateModel(in name) : ModelProx

-pDBClient : DBClient

+QueryPart(in keys) : Variant

+GetModel(in name) : ModelProxy
+UpdtTimeSeries(in simulationStep) /|\
+Export() 1
1
1
Dynamic
information
t 1
| s
1 RuleSet DynInfo
L @-apPyEmbd : PythonEmbd -pTimeSeriesMngr : TimeSeriesMngr
-pGrid : Grid -pModelProxyMngr : ModelProxyMngr
-pDyninfo : Dyninfo PR > -pScnoCntnr : ScnoCntnr
+Load(in fileName) : boolean +CreateExternModel(in name) : ModelProxyMngr
Rule set_ +Init() 1 1 +ExportTimeSeries(in attr)
representative |+Reset() +CreateScno(in name, in database, in table) : Scno

+DoSmltnStep(in numSteps) +GetScno(in name) : Scno

1

1

Python
PythonEmbd N
PythonException A :
-pClbrMap : PythonParamMap Integratlon

-strType : String

-pUsrParamMap : PythonParamMap _strErrMsg : String

:g:}aqu() > +SetType(in type)
utbown()) . 1 1 |+GetType() : String
+LoadModule(in path, in name) : boolean +SetErrMsg(in erMsg)
+CallFnctinitialize(in grid, in dyninfo) : boolean +GetErMsg() : String
+CallFnctSmitnStep(in grid, in dyninfo, in step) : boolean -
1
PythonParamDscr
0.* -vtValue : Variant

+SetValue(in value)
+GetValue() : Variant

PythonParamMap
-pPyDict: PyObject

+Set(in paramMap) T
+Get(inout paramMap) ythonParamGrp

+GetParamGrps(inout paramGrp) 1 -tGrpVctr : String

+AddParam(in name)
+GetParam(in indx) : String

Figure 5.6.: Class layout of the SITE Sm/tnDynamics component. Dynamic information and Python

scripting language integration are managed by a single object representing the entire application rule
set.

33

5. Implementation of the SITE system domain components

In the subject of information exchange, one has to distinguish between two different types:
The manipulation of the SITE system domain data structures (e.g. grid cell attributes) from
the Python side and the manipulation of variables in the application rule set script by the
SITE system domain (e.g. parameter sets for rule set calibration). To allow accessing of data
structures defined in C++, the respective C+—+ classes need to be exposed to Python, i.e. the
Python language has to be extended in a way that data structures like the SITE system domain
classes Grid, Cell etc. plus a set their methods become part of it. To allow manipulation of
these classes, an instance of the SITE simulation grid and the dynamic information object
are passed to the required Python functions Initialize() and SimulationStep() (see their C++
counterparts CallFnctinitialize() and CallFnctSmitnStep() in Fig. 5.6).

While language extensions represent a way to access and manipulate system domain infor-
mation from the application domain, the access and manipulation of Python variables from
the system domain is realized differently. Variables to be accessed by the system domain need
to be defined exclusively in separate Python modules. Information exchange is done through
the PythonParamMap class which is an encapsulation of such a Python module (a PyDict
object in the Python C API). The helper classes PythonParamDscr and PythonParamGroup
provide meta information on these variables. In the SITE framework variables of the rule set
scripts need to be accessible for two different aspects. First, during rule set calibration, the
calibration algorithm (see section 5.2) will determine candidate solutions for the respective
parameter set. Since the calibration methodology is implemented in the SITE system domain,
these values need to be transferred to the application side. Second, to support the design goal
of user-friendliness, a number of rule set parameters can be made editable via the GUI, which
also is part of the SITE system domain (see Fig. 4.2).

Dynamic information in the SITE framework refers to all aspects of information that are
dependent on the simulation time step. It includes several characteristics of information like
output data (simulation time series), model driving forces and input data (scenarios) or the
processing of necessary information through the use of sub-models. The management of
dynamic information is delegated to a special object of class Dyninfo which is passed to the
application rule set script together with the Grid object and thus can be accessed from inside
the application code. The Dyninfo object itself holds references to management objects dealing
with the specific types of dynamic information. Time series are created for selected attributes.
The selection can be made using the GUI or by defining attributes in the application rule set.
Time series tables (saving the change of attribute values for every single cell) are exported in
form of a csv file for each selected attribute. Each column of a time series table represents
the attribute state after completing a simulation time step.

Scenario data are managed by an instance of class Scno (scenario manager). In SITE,
scenarios are technically represented by compilations of different input data sources in form
of both database tables and specifically tagged rule set parameters. Scno objects are con-
figured via an XML file which the user must select together with the rule set script prior to
performing a simulation run. Based on this configuration, the Scno object provides rule set
parameterization and establishes the connection to database tables that represent time series.
Simulation runs are always determined by the combination of a rule set with one specific sce-
nario. The SITE scenario functionality is designed to allow user interaction. This means that a
simulation run can be stopped at on predefined step, The results produced so far can be ana-
lyzed to extrapolate whether certain targets will be achieved. Depending how trends to target
achievement are, scenario parameters (e.g. a rule set parameter representing a management

34

5. Implementation of the SITE system domain components

parameter) can be edited, thus simulating policy interaction. After that, the simulation can
be continued. When editing scenario parameters, SITE automatically tracks these changes to
ensure reproducibility and filing of simulation runs.

Third-party models are represented by model proxy objects that are made accessible inside
application code via the passed Dyninfo object. Depending on the application, an arbitrary
number of sub models which are contained by a model management object (ModelProxyMngr)
can be integrated. For details on the integration of sub models and the respective interface
provided by the SITE framework see section 5.5.

5.1.3. Summary

The implementation of the SITE core engine already provides a solution to most of the listed
requirements (see section 2). It houses all functionality for generic CA-based land-use model-
ing. Through the use of an established scripting language extended by a concise interface to
manipulate the modeling data structures, it makes a maximum of functionality available for
different modeling applications. No directives for specific modeling methodologies are made.
Thus, applicability to a multitude of modeling projects is established. Expandability and
maintainability are ensured by the consequent use of object-oriented programming paradigms.
Innovative functionality compared to existing approaches are automated documentation of
simulation runs and rule set parameterization as well as the possibility to interactively handle
scenario analysis. Integrated modeling is supported via model proxy objects through which an
interface to third-party models is made available (see paragraph 5.5 for a detailed description).

5.2. Model calibration and model testing components

Calibrating complex application rule sets is crucial to achieve valuable simulation results. The
SITE framework provides generic functionality to find an adequate solution for application-
specific parameter sets. Figure 5.7 shows the class layout of the Calibration component in
connection with component Model/Test. The calibration component basically consists of a
management object that possesses a reference to an algorithm capable of optimizing the de-
fined parameter set. For all optimization algorithms to be used in the context of the SITE
framework, a base class (OptmzAlgr) declaring a generic interface is provided. In the current
version, an optimization procedure utilizing genetic algorithms (OptmzAlgrGntc) is imple-
mented. Other algorithms can be added and used polymorphically. Optimization algorithms
have a reference to the rule set object representing the rule set to calibrate. From this ob-
ject, also the parameter set to optimize is retrieved. Via the rule set object, the optimization
algorithm triggers the repeated reset and restart of simulation runs (hence the dependency
of component Calibration from SmltnDynamics). After each single simulation run based on
a specific solution for the parameter set to calibrate, the optimization algorithm evaluates
the respective simulation result via its assigned objective function. In the SITE framework,
the quality of a simulation result is assessed by comparison of a result map with a reference
map. Depending on the application, different map comparison algorithms might be favorable.
Map comparison algorithms to be used as objective functions for rule set calibration are not
implemented in the Calibration component, but in the ModelTest component. Optimization
algorithms utilize functionality provided by ModelTest.

In the SITE framework, assessing the quality of simulation results and thus the quality of

35

5. Implementation of the SITE system domain components

RuleSet

Calibration :

+Reset(in calibParams)
+DoSmltnSteps(in numSteps)

Il
ClbrMngr

-pOptmzAlgr : OptmzAlgr

Grid

-pVIdtAlgr : VIdtAigr P
+InitOptmzAlgr(in algriD)
+InitVIdtAlgr(in algrlD, in wndSize)
+Calibrate(in ruleset)

1
1

OptmzAlgr

-pRuleSet: RuleSet
-pVIdtAlgr: VIdtAlgr

VIdtAlgr

-dThrsh: double
-iMaxCycles: int
-iSimTime: int
+Execute()

OptmzAlgrG ntcl I

-pGrid : Grid
-strVIdtAttr : String

-strRefAttr : String
-tCategories: String[1..*]

+Validate() : double

JAN

ModelTest

VIdtAlgridntPxI

VidtAlgrKappa

|VidtAlgrkappaBasic| [VidtalgrkappaHisto|

|VIthIngappaLoc|

VidtAlgrMvngWnd
/\

|VidtAlgrMvngWndMultRsltn|

VIdtAlgrPontius|

VidtAlgrPontiusKQnty|

VIdtAlgrPontiusKNo|

VIdtAlgrPontiusKStd

VIdtAlgrPontiusKLoc

VIdtAlgrPontiusVPIQ

VIdtAlgrPontiusVPIL|

VIdtAlgrPontiusP0

Figure 5.7.: Class layout of the SITE SmitnDynamics Class layout and connection between the SITE

calibration and model testing components.

used to provide an objective function for the calibration methodology.

36

In this constellation, the model testing component is

5. Implementation of the SITE system domain components

Table 5.1.: List and description of map comparison algorithms implemented in the SITE ModelTest

component.

Class name

Algorithm description

Simple pixel comparison
VIdtAlgridntPxl

Pixel-based Kappa
VIdtAlgrKappaBasic
VIdtAlgrKappaHisto

VIdtAlgrKappaloc

Moving window-based Kappa
VIdtAlgrPontiusKStd
VIdtAlgrPontiusKNo

VIdtAlgrPontiusKQnty
VIdtAlgrPontiusKLoc
VIdtAlgrPontiusVPIQ
VIdtAlgrPontiusVPIL
VIdtAlgrPontiusVPO

Moving window-based ratio
VIdtAlgrMvngWnd

VIdtAlgrMvngWndMultRsltn

Figure of Merit
VIdtAlgrFigMerit

Compares all corresponding grid cells and calculates the ratio
of the number of all matching cells and the number of all cells.

Reference: Pontius (2000)
Calculates Standard Kappa value based on contingency matrix

Calculates Kappa value based on contingency matrix specifi-
cally regarding quantification error

Calculates Kappa value based on contingency matrix specifi-
cally regarding location error

Reference: Pontius (2002)
Standard Kappa value

Kappa value without considering quantification and location
error

Kappa value specifically regarding quantification error
Kappa value specifically regarding location error
Value of perfect information of quantity

Value of perfect information of location

Observed proportion correct

Reference: Kuhnert et al. (2005)

Ratio of correctly classified cells for specified moving window
size

As above, but integrated over multiple resolutions up to moving
window size

Reference: Klug et al. (1992); Pontius et al. (2007)
Pixel-based figure of merit, assessing actual change

the underlying models is done by comparing the simulation result maps with a reference map
(e.g. historical land use maps throughout rule set calibration). For this purpose, the Model-
Test component provides a number of map comparison algorithms (Fig. 5.7). All algorithms
share the same base class VIdtAlgr which basically holds the main information required by all
concrete map comparison algorithms. In addition, it defines an interface valid for all algo-
rithms and allows their equal utilization by clients (e.g. an optimization algorithm from the
Calibration component) through polymorphism. The VIdtAlgr base class includes a reference
to the Grid object (component SmitnEnvironment) which is the data structure on which all
map comparison algorithms operate. The class hierarchy of map comparison algorithm can
be arbitrarily extended. The ModelTest component features different families of algorithm
like direct pixel-to-pixel comparisons, pixel-based comparisons using the Kappa with regard on
quantification or location error (Pontius, 2000), moving window-based Kappa algorithms also
considering quantification and location error (Pontius, 2002) and moving window-based algo-
rithms based on the quantities category occurrences inside an actual window (Kuhnert et al.,
2005). Table 5.1 lists all map comparison algorithms that are currently available in the SITE

37

5. Implementation of the SITE system domain components

framework. These map comparison algorithms typically deliver result values between 0 (no
match) and 1 (perfect match, identical maps). Results delivered by Kappa-based algorithms
need to be interpreted differently: A value of 1 means perfect classification while values out
of the interval |0; 1] indicate, that the proportion of cells classified correctly is greater than
the expected proportion classified correctly due to chance. A value of 0 or smaller means that
there are no more correctly classified cells than there would be due chance. The categories to
be regarded for map comparison can be selected freely. All categories that are not selected
are considered belonging to a rest category.

So far, only algorithms comparing categorical maps are implemented. However, the Model-
Test component data structures are technically not restricted to categorical maps. Integration
of other types of validation algorithms like the ROC method (Pontius and Schneider, 2001;
Pontius and Pacheco, 2004) which assesses the quality of suitability maps or algorithms ap-
plying an amount of fuzziness to both location and category of cells (Power et al., 2001) is
possible.

The ModelTest component is designed to be adopted at all places where the quality of
simulation results needs to be assessed. The SITE framework provides the functionality to
assess the quality of simulation results directly via its GUI. In addition, the provided map com-
parison algorithms are used by the Calibration component as objective functions (as depicted
in Fig. 5.7).

With the calibration and model test components, the respective methodology is consistently
integrated into the SITE framework. All models operated within the framework can utilize
the functionality. The implementation satisfies the respective requirements listed in section 2.
An application of the calibration and model test components is provided by Mimler and Priess
(2007). Calibration methodology is restricted to algorithms that find an optimal or adequate
solution for a set of rule set parameters with respect to an objective function. In the particular
case of the SITE framework, map comparison algorithms have to serve as objective functions.

5.3. Clients

All SITE components introduced so far physically are libraries that have to be linked dynam-
ically. Consequently there is no fixed directive how to put the functionality they offer into
operation. Typically, software is operated either using a graphical user interface or via the
command line. Both ways have their specific advantages and drawbacks depending on the
respective software is being used for. The SITE component architecture is suitable for both
kinds of clients. While due to the requirement of user friendliness a detailed graphical user
interface has been created, there is also a command-line client available which can be used
for time-consuming calculations (typically rule set calibration runs) and for integration of the
SITE framework into batch processes.

5.3.1. Graphical user interface

The GUI developed for SITE is designed to enable simple handling of the rather complex
framework. Hereby, the requirement of simple applicability is addressed. It supports both
the utilization by non-expert users and by rule-set developers. The SITE components are
linked dynamically to the GUI. The dependencies between client and the components and
the inter-component dependencies are displayed in Fig. 4.2. For inputs and for controlling

38

5. Implementation of the SITE system domain components

Z° H RN Jlaiag
_A | > welfoysigy, # 4 b B
h. O_ﬁuw—_oo mm@mmN_mw_.ﬁmgumc_s_ LoEpl|E A falll} S0 ; ara ; 20 ; aza sa aza 0 ara F0a ara
Z565'0 80 dpped AacBegeD uonepies oyur L 8 68 e) Fi i 118 474
Q5050 | pUE|Ssen) AoBeges uopeples ojur
ET0F'0 13NU030D faobagen uoRepjes Qg
SEZS'0 (ped AiobaEgen uonepes g
CHEC'D ! #o|jeg AaobeEnen uonepies ojur| @ 2
fZe9'0 uswamas AuobEeD Lonepies =10} m LIFZRNT agps 2
£8bE'0 182EW AoBEieD Loneples our| 8 2558000 saueie),
S0SE°0 (Fay0D dioBies Lonepijes, o | @ soljsijels alnqluny wazz | 108 1218700 eETT:
+080°0 10100 AoBaes uoiepies oyt m FESaED WNUIE m
Damv_a_;m_.mé uadg ”Lowm_mu uonepljes aur| 2 . %001 0000000 w3
2k59°0 135804 JobeEgen uonepl|es, ulll] : FIOGT ng B0307) 1NS ¥Z0EZ U
= m.mmmmm.E_ mu.ﬁnm_ adi] . 20307 NG ANQUY o

£

siapweied PEany Y sbumas maip H 4 B

|0JJUOD uole|nwis
AL FB)IAD |0 IAQUINRY

Ja19be|ia, 1ade] =
= _ SIBEND |0 ISqUnp

Landmsiq, 1ade o

L

FB)3AD |0 IAQUIRRY

Juauaag ssefp oy jsiq, lade] o

155 | FIBEND |0 ISQUInfyY
Auandeq, sade] 5

asje FANEA 2]

uonEAs|3 [T

EOD0T NG 1o)05

Z a1

asje FANEA 2]

unEAs|3 uonEAs| 3

aEMpUET] 10)07)
L Maly =

il auop sdajg

dajs uonejnuig -

[BBUD3 LaRE| NS

B4 =15l

WRzd & [T]=:ME] oz & am

(ongada 2 meld Jodkd 500l uonenuwis 1ass|rd

(3115) |2pow wu_._m:._.__._%_._u |BLSaIa] 10 UDRENWIS - 1asaind YIAHD1S

The left view

interface in typical configuration.

Figure 5.8.: Snapshot of the SITE graphical user

shows current land use, the right view a suitability map. For both views, elevation is displayed on

the z-axis.

39

5. Implementation of the SITE system domain components

simulation runs, the GUI directly calls the respective methods from the component interfaces.
The visualization of simulation results is based on an observer pattern (Gamma et al., 1995)
through which respective GUI elements are notified as soon as an update is necessary. The
GUI is based on the Microsoft Foundation Classes (MFC). Additional functionality like more
elaborated GUI elements (e.g. dockable control bars) and a flexible layout which is restored
at each startup are provided by a commercial extension to the MFC (Business Components
Gallery). Consequently, using SITE in combination with its GUI is only possible on Windows
systems.

A snapshot of the SITE GUI is given by Fig. 5.8. As depicted, there are two different
kinds of visualization of simulation data. The first one is the view on the simulation grid,
where one attribute, which can be selected by the operator, is displayed for the entire area
using a specific color code. For continuous data (e.g. elevation), attribute values are coded
by a transition of colors from green (lowest value) to red (highest value). Categorical data
(e.g. land use classes) use a color coding that has to be specified in the rule set script (see
appendix A). Two instances of this view can be displayed simultaneously to facilitate the
examination or comparison of two different attributes. The views are capable of rendering
data in three dimensions and can be freely navigated and zoomed. Therefore, it is possible
to use the z-axis to display a second attribute value inside each view. Typically, one would
select the elevation attribute (if available) to get a true representation of the project area, but
the 3D functionality might also prove useful for other data, e.g. to check whether distance
maps are calculated correctly. For the rendering of the simulation grid, it is represented by a
graphical model which is displayed using the OpenGL graphics hardware interface. The second
aspect of data visualization is the display of basic attribute statistics. Statistics maintained
for each attribute include simple descriptive statistics (mean, minimum, maximum, variance,
standard deviation) and a distribution of attribute value frequencies.

The current status of a simulation run is displayed by the control bar labeled as “Simulation
control” in Fig. 5.8. It consists of two tabbed pages. The first one gives information about
the current simulation time step and about existing thematic layers and allows the selection of
attributes for display. The second page allows editing the value of selected rule set parameters.
Which rule set parameters appear is specified inside the application rule set script. It is this
functionality which makes SITE accessible to a wider range of users. Two types of users are
addressed: expert users capable of writing their own application code and non-expert users
working on finished but parameterizable rule sets.

The basic control of simulation runs is done via the GUI tool bar where an operator can
load and reset a simulation and start single or multiple simulation steps. Further control and
configuration of input and output is provided by specific menu items. Via the menu bar,
specific tools for managing interactive scenarios and assessing the quality of simulation runs
by means of map comparison procedures, are provided.

By default, user system messages and warnings are directed into a message console. In
addition, a file labeled “SITELog.txt" is written containing the same output as the message
console. Analogous to the other GUI elements, an observer pattern is used for the output
of system messages and warnings. Output devices are specified in the code of the respective
client.

40

5. Implementation of the SITE system domain components

5.3.2. Command-line client

While the GUI is specifically suited for interactively performing simulation runs and assisting in
the development of application rule sets, the use of a command-line based client addresses the
application of the SITE framework with particular consideration of productivity and automa-
tion. The command-line client is intended to be used inside batch processing frameworks and
for time-consuming jobs, especially for the calibration of application rule sets. Therefore, a
special dependency of the command-line client from the Calibration component is established
(see Fig. 4.2). Compared to the GUI, the SITE command-line client is a very lightweight
application which can easily be ported to different platforms.

When using the command-line client, system messages and warnings are directed to the
standard output and standard error channels respectively. The output can be redirected to
other devices like e.g. files.

5.4. Import/export, database connectivity

A SITE application is initialized based on data stored in a database table. Database clients for
Microsoft Access and MySQL are available. The database connection details (database name
or file path and table name) need to be specified in the main module of the application script.
Initialization data is read upon initialization of the simulation grid.

In its current version, the SITE framework writes output data to files as comma separated
lists (using semicolons as separators) which can be easily imported into other software for eval-
uation. There are two types of output, output of values of a selected attribute at the current
step in simulation time and output of time series for selected attributes. Attribute selection
can be done via the respective menu items in the graphical user interface or alternatively by
Python methods provided by the system /application interface in the application script. The
latter alternative has to be used if the SITE is operated by its command-line client.

Configuration of components and functional parts is done based on XML files. Configuration
files need to be edited whenever basic selection have to be made (e.g. selection of the database
client via file DBConfig.xml, specification of working directories for DayCent integration via
file DayCentDrvrConfig.xml, etc.).

System messages are directed to specific message devices depending on the SITE client
used. If SITE is operated using the GUI all messages are displayed in their own message
console GUI element. In addition, messages are written to a log file. The command-line client
directs messages to the standard output and standard error channels. Specific messages are
issued by the calibration component during model calibration runs. This output contains all
data associated with a calibration run.

5.5. Integration of third-party models

One of the main requirements defined for the SITE framework is the integration of sub models.
Sub models provide services for the superior land use model by performing specific calculations
and making their results available for the land use model which in turn uses these results in its
own process of decision making. This way a feedback loop between the land use model and
its sub models is established.

41

5. Implementation of the SITE system domain components

The technical realization of integrating external sub models basically depends on complexity
and character of the models to integrate. In case of very low complexity, e.g. if the sub model
is none more than a regression function, the best way of integration is to simply code the
model in the application script. However, for more complex models that already have been
implemented as software this is not applicable. A mechanism is required by which it is possible
to configure and invoke the sub model and to read in the respective modeling results. Since
SITE is designed to be a generic framework for regional land use modeling applications, it is also
desirable to establish a universal solution for the integration of existing sub models. Although
this goal is rather impossible to achieve for all different kinds of models, by making a number
of compromises an adequate solution can be achieved. Things get particularly complicated
if it is desired to integrate a model that defines its own spatial grid, which, among other
difficulties, results in the need of synchronization with the SITE grid.

SITE development occurred largely parallel to the development of the first major SITE
application, a rule set to model the stability of tropical rain forest margins in the context
of the STORMA project (STORMA, 2003). This application required the integration of the
DAYCENT agro/ecosystem model (Parton et al., 1998) to calculate the productivity and soil
parameters for single grid cells representing crop areas. The DAYCENT model represents a
class of models that have no explicit spatial reference and are only valid for one single location,
or, referring to the spatial explicit SITE framework, for one of its grid cells. In addition, it can
be assumed that there is no influence by neighboring grid cells when performing DAYCENT

Server instance 1

Server instance 2

Client side:
SITE application rule set

Socket communicatian

Server instance n

Server side:
External model servers
(e.g. DayCent servers)

Figure 5.9.: A client/server approach is used inside the SITE framework to integrate external models.
External models are wrapped and operated via server applications. The actual land use model has
the client role and configures and send modeling jobs. The system is capable of parallel processing.

42

5. Implementation of the SITE system domain components

— Job Srvrinfo
-ild : int .) . -strlp: String
-tOutputVrbIMap: <String,double>[1..*] _iPort: int
-tinputVrblMap: <String,double>[1..*] 1 1 —iStatﬁs’ int ClientConn
:ﬁj:& Igttring -apConn: ClientConn o———>
-ilntermediate: int -currently executed job :Z(tirrlnbtdtab Job 1 1 |*RgstFromSrvr(in rgstString) : String
-iStatus: int
+CreateProcRgst() : String :g:\:cceksi\g’::l%tgl)lty() + boolean \
+ReadRsltFromProcRply(in rplyString) } E at Kot
ncapsulates sockets
. 1% and establishes connection to
1. model server instances
Each Srvrinfo instan&k
1 ExternModel represents one actual
-tJobMap: Job[1..*] external model server
——————@-tSrvrMap: Srvrinfo[1.Y] @—— |
+InitJob(in jobID) 1
+HasJob(in jobID) : boolean|

1

1

ModelProxy
-pExternModel: ExternModel

-IParamin: String[1..*]
-IParamOut: String[1..*]

+Reset()

+InitCalculation(in ID)

+SetRefCellld(in ID) 0.* 1 ModelProxyMngr
+CleanUp()

’-tModeIMap: ModelProxy[0..*]

+CreateModel(in name) : ModelProxy|
+GetModel(in name) : ModelProxy

+SetlnputVrbl(in name : String)
+SetOutputVrbl(in name : String)
+SetinputVrblValues(in Cell)
+Configure()

+Execute()

+GetRslt(in name, in ID) : double
+SetlInfo(in info)
+Setlntermediate(in ID)
+HasResult(in ID) : boolean

Figure 5.10.: Class diagram of the client side of the SITE sub model integration. The ModelProxy
methods to configure and operate sub model can also be found in the classes ExternModel and
Job and are exposed the application domain. Each instance of Srvrinfo is connected to one server
application.

calculations for a particular cell. Accepting these criteria, no explicit spatial reference and
no influence from neighboring cells, as compromises, it is possible to define an interface to
integrate a variety of external models. Technically, the fact that sub model calculations for
single grid cells can be seen as isolated processes, they have the property of being concurrent
and thus can be executed in a parallelized framework with a significant gain in run time.

The technical framework to integrate third-party models established in SITE is depicted by
Fig. 5.9. It is based on a client/server architecture with the SITE application (land use model)
acting as client that requests modeling jobs from the actual third-party models on the server
side. Communication between client and the model servers is established via sockets. Socket
functionality is encapsulated in a library providing simple functionality to send and receive
job requests and replies. Based on the integration of the DAYCENT model, an interface to
configure and execute processing jobs and receive the respective modeling results for use in
the application has been created. Additional effort was put into keeping this interface generic
for use with other models.

43

5. Implementation of the SITE system domain components

SrvrConn
*+AcceptConn() : boolean Wrapper of the DayCent
+GetRgstStr() : String executable. Responsible for
+RplyToClient(in rplyString) creating input files, starting
DayCent and reading output
1 files.
1
SrvrApp DayCentProxy
>
+Run() 1 1 +Execute(in joblD, in reflD)

Figure 5.11.: Integration of the DayCent model as an example for integration of third-party models.
A server instance receives calculation requests. Configured jobs are started by a wrapper instance
including the actual third-party model.

5.5.1. Client side

The interface is implemented in the ModelProxy class. An instance of this class represents
the use of a specific third-party model (e.g. DAYCENT). The methods forming the interface
can be seen in class ModelProxy in Fig. 5.10 which shows the static structure of the sub
model framework client side. All displayed classes are part of the Sm/tnDynamics component,
the classes ExternModel, Job (processing job), Srvrinfo (server info) and ClientConn (client
connection) being implemented in libraries other that the SmltnDynamics DLL, but statically
linked to it. The sub model interface from class ModelProxy is exposed to the Python language
to enable its use inside application rule set scripts. ExternModel is responsible for creating
and configuring the single processing jobs (e.g. for single grid cells), for configuring the single
server instances that do the actual processing and for distributing processing jobs to server
instances. Each object representing a processing job holds the complete configuration data.
Based on this, it provides two functions, CreateProcRgst(), which generates a request string
transmitted to a server instance, and ReadRsltFromProcRply() (read result from processing
reply), that is able to interpret the reply string received from a server instance after the job
processing is finished. Actual server instances are represented and accessed by objects of
type Srvrinfo. These objects provide information about the connection to the server (using
IP address and port) and whether a server is available (function CheckAvailability()). To
start a process, they define a function Process() which takes a reference to the job to be
processed as argument. The job object, in turn, is capable of providing a request string to
be sent to the server instance. Each Srvrinfo object starts a separate thread in which the
request string is transmitted to the server. Consequently, it is not necessary to wait until the
server instance replies after finishing the job processing. Instead, the ExternModel object can
directly send the next job request to an idle serve, if available. Availability and status of model
servers is indicated by a set of status flags (unknown, not available, ready, processing). In
addition, each job object indicates its current status using a set of flags (initialized, configured,
processing, finished). Based on these flags, the ExternModel object carries out the distribution
of processing jobs. The communication between client and servers is done using functionality

44

5. Implementation of the SITE system domain components

provided by a ClientConn object that encapsulates socket functionality behind its function
RqstFromSrvr() (request from server).

5.5.2. Server side

Which servers are potentially available has to be defined prior to a SITE simulation in an XML
file, where the IP address and port number of each instance have to be specified. Currently,
it is not possible to add new servers during a simulation run. However, out of this specified
set, not all servers must necessarily be running. The system is robust concerning failure and
temporary unavailability of servers. In this XML file, a directory for intermediate data used
by a third-party model can be defined. The DayCent model requires this information to store
intermediate files which it needs to resume its status based on former simulation steps.

The actual job processing takes place on the server side (Fig. 5.11). Job requests are received
by an object of class SrvrConn (server connection), which is the counterpart of ClientConn
and is implemented in the same messaging library. It defines the functions AcceptConn()
(accept a connection from a client), GetRgstStr() (receive an incoming request string) and
Rply ToClient() (send a reply string containing processing results back to client). A SrvrApp
(server application) instance is capable of interpreting request strings and creating reply strings.
This SrvrApp object then configures the third-party model using a model proxy object. The
proxy object is a wrapper of the actual third-party model. Due to the variety of models that
can be used, this wrapper has to be a specific development. Figure 5.11 shows the wrapping
of DAYCENT model. DAYCENT needs a set of specific input files and preprocessing steps
typically performed manually or inside batch jobs. It delivers results by means of result files
and files describing its intermediate status. The DayCenProxy wrapper is designed to carry
out all these steps programmatically (e.g. starting the actual DAYCENT executable). An
advantage of this approach using a wrapper is that it is not necessary to manipulate the code
of the integrated model which avoids the introduction of additional complexity.

5.6. Extendibility and portability issues

The entire SITE system is designed to be extendable. The component-based architecture
defines clear functional units and encapsulates the respective complexity. Implementation of
components themselves has been done with strict use of the object oriented programming
paradigm. Design patterns (especially factory, observer, iterator) have been used heavily. The
system /application interface can be extended by simply adding new classes or class methods
to expose to the Python language.

Another focus during the development of the SITE framework lay on the minimization of
efforts necessary if components need to be ported to other platforms, in particular to Linux
systems. With the exception of the graphical user interface, which uses the Microsoft MFC
library, only libraries have been used that are available on both platforms. However, the
technical solutions of how dynamic linking of components differs between Windows and Linux,
which requires a certain amount of work when porting the system.

45

6. Discussion

Land use and its dynamics are determined by a wide variety of factors. Since research on land-
use dynamics is mostly interdisciplinary research, a modeling framework used in this context
consequently has to be able to reproduce and utilize interactions between the different factors
determining land-use change. The increasing availability of sectoral models (e.g. for population
dynamics, crop growth, ecosystem services) favors a modular assembly resulting in integrated
modeling systems. Since SITE was developed to be used as such an integrative tool, its value
for the modeling community has to be benchmarked largely based on its capability of model
integration and the way this capability is combined with other innovative features.

SITE provides two different ways of model integration. On the one hand, integration can
be achieved via a specifically designed interface. This interface facilitates the coupling of
complex models that are available in the form of components. Component-based coupling
of models has become a popular approach in ecological modeling, as it supports modularity,
and interchangeability of integrated models (He et al., 2002; Argent, 2004). However, SITE
advances this functionality by establishing a mechanism to feed back results from the coupled
model to the calling instance. Beside the capability to establish feedback loops, the SITE
model coupling interface supports parallel processing, provided that the modeling methodol-
ogy allows concurrent processes (e.g. the calculation of yields for crop cells which does not
interfere with any processes in the cell neighborhood). This results in a significant reduction
of processing time for simulation runs. As a second method, model coupling can be achieved
by creating extensions to the SITE scripting language. For the integration of relatively simple
models (e.g. regression models, functional dependencies) this method is even superior to the
component approach, since respective language extensions can be implemented quickly. The
implementation of feedback loops is also possible for the latter case. The applicability of the
integration and feedback functionality has been shown in case studies, where SITE was linked
to an agro-ecosystem model and a model integrating ecosystem services (Priess et al., 2007).

The advanced possibilities for model integration are combined with a generic land-use mod-
eling platform. As for model integration, a number of solutions for generic platforms are
available (e.g. GEOMOD?2, Pontius et al., 2001; SELES, Fall and Fall, 2001). However, these
solutions gain simplicity at the cost of flexibility (e.g. the SELES domain-specific language
requires the definition of so-called landscape events and thus does not allow the use of other
modeling methodology). Generic applicability is ensured by SITE through its central design
characteristic, which is the strict separation of implementation and application into system
and application domains with the use of a modern high-level scripting language (Python) for
the implementation of land-use modeling applications. The Python language was extended
to match requirements specific to land-use modeling (e.g. by adding classes for the simu-
lation grid, cells and attributes). Thus, a full-fledged programming language is available for
model implementation; no restrictions remain regarding modeling methodology as opposed to
existing solutions. In addition, Python is already being used as scripting language in a num-
ber of established software products with significance to the land-use modeling community
(e.g. GIS-Software), which enables further possibilities with respect to synergies with these

46

6. Discussion

products.

Model calibration, although indispensable (Boumans et al., 2001; Oliva, 2003; Straatman
et al., 2004), is not integrated in most of the available modeling frameworks. In the SITE
framework, calibration functionality is implemented in an integrated system component. In
the current version, only genetic algorithms are available, but the component can be extended
to house additional methodologies. Calibration algorithms used by SITE aim to find an op-
timal or adequate solution of an arbitrarily defined parameter set (defined in the application
script) based on an objective function. The objective function, in turn, can be freely selected
from another system component (ModelTest), which provides a selection of map comparison
algorithms. This design enables model operators to freely combine optimization algorithms
and algorithms for objective functions. Apart from the process of parameter selection, which
requires expert knowledge of the underlying rule set, SITE is capable of automated rule set
calibration. The component that implements the different map comparison algorithms, can
also be used independently from the calibration as an integrated tool for model tests based on
map comparison methodologies. The SITE calibration methodology seamlessly interacts with
the generic modeling functionality and integrated models, thus it can be used for all applica-
tions that are operated within SITE. Moreover, the calibration methodology is not restricted
to the land-use model, but also allows to simultaneously calibrate different integrated models.

The explicit representation of scenarios in SITE is a further innovation in the field of land-use
modeling frameworks. Performing a simulation in SITE always implies to use the underlying
model rule set in combination with a quantified scenario. Model rule set and quantified scenario
are separate instances. This concept allows simulation runs under different scenarios without
having to edit model code, thus improving system handling and facilitating maintenance.
With the possibility to interactively handle and alter scenarios based on an analysis of interim
simulation results, it was possible to overcome a major limitation of scenario analysis (Alcamo
et al., 2006).

Although the SITE concept of integrating a scripting language significantly facilitates model
implementation, programming knowledge is still requested. To enable scientists without pro-
gramming knowledge to also work with the SITE framework, a detailed graphical user interface
(GUI) has been created. In this GUI, arbitrary rule set parameters (i.e. variables in the Python
application code) can be edited directly. Thus, one can distinguish between two different
application levels for SITE: (i) model development, performed by users that are capable of
writing application domain code, and (ii) application of complete parameterizable models via
the GUI. The latter application level is open for non-expert users. With this compromise, the
requirement of simple accessibility to researchers of different scientific background is satisfied.
Furthermore, model handling and operation is strongly facilitated by the design of the SITE
GUI, which provides two 3-dimensional views on the simulation grid. All attributes of a case
study grid can be displayed. With these features, the GUI is also capable of supporting model
development since it can give rapid feedback through its configurable views. A high commu-
nicability of simulation results is provided. Although the SITE GUI does not directly support
definition of rules like other frameworks, that e.g. provide a graphical interface for the defini-
tion of rules (Costanza et al., 1998) or model component assembly (Filippi and Bisgambiglia,
2004), it is open for further development in that direction. Another innovative contribution to
usability is the automated logging of simulation and model settings for every simulation run,
which guarantees reproducible results combined with minimum administration efforts.

Much effort was laid on the architectural design of the SITE framework. The system archi-

47

6. Discussion

tecture was developed with respect to the requirements posed for integrative tools. The SITE
component design is based on a study by Endejan (2003), who developed a system architecture
for integrated simulation-based assessment of global change, emphasizing the advantages of
a component-based approach. In fact, recent developments in integrated modeling show that
there is a trend toward model encapsulation into components (He et al., 2002; Argent, 2004).
Compared to the architecture proposed by Endejan (2003), the SITE architecture represents
an advancement with respect to land-sue modeling in the context of interdisciplinary projects.
Due to the target of usability, the design is more compact, as several components have been
merged (e.g. documentation and simulation-specific components), while on the other side ad-
ditional components were introduced, based on the set of scientific and technical requirements
(e.g. calibration, model test, simulation environment and dynamics components).

In contrast to other publications available on land-use modeling frameworks, this study
stresses the importance of a well designed architecture, accurate implementation and the
overall software development process for the final system. These technical aspects ensure that
the framework can be successfully applied for modeling applications while at the same time
being open for further developments in both information and land-use change research. A long
term availability of the SITE framework for land-use modeling applications can be expected.

The development of SITE included a couple of innovations in the field of land-use modeling.
In particular, however, it was the combination of these features that made SITE an innovative
and valuable tool for land-use modeling. As it enables flexible integration of models, including
the implementation of feedback loops, together with a generic platform for the formulation of
land-use models it is a flexible integrative tool in interdisciplinary land-use modeling projects
and an advancements to existing solutions. In addition, it is the only comprehensive approach
so far available (see Table 2.1). The underlying architecture ensures expandability of the
system and the integration of new functionality, thus enabling long-term usage.

48

7. Conclusions and outlook

In this study, the design and implementation details of SITE were introduced and discussed
with respect to their contribution to research on land-use dynamics. SITE was planned as an
integrative tool for interdisciplinary search projects. This application scenario implied a number
of specific requirements, among which the capability of integration was the most important one.
Besides that, additional requirements could be identified, e.g. generic applicability, integration
of calibration and model test functionality or high usability of the system and communicability
of simulation results. A review of existing modeling frameworks revealed that none of them
could match all of our requirements. Particular emphasis during the implementation was laid
on a component-based architecture and use of the object-oriented programming paradigm. The
system was designed to be expandable, thus enabling long-term usability and the possibility
to integrate further developments.

To allow model integration, a generic interface for the coupling of models was implemented.
This interface enables the feedback of modeling results to the calling instance. In addition,
it supports parallel processing, provided that this is allowed by the modeling methodology. In
addition to the model coupling interface, integration of sub models is also possible at the level
of the SITE application scripting language.

SITE provides a generic modeling platform by separating general modeling functionality
from the specification of actual model semantics (modeling applications). For the implemen-
tation of modeling applications, SITE resembles and enhances the concept of domain-specific
languages by using an established and widely used scripting language (Python) for the actual
implementation of land-use models. The functionality of the scripting language was extended
to match land-use modeling requirements. With this approach, no fixed guidelines for spe-
cific modeling methodology are made, thus providing a maximum of flexibility. Integration of
models is possible in this generic context.

Unlike other land-use modeling frameworks, SITE integrates functionality to automatically
calibrate models. Calibration in SITE is understood as finding an optimal or adequate solution
for a freely definable parameter set based on an objective function that is provided via a
SITE component housing a collection of map comparison algorithms. Typically, calibration
is performed using historical land-use maps as reference. The SITE calibration component is
designed to contain an arbitrary number of optimization algorithms that can be freely combined
with map comparison algorithms acting as objective function. The system design also include
all integrated models simultaneously in the calibration process.

SITE implements an explicit representation of quantified scenarios. Model semantics and
scenario data are two separate instances, thus simulations can be performed based on an
arbitrary combination of model and scenario. Scenarios in SITE are handled interactively. It
is possible to stop a simulation run at a predefined step and to evaluate if simulation targets
are likely to be reached. Depending on the outcome of that analysis, it is possible to edit
scenario parameters (e.g. management parameters). Thus, interaction of policy makers can
be simulated. Conceptually, interactive scenarios establish a feedback loop to the model driving
forces. This way, a major limitation in the field of scenario analysis could be overcome.

49

7. Conclusions and outlook

Although model development requires programming knowledge, SITE is open to be used by
scientists from a wide variety of disciplines as it can be operated via a graphical user interface.
It is also possible to expose the parameterization of a model via the GUI, enabling users to
simply change parameters without having to edit the model code. All changes made by users
via the SITE GUI are automatically recorded, thus guaranteeing reproducibility of simulation
results.

The SITE framework was designed to overcome limitations of previous approaches. The
entirety of innovations make it a valuable tool in the interdisciplinary field of land-use modeling,
especially due to its high degree of integration it provides for components of the land system.
SITE has been applied in case studies in the context of the collaborative research center
“Stability of Rainforest Margins in Indonesia” (STORMA, SFB 552). At present, applications
for an Indian and a Mongolian region are being developed.

In its current state, the SITE model has proven to be a valuable tool in the field of land-
use modeling. In addition to the case studies described in this thesis, SITE is already being
applied in other research projects, e.g. for regional land-use modeling in Mongolia (“Integrated
Water Resource Management for Central Asia: Model Region Mongolia”, http://www.iwrm-
momo.de) and India.

Nonetheless, there is large potential for further developments and improvements. Since
SITE has been designed expandable, users can expect to be able to rapidly take advantage
from new developments, while at the same time long-term usability is ensured. New features
that are currently being implemented are a closer coupling to databases and the integration
of tools supporting the analysis of simulation results. Mid- to long-term improvements could
be e.g. the establishment of a graphical model builder on top of the SITE scripting language
or the integration of parameterizable model building blocks.

Besides the large number of imaginable developments and improvements on the SITE system
side, the framework will play an important role in the development of a generalized regional
land-use model that is applicable and parameterizable for a variety of world regions. The
development of a generalized regional land-use model is a long-term task due to a large
number of remaining open research questions. SITE can support this process significantly by
providing the ideal platform for development, analysis and test of model prototypes.

50

Bibliography

Alcamo, J., Leemans, R., Kreilemann, E., 1998. Global Change Scenarios of the 21st Century
— Results from the IMAGE 2.1 model. Elsevier Science. Oxford.

Alcamo, J., Endejan, M., Kaspar, F., Rosch, T., 2001. The GLASS model: a strategy for
quantifying global environmental security. Environmental Science and Policy, 4, 1-12.

Alcamo, J., Kok, K., Busch, G., Priess, J.A., 2006. Searching for the Future of Land: Scenarios
from the Local to Global Scale. In: Lambin, E.F., Geist, H.J. (eds). Land-Use and Land-
Cover Change. pp 137-155. Springer.

Argent, R.M., 2004. An overview of model integration for environmental applications — com-
ponents, frameworks and semantics. Environmental Modelling & Software, 19, 219-234.

Balzert, H., 2000. Lehrbiicher der Informatik. Bd.1. Software-Entwicklung: Lehrbuch der
Software-Technik. Spektrum, Akad. Verlag. Heidelberg, Berlin.

Boumans, R.M., Villa, F., Costanza, A., Voinov, A., Voinov, H., 2001. Non-spatial calibrations
of a general unit model for ecosystem simulations. Ecological Modelling, 146, 17-32.

Brovkin, V., Ganopolski, A., Claussen, M., Kubatzki, C., Pethoukov, V., 1999. Modelling
climate response to historical land cover change. Global Ecology and Biogeography, 8,
509-517.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1998. Pattern-orientierte
Software-Architektur: Ein Pattern-System. Addison-Wesley-Longman. Bonn, Paris.

Charney, J., Stone, P.H., 1975. Drought in the Sahara: A biogeophysical feedback mechanism.
Science, 187, 434-435.

Chen, M., Norman, R.J., 1992. A framwork for integrated CASE. IEEE Software, 9, 18-22.

Clark, J.D., 1992. Modeling and simulating complex spatial dynamic systems: a framework
for application in environmental analysis. Simulation Digest, 21, 9-19.

Costanza, R., Duplisea, D., Kautsky, U., 1998. Ecological modeling and economic systems
with STELLA. Ecological Modelling, 110, 1-4.

De Vasconcelos, M., Zeigler, B., 1993. Discrete-event simulation of forest landscape response
to fire disturbance. Ecological Modelling, 65, 177-198.

Endejan, M., 2003. Entwicklung einer Software-Architektur fir Systeme zum integrierten
simulationsbasierten Assessment des globalen Wandels. PhD thesis. University of Kassel.
Kassel, Germany.

51

Bibliography

Engelen, G., Geertman, S., Smits, P., Wessels, C., 1999. Dynamic GIS and Strategic Physical
Planning: A Practical Application. In: Stillwell, J., Geertman, S., Openshaw, S. (eds).
Geographical Information and Planning. Advances in Spatial science. Springer.

Fall, A., Fall, J., 2001. A domain-specific language for models of landscape dynamics. Eco-
logical Modelling, 141, 1-18.

FAO, UNEP (ed), 1999. Terminology for Integrated Resources Planning and Management.
Food and Agriculture Organization / United Nations Environmental Programme. Rome,
Italy / Nairobi, Kenia.

Farooqui, K., Logrippo, L., Meer, J.de, 1995. The ISO Reference Model for open distributed
processing: an introduction. Computer Networks and ISDN Systems, 2, 1215-1229.

Filippi, J.-B., Bisgambiglia, P., 2004. JDEVS: an implementation of a DEVS based formal
framework for environmental modelling. Environmental Modelling & Software, 19, 261-274.

Frelich, L.E., Lorimer, C.G., 1991. A simulation of landscape-level stand dynamics in the
northern hardwood region. Journal of Ecology, 79, 223-234.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley. Boston, San Francisco, USA.

Gao, Q., 1996. Dynamic modeling of ecosystems with spatial heterogeneity — A structured
approach implemented in Windows environment. Ecological Modelling, 85, 241-252.

GLP, (ed), 2005. Science Plan and Implementation Strategy. IGBP Report No. 53 / IHDP
Report No. 19. IGBP Secretariat, Stockholm.

He, H.S., Larsen, D.R., Mladenoff, D.J., 2002. Exploring component-based approaches in
forest landscape modeling. Environmental Modelling & Software, 17, 519-529.

Heistermann, M., Miiller, C., Ronneberger, K., 2006. Land in sight? Achievements, deficits
and potentials of continental to global scale land-use modeling. Agriculture, Ecosystems &
Environment, 114, 141-158.

Houghton, R.A., Boone, R.D., Melillo, J.M., Palm, C.A., Woodwell, G.M., Myers, N., Moore,
B., Skole, D.L., 1985. Net flux of carbon dioxide from tropical forest in 1980. Nature, 316,
617—-620.

lrwin, E.G., Geoghegan, J., 2001. Theory, data, methods: developing spatially explicit eco-
nomic models of land use change. Agriculture, Ecosystems & Environment, 85, 7-23.

Klenner, W., Kurz, W.A., Webb, T.M., 1997. Projecting the spatial and temporal distribution
of forest ecosystem characteristics. In: Proceedings GIS 97. pp 418-421. GIS World Inc.,
Ft. Collins, Colorado, USA.

Klug, W., Graziani, G., Grippa, G., Pierce, D., Tassone, D., 1992. Evaluation of long range
atmospheric transport models using environmental radioactivity data from the Chernobyl
accident: The ATMES report. Elsevier. London, UK.

52

Bibliography

Krauchi, N., 1995. Application of the model FORSUM to the Solling spruce site. Ecological
Modelling, 83, 219-228.

Kuhl, F., Weatherly, R., Dahmann, J., 1999. Creating Computer Simulation Systems: An
Introduction to the High Level Architecture. Prentice Hall PTR. Upper Saddle River, NJ,
USA.

Kuhnert, M., Voinov, A., Seppelt, R., 2005. Comparing Raster Map Comparison Algorithms
for Spatial Modeling and Analysis. Photogrammetric Engineering & Remote Sensing, 71,
975-984.

Lambin, E.F., Rounsevell, M.D.A., Geist, H.J., 2000. Are agricultural models able to predict
changes in land-use intensity? Agriculture, Ecosystems & Environment, 82, 321-331.

Lambin, E.F., Geist, H.J., Rindfuss, R.R., 2006. Local processes with global impacts. In:
Lambin, E.F., Geist, H.J. (eds). Land-Use and Land-Cover Change. pp 1-8. Springer.

Lindenschmidt, K.E., Rauberg, J., Hesser, F.B., 2005. Extending uncertainty analysis of a
hydrodynamic-water quality modelling system using high-level architecture (HLA). Water
Quality Research Journal of Canada, 40, 59-70.

Lorek, H., Sonnenschein, M., 1998. Object-oriented support for modelling and simulation of
individual-oriented ecological models. Ecological Modelling, 108, 77-96.

Maxwell, T., Costanza, R., 1997. A language for modular spatio-temporal simulation. Eco-
logical Modelling, 103, 105-113.

Mendelsohn, R., Dinar, A., 1999. Climate change, agriculture and developing countries: does
adaptation matter? World Bank Research Observer, 14, 277-293.

Mimler, M., Priess, J.A., 2007. An automated rule set calibration procedure for spatially
explicit land-use change modelling. Submitted to Environmental Modelling and Software.

Minar, N., Burkhart, R., Langton, C., Askenazi, M., 1996. The Swarm simulation system: A
toolkit for for building multi-agent simulations. http://www.swarm.org.

Mladenoff, D.J., Host, G.E., Boeder, J., Crow, T.R., 1996. Landis: a spatial model of forest
landscape disturbance, succession and management. In: Goodchild, M., Steyaert, L.T.,
Parks, B.O. (eds). GIS and Environmental Modelling. pp 175-179. GIS World Books.

Oliva, R., 2003. Model calibration as a testing strategy for system dynamics models. European
Journal of Operations Research, 151, 552-568.

OMG, (ed), 1999. OMG Unified Modeling Language - Specification V.1.3 (June 1999). Object
Mangement Group.

Ottermann, J., 1974. Baring high-albedo soils by overgrazing: A hypothesized desertification
mechanism. Science, 86, 531-533.

Oxley, T., Mclntosh, B.S., Winder, N., Mulligan, M., Engelen, G., 2004. Integrated modelling
and decision-support tools: a Mediterranean example. Environmental Modelling & Software,
19, 999-1010.

53

Bibliography

Parton, W.J., Hartman, M., Ojima, D., Schimel, D., 1998. DAYCENT and its land surface
submodel: description and testing. Global and Planetary Science, 19, 35-48.

Percivall, G. (ed), 2002. The OpenGIS Abstract Specification — Topic 12: OpenGIS Service
Architecture. Open Geospatial Consortium. Wayland, MA, USA.

Pontius, R.G.Jr., 2000. Quantification Error Versus Location Error in Comparison of Categorial
Maps. Photogrammetric Engineering & Remote Sensing, 66, 1011-1016.

Pontius, R.G.Jr., 2002. Statistical Methods to Partition Effects of Quantity and Location Dur-
ing Comparison of Categorial Maps at Multiple Resolutions. Photogrammetric Engineering
& Remote Sensing, 68, 1041-1049.

Pontius, R.G.Jr., Pacheco, P., 2004. Calibration and validation of a model of forest disturbance
in the Western Ghats, India 1920-1990. GeolJournal, 61, 325-334.

Pontius, R.G.Jr., Schneider, L.C., 2001. Land-cover change model validation by an roc method
for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment,
85, 239-248.

Pontius, R.G.Jr, Cornell, J.D., Hall, C.A.S., 2001. Modeling the spatial pattern of land-use
change with GEOMOD2: application and validation for Costa Rica. Agriculture, Ecosystems
& Environment, 85, 191-203.

Pontius, R.G.Jr., Boersma, W., Castella, J.-C., Clarke, K., De Nijs, T., Dietzel, C.,
Zengquiang, D., Fotsing, E., Goldstein, N., Kok, K., Koomen, E., Lippitt, C.D., McConnell,
W., Pijanowski, B., Pithadia, S., Sood, A.M., Sweeney, S., Trung, T.N., Veldkamp, A.T.,
Verburg, P., 2007. Comparing the input, output, and validation maps for several models of
land change. Annals of Regional Science, in press.

Power, C., Simms, A., White, R., 2001. Hierarchical fuzzy pattern matching for the regional
comparison of land use maps. International Journal of Geographical Information Science,
15, 77-100.

Priess, J.A., Mimler, M., Klein, A.-M., Schwarze, S., Tscharntke, T., Steffan-Dewenter, |.,
2007. Linking deforestation scenarios to pollination services and economic returns in coffee
agroforestry systems. Ecological Applications, 17, 407-417.

Pullar, D., 2004. SimuMap: a computational system for spatial modelling. Environmental
Modelling & Software, 19, 235-243.

Rahman, J.M., Seaton, S.P., Cuddy, S.M., 2004. Making frameworks more usable: using model
introspection and metadata to develop model processing tools. Environmental Modelling &
Software, 19, 275-284.

Sagan, C., Toon, O.B., Pollack, J.B., 1979. Anthropogenic albedo changes and the Earth'’s
climate. Science, 206, 1363-1368.

Sala, O., Chapin, F., Armesto, J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E.,
Huenneke, L., Jackson, R., Kinzig, A., Leemans, R., Lodge, D., Mooney, H., Oesterheld,
M., Poff, N., Sykes, M., Walker, B., Walker, M., Wall, D., 2000. Biodiversity - global
biodiversity scenarios for the year 2100. Science, 287, 1770-1774.

54

Bibliography

Schiirmann, G., 1995. The evolution from open systems interconnection (OSI) to open dis-
tributed processing (ODP). Computer Standards & Interfaces, 17, 107-113.

Schulze, T., Strassburger, S., Klein, U., 1999. Migration of the HLA into civil domains:
Solutions and prototypes for transportation applications. Simulation, 73, 296-303.

Snyder, J.P., 1987. Map Projections — A Working Manual. U.S. Geological Survey Professional
Paper 1395. United States Government Printing Office. Washington, D.C., USA.

STORMA, (ed), 2003. Stability of Rainforest Margins. Application for continued funding of
the SFB 552. University of Gottingen. Gottingen, Germany.

Straatman, B., White, R., Engelen, G., 2004. Towards an automatic calibration procedure for
constrained cellular automata. Computer, Environment and Urban Systems, 28, 149-170.

Van Delden, H., Luja, P., Engelen, G., 2007. Integration of multi-scale dynamic spatial
models of socio-economic and physical processes for river basin management. Environmental
Modelling & Software, 22, 223-238.

Veldkamp, A., Lambin, E.F., 2001. Predicting land-use change. Agriculture, Ecosystems &
Environment, 85, 1-6.

Villa, F., Costanza, R., 2000. Design of multi-paradigm integrating modelling tools for eco-
logical research. Environmental Modelling & Software, 15, 169-177.

Voinov, A., Costanza, R., Wainger, L.A., Boumans, R., Villa, F., Maxwell, T., Voinov, H.,
1999. Patuxent landscape model: integrated ecological economic modeling of a watershed.
Environmental Modelling & Software, 14, 473-491.

Weimar, J.R., 1997. Simulation with cellular automata. Logos Verlag. Berlin, Germany.

Wenderholm, E., 2005. Eclpss: a Java-based framework for parallel ecosystem simulation and
modeling. Environmental Modelling & Software, 20, 1081-1100.

White, R., Engelen, G., 1997. Cellular automata as the basis of integrated dynamic regional
modelling. Environment and Planning B — Planning and Design, 24, 235-246.

White, R., Engelen, G., 2000. High-resolution integrated modelling of the spatial dynamics of
urban and regional systems. Computer, Environment and Urban Systems, 24, 383-400.

White, R., Engelen, G., Uljee, I., 1997. The use of Constrained Cellular Automata for high-
resolution modelling of urban land-use dynamics. Environment and Planning B — Planning
and Design, 24, 323-343.

Wolf, J., Bindraban, P.S., Luijten, J.C., Vleeshouwers, L.M., 2003. Exploratory study on the
land area required for global food supply and the potential global production of bioenergy.
Agricultural Systems, 76, 841-861.

Woodwell, G.M., Hobbie, J.E., Houghton, R.A., Melillo, J.M., Moore, B., Peterson, B.J.,
Shaver, G.R., 1983. Global deforestation: Contribution to atmospheric carbon dioxide.
Science, 222, 1081-1086.

55

A. System /application domain interface documentation

The SITE system/application domain interface is technically realized by extending the Python
scripting language used to implement SITE application rule sets to also include the specific
data structures used by SITE to represent the simulation environment. In the following a
detailed reference on the language extensions established is provided. Three groups of objects
can be discriminated: Object directly passed to the application domain by the application,
objects that are managed by those passed objects and are made accessible, and object that
can be instantiated independently in the application domain. To enhance readability of Python
application rule sets, the Python classes and class methods do not necessarily have the same
name as their C++ counterparts which in some cases might appear rather cryptic.

Base objects passed to the SITE application domain

These are the instances of the classes Grid and Dyninfo that are the arguments of the basic
Python functions Initialize() and SimulationStep() which are called by the SITE system do-
main. Both instances provide access to a number of other objects, representing simulation
data structures (Grid object as representative of static aspects in a simulation) and dynamic
components (Dyninfo object).

Methods of class Grid

Method Arguments Return value
GetSizeX() Number of grid columns
GetSizeY() Number of grid rows
SetGeoreferene() Upper left x and y coordinate

Cell resolution
GetCell() x/y-coordinates Cell object
GetAttr() Attribute name Attribute object
ApplyAttrChanges()
SetlnitState()
CreateClusterLayer() Layer name Layer object
GetClusterLayer() Layer name Layer object

The Python Grid class is a representation of the underlying simulation grid one the appli-
cation side. It provides access to all necessary data structures that can be manipulated by a
rule set developer. Beside the simulation grid itself such data structures are single cells (ac-
cessible by their grid coordinates), attribute descriptor objects (accessible by attribute name)
and thematic layer objects (also accessible by their name). The grid itself only offers limited
possibilities of manipulation. Application can specify their location using the SetReorefer-
ence() method. With the methods ApplyAttrChanges() and SetlnitState() attribute values

56

A. System/application domain interface documentation

for all grid cells can be influenced directly. The first method forces all attribute values that
are subject to change to actually change their values (the C++ counterpart of this method
is called automatically after each simulation step), the latter one changes all attribute values
to their initial value (i.e. their value at time of their creation) and thus can be regarded as a
reset of the simulation grid.

Methods of class Dyninfo

Method Arguments Return value
CreateExternModel() Model name Extern model object
SetScenario()

GetScenario()

SetTimeSeriesExportPath() Path

ExportTimeSeries() Attribute name

The Dyninfo objects basically serves as carrier for objects dealing with dynamic aspects of a
simulation run. It provides access to objects representing external models (method CreateEx-
ternModel()), model drivers (scenarios) and simulation time-dependent output (time series).

Objects accessible via base objects

Classes described in this paragraph provide the access to selected parts of the underlying
modeling data structures. All instances of these classes are created by the SITE system
domain and are accessed through the Grid and Dyninfo objects passed to the application
script entry functions. It is not possible to instantiate these classes on the application side.

Methods of class Cell

Method Arguments Return value
HasAttr() Attribute name TRUE or FALSE
SetAttr() Attribute name

Attribute value

Immediate effect flag
SetAttrNoData() Attribute name

Immediate effect flag

IsAttrNoData() Attribute name TRUE of FALSE
GetAttr() Attribute name Attribute value

X() Cell x coordinate
Y() Cell y coordinate

Cell objects are representatives of single grid cells. Methods of the cell class entirely deal
with the access and the altering of cell attribute values, where the location access methods X()
and Y() are wrappers of the GetAttr() function accessing the cell coordinates. Cell attributes
can be of value NODATA (represented by -9999 to be compliant with standard GIS software).
This value can be checked and set by specific methods (/sAttrNoData() and SetAttrNoData()).

57

A. System /application domain interface documentation

All methods that set an attribute value require a so called immediate effect flag of boolean
type as argument. By evaluating this flag, the method triggers whether a new attribute value
is valid directly after its termination. In case of the immediate effect flag being of value FALSE,
the new attribute value will be set after a call to the Grid method ApplyAttrChanges() or its
C++ counterpart in the system domain.

All Cell objects are contained by the Grid object which provides a method to access them
by specifying their coordinates. However, the usual way to access grid cell is to use one of the
different iterator objects described below.

Methods of class Attr

Method Arguments Return value

SetColor() Category number
8bit value for red portion
8bit value for green portion
8bit value for blue portion
Category name
SetRandomColor()
InitHistogram() Value of lowest histogram class

Histogram class width

Class Attr provides meta data on cell attributes. Its C++ counterpart is the class AttrDscr
(component SmitnEnvironment). For each attribute available, the respective instance can be
retrieved yb specifying the attribute's name. The interface of this class deals with attribute
statistics and special configurations for category attributes (especially land use classes). These
latter configurations mainly serve visualization purposes. By default, attribute values are
assumed to be continuous and visualized using a color gradient from green (lowest value) to
red (highest value). For category attributes it is advisable though not technically required to
assign colors and category names to the different attribute values that can occur. This is done
using the member function SetColor().

Histograms are created and kept up to date for each attribute as part of the attribute
statistics. Without explicit configuration using method InitHistogram(), the system assumes
that histograms have a minimum class of value 0 and a class width of 1. Using these two
parameter as method arguments, histograms for selected attributes can be customized.

Methods of class Layer

Method Arguments Return value
ClusterByEqualAttrValue() Configurable cluster algorithm object
ClusterByClasses() Configurable cluster algorithm object
ClusterConditional() Configurable cluster algorithm object
DoClustering()

GetClstr() Cluster ID Cell cluster object

Class Layer, instances of it accessible via the Grid object by a unique name, provides func-

58

A. System/application domain interface documentation

tionality to aggregate similar grid cells to cell clusters (objects of class Clstr). The definition
of similarity depends on the application and needs to be done by the rule set developer. The
SITE framework provides three different algorithms to define similarity and assign grid cell to
cell clusters. Objects representing these clustering algorithms can be accessed through a Layer
object with the methods ClusterByEqualAttrValue(), ClusterByClasses() and ClusterCondi-
tional(). These objects provide specific interfaces to configure the represented algorithms.
Calling the DoClustering() method starts the actual clustering process based on the underly-
ing clustering rules and is used for both initial clustering and cluster update.

Existing cell clusters can be accessed with method GetClstr() by specifying the unique 1D
assigned during the clustering process. However, cell clusters of a thematic layer are typically
traversed using a specific iterator (see below).

Methods of class Clstr

Method Arguments Return value
GetSignature() Unique integer value assigned to the cell cluster
GetBestCell() Cell that is representative for the cell cluster

The actual cell clusters are represented by class Clstr. The interface provides access to the
unique cluster id and a grid cell that is representative for the cluster.

Methods of class ClstrAlgorithmEqualAttrVal

Method Arguments Return value

SetClusterAttr() Attribute name

This cluster algorithm aggregates all grid cells that have the same value for the attribute
specified by method SetClusterAttr(). To ensure that the algorithm works properly, only
categorial attributes should be used. In the resulting cell clusters, the category value is used
as the unique cluster ID.

Methods of class CistrAlgorithmClassify

Method Arguments Return value

CreateClasses() Attribute name
Minimum class
Maximum class
Class width
Flag: TRUE for categorial values, otherwise FALSE

This cluster algorithm performs the aggregation of grid cells based on classification rules
specified by method CreateClasses(). An arbitrary number of attributes can be used. Therefore
this method needs to be called repeatedly passing the respective attribute name and classifi-
cation information. It is also possible to define classification schemes for one attribute that do
not have equal class spacing. To do this, the CreateClasses() method can be called repeatedly

59

A. System /application domain interface documentation

using the same attribute name, but different values for class minimum, class maximum and
class width.

Methods of class ClstrAlgorithmConditional

Method Arguments Return value

CreateClasses() Node ID
Attribute name
Minimum class
Maximum class
Class width
Flag: TRUE for categorial values, otherwise FALSE
AddConditionXXX() Node ID
Attribute name
Comparison value
AddConditionElse() Node ID
GoToNode() NodelD

This classification algorithm is similar to the previous one (ClstrAlgorithmClassify) since
it allows the specification of classification schemes. Additionally, it gives the possibility to
define additional classification paths if a cells gets a specific classification. Therefore it allows
to define condition s using the family of AddConditionXXX() methods (conditions available
are: equality, greater than, less than, inequality). Using the algorithm interface, the rule
set developer creates a conditional tree structure consisting of classifications and subsequent
conditional nodes. Each is assigned a unique node ID. The method GoToNode() is used to
access a specific conditional node.

Methods of class Scno

Method Arguments Return value
QueryPart() Time series name Scenario value
Key 1
Key n

GetParameter() Parameter name Parameter value

An object of class Scno represents a scenario used for a SITE simulation run. To combine
a rule set to be executed with a scenario is obligatory. Using method QueryPart(), the rule
set developer can access scenario time series, where the part name is the name of database
table holding the respective time series data. To get the correct value, a unique key must be
specified (e.g. composed of simulation step, district ID, etc). The method returns a value
of type double, which is the scenario value stored in the underlying database table for the
given key. Independent rule set parameters that are part of a scenario are accessed using the
GetParameter() method by specifying their name.

60

A. System/application domain interface documentation

Methods of class ExternModel

Method Arguments Return value

SetInputVariable() Variable name
SetOutputVariable() Variable name
SetlnputVrblValues() Cell object

InitCalculation() Job ID
SetRefCellld() ID of cell for which model is invoked
Setlnfo() Information contained in string
SetIntermediate() Flag defining intermediate model behavior
Configure()
Execute()
HasResult() Job ID TRUE or FALSE
GetResult() Parameter name Result value
Job ID
CleanUp()

The ExternModel class exposes the functionality to establish, configure and run calculation
of simulation data using a third-party sub model. Calculations are based on single cells. The
interface is identical to the external model interface introduced in section 5.5. Since th SITE
sub model interface is designed to integrate point models and process modeling job parallelized
if more than one server instance is available, it is necessary to first configure all job before
starting the actual processing using the Execute() method. Execute() returns after all jobs
have been processed. At this point, all results are stored in the ExternModel object and can
be accessed via the GetResult() method by specifying the respective job IDs.

Iterators

The SITE Python language extensions also include a number of classes that can be instantiated
directly inside an application rule set script. Such objects are basically helpers to access specific
parts of the underlying simulation infrastructure like iterators or algorithms that could be as
well implemented as part of the application script but are significantly more efficient that way.
Those algorithms are referred to as update operations.

All iterator classes expose the same interface providing a method Frst() to set the iterator
to the first element of the underlying set, a method Next() to step to the next (valid) element
and a method Cont() which can be used to check whether all elements have been traversed or
not. These methods can be included in the standard python while loop. The current element
of the set being traversed can be accessed using the method Crnt(). However, instances of
the exposed iterator classes cannot be used in Python for loops. In contrast to the C/C++
for statement, the Python counterpart requires a traversable collection of objects that fulfill
the Python standard of iterators. Python has its own concept of iterators which uses a special
exception thrown as soon as the traversal is complete. This concept is not compliant with
iterators in C++. Therefore it is recommendable to wrap the exposed classes by iterator
classes programmed in Python to match the Python requirements and thus enable the use of
iterators in Python for loops.

61

A. System /application domain interface documentation

Methods of class Gridltr

Method Arguments Return value

Constructor Grid object to traverse

Frst()

Next()

Cont() TRUE or FALSE
Crnt() Cell object

One basic procedure in application rule sets is to traverse all cells of the underlying simulation
grid and perform operations on them. The Gridltr (grid iterator) class provides the functionality
to traverse the simulation grid. To create an iterator object, the Grid object as representative
for the simulation grid needs to be passed to the constructor.

Methods of class CellNghbltr

Method Arguments Return value

Constructor Center cell object

Grid object
Frst()
Next()
Cont() TRUE or FALSE
Crnt() Cell object

The CellNghbltr (cell neighbor iterator) class implements functionality to iterate over all
direct neighbor cells of a specified center cell. Since Moore neighborhood is assumed, the
collection to be traversed consists of at eight grid cells at most depending on the location of
the center cell in the simulation grid.

Methods of class Layerltr

Method Arguments Return value

Constructor Layer object

Frst()

Next()

Cont() TRUE or FALSE
Crnt() Clstr object

This iterator traverses all Clstr (cell aggregate) objects of a previously defined thematic

layer. To create an object of this class, the Layer object housing the requested cell clusters
has to be passed to the constructor.

62

A. System/application domain interface documentation

Methods of class Clstrltr

Method Arguments Return value

Constructor ~ Clstr object

Frst()

Next()

Cont() TRUE or FALSE
Crnt() Cell object

Cell clusters as collections of similar cells are traversed using the iterator class Clstrltr.
The cluster object of interest is the argument passed to the constructor upon iterator object
creation.

Update operations

Update operations are operations applied to all cell of the simulation grid of a simulation.
Although they could as well be implemented on the application side using the Python language,
it is favorable to create respective language extensions due to performance reasons. This way,
high performance C++ code is invoked from Python. The SITE system provides two such
operations.

Methods of class UpdtOprtnNghbCount

Method Arguments Return value

Constructor Target attribute name
Source attribute name
Condition value

SetTargetAttr() Attribute name

SetSourceAttr() Source attribute name
SetConditionVal() Condition value
Execute() Grid object

This update operation calculates the number of neighbor objects fulfilling a specific criterion
for each object on the simulation grid. The criterion is specified by defining a target attribute
and an appropriate attribute value. The number of neighbors that meet this criterion is stored
in the source attribute. An example would to calculate the number of neighbor cells of land use
class water for each cell. Configuration can either be done by passing these three arguments to
the constructor or by calling the single configuration methods provided by the class interface.
The actual calculation is started with the Execute() method.

Methods of class UpdtOprtnDistCalc

Method Arguments Return value

Constructor Target attribute name

(continued on next page)

63

A. System /application domain interface documentation

Methods of class UpdtOprtnDistCalc — continued

Method Arguments Return value

Reference attribute name

Source attribute name

Condition value
SetTargetAttr() Attribute name
SetSourceAttr() Source attribute name
SetReferenceAttr() Reference attribute name
SetConditionVal() Condition value
Execute() Grid object

Using this update operation it is possible to calculate for each grid cell the distance to the
closest grid cell fulfilling a specific criterion (e.g. the distance to the closest cell of land use
class water). | addition the algorithm sets the cell ID of the closest cell as second attribute
value. In the nomenclature of this update operation, the calculated distance is referred to as
the target attribute while the ID of the closest cell is the reference attribute. The criterion
after which it is decided to which cells the distance is calculated is defined by specifying a
source attribute together with a condition value. The underlying algorithm is of complexity
O(n) and thus also works efficiently on large simulation grids.

64

University of Kassel . Center for Environmental Systems Research
Kurt-Wolters-StraBe 3 . 34125 Kassel . Germany

Phone +49.561.804.3266 . Fax +49.561.804.3176
cesr@usf.uni-kassel.de . http://www.usf.uni-kassel.de

	Contents
	1 Introduction
	2 Requirements
	3 System design features
	3.1 Aspects of sotware quality
	3.2 Separation of implementation and application

	4 System architecture
	4.1 Existing standards and architectures for integrated modeling
	4.2 SITE system domain architecture

	5 Implementation of the SITE system domain components
	5.1 System core engine
	5.1.1 Simulation environment
	5.1.2 Simulation dynamics
	5.1.3 Summary

	5.2 Model calibration and model testing components
	5.3 Clients
	5.3.1 Graphical user interface
	5.4 Import/export, database connectivity
	5.5 Integration of third-party models
	5.5.1 Client side
	5.5.2 Server side

	5.6 Extendibility and portability issues

	6 Discussion
	7 Conclusions and outlook
	Bibliography
	A. System/application domain interface documentation

