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On a hybrid approximation concept for self-excited periodic oscillations
of large-scale dynamical systems
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When approximating periodic solutions in the context of large-scale dynamical systems involving strong local nonlinearities,
efficiency is of special interest. Hence, the literature suggests a combination of two approximation methods for increasing the
ratio of computational cost to accuracy. Within this contribution, a combination of Finite Difference and Harmonic Balance
method is proposed. Due to the usage of Harmonic Balance it is shown, that the resulting equations only depend on the
degrees of freedom that are affected by nonlinear forces. As an application, a self-excited limit cycle of a chain of oscillators
is approximated and results are compared against numerical time integration to highlight qualitative accuracy.
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1 Introduction

In the numerical analysis of dynamical systems, the reduction of computational effort is an essential component. For nonlinear
systems tending to soar into a periodic oscillation, there are various methods for approximating these stationary solutions.
However, for systems with a large number of degrees of freedom, a combination of two approximation methods can exploit
their individual properties and, thus, increase efficiency. This approach was also discussed in [1], where a combination of HB
with Shooting was suggested.

The present contribution proposes a hybrid approximation method, that combines the Harmonic Balance Method (HB)
and Finite Difference (FD) method. This Hybrid FD-HB (HFH) method takes advantage of a sophisticated resolution of the
motion within the nonlinear domains by the discretization of the FD method. On the other hand, approximating the linear
domains via HB with a few harmonics allows a sufficient accuracy. For systems with locally acting nonlinearities and many
degrees of freedom, this method promises to enhance the ratio of computational cost to accuracy.
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Fig. 1: Minimal model with 3 degrees of freedom and (regularized) friction curve with negative gradient. Here, the system is graphically
divided into a linear (red) domain I'};, and a nonlinear (blue) domain I'y;.

In the following, the system dynamics are reduced to a subset of the state space by defining the nonlinear degrees of
freedom as master coordinates. This reduction scheme is explained for autonomous systems showing self-excited periodic
vibrations, but is also applicable to externally excited systems. The solution of these reduced equations of periodic motion is
approximated by the Finite Difference method. After that, results are presented for a self-excited dynamical system shown in
fig. 1.

2 Method

The proposed method for approximating periodic oscillations focusses on large-scale systems with locally acting nonlinear-
ities, where only a few degrees of freedom (DoF) are affected by nonlinear forces. Separating the degrees of freedom in a
nonlinear and a linear domain, the autonomous governing equations of a mechanical system can be transformed to

M ynix + Pyyix + Cyyun + fy(un, un) + My + Py + Cyrpu, = 0, (1a)
My + Prrug + Crrug + Mpyun + Pryux + Cryvun =0, (1b)

where uy denotes the nonlinear and up, the linear DoF, in correspondence to [1]. Assuming eq. (1) has a periodic solution,
both nonlinear and linear DoF can be expressed as a complex FOURIER series. Truncating this series gives an approximation
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20of 2 Section 5: Nonlinear oscillations

un ~ RIS U ne™t) resp. up = R{ 34, Uy e} with base frequency w and complex FOURIER coefficients
Ui ~and Uy 1, and H is a sufficient number of harmonics. Inserting this approximation of uy and wy, into the linear eq. (1b)
enables an analytical evaluation of the complex FOURIER coefficients

Uk,L = —Gzll‘(kw)GLN<k‘w)Uk’N, with G”(l{?w) = —(k:w)gMij —l—jk:wPij + Cij, 1,J € {N,L} 2)

of the linear DoF for k = 0,1, ..., H, that corresponds to the HB scheme. Hence, for prescribed periodic motion for uy, the
deflection uy, velocity ;. and acceleration ip, of the linear DoF are directly known. Inserting them into the nonlinear eq. (1a)
gives an analytical expression for the feedback forces of the linear structure

H
fin(w,un) = My, + Pypap + Cnpu, = —%{Z Gn1(kw)Gr ] (kw)Grn (kw)Ug N ejkwt} 3)
k=0

only depending on the base frequency w and the FOURIER coefficients of the nonlinear DoF. Hence, the periodic dynamics of
the system are described by the nonlinear DoF and the reduced equations of periodic motion given by

M yyix + Pyyix + Cyyun + fy(un, un) + fii(w,ux) =0, €]

where f;,(w,un) includes the interaction of the nonlinear and linear subsystem. The linear DoF are directly related to un
and the base frequency w as indicated by eq. (2). Up to this point, the approximation error depends solely on the number H
of harmonics being considered.

As a last step, the approximation method for the nonlinear DoF must be selected. Approximating both the first and second
time derivative within eq. (4) by finite differences and considering periodic boundary values lead to an algebraic equation
system (AES) related to the deflection of the nonlinear DoF at Npp discrete time samples [2]. In the present case of self-
excited vibrations, a phase condition fixes the initial point on the limit cycle. This AES is solved numerically by a NEWTON-
RAPHSON scheme.

3 Application & Outlook

As an application, periodic limit cycles of the system, shown in fig. 1 are calculated. Therefore, Ngp = 60 time samples for
the FD approximation were taken and the derivatives wy resp. 4 are approximated using a third order upwind resp. fourth
order central difference scheme. Compared to numerical time integration, fig. 2 shows that only a few harmonics are essential
to achieve sufficient accuracy for the present case. Here, both solutions for H = 3 and H = 5 show qualitatively sufficient
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Fig. 2: Periodic limit cycle of the system shown in fig. 1 at vg = 0.7: comparison of Hybrid FD-HB (HFH) versus the numerical time
integration (NTI).

results compared to NTI, as an approximation with H = 1 for u; leads to poor agreement. Since the resulting algebraic
equation system depends only on the deflection of the nonlinear DoF, this reduction will speed up the calculation process
compared to classical methods that solve for both nonlinear and linear DoF. For the presented method, this hypothesis will be
proven in future research by expanding the chain of oscillators and comparing the results to a sole usage of FD.
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