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Abstract

For the most common treatment of retinal diseases worldwide by drug dis-
tribution in the human vitreous we developed the mathematical model of
the vitreous. Compare to previous works we focus on the vitreous as a vis-
coelastic fluid including its heterogeneous property due to the orientation of
collagen fibers. By using the incompressible viscoelastic Burgers-type model
based on experimental data as the specific constitutive equation in the set-
ting of continuum mechanics we considered its non-Newtonian nature. This
viscoelastic response is derived from the interaction between hyaluronan,
aqueous humor and elastic collagen fibers. The stability analysis of the spa-
tially inhomogeneous non-equilibrium steady state for the incompressible heat
conducting viscoelastic Burgers-type fluid was proven. The steady state is
asymptotically stable irrespective of the initial conditions and of the shape
of the domain. To investigate the influence of the rheology of the vitreous
we analyzed its mechanical behavior in a deforming eye ball leading to a
fluid-structure-interaction problem. We found that the healthy vitreous pre-
dicted by the Burgers-type model showed twice as high stress as the liquefied
one predicted by the Navier–Stokes model. The coupling of the viscoelas-
tic Burgers-type model with the drug distribution through the stress driven
diffusion provides a fully coupled system of partial differential equations in
contrast to the proposed models in the literature. The diffusion in the vitreous
depends on the viscoelastic properties of the vitreous which act as a barrier to
the drug distribution. The extension to an anisotropic stress driven diffusion
reflects the tendency to follow the preferential direction along the collagen
fibers depending on the molecule size. As an innovative approach we derived
a thermodynamically consistent model for the vitreous as a viscoelastic fluid
whose elastic reaction is anisotropic and took into account the heterogeneous
property of the vitreous and its orientated collagen fibers. Our developed
models about the mechanical behavior of the human vitreous and its influence
on the drug distribution give a better understanding of the physiological and
pathological processes in the eye.





Zusammenfassung

Für die weltweit häufigste Behandlung von Netzhauterkrankungen durch
Wirkstoffverteilung im menschlichen Glaskörper haben wir das mathematis-
che Modell des Glaskörpers entwickelt. Im Vergleich zu früheren Arbeiten
konzentrieren wir uns auf den Glaskörper als viskoelastische Flüssigkeit ein-
schließlich seiner heterogenen Eigenschaften aufgrund der Ausrichtung der
Kollagenfasern. Durch die Verwendung des inkompressiblen viskoelastis-
chen Burgers Modells, das auf experimentellen Daten basiert, als spezifische
konstitutive Gleichung im Rahmen der Kontinuumsmechanik haben wir die
nicht-Newtonsche Natur des Glaskörpers berücksichtigt. Diese viskoelastische
Reaktion ergibt sich aus der Wechselwirkung zwischen Hyaluronsäure, Kam-
merwasser und elastischen Kollagenfasern. Die Stabilitätsanalyse des räumlich
inhomogenen Nichtgleichgewichtszustandes für die inkompressible wärmelei-
tende viskoelastische Burgers Flüssigkeit wurde nachgewiesen. Der stationäre
Zustand ist asymptotisch stabil, unabhängig von den Anfangsbedingungen
und der Form des Gebiets. Um den Einfluss der Rheologie des Glaskörpers zu
untersuchen, analysierten wir sein mechanisches Verhalten in einem sich ver-
formenden Augapfel, was zu einem Fluid-Struktur-Interaktionsproblem führte.
Wir fanden heraus, dass der gesunde Glaskörper, der durch das Burgers Modell
vorhergesagt wurde, eine doppelt so hohe Spannung aufwies wie der verflüs-
sigte Glaskörper, der durch das Navier-Stokes Modell beschrieben wurde.
Die Kopplung des viskoelastischen Burgers Modells mit der Medikamenten-
verteilung durch die spannungsgesteuerte Diffusion liefert ein vollständig
gekoppeltes System von partiellen Differentialgleichungen, im Gegensatz zu
den in der Literatur vorgeschlagenen Modellen. Die Diffusion im Glaskörper
hängt von den mechanischen Eigenschaften des Glaskörpers ab, die als Barriere
für die Medikamentenverteilung wirken. Die Erweiterung auf eine anisotrope
spannungsgesteuerte Diffusion spiegelt die Tendenz wider, abhängig von der
Molekülgröße der Vorzugsrichtung entlang der Kollagenfasern zu folgen. Als
neuartigen Ansatz haben wir ein thermodynamisch konsistentes Modell für
den Glaskörper als viskoelastische Flüssigkeit hergeleitet, deren elastische
Reaktion anisotrop ist und die heterogenen Eigenschaften des Glaskörpers und
seiner orientierten Kollagenfasern berücksichtigt. Die von uns entwickelten
Modelle über das mechanische Verhalten des menschlichen Glaskörpers und
seinen Einfluss auf die Medikamentenverteilung ermöglichen ein besseres



Verständnis der physiologischen und pathologischen Prozesse im Auge.
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1 Introduction

The development of mathematical models describing the drug distribution
in the human vitreous after an intravitreal injection used for the treatment of
retinal diseases play nowadays an important role in the drug development
and optimization of personalized therapies. In this context the appropriate
modeling of the vitreous is crucial and the concentration distribution depends
on the properties of the vitreous. Key aspects are its non-Newtonian viscoelastic
nature and the heterogeneous structure of the elastic collagen fibers inside the
vitreous [159].
The retinal disease, wet aged-related macular degeneration, is the leading
cause of vision loss in people aged 50 years or older and involves damage
to the area responsible for sharp central vision due to abnormal blood vessel
growth. The therapy consists of intravitreal injections which are administered
over a period of time depending on the pathology. Thereby an active ingredi-
ent is injected in the vitreous that diffuse to the retina and effect there locally
through molecular mechanism.

A first diffusion model to describe dispersion of drugs in the vitreous of a
rabbit is written in [62] where they assumed that the vitreous is stagnant. Later
studies extended the simple diffusion by a convection term which arises be-
cause of aqueous humor flow through the vitreous driven by a pressure drop
between the anterior and the posterior surfaces [75]. But all of the previous
studies model the vitreous humor as an incompressible Newtonian fluid ignor-
ing the non-Newtonian property capable of describing its complex behavior
seen in experiments [180, 164] and its influence on the drug distribution. The
most common model in the literature uses the Darcy equation [75, 170]. In
[2, 153] the incompressible Navier-Stokes equation describes the liquefied vit-
reous in age where they focus on the motion of the vitreous. Considering the
drug distribution the drug is transported by convection of the induced flow
field of the vitreous. The influence of the mechanical properties of the vitreous
on the distribution rate of the drug as well as the effect of the spreading of the
medicine molecules on the vitreous are not considered in the literature.
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Motivation of the Thesis In this work and the parameters contained therein
we focus on the most common retinal disease, especially aged-related macular
degeneration. In 2013 it was the fourth most common cause of blindness [34]
and affected in 2015 around 6.2 million people globally [1]. To date, there
is no therapy response in 10.1-45 % of the patients [15], only a small drug
concentration range is effective and higher concentrations may be toxic. In
order to assess the effectiveness of the injected drug, it is of fundamental
and therapeutic interest to model the physiology of the human vitreous. The
motivation of this thesis is the improvement of the administered ophthalmic
therapy through a better understanding of the properties of the vitreous humor
provided by the ability to model its mechanical behavior and its influence on
the drug distribution.

Objective and Method of the Thesis The contribution of this thesis is the
development of our mathematical models describing the human vitreous as
a viscoelastic fluid. The proposed models consider the heterogeneous struc-
ture of collagen fibers inside the vitreous and couple its induced flow field to
the drug distribution for the treatment of retinal diseases. They are systems
of coupled partial differential equations completed with initial and mixed
boundary conditions, considering the complex biology of the vitreous and the
surrounding tissues in the human eye. They are fully coupled in which the
drug diffusion and flow of the vitreous can effect each other.
To our knowledge, we are the first considering the non-Newtonian nature of
the vitreous body by using a thermodynamically derived viscoelastic Burgers-
type fluid in the modeling of drug transport. We extend it to an anisotropic
viscoelastic fluid taking into account the preferred direction of the elastic col-
lagen fibers. Since the available experimental data in the literature do not
coincide in their mechanical analog with our preferable model for the human
vitreous, we converted the set of parameters characterizing the viscoelastic
response by solving a nonlinear system of equations.
Further, we propose fully coupled systems extended by the Korteweg stress or
stress driven diffusion in which the drug diffusion and flow inside the vitreous
can effect each other. The vitreous acts as a barrier to the diffusion which has
not yet been addressed in its modeling before. We generalize the existing ap-
proaches for stress driven diffusion by constructing an anisotropic stress driven
diffusion tensor including the heterogeneous structure of collagen fibers inside
the vitreous and introduce a possible generalization to three space dimensions.
In Section 4.5 also presented in the publications [173, 182], we analyzed the
mechanical behavior of the vitreous in a deforming eye ball leading to a fluid-
structure-interaction problem. In contrast to other studies, the geometry of the
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vitreous is not fixed and does not take the spherical shape but a realistic geo-
metrical setting in which the deformations of the sclera and lens induce the
flowing of the vitreous. The focus on the interplay between the rheology of the
vitreous and the stress field in it is of interest in the study of retinal pathologies
and can answer clinically relevant questions.
In Section 4.4 published in [172], we examined the stability of the rest state of vis-
coelastic models with temperature dependent material coefficients to find the
additional restrictions on the energetic equation of state which are well-known
in the case of compressible Navier-Stokes fluid but not in the case of complex
viscoelastic fluids. In our publication [38] the stability of a spatially inhomo-
geneous non-equilibrium steady state is investigated for incompressible heat
conducting viscoelastic rate-type fluids occupying a mechanically isolated domain
but allowing heat exchange with the surrounding. In this thesis we further
extend the results to the more complex Burgers-type fluid characterizing the
human vitreous. In this case, the standard methods for thermodynamically
isolated systems or systems immersed in a thermal bath can not be used since
the steady state is a non-equilibrium (entropy producing) steady state due
to the constant spatially nonuniform temperature at the domain’s walls. We
proved that the steady state is asymptotically stable irrespective of the initial
conditions and of the shape of the domain.

Structure of the Thesis This thesis is structured as follows: The first part
deals with the biological and mathematical introduction. In Chapter 3, the
well known models from the literature of drug distribution within the vitreous
are presented and theoretical questions in analysis of existence and unique-
ness of these models are explored. Section 3.1 gives an overview of the used
geometry and the considered distinguishable boundaries. In Section 3.2 and
3.3, the modeling of the vitreous is introduced and coupled with the drug
distribution in Section 3.4. The last Section includes the gravitational force
to the introduced models. As a novel approach Chapter 4 is devoted to the
viscoelastic approach for modeling the healthy vitreous using the Burgers-type
model. The full system of governing equations is introduced in Section 4.1
and mechanically and thermodynamically derived in Section 4.2. Section 4.3 is
about the setting of the parameter based on experimental data. Considering
temperature changes in Section 4.4 we examine the stability of the rest for the
incompressible heat conducting Burgers-type fluid.To investigate the influence
of the rheology of the vitreous we analyze its mechanical behavior in a de-
forming eye ball leading to a fluid-structure-interaction problem in Section
4.5. Here, the sclera and the lens are modeled as hyperelastic solids. Section
4.6 presents the more realistic models of drug distribution within the vitreous
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including the surface tension and stress driven diffusion due to viscoelastic
properties of the vitreous. Corresponding numerical simulations in Section
4.7 are performed with the finite element method to compare the different
rheological models of the vitreous and their influence on the drug distribution.
Finally in Section 4.8, we consider the heterogeneous structure of the collagen
fibers by extending the drug distribution to an anisotropic approach and de-
riving a thermodynamically consistent model for the vitreous as a viscoelastic
fluid whose elastic reaction is anisotropic. A conclusion and outlook for future
projects is given in Chapter 5.
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2 Biological and Mathematical
Background

2.1 Biological Background

The eye is an organ of the visual system with its anatomy divided into an
anterior and posterior segment [110]. The anterior segment is composed of the
cornea, lens, iris, ciliary body and aqueous humor, while the posterior segment
consists of the retina, posterior sclera, choroid and vitreous humor (see Figure
2.1).

Figure 2.1: Structure of the eye
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2.1.1 Aqueous humor

The aqueous humor is a transparent, watery fluid produced by the ciliary body
(a structure supporting the lens) that flows into the anterior chamber, the space
between the cornea and iris, through the pupil and leaves the posterior eye
through the retina [159]. A major function of the aqueous humor is to provide
nutrients for the cornea and lens. The production rate of aqueous humor is
approximately 2.5 µl/min [132], which results in the intraocular pressure (IOP)
of the eye.

2.1.2 Lens

The lens is the transparent biconvex tissue in the eye that is responsible for
accommodation and refraction of light to be focused on the retina. The lens,
by changing shape, can focus objects at various distances which is known as
accommodation. Therefore, it is elastic, made up of elongated lens fiber cells.

2.1.3 Sclera

The sclera is the white colored part and the outer layer of the eye. This tissue
is composed mainly of collagen and elastic fibers. The main function of the
sclera is to provide a protective layer for the internal components of the eye.

2.1.4 Retina

The retina is the light-sensitive tissue of the eye. It contains the light sensing
cells and supporting cells that are needed for the vision. The light entering
the eye is transmitted to the brain with electrical neural impulses via the optic
nerve and creates visual perception. The retina is supplied with blood by the
choroid layer. It represents a barrier to drug delivery from the vitreous.
Near the center of the retina there is an oval-shaped area called the macula.
It is responsible for the central, high-resolution, color vision and leads to
loss of central vision if it is damaged, for example in age-related macular
degeneration.

2.1.5 Vitreous Humor

The vitreous humor, also called the vitreous body or just vitreous, fills more
than 2/3 of the eye volume and is situated between the lens and the retina,
see Figure 2.1. In [159] the several functions of the vitreous are summarized in
different categories: (1) developmental - mediating proper growth of the eye,
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(2) optical - maintaining a clear path to the retina, (3) mechanical - supporting
the various ocular tissues during physical activity (serving as a damper for
the eye and absorbing impacts) and (4) metabolic - providing a repository of
various small molecules for the retina.
It is transparent and contains of 98 % water and 2 % proteins, yet it behaves
like a viscoelastic gel. This is due to a meshwork of collagen fibrils that are
suspended in a network of hyaluronan/ hyaluronic acid (HA) [160]. In [160]
a transmission electron micrograph taken from the central vitreous shows
that parallel collagen fibrils are packed into bundles that aggregate and form
visible fibers. Hyaluronic acid and water molecules fill the interfibrillar spaces.
The presence of both hyaluronic acid and collagen together determine the
viscoelastic properties of the vitreous. They provide strength and resistance to
tractional forces.
Further the vitreous body is not completely homogeneous [67]. Anatomically,
the vitreous is subdivided into different regions including the central, cortical
vitreous and vitreous base as shown in Figure 2.2. These regions have different
rheological properties as a result of differences in collagen fibers concentra-
tion and orientation. In the central vitreous parallel collagen fibers run with

Figure 2.2: Regions within the vitreous

an anterior-posterior orientation attached to vitreous base and macula in the
vitreous cortex [159]. Here is the lowest collagen concentration, 52 µg/ml,
see [6]. A denser collagen fibrillar network is formed in the outer layer of the
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vitreous, the so-called vitreous cortex. It can be seen in freeze etching/rotary
shadowing electron microscopy images of the fibrillar network of a bovine
vitreous in [25]. The cortex runs from the pars plana to the posterior lens,
where it shares its attachment with the posterior zonule via Wieger’s ligament,
also known as “Egger’s line" [155]. Specially, the anterior part is called the
anterior hyaloid membrane, a highly porous membrane that separates the front
of the vitreous from the anterior segment of the eye. In this region the aqueous
humor can flow into the vitreous and can be degraded at the retina through the
choroid [159]. The densest collagen fibrillar network is in the basal vitreous,
112 µg/ml [6], in which the fibers are arranged in thicker bundles inserting
into the posterior ciliary body (pars plana) and the anterior retina [25]. The
highest concentrations of hyaluronan are in the posterior vitreous cortex and
the central vitreous is more liquid than the cortical vitreous [67]. An S-shaped
channel free of collagen fibrils is an embryologic vascular remnant, referred as
the Cloquet’s chanal, running through the vitreous from the optic disc to the
posterior lens [155]. It is visualized by dark-field slit microscopy in [159].

A diagram of the concept of the vitreous body anatomy can be found in [161].
It proposes cisternal systems from top to bottom identified by injecting with
colored India ink. Light brown from Jongebloed and Worst [89].

Aging change

With aging the rheological properties of the vitreous change and tend towards
a more liquid form, especially notable in the center of the vitreous where the
collagen concentration is lowest. This disintegration of the gel structure is
called liquefaction.
The young and healthy vitreous at birth is entirely gelatinous. Collagen fib-
rils are packed in bundles and form an extended interconnected network by
branching between these bundles [67]. The fibrils run closely together in
parallel, but are not fused. With increasing age thiner collagen fibrils fuse
together which results in collagen fibrillar aggregation due to the degradation
of collagen type IX preventing the collagen fibrils from adhering to each other.
The aggregation of collagen fibrils results in the collapse of the vitreous and
expulsion of the hyaluronic acid inside the collagen-hyaluronan network. The
once homogeneous gel separates into heterogeneous phases.
From a diagram showing the liquefaction of the human vitreous in age in [110]
you can see that more than half of the vitreous is liquid by the age of 80–90
years. The network density of collagen decreases and is replaced with pockets
of liquid vitreous (lacunae), which melt together over time [159]. This results
in an increasing heterogeneity.
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The inhomogeneities created by these pockets and the total liquefaction in
old age or after a vitrectomy effect the rate of diffusion of intravitreally applied
medications. Therefor, it is important to study the mechanical properties of the
vitreous to gain insight into diseases and the release and transport profile of
intraocular drugs injected into the vitreous humor and understanding of the
pathological conditions of the vitreous humor.

2.2 Mathematical Background

To describe physical processes like the drug distribution in the human vitreous
we need a system of mathematical equations capable of modeling the behavior
of complex situations. In the setting of continuum mechanics the balance
equations (for mass, linear and angular momentum and energy), completed
by the formulation of the second law of thermodynamics form the basis to
describe various physical phenomena.

At the beginning of this chapter short mathematical preliminaries and basic
notations are introduced. After that, the required theory of continuum me-
chanics is briefly stated. At the end, we give an overview of the derivation of
the balance equations for mass, momentum, angular momentum, total energy
and concept of entropy. They describe the general behaviour of the considered
process and can be seen as reformulations of fundamental physical laws (e.g.
Newton’s law) which are universally valid for any continuous medium. But
the critical and most difficult part in formulating the system of governing
equations for a given material in the considered process is the specification
of the response of the material to the given stimuli. An extra set of material
specific equations is necessary, the so-called constitutive relations.

2.2.1 Basic Notation

In order to understand the derivation of the models, the main notation and
function spaces are introduced.

In this thesis, let Ω be a domain of Rd, d ∈ {2, 3}. The spaces Lp(Ω) de-
note the Lebesgue spaces of order 1 ≤ p ≤ ∞ and Hs(Ω) are the usual Sobolev
spaces of order s ≥ 0, s ∈ R with their corresponding norms. The space of
continuous, real-valued functions on Ω which admit continuous partial deriva-
tives up to order m ∈ N is denoted by Cm(Ω). C∞(Ω) describes the space
of smooth functions on Ω. Lp(0, T; X) defines the time involving Leray-Hopf
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space for any Banach space X and time 0 < T < ∞. For a bounded domain the
space C0,1(Ω) is called the space of Lipschitz continuous functions.
(·, ·) is the scalar product on L2(Ω) and for the corresponding norm we will
use the notation ‖ · ‖L2(Ω) and sometimes skip the space index if it is clear from
the context.
A detailed introduction into the definition of these spaces and the theory of
partial differential equations can be found in [48, 191, 156].

2.2.2 Continuum Mechanics

Before deriving the balance equations and constitutive relations we briefly
introduce the theory of continuum mechanics. We assume that the material
of interest entirely fills the whole space and we ignore the micro-structure
of it like the fact that the fluid is made of atoms and molecules. Therefor,
continuum mechanics can be used only on scales that are much greater than
the distances between molecules. The reader who is not yet familiar with the
field of continuum mechanics and thermodynamics is referred to [74].

Let Ω ⊂ R3 be the continuous body which initially occupies a typical re-
gion κ0(Ω) at a fixed reference time t = t0 (usually t0 = 0). This region is
called the reference configuration of that body Ω. At a later time t > t0 > 0
the continuous body is in a deformed position known as the current config-
uration κt(Ω). The function χ describes the motion of the body that maps
the positions X ∈ κ0(Ω) of points to their respective positions x ∈ κt(Ω),
such that x = χ(X, t). Concerning a suitable framework for the description

κ0(Ω)
χ

κt(Ω)

xX

t0 t

Figure 2.3: Motion of a continuous body

of processes in a continuous medium there are two choices. The Lagrangian
description is suitable for the description of change of shape where in order to
specify the change a reference point is needed. Here we consider the change
with respect to the initial state κ0(Ω) and it is chosen to study the motion of
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solids. In contrast, the Eulerian framework focus on the rate of change (the
time derivative) and refers to the state of the material at the current time κt(Ω)
and in its infinitesimally small time neighborhood. It means one is interested
in the velocity and there is no need to know the complete trajectories of the
individual points. Hence the Eulerian description is used in the theory of fluids.

The Lagrangian velocity V defined on the reference configuration is the time
derivative of the mapping

V(X, t) :=
∂χ(X, t)

∂t

and the relation between V and the Eulerian velocity v living on the current
configuration is given by

v(x, t) = v(χ(X, t), t) := V(X, t).

The symmetric part of its gradient ∂v(x,t)
∂x is

D :=
1
2

(
∇v + (∇v)T

)
and

F :=
∂χ(X, t)

∂X
defines the deformation gradient. Another important relation is

dv(x, t)
dt

: =
∂v
∂t

+
∂v(χ(X, t), t)

∂x
∂χ(X, t)

∂t
=

∂v
∂t

+ (∇v)v

=
∂v
∂t

+ (v · ∇)v
(2.1)

which denotes the material time derivative in Eulerian description. The relation
between the deformation gradient and the velocity gradient is the following

dF

dt
=

d
dt

(
∂χ

∂X

)
=

∂

∂X

(
dx
dt

)
=

∂v
∂X

=
∂v
∂x

∂x
∂X

= (∇v)F. (2.2)

Let AT denote the transpose of a tensor A. Then the left and right Cauchy–Green
tensors are defined through

B := FFT, C := FTF. (2.3)
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2.2.3 Balance Equations

The balance equations used in the study of fluids are derived by applying the
classical laws of Newtonian physics and classical thermodynamics. Thereby,
the main mathematical tool is the Reynolds transport theorem [74].

Balance of mass

One classical law of Newtonian physics is the conservation of mass, i.e. mass
can not de created or destroyed during physical processes. A generalization of
this law to the continuum mechanics setting is given by:

dρ

dt
+ ρ div v = 0 (2.4)

where ρ is the fluid density.

Balance of linear momentum

The generalization of Newton’s second law provides the balance of linear
momentum:

ρ
dv
dt

= div T + ρ f (2.5)

with the body force f (x, t) (like gravitational force) and the Cauchy stress
tensor T(x, t) describing interaction between the given volume of the material
and its surrounding.

Balance of angular momentum

The balance of angular momentum is the consequence of Newton’s laws of
motion which provides the symmetry of the Cauchy stress tensor:

T = TT. (2.6)

Balance of energy

The balance of energy and entropy are only needed for thermal effects in
thermodynamics compare to mechanics (neglecting them). Repeating the
same steps like in thermodynamics (multiplying the balance of momentum by
v) with the non-mechanical energy exchange through the volume boundary
(energy is transferred from the volume into the surrounding) we derive the
balance of total energy

ρ
detot

dt
= div(Tv)− div je + ρ f · v + ρr

12



where etot(x, t) is the total energy. It is the sum of internal (non-mechanical)
and kinetic (mechanical) energy:

etot = e +
1
2
|v|2.

je is the energy flux and r is the density of external energy sources. In the
simplest setting, the energy flux tantamount to the heat flux.
The balance of the internal energy e(x, t) (like thermal energy) reads

ρ
de
dt

= T : D− div je + ρr (2.7)

where the symbol : denotes the scalar product of tensors and is defined by

A : B := tr(ABT)

and since the Cauchy stress is symmetric we have the relation

T : D = T : ∇v = div(Tv)− div(T) · v.

The term T : D in (2.7) is called the stress power and plays a fundamental role
in thermodynamics of continuous medium.

Balance of entropy

The entropy η(x, t) is a fundamental state variable in thermodynamics and
measures the degree of disorder in a system. The balance of entropy is

ρ
dη

dt
+ divjη =: ξ (2.8)

where ξ is the entropy production and jη := je
θ describes the entropy flux.

Note that the balance of entropy is not necessary for a complete system of
equations, because it can be specified as a function of the internal energy and
the other state variables, i.e. e = e(η, ρ, . . . ).
But it is needed to show if the second law of thermodynamics is fulfilled (total
entropy of an isolated system can never decrease over time). It says the entropy
production has to be positive, i.e.

ξ ≥ 0. (2.9)
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2.2.4 Material Specific Constitutive Equations

The motion of any single continuous medium in the Eulerian framework is
governed by the following system of partial differential equations:

dρ

dt
+ ρ div v = 0, (2.10a)

ρ
dv
dt

= divT + ρ f , (2.10b)

T = TT, (2.10c)

ρ
de
dt

= T : D− div je. (2.10d)

where the conservations of mass (2.4), linear (2.5) and angular momentum
(2.6) describe the whole mechanics in a physical process. Concerning thermal
effects the balance of internal energy (2.7) characterizes the thermodynamics.
Additionally, we need boundary and initial conditions to specify the consid-
ered process. The unknown quantities are the density ρ, the velocity field
v, the specific internal energy e, the Cauchy stress T and heat flux je. The
equations (2.10) remain valid in all branches of continuum mechanics but do
not distinguish between different materials. They are insufficient for the de-
scription of the evolution of the quantities of interest. The Cauchy stress tensor
and the heat flux are not specified because they are a priori unrelated to the
rest of the unknowns. Therefore, in order to get a closed system of governing
equations, we need extra equations relating the stress and the heat flux to the
other quantities based on the assumptions on the behavior of the material.

T = T(ρ, v, e), je = je(ρ, v, e)

These relations are called the constitutive relations. They depend on two things:
the given material and the considered process. For example the same material
can show different properties in different processes (heating, cooling, . . . ). It is
a simplified description of the physical reality and a critical and difficult part
in formulating the system of governing equations.

Liquids and gases are characterized by the fact that the Cauchy stress ten-
sor is always spherically symmetrical at rest, i.e.

T = −pI

for v = 0. Therefore in all fluid models we consider T in the form:

T = −pI + S, (2.11)
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where pI is the spherical part with p called the pressure and I is the unit
tensor. The deviatoric part S is called the extra stress tensor which measures
the frictional tension (or also called shear stress). Now, S is the only part which
has to be further specified by an extra evolutionary equation (the constitutive
relation depending on the other quantities).

The approach is based on mechanical and thermodynamical considerations,
such as the symmetry of the material and the requirement of the invariance of
the constitutive relations with respect to the change of the observer, coordinate
system and the conformance of the second law of thermodynamics. In particu-
lar, the relative rotation of the fluid should not affect its internal stress which
is called material frame indifference and leads to the conclusion that S only
depends on the symmetric part of the gradient of v, i.e. D. From the balance
of angular momentum it can be seen that the Cauchy stress T and so S should
be symmetric. Further, for a homogeneous fluid it is assumed that S does not
depend explicitly on time or position.

Compressible/incompressible fluids

Incompressible Fluids First, we divide into compressible and incompressible
fluids where incompressibility means that the density of any given material
point X is constant in time:

dρ

dt
= 0.

But note that the density can still vary in space (inhomogeneous material).
Using the balance of mass (2.4), it follows

div v = tr(∇v) = tr D = 0 (2.12)

which means that the material can undergo only isochoric (volume preserving)
motions. The consequence is that the material can sustain arbitrary spherical
stress and the pressure p in equation (2.11) is the force that guarantees the
incompressibility. It is an additional unknown and can not be determined
experimentally.

If the fluid is also homogeneous (counterpart of inhomogeneous), it follows
from (2.4) and (2.12) that the density is constant in space and time.

Compressible Fluids Compressibility is the counterpart of incompressibility
and measures the relative volume change of a fluid as a response to a pressure
(or mean stress) change. It is described by the additional term λ(ρ, θ)(div v)I
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in the constitutive equation (2.11) for the stress, where λ is the bulk viscosity
depending on the density and thermodynamical temperature θ.
Here the pressure is not an additional unknown like in the incompressible case
and is labeled by pth for the purpose of distinction. It is the so-called thermody-
namic pressure which is a function of the density and the temperature/entropy.
It is defined by the form

pth := ρ2 ∂e(ρ, η)

∂ρ
. (2.13)

Newtonian Fluids

The Newtonian fluids or often called the Navier–Stokes fluids are named
after the French engineer and physicist Claude-Louis Navier and Anglo-Irish
physicist and mathematician George Gabriel Stokes. They describe the motion
of viscous fluids. Their constitutive equations are based on Isaac Newton’s
second law to fluid motion that viscous stresses are proportional to rates of
change of the fluid’s velocity. It means that S = 2µD.
Newtonian fluids describe pure viscous flows:

T = −pthI + λ(div v) I + 2µD (compressible)
T = −pI + 2µD (incompressible)

where µ is the dynamic shear viscosity which can depend on the density and
temperature or can be a constant in the case of a homogeneous incompressible
fluid ignoring thermal effects.

Due to the linear relation between T and D the Cauchy stress can be ex-
pressed in terms of the velocity and the constitutive equations can be inserted
in the balance equations which will be shown in the Chapter 3.3.

The Navier–Stokes equations describe the physics of many phenomena of
scientific and engineering interest and can model water flow in a pipe, air flow
around an aircraft wing or blood flow.

Viscoelastic Fluids (Non-Newtonian fluids)

The models presented in the previous section are not suitable for all materi-
als, especially for viscoelastic materials. They do not behave as Newtonian
fluids described by Navier-Stokes fluid and are called Non-Newtonian for this
reason. Some examples are toothpaste or food such as butter and yogurt or
natural substances such as lava and honey or biological fluids such as blood
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and vitreous body.

Viscoelasticity refers to both viscous fluid as well as elastic solid reactions.
Viscosity means that they flow like a Newtonian fluid but on the other hand
they can store or release energy, like an elastic solid. In linear elasticity, the
stress σ depends linearly on the strain ε, which is a dimensionless (ratio of two
lengths) measure of the local deformation of the material due to stress, with
respect to a reference state (Lagrange framework). In contrast, the total strain
and reference state are not of interest in a fluid, since fluid particles have no
preferential position relative to one another (Eulerian framework). In a viscous
Newtonian fluid the stress depends on the rate of strain. In an elastic solid
the stress depends on the strain. Viscoelastic materials exhibit both properties.
Their stress depends on the strain and the rate of strain.

Such viscoelastic properties are expressed in Non-Newtonian phenomena
like the presence of non-zero normal stress differences in the steady simple
shear flow. Figure 2.4 shows the associated rod climbing (Weissenberg) and die
swelling effect. The fluid pressed in one direction reacts usually in the perpen-
dicular direction. Other properties of viscoelastic fluids are shear thickening

Newtonian Non-Newtonian
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Figure 2.4: Rod climbing/Weissenberg effect (left) and die swelling (right)

and thinning. The shear rate is a shear component of the symmetric part of
velocity gradient D and the shear stress is the corresponding component of the
extra stress tensor, a part of the Cauchy stress T. The difference to Newtonian
fluids of these properties is graphically shown in Figure 2.5. For more details
on the response of real viscoelastic materials see for example [190]. In contrast
to Newtonian fluids, the stress in viscoelastic materials is not proportional to
the velocity gradient but satisfy an additional evolutionary differential equa-
tion to be capable of characterizing the elastic response. Beside the velocity
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Figure 2.5: Comparison between Newtonian and Non-Newtonian fluids

and pressure the stress is treated as an unknown to be sought in mechanical
processes. This is discussed in the section 4 below.

Derivation Viscoelastic rate-type models are motivated by a one-dimensional
mechanical spring/dashpot analogue, see for example [181]. Here the linear
elastic behavior is represented by a Hookean spring satisfying Hooke’s law
and the viscosity is described by a linear dashpot consisting of two concentric
cylinders filled with a Newtonian fluid (see Figure 4.1). The relation between
the stress and strain fulfills Newton’s law. We use the combination by series

Spring Dashpot

Figure 2.6: Linear spring and linear dashpot

and/or parallel connection of these two basic mechanical analogs for com-
posing one-dimensional structure of viscoelastic fluids including Newtonian
fluids as a special case, for more details on this topic see [181].

The constitutive equations are only approximations of the real material behav-
ior and depend on the material and the considered processes but together with
the balance equations which are exact and valid for any continuous medium
they form a complete system of governing equations.
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3 Well Known Models of Drug
Distribution within Vitreous

The injection of a drug into the vitreous body for the treatment of retinal dis-
eases like the wet aged-related macular degeneration, diabetic macular edema
or diabetic retinopathy is the most common medical intervention worldwide.
Drug delivery to the posterior eye is a challenge because of the physiological
and anatomical barriers within the eye, which prevent drugs in the systemic
circulation from entering the vitreous.
The aged-related macular degeneration is a medical condition which may result
in vision loss at the macula due to abnormal blood vessel growth (choroidal
neovascularization). The proliferation of abnormal blood vessels in the retina is
stimulated by vascular endothelial growth factor (VEGF) which promotes the
development of highly permeable vasculature in the retina and can be treated
by drugs, Anti-VEGF recombinants, binding and inhibiting VEGF. The therapy
consists of intravitreal injections which are administered over a period of time
depending on the pathology. Specific treatment options and information on
the spread of the drugs can be found in [50, 169]. Current drugs are Afliber-
cept from Eylea, Ranibizumab from Lucentis or Bevacizumab sold by Avastin
which diffuse to the retina, effect there locally at the macula and subsequently
are cleared by the choroidal blood flow. But there is no therapy response in
10.1-45 % of the patients [15], no quantitative predictions of the success of the
therapy and the drug distribution in the vitreous is unknown. Additionally,
personalized differences of the patients are not considered, especially the in-
dividual consistencies of the vitreous. Many of the used drugs have a small
concentration range of effectiveness, and may be toxic at higher concentrations
[170]. On the other hand, longer half-life of a drug means greater duration of
the pharmacological response and allows less frequent dosing [42]. Therefore,
the knowledge of drug distribution within the eye after intravitreal injection is
important to avoid the tissue damage, caused by high concentrations of drug,
while maximizing the therapeutic benefits.

In this Chapter, we present the well known models of drug distribution within
the human vitreous after intravitreal injection for the treatment of retinal dis-
eases from the literature. We introduce the used models for the description of
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the vitreous distinguishing between the young healthy and liquefied vitreous
in age. By emphasizing the corresponding properties of the vitreous, we derive
the governing equations from the mathematical point of view and set the
boundary conditions based on the complex biology in the eye. In Section 3.4
we exhibit the coupled system of convection-diffusion equation describing the
drug distribution and flow equations characterizing the non-stagnant vitreous.
Further, we extend the models to be more realistic by including the gravity and
the surface tension, arising when fluids are mixed, in the case of the liquefied
vitreous, modeled by the Navier-Stokes equation, that are lacking in literature.

3.1 Geometry

In the presented mathematical models the domain of interest is the vitreous
body denoted by Ω ⊂ Rd, d = 2, 3 which is a bounded connected open set with
a smooth, continuous boundary ∂Ω ⊂ C(Rd−1). Is is assumed that 0 < T < ∞
is a fixed time and we consider the variables x ∈ Ω and t ∈ [0, T] describing
the d-dimensional space and time coordinates.

The boundary can be subdivided into ∂Ω = Γr ∪ Γl ∪ Γh with Γr ∩ Γl ∩ Γh = ∅
where Γr denotes the retina, Γl the lens and Γh defines the hyaloid membrane
as introduced in the Chapter 2.1. A drawing of the boundaries is shown in
Figure 3.1.

Γh

Γh

Γl Γr

Hyaloid membrane

Lens

Retina

Figure 3.1: Drawing of the distinguishable boundaries
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3.2 Modeling of Healthy Vitreous: Darcy Equation

The rheology of the individual vitreous body can influence the drug distribu-
tion and treatment outcome. Because of the biological given conditions, the
complex composition and physical properties of the vitreous body can vary
considerably from person to person. They also change with age and disease.
The mathematical modeling of the vitreous will follow the phenomenological
approach, describing the macroscopic nature as a continuum medium and
fitting the equations to experimental data. Unless otherwise noted we study
only mechanical processes, thermodynamic variables such as the entropy and
the temperature are ignored.

The first approach for modeling the healthy vitreous is to describe the vit-
reous as a porous medium consisting of a solid skeleton (collagen fibers) and
voids which are permeated by the aqueous humor flow entering the vitreous
body from the hyaloid membrane and leaving the eye through the retina. The
restrictions on a porous medium, like larger domain compared to the pore size
or a connected void space, are fulfilled for the vitreous. In [19, 53] one can
find an introduction to fluid dynamics in porous media. The steady aqueous
humor flow is described by the incompressible Darcy equation driven by a
pressure drop between the anterior and the posterior surfaces:

∇ · v = 0 in Ω, (3.1a)

−K
µ
∇p = v in Ω, (3.1b)

where v(x) : Ω → Rd is the velocity of the permeating aqueous humor,
p(x) : Ω→ R is the (hydrostatic) pressure and the material parameter K

µ > 0
denotes the hydraulic conductivity, describing the characteristics of the porous
medium and the properties of the fluid, namely the permeability K divided by
the dynamic viscosity µ.

It is the most common model in the literature for the description of the flow
in the vitreous, see [54, 75, 170] and many more. The nature of the vitreous
and therein present collagen fibers justify the use of Darcy’s equation (3.1) to
describe the aqueous humor flow.

3.2.1 Boundary Conditions

To describe the biology of the vitreous in the human eye boundary conditions
are needed capable to approximate the complicated real life. We distinguish
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between two possible sets of boundary conditions varying only at the boundary
of the hyaloid membrane.

With Dirichlet boundary

Following [75], we apply one Dirichlet boundary part at the hyaloid membrane
Γh firstly, and prescribe the pressure which is considered to be the same as that
of aqueous humor, pin = 2000 Pa for a healthy eye without glaucoma [139],
which is close to the intraocular pressure (IOP) of the eye. The lens is assumed
to be impermeable (no flow through but along) and the retina is considered as
a membrane:

v · n = 0 on Γl, (3.2a)
p = pin on Γh, (3.2b)

v · n =
KRCS

L
(p− Pv) on Γr, (3.2c)

where KRCS is the total hydraulic conductivity of retina, choroid and sclera
(RCS), Pv is the pressure outwards of RCS and L denotes its thickness. n
denotes the unit outward normal vector with respect to the corresponding
boundary part. Since the retina is considered as a membrane the boundary
condition there is derived by using Darcy’s law and the difference quotient
using porous media modeling:

n · v = n · (−KRCS∇p) = KRCS
p− Pv

L
.

No Dirichlet boundary

Second, not the Dirichlet boundary condition for the pressure is given at Γh
but the Neumann condition prescribing the velocity:

v · n = 0 on Γl, (3.3a)
v · n = vin on Γh, (3.3b)

v · n =
KRCS

L
(p− Pv) on Γr. (3.3c)

The hyaloid membrane operates as the area of inflow where vin is computed
by the total aqueous humor production at the ciliary body, which is 2.5 µl/min
according to [55], considering that only 5% flows into the vitreous through
the hyaloid membrane. vin is defined as a parabolic Poiseuille inflow velocity
profile with maximum velocity vmax = 1.58× 10−8 m/s.
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To derive the right choice of boundary conditions characterizing the complex
biology in the human eye is one of the main tasks. Only sparsely measured
values from experiments are available.
The first variant of setting the pressure equal to the IOP is commonly used
in the literature [54, 75], since the pressure in the anterior eye is practical to
measure and well known, but it leads to singularities of the numerical solution
of (3.1) on the boundary. Darcy’s law can be seen as a Laplace equation and a
smooth solution is expected. But the boundary conditions (3.2) lead to jumps
across the different boundary parts. The change to prescribing the physically
motivated inflow offers a continuous velocity profile between Γh and Γl.

3.2.2 Derivation of Governing Equations

Darcy’s law is a physical law modeling the flow of fluids through porous
media. Formulated by Henry Darcy in 1856 [32], based on experiments of
flow of water through beds of sand, it is commonly viewed as a relationship
between the fluid mass flux and pressure gradient in the medium.

One way to derive the momentum equation in (3.1) is based on the class-
II mixture theory considering a two-component medium composed of solid
porous matrix and a fluid where the two components not interact chemically
(i.e. no mass transfer between the components) [84, 157]. In the context of
mixture theory, we have the following forms of the balance equation for linear
momentum:

dρ f v f

dt
= ∇ ·T f + I f ,

dρsvs

dt
= ∇ ·Ts + Is.

We ignore the solid part, the second momentum balance, since the deformation
of the solid resulting from the flow of the fluid through the pores is negligible
and set vs = 0. Furthermore, for small Reynolds numbers we can neglect the
left-hand side of the balance equation for the fluid (steady case) and set the
Cauchy stress T f to be only the isotropic part, T f := −p f I = −φ f pI, where
the effective partial pressure exerted by the fluid on some surface of the porous
medium p f is equal to the mixture pressure p times volume fraction φ f . For
the interaction force I f we keep only the drag term and the equilibrium term,
i.e. I f := −αv f + p∇φ f with a constant α > 0. Then the balance equation for
linear momentum for the fluid has reduced to

0 = −φ f∇p− p∇φ f − αv f + p∇φ f
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and we obtain Darcy’s law:

αv f = −φ f∇p

by defining K
µ :=

φ f
α .

Another way to derive Darcy’s law can be done by homogenization (rescaling
from mirco- to macroscopic) of the steady incompressible (Navier-)Stokes fluid
in a porous material [3, 124]. The ideas are to introduce a small parameter ε,
to separate the macroscopic spatial scale described by x-dependence and the
microscopic scale described by x/ε and to rewrite the macroscopic problem as
a Stokes system in microscopic variable. Then Darcy’s law can be obtained as
the limit of the convergence of the microscopic problem (as ε tends to zero).

3.2.3 Existence and Uniqueness (Mixed Boundary Conditions)

In this section we prove the global existence and uniqueness of the weak solu-
tion of the Darcy equation (3.1) completed with mixed boundary conditions
describing the human eye in the general d-dimensional setting. The application
of the Lax-Milgram theorem leads to the desired result in the mathematical
analysis.
First, we discuss the mathematical analysis of the Darcy equation (3.1) com-
pleted by the boundary conditions (3.2). Then we will consider the case of
no Dirichlet boundary conditions (3.3) and it will clarify the influence of the
definition of the boundary conditions on the mathematical analysis.
Known results about the theory of existence and uniqueness of weak solutions
of elliptic partial differential equations can be found in [102] but the general
case of mixed boundary conditions is not covered. In the modeling of the eye
we have a complex biological system which requires complex boundary con-
ditions. The developed boundary value problems need to be investigated in
detail and they differ from the standard mathematical theory about existence
and uniqueness. Further literature about existence and uniqueness results
concerning incompressible flow in porous media can be found in [125, 158, 28].

As mentioned in the Section 3.1 where the geometry is stated the domain
of the vitreous satisfies specific regularities. Additionally, we require a contin-
uously differentiable boundary, i.e. ∂Ω ∈ C1. The distinguishable parts of it
have non-vanishing Lebesgue measure, i.e. |Γr|, |Γl|, |Γh| > 0.

To be able to apply results from functional analysis, we have to consider
the weak formulation of the Darcy equation but the two equations in (3.1)
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are not in the preferable form for mathematical analysis. Thus, we derive a
new variant, the so-called primal form whose structure allows one to apply
standard results for Poisson equation and finally, existence of solutions for
Darcy equation is shown.

The primal form can be written as

− K
µ
∇ · (∇p) = f , (3.4)

received by the divergence of the second equation in (3.1), substituting the
incompressibility constraint and including an external force f : Ω → R for
generalization.

The Sobolev space of functions with L2-integrable derivatives in Ω and the
values vanishing on the Dirichlet boundary part ΓD ⊆ ∂Ω is defined as

H1
0(Ω; ΓD) := {p ∈ H1(Ω) : p = 0 on ΓD}. (3.5)

With Dirichlet boundary

Considering the boundary conditions (3.2) we have ΓD = Γh. Then by apply-
ing the lifting method and introducing phom := p− pin with p ∈ H1(Ω) we
can convert the problem to a system with homogeneous Dirichlet boundary
condition on Γh. Green formula and integration by parts lead to the weak
formulation of the Darcy equation.

Find phom ∈ H1
0(Ω; Γh) such that

a(phom, φ) = l(φ) ∀φ ∈ H1
0(Ω; Γh) (3.6)

where
a(phom, φ) :=

K
µ
(∇phom,∇φ) +

KRCS

L
(phom, φ)Γr

l(φ) := ( f , φ)− K
µ
(∇pin,∇φ) +

KRCS

L
(Pv, φ)Γr

− KRCS

L
(pin, φ)Γr .

(3.7)

Remark 3.2.1: Note that phom := p− pin ∈ H1
0(Ω; Γh) is well defined, since the exis-

tence of the extension of pin into the interior of Ω is guaranteed due to the surjectivity
of the trace operator.
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Theorem 3.2.2 (Existence and Uniqueness of weak solution):
There exists only one solution to the problem (3.6) with Pv ∈ H−1/2(Γr), pin ∈

H1/2(Γh) and f ∈ H−1(Ω).

Proof. The proof can be given by the application of the Lax-Milgram theorem
[105, 191] for the bilinear form a(phom, φ) and linear form l(φ) defined in (3.7)
by using Cauchy-Schwarz inequality (CS) and Trace Theorem (TT) stated in
[112].
Compared to the standard homogeneous Dirichlet boundary conditions in the
literature we have to take care of the additional boundary terms describing
the permeability at the retina and show that they fulfill all requirements of the
Lax-Milgram theorem.
Due to the Poincaré inequality [150], we can equip the Hilbert space H1

0(Ω; Γh)
with the H1-semi norm which is in fact a norm on this space.

• The boundedness of a(phom, φ) for all phom, φ ∈ H1
0(Ω; Γh) can be shown

for a constant α := K
µ + KRCS

L c1c2 > 0. The first term is estimated in the
same way as in the doctoral thesis of Vladislav Olkhovskiy [139]. The
additional boundary term requires to apply twice the Trace Theorem
with constants c1 > 0 and c2 > 0:∣∣∣∣KRCS

L
(phom, φ)Γr

∣∣∣∣ CS
≤ KRCS

L
‖phom‖L2(Γr)‖φ‖L2(Γr)

TT
≤ KRCS

L
c1c2‖phom‖H1

0(Ω;Γh)
‖φ‖H1

0(Ω;Γh)
,

where the assumptions of the Trace Theorem are fulfilled, since our
domain Ω is bounded and ∂Ω ∈ C1.

• The proof for coercivity of a(·, ·) can also be found in [139] since the
boundary term can be ignored due to its positive sign.

• The right hand side is bounded due to the specific choice of Pv ∈
H−1/2(Γr), pin ∈ H1/2(Γh) and f ∈ H−1(Ω) and the exemplary ap-
plication of known results from the functional analysis as shown for the
term:

|KRCS

L
(Pv, φ)Γr |

CS
≤ KRCS

L
‖Pv‖L2(Γr)‖φ‖L2(Γr)

TT
≤ KRCS

L
c1 ‖Pv‖L2(Γr)︸ ︷︷ ︸

<∞

‖φ‖H1
0(Ω;Γh)

= β‖φ‖H1
0(Ω;Γh)
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with a constant β := KRCS
L c1‖Pv‖L2(Γr) > 0.

No Dirichlet boundary

Now, we look at the Darcy equation (3.4) completed by the boundary con-
ditions introduced in (3.3). Compared to the previous formulation, there is
no Dirichlet boundary which leads to a new ansatz and test space, the whole
H1(Ω) without any restrictions. Hence, we have to prove the existence and
uniqueness by the application of the Lax Milgram Theorem in the complete
H1-norm

‖p‖2
H1(Ω) := ‖p‖2

L2(Ω) + ‖∇p‖2
L2(Ω)

instead only the semi-norm. The Poincaré inequality is not valid anymore.
Additionally, the lifting with phom is not necessary and therefore it simplifies
the concluded weak formulation which reads:

Find p ∈ H1(Ω) such that

a(p, φ) = l(φ) ∀φ ∈ H1(Ω) (3.8)

where
a(p, φ) :=

K
µ
(∇p,∇φ) +

KRCS

L
(p, φ)Γr ,

l(φ) := ( f , φ) +
KRCS

L
(Pv, φ)Γr − (vin, φ)Γh .

Theorem 3.2.3 (Existence and Uniqueness of weak solution):
There exists only one weak solution to the problem (3.8) with Pv ∈ H−1/2(Γr),
vin ∈ H−1/2(Γh) and f ∈ H−1(Ω).

Proof. Similar to the proof of Theorem 3.2.2 the proposition follows by the
application of Lax-Milgram theorem. Since the H1-seminorm can be estimated
by the H1-norm from above the results from the existence proof of (3.6) are
adoptable. The linear form differs only in one missing and one extra term
compare to (3.8) but the boundedness can be shown with the same proceeding
by using the Cauchy-Schwarz inequality and Trace Theorem.
Thus, it suffices to show the coercivity condition of a(·, ·) for all p ∈ H1(Ω) by
using Friedrich’s inequality [64, 156] with the constant c > 0:

a(p, p) ≥ min(
K
µ

,
KRCS

L
)
(
‖∇p‖2

L2(Ω) + ‖p‖2
L2(Γr)

)
≥ κ‖p‖2

H1(Ω)
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with a constant κ := min(K
µ , KRCS

L )c > 0.

Regularity

The primal form (3.4) of the incompressible Darcy equation belongs to the class
of elliptic partial differential equations with the general elliptic operator

Lu := −
n

∑
i,j=1

(aij(x, t)uxi)xj +
n

∑
i=1

bi(x, t)uxi + c(x, t)u ∀u ∈ H1(Ω)

and the coefficients aij =
K
µ , bi = c = 0 ∈ C∞(Ω) for i, j = 1, . . . , 3 and right-

hand side equal to zero. It is known that any possible singularities of the
solution on the boundary do not propagate into the interior and therefore it
holds for our weak solution of (3.6) and (3.8) that p ∈ C∞(Ω) (see Theorem 3 of
Chapter 6.3.1 in [48]). Consequently, we obtain for the corresponding velocity,

v ∈ L∞(Ω).

In the case of drug distribution within the human vitreous, the steady aqueous
humor velocity field attains its maximum value at the hyaloid membrane, the
inflow area, which is prescribed by a Poiseuille profile with maximum velocity
of 1.58 × 10−8 m/s or constant pressure identical to the IOP, 2000 Pa, and
decreases within the bounded vitreous due to permeable outflow at the retina.
The flow patterns are slow in the biology of the vitreous in the human eye mod-
eled as a porous medium with permeating aqueous humor flow completed
with boundary conditions derived from experiments. Consequently, the flow
is bounded.

v ∈ L∞(Ω) is the necessary assumption in the existence proof of the diffu-
sion equation describing the drug distribution in the later Section 3.4.3.

3.3 Modeling of Liquefied Vitreous: Navier-Stokes
Equation

Now, we look at the completely liquefied vitreous in age or after a vitrectomy
which is a surgical procedure to remove the vitreous gel from the eye in
order to decrease the vitreous related complications like posterior vitreous
detachment or tractional retinal detachment. To model the pure viscous flow
of the liquefied vitreous we use the incompressible Navier-Stokes equation
introduced in the Section 2.2.4 as in the works [2, 153] where they focus on the
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motion of the vitreous. The system of governing equations in the non-steady
case reads as follows:

∇ · v = 0 in Ω× (0, T], (3.9a)

ρ

(
∂v
∂t

+ (v · ∇)v
)
= ∇ ·T in Ω× (0, T] (3.9b)

T = −pI + 2µ0D in Ω× (0, T] (3.9c)

where v(x, t) : Ω× (0, T] → Rd is the velocity of the liquefied vitreous and
p(x, t) : Ω× (0, T]→ R is the pressure. The material specific parameters ρ > 0
and µ0 > 0 are constants describing the density and dynamic viscosity, where
µ0 is set to be the dynamic viscosity of water at the corresponding temperature
of the vitreous.

Since the Cauchy stress depends linear on the velocity the constitutive equation
(3.9c) can be inserted into the balance equation of linear momentum (3.9b) and
the whole system (3.9) can be rewritten as

∇ · v = 0 in Ω× (0, T], (3.10a)

ρ

(
∂v
∂t

+ (v · ∇)v
)
= −∇p + µ0∆v in Ω× (0, T]. (3.10b)

Further, the positive constant density can be substituted into the pressure in
the balance equation of linear momentum:

∂v
∂t

+ (v · ∇)v = −∇p
ρ

+ ν0∆v

with the kinematic viscosity ν0 := µ0
ρ . Due to the relation

∇p
ρ

= ∇ p̃ +
p
ρ2∇ρ

where ∇ρ = 0 if the density is constant we can rewrite the Navier-Stokes
equation with the new pressure p̃ := p

ρ as

∂v
∂t

+ (v · ∇)v = −∇ p̃ + ν0∆v.

As a special case one obtains the Stokes equation through linearization of the
Navier–Stokes equations by neglecting the convection term. It describes the
fluid flow where advective inertial forces are small compared with viscous
forces and can be used in the modeling of aqueous humor flow in the anterior
chamber of the eye [139]. For more details on incompressible Navier-Stokes
equation see [178, 65].
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3.3.1 Boundary and Initial Conditions

To get a closed system we need to set the initial and boundary conditions
which are different compared to the previous Darcy case:

v = v0 on Ω× {t = 0}, (3.11a)
v = 0 on Γl × (0, T], (3.11b)
v = vin on Γh × (0, T], (3.11c)

Tn · n = kpermv · n on Γr × (0, T], (3.11d)
Tn · τ = 0 on Γr × (0, T], (3.11e)

where v0 and vin are the initial and Poiseuille inflow velocity profile. τ denote
the arbitrary unit outward tangential vector with respect to the retina.
In the case of a liquefied vitreous characterized by the Navier-Stokes equation,
at the lens there is a non-slip boundary condition and vin describes the same
Poiseuille profile as for the porous medium approach for healthy vitreous in
(3.3). The aqueous humor production at the ciliary body stays the same during
the aging. Further, we assume at the retina that the flow can leave the vitreous
only in normal direction which is a physical simplification due to the slow
velocities in the eye. Here kperm < 0 is a constant describing the permeability
determined by considering the Beavers-Joseph-Saffman conditions on the
interface between the vitreous, the fluid layer with lower index f and the retina
modeled as a very thin porous medium described by Darcy’s law denoted by
the lower index p:

v f · n = vp · n = (−KRCS∇pp) · n (preservation of normal velocity)

v f · τ + αT f n · n = 0 (behavior of tangential velocity)

−T f n · n = −Tpn · n = −(−ppI)n · n = pp (continuity of normal stresses)

where the second equation is motivated by experiments conducted by Beavers,
Joseph and Saffman [20, 154] and the factor α is the so-called slip coefficient
which has to be determined experimentally. A mathematical justification of
the Beavers-Joseph-Saffman condition can be found in [126].
In detail, we computed

pp = −T f n · n = −kpermv f · n = −kpermvp · n

using the continuity of normal stresses, preservation of normal velocity from
the Beavers-Joseph-Saffman conditions and inserting our prescribed boundary
condition. Applying the same procedure as for the boundary condition (3.2)
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at Γr in the Darcy model and considering the retina as a membrane, we can
approximate

−kpermvp · n ≈ −kpermKRCS
pp − Pv

L
.

By assuming that pp is equal to the IOP, we can calculate kperm.
A perfectly permeable retina with free outflow would have kperm = 0 which is
equivalent to the traction-free boundary condition Tn = 0. In the commonly
form (3.10) this condition is expressed with the replaced Cauchy stress known
as the artificial do-nothing boundary condition, T̂n := µ0(∇v)n− pn = 0.

3.3.2 Derivation of Governing Equations

Here, the thermodynamical derivation of the Navier-Stokes fluid (3.9c) is
shown. The detailed classical thermodynamical procedure is outlined in the
later Section 4.2.2.

First, we introduce the Helmholtz free energy

ψ := e− θη, (3.12)

a thermodynamic potential, and use the definition η := − ∂ψ
∂θ for the entropy.

Its constitutive equation is assumed to be a function of the temperature θ and
the density ρ, given in the following explicit form

ψ := ψ̃(θ, ρ) = ψ0(ρ) + ψ1(θ). (3.13)

This is a straightforward generalization of the classical energetic equation of
state known for the equilibrium thermodynamics [117]. One example for the
definition of ψ1(θ) can be seen later in (4.21). Applying the material time
derivative of equation (3.13) yields,

dψ

dt
=

∂ψ

∂θ

dθ

dt
+

∂ψ

∂ρ

dρ

dt
.

Recalling the definition of the thermodynamic pressure, see (2.13) but using
the Helmholtz free energy instead of the internal energy,

pNS
th := ρ2 ∂ψ

∂ρ
= ρ2 ∂ψ0

∂ρ
, (3.14)

and considering the relation (3.12) one can rewrite (3.13) as

ρθ
dη

dt
= ρ

de
dt
−

pNS
th
ρ

dρ

dt
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to get the material time derivative of the entropy. Proceeding further and
plugging in the balance equations for mass (2.4) and internal energy (2.7) one
can substitute for dη

dt and dρ
dt which yields

ρθ
dη

dt
= T : D + pNS

th div v− div je

= Tδ : Dδ +
(

m + pNS
th

)
div v− div je

where
m :=

1
3
(tr T) (3.15)

denotes the mean normal stress and

Aδ := A− 1
3
(tr A)I

is the traceless part of any tensor A ∈ Rd×d. Since the thermodynamic tem-
perature is positive (unit in Kelvin and absolute zero is the lowest limit of the
thermodynamic temperature scale), we get a formula for the entropy produc-
tion ξ defined in (2.8) with entropy flux jη = je

θ :

θξ = Tδ : Dδ + (m + pNS
th )div v− je ·

∇θ

θ
. (3.16)

The right-hand side of (3.16) shows that there exist three independent entropy
producing mechanisms in the Navier-Stokes fluid. The first term is entropy
production due to isochoric processes such as shearing, the second one is due
to volume changes and the last part is due to heat transfer. Since we deal
with isothermal processes in the eye (where the temperature is a constant),
i.e. ∇θ = 0, the temperature is of no interest, and one can focus only on
the mechanical part of the system. Further, the vitreous is incompressible,
div v = 0, which reduces (3.16) to

θξ = Tδ : Dδ.

The entropy production is a positive quantity if the constitutive relation is
chosen as follows,

Tδ = 2µ0Dδ

with viscosity µ0 > 0. Note that since Dδ is a symmetric tensor, Tδ is also sym-
metric and the balance of angular momentum (2.6) is satisfied. The governing
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equations for the incompressible Navier–Stokes fluid then take the form

∇ · v = 0

ρ

(
∂v
∂t

+ (v · ∇)v
)
= ∇ ·T

T = −pI + 2µ0D

where the relation D = Dδ has been exploited and we use the notation

p := −m

for the pressure in incompressible fluids compare to the thermodynamic pres-
sure pNS

th in compressible fluids. Consequently, the notions of the mean normal
stress and the pressure are often used interchangeably in the literature. Here
the pressure is not a function of the local values of the state variables and the
velocity field, it is understood as a new unknown quantity in the governing
equations to be solved for because the corresponding flux div v identically
vanishes.
Note that for the compressible Navier–Stokes fluid the term (m + pNS

th )div v in
(3.16) does not vanish and the constitutive relations are chosen as follows,

Tδ = 2µ0Dδ,

m + pNS
th =

3λ + 2µ0

3
div v,

where the additional bulk viscosity λ > 0 is a given positive function of the
state variables ρ and θ. It follows that the constitutive relation for the full
Cauchy stress tensor T = mI + Tδ is

T = −pNS
th I + 2µ0D + λ(div v)I.

3.3.3 Existence and Uniqueness

In this Section known results from the literature about existence and unique-
ness are presented for the proposed mathematical model of the liquefied
vitreous (3.9).
In [178] results related to the existence and uniqueness for weak solutions
of the stationary and time-dependent incompressible Navier-Stokes equation
with homogeneous Dirichlet boundary condition are presented. Despite its
nonlinearity the stationary case possesses for any value of the Reynolds num-
ber Re > 0 at least one solution v, p ∈ H1

0(Ω)× L2(Ω) based on the Galerkin
method. For sufficiently small data f this solution is unique but in general it is
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not stable, i.e. physically not realized. By comparison with experiments you
can see that for high Reynolds numbers it occurs a non-stationary up to chaotic
behavior (turbulence flow). While increasing Re the non-linearity due to the
transport term becomes more dominant and the flow gets faster which leads
to singularities of the numerical solutions. In the human eye these problems
do not arise. We have slow flow fields with average velocity vc = 5× 10−9 re-
sulting in a very low Reynolds number, Re ≈ 1.5× 10−4 � 1. Then the almost
steady state situation together with the consideration, f = 0, may provide the
existence and uniqueness of the solution for the discussed application.
In the non-stationary case there is a gap between the class of functions where
existence is known and the smaller classes where uniqueness is proved for 3D
due to the lack of information concerning the regularity of the weak solutions.
Sufficient conditions under which a weak solution is unique in the class of
weak solutions can be found in [65]. But in the class of all weak solutions
the uniqueness stays an open problem (even in the case of trivial solution for
trivial data) and without the requirement of small data (or for a small time
interval) there is no proven existence and uniqueness of classical solutions in
three space dimensions, see [66, 80] and the references therein.
No specific existence and uniqueness results for the liquefied vitreous (3.9)
containing our mixed boundary conditions (3.11) have been given in the lit-
erature so far, to the best of our knowledge. We recall that our permeability
boundary condition (3.11d) for our application is set such that we have nearly
the do-nothing boundary condition. Herewith physiological processes of the
aqueous humor in the eye can be described and the corresponding parameter
values are partly measured. The amount of outflow is similar to the amount
of inflow which correlates to the stationary state. Then the model can be ap-
proximated by the steady-state flow in Galdi et al. [66] for example. Here the
existence and uniqueness for the do-nothing Neumann boundary condition
is proven (for small data). As done in the thesis of Olkhovskiy [139] for the
Stokes equation the analysis can be extended specifically to inhomogeneous
boundary conditions.

3.4 Modeling of Drug Distribution:
Convection-Diffusion Equation

A first diffusion model for drug distribution in the vitreous of a rabbit’s eye is
written in [62] where they assumed that the vitreous is stagnant. In [61] and
[63] the model was developed for the human eye and they numerically eval-
uated the concentration distribution of intravitreal drug in stagnant vitreous.
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Among other things the position of the injection is identified as an important
parameter. Different injection positions cause variations of drug concentration
level up to three magnitudes and the averaged concentration up to a scaling
factor of four [61, 63]. Later studies considered aqueous humor flow taking
into account convective drug transport within the vitreous [75, 10]. Missel
[127] developed models of rabbit, monkey and human eyes to predict rate of
clearance of intravitreal injected bolus. Repetto et al. [153] investigated the
effects of saccadic eye rotations (rapid angular rotations of the eye) on the flow
in the vitreous humor and consequent drug distribution. They predicted a
significant reduction in the expected time for drug dispersal across the eye
with fluid flow compared to the situation without fluid flow. Especially in the
case of liquefied vitreous eye rotations produce effective fluid mixing influenc-
ing the dispersion of injected drugs [14]. Abouali et al. [2] studied the flow
dynamics of vitreous resulting from saccadic movements following vitreous
liquefaction or after vitrectomy. Xu et al. [192] showed that convection con-
tributes to about 30% of intravitreal drug transport in humans which should
be magnified for higher molecular-weight compounds like anti-VEGF drugs
due to slower diffusion. Recently, more physiologic pharmacokinetic models
have accounted for convection in the vitreous humor [142, 170, 127]. In [24]
they showed that for liquefied vitreous advection plays a more significant role
in the drug transport in the eye than diffusion.

For these reasons, in this thesis the drug transport in the human vitreous
following intravitreal injection is modeled by the time-dependent convection-
diffusion equation since it is caused by both diffusion through the vitreous
and convection flow from the anterior to the posterior segment of the eye. The
convection term arises because of the flow within the vitreous and depends
on its physiology which changes with age and disease described by the previ-
ous models. The diffusion is driven by the drug concentration gradient. The
diffusion speed depends on the properties of the drug itself and the vitreous’
structure which constitute a barrier to the spreading of the drug.
Our model describing the drug distribution in the human vitreous body reads:

∂C
∂t

+ (v · ∇)C−∇ · (D∇C) = 0 in Ω× (0, T] (3.17)

where C(x, t) : Ω × (0, T] → R is the unknown concentration of the drug,
v(x, t) : Ω× (0, T]→ Rd describes the velocity which model depends on the
rheology of the vitreous and D > 0 is the diffusion coefficient depending on
the rheology of vitreous and on the drug itself (or can be generalized to the
diffusion tensor by the multiplication of D with the unit matrix I).
In this study, the injection process is not modeled due to its slow impact
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compare to the long-time diffusion behavior. Further, the saccadic eye motion
is not considered since it is well examined in the literature and the time scale of
seconds for saccadic eye movements does not match to the long time therapy
of approximately one month for retinal diseases. This means that our following
models describe the pharmacokinetics of a drug for a patient in rest, performing
smooth pursuit eye movements and during the non-rapid eye movement of
sleep.

3.4.1 Boundary and Initial Conditions

The governing equation (3.17) is completed with the following initial and
boundary conditions according to [75],

C = C0 on Ω× {t = 0}, (3.18a)
(D∇C) · n = 0 on Γl × (0, T], (3.18b)

C = 0 on Γh × (0, T], (3.18c)
−(D∇C) · n− PC + (n · v)(1− kvr)C = 0 on Γr × (0, T], (3.18d)

where C0 : Ω → R is the given initial concentration and P and kvr are the
positive material parameters characterizing the retinal permeability and the
partition coefficient between vitreous and retina (ratio of drug concentration in
a mixture of two immiscible solvents).
On the hyaloid membrane the concentration is set to zero, which is based on
the assumption that there is the aqueous humor flow rate transporting the
drug. Since the lens is assumed to be impermeable to the drug concentration, a
no-flux boundary condition is applied at this surface. The retina is considered
as a membrane acting as a barrier tissue to the diffusing drug and flow. The
outer tissue of the retina, the choroid, acts as a perfect sink for drug transport.
So, the active transport through the retina is described by the permeability
boundary condition considering convective and diffusive transport of the drug,
in particular it means that

J · n ≈ C

where J = −D∇C + vC stands for the flux and n is the unit outward normal
to the retina Γr. Following the Section 3.2.2 in [171] and apply Fick’s law we
get for one part of the flux across the retina:

−(D∇C) · n = P(Cretina − Cchoroid) = PC

where Cretina denotes the drug concentration on the retina at the vitreous side
and Cchoroid on the other side of the retina adjacent to the choroid. The choroid

36



is a highly vascularized layer, so it will act as a perfect sink for drug concentra-
tion across the retina. Therefore, a reasonable assumption is Cchoroid = 0. The
convective part of flux J is expressed as

(vC) · n = (n · v)kvrC.

The typical intravitreal injection site is located at 3.5 mm posterior to the limbus
(border of the cornea and the sclera) and 5.5 mm to either the left or right of
the pupil axis and is modeled as a sphere with a radius of r = 2.285 mm,
which was determined from the recommended dosage volume of 50 µl [111].
It is assumed that within this sphere the injected drug of 2 mg initially has a
homogeneous distribution while there is no drug in the rest of the vitreous. In
other words, the initial concentration C0 is defined through:

C0 : =

{
40a · cos (r1) cos (r2) cos (r3) , x ∈ Br(x̂)
0, else

(3.19)

with the constant a = 2.339 and ri := 0.5π
r (xi − x̂i) for i = 1, 2, 3 in three-

dimensions. The center of the sphere in our geometry is x̂ =
(
x̂1 x̂2 x̂3

)T
=(

3.5 −5.5 0
)T. Definition (3.19) yields a continuous transition from the in-

jection sphere to the remaining area of the vitreous compare to the initial
concentration profile in [75].

Diffusion Coefficient

The distribution of drug depends on multiple factors as the rheology of the
vitreous humor, the type and severity of retinal disorders and the properties of
the specific drug. One important parameter is the diffusion coefficient D, the
proportionality constant between the molar flux due to molecular diffusion
and the gradient in the concentration of the drug.
As the Table 3.1 shows, the current pool of diffusion data is based on vitreous
of different species such as human, rabbit, porcine and on aqueous media. Dif-
fusion coefficients were also measured using different experiment techniques
based on different diffusion theories. The integrity of the vitreous humor
is inevitably compromised to some degree due to the method of extraction
from the eye, and as a result of being removed from its natural nurturing
environment. The Table 3.1 is ordered by the molecular weight (MW) of the
diffusing compound demonstrating an inverse relationship between D and
MW since the diffusion of high molecular-weight molecules can be limited
by the vitreous structure [144]. Most previous work on determination of dif-
fusion coefficients in the vitreous has focused on methods, using fluorescein
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Compound MW [kDa] Diffusion media D [×10−10

m2/s]
References

Bevacizumab 149 Rabbit vitreous 0.4 [143]
Galbumin 74 Rabbit vitreous 0.8 [130]
Galbumin 74 Bovine vitreous 0.227 [151]

GFP 29 Porcine vitreous
(gel) 1.2 [18]

GFP 29 Porcine vitreous
(liquid) 1.4 [18]

FITC-Dextran 9.3 Rabbit vitreous 6.18 [33]
FITC-Dextran 4.4 Rabbit vitreous 7.56 [33]

DMSB 0.599 Rabbit vitreous 5.1 [137]
DMSB 0.599 Water 7 [137]

Dexamethasone 0.392 Porcine vitreous 18.06 [12]
Acid Orange 8 0.364 Bovine vitreous 3.4 [192]
Acid Orange 8 0.364 Water 6.5 [192]

Fluorescein 0.332 Human vitreous 8.91 [104]
Fluorescein 0.332 Human vitreous 9.6 [116]

Fluorescein 0.332 Human vitreous
(diabetic) 7.4 [116]

Fluorescein 0.332 Human vitreous 4.91 [47]
Fluorescein 0.332 Human vitreous 13 [195]
Fluorescein 0.332 Water 6 [91, 135]
Fluorescein 0.332 Bovine vitreous 4.8− 6 [91, 135]

Table 3.1: Measured diffusion coefficients in the literature

as a model compound. Kaiser and Maurice [91] measured the diffusivity of
fluorescein of bovine eyes and water (agar gel) by using fluorophotometry.
Even though they did not use human vitreous samples their data has been
used in mathematical models [170, 8] to represent the diffusivity. But despite
the fact that multiple studies have examined diffusion of fluorescein, there is
significant variation in the reported diffusion coefficients. Further, even the
rheological properties of bovine, porcine and human vitreous are similar, there
are great differences in values following the rank order of diffusivity: human >
bovine > porcine > ovine [162]. Overall, the conclusions about the diffusivity
in the vitreous are: increased particle size decreases the mobility in the vitreous
and liquefaction causes an increase in particle diffusion [6].
Due to the lack of experimental data of drug diffusion coefficients in human
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vitreous, following [193, 6] the diffusion coefficient for the liquefied vitreous,
D = 0.83× 10−10 m2/s, is calculated using the Stokes-Einstein equation in
[12],

D :=
Rθ

6πµ0rN

where θ = 307.05 K is the constant temperature within the vitreous, µ0 is the
dynamic viscosity of the liquefied vitreous, r is the hydrodynamic radius of the
diffusing Aflibercept listed in Table 5.1, R is the molar gas constant and N is the
Avogadro’s number. Since in vivo experiments often use young animal models
with no alterations in the vitreous structure, as liquefactions or retinal diseases,
the results of these experiments can overestimate drug efficacy and can not be
extrapolate in general to humans. D characterizing the healthy vitreous is set
to be 0.4× 10−10 m2/s according to experiments on rabbits’ eyes with diffusing
drug Bevacizumab in [143]. It is the closest value found in the literature to the
real diffusion coefficient of Aflibercept in the human vitreous. The majority
of available anti-VEGF pharmacokinetic data is from animal models but there
are concerns about the extrapolation to human eyes due to anatomical and
physiological differences. Due to the increased viscosity and porous/gel-like
structure of the young vitreous it is assumed to be lower than for the liquefied
one. In [123] they measured the apparent diffusion coefficient of water protons
for human eyes of all ages showing decreasing values (2.88 − 3.76 × 10−3

mm2/s) with decreasing age. The measurements in Xu et al. [192] exhibit
changes up to 48% between diffusivity in water and bovine vitreous.
Intravitreal drug distribution depends on many parameters related to the
specific drug used for the treatment and to the physiology of the eye. The
parameters required to solve the models are summarized in Table 5.1.

3.4.2 Derivation of Governing Equations

The mathematical theory of diffusion can be found in [30]. Physically, diffusion
is the spontaneous, natural process by which molecules spread from areas
of high concentration to areas of low concentration as a result of random
molecular motions. In the situation of drug diffusion through the vitreous
it means that the high drug concentration gradients from the injection site
provides the force for the drug-particles to move until a concentration balance
is reached. It is the consequence of the conservation of mass which states that
the change of concentration is equal to the accumulation due to net influx.
Effectively, no material is created or destroyed:

∂tC = −∇ · J
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where C is the concentration and J is the flux of the diffusing material. The
diffusion equation (3.17) can be obtained easily from this equation by com-
bining with the phenomenological Fick’s first law. It states that the flux of
the diffusing material in any part of the system is proportional to the local
concentration gradient times the diffusion coefficient D, which means that flux
always points in the direction from high to low concentration:

J := −D∇C + vC.

3.4.3 Existence and Uniqueness (Mixed Boundary Conditions)

In this section we prove the global existence and uniqueness of the weak solu-
tion of the convection-diffusion equation (3.17) describing the drug distribu-
tion. In particular, results from the literature are extended from homogeneous
Dirichlet boundary conditions to our mixed boundary conditions (3.18) char-
acterizing the human eye with the Galerkin’s method using Cauchy-Schwarz
inequality and trace theorem.

As mentioned in the previous Section 3.2.3, we require for the boundary of our
domain Ω that ∂Ω ∈ C1. The distinguishable parts of it have non-vanishing
Lebesgue measure, i.e. |Γr|, |Γl|, |Γh| > 0.

We generalize (3.17) by adding the gravity g̃ : Ω → R, g̃ := 1
β

(
1− ρ f

ρp

)
g

as introduced in Chapter 3.2 and a given external force f : Ω× (0, T] → R

which yields to

∂tC + (v + g̃) · ∇C−∇ · (D∇C) = f . (3.20)

Literature about the analytical results for parabolic differential equations can
be found in [101, 191]. But the mixed boundary conditions characterizing
the drug distribution in the vitreous including Dirichlet, Neumann as well as
Robin boundary conditions are new developed and therefore not examined
before. We extend the existence and uniqueness proof of weak solutions of
the parabolic problem in [48] from homogeneous boundary conditions to the
general boundary conditions (3.18).
For further analysis including the variational form and energy estimates we
assume now that

D, v, g̃ ∈ L∞(Ω),

f ∈ L2(Ω× (0, T]),

C0 ∈ L2(Ω).
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For the gravity vector and initial concentration this is fulfilled by construction.
Since the diffusion coefficient 0 < D < ∞ is constant we also have D ∈ L∞(Ω).
The velocity field v is modeled by an extra set of equations depending on the
physiology of the vitreous. If there is no back-coupling between the diffusion
equation and the flow model one can decouple the system and reduce the proof
to results concerning the flow equations and parabolic equation describing
the drug distribution. For the special case of the drug distribution within the
healthy vitreous we consider the equation (3.17) generalized to (3.20) where v
is described by Darcy’s flow (3.1). Here, the velocity is bounded for almost all
x ∈ Ω, as shown in the previous Section 3.2.3 of the regularity of Darcy’s flow.
In the case of no external forces, f = 0, like in the developed model describing
the drug transport (3.17), the condition f ∈ L2(Ω× (0, T]) is trivially fulfilled.

We define by [C(t)](x) := C(x, t) for x ∈ Ω, t ∈ [0, T] a mapping

C : [0, T]→ H1
0(Ω; Γh)

and consider C not as a function of x and t together, but as a mapping C of t into
the space H1

0(Ω; Γh) of functions of x. Similarly, we define f : [0, T]→ L2(Ω)
by [f(t)](x) := f (x, t), x ∈ Ω, t ∈ [0, T]. Then the weak formulation states:

Find C ∈ L2(0, T; H1
0(Ω; Γh)) such that

(dtC, ϕ) + B[C, ϕ] = (f, ϕ) ∀ϕ ∈ H1
0(Ω; Γh), a.e. t ∈ [0, T] (3.21)

and
C(0) = C0

with the time-independent bilinear form

B[C, ϕ] : = (D∇C,∇ϕ) + ((v + g̃) · ∇C, ϕ) + (PC + (n · v)(kvr − 1)C, ϕ)Γr

(3.22)
and dtC ∈ L2(0, T; (H1

0(Ω; Γh))
∗) where (H1

0(Ω; Γh))
∗ denotes the dual space

to H1
0(Ω; Γh).

Remark 3.4.1: We see that C ∈ C([0, T]; L2(Ω)) [48].

We will use the Galerkin’s method to build weak solutions of our parabolic
problem (3.20) by first constructing solutions of finite-dimensional approxima-
tions Cm : [0, T] 7→ H1

0(Ω; Γh) as a linear combination of the form

Cm(t) :=
m

∑
k=1

dkm(t)wk (3.23)
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for a fixed integer m > 0 and with the coefficients dkm(t), t ∈ [0, T], k = 1, . . . , m
such that

dkm(0) = (C0, wk) ∀k = 1, . . . , m. (3.24)

Then the function Cm satisfies the projection of our problem onto the finite
dimensional subspace spanned by smooth functions {wk}m

k=1:

(dtCm, wk) + B[Cm, wk] = (f, wk) t ∈ [0, T], k = 1, . . . , m (3.25)

where {wk}∞
k=1 is an orthogonal basis of H1

0(Ω; Γh) and an orthonormal basis
of L2(Ω).
For each integer m = 1, 2, . . . there exists a unique function Cm of the form
(3.23) satisfying the equations (3.24) and (3.25) since the existence of the unique
solution of the resulted linear system of ordinary differential equations can be
proven by the Picard-Lindelöf existence theorem using Lipschitz-continuity
[149].

To show that a subsequence of our solutions Cm of the approximate problems
(3.24), (3.25) converges to a weak solution of (3.20) with the corresponding
boundary conditions (3.18) we need energy estimates.

Theorem 3.4.2 (Energy estimates):
There exists a constant c depending only on Ω, T and the coefficients D, v, g̃ such that

max
t∈[0,T]

‖Cm(t)‖L2(Ω) + ‖Cm(t)‖L2(0,T;H1
0(Ω;Γh))

+ ‖dtCm(t)‖L2(0,T;(H1
0(Ω;Γh))∗)

≤ c
(
‖ f ‖L2(0,T;L2(Ω)) + ‖C0‖L2(Ω)

)
for m = 1, 2, . . . .

Proof. The proof of this theorem uses the same arguments as the proof of Theo-
rem 2 in 6.2.2 in [48] and is therefore not carried out in detail. The restriction to
the ansatz space H1

0(Ω; Γh) instead of H1
0(Ω; ∂Ω) for pure Dirichlet boundary

conditions has no influence. In contrast the definition (3.22) of B[·, ·] differs
due to additional boundary terms considering the biology of the eye and hence
we have to show the following two Lemmas to complete the proof.

Lemma 3.4.3: For all Cm ∈ H1
0(Ω; Γh) there exist constants β > 0 and γ ≥ 0 such

that

β‖Cm‖2
H1

0(Ω;Γh)
≤ B[Cm, Cm] + γ‖Cm‖2

L2(Ω) ∀t ∈ [0, T], m = 1, . . .
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Proof. In view of the ellipticity condition, i.e. ∃θ > 0 such that

θ‖y‖2
L2(Ω) ≤ (Dy, y) ∀x ∈ Ω, y ∈ R3,

and the definition of the bilinear form (3.22) we have

θ‖∇Cm‖2
L2(Ω) ≤ (D∇Cm,∇Cm)

= B[Cm, Cm]− ((v + g̃) · ∇Cm, Cm)− (PCm, Cm)Γr

− ((n · v)(kvr − 1)Cm, Cm)Γr

≤ B[Cm, Cm] +
(
‖v‖L∞(Ω) + ‖g̃‖L∞(Ω)

)
(|∇Cm|, |Cm|)

+
(
|P|+ ‖(n · v)(kvr − 1)‖L∞(Ω)

)
‖∇Cm‖2

L2(Ω).

Using Cauchy’s inequality with ε > 0, see Appendix B.2 in [48], we observe

(|∇Cm|, |Cm|) ≤ ε‖∇Cm‖2
L2(Ω) +

1
4ε
‖Cm‖2

L2(Ω).

We choose ε > 0 so small that

ε
(
‖v‖L∞(Ω) + ‖g̃‖L∞(Ω)

)
+ |P|+ ‖(n · v)(kvr − 1)‖L∞(Ω) <

θ

2

and get

β‖Cm‖2
H1

0(Ω;Γh)
=

θ

2
‖∇Cm‖2

L2(Ω) ≤ B[Cm, Cm] + γ‖Cm‖2
L2(Ω)

with the constants β = θ
2 > 0 and 0 ≤ γ := 1

4ε

(
‖v‖L∞(Ω) + ‖g̃‖L∞(Ω)

)
.

Lemma 3.4.4: There exists a constant α > 0 such that

|B[Cm, ϕ]| ≤ α‖Cm‖H1
0(Ω;Γh)

‖ϕ‖H1
0(Ω;Γh)

∀ Cm, ϕ ∈ H1
0(Ω; Γh).
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Proof.

|B[Cm, ϕ]| ≤ D‖∇Cm‖L2(Ω)‖∇ϕ‖L2(Ω)

+

(
3

∑
i=1
‖vi‖L∞(Ω) + ‖g̃‖L∞(Ω)

)
‖∇Cm‖L2(Ω)‖ϕ‖L2(Ω)

+

(
|P|+

3

∑
i=1
‖nivi(kvr − 1)‖L∞(Ω)

)
‖Cm‖L2(Γr)‖ϕ‖L2(Γr)

≤ D‖∇Cm‖L2(Ω)‖∇ϕ‖L2(Ω)

+
(
‖v‖L∞(Ω) + ‖g̃‖L∞(Ω)

)
‖∇Cm‖L2(Ω)‖∇ϕ‖L2(Ω)

+
(
|P|+ ‖(n · v)(kvr − 1)‖L∞(Ω)

)
‖∇Cm‖L2(Ω)‖∇ϕ‖L2(Ω)

≤ α‖∇Cm‖L2(Ω)‖∇ϕ‖L2(Ω)

= α‖Cm‖H1
0(Ω;Γh)

‖ϕ‖H1
0(Ω;Γh)

for a constant

α := D + ‖v‖L∞(Ω) + ‖g̃‖L∞(Ω) + |P|+ ‖(n · v)(kvr − 1)‖L∞(Ω) > 0.

Next, we build a weak solution of our initial/boundary-value problem (3.21)
by passing m→ ∞.

Theorem 3.4.5 (Existence of weak solution):
There exists a weak solution C ∈ L2(0, T; H1

0(Ω; Γh)) of problem (3.21) for D, v, g̃ ∈
L∞(Ω) and f ∈ L2(Ω× (0, T] and C0 ∈ L2(Ω).

Proof. The proof follows the idea in Theorem 3 in 7.1.2 in [48]. Since we
consider different boundary conditions the corresponding function space and
bilinear form B[·, ·] differ from the examined results in [48]. But by applying
the Lemmas 3.4.3 and 3.4.4 the proof can be generalized.
First, we use previous energy estimates and weak compactness theorem to
show the weakly convergence of subsequences {Cml}∞

l=1 ⊂ {Cm}∞
m=1 to C in

L2(0, T; H1
0(Ω; Γh)). Then we fix an integer M and choose a function

v ∈ C1([0, T]; H1
0(Ω; Γh))

having the form v(t) = ∑M
k=1 dk(t)wk where {dk}M

k=1 are given smooth func-
tions. By passing to the limits we get

(dtC, ϕ) + B[C, ϕ] = 0 ∀ϕ ∈ H1
0(Ω; Γh), a.e. t ∈ [0, T].
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Finally, we show that C(0) = C0.

Theorem 3.4.6 (Uniqueness of weak solution):
A weak solution of problem (3.21) is unique.

Proof. Regarding the uniquenss of weak solution, it is straightforward to reuse
the results by Theorem 4 in 7.1.2 in [48] which follows the generally known
procedure. It suffices to check that the only weak solution of (3.21) with C0 ≡ 0
is

C ≡ 0

and set the test function ϕ = C in the weak formulation.

Summarized, we proved the global existence and uniqueness of the weak
solution of the drug distribution (coupled with the Darcy equation modeling
the healthy human vitreous by the porous medium approach) and showed that
the developed mathematical model is well posed in its mathematical theory
and biological derivation.

3.4.4 Convection-Diffusion Coupled with Darcy

As introduced in Section 3.2 the healthy vitreous is modeled as a porous
medium with the steady permeating aqueous humor flow through the vitreous
and active transport through the retina. Therefore to describe the drug dis-
tribution within the healthy vitreous for the treatment of retinal diseases, the
diffusion equation (3.17) is coupled with Darcy’s law (3.1). The global existence
and uniqueness of the weak solution of the developed initial-boundary value
problem is shown in the Sections 3.2.3 and 3.4.3.

As a starting point for further numerical simulations we derive the weak
formulation by multiplying by suitable test functions, integrating over the
domain Ω and applying integration by parts, since the strong formulation of
the model is not convenient for numerical treatment.

If we consider the boundary conditions (3.2) for the Darcy flow the varia-
tional formulation reads:

We search for v ∈ L2
div(Ω; Γl)

d, p ∈ L2(Ω) and C ∈ L2(0, T; H1
0(Ω; Γh)) such

that the initial condition C(x, 0) = C0(x) is satisfied and for almost all time

45



steps t ∈ (0, T] it holds:

(∇ · v, ξ) = 0,
µ

K
(v, φ)− (p,∇ · φ) + (pin, n · φ)Γh + (Pv +

L
KRCS

(v · n), n · φ)Γr = 0,(
dC
dt

, ϕ

)
+ (D∇C,∇ϕ) + (PC + (n · v)(kvr − 1)C, ϕ)Γr

= 0

for all (ξ, φ, ϕ) ∈ L2(Ω)× L2
div(Ω; Γl)

d×H1
0(Ω; Γh) with the following function

space:

L2
div(Ω; Γl)

d := {v ∈ L2(Ω)d : ∇ · v ∈ L2(Ω), v · n = 0 on Γl},

and H1
0(Ω; Γh) is defined in (3.5) with ΓD = Γh.

In the second case, we look at the boundary conditions (3.3) for the Darcy
flow, then the corresponding weak formulation reads:

We search for v ∈ L2
div(Ω; Γl ∪ Γh)

d, p ∈ L2(Ω) and C ∈ L2(0, T; H1
0(Ω; Γh))

such that the initial condition C(x, 0) = C0(x) is satisfied and for almost all
time steps t ∈ (0, T] it holds:

(∇ · v, ξ) = 0, (3.26a)
µ

K
(v, φ)− (p,∇ · φ) + (Pv +

L
KRCS

(v · n), n · φ)Γr = 0, (3.26b)(
dC
dt

, ϕ

)
+ (D∇C,∇ϕ) + (PC + (n · v)(kvr − 1)C, ϕ)Γr

= 0 (3.26c)

for all (ξ, φ, ϕ) ∈ L2(Ω) × L2
div(Ω; Γl ∪ Γh)

d × H1
0(Ω; Γh) with the function

space

L2
div(Ω; Γl ∪ Γh)

d :=

{
v ∈ L2(Ω)d : ∇ · v ∈ L2(Ω), v · n =

{
0 on Γl

vin on Γh

}
.

In our publications [41, 60] the corresponding numerical simulations for the
drug distribution including the steady permeating aqueous humor flow are
performed with the finite element method [26]. The position of injection is
analyzed by functionals which measure the mean and relative amount of the
drug in the vitreous and in the area of action, the macula. For an optimal
treatment of the retinal disease the drug is supposed to stay as long as possible
there. The results show that the maximal amount of drug is found in the area
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of interest for the considered time period when the position of injection is
located in the center of the vitreous body. Thus, the position of the injection
is identified as an important parameter which is in agreement with previous
studies [61].

3.4.5 Convection-Diffusion Coupled with Navier-Stokes

The liquefaction of the vitreous, the degeneration process of the vitreous hu-
mor associated with aging, causes an increase in the drug elimination and an
increase in the convection flow due to the disruption of the fibers’ mesh com-
posing the vitreous humor [14, 177]. In [174] a simulated liquefaction caused a
12-fold faster distribution of fluorescein sodium compared to the simulated
juvenile vitreous model without liquefaction, which was most likely caused
by enhanced convective forces and mass transfer. Most animal models in the
literature indicate that intravitreal drugs have reduced half-lives and increased
clearance in vitrectomized eyes [44]. For example, Niwa et al. [136] measured
the pharmacokinetic parameters in vitrectomized and non-vitrectomized mon-
key eyes. Here, the half-life of ranibizumab and aflibercept was shorter in
vitrectomized eyes than in non-vitrectomized eyes.
The whole system of governing equations in the weak formulation describing
the drug distribution in the liquefied vitreous by coupling the diffusion equa-
tion (3.17) with the Navier-Stokes equation (3.9) from the previous sections
reads:

Find p ∈ L2(0, T; L2(Ω)), v ∈ L2(0, T; {vin + H1
0(Ω; ΓD)

d}) and the drug con-
centration C ∈ L2(0, T; H1

0(Ω; Γh)) such that the initial conditions v(x, 0) =

v0(x), C(x, 0) = C0(x) are satisfied, vin ∈ H1(Ω)d and for almost all time steps
t ∈ (0, T] with T ∈ (0, ∞) it holds that

(∇ · v, ξ) = 0, (3.27a)
ρ(∂tv, φ) + ρ((v · ∇)v, φ) + (T,∇φ)− (kperm(v · n)n, φ)Γr = 0, (3.27b)(

dC
dt

, ϕ

)
+ (D∇C,∇ϕ) + (PC + (n · v)(kvr − 1)C, ϕ)Γr

= 0 (3.27c)

for all (ξ, φ, ϕ) ∈ L2(Ω)× H1
0(Ω; ΓD)

d × H1
0(Ω; Γh) where the Dirichlet bound-

ary is defined as ΓD := Γl ∪ Γh ⊂ ∂Ω.

Back Coupling Through Surface Tension

So far we considered in the previous models describing the drug distribution a
coupling between the vitreous flow and the diffusion of the drug concentration
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only through the velocity field. In particular, the convection-diffusion equation
(3.17) is coupled by the transport term (v · ∇)C with the fluid flow modeled
either by Darcy’s flow (3.1) or Navier-Stokes equation (3.9).
The following section will show a possible back-coupling through surface
tension and extend the developed models to a fully coupled system in which
the drug transport contains the transport term including the velocity field and
the fluid flow model contains the drug concentration. Then the drug diffusion
and fluid flow are closely related and can effect each other. The surface tension
is represented by the so-called Korteweg stress based on the Van der Waals
theory at the interface of two miscible fluids. It is the tendency of liquid
surfaces to reduce into the minimum surface area possible and influences the
drug transport in the human vitreous beside the rheology of the vitreous and
its induced flow field.

Physical Meaning The liquefied vitreous humor fluid and the solution for
injection containing the active ingredient are two miscible liquids. In contact
they immediately start to diffuse in each other but if the diffusion is sufficiently
slow like in the case of large drug molecules, a concentration gradient exists
which relaxes through further diffusion. Then an effective interfacial tension
appears which can lead to transient capillary phenomena in the case of liq-
uefied vitreous. As stated in the literature [9, 78] the surface tension has an
important impact on pharmaceutical sciences in general and especially in the
eye it influences the drug distribution and could impact the performance of
intravitreal therapy. The surface tension of liquefied vitreous should be taken
into account when simulating drug dispersion following intravitreal injection
[78].
For example, a drop of oil in water (immiscible liquids) becomes spherical
because of the interfacial tension which acts to minimize its surface, contrary to
that a drop of water on the surface of glycerin (miscible liquids), initially round,
changes its shape in time [98]. To model this behavior, the classical approach
used in immiscible cases is not suitable. Here it is supposed that the liquids are
separated by a sharp interface described by a free-boundary formulation which
specifies a jump condition at the surface separating fluids possessing different
concentrations. Instead one describes the phase transition phenomena by the
Korteweg model proposed in 1901 in [97]. Korteweg states that fluid stresses
which arise as a result of concentration (or temperature, density) gradients at
the interface between two miscible fluids (vitreous/drug) lead to the notion
of surface tension between miscible fluids [7]. The key feature of the model
is the additional contribution to the Cauchy stress tensor, the Korteweg stress
(surface tension) in terms of the concentration and its spatial gradients. This
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tensor is associated with the surface tension that relaxes with time due to the
mass diffusion and takes into account the concentration changes [185].

In accordance to the assumptions of Kostin et al. [98] that the diffusion is
sufficiently small, the vitreous and drug injection are incompressible and have
the same density and viscosity which is fulfilled in our situation, we write the
governing equations for the drug distribution concerning surface tension in
the form:

∇ · v = 0 in Ω× (0, T], (3.28a)

ρ

(
∂v
∂t

+ (v · ∇)v
)
= ∇ ·T in Ω× (0, T], (3.28b)

−pI + 2µ0D + T(C) = T in Ω× (0, T], (3.28c)
∂C
∂t

+ (v · ∇)C−∇ · (D∇C) = 0 in Ω× (0, T], (3.28d)

where the Korteweg stress associated with surface tension is defined as

T(C) := −kkor(∇C⊗∇C) + kkor|∇C|2I (3.29)

with the nonnegative material parameter kkor called Korteweg’s constant. The
divergence of the Cauchy tensor including the Korteweg stress yields

∇ ·T = −∇p + µ0∆v +
kkor

2
∇|∇C|2 − kkor∆C∇C.

This system of equations is completed by the initial and boundary conditions
(3.18) and (3.11) defined in the previous sections introducing the diffusion and
Navier-Stokes equation.

Derivation of Governing Equations The above constitutive equation (3.28c)
for the Cauchy stress tensor including the Korteweg stress (3.29) can be derived
in a thermodynamically consistent manner in the setting of binary mixtures in
the class I framework introduced in [84]. The mixture of the two incompress-
ible fluids, drug injection (component 1) and liquefied vitreous (component
2), forms a typical representative of the class of the so-called diffuse interface
models. Then the model for surface tension can be obtained by employing
the classical thermodynamical framework and following the procedure for
the Navier-Stokes fluid introduced in Section 3.3.2 in combination with the
presence of the concentration gradient in the specific formula for the Helmholtz
potential.
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The system of balance equations for binary mixtures (neglecting for simplicity
the energy sources) is the same as introduced in Chapter 2.2 plus the additional
evolution equation for the concentration C = C1 = ρ1/ρ

ρ
dC
dt

= −div j

where ρ = ρ1 + ρ2 with the partial densities ρ1, ρ2 and j denotes the diffusive
flux. Derived from it one obtains an evolution equation for the gradient ∇C:

ρ
d∇C

dt
= −(∇v)T∇C−∇

(
div j

ρ

)
.

In contrast to Section 3.3.2 we consider the constitutive equation for the specific
Helmholtz free energy ψ in the following explicit form

ψ := ψ̃(θ, ρ,∇C) = ψ0(ρ) + ψ1(θ) +
kkor

2ρ
|∇C|2. (3.30)

Compare to the specific form (3.13) for the Navier-Stokes fluid, the form (3.30)
contains one additional term. This choice is motivated by the fact that one
expects the concentration gradient ∇C to contribute to the energy storage
mechanisms, and the fact that the norm of the gradient ∇C is the simplest
possible choice if one wants the Helmholtz free energy to be a scalar isotropic
function of ∇C. (By the principle of material frame indifference one concludes
that ψ = ψ̃(θ, ρ, |∇C|) such that the resulting additional contributions to the
Cauchy stress tensor are symmetric.) Introducing the new thermodynamic
pressure and a variation of the chemical potential via

pK
th := ρ2 ∂ψ

∂ρ
, µC := ρ

∂ψ

∂∇C
= kkor∇C,

applying the material time derivative to equation (3.30),

dψ

dt
=

∂ψ

∂θ

dθ

dt
+

∂ψ

∂ρ

dρ

dt
+

∂ψ

∂∇C
d∇C

dt
,

and considering the relation (3.12) we get the material time derivative of the
entropy η:

ρθ
dη

dt
= ρ

de
dt
−

pK
th
ρ

dρ

dt
− µC

d∇C
dt

.
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Notice that the thermodynamic pressure pK
th for the Korteweg fluid is different

from the thermodynamic pressure pNS
th := ρ2 ∂ψ0

∂ρ for the Navier–Stokes fluid:

pK
th = pNS

th −
kkor

2
|∇C|2.

Proceeding further analog to the framework in Section 3.3.2 we get

ρθ
dη

dt
= Tδ : Dδ + (m + pK

th)div v− div je + K : (∇v)T + µC · ∇
(

div j
ρ

)
= (Tδ + Kδ) : Dδ +

(
m + pK

th +
tr K

3

)
div v− div

(
je −

div j
ρ

µC

)
− div

(
div µC

ρ
j
)
+ j · ∇

(
div µC

ρ

)
where we introduced the tensor K := µC ⊗∇C. After reformulations and
requiring the linear relations between the fluxes and affinities it follows the
constitutive relation for the Cauchy stress tensor as:

T = −pK
thI + 2µ0D + λ(div v)I−K

= −pNS
th I + 2µ0D + λ(div v)I− kkor(∇C⊗∇C) +

kkor

2
|∇C|2I.

Since we consider only incompressible and isothermal processes it reduces to

T = −pI + 2µ0D− kkor(∇C⊗∇C) +
kkor

2
|∇C|2I.

By setting kkor = 0 the contribution of the surface tension is neglected and we
get the thermodynamic derivation of the Navier-Stokes fluid (3.9c).
In the general model proposed by Korteweg in [97] the Cauchy stress tensor is
given by

T = −pI + 2µ0D
(

α0(C∆C) + α1|∇C|2
)

I + β(∇C⊗∇C)

where α0, α1, β are constant material parameters. Motivated by the fact that α1
and β do not need to match we set α0 = 0, α1 = kkor/2 and β = −kkor according
to [98] but the thermodynamic derivation would proceed analogously. The
reader interested in more details concerning the derivation of the model (3.28)
is referred to [77].
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Existence and Uniqueness In [98] and [100] the authors prove the global ex-
istence and uniqueness of the solution and the longtime behavior for the math-
ematical model (3.28) consisting of the time-dependent convection-diffusion
equation coupled with incompressible Navier-Stokes equations including the
Korteweg stress tensor. They use the same specific parameters for the Ko-
rteweg stress but complete the problem with homogeneous Dirichlet and
Neumann boundary conditions for the velocity or rather the concentration in
a two-dimensional bounded domain Ω ⊂ R2 with boundary ∂Ω ∈ C2 and
time 0 < T < ∞. The coupling through the Korteweg stress tensor is nonlinear
and poses an additional challenge which can be solved because of the specific
form of the Korteweg stress. Following the Galerkin procedure the a priori
estimation becomes possible since the Korteweg stress tensor and terms from
the convection-diffusion equation cancel each other out.
Since [98, 100] consider different boundary conditions for the velocity and the
concentration they describe another situation than the drug elimination in the
vitreous in this thesis. We illustrate at the retina an outflow for both and at the
hyaloid membrane we have an inflow velocity profile and the impermeable
condition for the drug concentration. So, referring to the Section 3.3.3 and
the known problems concerning the Navier-Stokes equation this concept is
not adoptable to our model with mixed boundary conditions set in the three
dimensional domain of the vitreous.

3.5 Models Including Gravity

To reflect the reality as well as possible, we include the gravity which influences
the drug transport within the vitreous after an intravitreal injection. The
direction of the gravitational force is changed due to the position of the patient.
In the literature, [56, 62, 75] and many more, the effect of gravity on the
drug diffusion was neglected. In [95] they analyze the effect of the gravity on
bevacizumab distribution in an undisturbed balanced salt solution in vitro after
intraocular injection (not intravitreal). They showed a significant difference in
concentration due to gravity, especially at the beginning of the injection.
So, to our knowledge we are the first considering the effect of gravity in the
mathematical models describing the drug distribution in the human vitreous.
We add the gravitational force to the vitreous models described in the previous
sections and to the drug distribution model (3.17). But the gravity do not
influence the fluid motion due to the constant density of the vitreous, only
in the diffusion equation we have density changes and therefore a significant
difference in concentration due to gravity [95].
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3.5.1 Vitreous Models

Generally in fluid dynamics, the gravity is included by adding the gravitational
vector g times the density in the corresponding balance equation of the linear
momentum, see the general equation (2.5). For the liquefied vitreous (3.9), we
get

∇ · v = 0 in Ω× (0, T],

ρ

(
∂v
∂t

+ (v · ∇)v
)
= ∇ ·T + ρg in Ω× (0, T],

T = −pI + 2µ0D in Ω× (0, T].

In the case of the healthy vitreous described by Darcy’s flow, it reads

∇ · v = 0 in Ω, (3.31a)

−K
µ
(∇p− ρag) = v in Ω (3.31b)

with the density of the aqueous humor ρa, see [121, 188].

Nevertheless, in this study the gravity is not included in the mathematical
models for the flow since steady body forces (like gravity) in homogeneous
density fluids do not influence the fluid motion and are therefore commonly
neglected from the governing equations.
The vitreous has constant density and the gravitational force has a potential,
i.e. g = −∇g̃ where g̃ is a scalar function. Because of that, one can rewrite the
general momentum balance equation (2.5) as

ρ

(
∂v
∂t

+ (v · ∇)v
)
= −∇p +∇ · S− ρ∇g̃

using the general form (2.11) for the Cauchy stress tensor. When we assume
that the density ρ is spatially homogeneous, i.e. ρ∇g̃ = ∇(ρg̃), then the
momentum equation reduces to

ρ

(
∂v
∂t

+ (v · ∇)v
)
= −∇ p̃ +∇ · S.

For the incompressible vitreous the gravity term can be incorporated into
the pressure gradient term by defining the modified pressure p̃ := p + ρg̃.
Furthermore, the tilde on p is typically dropped in this situation. Consequently,
the shape of the momentum balance equation does not change, and for that
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reason the fluid flow is not effected. Only the pressure must be reinterpreted.
The same result follows for the special case of the healthy vitreous (3.31) which
can be rewritten as

−K
µ
∇ (p + ρa g̃) = v.

However, when the flow includes a free surface, a fluid-fluid interface across
which the density changes, or other variations in density, the gravity should
be considered.

3.5.2 Drug Distribution Model

Assuming the drug as spherical particles of mass m and radius r there are three
forces acting on each particle moving with velocity v: drag force fd, gravity
force fg := mg and buoyant force fb := ρVpg as shown in Figure 3.2. g =

fd fb

fg

Figure 3.2: Forces acting on each drug particle

gconste is the gravitational vector, i.e. gravitational constant gconst (acceleration
of gravity) times the unit vector e in the direction of the gravitational field.
Vp := m/ρp is the solute particle volume and ρ, ρp are the respective densities
of the surrounding fluid (vitreous) and diffusing drug particle. According to
the Stokes formula for the drag on a sphere moving slowly in a fluid (valid for
small Reynolds numbers) it holds that fd := 6πµrv with the viscosity µ of the
vitreous. At equilibrium all forces are balanced, i.e.

fg = fd + fb

and we get

6πµrv = m
(

1− ρ

ρp

)
g.
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After rearranging, we obtain v = m
6πµr

(
1− ρ

ρp

)
g and can define the Ma-

son–Weaver sedimentation coefficient s := m
6πµr

(
1− ρ

ρp

)
. In three-dimensions

the flux J at any point is given by

J = −D∇C + vC = −D∇C− sgC.

The first term describes the flux due to diffusion down a concentration gradient
according to Fick’s law, whereas the second term describes the convective flux
due to the average velocity v of the particles. According to the conservation of
mass a positive net flux out of a small volume produces a negative change in
the local concentration within that volume

∂tC = −∇ · J.

Substituting the equation for the flux produces the Mason–Weaver equation:

∂tC = −∇ · J = ∇ · (D∇C) + s∇ · (gC).

It may be written as

∂tC = ∇ · (D∇C) + sg · ∇C.

This approach is fitting to the convective form of Smoluchowski’s diffusion
equation [133, 120, 5]:

∂tC + (v · ∇)C = ∇ · (D∇C) +∇ ·
(

F
β

C
)

with the external force F :=
(

1− ρ
ρp

)
g per unit mass acting on the dispersed

particle and the Stokes viscous drag parameter β := 6πµr
m .

Summarized, including the gravity in the diffusion equation (3.17) describing
the drug distribution we get

∂tC + (v · ∇)C = ∇ · (D∇C) +
1
β

(
1− ρ

ρp

)
g · ∇C.

Here, the gravity has an effect on the drug distribution. As seen in the experi-
ments the injected drug sinks in the direction of gravity [95].
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4 Viscoelastic Approach for the
Healthy Vitreous: Burgers Model

In order to assess the effectiveness of the injected drug into the vitreous for
the treatment of retinal diseases, it is crucial to know the drug distribution
within the eye. The results in [93] show that the concentration distribution
depends on the properties of the vitreous. Therefore, it is important to analyze
the properties of the vitreous like in [78, 179]. A better understanding of the
properties of the vitreous humor will aid to develop more effective therapies
such that drug concentration is maintained within the therapeutic range at
the target site for the desired period of time. For this reason, we present a
more realistic model considering the non-Newtonian nature of the vitreous
body in the modeling of drug transport. We include the elastic collagen fiber
network compared to the simpler models introduced in Chapter 3 used in the
literature. For this application it is a new approach taking into account realistic
parameters from measurements capable of describing the complex behavior of
the human vitreous seen in experiments.
In this Chapter we model the healthy vitreous as an incompressible viscoelastic
Burgers-type fluid. We derive the governing equations through the motivation
of the one-dimensional mechanical analog and the well established thermo-
dynamical framework. Experimental data from the literature is converted
to our preferable formulation for further numerical simulations by solving
a nonlinear system of equations. For simplicity, the stability of the rest state
is examined for non-isothermal processes in a mechanically isolated domain
instead of the vitreous body, but allowing heat exchange with the surrounding.
The mixed boundary conditions characterizing the vitreous body would be
to complex to analyze the rest state. In this case, the standard methods for
thermodynamically isolated systems or systems immersed in a thermal bath
can not be used since the steady state is a non-equilibrium (entropy producing)
steady state due to the constant spatially nonuniform temperature at the do-
main’s walls. Further, we analyze the mechanical behavior of the vitreous in a
deforming eye ball leading to a fluid-structure-interaction problem. For the
drug distribution we propose fully coupled systems extended by the surface
tension or stress driven diffusion in which the drug diffusion and flow inside
the vitreous can effect each other. The vitreous acts as a barrier to the diffusion
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which has not yet been addressed in its modeling before. We extend the sim-
ple diffusion to an anisotropic ansatz taking into account the heterogeneous
structure of collagen fibers which have a certain orientation in the vitreous
body. Herewith we enlarge the considered drugs since the anisotropic ansatz
depends on the molecule size of the drug. Finally, we introduce the thermody-
namical derivation of the anisotropic viscoelastic vitreous where we consider
the vitreous as a viscoelastic fluid whose elastic reaction is anisotropic in the
preferred direction of the collagen fibers.

Another approach for modeling the healthy vitreous is using fluid dynamics
and takes the elastic behavior of the collagen network into account. It is a
purely phenomenological approach in the sense that it does not rely on the
knowledge of the internal microscopic structure of the vitreous. All of the
previous studies [62, 75, 10, 153, 170] model the vitreous humor as an incom-
pressible fluid ignoring the non-Newtonian nature which is insufficient to
describe the complex reality. The young and healthy vitreous is not liquefied
but a gel that has both viscous and elastic properties. The viscous response is
derived from the interaction between hyaluron and aqueous humor. The elastic
property results from the collagen fibers. As a viscoelastic, Non-Newtonian
fluid it can store energy and produce entropy in virtue of mechanisms. The rhe-
ological behavior of the vitreous body can be modeled by the incompressible
viscoelastic Burgers-type model according to measurements from experiments
on porcine eyes in [164] and on human autopsy eyes in [180]. It is an higher
order rate-type viscoelastic fluid model capable of describing two different
relaxation times observed by these experiments [164, 180] which excludes sim-
pler models like the classical Maxwell model or the Oldroyd-B model [138].
The relaxation times roughly measure for how long a fluid will have some
memory of the flow and relates to the Weissenberg number We which measures
the grade of elasticity/viscosity in the fluid, i.e. the bigger the Weissenberg
number, the more the fluid will behave like an elastic solid, the smaller it gets,
the more it will be like viscous Newtonian flow.
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4.1 Full System of Governing Equations

The full system of governing equations for the Burgers-type model characteriz-
ing the healthy viscoelastic vitreous reads:

∇ · v = 0 in Ω× (0, T], (4.1a)

ρ

(
∂v
∂t

+ (v · ∇)v
)
= ∇ ·T in Ω× (0, T], (4.1b)

−pI + 2µ3D + G1(B1 − I) + G2(B2 − I) = T in Ω× (0, T], (4.1c)

−G1

µ1
(B1 − I) =

∇
B1 in Ω× (0, T], (4.1d)

−G2

µ2
(B2 − I) =

∇
B2 in Ω× (0, T], (4.1e)

where B1 and B2 are the left Cauchy–Green tensors associated to two natural
configurations. The material parameters are the constant density ρ, µi, i =
1, 2, 3 and Gi, i = 1, 2, describing the dynamic viscosities and elastic shear
moduli. Like before v, p and T denote the velocity, the pressure and the
Cauchy stress tensor. The material time derivative is replaced by the upper
convected Oldroyd derivative

∇
A:=

∂A

∂t
+ (v · ∇)A− (∇v)A−A(∇v)T (4.2)

for any second order tensor A. It is a time derivative from the family of
Gordon-Schowalter objective time derivatives with c ∈ [−1, 1] given by

◦
A:=

∂A

∂t
+ (v · ∇)A + AW−WA− c (AD + DA) (4.3)

with the skew-symmetric part of the velocity gradient W := 1
2

(
∇v− (∇v)T).

When c = 0 we obtain the Jaumann derivative (co-rotational time derivative),
while c = −1 is associated to the lower convected Oldroyd derivative and for
c = 1 we get the upper convected Oldroyd derivative (4.2). Oldroyd showed
in [138] that his model called Oldroyd-B with the upper convected Oldroyd
derivative predicts rod climbing. While the same model with lower convected
Oldroyd derivative predicts the opposite effect (the descend) and is named
Oldroyd-A. Since most of the Non-Newtonian fluids like the vitreous show rod
climbing we use the upper convected Oldroyd derivative. This is necessary
to obtain a proper viscoelastic model since the partial time derivative and
the material time derivative are not objective derivatives and the appropriate
generalizations are not unique. For the definition of the objective tensor see
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[181].

Note that the Navier-Stokes equation (3.9) is a special case of the Burgers-
type model (4.1) with G1 = G2 = µ1 = µ2 = 0. The Navier-Stokes equation
describes the liquefied vitreous and shows only viscous behavior compared to
the Burgers-type model which is capable of characterizing viscous and elastic
behavior.

4.1.1 Boundary and Initial Conditions

For the healthy viscoelastic vitreous we use the same boundary conditions
for the velocity like in the Navier-Stokes model. At the boundary the elastic
tensorial quantities Bi, i = 1, 2 are derived from the prescribed velocity using
the evolution equations (4.1d), (4.1e) and the definition (4.2) by setting the
material time derivative equal to zero. See Hron et al. [83] for detailed infor-
mations about the boundary conditions for the flow of a Burgers fluid. In our
situation we have

v = 0 on Γl × (0, T], (4.4a)
Bi = I, i = 1, 2 on Γl × (0, T], (4.4b)

v = vin on Γh × (0, T], (4.4c)

Bi = Bin
i , i = 1, 2 on Γh × (0, T], (4.4d)

Tn · n = kpermv · n on Γr × (0, T]. (4.4e)

In detail, the inflow boundary condition at the hyaloid membrane Γh is:

Bin
i =

µi

Gi
(∇vin)Bi +

µi

Gi
Bi(∇vin)

T + I, i = 1, 2.

Bi, i = 1, 2 represent the deformation of the elastic collagen fibers inside the
vitreous. Therefore, the initial state is undeformed and one sets:

v = v0 on Ω× {t = 0}, (4.5a)
B1 = I on Ω× {t = 0}, (4.5b)
B2 = I on Ω× {t = 0}. (4.5c)

Since the symmetric and positive definite setting at the beginning t = 0, one
can show that Bi, i = 1, 2 remains to be symmetric positive definite for all times
t > 0 with

det Bi ≥ 1 ∀t ≥ 0, i = 1, 2
and

tr Bi ≥ d, i = 1, 2
where d denotes the space dimension, see [181].
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Existence and Uniqueness It is necessary to recognize that even in the anal-
ysis of standard viscoelastic Oldroyd-type models (special case of the Burgers-
type model with G2 = µ2 = 0) there are open problems concerning long time
and large data existence. For that reason, we present the state of research and
outline a short overview of mathematical results from the literature.

In [21, 113] they proved global in time existence of weak solutions in dimen-
sion d ≤ 3 for general initial data of the Oldroyd model with the corrotational
(Jaumann) derivative (4.3). The proof is based on the L2-norm energy estimate
for velocity and stress fields. But this type of energy estimate does not hold for
the Oldroyd-B model (with upper-convected Oldroyd derivative) and seems
to be an open problem. Global existence for plane Couette (plane shear) and
Poiseuille flows, i.e. one-dimensional motions, of Oldroyd-B fluids between
two parallel planes is shown for arbitrary time and arbitrary initial data in [73].
For small data global existence of two-dimensional incompressible Oldroyd-
type fluids was proven in [108, 109].
Concerning the original Burgers model with µ3 = 0 stability, uniqueness and
continuous dependence on initial data were proved for the three-dimensional
case in [145, 146] by Quintanilla and Rajagopal. In this paper they have studied
qualitative aspects concerning the solutions to the flow of the linearized Burg-
ers fluid. Higher-order non-linearities due to additional convective derivatives
lead to a fully non-linear problem. Even within the context of linearization
there are higher time derivatives of the velocity field.
In the case of the human vitreous these issues could be addressed, since the
flow velocities are very low.

4.2 Derivation of Governing Equations

In this Section we present two different ways to derive the constitutive equa-
tions in the system (4.1). The first one is motivated by the one-dimensional
mechanical analog representing the elasticity by one linear elastic spring and
representing the viscosity by a dashpot filled with a viscous Newtonian fluid.
The second way uses the thermodynamical framework and guarantees that
the second law of thermodynamics is fulfilled for the derived model.

4.2.1 Mechanical Analog

Motivated by a one-dimensional mechanical spring/dashpot analogue intro-
duced in Section 2.2.4 the Burgers-type model consists of two linear dashpots
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and two linear springs with one additional dashpot to obtain a more conve-
nient model (from the perspective of fitting the experimental data) than the
original Burgers model (with µ3 = 0) derived in [181]. A draft of the Burgers-
type model can be seen on the left side in Figure 4.1. This Figure shows the
difference between the two constitutive equations for the healthy viscoelastic
and the liquefied vitreous. The liquefied vitreous described by the Navier-
Stokes equation (3.9) shows only viscous behavior motivated by one linear
dashpot in the one-dimensional mechanical analogue compared to the Burgers-
type model which contains two additional springs exhibiting elastic behavior.
Since the springs satisfy Hooke’s law and the dashpots fulfill Newton’s law the

G1

G2

µ1

µ2

µ3

µ0

Figure 4.1: 1D-mechanical spring/dashpot analogue of viscoelastic Burgers-
type model (left) and pure viscous Navier-Stokes model (right)

relation between the stress σ and the strain ε for this one-dimensional model
satisfies the second order differential equation:

σ + λ1
dσ

dt
+ λ2

d2σ

dt2 = λ3
dε

dt
+ λ4

d2ε

dt2 + λ5
d3ε

dt3 (4.6)

where the constant parameters λi, i = 1, . . . , 5 are defined by

λ1 : =
(

µ1

G1
+

µ2

G2

)
, λ2 :=

µ1µ2

G1G2
,

λ3 : = (µ1 + µ2 + µ3) , λ4 :=
(

µ1(µ2 + µ3)

G1
+

µ2(µ1 + µ3)

G2

)
,

λ5 : =
µ1µ2µ3

G1G2

and G1, G2 and µ1, µ2, µ3 are material parameters characterizing the elastic
moduli and viscosities of the individual springs and dashpots respectively.
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For numerical simulations and more realistic modeling we need to gener-
alize the one-dimensional model into higher space dimensions. The evolution
equation for the extra stress tensor S in equation (2.11) is obtained from (4.6) by
replacing the one-dimensional stress σ by S and dε

dt by two times the symmetric
part of the velocity gradient 2D. The material time derivative defined in (2.1)
is replaced by the objective upper convected Oldroyd time derivative (4.2).
Then the generalization of (4.6) is

T = −pI + S, (4.7a)

S + λ1
∇
S +λ2

∇∇
S = 2λ3D + 2λ4

∇
D +2λ5

∇∇
D . (4.7b)

This equation can be reformulated into a lower order differential equation by
splitting the extra stress tensor as S = 2µ3D + S̃,:

T = −pI + 2µ3D + S̃,

S̃ +

(
µ1

G1
+

µ2

G2

) ∇
S̃ +

µ1µ2

G1G2

∇∇
S̃ = 2(µ1 + µ2)D + 2

(
µ1µ2

G1
+

µ1µ2

G2

)
∇
D .

usually written using the relaxation times τ1 := µ1
G1

and τ2 := µ2
G2

as:

T = −pI + 2µ3D + S̃, (4.8a)

S̃ + (τ1 + τ2)
∇
S̃ +τ1τ2

∇∇
S̃ = 2(µ1 + µ2)D + 2 (µ2τ1 + µ1τ2)

∇
D . (4.8b)

In the last step we show that the derived model (4.8) is indeed equivalent to
the last three equations in (4.1). Starting with (4.1) we define S̃ := S1 + S2 with
S1 := G1(B1 − I) and S2 := G2(B2 − I). Using (4.1d),(4.1e) and the relation
∇
I= −2D, we have

∇
S=

∇
S1 +

∇
S2= −

G1

µ1
S1 −

G2

µ2
S2 + 2(G1 + G2)D. (4.9)

Applying the upper convected Oldroyd derivative to (4.9) and using (4.1d)
and (4.1e) again, we obtain

∇∇
S = −G1

µ1

∇
S1 −

G2

µ2

∇
S2 +2(G1 + G2)

∇
D

=
G2

1
µ2

1
S1 +

G2
2

µ2
2

S2 − 2

(
G2

1
µ1

+
G2

2
µ2

)
D + 2(G1 + G2)

∇
D .

(4.10)
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Multiplying the equation (4.9) by
(

µ1
G1

+ µ2
G2

)
and adding the result to µ1µ2

G1G2

times equation(4.10), we get (4.8).

Even if the two models (4.8) and (4.1) are equivalent, they have different
properties concerning further numerical simulations. The three-dimensional
generalization (4.8) of the one-dimensional spring/dashpot model (4.6) is not
a preferable formulation. It is a second order differential equation, which
is difficult to numerically implement, and we would need to provide initial
conditions for the parts of the Cauchy stress tensor and its derivative. The
introduced model (4.1) is a more convenient equivalent with two symmetric
first order differential equations for B1 and B2 which allow an easier numerical
implementation. Additionally, the quantities B1, B2 correspond to the state of
the springs in Figure 4.1, which makes it reliable to specify the initial conditions
for the system. It is a well established viscoelastic model, derived and treated
numerically in the literature, for example in our work [182]. But as written
in the Section 2.2.4 of constitutive equations the relations should satisfy the
second law of thermodynamics which is not obvious in this setting. In the fol-
lowing section we will derive (4.1) via the thermodynamical-based procedure
introduced by [147] and show that it is a proper constitutive equation.

4.2.2 Thermodynamical Framework

In the previous section we derived the constitutive equation (4.8) for the
viscoelastic vitreous in the human eye on the basis of the one-dimensional
analog but it is not obvious that the generalization satisfy the second law of
thermodynamics. Rajagopal and Srinivasa [147] proposed a framework based
on the concept of evolving a natural configuration and the principle of maximal
rate of entropy production to derive thermodynamically consistent viscoelastic
rate-type fluid models to overcome this issue. This approach guarantees that
the derived models satisfy the second law of thermodynamics.
By prescribing two constitutive relations: one for the Helmholtz free energy ψ
(other thermodynamic potentials such as the internal energy e, Gibbs potential
or the enthalpy can be used as well), describing the elastic response, and the
second for the rate of entropy production ξ (see (2.8)) providing information
how the energy dissipates, one obtains the needed constitutive equations,
as the form of the Cauchy stress tensor T including its evolution equation,
which fulfill automatically the laws of thermodynamics. This procedure has
the advantage of prescribing only two scalars instead of six in three-space-
dimensions by directly setting the constitutive equation for the symmetric
Cauchy stress tensor. For more details see [117] or [181].
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Viscoelastic models with two natural configurations

From Section 2.2.2 we already know the reference and current configuration of
the continuous body Ω made from the viscoelastic material, here the vitreous
body. In the reference configuration the system is in rest at the beginning. For
the description of viscoelastic fluids we introduce the natural configuration
associated with the current configuration κt(Ω). It is the situation that the fluid
in the current configuration would take if the external stimuli are removed.
The approach of defining the natural configuration is based on the idea that
we split the total deformation gradient F into a purely dissipative/viscous and
an elastic response.

On the example of the Maxwell element, one simple viscoelastic model which
consists of one dashpot and one spring in series in the one-dimensional ana-
logue, we motivate the existence of the natural configuration. At the beginning
the element is at rest, relaxed, the spring and the dashpot are not stretched.
This is the reference configuration. If we deform the element it goes to the
current configuration. Now, you release the system, the spring shrinks back
to its original length but the dashpot remains stretched. We have the natural
configuration.

Our aim is to model the complex vitreous body. By assuming the co-existence
of two natural configurations we are able to describe the vitreous’ behavior
of exhibiting two different relaxation mechanisms (see [106] and [164]). We
define two natural configurations κn1(Ω) and κn2(Ω) shown in Figure 4.2 and
virtually split the total deformation into purely elastic parts corresponding to
the mappings F1, F2 and the dissipative parts H1 and H2. This decomposition
is in agreement with the standard spring–dashpot analogue in Figure 4.1 and
can be done in two ways, see Figure 4.2:

F = F1H1, F = F2H2. (4.11)

In this setting , one can introduce left and right Cauchy-Green tensors corre-
sponding to κn1(Ω) and κn2(Ω) in contrast to (2.3) corresponding to the total
deformation. For i = 1, 2 they are defined through:

Bi := FiF
T
i , Ci := FT

i Fi. (4.12)

Then one needs to find an expression for the material time derivative of Bi, i =
1, 2 because this is the sought measure of the deformation associated with the
instantaneous elastic part of the deformation. Next, we introduce the relation
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viscous
response

timet0 t

Figure 4.2: Two natural configurations

between the kinematic quantities analog to (2.2) ,

(∇v)i :=
dHi

dt
Hi
−1, (4.13)

and its symmetric part

Di :=
1
2

(
(∇v)i + (∇v)T

i

)
.

Further, it holds for i = 1, 2

0 =
dHi

dt
H−1

i + Hi
dH−1

i
dt

and it yields that
dFi

dt
= (∇v)Fi −Fi(∇v)i (4.14)

which implies
dBi

dt
= (∇v)Bi + Bi(∇v)T − 2FiDiF

T
i . (4.15)
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This is the sought expression for the time derivative and it is a function of
Fi and Di, that are associated to the dissipative part of the deformation, and
∇v associated to the total deformation. It means that the viscous responses
Hi, i = 1, 2 except for Di, i = 1, 2 are not included in the equation (4.15).
Our intention the viscous responses to express only as functions of velocity is
fulfilled. Similarly, for the elastic part, Bi, i = 1, 2 are the key variables.
The definition of the upper convected Oldroyd derivative given by (4.2) implies
that

∇
Bi= −2FiDiF

T
i (4.16)

for i = 1, 2.

Incompressibility condition By assuming the co-existence of two natural
configurations we split the total deformation. Therefore, we need to extend
the notation of incompressibility introduced in Section 2.2.4.
The material is incompressible if the whole deformation is incompressible, i.e.

detF = det Fi det Hi = 1, i = 1, 2. (4.17)

Differentiation with respect to time of the equation (4.17) gives the known
constraint (2.12). But it does not mean that the associated elastic and dissipative
parts have to be incompressible, i.e.

detFi 6= 1, detHi 6= 1, i = 1, 2.

There are several possibilities to describe the whole incompressibility of the ma-
terial. For example, in the case of only one natural configuration the material
can be incompressible in two situations: the total deformation is incompress-
ible but the viscous and elastic part are compressible or the material is fully
incompressible which means that all, total, elastic and dissipative parts of
deformation, are incompressible.
Thus, following the recent study [128] we require the fewest constraints and
neither the elastic nor the purely viscous parts of the deformation for both nat-
ural configurations are necessarily incompressible. Only the total deformation
process has to fulfill the constraint (4.17).

Thermodynamic derivation of the Burgers-type model

We present a full general derived procedure including the possibility of tem-
perature and density dependence, i.e. capable of modeling non-isothermal
processes and compressible material behavior and extend the approaches
stated in [129, 181]. The concrete properties of the vitreous body in the human
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eye follow as a special case. Since the Burgers-type model (4.1) is a generaliza-
tion of the Navier-Stokes fluid (3.9), we apply the thermodynamical procedure
discussed in the Section 3.3.2 in the context of two natural configurations for
the description of the viscoelastic vitreous model. In particular, we extend the
specific formula for the Helmholtz free energy and edit it by terms measuring
the two elastic parts of the deformation.

Helmholtz Free Energy The basic setup is build by the balance equations
for mass (2.4), energy (2.7) and entropy (2.8) completed by the formulation of
the second law of thermodynamics, ξ ≥ 0. The fact that the energy storage
mechanisms are required to be related to the elastic part of the deformation,
see Figure 4.2, suggests that the Helmholtz energy ψ should be enriched by
terms measuring the elastic part of the deformation, the two left Cauchy–Green
tensors Bi,= 1, 2. For that reason, we assume the following ansatz for the
specific Helmholtz free energy:

ψ = ψ̃(ρ, θ, B1, B2), (4.18)

in contrast to the definition (3.13) for the Navier-Stokes case. Motivated by
the discussion of incompressibility it is assumed that the elastic response from
each natural to the current configuration is the response of a compressible
Neo-Hookean elastic material [129]. Then we postulate the free Helmholtz
energy for the sought Burgers-type model to be

ψ = ψ0(ρ) + ψ1(θ) + ψ2(ρ, B1) + ψ3(ρ, B2) (4.19)

where the viscoelastic parts ψ2 and ψ3 are defined by

ψ2(ρ, B1) : =
G1

2ρ
[tr B1 − 3− ln(det B1)] ,

ψ3(ρ, B2) : =
G2

2ρ
[tr B2 − 3− ln(det B2)] .

(4.20)

Further, this approach allows to distinguish between (in)compressibility prop-
erty ψ0(ρ), the purely thermal part

ψth := ψ1(θ)

and the mechanical parts

ψmech := ψ2(ρ, B1) + ψ3(ρ, B2)
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of the free energy. In the simplest case of a fluid with a constant specific heat
capacity the thermal part takes the form

ψ1(θ) = −cV,refθ

[
ln
(

θ

θref

)
− 1
]

(4.21)

where θref is a reference temperature and cV := −θ
∂2ψ
∂θ2 is a positive material pa-

rameter (specific heat capacity at constant volume) [38]. For a better overview
we continue with the not-specified formula. The knowledge of the balance
equations allows one to identify the entropy production mechanisms derived
from the given formula for the Helmholtz free energy.
Indeed, taking the material time derivative of (3.12), keep in mind the approach
(4.18) and multiply by the density we get

ρ
de
dt

= ρθ
dη

dt
+ ρ

∂ψ

∂ρ

dρ

dt
+ ρ

∂ψ

∂B1

dB1

dt
+ ρ

∂ψ

∂B2

dB2

dt
.

After substituting the balance equations for energy (2.7) (without external
energy sources) and mass (2.4) we obtain

T : D− div je = ρθ
dη

dt
− pthdiv v + ρ

∂ψ

∂B1

dB1

dt
+ ρ

∂ψ

∂B2

dB2

dt

where

pth : = ρ2 ∂ψ

∂ρ
= ρ2 ∂ψ0

∂ρ
+ ρ2 ∂ψ2

∂ρ
+ ρ2 ∂ψ3

∂ρ

= pNS
th −

G1

2
[tr B1 − 3− ln(det B1)]−

G2

2
[tr B2 − 3− ln(det B2)]

denotes the thermodynamic pressure for the Burgers-type model including
the thermodynamic pressure pNS

th for the compressible Navier-Stokes fluid, see
(3.14).

Entropy production After rearranging we get a formula for the entropy pro-
duction ξ defined in (2.8) with entropy flux jη = je

θ :

θξ = T : D− div je + pthdiv v

− ρ
∂ψ

∂B1
:

dB1

dt
− ρ

∂ψ

∂B2
:

dB2

dt
+ θdiv

(
je
θ

)
.

(4.22)

Analog to Section 3.3.2, since the thermodynamic temperature is positive, the
right hand side can be further rewritten as

θξ = Tδ : Dδ − je ·
∇θ

θ
+ (m + pth)div v− ρ

∂ψ

∂B1

dB1

dt
− ρ

∂ψ

∂B2

dB2

dt
(4.23)
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where m denotes the mean normal stress defined in (3.15). The specific postu-
lated Helmholtz free energy (4.19) for the human vitreous yields the following
formulas for the partial derivatives of the Helmholtz free energy that appear
in equation (4.23):

∂ψ

∂B1
=

G1

2ρ

(
I−B−T

1

)
,

∂ψ

∂B2
=

G2

2ρ

(
I−B−T

2

)
,

using the Gâteaux derivatives ∂trA
∂A

= I and ∂detA
∂A

= (detA)A−T.
The time derivatives of the left Cauchy-Green tensors associated to each natural
configuration can be rewritten as

dBi

dt
=
∇
Bi +(∇v)Bi + Bi(∇v)T

= −2FiDiF
T
i + (∇v)Bi + Bi(∇v)T

using the definition of the upper convected Oldroyd time derivative (4.2) and
relation (4.16) for i = 1, 2. Inserting these specific forms in (4.23) we obtain

θξ = Tδ : Dδ − je ·
∇θ

θ
+ (m + pth)div v

+ 2ρ
∂ψ

∂B1
: F1D1FT

1 − ρ
∂ψ

∂B1
2B1 : D

+ 2ρ
∂ψ

∂B2
: F2D2FT

2 − ρ
∂ψ

∂B2
2B2 : D

= Tδ : Dδ − je ·
∇θ

θ
+ (m + pth)div v

+ G1 (C1 − I) : D1 − G1 (B1 − I) : D

+ G2 (C2 − I) : D2 − G2 (B2 − I) : D.

Thus the entropy production takes the form

θξ = (Tδ − G1 (B1)δ − G2 (B2)δ) : Dδ−je ·
∇θ

θ

+

(
m + pth −

G1

3
(tr B1)−

G2

3
(tr B2) + G1 + G2

)
div v

+ G1 (C1 − I) : D1 + G2 (C2 − I) : D2

(4.24)

since Iδ = 0.
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Constitutive Relations In this setting the constitutive relations for the Cauchy
stress tensor T, the heat flux je and the other quantities of interest are derived
as consequences of the choice of the specific form for the Helmholtz free energy
ψ and the entropy production ξ. The main idea is that the behaviour of the
material in the processes of interest is determined by two factors, namely its
ability to store energy and to produce entropy. It proceeds in the following
steps.

The derived entropy production (4.24) can be generally written as

ξ =
1
θ

m

∑
α=1

jαaα, m > 1 (4.25)

where jαaα denotes the scalar product of vector or tensor quantities respectively
and each summand is supposed to represent an independent entropy produc-
ing mechanism [117], as already mentioned in the Section 3.3.2. The quantities
jα are called the thermodynamic fluxes, and the quantities aα are called the
thermodynamic affinities. The affinities are usually the spatial gradients of the
involved quantities like ∇θ or D, while the fluxes are for example the Cauchy
stress tensor T and energy flux je.
This is also the reason for splitting the tensors T and D since D and div v on
the right hand side of (4.22) are not independent quantities, due to trD = div v.
But the fluxes in the form (4.25) should be independent quantities.
The second law of thermodynamics (2.9) states that the entropy production
is nonnegative, which means that equation (4.24) must be nonnegative. One
way to fulfill this requirement is to postulate the constitutive assumption
concerning how the material dissipates the energy. It is called the nonlinear
non-equilibrium thermodynamics, a full thermodynamic procedure which
is based on the assumption of the maximization of the entropy production
[117]. In contrast to the simpler approach of linear thermodynamics used in
the setting of deriving the Navier-Stokes equation in Section 3.3.2 where we
consider only linear relations between each pair of thermodynamic affinities
and fluxes, this approach is capable of describing the behavior of complex
materials like the vitreous body. In particular, the procedure allows one to
derive nonlinear constitutive relations of the type ji = ji(a1, ..., am), i = 1, . . . , m
or vice versa. First we specify the function

ζ := θξ

in one of the following forms

ζ = ζ̃a1,...,am(j1, . . . , jm) (4.26)
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or
ζ = ζ̃ j1,...,jm(a1, . . . , am).

Since the constitutive function ζ is—up to the positive factor θ—tantamount
to the entropy production, it must be nonnegative, which guarantees the ful-
fillment of the second law of thermodynamics. Further, ζ should vanish if
the fluxes vanish. Other restrictions concerning the formula for the entropy
production can come from classical requirements such as the symmetry and
the invariance with respect to the change of the observer.
Moreover, the assumed form of the entropy production (4.26) must be com-
patible with the already derived form of the entropy production (4.25). Conse-
quently, the following equation must hold

ζ̃a1,...,am(j1, . . . , jm)−
m

∑
α=1

jαaα = 0

and similarly for ζ̃ j1,...,jm(a1, . . . , am). Now, the task is to determine the fluxes or
affinities that are compatible with above constraints. The choice can be based
on the assumption of maximization of the entropy production. The assumption
simply requires that the sought constitutive relation is the constitutive relation
that leads to the maximal entropy production in the material, and that is
compatible with other available information concerning the behavior of the
material. Assuming that ζA or ζ J including all fluxes or affinities are smooth
and strictly convex with respect to their variables, then the corresponding
values of J and A (vectors containing all the affinities and fluxes) are uniquely
determined, and can be found by employing the Lagrange multipliers.
In our situation we assume that the constitutive function for ζ is a function of
the affinities and is chosen as

ζ = ζ̃(Dδ, div v, D1, D2,∇θ)

= 2µ3|Dδ|2 +
2µ3 + 3λ

3
(div v)2 + κ

|∇θ|2
θ

+ 2µ1D1C1 : D1 + 2µ2D2C2 : D2.

(4.27)

This approach can be found in [181] without considering compressibility and
temperature changes. To maximize the entropy production,

maxDδ,div v,D1,D2,∇θ ζ̃(Dδ, div v, D1, D2,∇θ)

among the values of the affinities A := (Dδ, div v, D1, D2,∇θ), we use the La-
grange formalism and introduce the Lagrange function φ under the constraint
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that equation (4.24) must hold:

φ : = ζ̃(Dδ, div v, D1, D2,∇θ) + l
[

ζ̃(Dδ, div v, D1, D2,∇θ)

− (Tδ − G1 (B1)δ − G2 (B2)δ) : Dδ + je ·
∇θ

θ

−
(

m + pth −
G1

3
(tr B1)−

G2

3
(tr B2) + G1 + G2

)
div v

− G1 (C1 − I) : D1 − G2 (C2 − I) : D2

]
where l is the Lagrange multiplier. Then the maximal entropy production
corresponds to the extremes of φ where the necessary condition is ∂φ(A)

∂A = 0.
We obtain

1 + l
l

∂ζ̃

∂Dδ
= Tδ − G1 (B1)δ − G2 (B2)δ ,

1 + l
l

∂ζ̃

∂(div v)
= m + pth −

G1

3
(tr B1)−

G2

3
(tr B2) + G1 + G2,

1 + l
l

∂ζ̃

∂D1
= G1(C1 − I),

1 + l
l

∂ζ̃

∂D2
= G2(C2 − I),

1 + l
l

∂ζ̃

∂(∇θ)
= − je

θ
.

(4.28)

On the other hand, direct differentiation of (4.27) yields

∂ζ̃

∂Dδ
= 4µ3Dδ,

∂ζ̃

∂(div v)
=

2
3
(2µ3 + 3λ)div v,

∂ζ̃

∂D1
= 2µ1(D1C1 + C1D1),

∂ζ̃

∂D2
= 2µ2(D2C2 + C2D2),

∂ζ̃

∂(∇θ)
= 2κ

∇θ

θ
.

(4.29)
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Now it is necessary to find a formula for the Lagrange multiplier l. This
can be done as follows. First, each equation in (4.28) is multiplied by the
corresponding affinity and then the sum of all equations is taken:

1 + l
l

[
∂ζ̃

∂Dδ
: Dδ +

∂ζ̃

∂(div v)
div v +

∂ζ̃

∂D1
: D1 +

∂ζ̃

∂D2
: D2 +

∂ζ̃

∂(∇θ)
∇θ

]
= (Tδ − G1 (B1)δ − G2 (B2)δ) : Dδ − je ·

∇θ

θ

+

(
m + pth −

G1

3
(tr B1)−

G2

3
(tr B2) + G1 + G2

)
div v

+ G1 (C1 − I) : D1 + G2 (C2 − I) : D2.

The right hand side is identical to ζ̃ = θξ, see (4.24), while the term on the
left hand side reduces, in virtue of (4.27) and (4.29), to 1+l

l 2ζ̃. Consequently
1+l

l = ζ̃

2ζ̃
, which fixes the value of the Lagrange multiplier to be

1 + l
l

=
1
2

. (4.30)

Inserting (4.29) and (4.30) into (4.28) one finally concludes that

Tδ − G1 (B1)δ − G2 (B2)δ = 2µ3Dδ,

m + pth −
G1

3
(tr B1)−

G2

3
(tr B2) + G1 + G2 =

2µ3 + 3λ

3
div v,

G1(C1 − I) = µ1(D1C1 + C1D1),
G2(C2 − I) = µ2(D2C2 + C2D2),

− je
θ
= κ
∇θ

θ
.

(4.31)

Further, if the third and fourth equations in (4.31) hold, then it can be shown
that the symmetric positive definite matrices Ci and the symmetric matrices
Di for i = 1, 2 commute. If the matrices commute, then (4.31) in fact reads

Tδ − G1 (B1)δ − G2 (B2)δ = 2µ3Dδ,

m + pth −
G1

3
(tr B1)−

G2

3
(tr B2) + G1 + G2 =

2µ3 + 3λ

3
div v,

G1(C1 − I) = 2µ1C1D1,
G2(C2 − I) = 2µ2C2D2,

je = −κ∇θ.

(4.32)
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Additionally, the third and fourth equations in (4.32) can be rewritten as

G1(C1 − I) = 2µ1C1D1 = 2µ1FT
1 F1D1,

G2(C2 − I) = 2µ2C2D2 = 2µ2FT
2 F2D2

which upon multiplication by FT
i from the right and by F−T

i from the left for
i = 1, 2 yields

G1F−T
1 (C1 − I)FT

1 = G1(B1 − I) = 2µ1F1D1FT
1 ,

G2F−T
2 (C2 − I)FT

2 = G2(B2 − I) = 2µ2F2D2FT
2 .

These formulas can be substituted into (4.16) that yield the sought evolution
equations for the two left Cauchy–Green tensors,

∇
B1 = −G1

µ1
(B1 − I),

∇
B2 = −G2

µ2
(B2 − I).

The first two equations in (4.32) allows one to identify the constitutive relation
for the full Cauchy stress tensor T = mI + Tδ,

T = −pthI + 2µ3D + G1(B1 − I) + G2(B2 − I) + λ(div v)I.

In the setting of continuum mechanics the set of balance equations (2.10)
supplemented with the derived constitutive equations

T = −pthI + 2µ3D + G1(B1 − I) + G2(B2 − I) + λ(div v)I,
∇

B1 = −G1

µ1
(B1 − I),

∇
B2 = −G2

µ2
(B2 − I),

je = −κ∇θ,
(

jη = −κ∇θ

θ

)
forms a closed system of equations.
Using the relation η := − ∂ψ

∂θ = − dψ1
dθ , we can rewrite the evolution equation

for entropy (2.8) as

ρ
d
dt

(
−dψ1

dθ

)
+ divjη = ξ.
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Consequently, using the special choice of ψ1 given by (4.21) and the entropy
production (4.24) then yields the evolution equation for the temperature in the
form

ρcV,ref
dθ

dt
+ θdivjη = θξ. (4.33)

It shows that once the Helmholtz free energy and entropy production are
specified, then the corresponding evolution equation for temperature (4.33) is
a simple consequence of the choice of ψ and ξ.

Considering the material specific properties of the healthy vitreous containing
only isothermal processes and incompressibility which means that

∇θ = 0,
div v = 0,

the same procedure as above can be still applied. One starts from (4.27) with
the only modification that the terms with div v and ∇θ disappear, and one
ends up with the same system of equations as those given in (4.32). (With the
only exception that the second and last equation are missing.) It reduces to the
incompressible viscoelastic Burgers-type model (recall that in virtue of (2.12)
one has D = Dδ).

T = −pI + 2µ3D + G1(B1 − I) + G2(B2 − I),
∇

B1 +
G1

µ1
(B1 − I) = 0,

∇
B2 +

G2

µ2
(B2 − I) = 0

by introducing the notation

−p := m− G1

3
(tr B1)−

G2

3
(tr B2) + G1 + G2

where the mean normal stress m is a quantity that can not be specified via a
constitutive relation.

4.3 Conversion of Experimental Data

Rheological measurements on the vitreous are very challenging [179]. The
vitreous body has a fragile structure that tends to degrade as soon as it is
removed from the eyeball. Nickerson et al. [134] and Silva et al. [166] showed
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that vitreous properties change significantly after dissection. The shear moduli
decrease five-fold from initial to steady-state values in the first hour in [134]
but increase after four hours in [166]. Furthermore, as noticed in Section 2.1.5
the vitreous body is heterogeneous and its properties change in space, because
of the differences in collagen fibers network density [25, 106, 107]. Also with
aging the rheological properties differ [67, 110, 159, 180] and tend towards a
more liquid form.
Nevertheless, the vitreous is known to exhibit viscoelastic properties showing
two different relaxation times and in the literature this mechanical behavior
were measured in experiments on eyes of different species summarized in the
Table 4.1.

Parameter Human
[106]

Human
[180]

Bovine
[107]

Porcine
[107]

Porcine
[164] Unit

G1 4.65 0.19 2.09 1.26 1.66 Pa
G2 1.66 0.25 1.94 0.82 1.14 Pa
µ1 2.81 0.89 19.93 8.40 2.4 Pa s
µ2 0.39 25.01 1.61 0.60 70 Pa s
µ3 - 9205.31 - - 1057.0 Pa s

Table 4.1: Parameters for viscoelasticity of the vitreous body of different species
in the literature

In [106] the vitreous body was sectioned in three parts and we calculated the
average values of the parameters for further manipulation, see Table 4.2.

Anterior Central Posterior Average Unit

G1 3.679 7.263 3.020 4.654 Pa

G2 2.497 1.270 1.211 1.659 Pa

µ1 1.398 2.179 4.862 2.813 Pa s

µ2 0.313 0.352 0.489 0.385 Pa s

Table 4.2: Parameters of the human eye in [106] and their computed average
values

Experiments performed by [164, 180] correlate the experimental data to the
Burgers-type model with one additional dashpot while other studies like
[106, 107] use the original Burgers model. Besides the different approaches of
models, the arrangement of the corresponding one-dimensional mechanical
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analogs differs from each other. The values of the material parameters reported
by [164, 180] were obtained by the following one-dimensional model

σ +

(
µ̃1 + µ̃3

G̃1
+

µ̃2 + µ̃3

G̃2

)
dσ

dt
+

µ̃1µ̃2 + µ̃1µ̃3 + µ̃2µ̃3

G̃1G̃2

d2σ

dt2

= µ̃3
dε

dt
+

(
µ̃1µ̃3

G̃1
+

µ̃2µ̃3

G̃2

)
d2ε

dt2 +
µ̃1µ̃2µ̃3

G̃1G̃2

d3ε

dt3

(4.34)

consisting of two Kelvin-Voigt elements with an additional dashpot in series,
see Figure 4.3, where µ̃i, G̃j, i = 1, 2, 3, j = 1, 2 denote again the viscosities
and elastic moduli of the individual springs and dashpots respectively. The

G̃1

µ̃1

G̃2

µ̃2

µ̃3

Figure 4.3: One-dimensional mechanical analog used in Sharif-Kashani et al.
[164]

corresponding three-dimensional generalization of (4.34) with Cauchy stress
T = −pI + S reads,

S +

(
µ̃1 + µ̃3

G̃1
+

µ̃2 + µ̃3

G̃2

)
∇
S +

µ̃1µ̃2 + µ̃1µ̃3 + µ̃2µ̃3

G̃1G̃2

∇∇
S

= 2µ̃3D + 2
(

µ̃1µ̃3

G̃1
+

µ̃2µ̃3

G̃2

)
∇
D +2

µ̃1µ̃2µ̃3

G̃1G̃2

∇∇
D .

(4.35)

Whereas Lee et al. [106, 107] uses only the Burgers model without additional
dashpot applying one Maxwell and one Kelvin-Voigt element in series, see
Figure 4.4. Consequently, if we want to use the model (4.1) based on the
corresponding one-dimensional model (4.6) with two Maxwell elements and
one additional dashpot in parallel like in Figure 4.1 (left), we have to convert
the set of parameters for the elastic moduli and viscosities [182]. Since the
available experimental data do not coincide in their mechanical analog with
our preferable model for the human vitreous.
We see that the three-dimensional constitutive equations (4.7) and (4.35) corre-
sponding to the model in this study and the one used in [164] have the same

78



˜̃G1

˜̃G2

˜̃µ1

˜̃µ2

Figure 4.4: One-dimensional mechanical analog used in Lee et al. [106, 107]

formulation

S + c1
∇
S +c2

∇∇
S = c3D + c4

∇
D +c5

∇∇
D

where ci, i = 1, . . . , 5 denote the material parameters consisting of the elastic
moduli and viscosities depending on the arrangement of springs/dashpots.
The procedure is to compare the different sets of material parameters and to
express µi, Gj, i = 1, 2, 3, j = 1, 2 in terms of µ̃i, G̃j, i = 1, 2, 3, j = 1, 2 by solving
a nonlinear system of equations:(

µ1

G1
+

µ2

G2

)
−
(

µ̃1 + µ̃3

G̃1
+

µ̃2 + µ̃3

G̃2

)
= 0,

µ1µ2

G1G2
− µ̃1µ̃2 + µ̃1µ̃3 + µ̃2µ̃3

G̃1G̃2
= 0,

(µ1 + µ2 + µ3)− µ̃3 = 0,(
µ1(µ2 + µ3)

G1
+

µ2(µ1 + µ3)

G2

)
−
(

µ̃1µ̃3

G̃1
+

µ̃2µ̃3

G̃2

)
= 0,

µ1µ2µ3

G1G2
− µ̃1µ̃2µ̃3

G̃1G̃2
= 0.

The same procedure can be applied for the models in [106, 107] by refor-
mulating (4.7) into (4.8) by excluding the additional viscous term 2µ3D and
comparison with the corresponding three-dimensional response of the Burgers
model in [106, 107]:

T = −pI + S,

S +

(
˜̃µ1
˜̃G1

+
˜̃µ2
˜̃G2

+
˜̃µ2
˜̃G1

)
∇
S +

˜̃µ1 ˜̃µ2
˜̃G1

˜̃G2

∇∇
S = 2 ˜̃µ2D + 2

˜̃µ1 ˜̃µ2
˜̃G1

∇
D .

Setting the viscosity µ3 = 0 allows one to interpret the different sets of parame-
ters listed in the Table 4.3.

79



Parameter Human [106] Human [180] Porcine [164] Bovine [107] Unit

G1 1.54 0.11 6.45× 10−1 1.85 Pa

G2 0.12 0.07 8.98× 10−1 0.01 Pa

µ1 0.30 9200 1032 1.46 Pa s

µ2 0.09 4.09 22.5 0.14 Pa s

µ3 0 0.86 2.37 0 Pa s

Table 4.3: Converted parameter values for the Burgers-type model (4.7)

4.4 Non-Isothermal Processes

Non-isothermal processes are not important in our application. Inside the
vitreous humor the temperature in human eyes is 33.9◦C or rather 33◦C follow-
ing [103] and [87]. Also a small amount of drug at room temperature injected
into the vitreous probably does not change the temperature of the vitreous.
But temperature differences play a role in general, for example between the
temperature of the the anterior chamber of the eye and the outside temper-
ature. But there are circumstances like fever after an infection in which the
temperature can change and plays a role for the fluid flow inside the eye.
Additionally, frequently rotations of the liquid inside the vitreous due to head
and eye movement during the day allow to rise the kinetic energy and lead to
homogeneously distributed temperature.

Thermodynamical frameworks have been developed to deal with temperature
changes [172]. If thermal effects are of interest besides mechanical processes,
thermodynamic variables such as the temperature or internal energy are addi-
tional unknown quantities. Then the temperature can not be considered as a
positive constant, but as the solution of its corresponding evolution equation
(4.33) describing the thermodynamics, coupled with incompressible Burgers-
type model (4.1) characterizing the mechanics. Then the system of governing
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equations describing the vitreous body reads

∇ · v = 0, (4.36a)

ρ

(
∂v
∂t

+ (v · ∇)v
)
= ∇ ·T, (4.36b)

−pI + 2µ3D + G1(B1 − I) + G2(B2 − I) = T, (4.36c)

−G1

µ1
(B1 − I) =

∇
B1, (4.36d)

−G2

µ2
(B2 − I) =

∇
B2, (4.36e)

2µ3|D|2 + div(κ∇θ) + 2µ1C1D1 : D1 + 2µ2C2D2 : D2 = ρcV,ref
dθ

dt
. (4.36f)

(4.36) is a system of equations for the unknown quantities (v, p, B1, B2, θ) and
it provides a generalization of the incompressible Burgers-type model to the
non-isothermal setting. Once boundary and initial conditions are known for
the velocity, temperature and left Cauchy-Green tensors, the system provides
a complete description of the dynamics of the quantities of interest.

Hron et al. [82] derived viscoelastic rate type fluid models with temper-
ature dependent material coefficients which are of practical importance in
non-isothermal engineering applications like the injection molding process.
In [172] we examine the stability of the rest state of these models to find the
additional restrictions on the energetic/entropic equation of state which are
well-known in the case of compressible Navier-Stokes fluid but not in the case
of complex viscoelastic fluids. Here the special cases of the incompressible
Burgers-type model, namely the Maxwell (G2 = µ2 = µ3 = 0) and Oldroyd-B
model (G2 = µ2 = 0), with temperature dependent material parameters are
considered for non-isothermal processes. The second law of thermodynamics
(2.9) saying that the energy of the system is constant but the entropy strives to
the maximum, restricts the material coefficients characterizing the dissipative
responses (viscosity and thermal conductivity) to be positive. Whereas the
requirement on the stability of the rest state demands the positivity of the
material coefficients describing the energy storage mechanisms (heat capacity
and shear modulus). Then the rest state of the viscoelastic fluid occupying a
completely isolated domain (no mechanically and thermally interaction with
its surrounding), modeled by the boundary conditions v = je · n = 0 on ∂Ω,
is stable in the meaning that the entropy attains its maximum at the rest state.
This rest state is represented by the quadruple (v, p, B1, θ) = (0, pref, I, θref)
where the fluid is at rest, the left Cauchy-Green tensor is undeformed and the
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pressure and temperature are fixed to homogeneous reference values.

In the following paragraph we will extend this result to the generalization of
Burgers-type model and the weakening of thermally non-isolated condition.
The mixed boundary conditions characterizing the biology of the eye would
be to complex to analyze the rest state. For simplicity, we consider an isolated
domain instead of the vitreous body.

4.4.1 Stability Analysis

In this section the stability of a spatially inhomogeneous non-equilibrium
steady state for an incompressible heat conducting viscoelastic Burgers-type
fluid occupying a mechanically isolated domain with spatially non-uniform
wall temperature is investigated. It is a well-posedness result from the mathe-
matical point of view for modeling by checking the governing equations. It
shows that the proposed model behaves like expected, but it has no relevance
for the application of drug distribution the human vitreous.
It is the long time behavior of Burgers-type fluid in a domain that is allowed to
exchange thermal energy with the surrounding, which is described by an in-
homogeneous Dirichlet boundary condition for the temperature. One expects
that the fluid comes to the steady state, rest state, as time goes to infinity and
it should be independent of the initial state and of the shape of the domain.
In this case, the standard methods for thermodynamically isolated systems or
systems immersed in a thermal bath can not be used since the steady state is a
non-equilibrium (entropy producing) steady state due to the constant spatially
nonuniform temperature at the domain’s walls.
Dostalik et al. [37] investigated the same stability problem but with a Navier-
Stokes-Fourier fluid (incompressible viscous heat conducting fluid) filling the
domain. They have shown that the corresponding steady state is spatially
inhomogeneous and unconditionally asymptotically stable under specific as-
sumptions. In Dostalik et al. [38] we extend the results from [37] to the case
of incompressible viscoelastic rate-type fluids including the Oldroyd-B and
Giesekus model. We proved that the steady state is asymptotically stable sub-
ject to any finite perturbation.
Following the findings in [37] and [38] one extends the results for the vis-
coelastic Burgers-type model. It is demonstrated that the norm of velocity
perturbation is bounded by an exponentially decaying function. The decay of
the temperature perturbations follows then directly.
The needed thermodynamic concept and derivation of the Burgers-type model
can be found in Section 4.2.2.

82



Helmholtz free energy

The specific Helmholtz free energy for the Burgers-type model is given by
(4.19) where the thermal part ψ1 is introduced in (4.21). Directly considering
the incompressibility, ψ0(ρ) vanishes, the density is just a given constant and
we have

ψ := ψ1(θ) + ψ2(B1) + ψ3(B2). (4.37)

The following requirements introduced in [38] are satisfied for i = 1, 2

ψi+1(Bi) ≥ 0, ψi+1(Bi) = 0⇔ Bi = I, (4.38a)
∂ψi+1

∂Bi
(Bi) = 0⇔ Bi = I, (4.38b)

Bi
∂ψi+1

∂Bi
(Bi) =

∂ψi+1

∂Bi
(Bi)Bi. (4.38c)

The viscoelastic parts of the Helmholtz energy ψ2 and ψ3 correspond respec-
tively to the Oldroyd-B model for which the structural assumptions (4.38) are
shown in Appendix A of [38].
Moreover, it holds for i = 1, 2 and the tensorial functions fi : R3×3

+ → R3×3
+

that

fi(Bi) = 0⇔ Bi = I, (4.39a)
∂ψi+1

∂Bi
(Bi) : fi(Bi) ≥ 0, (4.39b)

ψi+1(Bi) ≤ ci
∂ψi+1

∂Bi
(Bi) : fi(Bi), (4.39c)

where c1 and c2 are positive constants, R3×3
+ denotes the space of symmetric

positive definite 3× 3 matrices and the specific functions for the Burgers-type
model are defined by

fi(Bi) = Bi − I i = 1, 2.

The partial derivatives are given by

∂ψi+1

∂Bi
(Bi) =

Gi

2ρ
(I−B−1

i ), i = 1, 2.

Problem formulation

The system of governing equations describing the behavior of incompressible
viscoelastic Burgers-type model with constant density and temperature depen-
dence reads:
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Find W := [p, v, B1, B2, θ] in the domain Ω representing the closed domain
such that

∇ · v = 0, (4.40a)

ρ

(
∂v
∂t

+ (v · ∇)v
)
= ∇ ·T, (4.40b)

−pI + 2µ3(θ)D + G1(B1 − I) + G2(B2 − I) = T, (4.40c)

− Gi

µi(θ)
(Bi − I) =

∇
Bi, i = 1, 2, (4.40d)

div(κ∇θ) + ξmech = ρcV,ref
dθ

dt
, (4.40e)

where the material parameters ρ, G1, G2, cV,ref, κ are positive constants while
the viscosities µi, i = 1, 2, 3 are assumed to be positive functions of tempera-
ture, since the fluid is affected by the temperature in this scenario. Further, µ3
is required to be bounded from below and µ1 and µ2 to be bounded from above.

The boundary conditions on the domain walls are given by

v = 0 on ∂Ω,
θ = θbdr on ∂Ω

and the initial conditions read

v = v0 on Ω× {t = 0},
θ = θ0 on Ω× {t = 0}

where θbdr is a given nontrivial function of position and ξmech describes the
mechanical part of the entropy production ξ := 1

θ (ξth + ξmech) with

ξth : = κ
∇θ · ∇θ

θ
, (4.41)

ξmech : = 2µ3(θ)D : D +
G2

1
2µ1(θ)

(B1 − I) : (I−B−1
1 ),

+
G2

2
2µ2(θ)

(B2 − I) : (I−B−1
2 ). (4.42)

From the thermodynamic framework and the derived constitutive relations
(4.32) we know that

G2
i

2µi(θ)
(Bi − I) : (I−B−1

i ) = 2µi(θ)CiDi : Di i = 1, 2.
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Consequently, the definition of ξmech matches with the mechanical part of the
derived evolution equation (4.36f) for the temperature.

Note that the structure of the temperature evolution equation (4.40e) is the
same as for the Navier-Stokes-Fourier fluid in [37] or the viscoelastic models
in [38]. Only the specification of the entropy production term ξmech differs due
to the definition of the Helmholtz energy ψ. For the Burgers-type fluid, we
assume the co-existence of two natural configurations and therefore two left
Cauchy-Green tensors are needed to model the elastic response. Consequently,
we deal with two viscoelastic parts ψi, i = 2, 3 compare to only one in [38] and
extend the mechanical entropy production with one additional term.
Since the stability analysis done in [37] required that this term is nonnegative
and integrable in time and space, the results obtained in [37] and [38] can
be reused to show that this assumption is also fulfilled for the Burgers-type
model.

Remark 4.4.1: The mechanically entropy production can be rewritten into

ξmech = 2µ3(θ)D : D + ρ
G1

µ1(θ)

∂ψ2

∂B1
(B1) : f1(B1) + ρ

G2

µ2(θ)

∂ψ3

∂B2
(B2) : f2(B2).

(4.43)
In this notation it is easy to see that regarding the assumptions (4.39) the mechanically
entropy production ξmech is positive which is a thermodynamically requirement. Since
the temperature evolution equation (4.40e) is parabolic with a convective term and
a positive source, θ is under the given boundary conditions bounded from below
uniformly in space and time.

Steady state

In the steady state Ŵ := [ p̂, v̂, B̂1, B̂2, θ̂] the fluid is at rest which means

∇ p̂ = 0,
v̂ = 0,

B̂1 = I,

B̂2 = I,

which follows from the balance equations (4.40). The steady temperature field
θ̂ solves the steady heat equation with Dirichlet boundary condition:

div(κ∇θ̂) = 0 in Ω,

θ̂ = θbdr on ∂Ω.
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Since θbdr is a nontrivial function of position, θ̂ is a spatially inhomogeneous
bounded function.

Governing equations for perturbations

The aim is to show that the perturbations W̃ := [ p̃, ṽ, B̃1, B̃2, θ̃] with respect to
the steady state Ŵ vanish as time goes to infinity,

lim
t→+∞

W̃ = 0.

Since the solution W = Ŵ + W̃ is described by the balance equations (4.40),
the governing equations for the perturbations read

∇ · ṽ = 0,

−∇ p̃ +∇ ·
[
2µ3(θ̂ + θ̃)D̃ + G1B̃1 + G2B̃2

]
= ρ

(
∂ṽ
∂t

+ (ṽ · ∇)ṽ
)

,

∂B̃i

∂t
+ (ṽ · ∇)B̃i − (∇ṽ)B̃i − B̃i(∇ṽ)T − 2D̃ = − Gi

µi(θ̂ + θ̃)
B̃i, i = 1, 2,

ρcV,ref

(
∂θ̃

∂t
+ (ṽ · ∇)(θ̂ + θ̃)

)
− ξmech(Ŵ + W̃) = div(κ∇θ̃)

with the initial and boundary conditions

ṽ = v0 on Ω× {t = 0},
θ̃ = θ0 − θ̂ on Ω× {t = 0},
ṽ = 0 on ∂Ω,

θ̃ = 0 on ∂Ω.

Following the same argument as in [37, 38] the tool to show the stability
analysis is the Lemma on the decay of integrable functions in [37]. The needed
quantity satisfying the assumptions of the lemma and that vanishes if and only
if the perturbations vanish is constructed using the Lyapunov type functional
and introducing a new temperature scale.

Construction of a Lyapunov type functional

The construction of a Lyapunov type functional Vneq needed to investigate
the stability uses the concepts introduced in [37] and [38]. Furthermore, the
knowledge of the Lyapunov functional can be helpful to construct a distance
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measure that can be used in studying the error between two solutions (regular
and weak one, discrete and continuous). We split the Lyapunov type functional
Vneq into two parts

Vneq(W̃‖Ŵ) = Vth(W̃‖Ŵ) + Vmech(W̃‖Ŵ)

where Vth shall be used to deal with the temperature perturbations θ̃ and Vmech
to the mechanical quantities ṽ, B̃1 and B̃2. They are defined as

Vth(W̃‖Ŵ) =
∫

Ω
ρcV,refθ̂

[
θ̃

θ̂
− ln

(
1 +

θ̃

θ̂

)]
dv,

Vmech(W̃‖Ŵ) =
∫

Ω
ρψ2(I + B̃1) dv +

∫
Ω

ρψ3(I + B̃2) dv,

+
∫

Ω

1
2

ρ|ṽ|2 dv (4.44)

where the Helmholtz energy is chosen as in (4.37) with thermal part (4.21) and
mechanical parts (4.20).
The functionals Vneq,Vth and Vmech are nonnegative and vanish if and only if
the perturbations vanish.

To serve as a genuine Lyapunov functional the time derivative of the con-
structed functional Vneq has to be non-positive. It can be shown that the
corresponding time derivative has the same structure as in [37, 38] and differs
only in the particular choice of the mechanical dissipation ξmech(Ŵ + W̃),

dVneq

dt
(W̃‖Ŵ) = −

∫
Ω

κθ̂∇ ln

(
1 +

θ̃

θ̂

)
· ∇ ln

(
1 +

θ̃

θ̂

)
dv

+
∫

Ω
ρcV,ref ln

(
1 +

θ̃

θ̂

)
(ṽ · ∇θ̂) dv

−
∫

Ω

θ̂

θ̂ + θ̃
ξmech(Ŵ + W̃) dv.

(4.45)

Estimate on the time derivative of the candidate for a Lyapunov type
functional - Decay of perturbations

The first and the last term on the right hand side of (4.45) (without involving
their negative sign) are positive. The only term which sign is a priori unknown
is ∫

Ω
ρcV,ref ln

(
1 +

θ̃

θ̂

)
(ṽ · ∇θ̂) dv.
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If we deal with a spatially homogeneous steady state θ̂, i.e. the rest state in a
thermodynamically isolated domain or in a domain immersed in a thermal
bath, then we would have ∇θ̂ = 0 and the second term would vanish. In this
case the stability problem would be solved.

Following [37] and [38] this term is negligible if the velocity perturbation
ṽ decays in time which means that it is bounded by an exponentially decaying
function. This property can be obtained by analyzing the mechanical part
Vmech of the functional Vneq, which is more complicated for the viscoelastic
models than for the Navier-Stokes-Fourier fluid and especially for the more
general viscoelastic Burgers-type model here. After that, one can focus on the
temperature perturbation, reuse the results by [37] and show the decay of θ̃.

Using the formulas (4.43), (4.44) and following the concept by [38], the time
derivative of Vmech,

dVmech

dt
(W̃‖Ŵ) = −

∫
Ω

ξmech(Ŵ + W̃) dv,

can be estimated by

d
dt

∫
Ω

(
ρψ2(I + B̃1) + ρψ3(I + B̃2) +

1
2

ρ|ṽ|2
)

dv

≤ −
2 mins∈R+ µ3(s)

ρcp

∫
Ω

1
2

ρ|ṽ|2 dv− G1

c1 maxs∈R+ µ1(s)

∫
Ω

ρψ2(I + B̃1) dv

− G2

c2 maxs∈R+ µ2(s)

∫
Ω

ρψ3(I + B̃2) dv.

Since the velocity perturbation vanishes on the boundary, ṽ = 0, assumption
(4.39c) holds and we have the boundedness of µ3 and µ1, µ2 from below and
above respectively. Then it yields that

1
2

ρ‖ṽ‖2
L2(Ω) ≤ Vmech(W̃‖Ŵ) ≤ Vmech(W̃‖Ŵ)

∣∣
t=0e−Cmecht (4.46)

which implies ∫
Ω

ψ2(I + B̃1) dv ≤ 1
ρ
Vmech(W̃‖Ŵ)

∣∣
t=0e−Cmecht, (4.47a)∫

Ω
ψ3(I + B̃2) dv ≤ 1

ρ
Vmech(W̃‖Ŵ)

∣∣
t=0e−Cmecht (4.47b)
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with the positive constant

Cmech := min
{

2 mins∈R+ µ3(s)
ρcp

,
G1

c1 maxs∈R+ µ1(s)
,

G2

c2 maxs∈R+ µ2(s)

}
.

Estimations (4.46) show that the velocity perturbation is bounded from above
by an exponentially decaying function. ṽ and B̃1, B̃2 vanish as time goes to in-
finity. The more general mechanical entropy production ξmech(Ŵ + W̃) for the
Burgers-type fluid can be bounded in the same way as in [38] for the Oldroyd
model and is a non-negative quantity which vanishes at equilibrium.
(4.47) implies only the decay of

∫
Ω ψ2(I + B̃1) dv or rather

∫
Ω ψ3(I + B̃2) dv,

no convergence of B1 and B2 to zero in a norm. But this can be shown using a
specific metric constructed by Bures-Wasserstein distance on the set of positive
definite matrices, see [36].

Now, we need the decay of the temperature perturbation and that the spatially
inhomogeneous steady temperature field θ̂ is stable irrespective of the initial
temperature field.

Family of functionals Since the sign of the time derivative of the functional
(4.45) is a priori not known for a non-constant θ̂, Vneq is insufficient to yield
asymptotic stability of the steady temperature field θ̂ via the Lyapunov method.
But as it has been shown in [37] and [38] this problem can be dealt by introduc-
ing a new temperature scale

ϑ

ϑref
:=
(

θ

θref

)1−m

with m ∈ (0, 1). The restriction m < 1 means that the new temperature scale
preserves the ordering according hotness which denotes that the heat still flows
in the direction of the temperature difference. Repeating the steps from the
previous section of construction of a Lyapunov type functional with the new
temperature scale, a new family of functionals parametrized by m is obtained:

Vm
neq(W̃‖Ŵ) =

∫
Ω

ρcV,refθ̂

[
θ̃

θ̂
− 1

m

((
1 +

θ̃

θ̂

)m

− 1

)]
dv

+
∫

Ω
ρψ2(I + B̃1) dv +

∫
Ω

ρψ3(I + B̃2) dv

+
∫

Ω

1
2

ρ|ṽ|2 dv,
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where the thermal part Vm
th is defined by

Vm
th(W̃‖Ŵ) :=

∫
Ω

ρcV,refθ̂

[
θ̃

θ̂
− 1

m

((
1 +

θ̃

θ̂

)m

− 1

)]
dv. (4.48)

According to [37] the time derivative of Vm
th reads

dVm
th

dt
(W̃‖Ŵ) = −

∫
Ω

4
1−m

m2 κθ̂∇

(1 +
θ̃

θ̂

)m
2

− 1

 · ∇
(1 +

θ̃

θ̂

)m
2

− 1

 dv

−
∫

Ω

1−m
m

ρcV,ref

[(
1 +

θ̃

θ̂

)m

− 1

]
(ṽ · ∇θ̂) dv

+
∫

Ω

1− 1(
1 + θ̃

θ̂

)1−m

 ξmech(Ŵ + W̃) dv.

(4.49)
Note that [37] has shown equation (4.49) for the entropy production term
ξmech = 2µ3D : D. However, (4.49) holds for the more general entropy
production (4.42) as well since the specific form is inconsequential in the
analysis.
Nevertheless, all the algebraic manipulations for the case of the standard
Navier-Stokes-Fourier fluid occupying a mechanically isolated domain with
spatially non-uniform wall temperature in [37] can be adopted and lead to
the same result that Vm

neq remains nonnegative and vanishes if and only if the
perturbation W̃ vanishes for any fixed m ∈ (0, 1).
The assumptions are the boundedness of ‖ṽ‖L2(Ω) from above by an expo-
nentially decaying function and the non-negativity of the mechanical entropy
production ξmech(Ŵ + W̃) that vanishes at equilibrium. Over all, these prop-
erties hold in the case of Burgers-type fluid, (4.46) and (4.47), and we can
generalize the results of [38].

In particular, for n, m ∈ (0, 1), n > m > n
2 and

Ym,n
th (W̃‖Ŵ) := Vm

th(W̃‖Ŵ)− Vn
th(W̃‖Ŵ)

it holds that

Ym,n
th (W̃‖Ŵ)→ 0, t→ +∞.
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Regarding the equation (4.48) this leads to

∫
Ω

ρcV,refθ̂

[
1
n

(
1 +

θ̃

θ̂

)n

− 1
m

(
1 +

θ̃

θ̂

)m

+
n−m

mn

]
dv→ 0, t→ +∞

(4.50)
and involves the decay of the relative entropy in any Lebesgue space Lp(Ω), p ∈
[1,+∞) using the results in [37].
To obtain (4.50), the necessary condition requires all terms on the right side of
equation (4.49) to be finite under integration over time from zero to infinity,
which follows from estimation (4.46). Then a lemma on the decay of integrable
functions, see [37], applied to the functional Ym,n

th provides the convergence
(4.50).

It is shown that the spatially inhomogeneous non-equilibrium steady state
for an incompressible viscoelastic Burgers-type fluid in a thermodynamically
open system is asymptotically stable irrespective of the initial conditions and
of the shape of the domain. It is a generalization of the results by [38] where
we investigated the same stability problem but only for simpler viscoelastic
models.
Nevertheless, the vitreous is no isolated system and the outlined methodology
can not be applied to the complex biology in the eye. For that reason and
the fact that the temperature is usually constant inside the vitreous we do not
include the temperature in the governing equations of our models in this study.

4.5 Mechanical Behavior of Healthy and Liquefied
Vitreous in a Deforming Eye
(Fluid-Structure-Interaction)

4.5.1 Experiment Description

The vitreous humour acts as a mechanical damper and transmits stresses
protecting the eye and holding the retina in contact with the retinal pigment
epithelium [159]. During vitreous motion vitreoretinal tractions are created
and this might potentially lead to vitreous and retinal detachment. But despite
this link the mechanical properties of the vitreous body and its motion are not
well understood.
In our publication Tůma et al. [182] we analyze its mechanical behavior in a
setting that resembles recent experimental work on the same [163] and improve
the understanding of the physiology and pathophysiology of the eye.
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The motion of the vitreous is induced by the deformation of the eyeball lead-
ing to an interaction between the deforming nonlinear hyperelastic sclera/
lens (solid) and (non-) Newtonian vitreous (fluid), a fluid-structure-interaction
problem described by a system of partial differential equations and solved
numerically. Since the sclera and lens have a measurable positive thickness
and elastic parameters which are known from the literature, see Table 4.4, the
simpler shell problem without full-description of the elastic structures is not
reasonable.
In contrast to other studies focusing on the saccadic eye movement (rapid
oscillations of the eyeball as the whole) [24, 153] the geometry of the vitreous
is not fixed and does not take the spherical shape but a realistic geometrical
setting in which the deformation of the sclera induces the flowing of the vitre-
ous. Additionally, we take into account the various rheological properties of
the vitreous including the viscoelasticity and compare their influence in the
deforming eye.

In the experiments in Shah et al. [163] the bovine eyes were cut in an anterior-
posterior direction to create samples with an optically clear window to analyze
the changes during the experiment. They were put into a loading machine and
glued on the sides. Then the eyes were uniaxially stretched in 3 mm increments
up to 12 mm with 2 min of equilibration time between each displacement step.
Imaging these samples we construct the three-dimensional geometry like in
Figure 4.5. For mathematical simplicity, we set the height to be constant and
decompose the eye in three tissues: the vitreous, lens and sclera.

4.5.2 Full System of Governing Equations

The vitreous is modeled as an incompressible fluid in the Eulerian framework
where we distinguish between the pathological/ liquefied vitreous using the
incompressible Navier-Stokes model (3.9) and the healthy viscoelastic vitreous
using the incompressible Burgers-type model (4.1).
The sclera and the lens are modeled as hyperelastic solids in the Lagrangian
framework, see the Section 2.2.2, in which one is interested in the reference
configuration, the single particles and their deformation. Here our domain,
the vitreous body, is denoted by ΩR ⊂ Rd, d = 2, 3 and represents the vitreous
before it is deformed. It corresponds to the reference configuration κ0(Ω) in
Section 2.2.2. In this setting, the so-called hyperelastic material, a subclass of an
elastic material, postulates the existence of a Helmholtz free-energy function
ψ = ψ(F) which is solely a function of F and referred to as the strain-energy
function or stored-energy function [81]. It is assumed to be continuous and
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Figure 4.5: Discretization of the reference configuration [Reprinted by permis-
sion from Elsevier, [182]]

homogeneous (ψ depends only upon the deformation gradient F and not upon
the position of a point in the material X). The balance of mass and linear
momentum take the following form in the Lagrangian description:

ρR = (det F)ρ in ΩR × (0, T], (4.51a)

ρR
∂2u
∂t2 = DIV TR in ΩR × (0, T], (4.51b)

where ρR and ρ denote the density in the reference configuration and in the
current configuration. u := χ(X, t)− X is the displacement being in relation
with the deformation gradient tensor by F = I +∇u where χ was introduced
in Section 2.2.2, DIV denotes the divergence operator in the reference configu-
ration and TR describes the first Piola-Kirchhoff stress tensor which is related
to Cauchy stress tensor T in the current configuration through the formulas

TR := detF T F−T

and
DIVTR := detF divT.

Following [71, 182] the strain-energy function ψ : ΩR ×Rd×d
+ → R such that

TR = ∂ψ(x,F)
∂F

for the sclera and lens takes the d-dimensional form:

ψ(F) =
1
2

G
(

J−2/dtr C− d
)
+

1
2

κ(ln J)2. (4.52)
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C defines the right Cauchy-Green tensor introduced in (2.3), J := det F and
the material parameters G and κ are referred to the elastic shear modulus and
the elastic bulk modulus. Therefore, it follows that the first Piola-Kirchhoff
stress reads

TR = GJ−2/d
(

F− 1
d
(tr C)F−T

)
+ κ(ln J)F−T.

Since both sclera and lens are almost incompressible, we assume κ := 1000G
which consequently means that det F = 1 and hence ρ = ρR = const. Param-
eter values for human sclera and lens used in the numerical simulations are
shown in Table 4.4.

4.5.3 Modeling of Sclera and Lens as Hyperelastic Solids

The sclera and the lens are nearly incompressible (or slightly compressible)
modeled as compressible hyperelastic solids. Within them the dilational
changes require a much higher exterior work than volume-preserving changes
and the compressibility effects are small. Therefore, it is useful to split the defor-
mation gradient into a volume-changing (volumetric) and volume-preserving
(isochoric) part, see [81, 167]. Further, the multiplicative decomposition of
F is supported by the field of computational mechanics because it is often
advantageous to separate numerical treatments of the volumetric and isochoric
parts to avoid numerical complications in the finite element analysis [81].
In particular, we write

F = F̂F

where F = J−1/dF is associated with the volume-preserving deformation, i.e.
det F = 1. The tensor F̂ = J1/dI describes the volume-changing part with
det F̂ = det F.
This concept can be carried on to other kinematic tensors:

C = F
T

F, B = FF
T

with det C = det B = 1, which can be expressed by the original Cauchy–Green
tensors C = FTF and B = FFT via

C = J−2/dC, B = J−2/dB.

F and C are called the modified deformation gradient and the modified right
Cauchy-Green tensor. In addition the strain energy function ψ = ψ(F) defined
in (4.52) is decoupled:

ψ(F) = ψiso(C) + ψvol(J)
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where
ψiso(C) =

1
2

G
(
tr C− tr I

)
(4.53)

and
ψvol(J) =

1
2

κ(ln J)2 (4.54)

describe the isochoric (incompressible) and volumetric (compressible) elastic
response of the tissue, respectively. Additionally, the volumetric component is
a strictly convex scalar-valued function of J with its unique minimum at J = 1,
the state of full incompressibility.
This model (4.52) for ψ is motivated by a compressible neo-Hookean solid
which is a simple hyperelastic model similar to Hooke’s law and can be used
for predicting the nonlinear stress-strain behavior of materials undergoing
large deformations. In contrast to linear elastic materials, the stress-strain
curve of a neo-Hookean material is not linear (initially linear, but at a certain
point the stress-strain curve will plateau).
The hyperelastic model emphasizes the reversibility of deformations and the
idea that energy can be stored in the material and used afterwards to do work.

Existence and Uniqueness

The existence theory for elastic problems is based on the direct methods of
variation, i.e. to find a minimizing deformation of the elastic strain energy ψ(F)
subject to the specific boundary conditions. In order to ensure the existence
of minimizers, the energy function has to be polyconvex (first introduced by
Ball in [16]) and coercive. Details concerning existence in finite elasticity can
be found in the literature in [119].
In this section the existence of the solution to the non-homogeneous boundary-
value problem,

−DIV
∂ψ(F)

∂F
= 0 in ΩR, (4.55a)

χ(X) = χ0(X) on ΓR. (4.55b)

considering the specific ψ(F) modeling the mechanical behavior of the sclera
and the lens will be shown, in contrast to the more complex setting (4.51) for
the fluid-structure interaction problem.

Theorem 4.5.1 (Existence):
Let the reference configuration ΩR ⊂ R3 be a bounded Lipschitz domain and ψ :
R3×3

+ → R a stored energy function with the following properties:

• ψ is polyconvex

95



• ψ is p-coercive.

Let ΓR be a part of the boundary, ΓR ⊂ ∂ΩR, with non-vanishing Lebesgue measure
and let χ0 ∈W1,p(ΩR) be given with I(χ0) < +∞. Let

φ : = {χ ∈W1,p(ΩR), χ(X) = χ0(X) for X ∈ ΓR, detF > 0 a.e.}

be non-empty.
Then there exists a minimum of

I(χ) =
∫

ΩR

ψ(F)dX

on φ with ∇Xχ := ∂χ(X,t)
∂X = F corresponding to problem (4.55).

Proof. See [76] for details.

But first, the strain-energy function ψ(F) is assumed to satisfy physically
plausible conditions [81]:

ψ(I) = 0, (4.56)
ψ(F) ≥ 0, (4.57)
ψ(F)→ +∞, detF→ +0, (4.58)
ψ(F)→ +∞, detF→ +∞. (4.59)

ψ(F) must vanish in the reference configuration where F = I and increases
monotonically with the deformation and attains its global minimum at the
thermodynamic equilibrium F = I. Relations (4.56) and (4.57) ensure that the
stress in the reference configuration (called residual stress) is zero. Therefore,
the reference configuration is called stress-free.
Moreover, we require for the behavior at finite strains that ψ must fulfill growth
conditions. Physically, an infinite amount of energy is necessary to expand a
body infinitely and to compress it to zero volume, where the determinant of
the deformation gradient is assumed to be positive, det F > 0.

We will show that the material specific strain energy density modeling the me-
chanical behavior of the sclera and the lens given by (4.52) guarantees the exis-
tence of at least one minimizer for non-homogeneous boundary-value problem
(4.55) under certain circumstances. At the beginning we will check the physical
conditions and then we will proof the polyconvexity and coercivity condition
of the strain energy density function ψ in the case of three-dimensions. These
results can be adopted to other dimensions.
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The polyconvexity condition is based on expressions defined on the defor-
mation gradient F. Therefore, we reformulate (4.52) in terms of F and det F:

ψ(F, det F) =
1
2

G
(
(det F)−2/3|F|2 − 3

)
+

1
2

κ (ln(det F))2 (4.60)

where |F|2 = tr C defines the scalar product of the deformation gradient.
After calculation it is easy to see that the physical plausible assumptions (4.56)
and (4.57) are fulfilled since we know that (det F)−2/3|F|2 − 3 ≥ 0 shown
in [76]. (4.58) is guaranteed due to the property of the natural logarithm,
(ln(det F))2 → +∞ for det F → +0. Only for the last constraint (4.59) the
model shows non-physical behaviour.
Further, ψ given by equation (4.60) with G, κ ≥ 0 is polyconvex due to the
additivity of polyconvex functions, but only for 0 < det F ≤ e, restricted from
above by the Euler number e. In particular, the isochoric part of the strain
energy function ψiso introduced in (4.53) is polyconvex according to the Lemma
2.2 in [76]. The volumetric part of the strain energy function ψvol defined in
(4.54) is a model of the literature from [167] and has merely to be convex in the
variable J = det F. The convexity requirement implies

d2ψvol

dJ2 (J) =
κ

J2 (1− ln J) ≥ 0

which is fulfilled except for det F > e.
At last, we need the coercivity property which states that the elastic stored
energy functional I(χ) is p-coercive whenever

I(χ) ≤ K, ⇒ ‖χ‖W1,p(ΩR)
≤ K̃

with constants K, K̃ > 0, see [76] for the definition and further information.

Theorem 4.5.2 (Coercivity):
Let the elastic strain energy density be given by equation (4.60) with G, κ ≥ 0. Then
I(χ) is coercive for p = 4 in the range of validity of polyconvexity for 0 < det F ≤ e.
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Proof.

‖F‖p
Lp(ΩR)

=

∥∥∥∥ F

(det F)1/3 (det F)1/3
∥∥∥∥p

Lp(ΩR)

=
∫

ΩR

∣∣∣∣ F

(det F)1/3

∣∣∣∣p (det F)p/3dX

(apply Young’s inequality with 1
a +

1
b = 1)

≤
∫

ΩR

(
2
∣∣∣∣ F

(det F)1/3

∣∣∣∣p/2

+ 2(det F)p/6

)
dX (a = b = 1

2 )

=
∫

ΩR

(
2
|F|2

(det F)2/3 + 2(det F)2/3
)

dX (p = 4)

≤ 4
G

I(χ) + 6 +
∫

ΩR

2(det F)2/3dX

≤ 4
G

I(χ) + 6 +
∫

ΩR

2e2/3dX

≤ 4
G

I(χ) + 6 + 2e2/3|ΩR|

Applying Poincaré’s inequality will complete the proof if Dirichlet boundary
conditions are applied.

Now, having the above results about polyconvexity and 4-coercivity of the
chosen stored energy function (4.52) for sclera and lens there exists a minimizer
of (4.55) according to the Theorem 4.5.1.

Parameter

An elastic solid material, like the sclera, lens or cornea, undergoes a reversible
deformation (the material returns to its original shape after the load is removed)
when an external force is applied to it. The several quantities measuring the
stiffness of these materials (resistance to being deformed elastically) are re-
ported in Table 4.4 and are called (elastic) moduli. They all arise in the gener-
alized Hooke’s law describing the stress-strain behavior of elastic materials
undergoing deformations.

All moduli describe the material’s response (strain) to the stress where stress
is the force causing the deformation divided by the area to which the force is
applied and strain is the ratio of the change in some parameter caused by the
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deformation to the original value of the parameter. A stiffer material will have
a higher elastic modulus.
There are many types of elastic moduli since stress and strain can be measured
in many ways including directions, but all are defined as the ratio of stress and
strain. Examples are:

1. Young’s modulus E:
It describes the strain to linear stress (uniaxial deformation), i.e. the
tendency to deform along an axis when opposing forces are applied
along that axis.

2. The shear modulus G:
It describes the material’s response to shear stress (the deformation of
shape at constant volume).

3. The bulk modulus κ:
It describes the material’s response to (uniform) hydrostatic pressure.
It is a measure of how resistant to compression that material is and an
extension of Young’s modulus to three dimensions.

4. Poisson’s ratio ν:
It describes the response in the directions orthogonal to uniaxial stress (a
measure of compressibility).
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Homogeneous and isotropic (similar in all directions) solid materials have
their (linear) elastic properties fully described by two elastic moduli and all
other elastic moduli can be calculated via the following formulas [79]:

E = 3κ(1− 2ν),
E = 2G(1 + ν).

The moduli are not independent and simple relations exist between them for
homogeneous isotropic materials.

4.5.4 Numerical Simulations

The corresponding fluid-structure interaction problem was solved numerically
by the finite element method. For more details of the numerical solution of
the problem with the corresponding initial and boundary conditions and the
numerical implementation we refer to our publication [182].
We compared the two rheological models for the vitreous in order to identify
their impact on the response of the eye. The numerical results showed that the
magnitude of the Cauchy stress tensor can be as much as two times higher for
the pathological vitreous predicted by the Navier–Stokes model than for the
healthy one predicted by the Burgers-type model in a deforming eye, see Fig-
ure 4.6. Higher stresses in the healthy vitreous damp the external mechanical
load due to the elastic collagen network compared to the pathological vitreous.
For visualization purposes one can see the magnitude of the Cauchy stress
in the sliced vitreous in Figure 4.7. The choice of the material specific equa-
tions of the vitreous which describes its properties influences the generated
stress inside the vitreous and has significant impact on the magnitude of the
eigenvalues of T and their spatial distribution. But it has a negligible influence
on the overall flow pattern in the vitreous. From the practical point of view
it is of interest that the stress distribution at the fluid/solid interface is very
sensitive to the choice of the rheological model of the vitreous humor since
some eye pathologies such as posterior vitreous (PVD) or retinal detachment
are thought to be closely linked to mechanical processes with high stresses.
Incomplete PVD and the resultant vitreoretinal traction can lead to further
diseases including macular holes, macular edema, vitreous hemorrhage and
retinal tears. The only treatment currently available is surgical removal of the
vitreous (vitrectomy) and hence it is necessary to investigate the mechanical
stress distribution in the eye in realistic loading scenarios.

The presented model in [182] can be used to predict key mechanical quan-
tities such as the complete characterization of the mechanical stress acting at

101



Figure 4.6: Magnitude of the Cauchy stress tensor inside the vitreous after the
deformation, current configuration. Vitreous is modelled using
the Burgers-type model (left) and the Navier–Stokes model (right).
[Reprinted by permission from Elsevier, [182]]

the interface between the vitreous and the retina. The focus on the interplay
between the rheology of the vitreous and the stress field in it is of interest in
the study of retinal pathologies and can answer clinically relevant questions.
Compared to cost and time intensive experiments the numerical simulations
of the flow of the vitreous can be repeated as often as desired and can test dif-
ferent parameters in different scenarios. Additionally, the virtual experiments
can reproduce the in vivo anisotropic collagen structure density where high
strains corresponds with locations of lower collagen content.

4.6 Drug Distribution in Homogeneous Vitreous

To our knowledge, regarding the application of an intravitreal injection for the
treatment of retinal diseases, firstly we consider the non-Newtonian nature of
the vitreous body. We model the drug distribution in the healthy viscoelastic
vitreous body taking into account the elastic collagen fiber network and gel-like
consistency which slow down the drug diffusion compare to the completely
liquefied case. As a result, the vitreous acts as a drug depot due to the lower
diffusion coefficient [14]. The structure of the vitreous itself and its consistency
influence the drug distribution to the posterior segment of the eye [184]. The
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Figure 4.7: Magnitude of the Cauchy stress tensor of the cross section at the
middle of the domain after the deformation, current configura-
tion. Vitreous is modelled using the Burgers-type model (left) and
the Navier–Stokes model (right). [Reprinted by permission from
Elsevier,[182]]

high viscosity values for the viscoelastic vitreous affect the diffusion of intrav-
itreal injected drugs [78].
In this Section, we demonstrate the more realistic models of drug distribution
within the healthy vitreous. Afterwards, we consider different couplings of the
drug diffusion equation with the induced flow field of the viscoelastic vitreous.

4.6.1 Coupling Through Convection

First, we start with the simple coupling through convection. For future works
including numerical simulations, we provide the weak formulation of the sys-
tem coupling the drug diffusion equation (3.17) with the Burgers-type model
(4.1). The governing equations completed with the corresponding initial and
boundary conditions take the following form.

We search for (v, p) ∈ L2(0, T; {vin + H1
0(Ω; ΓD)

d})× L2(Ω) plus the unknown

left Cauchy-Green tensors B1, B2 ∈ L2
(

0, T; {BD
i + H1,sym

0 (Ω; ΓD)
d×d}

)
and

drug concentration C ∈ L2(0, T; H1
0(Ω; Γh)) such that the initial conditions

v(x, 0) = v0(x), Bi(x, 0) = I, C(x, 0) = C0(x) are satisfied, vin ∈ H1(Ω)d,
BD

i ∈ H1,sym(Ω)d×d for i = 1, 2 and for almost all time steps t ∈ (0, T] with
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T ∈ (0, ∞) it holds that

(∇ · v, ξ) = 0, (4.61a)
ρ(∂tv, φ) + ρ((v · ∇)v, φ) + (T,∇φ)− (kperm(v · n)n, φ)Γr = 0, (4.61b)

(
∇

B1, ω1) +
µ1

G1
(B1 − I, ω1) = 0, (4.61c)

(
∇

B2, ω2) +
µ2

G2
(B2 − I, ω2) = 0, (4.61d)(

dC
dt

, ϕ

)
+ (D∇C,∇ϕ) + (PC + (n · v)(kvr − 1)C, ϕ)Γr

= 0, (4.61e)

for all test functions (φ, ξ) ∈ {vin + H1
0(Ω; ΓD)

d}× L2(Ω) and (ωi, ϕ) ∈ {BD
i +

H1,sym
0 (Ω; ΓD)

d×d} × H1
0(Ω; Γh) with i = 1, 2.

The function space H1,sym
0 (Ω; ΓD)

d×d is defined as

H1,sym
0 (Ω; ΓD)

d×d := {B ∈ H1
0(Ω; ΓD)

d×d : B = BT},

and BD
i defined on the Dirichlet boundary ΓD := Γl ∪ Γh is an extension to the

whole domain Ω,

BD
i :=

{
I on Γl × (0, T]
Bin

i on Γh × (0, T]
, i = 1, 2.

By using integration by parts we get the boundary terms in the second and last
equation in (4.61). According to the construction, the velocity is equal to zero
at the transition of the boundaries denoting the lens Γl and hyaloid membrane
Γh, hence we have a continuous transition for BD

i .
In the system (4.61) the flow and drug concentration can be decoupled from
each other for an easier numerical implementation. If we just couple through
convection, the viscoelastic structure of the vitreous has no influence on the
drug distribution and vice versa. Therefore, the coupling only through con-
vection does not seem to be appropriate since we know that the viscoelastic
behavior of the healthy vitreous acts as a barrier in drug delivery [6].

4.6.2 Back Coupling Through Surface Tension

In the literature [75, 153] only the convective flow from the anterior to the
posterior segment of the eye influences the drug distribution and other impacts
are not included. We propose a fully coupled system extended by the Korteweg
stress in which the drug diffusion and flow inside the vitreous can effect each
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other. As mentioned in the Section 3.4.5 of the liquefied vitreous, surface
tension can also occur in the drug distribution in the healthy viscoelastic vitre-
ous after the intravitreal injection. The change of concentration gradients at
the interface of two miscible fluids, i.e. vitreous and drug injection, causes a
distributed stress during mixing. Here, the effect could be even greater com-
pared to the Navier-Stokes model (3.28) since the diffusion is slower due to the
smaller diffusion coefficient in the healthy viscoelastic vitreous. In [131, 165]
they investigated the surface tension in processes involving diffusion across
interfaces between miscible fluids in which one of them is a non-Newtonian
fluid, a viscoelastic fluid described by the Maxwell model. So we take into
account some additional terms in the equation of motion due to the concentra-
tion inhomogeneities called Korteweg stress which is associated with surface
tension.

Under the same assumptions as for the liquefied case, the problem reads:

∇ · v = 0, (4.62a)

ρ

(
∂v
∂t

+ (v · ∇)v
)
= ∇ ·T, (4.62b)

−pI + 2µ3D + G1(B1 − I) + G2(B2 − I) + T(C) = T, (4.62c)

−G1

µ1
(B1 − I) =

∇
B1, (4.62d)

−G2

µ2
(B2 − I) =

∇
B2, (4.62e)

∂C
∂t

+ (v · ∇)C−∇ · (D∇C) = 0, (4.62f)

with the Korteweg stress T(C) defined in (3.29) and the parameter kkor > 0.
The system (4.62) is completed by the appropriate initial and boundary condi-
tions defined in the previous sections for the diffusion (3.17) and Burgers-type
model (4.1). An example for the coupling of the Korteweg stress with a vis-
coleastic rate-type model is mentioned in [90], where the author describes the
relaxation of stresses due to gradients of composition (concentration) to the
Korteweg stresses using the viscoelastic Maxwell model. In the fluid dynamics
of mixtures of incompressible miscible liquids motions can be driven by addi-
tional stresses associated with gradients of composition, which are modeled
by the theory of Korteweg.

In this thesis, we do not work on the mathematical theory for the developed

105



model (4.62). It is not analyzed in the literature and known results about
existence and uniqueness are proved only for the case of the Navier-Stokes
equation (3.28) by Kostin et al. [98], as presented in Section 3.4.5 for the inter-
ested reader. Yet theoretically, the same trick that the Korteweg stress tensor
and terms from the convection-diffusion equation cancel each other out could
be applied for the healthy viscoelastic vitreous modeled by the Burgers-type
model, since the same needed terms from (3.28) are present in (4.62). Then
assuming the existence of the flow in 2D and considering the same boundary
conditions, the a priori estimation could be shown [98].

4.6.3 Back Coupling Through Stress Driven Diffusion

Another aspect in the drug distribution in the healthy viscoelastic vitreous and
third way to couple the diffusion equation with the induced flow field of the
viscoelastic vitreous is the so-called stress driven diffusion, compared to the
previous Section 4.6.1 of coupling only through the convection. The human
vitreous can be seen as a natural polymer [159] and synthetic polymers are
used as current available vitreous substitutes [96]. From experimental and
theoretical studies in the literature [45, 46, 186] it is known that the diffusion
of a penetrant liquid through polymer does not follow the standard Fickian
diffusion model and is described by stress driven diffusion. Therefore, the
diffusion through the viscoelastic vitreous does not obey Fick’s law and we
have to consider the influence of the mechanical property of the vitreous on
the distribution rate of the drug by adding one term to the diffusion equation
(3.17). Due to the elastic collagen network within the vitreous it acts as a barrier
to the diffusion [6, 184]. As the medicine strains the vitreous by the Brownian
motion of diffusion, the viscoelastic vitreous reacts with a stress of opposite
sign [51, 72].
Several authors have studied mathematical models to describe transport of
drugs in biodegradable implants/polymers [11, 52, 69, 54]. The viscoelastic
behavior of the implant/polymer is defined by the Maxwell model. But the
diffusion of drug through the viscoelastic vitreous, modeled by the Burgers-
type fluid, including non-Fickian contribution has not yet been addressed in
the literature. We use the more complicated viscoelastic Burgers-type model
which characterizes adequate properties of the vitreous, compare to the sim-
pler Maxwell model. As a result, we extend the existing approach of drug
transport in implants with new boundary conditions capable of modeling
the drug exchange with the surrounding tissues of the vitreous. Further, we
introduce a possible generalization to three space dimensions including the
Cauchy stress tensor and a three-dimensional assumption for the relation be-
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tween deformation and stress. Using the balance equations for mass (2.4) and
linear momentum (2.5) containing the Cauchy stress, the governing equations
for the description of the velocity are given and we are also able to add the
convection part to the drug diffusion. In this section, we will propose a system
of coupled partial differential equations which considers passive, stress driven
diffusion and the viscoelastic vitreous’ properties to simulate the evolution of
drug distribution injected into the posterior part of the eye.

We start with the simpler one-dimensional viscoelastic model. The trans-
port phenomena by diffusion are classically described by Fick’s law but it
does not take into consideration the viscoelastic nature of the vitreous. As
the diffusing drug enters the vitreous, it causes a deformation which induces
a stress driven diffusion that act as a barrier to the drug penetration. Thus
Azdhari et al. [10, 11, 12] have proposed diffusion models based on a modified
flux, where diffusive and mechanical properties are coupled.
Let us recall from the Section 3.4 that the Fickian diffusion of the penetrating
drug injection is described by the conservation law:

∂tC = −∇ · J,

with the difference that J = JF + JNF is the modified flux resulting from the
sum of the Fickian flux JF := −D∇C and non-Fickian flux JNF := −Dv∇σ
denoting the viscoelastic influence in the drug transport. Dv > 0 stands
for the so-called viscoelastic diffusion coefficient and σ represents the one-
space-dimensional stress. σ is related with the strain ε by the spring/dashpot
analogue of viscoelastic Burgers-type model (4.6) illustrated in Figure 4.1,
describing the mechanistic behavior of the vitreous. For further manipulation
it is preferable to rewrite the stress-strain relation (4.6) considering the Burgers-
type model as a combination of one dashpot and two Maxwell elements in
parallel:

σ = µ3
dε

dt
+ σ1 + σ2, (4.63a)

σ1 +
µ1

G1

dσ1

dt
= µ1

dε

dt
, (4.63b)

σ2 +
µ2

G2

dσ2

dt
= µ2

dε

dt
, (4.63c)

where the total stress is a sum of the stress in the dashpot, i.e. µ3
dε
dt , and the

two Maxwell elements σ1, σ2. The Parameters are the same as before. For
more information about the spring/dashpot analogue of viscoelastic Maxwell
element see [181].

107



Summarized, the drug diffusion through the viscoelastic vitreous Ω during
the time t ∈ (0, T] is described by the following model:

σ = µ3
dε

dt
+ σ1 + σ2, (4.64a)

σ1 +
µ1

G1

dσ1

dt
= µ1

dε

dt
, (4.64b)

σ2 +
µ2

G2

dσ2

dt
= µ2

dε

dt
, (4.64c)

∂C
∂t
−∇ · (D∇C + Dv∇σ) = 0 (4.64d)

in Ω× (0, T] where C represents the unknown concentration of drug inside
the vitreous and σ is the unknown stress. Since we have no description for the
velocity here, we use the diffusion equation (3.17) without the convection term.
System (4.64) is completed with the initial conditions

C = C0 on Ω× {t = 0},
σ = σ0 on Ω× {t = 0}

and boundary conditions

(D∇C) · n = 0 on Γl × (0, T],
C = 0 on Γh × (0, T],

−(D∇C) · n− PC + (n · v)(1− kvr)C = 0 on Γr × (0, T],

µ3δ0
1

G1 + G2
σ0 +

1
G1 + G2

σ0

(
c1eλ1t + c2eλ2t

)
= σ on ∂Ω× (0, T],

where δ0 stands for the Dirac distribution and the coefficients are defined as

λ1 : =
−τ1 − τ2 +

√
(τ1 + τ2)

2 − 4τ1τ2

2
,

λ2 : =
−τ1 − τ2 −

√
(τ1 + τ2)

2 − 4τ1τ2

2
,

c1 : =
µ2τ1 + µ1τ2

τ1τ2
− c2,

c2 : =
(µ1 + µ2)τ1τ2 − (τ1 + τ2) (µ2τ1 + µ1τ2)− λ1 (µ2τ1 + µ1τ2) τ1τ2

τ2
1 τ2

2 (λ2 − λ1)
.
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The boundary condition for σ has been obtained by extending the solution
of (4.63) analog to [12] using the Maxwell model, see [181] for details to the
Burgers model. The stress decreases going to zero as the time increases, since
λ2 ≤ λ1 < 0. The stress driven diffusion (4.64d) is valid for small deformations
and used in the literature [11, 54]. But the thermodynamic derivation of the
model and its stability of the rest state are not proven.

In the following paragraphs, we investigate in more detail the viscoelastic
diffusion coefficient Dv and present the relation between deformation and
concentration. Furthermore, we give an overview about the restrictions on the
parameters D, Dv etc., which are needed to guarantee the uniqueness of the
solution and its stability in bounded time intervals. At the end, we generalize
the introduced approach to a possible three-dimensional description.

Viscoelastic Diffusion Coefficient

The physical meaning of the diffusion coefficient D in (3.17) and (4.64d) is well
known and its behavior can be described by many different functional relations
as explained in Section 3.4.1. The viscoelastic diffusion coefficient Dv has not
been clearly studied. Even its sign is not certain throughout the literature. The
authors of [115, 57] consider Dv to be constant and negative while in [45, 69] it
is assumed to be a positive parameter. Ferreira et al. [12, 13] set the coefficient
to be Dv = 1× 10−11 mol m−1 Pa−1 s−1 in the context of a diffusing drug
through the viscoelastic implant which is used in the vitreous body to release
drug to the retina. The corresponding diffusion coefficient of the drug in the
implant is defined by D1 = 1× 10−11 m2 s−1, whereas the diffusion coefficient
in the vitreous is defined by D2 = 1× 10−8 m2 s−1. The considered drug is
not specified. The findings in [12] show that the viscoelastic properties of the
polymeric implant are an effective control mechanism to delay or to speed up
the release of drug. Further, analog to D the viscoelastic diffusion coefficient
Dv can either be seen as a constant or a tensor by multiplying the constant
value with the identity matrix [12, 13].
In [51] a concentration dependent expression for Dv(C) based on Darcy’s law
is established. Assuming the existence of a stress gradient and interpreting the
non-Fickian flux as a convective field induced by the stress where the velocity
follows Darcy’s law they conclude that

Dv(C) =
K
µ

C (4.65)

where K
µ is the hydraulic conductivity. In virtue of (4.65) they conclude that the

parameter Dv is positive and thus the non-Fickian flux represents a contribution
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to the mass flux which develops from high to low stress [45, 51, 69]. Applying
the assumption (4.65) to our problem considering the parameters defined in the
Table 5.1, we see that Dv(C) ≤ 7.86× 10−9 kg m−1 Pa−1 s−1, with our specific
initial concentration C0 introduced in (3.19) and the relation C ≤ C0 ≤ 93.56
kg m−3. For comparison, the diffusion coefficient for the drug through the
healthy vitreous is of order 10−11.

Relation Between Deformation and Concentration

Following [51] the strain ε must be eliminated as a variable in (4.63) for a plau-
sible back-coupling. Therefore one considers a nonlinear functional relation
between strain and concentration,

ε = f (C)

where f is assumed regular enough for the mathematical analysis and is based
on physical arguments, briefly described below. We refer the interested reader
to [51].
For a sake of simplicity, we consider a cylindrical dry vitreous sample (no drug
absorbed) with cross section S and volume V0. We assume that the deformation
ε occurs only in a orthogonal direction to S as shown in Figure 4.8. As the

S ε

∆x0

Figure 4.8: Cylindrical vitreous sample

deformation occurs orthogonally to S, it leads to the following expression

ε =
V0+Vd

S − V0
S

V0
S

=
Vd
V0

where Vd is the volume of drug absorbed by the vitreous up to time t. Using
the fact that Vd = m

ρp
and C = m

V0+Vd
with m and ρp representing the drug mass

and density [51], it follows that

ε = f (C) =
C

ρp − C
(4.66)

110



under the reasonable hypothesis that the mixing of the vitreous and the injected
drug occurs in an ideal manner. Then the final volume is V0 + Vd which means
that when in contact with the penetrate drug an instantaneous swelling occurs.
Some authors [10] use the linear approximation f (C) = kC of the approach
above, where k > 0 stands for a dimensional positive constant. Figure 4.9 with
ρp = k = 1.5 shows that f (C) in (4.66) and kC are increasing positive functions
of the concentration where ρp or respectively k influence the slope. Thus, in the
context of physically meaningful values of C ≥ 0 the function f is smooth. In

Figure 4.9: Behavior of the function describing the strain

[11, 12, 45] they assume that the strain and the concentration are proportional
such that

ε = k
∫ t

0
C(x, s)ds. (4.67)

This relation (4.67) is another linear approximation of ε = f (C) in (4.66). σ and
ε have opposite sign, since the vitreous acts as a barrier to the distribution of
the drug. Replacing (4.67) in (4.64) and considering the minus sign in the right
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hand side, we obtain:

σ = −µ3kC + σ1 + σ2, (4.68a)

σ1 +
µ1

G1

dσ1

dt
= −µ1kC, (4.68b)

σ2 +
µ2

G2

dσ2

dt
= −µ2kC, (4.68c)

∂C
∂t
−∇ · (D∇C + Dv∇σ) = 0. (4.68d)

Restrictions on the Parameters

Reviewing the literature, in [12] they analyzed the stability behavior of the
following initial value problem:

σ +
µ1

G1

dσ

dt
= −µ1kC in Ω× (0, T], (4.69a)

∂C
∂t
−∇ · (D(M)∇C + Dv∇σ) = −k1C in Ω× (0, T], (4.69b)

∂M
∂t

+ β1M = β2C in Ω× (0, T], (4.69c)

C = C0 on Ω× {t = 0}, (4.69d)
σ = σ0 on Ω× {t = 0}, (4.69e)

M = M0 on Ω× {t = 0}, (4.69f)
C = 0 on ∂Ω× (0, T], (4.69g)

σ = σ0e−
G1
µ1

t on ∂Ω× (0, T], (4.69h)

M = M0e−
G1
β1

t on ∂Ω× (0, T], (4.69i)

with diffusion D and viscoelastic diffusion Dv, which are 2× 2 tensors. M is
the unknown molecular weight of the considered material in [12], β1 and β2
are positive constants and k1 represents the degradation rate. They used the
Maxwell model instead of Burgers-type model for characterizing the viscoelas-
tic properties (G2 = µ2 = µ3 = 0) and completed the governing equations
with homogeneous Dirichlet boundary conditions for the concentration.
By imposing strong conditions on the parameters the energy estimates lead to
the uniqueness of the solution of the corresponding variational problem and
its stability in bounded time intervals, provided that the initial data are smooth
enough.
As the model in [12] is nonlinear, their study is based on a local linearization
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in the neighborhood of the steady state solutions for short and large times.
The results were established under the assumption that D, Dv are non-zero
diagonal matrices where the entries of the diffusion tensor has to be positive

Dii ≥ D > 0, i = 1, 2

and the entries of the viscoelastic diffusion tensor are bounded from above

|(Dv)ii| ≤ Dv, i = 1, 2.

The restrictions on the parameters D, Dv, k and the material parameters G1, µ1
denoting the viscoelasticity such that

D− D2
vG1k−

µ2
1k

4G1
> 0

are a reasonable assumption. Indeed, from the physical point of view it means
that the Fickian contribution in diffusion (4.64d) dominates the non-Fickian
one, because otherwise it would lead to a negative total flux. This is a physically
sound restriction due to the interpretation of vitreous’ viscoelasticity, which
represents a barrier to the penetration of drug.

Possible extension to 3D

In all the works in the literature [12, 10, 11, 51, 72] the authors only use the
simplified one-dimensional viscoelastic model. In this section we generalize
their approach to a possible three-dimensional description and apply the
viscoelastic Burgers-type model to characterize the behavior of the vitreous,
where we replace the 1D stress σ and its components σ1 and σ2 by the extra
part of the 3D Cauchy stress tensor S := T + pI and its components S1 and S2.
First, we look at the model without back-coupling between deformation and
concentration. We consider the three-dimensional generalization of (4.64). In
Ω× (0, T] it holds that

∇ · v = 0, (4.70a)

ρ

(
∂v
∂t

+ (v · ∇)v
)
= ∇ ·T, (4.70b)

−pI + 2µ3D + S1 + S2 = T, (4.70c)

S1 +
µ1

G1

∇
S1 = 2µ1D, (4.70d)

S2 +
µ2

G2

∇
S2 = 2µ2D, (4.70e)

∂C
∂t

+ (v · ∇)C = ∇ · (D∇C + Dv∇ · S) . (4.70f)
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Since the Newtonian Navier-Stokes fluid with S = 2µ0D has no elastic prop-
erties and therefore should show no stress driven diffusion effect in the drug
distribution,

∇ · (Dv∇ · S) = 0,

the three-dimensional space generalization of ∇σ should be interpreted as the
divergence of the traceless extra part of the Cauchy stress, namely ∇ · S. Due
to the full description of the velocity we can add the convection term to the
last equation in (4.70) and therefore insert the balance equations for mass and
linear momentum.
Second, we transfer the 1D assumption (4.67) of Ferreira [11] into a possible
3D extension. By taking the time derivative of (4.67) it can be rewritten into

dε

dt
= kC. (4.71)

The common generalization of dε
dt is 2D as introduced in Section 4.2.1, moti-

vated by the simple shear flow. Then we can set

2D = kCM (4.72)

with the tensor M ∈ Rd×d defined by (4.72) which describes a dimensionless
quantity. Finally, a possible generalization of the drug diffusion through the
viscoelastic vitreous into 3D of the full coupled system (4.68) is described by
the following system of partial differential equations:

∇ · v = 0, (4.73a)

ρ

(
∂v
∂t

+ (v · ∇)v
)
= ∇ ·T, (4.73b)

−pI− µ3kCM + S1 + S2 = T, (4.73c)

S1 +
µ1

G1

∇
S1 = −µ1kCM, (4.73d)

S2 +
µ2

G2

∇
S2 = −µ2kCM, (4.73e)

∂C
∂t

+ (v · ∇)C = ∇ · (D∇C + Dv∇ · S) . (4.73f)

Now, we see the reason for the further manipulation of the one-dimensional
Burgers-type model (4.6) into (4.63) and its three-dimensional generalization
in (4.70). It was necessary to use a viscoelastic model which includes only
the first time derivative of the strain in 1D or rather no time derivative of the
symmetric part of the velocity gradient D in 3D to implement the assumption
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(4.67) respectively (4.72) in a straight forward way.

If we consider a simplified flow model problem in a channel geometry with
Poiseuille velocity profile v = (ṽ(y, z), 0, 0), then the symmetric part of the
velocity gradient D has the following specific form,

2D =


2∂xvx ∂xvy + ∂yvx ∂xvz + ∂zvx

∂xvy + ∂yvx 2∂yvy ∂yvz + ∂zvy

∂xvz + ∂zvx ∂yvz + ∂zvy 2∂zvz

 =


0 ∂yvx ∂zvx

∂yvx 0 0

∂zvx 0 0

 ,

and we can define the tensor M in (4.72), i.e.

M :=


0 1 1

1 0 0

1 0 0

 ,

such that 2Dij = kC for all i, j = {1, 2, 3} with Dij 6= 0 according to the 1D
assumption (4.71). Since we have tr M = 0 it holds that

2(tr D) = kC(tr M) = 0

and the incompressibility constraint (2.12) is fullfilled.

Since we have the second-order space derivatives of S in the stress driven
diffusion equation (4.70f), the system (4.70) needs additional boundary con-
ditions for the extra stress tensor. Several issues like the specific definition of
these boundary conditions and the thermodynamic derivation of (4.70f) and
for the one-dimensional case (4.64d) must be addressed in the future.

Existence and Uniqueness

Looking at the modeling of the drug transport coupled with the viscoelastic
Burgers-type flow including stress driven diffusion (4.68) there are no theoreti-
cal results known in the literature, due to the issues about the flow mentioned
before and our complex boundary conditions. But as mentioned in the section
about the restrictions on the parameters, for simpler models like the Maxwell
model describing the viscoelasticity, the uniqueness of the solution of the corre-
sponding variational problem (4.69) and its stability in bounded time intervals,
provided that the initial data are smooth enough, are shown in [12]. In con-
trast to the Burgers-type model the 1D mechanical analog for the Maxwell
model consists of only one spring and one dashpot in series, consequently
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G2 = µ2 = µ3 = 0 in the Figure 4.1.
Concerning the existence of the one-dimensional stress driven diffusion there
is one result in [72] using the generalized Maxwell-Wiechert model with ho-
mogeneous Dirichlet boundary conditions,

−
∫ t

0
G1(t− s)

∂ε

∂s
(s)ds = σ(t) in Ω× (0, T],

ε = f (C) in Ω× (0, T],
∂C
∂t
−∇ · (D∇C + Dv∇σ) = 0 in Ω× (0, T],

C = C0 on Ω× {t = 0},
C = 0 on ∂Ω× (0, T],

where f is assumed regular enough for the mathematical analysis [72]. They
used the outcomes in [68] for the nonlinear Cauchy problem to show the
existence and uniqueness of the weak solution under several conditions.

4.7 Heterogeneous Vitreous

As addressed in the biological background 2.1.5 the healthy vitreous body can
be considered as an anisotropic fluid due to the network of collagen fibers.
In this Section, we extend the stress driven diffusion to an anisotropic ansatz
taking into account the heterogeneous structure of collagen fibers which have a
certain orientation in the vitreous body. Depending on the size of the drug the
structure of the vitreous can influence drug diffusion and reflect an anisotropic
diffusion. Then we further improve the viscoelastic constitutive equation (4.1)
for the vitreous which is isotropic with regard to its viscous as well as its
elastic response. Indeed, we extend it to an anisotropic viscoelastic fluid model
considering the preferred direction of the elastic collagen fibers.

4.7.1 Anisotropic Drug Distribution Along Collagen Fibers

All existing diffusion models of previous investigations [10, 11, 12] assumed
that the diffusion is homogeneous and therefore the 1D stress driven diffu-
sion (4.68d) is isotropic, i.e. dealing with a constant stress driven diffusion
coefficient Dv. We extend it to an anisotropic ansatz taking into account the het-
erogeneous collagen structure of the vitreous which is observed in experiments
on autopsy eyes [159]. By using the space-dependent anisotropic tensor D̃v(x)
instead of the constant coefficient Dv in the stress driven diffusion equation
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(4.68d) and (4.73f) we obtain the following anisotropic diffusion equations

∂C
∂t
−∇ ·

(
D∇C + D̃v(x)∇σ

)
= 0 in 1D, (4.74a)

∂C
∂t

+ (v · ∇)C−∇ ·
(

D∇C + D̃v(x)∇ · (T + pI)
)
= 0 in 3D. (4.74b)

It includes the certain orientation of the collagen fibers and reflects the tendency
that the vitreous opposes a resistance to the diffusion of drug molecules. Along
the preferential direction of the fibers there is the stress response to the strain
induced by the drug molecules, as opposed to isotropic diffusion, which means
homogeneity in all directions. Therefore, it presents a more accurate model for
the drug distribution in the healthy vitreous than any in the literature.
The anisotropic tensor D̃v(x) has privileged orientations along the collagen
fibers and the resulting stress driven diffusion develops from high to low stress.
Inspired by Dal et al. [31] modeling the application of electrical stimulation of
cardiac tissues with curving fibers by anisotropic diffusion-reaction equations,
the space-dependent anisotropic tensor takes the form,

D̃v(x) := Dv

[
d‖( f ⊗ f ) + d⊥(I− f ⊗ f )

]
. (4.75)

Dv > 0 denotes the stress driven diffusion coefficient and d‖ ≥ d⊥ > 0 are
the extra two parameters, which describe the stress driven diffusion along the
fiber direction and orthogonal plane to it, respectively. f = (cos(θ), sin(θ), 0)T

stands for the fiber direction vector and θ(x) denotes the fiber orientation
angle, i.e. the angle between fiber direction and x-axis. The tensor product of
two vectors a and b is denoted by a⊗ b := abT.
Further, D̃v(x) can be decomposed into an isotropic and anisotropic compo-
nent:

D̃v(x) = Dvd⊥I + Dv(d‖ − d⊥)( f ⊗ f ).

For the special case of perfect isotropic diffusion the off-diagonal elements are
all zero. The diagonal elements are all the same and equal the single stress
driven diffusion coefficient, Dv, which means

D̃v(x) = DvI

with d⊥ = d‖. Now, the task is to prescribe the fiber direction f closely to the
observed structure of the bundles of collagen fibers inside the human vitreous,
which is generally coursed in an anterior-posterior direction. Anteriorly, these
fibers arise from the basal vitreous and insert posteriorly into the retina. Step
by step we construct the appropriate f to mimic the known course. Figure
4.13 shows the resulted structure of the orientation of the fibers, which is in
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agreement with results from the literature [67]. The construction is based on
the structure of the angle θ which has the following form

θ = −sin(px(x))sin(py(y))

with

px(x) = 0.5
π(2x− xmax − xmin)

xmax − xmin
and py(y) = 0.5

πy
ymax

where

px(xmin) = −0.5π, px(xmax) = 0.5π, py(ymin) = −0.5π, py(ymax) = 0.5π,
xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax

for all (x, y) ∈ Ω. The resulting two-dimensional fiber directions f = (cos θ, sin θ)T

are shown in Figure 4.10 where the red line denotes the two-dimensional vitre-
ous domain. In the next step, we split the domain in two subdomains along

Figure 4.10: 2D structure of the collagen fibers direction

the x-axis,

Ωup := {w ∈ Ω : y > 0} , Ωdown := Ω \Ωup,

and rotate the fiber direction f about +15◦ for coordinates inside the subdo-
main Ωdown and about −15◦ for Ωup, which is illustrated in Figure 4.11. By
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splitting and rotating we mimic the theoretical structure of the collagen fiber
network in the human vitreous shown in [67].

Finally, we rotate the constructed 2D-surface in the xy-plane to get a 3D-

Figure 4.11: 2D structure of the collagen fibers direction in splitted domain

volume with the rotation matrix

Rϕ :=


1 0 0

0 cos ϕ − sin ϕ

0 sin ϕ cos ϕ


around the x-axis with the angle ϕ = acos

(
(x2+y2)

1
2

(x2+y2+z2)
1
2

)
and interpret the

fiber direction as f := (cos θ, sin θ, 0)T.
The Figure 2 in [67] presents a theoretical diagram showing the orientation
of collagen fibrils within the vitreous. For an even more realistic structure
according to this diagram one can split the 2D domain in Figure 4.10 not along
the x-axis but along the line between the center of the boundary of the lens
and the optic nerve, see Figure 4.12.
The resulting collagen bundle orientation in the numerical simulation is shown

in Figure 4.13. It shows a qualitative good accordance to the theoretical diagram
in [67] demonstrating a collagen bundle orientation in the vitreous. Further,
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Figure 4.12: 2D vitreous domain (red), location of the center of the boundary
of the lens (blue) and optic nerve (green)

the diagram is only a schematic drawing and not an exact illustration of reality,
since the vitreous and its structure are not visible without any coloring and
microscopic visualization. This approach of the anisotropic diffusion tensor
(4.75) can be mainly used for large drug molecules and nanoparticles, since the
average pore diameter in the collagen network is 95 nm for human vitreous
bodies [162]. But the pore size in the central vitreous can vary from 500 nm to
over 1 µm according to experiments in [193]. Besides anti-VEGF drugs for the
treatment of aged-related macular degeneration, the equations (4.74) can be
adopted to other large drug molecules.

Properties of the Anisotropic Tensor

The constructed anisotropic stress driven diffusion tensor D̃v(x) defined in
(4.75) is symmetric and positive definite. For this purpose, we need to show
that the eigenvalues are real and positive by constructing the characteristic
polynom to each eigenvalue and compute the roots. Then, we get that the
eigenvalues for D̃v(x) are

λ1 = Dvd‖ > 0, λ2 = Dvd⊥ > 0, λ3 = Dv > 0
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Figure 4.13: Structure of the collagen fiber bundles in the human vitreous
[numerical simulation by Simon Dörsam]

and for the isotropic case with D̃v(x) = DvI we obtain

λ1 = λ2 = λ3 = Dv > 0.

The symmetry propperty can be seen in the following rewritten defintion,

D̃v(x) =


d‖cos2(θ) + d⊥sin2(θ) cos(θ)sin(θ)(d‖ − d⊥) 0

cos(θ)sin(θ)(d‖ − d⊥) d‖sin2(θ)d⊥cos2(θ) 0

0 0 1

 ,

consequently we have D̃v(x) = D̃v(x)T.

4.7.2 Anisotropic Viscoelastic Model

At first in this section we will give a short introduction to the modeling of
the vitreous as a collagen fiber suspension immersed in a viscous fluid by
predicting the fiber orientation evolution equation. Secondly, we derive a ther-
modynamically consistent model for the vitreous as a viscoelastic fluid whose
elastic reaction is anisotropic taking into account the preferred direction of the
elastic collagen fibers. Here, we further improve the viscoelastic constitutive
equation (4.1) for the vitreous which is isotropic with regard to its viscous as
well as its elastic response to the modeling of anisotropic viscoelastic vitreous.
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Anisotropy of Fiber Suspension in Viscous Newtonian fluids

One way to model the network of collagen fibers suspended in hyaluronic acid
is to propose a mathematical model of fiber suspension rheology, where the
fibers (rods) are rigid cylinders uniform in length and diameter and immersed
in a viscous Newtonian fluid.
Then the vitreous’ response is anisotropic due to the dissipative nature of the
liquid part in virtue of the motion of the fibers inside. The resulted rate of
dissipation depends on the motion along different directions. It considers the
anisotropic fiber diffusion/motion and fiber-fiber interaction from a micro-
scopic viewpoint. The resulted flow is modified by the presence of fibers and
vice versa, i.e. during flow fibers change their direction and the final orienta-
tion influences the mechanical properties of the material (e.g. vitreous is stiffer
in the direction in which the most fibers are oriented) [59]. For example in [141],
they simulate the injection molding of fiber reinforced composite products,
an industrial process for producing large quantities of complex plastic parts.
They deal with the flow of incompressible, non-isothermal non-Newtonian
fluid containing suspensions of short-fibers.
In 1922 Jeffrey studied the flow of fiber suspensions, i.e. the motion of a
single rotating fiber immersed in a viscous Newtonian liquid [88]. In his
model, Jeffery assumed that the fibers are neutrally buoyant, axisymmetric,
and sufficiently large so that Brownian motion (motion arising from collision of
molecules in the fluid medium with the suspended particles) can be neglected.
His fiber orientation evolution equation describing the distribution function of
the orientation angle of the particle is valid only for dilute suspensions. Folgar
and Tucker [59] have modified the Jeffery’s equation by adding an isotropic
rotary diffusion term, 2cIγ(I − 3A), with a diffusivity proportional to the
scalar rate of deformation to take into account the fiber-fiber interactions for
concentrated fiber suspensions:

∇ · v = 0, (4.76a)

ρ

(
∂v
∂t

+ (v · ∇)v
)
= ∇ ·T, (4.76b)

−pI + 2µD + 2µφV NpD : A4 = T, (4.76c)

WA−AW + ξ (DA + AD− 2D : A4) + 2cIγ(I− 3A) =
dA

dt
, (4.76d)

where µ is the viscosity, φV describes the fiber volume fraction and Np is the
particle number, γ =

√
2D : D denotes the scalar magnitude of strain rate and

cI is the interaction coefficient modeling the fiber-fiber interactions which is
an empirical dimensionless parameter whose value is determined by fitting
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experimental data. ξ := (a2
r − 1)/(a2

r + 1) is the particle shape factor which
depends on the fiber aspect ratio ar, i.e. the quotient of length and diameter of a
single fiber. The second-order orientation tensor A is a symmetric tensor whose
diagonal components describe the degree of orientation in flow direction, cross-
flow direction and thickness direction. The fourth-order orientation tensor
A4 added to the stress in (4.76c) models the probability of a fiber lying with
the specific orientation at this point and is determined by using a higher
order polynomial closure approximation in terms of A, e.g. the quadratic
approximation in d space-dimensions,

(A4)ijkl := AijAkl, i, j, k, l = 1, . . . , d.

The strain reduction factor (SRF) by Huynh [86] and the reduced strain clo-
sure (RSC) [187] models were developed as empirical modifications to the
Folgar–Tucker model (4.76d) to improve the fiber orientation prediction, espe-
cially slower development of fiber orientation as observed experimentally.

These models predict the mechanical properties of a suspension once the
fiber orientation is known and imply that the development of fiber orientation
depends on the flow itself. The fiber suspension rheology adds considerable
complexities to the flow study of the vitreous and the orientation evolution
equation is highly dependent on the initial fiber orientation which is not known
in reality [141, 29].

Anisotropy in Viscoelastic Fluids

Viscoelastic materials that are modeled within the framework of natural con-
figurations like the introduced Burgers-type model for the vitreous can exhibit
anisotropy with regard to mechanical response in two ways. On one side you
can consider that the viscous response described by the rate of dissipation func-
tion or on the other side that the elastic response described by the Helmholtz
potential behaves anisotropic. We look at the case where the elastic behavior is
anisotropic since it is known that one important reason for the anisotropy of
the vitreous comes from the collagen fibers which show elastic properties.
The presented approach is an extension of the framework of multiple natural
configurations to the development of the constitutive equations for anisotropic
viscoelastic fluids. It does not require specifying any additional boundary
conditions, since the theory does not involve higher gradients compared to
the directory theory approach usually applied for viscous flows [92, 140]. In
the directory theory approach the usual balance laws are generalized by pos-
tulating a director balance law employing gradients of the director fileds as
one of the constitutive unknowns along with notions of a director body force
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and director (or cosserat) stress, which requires boundary conditions for the
directors. Our ansatz is based on the thermodynamical framework and the
resulted evolution equations being determined by the maximization of the en-
tropy production satisfying the second law of thermodynamics introduced in
Section 4.2.2. The aim is a complete system of governing equations by choosing
the specific constitutive relation for the Helmholtz potential depending on the
preferred direction of the elastic collagen fibers inside the vitreous instead of
directly prescribing the anisotropic constitutive equations. Then we derive the
constitutive equation for the Cauchy stress tensor T and the required evolution
equation for the preferred direction of anisotropy.

The (fixed) direction of the unit vector A denotes the preferred direction of the
elastic collagen fibers inside the vitreous in its reference. a describes the corre-
sponding vector in the current configuration. In simpler cases of anisotropic
elastic solids and only viscous fluids the formulas are known from the litera-
ture [70, 81]. Here, we do not have the splitting of the deformation into viscous
and elastic response. For solids, the desired quantity is the left Cauchy-Green
tensor B defined in (2.3) which will be used in the ansatz of the Helmholtz
potential, ψ = ψ̃(B, a ·Ba), following the thermodynamic framework. We can
easily see that the sought evolution equation for the direction of anisotropy
reads,

da
dt

=
dF

dt
A = (∇v)FA = (∇v)a (4.77)

since we have a = FA. Further, we have the simplification

dB

dt
= (∇v)B + B(∇v)T (4.78)

which follows from the relation (2.2) or rather

∇
B= 0

by using the definition (4.2) of the upper convected Oldroyd derivative. For
an anisotropic viscous fluid, the desired quantity is the symmetric part of the
velocity gradient. The corresponding evolution equation for a coincides with
(4.77) modified by an additional term depending on D and a according to
Green [70],

da
dt

= (∇v)a + λ [Da− tr (D(a⊗ a)) a]−Da.

But the modeling of constitutive theory for anisotropic viscoelastic fluids like
vitreous is much more complicated since the complexity increases due to the
splitting of the deformation and taking into account the natural configurations.

124



The viscoelastic fluids exhibit elastic and viscous properties characterized by
the corresponding quantities B1, B2 of (4.12) and the velocity or rather D. The
difficulty is to find an expression for T and da

dt such that

da
dt

= (∇v)a + f1(B1, B2, a),

T = −pI + 2µD + f2(B1, B2, a)

with appropriate functions f1 and f2.
For simplicity, we model the vitreous as a transversely isotropic viscoelas-
tic fluid whose elastic response is anisotropic following the idea in [148].
There is only one direction and perpendicular to it the material properties
are independent of the considered direction. Further, we assume viscoelastic
behavior which can be described by the co-existence of two natural configu-
rations according to the splitting of the deformation in (4.11), motivated by
the experimental observation of two different relaxation times capable by the
Burgers-type model. In this setting, A denotes the preferred direction of the

κ0(Ω)
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κn1(Ω)
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κn2(Ω)

H2 F2
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A

a

elastic
response

viscous
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Figure 4.14: Direction of the axis of anisotropy in the framework of two natural
configurations
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elastic collagen fibers inside the vitreous in its reference and natural configura-
tion, i.e. the direction of the axis of anisotropy shown in Figure 4.14. Then the
corresponding vector a in the current configuration at time t takes the form

a = F1A

or

a = F2A.

For better understanding we recapitulate the important definitions in the
setting of two natural configurations as in the Subsection 4.2.2 for i = 1, 2:

Bi := FiF
T
i , (∇v)i :=

dHi

dt
H−1

i ,

see (4.12) and (4.13). Since we know the time derivative

dFi

dt
= (∇v)Fi −Fi(∇v)i

from the relation (4.14) we can compute the sought evolution equation for a:

da
dt

=
dFi

dt
A = (∇v)a−Fi(∇v)iF

−1
i a (4.79)

but Fi and (∇v)i are not desired quantities.
Since we are interested in modeling the incompressible anisotropic viscoelastic
vitreous considering isothermal processes, the Helmholtz potential should be
related to the elastic parts of the deformation Bi, i = 1, 2, and fiber direction a.
Therefore, we postulate that:

ψ = ψ(B1, B2, a)

:=
G1

2ρ
(tr B1 − 3− ln(det B1)) +

G2

2ρ
(tr B2 − 3− ln(det B2))

+
G1

ρ
a ·B1a +

G2

ρ
a ·B2a.

Note that this specific choice is motivated by the theory of isotropic viscoelastic
Burgers-type model with ψ defined in (4.19) and the material parameters
are the same. However, the Helmholtz potential depends additionally on a
compared to the previous introduced ansatz (4.18) and since the elastic reaction
is anisotropic a is directly coupled to the left Cauchy-Green tensors expressed
in the terms, a · Bia for i = 1, 2. Then the material time derivative of the
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potential dψ
dt is the starting point for the derivation of the constitutive equations.

Following the thermodynamic framework for the entropy production by using
the energy-dissipation relation (3.12) and substituting the balance equations
for incompressible flows we get

θξ = Tδ : D− ρ
∂ψ

∂B1

dB1

dt
− ρ

∂ψ

∂B2

dB2

dt
− ρ

∂ψ

∂a
da
dt

. (4.80)

Now, we see that the derived expression (4.79) for da
dt is needed for further anal-

ysis of (4.80). From the definition of the upper convected Oldroyd derivative
(4.2), we know that for i = 1, 2 it holds

dBi

dt
=
∇
Bi +(∇v)Bi + Bi(∇v)T

in comparison to (4.78) for solids. Further, the partial derivatives of the pre-
scribed potential ψ are

∂ψ

∂a
⊗ a = (a⊗ a)

(
G1

ρ
B1 +

G2

ρ
B2

)
+

(
G1

ρ
B1 +

G2

ρ
B2

)
(a⊗ a),

∂ψ

∂Bi
=

Gi

2ρ

(
I−B−1

i

)
+

Gi

ρ
(a⊗ a), i = 1, 2.

Consequently, we see that ∂ψ
∂Bi

for i = 1, 2 and ∂ψ
∂a ⊗ a are symmetric and we

can use,

A : ∇v = A : (∇v)T = A : D

for any symmetric tensor A ∈ R3×3. Nevertheless, we can not use any longer
the simplification

∂ψ

∂Bi
Bi + Bi

∂ψ

∂Bi
= 2

∂ψ

∂Bi
Bi, i = 1, 2
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since the matrix multiplication does not commute. Then further manipulation
of (4.80) leads to

θξ = Tδ : D− ρ
∂ψ

∂B1
:
∇

B1 −ρ
∂ψ

∂B1
: (∇vB1 + B1(∇v)T)

− ρ
∂ψ

∂B2
:
∇

B2 −ρ
∂ψ

∂B2
: (∇vB2 + B2(∇v)T)− ρ

∂ψ

∂a
· da

dt

= Tδ : D− ρ
∂ψ

∂B1
:
∇

B1 −ρ

(
B1

∂ψ

∂B1
+

∂ψ

∂B1
B1

)
: D

− ρ
∂ψ

∂B2
:
∇

B2 −ρ

(
B2

∂ψ

∂B2
+

∂ψ

∂B2
B2

)
: D

− ρ
∂ψ

∂a
· (∇v)a + ρ

∂ψ

∂a
·Fi(∇v)iF

−1
i a

=

(
Tδ − ρ

(
B1

∂ψ

∂B1
+

∂ψ

∂B1
B1 + B2

∂ψ

∂B2
+

∂ψ

∂B2
B2

)
− ρ

∂ψ

∂a
⊗ a
)

: D

− ρ
∂ψ

∂B1
:
∇

B1 −ρ
∂ψ

∂B2
:
∇

B2 +ρ
∂ψ

∂a
⊗ a : Fi(∇v)iF

−1
i .

To fulfill the requirement of the second law of thermodynamics (2.9), we make
the simpler approach of linear non-equilibrium thermodynamics in contrast to
the nonlinear non-equilibrium thermodynamics in (4.26), see [117] for more
details. As for the Navier-Stokes fluid in Section 3.3.2 we consider linear
relations between each pair of thermodynamic affinities and fluxes,

jα = cαaα

where cα, α = 1, . . . 4, are positive constants and the entropy production is
represented by the sum of each flux times affinity as in (4.25). Then the entropy
production, θξ = ∑α cα|aα|2, is a positive quantity, if the constitutive relations
are chosen as follows for i = 1, 2,

Tδ = 2µ3D + G1(B1 − I) + G2(B2 − I)

+ G1B1(a⊗ a) + G1(a⊗ a)B1

+ G2B2(a⊗ a) + G2(a⊗ a)B2

+ (a⊗ a) (G1B1 + G2B2) + (G1B1 + G2B2) (a⊗ a),
∇
Bi = −ci

Gi

2

(
I−B−1

i

)
− ciGi(a⊗ a),

Fi(∇v)iF
−1
i = c3ρ

∂ψ

∂a
⊗ a
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with positive constants c1, c2, c3 and µ3. For the sought time derivative of the
anisotropic direction it follows that

da
dt

= (∇v)a− c3(a⊗ a) (G1B1 + G2B2) a

− c3 (G1B1 + G2B2) (a⊗ a)a.

Then the complete system of governing equations describing the anisotropic
viscoelastic vitreous arising from the balance laws and the derived constitutive
relations reads:

∇ · v = 0, (4.81a)

∇ ·T = ρ

(
∂v
∂t

+ (v · ∇)v
)

, (4.81b)

T = −pI + 2µ3D + G1(B1 − I) + G2(B2 − I)

+ G1B1(a⊗ a) + G1(a⊗ a)B1 (4.81c)
+ G2B2(a⊗ a) + G2(a⊗ a)B2

+ (a⊗ a) (G1B1 + G2B2) + (G1B1 + G2B2) (a⊗ a),
∇

B1 = −c1
G1

2

(
I−B−1

1

)
− c1G1(a⊗ a), (4.81d)

∇
B2 = −c2

G2

2

(
I−B−1

2

)
− c2G2(a⊗ a), (4.81e)

da
dt

= (∇v)a− c3(a⊗ a) (G1B1 + G2B2) a (4.81f)

− c3 (G1B1 + G2B2) (a⊗ a)a. (4.81g)

Note that the Cauchy stress tensor T keeps its symmetric property.

The system (4.81) in Ω × (0, T] is completed with the initial and boundary
conditions (4.5) and (4.4) for the healthy viscoelastic vitreous plus the initial
fiber orientation,

a = a0 on Ω× {t = 0}.

The developed framework can be applied to general flows by choosing differ-
ent definitions for the Helmholtz free energy ψ (allowing numerous natural
configurations) and can be extended to more than one preferred direction and
moreover considering non-isothermal processes.
It is a novel description for the healthy human vitreous which was not consid-
ered in the literature before. It is capable to model the complex mechanical
behavior of the vitreous including the heterogeneous structure of collagen
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fibers.

Moreover, the term a⊗ a characterizing the orientation of the collagen fibers
can also be added to the evolution equation (3.17) for the concentration assum-
ing a fixed direction a. Instead of the diffusion matrix D one can consider the
modified diffusion matrix D + a⊗ a resulting in

∂C
∂t

+ (v · ∇)C−∇ · ((D + a⊗ a)∇C) = 0 in Ω× (0, T].

This approach of the anisotropic diffusion includes the certain orientation of the
collagen fibers and reflects the tendency for diffusion to follow the preferential
direction along the collagen fiber bundles.

4.8 Numerical Simulations for Drug Distribution

In this section we compare the different rheological models of the vitreous
body introduced in the previous chapters and their impact on the drug distribu-
tion by numerical simulations performed with the finite element method [26].
The data-based realistic three-dimensional geometry is constructed after own
in-vivo measurements performed in the Department of Ophthalmology [35].
The numerical simulations and pictures were implemented by the working
group members Simon Dörsam and Alexander Drobny using Finite Element
library deal.ii [17].

We consider the three introduced approaches for the description of the drug
distribution coupled through convection with the different models of the vit-
reous: the healthy vitreous modeled by the porous medium approach (3.26)
and the viscoelastic approach (4.61) and the liquefied vitreous in age modeled
by the Navier-Stokes equation (3.27). All are completed by the corresponding
boundary and initial conditions.
In our application of the human eye with equal in- and outflow and no exter-
nal forces it is enough to study the steady case. In this specific situation we
know that the time-dependent elastic properties of the Burgers-type model
have negligible influence on the overall flow pattern which converges to the
Naviers-Stokes velocity profile. Nevertheless, the resulting drug concentration
profiles differ due to the different parameter values. The computed velocity
profiles and more details concerning the numerical implementation and dis-
cretization can be seen in [39, 40, 41, 60].
The drug distribution after 15 minutes, 1 day and 6 days (from left to right) in
the sliced vitreous for visualization purposes is illustrated in Figure 4.15. It is
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more convection dominated in the liquefied vitreous with faster diffusion pro-
cess due to the higher diffusion coefficient than in the healthy cases described
by Darcy’s law and the viscoelastic Burgers-type model. But at the beginning,
15 minutes after injection, the whole drug concentration stays near the injection
position for all three approaches for the vitreous. The aim of the therapy for the
treatment of retinal diseases is the drug stays as long as possible in the vitreous.
To measure this mathematically, we introduce the following functional: With
J1(C, t) : L2(0, T; H1

0(Ω; Γh))× (0, T]→ R+ we denote the relative amount of
the drug in the vitreous at the current time point,

J1(C, t) :=

∫
Ω C(x, t) dx∫
Ω C(x, 0) dx

,

for more information see [41, 60]. The comparison of the results of J1 over time
for the three approaches is shown in Figure 4.16. For a better overview the
half-life times of the drug concentration in the vitreous are summarized in the
Table 4.5. After one month there is no drug in the vitreous independent of the

Healthy
viscoelastic

vitreous
(Burgers-type)

Healthy
vitreous
(Darcy)

Liquefied
vitreous

(Navier-Stokes)

Intravitreal
half-life of drug

concentration [d]
5.2 4.75 2.7

Table 4.5: Comparison of the half-life times of Aflibercept concentration in the
vitreous

rheological model of the vitreous. The liquefaction of the vitreous, the degen-
eration process of the vitreous humor associated with aging, causes the fastest
drug distribution and an increase in the convection flow due to the disruption
of the fibers’ mesh composing the vitreous humor modeled by the highest
diffusion coefficient. This finding is also concluded in the literature [177, 14]. In
[174] a simulated liquefaction caused a 12-fold faster distribution of fluorescein
sodium compared to the simulated young vitreous model without liquefac-
tion. Especially, for drugs with low diffusion coefficients and in low viscosity
vitreous fluids, like the diffusion of Aflibercept in the liquefied vitreous, high
convection can lead to high drug concentrations on the retina, which can be
potentially toxic [93]. In our simulations, the half-life time for average Afliber-
cept concentration in the vitreous for the viscoelastic case is about 1.1 times

131



longer than for the Darcy flow and about 1.9 times longer than in the liquefied
scenario with Navier-Stokes flow. The measured half-life time of Aflibercept
in human eyes according to experiments from Stewart et al. [175] is 7.13 days
which is higher than our calculated values. This difference comes from the
lack of the values of some parameters in the literature which are used to model
the drug distribution within the vitreous. In these cases we use values from
other species than humans or other drugs like Ranibizumab which half-life
time is 4.75 d [175] corresponding exactly to our value for the healthy vitreous
modeled by Darcy’s law. For this reason, the present results of the numerical
simulations are only of the same order as the measurements from experiments,
but they make physical sense and are in agreement with the reality. Most
animal models in the literature indicate that intravitreal drugs have reduced
half-lives and increased clearance in vitrectomized eyes [44]. For example,
Niwa et al. [136] measured the pharmacokinetic parameters in vitrectomized
and non-vitrectomized monkey eyes. Here, the half-life of ranibizumab and
aflibercept was shorter in vitrectomized eyes than in non-vitrectomized eyes.
Drug half-life time differences around 52 % requires more frequently injections
for liquefied vitreouses, whereas we have more effective drug interaction for
a healthy (viscoelastic) vitreous which should be considered in personalized
therapies. In [93] they also conclude that the drug concentration distribution
depends on the properties of the vitreous, beside the diffusion coefficient of
the drug and the permeability of the retinal surface.

The numerical simulations validate the developed mathematical models, cor-
roborate their solubility with plausible results and show the necessity to distin-
guish between the rheological models for the vitreous body and their impact
on the drug distribution. By considering patient individual differences we
can improve the therapeutic approaches for retinal diseases. Our models and
their simulation allow fast and cost effective tests in comparison to in vivo
experiments, speed up drug development by analyzing different conditions
and parameters like the influence of a specific drug or the injection protocols
(position, frequency) and many more.
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Figure 4.15: Concentration [kg/m3] in the sliced vitreous modeled by Darcy’s
law (top row), Burgers-type model (middle) and Navier-Stokes
equation (bottom) after 15 min, 1 day and 6d (left to right) [simu-
lation by Alexander Drobny and Simon Dörsam] 133



Figure 4.16: Relative average drug concentration in the vitreous over time for
the healthy (Darcy), healthy viscoelastic (Burgers-type) and lique-
fied (Navier-Stokes) vitreous [simulation by Alexander Drobny
and Simon Dörsam]

134



5 Conclusion and Outlook

For the treatment of retinal diseases by drug distribution in the human vitreous,
we have developed the mathematical model of the vitreous. Compare to
previous works we focused on the vitreous as a viscoelastic fluid including its
heterogeneous property due to the orientation of collagen fibers.
All of the previous studies [62, 75, 10, 170] model the vitreous humor as an
incompressible Newtonian fluid ignoring its non-Newtonian nature. But it is
a gel that has both viscous and elastic properties caused from the interaction
between hyaluronic acid, aqueous humor and collagen fibers. This mechanical
behavior of the healthy vitreous is modeled by the incompressible viscoelastic
Burgers-type model based on experimental data in the literature. The model is
thermodynamically derived and capable of describing two different relaxation
times observed by these measurements. Especially, looking at applications
where the stress is the significant quantity, it is the more appropriate one.
We achieved the following results, that the healthy vitreous predicted by
the Burgers-type model shows twice as high stress as the pathological one
predicted by the Navier–Stokes model, while the overall flow patterns are
rather insensitive to the chosen rheology in a deforming eye ball. The focus
on the interplay between the rheology of the vitreous and the stress field in
it is of interest in the study of eye pathologies such as posterior vitreous or
retinal detachment. These eye pathologies are thought to be closely linked to
mechanical processes with high stresses. The collagen fibers inside the vitreous
responsible for the elastic properties are directionally oriented. This finding
emphasize the need to use the anisotropic viscoelastic model and improve the
evolutionary equation for the stress. Then the vitreous as a viscoelastic fluid
whose elastic reaction is anisotropic takes into account the preferred direction
of the collagen fibers.
Finally for the treatment of retinal diseases, the coupling of the viscoelastic
Burgers-type model with the stress driven diffusion provides an accurate
description for the drug transport in the human vitreous. In contrast to the
literature we propose a fully coupled system in which the drug diffusion and
flow inside the vitreous can effect each other. The drug diffusion depends on
the viscoelastic properties of the vitreous which act as a barrier. The extension
to an anisotropic stress driven diffusion reflects the tendency to follow the
preferential direction along the collagen fibers depending on the molecule
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size. The difficulty of this research is to set the correct parameters (Dv, k, d‖, d⊥)
for the stress driven diffusion and its anisotropic approach due to the lack of
experimental data and the phenomenological ansatz for the description of the
collagen fibers.
The development of mathematical models for the vitreous body in the human
eye is a very challenging task. The vitreous is the medium and transport
pathway of nutritions and substances that pass the blood aqueous and blood
retina barrier. It changes continuously during life ending as a very liquefied
inhomogeneous body. In the aging eye diseases such as macular degeneration
or diabetes retinopathy or vascular diseases reach a very high incidence and
are the leading cause for blindness in western countries. The treatment of
these diseases involves injection of drugs into the vitreous targeting the retinal
pathology. How these drugs interact with the vitreous, how they distribute
and reach the target tissue is essential for the treatment of these pathologies.
Our developed models for the drug distribution in the human vitreous after
the injection are important for the development and optimization of new
treatment modalities, but also to understand how current treatments work
or why they sometimes fail. The impact of the viscoelastic modeling for the
vitreous compared to the standard Darcy or Navier-Stokes equation is even
more pronounced in applications with external force. This work provides
a better understanding about the mechanical behavior of the vitreous and
how the medical treatment is influenced by the changing properties of the
vitreous. It will influence the treatment schemes and can speed up the drug
development to improve the administered ophthalmic therapy. The need for
animal studies or extended human trials can be minimized or even avoided
based on the developed models in this dissertation.

Outlook The development of mathematical models for drug transport in the
human eye is a promising field for future research. Further extensions of the
proposed models of this complex real-world application are possible in various
directions. For future work we propose the following points.
First, one could consider other physiologies describing the state of the vitreous
and combine the viscoelastic approach with the liquefied description by the
Navier-Stokes equation. For example, the situation of early liquefaction could
give a deep insight into the aging of the vitreous. Here, the structure of the gel
is dissolved and replaced with aqueous lacunaea (pockets of liquid vitreous),
which melt together over time. Also, the modeling of the posterior vitreous
detachment requires the coupling of the properties of the vitreous and aqueous
humor flow separated by a permeable interface. The challenge is the modeling
of the (moving) interface problem with realistic interface conditions including
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the unknown permeability of the drugs.
Second, the viscoelastic Burgers-type model could depend on the collagen
fiber concentration. The human vitreous is heterogeneous and the collagen
fiber concentration varies between different regions [6]. The corresponding
parameters like the relaxation times could be modeled as space-dependent
functions of the concentration of the collagen fibers, i.e. τi = τ̃i(Ccol(x)) for
i = 1, 2.
Finally, one could focus on the poroelastic description of the vitreous moti-
vated by the elastic collagen network. Poroelasticity studies the macroscopic
interaction between fluid flow and solid deformation within a linear porous
medium. The theory developed by Biot [22] states that the deformation of the
medium influences the flow of the fluid and vice versa.
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Appendix: Parameter

Intravitreal drug distribution depends on many parameters related to the
specific drug used for the treatment and to the physiology of the eye. The
used parameter values to solve the above mentioned mathematical models by
numerical simulations are listed in the following Table 5.1 supported by their
literature sources.

Parameter Meaning Value Unit Source

General Values for Human Vitreous

ρ Density of vitreous 1005.3-1008.9 kg m−3 [23]

Weight 3.9× 10−3 kg [23]

Diameter cavity 22.55 mm [127]

Volume 4.7; 5 ml [127]

θ Temperature 307.05 K [103]

Porous Medium Approach for Healthy Vitreous

D Diffusion coefficient
(Bevacizumab, rabbit) 4× 10−11 m2 s−1 [143]

Diffusion coefficient
(Fluorescein) 6× 10−10 m2 s−1 [8, 75, 122]

µ
Dyn. viscosity of aq.

humor 6.9× 10−4 Pa s [75, 122]

K
µ

Hydraulic
conductivity 8.4× 10−11 m2 Pa−1

s−1 [54, 75, 118]

Liquefied vitreous

µ0 Dyn. viscosity 7.36× 10−4 Pa s [152]

D Diffusion coefficient
(Aflibercept) 8.3× 10−11 m2 s−1 [12]
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Viscoelastic Approach for Healthy Vitreous

G1
First elastic shear

modulus 0.11 Pa [180]

G2
Second elastic shear

modulus 0.07 Pa [180]

µ1
First dynamic

viscosity 9200 Pa s [180]

µ2
Second dynamic

viscosity 4.09 Pa s [180]

µ3
Third dynamic

viscosity 0.86 Pa s [180]

D Diffusion coefficient
(Bevacizumab, rabbit) 4× 10−11 m2 s−1 [143]

Drug

ρp Density (Aflibercept) 1370 kg m−3 [4]

Density
(Ranibizumab) 1370 kg m−3 [4]

Density
(Bevacizumab) 1370 kg m−3 [4]

m Mass (Aflibercept
particle) 1.9× 10−22 kg [4]

Mass (Fluorescein
particle) 5.5× 10−25 kg [4]

Mass (Ranibizumab
particle) 7.968× 10−23 kg [4]

Mass (Bevacizumab
particle)

2.4734×
10−22 kg [4]

MW
Molecular weight
(Aflibercept with

glycosylation)
115 kDa [4]

Molecular weight
(Aflibercept) 97 kDa [4]

Molecular weight
(Ranibizumab) 48 kDa [4]
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Molecular weight
(Bevacizumab) 149 kDa [4]

Molecular weight
(Fluorescein) 332 kDa [6, 127]

r Hydrodynamic
radius (Aflibercept) 3.70× 10−9 m [4]

Hydrodynamic
radius (Ranibizumab) 2.76× 10−9 m [4]

Hydrodynamic
radius (Bevacizumab) 4.58× 10−9 m [4]

d Diameter
(Aflibercept) 5.2× 10−9 m [6]

Diameter
(Ranibizumab) 2.8× 10−9 m [6]

Diameter
(Bevacizumab) 5.2× 10−9 m [6]

Intravitreal half-life
(Aflibercept, human) 7.13 d [175]

Intravitreal half-life
(Ranibizumab,

human)
4.75 d [175]

Intravitreal half-life
(Bevacizumab,

human)
8.25 d [175]

Other Tissues (Retina,. . . )

kvr

Partition coefficient
(vitreous/retina)
(FITC-Dextran)

0.4 — [42, 75]

Partition coefficient
(vitreous/retina)

(Fluorescein)
0.9 — [42, 75]

Partition coefficient
(vitreous/retina) 10 — [99]

P Retinal Permeability
(Bevacizumab) 1.84× 10−9 m s−1 [85]
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Retinal Permeability
(Fluorescein) 2.6× 10−7 m s−1 [75, 122]

Retinal Permeability
(Ranibizumab) 2.6× 10−9 m s−1 [85]

KRCS

Hydraulic
conductivity of RCS

for aq. humor
(bovine)

1.5× 10−15 m2 Pa−1

s−1 [75, 144]

Pv
Episcleral venous
pressure (human) 1200 Pa [75, 168]

RCS thickness
(rabbit) 0.3 mm [49]

L RCS thickness
(human) 1.15 mm calculated

Retinal thickness 0.21-0.25 mm [127]

Choriodal thickness 0.32 mm [127]

Scleral thickness 0.6 mm [127]

IOP Intraocular pressure
(healthy human eye) 2000 Pa [94]

Scleral density
(human) 1.076 g cm−3 [176]

Sclera shear modulus
(human) 330× 103 Pa [71]

Lens density (bovine) 1.104 g cm−3 [176]

Anterior Chamber
Depth (human) 3.28 mm [127]

Axial Length
(Optical, human) 23 mm [127]

kperm Retinal permeability −1.9× 1012 Pa s m−1 calculated

Aq. hum. production 2.5 µl/min [55, 127]

vmax
inflow b.c. at hyaloid

membrane 1.2× 10−3 m/s [55]

G lens shear modulus
(human)

0.19− 59.6×
103 Pa [189]
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G sclera shear modulus
(human) 330× 103 Pa [71]

κ
lens elastic bulk

modulus (human) 100× G Pa [189]

κ
sclera elastic bulk
modulus (human) 1000× G Pa [71]

gconst
Gravitational
acceleration 9.81 m s−2 [58]

ρa Aq. Hum. density 1.0× 103 kg m−3 [58]

Table 5.1: Model parameters
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