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Constitutive modeling of nonlinear
reversible and irreversible
ferromagnetic behaviors and
application to multiferroic composites

Artjom Avakian and Andreas Ricoeur

Abstract
The coupling of magnetic and mechanical fields due to the constitutive behavior of a material is commonly denoted as
magnetostrictive effect. The latter is only observed with large coupling coefficients in ferromagnetic materials, where
coupling is caused by the rotation of the domains as a result of magnetic (Joule effect) or mechanical (Villari effect) loads.
However, only a few elements (e.g. Fe, Ni, Co, and Mn) and their compositions exhibit such a behavior. In this article,
the constitutive modeling of nonlinear ferromagnetic behavior under combined magnetomechanical loading as well as
the finite element implementation is presented. Both physically and phenomenologically motivated constitutive models
have been developed for the numerical calculation of principally different nonlinear magnetostrictive behaviors. On this
basis, magnetization, strain, and stress are predicted, and the resulting effects are analyzed. The phenomenological
approach covers reversible nonlinear behavior as it is observed, for example, in cobalt ferrite. Numerical simulations
based on the physically motivated model focus on the calculation of hysteresis loops and the prediction of local domain
orientations and residual stress going along with the magnetization process. Finally, a model for ferroelectric materials is
applied in connection with the physically based ferromagnetic approach, in order to predict magnetoelectric coupling
coefficients in multifunctional composite.
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Introduction

Ferromagnetic constitutive behavior and motivation

Ferromagnetic behavior has been well known and tech-
nically exploited for centuries. Although there are still
plenty of research activities in the physics community,
the principles of ferromagnetism are well understood
nowadays (Bergmann and Schaefer, 2005; Bozorth,
1951; Du Trémolet de Lacheisserie et al., 2005; Kittel,
2006; Morrish, 2001; Stefanita, 2012). For engineering
applications, the knowledge of the macroscopic mate-
rial behavior is in most cases more essential than a deep
understanding of the physics on the atomic scale.
Magnetostriction is technically exploited in actuation
systems, and there are a variety of applications for per-
manent magnetic fields emanating from poled ferro-
magnetic devices. New concepts combine ferromagnetic
and ferroelectric phases in so-called multiferroic com-
posites (Aboudi, 2001; Bibes and Barthélémy, 2008;
Buchanan, 2004; Eerenstein et al., 2007; Fiebig, 2005;

Harshe et al., 1993; Hill, 2000; Lu et al., 2011; Nan,
1994; Nan et al., 2008; Ramesh and Spaldin, 2007;
Schmid, 1994; Scott, 2007; Van Suchtelen, 1972) in
order to induce a coupling of electric and magnetic
fields.

All these applications require the knowledge of the
constitutive behavior of the employed ferromagnetic
material. Therefore, plots of the magnetic induction or
magnetization versus the magnetic field are mostly pro-
vided by manufacturing companies. The same holds for
the strain versus magnetic field curves if the material is
suitable for magnetostrictive application. However,
stress versus strain characteristics are equally
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important, however scarcely available. On top of this
comes the fact that available plots, especially for hard
magnetic materials, mostly are confined just to the
quadrant of demagnetization, lacking the full loop.

Some ferromagnetic materials exhibit a pronounced
hysteresis behavior; others show an almost reversible
nonlinear characteristic. Even two specimens with an
identical chemical composition can exhibit qualitatively
different features (Bhame and Joy, 2006, 2007, 2008;
Borgohain et al., 2010; Concas et al., 2009; El-Okr
et al., 2011; Etier et al., 2012; Feltin and Pileni, 1997;
Lee et al., 2007; Lu et al., 2007; McCallum et al., 2001;
Mohaideen and Joy, 2014; Rajendran et al., 2001; Shi
et al., 2000), depending, for example, on the milling of
the powder, the sintering conditions, or particle dia-
meters. The reason for the different behaviors is found
on the microscale of domain or Bloch walls which are
depicted in Figure 1 in connection with a typical plot
of magnetization versus magnetic field (Bergmann and
Schaefer, 2005; Bozorth, 1951; Du Trémolet de
Lacheisserie et al., 2005; Kittel, 2006; Morrish, 2001;
Stefanita, 2012). In this article, we refer just to Bloch
walls, although Néel walls are likewise observed in fer-
romagnetic materials (Bergmann and Schaefer, 2005).
The presented models are, in principle, applicable to
both kinds of domain walls. Néel walls, however, are
predominantly found in ferromagnetic thin films,
which are not in the focus of our investigations.

In Figure 2, ferromagnetic hysteresis loops in terms
of magnetization and magnetostriction versus magnetic
field are shown on the left-hand side. In the experi-
ments, specimens of Galfenol have been exposed to
combined magnetomechanical loading imposing a com-
pressive stress. In Figure 3, magnetization and engineer-
ing strain are plotted versus the magnetic field, here for
cobalt ferrite. In contrast to Figure 2, there is almost no
hysteresis behavior; in fact, the material shows nearly
reversible characteristics. However, cobalt ferrite is also

known with pronounced hysteresis behavior if exposed
to different manufacturing processes (Bhame and Joy,
2008; Borgohain et al., 2010; El-Okr et al., 2011; Etier
et al., 2012; Feltin and Pileni, 1997; Mohaideen and
Joy, 2014; Rajendran et al., 2001; Shi et al., 2000).

From the modeling point of view, it is crucial to
develop a mathematical framework describing the con-
stitutive behavior of ferromagnetic materials as accu-
rate as possible. Here, both features of reversible and
irreversible characteristics have to be covered by differ-
ent modeling approaches. In connection with a finite
element (FE) implementation based on the weak for-
mulation of balance laws, a valuable numerical tool is
available to predict the multifield behavior of so-called
smart devices and to improve their performance, for
example, the magnetoelectric coupling in a multiferroic
composite. For such applications, it is inevitable to
provide constitutive laws which are thermodynamically
consistent, holding for arbitrary combined, for exam-
ple, magnetomechanical, loading conditions.

In this article, two approaches are presented for the
constitutive modeling of ferromagnetic materials. The
one is akin to a model for ferroelectrics and is based on
microphysical considerations (Avakian et al., 2015;
Lange and Ricoeur, 2015). It takes advantage of the
fact that some aspects of ferromagnetic and ferroelec-
tric behaviors, although originating from completely
different processes on the atomic scale, show compara-
ble features on the meso- and macrolevels. In Figure 2,
ferromagnetic and ferroelectric hystereses are com-
pared. Similarities are obvious as well as differences.
The ferromagnetic curves exhibit a saturation for larger
loads, and the remanent quantities are smaller.

The other approach is purely phenomenological
starting from a thermodynamical potential and provid-
ing a reversible nonlinear behavior. Both models have
been implemented into a FE code to solve complex
boundary value problems. In this article, however, the

Figure 1. Multiscale effects, Bloch wall motion, and initial magnetization curve for a ferromagnetic material.

Avakian and Ricoeur 2537



focus is on the constitutive behavior, demonstrated at
simple bulk specimens under uni- or multiaxial magne-
tomechanical loadings. Both models will not be able to
cover the whole variety of sophisticated features of fer-
romagnetic behavior in detail, which may arise or

disappear due to slight differences in material process-
ing. The goal is rather to provide constitutive frame-
works reflecting the essential features such as
saturation, remanence, and dissipation and their depen-
dence on external loading conditions or kinematical

Figure 2. Hysteresis loops: ferromagnetic with combined magnetomechanical loading (left; Kellogg et al., 2005) and ferroelectric
with pure electrical loading (right; Chen and Tucker, 1981).

Figure 3. Magnetization and magnetostriction curves of cobalt ferrite at room temperature as a function of magnetic field for
samples sintered at different temperatures (Mohaideen and Joy, 2014).
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constraints. Finally, an applied example is shown sol-
ving the boundary value problem of a multiferroic par-
ticle composite, accounting for ferromagnetic and
ferroelectric constitutive models, yielding the magneto-
electric coupling coefficient versus the applied magnetic
field.

State of the art

Linear constitutive modeling of magnetoelasticity is still
common in the solid mechanics community and consid-
ered to be appropriate in many applications (Aboudi,
2001; Buchanan, 2004; Labusch et al., 2014; Lee et al.,
2005; Nan, 1994; Tang and Yu, 2009; Wan et al., 2003).
Analytical solutions, for example, in order to determine
effective properties of composites with magnetic consti-
tuents (Benveniste, 1995; Huang and Kuo, 1997;
Krantz and Gerken, 2013; Kuo et al., 2010; Li, 2000; Li
and Dunn, 1998), are in general only feasible if based
on a linear constitutive framework. The interpretation
of the results, however, requires the introduction of a
bias magnetic field as the center of a local tangent,
holding for sufficiently small perturbations.

A classical phenomenological approach to describe
general hysteresis behavior is based on the Preisach
(1935) model which has originally been formulated in a
scalar notation and much later been generalized within
a tensorial framework to cover multidimensional prob-
lems (Mayergoyz and Friedman, 1987). The basic idea
behind the Preisach model is that smooth hysteresis
loops as observed experimentally are actually the result
of a large number of elementary hysterons being sub-
ject to a weighted averaging. The approach has subse-
quently been applied to ferromagnetic materials (Adly
et al., 1991; Bergqvist and Engdahl, 1991; Cardelli
et al., 2004; Kádár, 1987; Restorff et al., 1990).

The Jiles-Atherton (1995) model has been developed
to specifically describe ferromagnetic hysteresis beha-
vior. Also, originally starting from a one-dimensional
formulation, more general approaches have been fol-
lowing (Bergqvist, 1996; Dapino et al., 2000). The
model holds both physical and phenomenological
aspects. Domain wall bowing and domain wall motion,
the latter impeded by defects, are distinguished to intro-
duce reversible and irreversible contributions to the
magnetization. While the irreversible losses are calcu-
lated from an energy balance, the nonlinear reversible
contribution may be formulated phenomenologically.

Statistical mechanics is applied in the Armstrong
(1997, 2003) model to calculate magnetization and mag-
netostriction. The hysteresis behavior is introduced in a
way similar to the Jiles-Atherton model by minimizing
the local internal energy in connection with a probabil-
ity density function leading to an evolution of domain
volume fractions. Energy losses are again associated
with impediments to domain wall motion, for example,
due to point defects. Applications of the model to other

ferromagnetic materials are found in Atulasimha et al.
(2007) and Evans and Dapino (2010).

A more general approach to ferroic materials has
been suggested by Smith et al. (2006). Although from
the mathematical point of view, the model is akin to the
Preisach model, assuming that the macroscopic hyster-
esis curves are the results of statistically distributed ele-
mentary hysterons, the approach has a strong physical
basis. Applied to ferromagnetic materials within a sca-
lar framework (Smith and Dapino, 2006), the hysteron
or kernel considers the exchange energy and the work
of a magnetic field on the lattice scale. Rate dependence
is introduced with Boltzmann statistics, and the total
magnetization is determined by stochastic homogeniza-
tion. Since physical effects are included in the kernel,
the hysteresis loops from the homogenized energy
model show better agreement with experiments than
those emanating from the classical Preisach model with
kernels containing simple weights or density functions.

The phase field approach, for the past 15 years hav-
ing experienced a continuous increase in popularity in
various fields of application, has also been exploited
toward modeling ferromagnetic materials (Entel et al.,
2006; Koyama, 2008; Koyama and Onodera, 2003; Lu
et al., 2009, 2011; Ma et al., 2014; Miehe and Ethiraj,
2012; Zayak et al., 2002). Based on an energy func-
tional and the Ginzburg–Landau equation, correspond-
ing to subcritical bifurcation and being derived from a
Landau–Lifshitz–Gilbert equation of motion of the
magnetization in a one-dimensional uniaxial ferromag-
net, the domain wall motion is calculated in terms of an
evolution of phase fields.

Phenomenological constitutive models, adapting
multiple empirical parameters to experimental findings,
have been developed with and without internal vari-
ables, in order to describe irreversible (Carman and
Mitrovic, 1995; Kiefer and Lagoudas, 2004; Linnemann
et al., 2009; Miehe et al., 2011a, 2011b; Xu et al., 2013)
or reversible ferromagnetic and magnetostrictive beha-
vior. Concerning models for the nonlinear reversible
behavior, being one part of this article, the simplest
extension of linearity is given by the standard square
model (Carman and Mitrovic, 1995; Wan et al., 2003;
Wan and Zhong, 2004). It is capable of describing the
symmetry of strain with respect to a change of sign in
the magnetic field and the zero gradient for vanishing
fields however fails to reproduce the saturation for
larger magnetic loads. Concerning models with satura-
tion (Wan et al., 2003), two approaches are suggested,
the so-called hyperbolic tangent (HT) model and the
density of domain switching (DDS) model. While the
HT overestimates the magnetostriction by 40%, the
DDS leads to its underestimation by up to 30%,
depending on the mechanical pre-load. In Zheng and
Liu (2005), a model is presented, which is in good agree-
ment with experimental findings; however, different
ranges of the curves are described by separate
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equations. None of these articles deals with a general
multiaxial tensorial representation of the constitutive
equations or a FE implementation within an electro-
magneto-mechanical framework. Moreover, the mate-
rial laws have specifically been developed and verified
for the behavior of Terfenol-D.

Constitutive behavior: comparison of
modeling approaches

Before presenting the modeling approaches in detail,
the constitutive frameworks of ferroelectric and reversi-
ble and irreversible ferromagnetic behaviors are sum-
marized and compared to each other. Ferroelectric
materials exposed to electromagnetic fields are
described by the following constitutive equations
(Avakian et al., 2015)

sij = cijkl ekl � eirr
kl

� �
� elijEl;

Dl = elij eij � eirr
ij

� �
+ klnEn +Pl;

irr

Bk =mkmHm:

ð1Þ

Within a microphysical framework, the irreversible
strain eirr

kl and polarization Pirr
l are due to domain wall

motion. Considering plane problems, a grain consists
of four domain species separated by 908- and 1808-
domain walls. The formulation of a nonlinear constitu-
tive law thus requires four internal variables and associ-
ated evolution equations describing the switching of
unit cells on the microlevel. Due to intended applica-
tions within a multiferroic framework, the ferroelectric
material is allocated a magnetic permeability expressed
by the third equation relating the magnetic field Hm

and the induction Bk . The elastic, piezoelectric, dielec-
tric, and magnetic permeability tensors cijkl, elij, kln,
and mkm also depend on the internal variables, giving
rise to an additional source of nonlinearity, even in the
magnetic properties. The other quantities in equation
(1) are stress sij, electric field El, and electric displace-
ment Dl.

Based on the same ideas as in equation (1), the ferro-
magnetic constitutive equations read

sij = cijkl ekl � eirr
kl

� �
,

Dl = klnEn,

Bk =mkmHm +Mirr
k :

ð2Þ

Here, irreversible strain and irreversible magnetiza-
tion Mirr

k or magnetic polarization, respectively, are
likewise governed by four internal variables describing
Bloch wall motion due to magnetomechanical driving
forces. In Figure 1, a typical domain structure of ferro-
magnetic material is depicted, showing four species in
regions 1 and 2, two of them vanishing at larger fields.
The affinity to ferroelectricity on the macro- and

mesoscales allows for a similar modeling of ferromag-
netism covering the essential phenomena. Figure 1 also
illustrates the physics on the microscale close to a Bloch
wall, featuring a continuous rotation of atomic magnets
rather than a switching of unit cells. Anyway, in the
constitutive framework, both physical processes merge
into an evolution law for the internal variables, which is
based on the magnetoelastic or electroelastic energies,
respectively, going along with the changes of the direc-
tions of magnetic or electric dipoles.

In contrast to ferroelectricity, piezomagnetic coeffi-
cients relating magnetic field and stress or strain and
magnetic induction are not involved, accounting for
the saturation depicted in Figure 2. As a second conse-
quence, the irreversible strain does not directly induce a
magnetic induction Bk . Magnetostriction is rather
induced by the irreversible part of the strain, which in
turn is controlled not only by the magnetic field but
also by mechanical loads. The same way, a strain field
has an impact on the magnetic induction via Mirr

k .
Dielectric properties are allocated by the second equa-
tion in equation (2) which is linear only at the first
glance since the dielectric constants kln are controlled
by the internal variables in a nonlinear manner.
Ferromagnetic materials exhibiting a significant electric
conductivity are excluded by the model.

While equation (2) generates hysteresis loops, the
constitutive equations of nonlinear reversible ferromag-
netic behavior are given by

_sij = cijkl ekl,Hkð Þ _ekl � qkij ekl,Hkð Þ _Hk ,

_Dl = kln eij,Hk

� �
_En,

_Bk = qkij eij,Hm

� �
_eij +mkm eij,Hm

� �
_Hm,

ð3Þ

where a rate-dependent depiction has been chosen. The
nonlinearity is completely included in the material coef-
ficients depending on the independent variables strain
and magnetic field. Due to the reversibility of the con-
stitutive behavior, these functions are unique, not
involving any internal variables. The coefficient func-
tions, now including the magnetostrictive tensor
qkij(ekl,Hk), have to be chosen in a way to reflect experi-
mental observations. A second requirement is to satisfy
thermodynamical consistency by defining a thermody-
namical potential yielding all the coefficient functions
by differentiation. These purely phenomenological
approaches involve several parameters, which are
adjusted to specific material behaviors.

Constitutive models of ferromagnetic
materials

Physically motivated ferromagnetic model

For the electro- and magnetostatic case (
_~B, _~D= 0), the

scalar electric and magnetic potentials uel and um are
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motivated from the two Maxwell equations, that is,
Faraday’s and Ampere’s Laws (Jackson, 1998). Their
gradients yield electric and magnetic fields
(Vanderlinde, 2005), just as displacements ui and strain
are related for infinitely small deformations

eij =
1

2
ui, j + uj, i

� �
, Ek = � uel

, k , Hl = � um
, l: ð4Þ

To define boundary value problems in a strict for-
mulation, the balance equation of momentum

sij, j + bi = r€ui = 0 ð5Þ

has to be considered besides the other two Maxwell
equations, that is, Gauss’ Law and Gauss’ Magnetism
Law. The quasi-static limit is prescribed neglecting iner-
tia effects and bi stands for the specific body forces.
Since free electric volume charges are assumed not to
be present in a dielectric material and volume forces are
commonly neglected (bi = 0), the balance equations
can be specified as

sij, j = 0, Dl, l = 0, Bk, k = 0: ð6Þ

Cauchy’s theorem, introducing tractions ti, is gener-
alized providing the relations

ti =sijnj, vel
s = � Dknk , vm

s = � Blnl, ð7Þ

where vel
s is the surface charge density and vm

s is the
part of the magnetic flux along the surface normal nl of
the Neumann-type boundary Sv.

Reversible quantities will from now on be denoted
with a superscript ‘‘r.’’ According to a common
approach, strain eij and magnetic induction Bk are addi-
tively decomposed into reversible and irreversible parts

eij = er
ij + eirr

ij , Bk =Br
k +Mirr

k : ð8Þ

The irreversible parts are due to Barkhausen jumps
on the microlevel or domain wall motion on the meso-
scopic level (see Figure 1). It should be noted that a
reversibility of er

ij and Br
k at this point disregards

changes of effective material properties which are, how-
ever, incorporated in the implementation. Concerning
the electric displacement, just these weak nonlinearities
are present due to changes of the dielectric constants
kln in equation (2) as a consequence of Bloch wall
motion, while an explicit nonlinearity due to polariza-
tion rearrangement does not exist, that is, Pirr

l = 0.
The specific Helmholtz free energy f (Cocks and

McMeeking, 1999) is also decomposed as

f eij,Dk ,Bl

� �
= f r er

ij,Dr
l ,Br

k

� �
+ f irr eirr

ij ,Mirr
k

� �
, ð9Þ

where f r and f irr are the reversible and irreversible
parts. f irr depends on irreversible strain and

magnetization and thus on the internal variables of a
constitutive model. The exchange rate of the free
energy is obtained from the total differential of equa-
tion (9) where the associated variables sij, Hk and El

are obtained by partial differentiation of the potential
with respect to the independent variables (Parton and
Kudryavtsev, 1988)

_f _eij, _Dl, _Bk

� �
= _f r _er

ij,
_Dr

l ,
_Br

k

� �
+ _f irr _eirr

ij ,
_Mirr

k

� �
=sij _er

ij + _eirr
ij

� �
+El

_Dr
l +Hk

_Br
k +

_Mirr
k

� �
:

ð10Þ

The choice of strain and electric and magnetic fields
as independent variables is more feasible for engineer-
ing applications; thus, the constitutive ferromagnetic
model is based on the thermodynamical potential
C(eij,El,Hk). Applying a Legendre transformation, that
is

C eij,El,Hk

� �
= f eij,Dl,Bk

� �
� ∂f

∂Dl

Dl �
∂f

∂Bk

Bk ,

= f � ElDl � HkBk

ð11Þ

the rate-dependent formulation is derived inserting
equation (10)

dC=sijdeij � DldEl � BkdHk

=sij der
ij + deirr

ij

� �
� Dr

l dEl � Br
k +Mirr

k

� �
dHk :

ð12Þ

Integrating the infinitesimal changes of state, the
thermodynamical potential is obtained as

C eij,El,Hk

� �
=

1

2
cijklekleij �

1

2
klnElEn

� 1

2
mkmHkHm � cijkle

irr
kl eij �Mirr

k Hk :

ð13Þ

The constitutive equations of nonlinear ferromag-
netic behavior within a magnetoelectric context are then
given by

sij =
∂C eij,El,Hk

� �
∂eij

����
El ,Hk

= cijkl ekl � eirr
kl

� �
,

Dl = �
∂C eij,El,Hk

� �
∂El

����
eij,Hk

= klnEn,

Bk = �
∂C eij,El,Hk

� �
∂Hk

����
eij,El

=mkmHm +Mirr
k ,

ð14Þ

which coincide with equation (2) from the compilation
in section ‘‘Constitutive behavior: comparison of mod-
eling approaches.’’ Relating the third constitutive equa-
tion to common representations in textbooks, the
irreversible magnetization Mirr

k is in a more general
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sense denoted as spontaneous magnetic polarization or
magnetization M

sp
k

Bk =m0 dkm + xkmð ÞHm +M
sp
k

=m0mr
kmHm +M

sp
k =mkmHm +M

sp
k ,

ð15Þ

where dkm is the Kronecker identity tensor, xkm is the
magnetic susceptibility, m0 is the magnetic permeability
of vacuum, and mr

km are the coefficients of relative per-
meability of the material (� 1).

On the continuum level, domain wall motion is
described by internal variables nn (see Figure 4) for
plane problems associated with the four possible orien-
tations of domains in a grain (see Figure 1) with the
easy axis in the h100i direction (Bergmann and
Schaefer, 2005; Du Trémolet de Lacheisserie et al.,
2005; Kittel, 2006; Morrish, 2001)

_eirr
ij =

X4

n= 1

esp
ij

nð Þ
_nn, _Mirr

k =
X4

n= 1

D M
sp
k

nð Þ
_nn, ð16Þ

where esp
ij

nð Þ
and D M

sp
k

nð Þ
represent the spontaneous strain

and change of spontaneous magnetization for the
domain n, respectively. The total change of volumes of
the domain species in a grain resulting from Bloch wall
motion is conserved by the following relations

0� vn� 1,
X4

n= 1

vn = 1, ð17Þ

where vn stands for the specific volume of each domain.
In all calculations, the generalized state of plane stress
will be assumed, that is, si3 = 0, D3 = 0, andB3 = 0.
The changes of magnetization exhibit three possibilities,
6908 and 1808, for each domain species n= 1, . . . , 4. In

Figure 4, one variant for n= 3 is depicted as an exam-

ple, that is, D M
sp
k

3ð Þ
= M

sp
k

4ð Þ
�M

sp
k

3ð Þ
for + 908 jumping.

Concerning the spontaneous strain, each domain spe-
cies vn is allocated one unique tensor representing 6908

jumping.
The rates of volume change of the species _nn, that is,

the time derivatives of the internal variables, play an
important role in the thermodynamical formulation of
the material law. The evolution of the internal variables
nn within a domain structure is controlled by an ener-
getic criterion, which has been chosen in the style of fer-
roelectric switching criteria (Hwang et al., 1995; Kessler
and Balke, 2001)

Dwn =sij e
sp
ij

(n)

+HkD M
sp
k

nð Þ
� wcrit ð18Þ

The left-hand side of the inequality, consisting of
mechanical and magnetic contributions, represents the
dissipative work Dwn of Bloch wall motion due to the
jumping of a species n.

Barkhausen jumping occurs when the dissipative
energy exceeds an associated critical value wcrit. In
plane, there are three possible jumping variants with
the easy axis in the h100i direction. Based on the idea
of ferroelectric switching (Hwang et al., 1995; Kamlah
et al., 2005), two different threshold values have to be
introduced

wcrit =

ffiffiffi
2
p

M0Hc 6908

2M0Hc 1808
,

�
ð19Þ

where the material parameters Hc and M0 are coercive
field and magnitude of spontaneous magnetization.

On the macroscopic level, an evolution law for the
internal variables nn controls Bloch wall motion. Based

Figure 4. Internal variables nn and the magnetic orientations in a grain with local coordinate system ( �x1, �x2). Characterization of
the orientation of domain variants n= 1, . . . , 4 with respect to the global coordinate system (x1,x2) by an angle a.
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on equations (18) and (19), the evolution law for a
domain species n is

_nn = � _n0
nH

D~wn

wcrit
� 1

	 

, D~wn = max Dwn

6908,Dwn
1808

� �
,

ð20Þ

where H(: :) is the Heaviside function and _n0
n is a model

parameter. The latter represents a discrete amount of
domain wall motion, which has to be chosen within a
numerical context. Equation (20) determines whether
the volume of the species n decreases by a magnitude
dn0

n due to local jumping or not. The reduction of nn

always occurs in favor of another species, satisfying
equation (17).

To prove the thermodynamical consistency of the
evolution law equation (20), the second law of thermo-
dynamics is formulated as

u_s+ u
∂

∂xi

qi

u

� �
� rr � 0, ð21Þ

where s represents the specific entropy and u the abso-
lute thermodynamic temperature, qi=u is the entropy
flow through the surface of the control volume, and rr

is a volume heat source. The generalized Clausius–
Duhem inequality for thermo-ferromagnetic material
behavior is finally obtained from equation (21) reading
(see Avakian et al., 2015, for a similar derivation)

sij _e
irr
ij +Hk

_Mirr
k|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

_w

� qi

u

∂u

∂xi

� 0: ð22Þ

The irreversible changes of states _eirr
ij and _Mirr

k , being
weighted averages in each grain, are defined according
to equation (16). Disregarding heat flux, that is, qi = 0,
equation (22) means that the power _w associated with
the driving forces of domain action always has to be
positive. Relating equation (22) to a specific domain
species n within a grain, the generalized Clausius–
Duhem inequality equation (22) is modified as

sij e
sp
ij

(n)

+HkD M
sp
k

nð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dwn

� qi

u

∂u

∂xi

� 0: ð23Þ

Assuming isothermal or adiabatic conditions, that
is, u, i = 0, equation (23) claims the jumping work Dwn

to be always positive, thus implying thermodynamical
consistency of the switching criterion equation (18) and
thus the evolution equation (20). It has to be noted that
equation (22) neglects irreversibilities due to changes in
materials properties, whereupon, for example, dielectric
fields remain entirely disregarded in the Clausius–
Duhem inequality. The dissipation from Bloch wall
motion, however, is much larger than the one from the
evolution of material tangents.

While the changes of strain and spontaneous magne-
tization due to Bloch wall motion are described by
equation (16), the evolution of material tangents in an
representative volume element (RVE) or grain is like-
wise connected to the internal variables

cijkl =
X4

n= 1

c
ðnÞ

ijklnn ! _cijkl =
X4

n= 1

c
ðnÞ

ijkl _nn =
X4

n= 1

∂cijkl

∂nn

_nn

ð24Þ

and similar

kln =
X4

n= 1

kln

nð Þ
nn, mkm =

X4

n= 1

m
ðnÞ

kmnn: ð25Þ

Phenomenologically motivated ferromagnetic model

The constitutive behavior of the ferromagnetic–
dielectric material is assumed to be governed by the
thermodynamic potential

�C sp,El,Hk

� �
= � 1

2
s11s1s1 � s12s1s2

� 1

2
s22s2s2 � s66s6s6 �

1

2
k11E1E1

� 1

2
k22E2E2 �

1

2
�m0

11H1H1 �
h1

1+ z1H�3
1

s1

� h2

1+ z2H�3
1

s2 � r H1 � j ln j +H1ð Þf g,

ð26Þ

where stress and electric and magnetic fields are cho-
sen as independent variables. It is feasible to develop
the material model based on stress and magnetic field
since these are the quantities which are commonly
controlled in experiments. In this section, the Voigt
notation is applied to higher-order tensors, so, for
example, s6 is the shear stress s12. Essential features
of magnetization and magnetostriction are appropri-
ately described adapting the constant coefficients hi,
zi, r, and j to experimental curves. Equation (26) has
been formulated in a local coordinate system where
the x1-axis is attached to the vector of the H field.
Thus, H2 does not appear in the potential. The easy
axis locally always points in the direction of the mag-
netic field since the reversibility, in connection with a
vanishing remanence, leads to an immediate magneti-
zation even at low field intensities. Thus, the x1-axes
of the local coordinate systems are always attached to
the direction of magnetization, and the material ten-
sors are sparsely populated in these coordinate sys-
tems. The dielectric properties, for example, are
represented just by k11 and k22. The potential accord-
ing to equation (26), being valid locally and adjusted
to the local coordinates, thus contains only these
coefficients. In global coordinates, to which all results
are related, the material tensors in general are fully
populated.
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The superscript in the magnetic permeability �m0
11

indicates a constant magnitude in contrast to the func-
tion �m11(sp,Hk). The denominators in equation (26)
cannot be zero since z1 and z2 are always positive,
requiring a negative value of H1 for a division by zero.
This is not possible, however, since the local coordinate
system is always adapted to the H-field such that H1.0.
The general constitutive behavior is obtained by differ-
entiation of equation (26) according to

_ep _sq, _El, _Hk

� �
=
�∂2 �C

∂sp∂sq

_sq +
�∂2 �C

∂sp∂El

_El +
�∂2 �C

∂sp∂Hk

_Hk ,

_Dl _sp, _En, _Hk

� �
=
�∂2 �C

∂El∂sp

_sp +
�∂2 �C

∂El∂En

_En +
�∂2 �C

∂El∂Hk

_Hk ,

_Bk _sp, _El, _Hm

� �
=
�∂2 �C

∂Hk∂sp

_sp +
�∂2 �C

∂Hk∂El

_El +
�∂2 �C

∂Hk∂Hm

_Hm

ð27Þ

where the material coefficients, for example, the com-
pliances s11 and s12, are assumed to be constant within
incremental changes of state, and thus, the rate-
dependent constitutive framework is given by

_ep _sq, _Hk

� �
= spq _sq + �qkp Hkð Þ _Hk ,

_Dl
_En

� �
= kln

_En,

_Bk _sp, _Hm

� �
= �qkp Hmð Þ _sp + �mkm sp,Hm

� �
_Hm:

ð28Þ

Equation (28) represents nonlinear but, in contrast to
the microphysical model, reversible changes of state
since the material tensors are unique functions of the
independent variables. The electric displacement just
depends on the electric field, in a ferromagnetic mate-
rial not being coupled with mechanical or magnetic
fields. A bar is added to the magnetic permeability
�mkm(sp,Hm) and magnetostrictive coefficients �qkp(Hk) to
distinguish from quantities based on a different poten-
tial. Equation (28) due to the tensorial representation
allowing for multiaxial loading, the responses, for
example, in the x1-direction is obtained as

_e1 _sq, _Hk

� �
= s11 _s1 + s12 _s2 + 3

h1z1H2
1

z1 +H3
1

� �2
_H1, ð29Þ

_D1
_En

� �
= k11

_E1, ð30Þ

_B1 _sp, _Hm

� �
= 3

h1z1H2
1

z1 +H3
1

� �2
_s1 + 3

h2z2H2
1

z2 +H3
1

� �2
_s2:+ �m0

11 +
6h1z1H1 z1 � 2H3

1

� �
s1

z1 +H3
1

� �3
+

6h2z2H1 z2 � 2H3
1

� �
s2

z2 +H3
1

� �3
+

rj

j +H1ð Þ2

 !
_H1: ð31Þ

In general, all material coefficients depend on the
three independent variables. Experimental observa-
tions, however, put this thermodynamical requirement
into perspective, showing, for example, a noticeable
nonlinearity of the stress–strain curve only for giant
magnetostrictive materials. In the potential equation

(26) and the constitutive relation equation (28), the
magnetostrictive constants are functions of just the
magnetic field, and the magnetic permittivity is a func-
tion of both magnetic field and stress

�q11 = 3
h1z1H2

1

z1 +H3
1

� �2
, �q12 = 3

h2z2H2
1

z2 +H3
1

� �2
ð32Þ

�m11 = �m0
11 +

6h1z1H1 z1 � 2H3
1

� �
s1

z1 +H3
1

� �3

+
6h2z2H1 z2 � 2H3

1

� �
s2

z2 +H3
1

� �3
+

rj

j+H1ð Þ2
:

ð33Þ

A more sophisticated model replaces the constant
coefficients z1, z2, and j by variables depending on the
stresses

z1 = z0
1 + zs

1 s1 � s2ð Þ, z2 = z0
2 + zs

2 s1 � s2ð Þ,
j = j0 + js s1 � s2ð Þ:

ð34Þ

Both variants of the phenomenological constitutive
model will be investigated in section ‘‘Results.’’ For the
numerical implementation, the independent mechanical
variable is changed from stress to strain. Accordingly,
the material tensors are subject to the following
transformations

cpq = s�1
pq , qkp = �qkqcqp, mkm = �mkm � �qkqcqp�qmp: ð35Þ

The constitutive equations for the nonlinear reversi-
ble ferromagnetic behavior are thus given as

_sp _eq, _Hk

� �
= cpq _eq � qkp eq,Hk

� �
_Hk ,

_Dl
_En

� �
= kln

_En,

_Bk _ep, _Hm

� �
= qkp ep,Hm

� �
_ep +mkm ep,Hm

� �
_Hm:

ð36Þ

Discarding �m0
11 in equation (33), equations (35) and

(36) yield the magnetic polarization M
sp
k according to

equation (15) instead of Bk . This quantity is equivalent
to Mirr

k in equation (14); however, a different notation
is chosen due to the reversible characteristic of the
magnetization in the phenomenological model. The

specific magnetization mk , which is commonly depicted
in experimental plots, is finally obtained as

mk =m�1
0 R�1M

sp
k , ð37Þ

where R denotes the mass density of the material.
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FE formulation

An approximate solution can be obtained applying the
FE method. This requires the weak formulation of field
equations which can be obtained, for example, from the
generalized Hamilton’s variational principle

d

ðt1
t0

K �Cð Þdt+

ðt1
t0

dW adt= 0, ð38Þ

where K and dW a denote kinetic energy and virtual
work of the applied external forces, charges and normal
magnetic flux, that is

dW a =

ð
S

tidui +vel
s duel +vm

s dum
� �

dS ð39Þ

acting at the boundary S. The weak formulation is
equivalent to the differential equation (6) as well as nat-
ural boundary conditions, if a potential C(ep,El,Hk) is
inserted into equation (38) and the quasi-static case
(K = 0) is chosen. In that case, Hamilton’s principle
equals the principle of the minimum of the total poten-
tial energy: dP= d(Pi +Pa)= 0 with dW a = � dPa

and C=Pi. In detail, the weak formulation is given asð
V

sijdui, j +Dkduel
, k +Bldum

, l

� �
dV �

ð
S

tiduidS

+

ð
S

vel
s dueldS +

ð
S

vm
s dumdS = 0,

ð40Þ

where V is the domain of the magnetoelectroelastic
body.

For the phenomenological constitutive approach,
the potential C(ep,El,Hk) is easily derived from
�C(sp,El,Hk) according to equation (26) by the
Legendre transformation

C ep,El,Hk

� �
= �C sp,El,Hk

� �
� ∂ �C

∂sp

sp = �C+ epsp: ð41Þ

For the calculation of element matrices, the most
general and efficient technique is the application of iso-
parametric FEs (Bathe, 2006). Displacements and
potentials are approximated within each element using
the interpolations

ui =
XN

a= 1

ha
u ua

i = hu½ � uif g,

uel =
XN

a= 1

ha
elu

ela

= hel½ � uel
� 


,

um =
XN

a= 1

ha
muma

= hm½ � umf g,

ð42Þ

where N is the number of nodes per element and ½hu�,
½hel�, and ½hm� are isoparametric shape functions

hu½ �=
h 1ð Þ

u 0 0

0 h 1ð Þ
u 0

0 0 h 1ð Þ
u

h 2ð Þ
u 0 0

0 h 2ð Þ
u 0

0 0 h 2ð Þ
u

. . . h Nð Þ
u 0

. . . 0 h Nð Þ
u

. . . 0 0

0

0

h Nð Þ
u

2
64

3
75

hel½ �= h
1ð Þ

el h
2ð Þ

el . . . h
Nð Þ

el

h i
, hm½ �= h 1ð Þ

m h 2ð Þ
m . . . h Nð Þ

m

h i
:

ð43Þ

The expressions for the electric and magnetic fields
as well as mechanical strain are obtained by differen-
tiating equation (42) with respect to the spatial coordi-
nates xi, relating the scalar potentials and displacements
at nodes to the electric or magnetic fields and strain at
the integration points of an element

ef g= Bu½ � uif g, Ef g= � Bel½ � uel
� 


, Hf g= � Bm½ � umf g
ð44Þ

Applying the fundamental lemma of variational cal-
culus to equation (40), the partial stiffness matrices
(mechanical, electric, magnetic, and the different mixed
expressions) are obtained

Kuu½ �=
ð
Vð Þ

Bu½ �T c½ � Bu½ �dV ,

Kueluel

� �
=�

ð
Vð Þ

Bel½ �T k½ �T Bel½ �dV ;

Kumum

� �
=�

ð
Vð Þ

Bm½ �T m½ �T Bm½ �dV ,

Kuum

� �
=

ð
Vð Þ

Bu½ �T q½ �T Bm½ �dV :

ð45Þ

The material laws according to sections
‘‘Physically motivated ferromagnetic model’’ and
‘‘Phenomenologically motivated ferromagnetic model’’
are expressed by the matrices ½c�, ½k�, ½m�, and ½q�.

The calculation of the generalized stiffness matrix
requires numerical integration, for example, applying
the Gauss quadrature. Finally, the boundary value
problem is formulated as an algebraic system of equa-
tions ½K�fUg= fRg

Kuu½ � 0½ � Kuum

� �
0½ � Kueluel

� �
0½ �

Kumu

� �
0½ � Kumum

� �
2
4

3
5 uif g

uel
� 

umf g

8<
:

9=
;=

Fsf g
Qel

s

� 

Qm

s

� 

8<
:

9=
;
ð46Þ

where Fs, Qel
s , and Qm

s denote the forces and generalized
charges at nodes
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Fsf g=
ð
S

hu½ �T tf gdS, Qel
s

� 

= �

ð
S

hel½ �T vel
s dS,

Qm
s

� 

= �

ð
S

hm½ �T vm
s dS: ð47Þ

The nonlinear irreversible ferromagnetic–dielectric
model is based on the constitutive equation (14) insert-
ing the irreversible quantities and material coefficients
from the domain averaging equations (16), (24), and
(25) taking into account the evolution law for domain
volume fraction equation (20). Inserting the constitu-
tive relations into the weak formulation equation (40)
according to

ð
V

dui, jcijkl ekl � eirr
kl

� �
+ dum

, k mkmHm +Mirr
k

� �
+ duel

, lklnHn

n o
dV

�
ð
S

tiduidS +

ð
S

vm
s dumdS +

ð
S

vel
s dueldS = 0,

ð48Þ

and rearranging irreversible fieldsð
V

dui, jcijklekl + dum
, kmkmHm + duel

, lklnEn

n o
dV

�
ð
V

dui, jcijkle
irr
kl dV +

ð
V

dum
, kMirr

k dV �
ð
S

tiduidS

+

ð
S

vm
s dumdS +

ð
S

vel
s dueldS = 0

ð49Þ

is obtained. The terms cijkleirr
kl and Mirr

k have to be inter-
preted as intrinsic stresses and magnetization due to
Bloch wall motion.

For the physically motivated model, equation (46) is
extended in the following way

Kuu½ � 0½ � Kuum

� �
0½ � Kueluel

� �
0½ �

Kumu

� �
0½ � Kumum

� �
2
64

3
75 uif g

uel
� 

umf g

8><
>:

9>=
>;

=

Fsf g+ Fef g
Qel

s

� 

Qm

s

� 

+ Qm

e

� 

8><
>:

9>=
>;:

ð50Þ

The additional nodal loads

Fef g=
ð
V

Bu½ �T c½ � eirr
� 


dV , Qm
e

� 

= �

ð
V

Bm½ �T Mirr
� 


dV

ð51Þ

account for the nonlinear irreversible contributions.
Concerning the numerical algorithm, where a Gauss

quadrature scheme is applied for the integration within
elements, it has to be noted that the intrinsic nodal

loads according to equation (51) as well as the stiffness
matrices depend on the load history. Therefore, an
incremental procedure is inevitable where the material
behavior is evaluated at each integration point, repre-
senting an RVE, and load step. Is domain wall motion
initiated at one or more points, the stiffness matrices
and intrinsic nodal loads have to be updated according
to the evolution of internal variables, see equations
(16), (24), and (25). Subsequently, the system of equa-
tion (50) is re-solved keeping external loads constant
since resulting residual stresses and magnetization may
initiate further domain jumping. This procedure is
repeated until equilibrium is reached at all integration
points whereupon the next external load step is intro-
duced. Concerning the numerical parameter dn0

n

according to equation (20), it ranges from 0.0025 to
0.01 where smaller values foster numerical stability,
whereas larger values reduce computational costs.

Results

The two constitutive models according to section
‘‘Constitutive models of ferromagnetic materials’’ have
been implemented within the framework of the FE
method according to section ‘‘FE formulation.’’ The
material parameters are outlined in Appendix 1. Cobalt
ferrite (CoFe2O4) is employed as an example to demon-
strate nonlinear reversible behavior of soft magnetic
materials, whereas AlNiCo 35=5 represents a hard mag-
netic alloy exhibiting pronounced hysteresis behavior.

In Figure 5, results from the microphysical model
are shown in terms of magnetic polarization, induction,
and strain versus magnetic field. According to equation
(2), the induction Bk and the magnetic polarization Mirr

k

differ in terms of mkmHm, leading to an almost linear
increase in Bk for large magnetic fields where Mirr

k is
saturated. The dashed red line in the second quadrant
emanates from experimental findings (Magnetfabrik
Bonn GmbH, 2009) for the spontaneous magnetization
Mirr

k (in Magnetfabrik Bonn GmbH, 2009, denoted as
J) and is in very good agreement with the numerical
prediction. The coercitivity of the polarization is
slightly larger than that of the induction, while the
remanences are equal. These features are likewise con-
firmed by experiments (Magnetfabrik Bonn GmbH,
2009), where the coercive values are given as
HcB = 47kA=m and HcJ = 48kA=m, respectively, and
the remanent induction Br as 1:12T. Furthermore, a
saturation of the magnetic polarization in terms of a
horizontal tangent is observed for large magnetic fields
above approximately 200kA=m. The loading and
unloading paths, however, are still slightly different,
which is hardly visible compared to the strain due to
the minor slope of the plot. Looking at the magnetos-
trictive effect illustrated in the right figure, the typical
hysteresis behavior is observed with a remanent strain
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er which, related to the maximum strain, is small com-
pared to typical ferroelectric butterfly loops. In general,
the values are much smaller than the parameter of
spontaneous strain eD depicted in Table 3. The latter
has to be understood as the saturated spontaneous
strain of a single domain under ideal unclamped condi-
tions, which is much larger than in a real polycrystal-
line material. There, residual stress and statistical
domain orientations counteract the magnetic field.
Apart from its physical interpretation, eD can be inter-
preted as one of very few model parameters of the
microphysical approach.

In Figure 6, results are presented for the phenomen-
ological model based on the simple approach equation
(36) with constant values z1 = z0

1, z2 = z0
2, and j = j0.

As expected, the curves are nonlinear but reversible.
They agree qualitatively with those in experiments.
Cobalt ferrite is known to exhibit both hysteresis and
reversible behaviors depending on the manufacturing
conditions (Mohaideen and Joy, 2014). The specific
magnetization mk according to equation (37) in the left
figure is determined with the density R= 5:3 g=cm3.

In Figure 7, the effect of a superimposed mechanical
load on the ferromagnetic and magnetostrictive

properties in terms of the magnetization or strain–
magnetic field curves is investigated, based on the phe-
nomenological constitutive model. In contrast to
Figure 6, the more sophisticated approach has been
applied, where z1, z2, and j depend on the stresses
according to equation (34). The solid blue lines (b) rep-
resent a pure magnetic loading in the x1-direction,
whereas the other lines stand for the combined magne-
tomechanical loading. The lines with the negative val-
ues e represent the strain e11 along the axis of the
magnetic field, whereas those with positive values e rep-
resent the perpendicular strain e22. The plots are in
agreement to what is expected intuitively. The tensile
stress in the x2-direction supports the magnetic field
and leads to a saturation at lower magnetic loads,
whereas a compressive stress in that direction acts con-
trariwise. A compressive stress in the direction of the
magnetic field, however, supports the magnetic loading.
Furthermore, the absolute values of the strain are
larger in the direction of the magnetic field than per-
pendicular to it, that is, e11j j.e22.

As one application of the ferromagnetic–dielectric
constitutive modeling, a magnetoelectric particle com-
posite is investigated, consisting of a ferroelectric

Figure 5. Numerical results for AlNiCo 35=5 from physically motivated model: magnetic induction and magnetic polarization,
respectively (left; dashed red line: experimental data of demagnetization curve; Magnetfabrik Bonn GmbH, 2009) and strain versus
magnetic field (right).

Figure 6. Experimental data (Bhame and Joy, 2006) and numerical results for the phenomenological ferromagnetic model: specific
magnetization (left) and strain versus magnetic field (right) for CoFe2O4.
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matrix with a ferromagnetic inclusion. The goal of
numerical simulations is, for example, to predict the
magnetoelectric coupling coefficient, which is exploited
in various engineering applications. In Avakian et al.
(2015), similar composites have been investigated
numerically, however, based on the assumption of lin-
ear magnetostrictive behavior. The first electric and/or
magnetic loading cycle is of particular interest, leading
to a poling of the initially unpoled material and being
crucial for the functional properties and life time of the
smart device. At this stage, nonlinear constitutive mod-
eling is inevitable due to pronounced ferroelectric and
ferromagnetic domain evolution. In the following simu-
lations, the physically motivated ferromagnetic consti-
tutive model equation (2) is applied to give a deeper
insight into the domain arrangements during the poling
process. The ferroelectric phase is described by equa-
tion (1).

A composite is considered with 80% BaTiO3 as fer-
roelectric matrix including 20% of the hard ferromag-
netic alloy AlNiCo 35=5, shaped as spherical particle.
The FE model and boundary conditions as well as the
loading scheme are shown in Figure 8. The material
data of BaTiO3 have been adopted from Avakian et al.
(2015). The following numerical investigations are
intended to be fundamental, rather than to provide
engineering results, the model thus being restricted to
just one single particle. In Figure 8(a), the boundary
conditions for the poling and the magnetization pro-
cesses, respectively, are illustrated. The cyclic electric
and magnetic loads E1 and H1 are applied incremen-
tally within the ranges ½0� 5Ec� and ½0� 5Hc� (see
Figure 8(b)). While steps 1 and 2 represent the pro-
cesses of poling and magnetization, step 3 is relevant
for the determination of the magnetoelectric coupling
coefficients g11 and g21. The boundary conditions for
the latter calculations are shown in Figure 8(c).

Keeping strain and stress, respectively, constant,
two different definitions of the coupling coefficients are

obtained, based on the thermodynamical potentials
C(eij,El,Hk) and �C(sij,El,Hk), respectively

g
eð Þ

n1=
∂Bn

∂E1

	 

eij,Hl

’
DhBni
DE0

1

����
eij,Hl

,g
sð Þ

n1 =
∂Bn

∂E1

	 

sij,Hl

’
DhBni
DE0

1

����
sij,Hl

ð52Þ

The electric potential difference in the x1-direction
�uel yields the electric field E0

1 which is imposed in the
context of an electric Voigt assumption. The magnetic
flux Bn in either x1- or x2-direction is obtained from the
FE calculation, inserting the averages along the rele-
vant edges into equation (52). The mechanical bound-
ary conditions depicted in Figure 8(c) guarantee the
constraints of constant strain (left figure) or constant
stress (right figure) in the sense of an integral average
in the RVE. The magnetic potential um is zero at all
edges, providing for a constant magnetic field in both
directions.

In Figure 9, the polarization in the ferroelectric
matrix and the magnetization in the ferromagnetic
inclusion are shown at the end of the second load step
(Figure 8(b)) where E1 = 0. Here, the initialization or
poling process is finished, and the composite is ready
for magnetoelectric applications. A perfect alignment
of polarization and magnetization with the poling fields
cannot be expected. In fact, a noticeable scatter is
anticipated, on one hand, due to the inhomogeneity of
fields in the polycrystalline material. On the other
hand, a partial depolarization is expected in the ferro-
electric matrix due to the magnetic loading in combina-
tion with magnetostrictive and ferroelastic effects. The
same holds for the ferromagnetic inclusion and the
electric poling cycle. A favorable configuration is going
along with a smallest possible scatter of local orienta-
tions of polarization and magnetization around the
preferred direction. Second, the residual stresses, being
responsible for cracking and thus for functional as well
as structural degradation, are of interest. According to

Figure 7. Numerical results for phenomenological ferromagnetic model at combined magnetomechanical loading: specific
magnetization (left) and strain versus magnetic field (right) for CoFe2O4 at constant stress values of (a) s11 = 0 MPa and
s22 = 40 MPa, (b) s11 = 0 MPa and s22 = 0 MPa, (c) s11 = 0 MPa and s22 = � 8 MPa, (d) s11 = � 8 MPa and s22 = � 40 MPa,
and (e) s11 = 0 MPa and s22 = � 40 MPa.
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Figure 9(a), the magnetization and polarization show a
moderate scatter around the intended x1-direction,
leaving a sufficiently large potential for optimization.
The tensile residual stresses, according to Figure 9(b),
exhibit a maximum of approximately 100MPa, cer-
tainly leading to cracking.

In Figure 10, some results of a first electric loading
after the poling process (step 3 in Figure 8(b)) are illu-
strated in terms of maximum principal stress and mag-
netic induction at E0

1=Ec = 0:5. The left picture shows

the case with kinematic constraints, the right one rep-
resents traction free edges. The smaller figures in
between are details for both boundary conditions and
two locations. As expected, the kinematic constraint
leads to significant compressive stress, while the free
boundaries result in a stress distribution with predomi-
nantly tensile maximum principal stresses. The arrows
indicate the vectors of the magnetic induction, exhibit-
ing larger quantities in the ferromagnetic inclusion
than in the ferromagnetic matrix, where the magnetic

Figure 8. Magnetoelectric particle composite (matrix: BaTiO3, particle: AlNiCo 35=5): (a) boundary conditions of the poling or
magnetization process, (b) loading scheme, and (c) different boundary conditions for the calculation of the effective magnetoelectric
coupling coefficients g11 and g21.
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permeability is much smaller. The local directions of
the magnetic flux are clearly determined by the poling
and loading fields, respectively. Due to the compres-
sion in the constrained case, the magnetization of the
ferromagnetic phase is considerably reduced, which is
obvious comparing a.2 and b.2 in Figure 10. The den-
sity of arrows is a measure of the absolute quantity of
magnetization since FE integration points without any
visible arrow indicate a vanishing magnetization at
that point. Similarly, the magnetic induction at the
edges of the FE model is much smaller for the con-
strained case than for the unconstrained one, becom-
ing obvious from a comparison of a.1 and b.1 in
Figure 10.

This feature is further illustrated in Figure 11, where
the coordinates of the magnetic induction B1 and B2 are
plotted versus the normalized electric field using solid
lines. While the magnitude for the constant average
stress B

(s)
1 ’ ~B

�� �� remains unchanged below 2:5Ec, slightly
decreasing for larger electric loads, the one for constant

strain B(e)
n exhibits a steep gradient below 0:5Ec. As one

consequence, the magnetoelectric coupling coefficients
gn1, according to equation (52) being the derivatives of
the magnetic induction, show narrow negative peaks at
low electric loads for the constant strain boundary con-
dition, that is, g(e)

n1 .
In Figure 12, the magnetoelectric coupling coeffi-

cients g(s)
n1 for the unconstrained boundary value prob-

lem according to Figure 8(c) are once more plotted
versus the normalized electric field. In contrast to
Figure 11, the scaling of the ordinate has been refined,
in order to show details of the graphs. The coupling
coefficients prove to be predominantly negative in
the investigated case of an electric field in the poling
direction. The maximum absolute value is obtained
for g11. The average magnitude is approximately
�6E � 9Ns=VC. The large oscillations in Figure 12
might be unexpected at the first glance. The B-field has
to be subject to fluctuations when increasing the E-field
due to ferroelectric domain switching and Barkhausen

Figure 9. Polarized and magnetized magnetoelectric composite with AlNiCo 35=5—inclusion in a BaTiO3—matrix (a) vectors of
magnetization ~M and polarization~P and (b) maximum principal stress s1 (MPa).

Figure 10. Vectors of magnetic induction~B and maximum principal stress s1 (MPa) for a polarized and magnetized magnetoelectric
composite with AlNiCo 35=5—inclusion in a BaTiO3—matrix under electric loading of 0:5Ec, (a) constant strain and (b) constant
stress boundary conditions.
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jumping occurring very discontinuously both spatially
and chronologically. The magnetoelectric coupling
coefficients mathematically and physically being the
derivative thus have to be highly fluctuant.

Conclusion

Two types of constitutive models for ferromagnetic
materials have been presented. The one is based on
physical considerations on the micro- and mesolevels;
the other is purely phenomenological. The one pro-
duces irreversible hysteresis behavior, and the other
exhibits nonlinear reversible features. Both characteris-
tics are well known from different ferromagnetic mate-
rials. Due to intended applications of the models with
respect to multiferroic composites, dielectric properties
are included in both constitutive approaches. The mate-
rial models have been implemented within an FE con-
text to be able to investigate complex boundary value
problems. Verifications of the constitutive models
under combined magnetomechanical loading demon-
strate their capability of describing ferromagnetic mate-
rial behavior appropriately. Finally, a multiferroic
composite, consisting of a ferromagnetic inclusion in a
ferroelectric matrix, has been investigated numerically,

applying physically motivated constitutive models for both
phases. Polarization and magnetization of an initially
unpoled composite have been simulated, being the basis
for the prediction of magnetoelectric coupling coefficients
for different mechanical boundary conditions.
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Appendix 1

The coefficients of cobalt ferrite are found in Li and
Dunn (1998) as well as Tang and Yu (2009) and listed
in Table 1.

Additionally, the quantities in Table 2 have been
identified for the phenomenological model.

Moreover, the quantities in Table 3 have been
applied for the physically motivated model.

Due to the lack of elastic and dielectric constants in
the literature, the values in Table 1 have been taken for
AlNiCo 35=5 as well, assuming the same orders of
magnitude.

Table 1. Material properties of CoFe2O4.

CoFe2O4

c11 (GPa) 269.5
c12 (GPa) 170
c22 (GPa) 286
c23 (GPa) 173
c44 (GPa) 45.3
k11 (C=Vm) 0:093E� 9
k22(C=Vm) 0:08E� 9

Table 2. Parameters of the phenomenological model adapted
to the constitutive behavior of CoFe2O4.

Parameter Unit CoFe2O4

h1 – �131E� 6
h2 – 106E� 6
z0

1 A3=m3 5:5E+ 15
z0

2 A3=m3 2:1E+ 15
zs

1 A3=N m 3E+ 9
zs

2 = zs
1 (z

0
2=z0

1) A3=Nm 1:145E+ 9
r T 0.6
j0 N=Vs 1E+ 5
js m2=Vs 1E� 2

Table 3. Parameters of the physically based model adapted to
the constitutive behavior of AlNiCo 35=5 (Plassmann, 2013).

Parameter Unit Meaning AlNiCo35=5

Hc =HcB kA=m Coercivity of
magnetic induction

47

mr – Relative recoil
permeability

5

M0 T Magnitude of
spontaneous
magnetization

1.85

eD – Magnitude of
spontaneous strain

0.04

mr is denoted in Plassmann (2013), as mrec.
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