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On A Hybrid Concept for Approximating Self-Excited Periodic
Oscillations of Large-Scaled Dynamical Systems

Jonas Kappauf 1,∗ and Hartmut Hetzler1

1 Engineering Dynamics Group, Institute of Mechanics, University of Kassel

Concerning the approximation of self-excited periodic oscillations in large-scaled mechanical systems involving strong non-
linearities, this contribution suggests a concept for an efficient treatment. The presented Hybrid FD-HB method takes the
advantages of both schemes Harmonic Balance and Finite Difference to enhance the ratio of computational cost and accu-
racy for mechanical systems with many degrees of freedom. Within this contribution the residual equations, required when
applying a NEWTON-RAPHSON-scheme, are derived and the method is applied to a stiff nonlinear mechanical system.
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1 Introduction

The analysis of self-excited periodic oscillations in large-scaled systems is a current field of research. For the direct approx-
imation of periodic vibrations in nonlinear systems numerous numerical schemes have been developed. Besides Shooting or
Collocation methods Harmonic Balance Method (HB) and Finite Difference (FD) schemes may be employed. In contrast to
numerical time integration these methods formulate an algebraic equation system that can be solved by NEWTON-RAPHSON
schemes. Also, all these methods may perform different, particularly when dealing with systems involving strong nonlineari-
ties (stiff systems) [1].

Besides various enhancements for these classical methods, hybrid concepts were developed combining advantages of two
methods, e.g. in [2] a Mixed Shooting-HB method is proposed. Here, a Hybrid FD-HB (HFH) method is suggested taking
advantage of both: sophisticated resolution of nonlinear domains (FD) and approximating the linear domains via HB with a
few harmonics for achieving sufficient accuracy. For systems with locally acting nonlinearities and many degrees of freedom
this will enhance the balance of computational cost and accuracy.
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Fig. 1: Minimal model with 5 degrees of freedom and (regularized) friction curve with negative gradient. Here, the system is graphically
divided into a linear (green) domain Γlin and a nonlinear (blue) domain Γnl. The transition zone (orange) is denoted with ∂Γ.

Within this contribution, the HFH is applied to a chain of oscillators showing stick-slip vibrations caused by the regularised
friction force µF with negative slope, see Fig. (1). To this end, the algebraic residual equations for the NEWTON-RAPHSON
scheme including phase condition are deduced, and special attention is given to the transition zone (orange) ∂Γ between linear
and nonlinear domain. Finally, a comparison of FD and HFH is shown.

2 Method

This method focusses on large-scaled autonomous systems with locally acting nonlinearities, where only a few degrees of
freedom (DoF) are affected by nonlinear forces vol(Γnl) � vol(Γlin). That allows the separation of the nonlinear and linear
domain, so the governing equations of a mechanical problem can be transformed to

M11ẍnl + P 11ẋnl + C11xnl + f nl(xnl, ẋnl) = −M12ẍlin + P 12ẋlin + C12xlin (1a)
M22ẍlin + P 22ẋlin + C22xlin = −M21ẍnl + P 21ẋnl + C21xnl (1b)

where xnl denotes the nonlinear DoF lying in Γnl and xlin the linear DoF lying in Γlin as it is done in [2]. Here, it is assumed
that the mechanism of self-excitation is evoked by local mechanisms included in the eq. (1a). Thus for stationary solutions,
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2 of 2 Section 5: Nonlinear oscillations

the linear substructure shows forced vibrations excited by the neighbouring nonlinear DoF, see eq. (1). The basic idea is to
express the nonlinear DoF adjoining ∂Γ as a FOURIER series xnl ≈ <

{∑H
k=0 Xk,nl e jkωt

}
with base frequency ω, complex

FOURIER coefficients Xk,nl and a defined number of harmonicsH . Since the nonlinear DoF xnl will be given atN equidistant
grid points in time domain, the coefficients Xk,nl are evaluated using the Discrete FOURIER Transformation.

Assuming that the linear DoF xlin are representable as a FOURIER series and inserting the approximation for xnl into
eq. (1b) enables an analytical evaluation of the complex FOURIER coefficients of the linear DoF with

Xk,lin = −H−122 H21Xk,nl, whith Hij = −(kω)2M ij + jkωP ij + Cij , i, j ∈ {1, 2} (2)

via HB, where ω is the base frequency of the periodic solution and k = 0, 1, . . . ,H holds. Inserting the time domain expression
of the linear DoF xlin = <

{∑H
k=0 Xk,lin e jkωt

}
and its derivatives into the right hand side of eq. (1a) gives the feedback

f lin = <
{ H∑

k=0

F k,lin e jkωt

}
= −<

{ H∑

k=0

H12H
−1
22 H21Xk,nl e jkωt

}
(3)

acting on the nonlinear structure. Next, the nonlinear DoF xnl are evaluated at N grid points in time domain. Transforming
eq. (1a) into state space and inserting the feedback forces f lin, the resulting algebraic equations at any time grid point ti read

Rres =
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0

f nl(zi)

)
+

(
0

f lin(zi)

)

pc(z, ω)





!
= 0, i = 1, . . . , N (4)

where zi = (xnl, ẋnl)
>
i denotes the nonlinear DoF in state space notation at the i-th time step. Since self-excited oscillations

are calculated, a path condition pc(z, ω) is added. Finally, the derivative is estimated using FD ż ≈ ∑j∈M wjzi+j . The
weights wj can be evaluated using a general formula for arbitrary degree and order of accuracy, see for example [3].

Accounting periodicity of zi on the time grid,
∑

j∈M wjzi+j can be written as matrix multiplication. Inserting that into
eq. (4) gives an algebraic equation system that can be solved by NEWTON-RAPHSON schemes, where the unknowns are the
nonlinear DoF zi = (xnl, ẋnl)

>
i at N points in time domain and the base frequency ω.

3 Application

As a first application, periodic limit cycles of the system, shown in Fig. 1 are calculated. Therefore, NFD = 150 time samples
were taken and H = 10 harmonics were considered, while the derivative żi is approximated using a third order upwind
scheme. Although the calculation time of FD takes two times longer, both methods achieve nearly same accuracy, see Fig. 2.
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(a) Limit cycle of the first DoF
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(b) Limit cycle of the third DoF
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(c) Limit cycle of the fifth DoF

Fig. 2: Periodic limit cycle of the system shown in Fig. 1 at vB = 0.2: comparison of Finite Difference (FD) and Hybrid FD-HB (HFH)
versus the numerical time integration (NTI) as reference solution.

Here, HFH shows better performance mainly caused by a smaller algebraic equation system to solve. So, future research
will be addressed to efficiency and applicability to large-scaled dynamical systems involving a higher amount of linear DoF.
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