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Abstract
Posttranscriptional modifications of anticodon loops contribute to the decoding efficiency of tRNAs by supporting codon 
recognition and loop stability. Consistently, strong synthetic growth defects are observed in yeast strains simultaneously 
lacking distinct anticodon loop modifications. These phenotypes are accompanied by translational inefficiency of certain 
mRNAs and disturbed protein homeostasis resulting in accumulation of protein aggregates. Different combinations of anti-
codon loop modification defects were shown to affect distinct tRNAs but provoke common transcriptional changes that are 
reminiscent of the cellular response to nutrient starvation. Multiple mechanisms may be involved in mediating inadequate 
starvation response upon loss of critical tRNA modifications. Recent evidence suggests protein aggregate induction to rep-
resent one such trigger.
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Background

During decoding of mRNA, codons are recognized by the 
tRNA anticodon. For efficient decoding, the tRNA must be 
correctly folded into an L-shaped structure and the anticodon 
presented in an unpaired open loop. Posttranscriptional mod-
ifications in the anticodon loop are thought to improve codon 
recognition and contribute to anticodon loop stability by 
promoting base stacking interactions, reducing the flexibility 
of the sugar phosphate backbone and preventing unwanted 
across-the-loop base pairing (Agris 2008; Sokołowski et al. 
2017; Väre et al. 2017; Vendeix et al. 2012). For example, 
 tRNALys

UUU  contains  mcm5s2U34 (5-methoxycarbonylme-
thyl-2-thiouridine at position 34) and  ct6A37 (cyclic N6-thre-
onylcarbamoyladenosine at position 37) modifications which 
each fulfill one or more of these tasks (Johansson et al. 2018; 
Miyauchi et al. 2013; Schaffrath and Leidel 2017; Thiaville 
et al. 2014). Both,  mcm5s2U and  ct6A are formed by multiple 
biosynthetic enzymes and steps. Completion of  mcm5s2U 

synthesis is abolished at distinct steps in elp3 and urm1 
mutants, while  ct6A formation from the  t6A (N6-threonyl-
carbamoyladenosine) precursor requires TCD1 (Huang et al. 
2005; Leidel et al. 2009; Miyauchi et al. 2013). Hence, in 
elp3, urm1 and tcd1 mutants, distinct pathway intermediates 
are formed at the target nucleosides  U34 and  A37. Consistent 
with functional redundancy, joint abrogation of  mcm5s2U 
synthesis at different steps and prevention of  t6A to  ct6A 
conversion results in a functional defect of  tRNALys

UUU  nor-
mally carrying these modifications (Klassen et al. 2016). A 
similar functional redundancy exists in the  tRNAGln

UUG  anti-
codon loop which naturally carries  mcm5s2U and Ψ38 (pseu-
douridine at position 38) (Han et al. 2015; Klassen et al. 
2016). Combined absence of  mcm5s2U and Ψ38 in elp3 deg1 
or urm1 deg1 double mutants causes a severe functional 
impairment of this tRNA. When formation of  mcm5s2U is 
completely abolished by combining elp3 and urm1 or elp6 
and ncs2 modifications, both,  tRNAGln

UUG  and  tRNALys
UUU  

are functionally impaired (Björk et al. 2007; Klassen et al. 
2015; Nedialkova and Leidel 2015; Xu et al. 2019).
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Effects of modification loss on decoding 
and protein homeostasis

In the mutants carrying combinations of tRNA modification 
defects, negative phenotypes and translational incompetence 
are routinely suppressed by overexpression of the function-
ally impaired tRNAs (Björk et al. 2007; Han et al. 2015; 
Klassen et al. 2015, 2016; Nedialkova and Leidel 2015). 
Elevated abundance of the hypomodified tRNA is thought 
to counteract the translational deficiency, which may result 
from increased rejection rate during the codon recognition 
process (Ranjan and Rodnina 2017; Rezgui et al. 2013). 
Another cellular consequence of such specific tRNA defects 
is a severe protein homeostasis disturbance, resulting in the 
accumulation of protein aggregates (Fig. 1) (Nedialkova and 
Leidel 2015). The exact mechanism how combined tRNA 
modification defects trigger protein aggregation is not 
known, but it can be assumed that ribosomal pausing is an 
important factor for this effect. Ribosomal pausing at CAA 
(Gln) and AAA (Lys) codons has been indeed demonstrated 
for yeast strains lacking  mcm5s2U (Nedialkova and Leidel 
2015), and  mcm5s2U deficiency in combination with either 
loss of  ct6A or Ψ38 likely aggravates pausing at CAA or AAA 
codons, respectively (Bruch et al. 2020; Klassen et al. 2016; 

Pollo-Oliveira et al. 2020). Such pause during translational 
elongation may as well increase the occurrence of ribosomal 
errors including + 1 frameshifts and, potentially, mistrans-
lation due to misreading by near- or non-cognate tRNAs. 
An increase in + 1 frameshift rates has in fact been detected 
in yeast strains lacking  mcm5s2U alone and in combination 
with  ct6A defects (Klassen et al. 2017; Pollo-Oliveira et al. 
2020; Tükenmez et al. 2015). While in such mutants, the 
efficiency of near/non-cognate tRNA misincorporation at 
the AAA or CAA codons has not been investigated, a similar 
effect was observed for misreading of CGC (Arg) codons by 
 tRNAHis

GUG  (Khonsari and Klassen 2020). Here, absence of 
Pus1 dependent Ψ in the normal CGC decoder  tRNAArg

ICG 
increased misreading by  tRNAHis

GUG , which is not naturally 
modified by Pus1. Thus, in general, impairment of a cog-
nate tRNA upon loss of critical modifications may increase 
near cognate misreading by a competitor tRNA that does not 
rely on the same modification. In addition to effects poten-
tially associated with ribosomal pausing, the ability of the 
hypomodified tRNA itself to engage in misreading might 
also be affected by loss of critical anticodon loop modifica-
tions. Some specific errors indeed increased in the absence 
of  mcm5s2U (Joshi et al. 2018). However, when misreading 
of near cognate codons with wobble base mismatches to 
 tRNALys

UUU  was studied,  mcm5s2U promoted rather than 
inhibited these types of errors (Joshi et al. 2018).

An alternative mechanism how protein aggregation might 
be linked to tRNA modification defects causing ribosomal 
pausing lies with disturbance of co-translational protein 
folding (Nedialkova and Leidel 2015). Support for this 
assumption stems from the observation of similarities in 
protein aggregate induction in a  mcm5s2U-deficient yeast 
strain and a mutant lacking the ribosome-associated chap-
erones Ssb1/2, which are important for co-translational pro-
tein folding (Nedialkova and Leidel 2015). Thus, multiple 
mechanisms might link tRNA modification defects to the 
production of faulty proteins, which may be relevant for the 
common observation of impaired protein homeostasis in 
different tRNA modification mutants (Klassen et al. 2016; 
Nedialkova and Leidel 2015; Pollo-Oliveira et al. 2020; Thi-
aville et al. 2016; Xu et al. 2019).

Starvation responses of tRNA modification 
mutants

Interestingly, different tRNA modification defects also evoke 
major transcriptome changes and part of these are reminis-
cent of the transcriptomic response to nutrient depletion. 
Several yeast tRNA modification mutants including those 
lacking  mcm5s2U and  ct6A induce GCN4-dependent amino 
acid biosynthesis genes despite the presence of amino acids 
in the medium (Daugeron et al. 2011; Zinshteyn and Gilbert 
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Fig. 1  Model for the induction of a transcriptional starvation response 
in combined absence of anticodon loop modifications.  tRNALys

UUU  is 
depicted with modified positions (indicated in red). In combined elp3 
tcd1 or urm1 tcd1 mutants, anticodon loop modifications  mcm5s2U 
and  ct6A are missing (indicated in grey), causing decreased decoding 
efficiency of cognate AAA (Lys) codons. Multiple mechanisms are 
discussed how such decoding defect may cause accumulation of cel-
lular protein aggregates. New results suggest that protein aggregates 
are involved in triggering a subsequent transcriptional response remi-
niscent of nutrient starvation
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2013). In absence of either  mcm5s2U or  ct6A, GCN4 induc-
tion occurred independent of the Gcn2 kinase which is acti-
vated upon binding of uncharged tRNA (Daugeron et al. 
2011; Zinshteyn and Gilbert 2013). The GCN2-independent 
GCN4 induction in these mutants suggested a non-canoni-
cal mechanism is involved in expression of general amino 
acid control (GAAC) genes in different tRNA modification 
mutants (Daugeron et al. 2011; Zinshteyn and Gilbert 2013). 
The recent characterization of transcriptomic changes after 
combined loss of  mcm5s2U and either  ct6A or Ψ38/39 revealed 
additional facets of a common starvation in response to loss 
of different tRNA modifications (Bruch et al. 2020).

In these strains, when grown to early exponential phase, 
premature transcriptional activation of genes occurred that 
are normally expressed only upon entry into stationary phase 
or nutrient depletion. This includes a loss of glucose repres-
sion and induction of nitrogen catabolite-repressed (NCR) 
genes in addition to the activation of different amino acid 
biosynthesis genes (Bruch et al. 2020). Also, autophagy 
(another cellular starvation response) was induced as 
judged from studying loss of Atg13 phosphorylation and 
degradation of a GFP-Atg8 fusion protein. Since NCR and 
autophagy are controlled by the TORC1 complex in budding 
yeast, these cellular responses to combined tRNA modifi-
cation defects might be caused by loss or suppression of 
TORC1 activity (Bruch et al. 2020). Additional evidence for 
a role of Elp3-dependent tRNA modification in reciprocal 
regulation of TORC1 and TORC2 activities was obtained in 
a recent fission yeast study (Candiracci et al. 2019). In bud-
ding yeast, TORC1 activity also appears to be influenced by 
the level of uncharged tRNAs (Kamada 2017). These results 
suggest that the TOR complex, which represents a master 
regulator of growth and metabolism (Loewith and Hall 
2011) might monitor the modification and charging status of 
tRNA. Loss of  mcm5U or  s2U modifications not only influ-
ences nutrient sensitive gene expression signatures, but also 
results in robust changes in cellular metabolism, and some of 
these are again reminiscent of cellular responses to nutrient 
starvation (Gupta et al. 2019; Karlsborn et al. 2016). Thus, 
apart from tRNA aminoacylation, multiple lines of evidence 
support an emerging role for tRNA anticodon loop modifica-
tions in the cellular signaling of nutrient availability.

Potential mediators of nutrient signaling 
defects in tRNA modification mutants

Several tRNA modification defects in yeast are known 
to trigger GCN4 expression in the absence of amino acid 
starvation. This includes not only the  mcm5s2U and  ct6A 
defective mutants described above, but was also observed in 
deg1, pus7, rit1, trm1, trm7, mod5 and tyw3 mutants lack-
ing various other tRNA modifications (Chou et al. 2017; 

Han et al. 2018). While such amino acid starvation response 
appeared to be independent of the Gcn2 kinase responding 
to uncharged tRNA in  mcm5s2U and  ct6A defective strains, it 
was shown to be Gcn2 dependent in trm7 mutants (Daugeron 
et al. 2011; Han et al. 2018; Zinshteyn and Gilbert 2013). 
In these mutants, which lack 2′-O-methylation of C32 and 
G34 in  tRNAPhe, reduced charging of the hypomodified 
tRNA was observed (Han et al. 2018). Hence, the GAAC 
starvation response in tRNA modification mutants can be 
triggered in some cases by effects on the tRNA aminoacyla-
tion efficiency.

In  s2U-deficient strains, robust metabolic changes involve 
increased storage carbohydrate synthesis, which normally 
occurs after glucose depletion (Gupta et al. 2019). Interest-
ingly, these effects were linked to a disturbance of phosphate 
homeostasis. Increased trehalose synthesis likely occurs to 
counteract reduced intracellular phosphate levels since tre-
halose generation from trehalose phosphate can replenish 
intracellular phosphate levels. The phosphate shortage in 
 s2U-deficient mutants is thought to be triggered by tran-
scriptional and translational downregulation of PHO genes 
involved in phosphate uptake (Gupta et al. 2019). A similar 
mechanism might be involved in starvation like responses in 
other tRNA modification mutants, including those required 
for formation of  mcm5U and  ct6A, since transcriptional 
downregulation of PHO genes was observed (Chou et al. 
2017). In the  s2U-deficient strain, however, no robust tran-
scriptional starvation response was triggered (Gupta et al. 
2019), which is in contrast to the changes seen in combined 
mutants. Since the combined mutants exhibit growth defects 
exceeding those of the  s2U-deficient strain, more robust 
changes might occur also at the metabolic level (Bruch et al. 
2020; Klassen et al. 2016). It remains unknown, however, 
how exactly the transcriptional response is mediated.

Intriguingly, when studying the transcriptional induction 
of nutrient responsive genes in combined tRNA modification 
mutants, their expression was dampened upon overexpres-
sion of the very same tRNAs that conferred a suppression 
of growth defects (Bruch et al. 2020; Klassen et al. 2016). 
As outlined above, the overexpressed tRNA presumably 
directly counteracts the inefficiency in decoding. At the 
same time, the propensity to accumulate protein aggregates 
(see above) is significantly lowered by the tRNA overexpres-
sion constructs. Hence, protein aggregates are linked to the 
decoding defect and are potentially involved in the observed 
gene expression changes (Fig. 1). Further support for this 
hypothesis was obtained from studying a mutant (zuo1) 
accumulating protein aggregates independent of a tRNA 
modification defect (Bruch et al. 2020). In zuo1 mutants, the 
ribosome-associated chaperone system is severely compro-
mised, leading to accumulation of protein aggregates (Bruch 
et al. 2020). At the same time, marker genes that are sub-
ject to glucose repression or NCR become transcriptionally 
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induced despite the presence of glucose and ammonia in 
the medium. Thus, protein aggregates might be mecha-
nistically involved in mediating transcriptional changes in 
response to combined loss of tRNA modifications. Possibly, 
the proteasome-mediated turnover of normally short-lived 
transcription factors is altered upon cellular accumulation 
of protein aggregates, ultimately leading to the observed 
changes in gene expression signatures. Further work will be 
required to test this hypothesis and other potentially involved 
mechanisms.
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