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Abstract The phenomenon of quasi-periodicity in
deterministic dynamical systems describes stationary
solutions, which neither exhibit a finite period length
nor are chaotic. Recently, an increasing demand for
robust numerical methods is driven by applied dynam-
ics and industrial applications. In this context, direct
time integration proves to be impractical due to exten-
sive integration intervals. Therefore, in a first step,
this contribution aims on giving an application ori-
ented survey of the basic theory as well as alterna-
tive concepts. In the following, the focus is set on the
direct computation of invariant manifolds (surfaces) on
which quasi-periodic solutions evolve. This approach
offers a unique framework from which classical meth-
ods (e.g., themulti-harmonic-balance) can be systemat-
ically deduced and mutual similarities between differ-
ent methods may be revealed. This contribution starts
with a brief summary of related mathematical basics,
which is followed by an overview of availablemethods.
Subsequently, the computation of invariant manifolds
by means of solving a partial differential equation is
emphasized. These PDEsmay be formulated using dif-
ferent parametrization strategies. Here, the concept of
hyper-time parametrization is particularly interesting,
since it is a promising starting point for the develop-
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ment of numerical schemes with general applicability
in engineering problems. In order to solve the under-
lying PDE, various methods may be used. The imple-
mentation of a Fourier-Galerkin method as well as
a finite difference method is presented and compared
on the basis of computational results of the van- der-
Pol equation (with and without forcing). Moreover, it
is demonstrated that both methods apply to periodic as
well as quasi-periodic solutions alike. In order to exem-
plify the practical use, these methods are applied to a
generic rotordynamic model problem.

Keywords Quasi-periodic motion · Invariant mani-
folds · Generalized invariance equation · Hyper-time
methods · Multi-dimensional Fourier-Galerkin
method · Finite difference method · Comparison of
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1 Motivation and introduction

Stationary solutions play a major role in the analysis
and characterization of dynamical systems. Within this
work, the term “stationary” refers to solution types
which persist in infinite time intervals (also called
“steady state”). Very well known types of stationary
solutions in deterministic systems are equilibria and
periodic solutions: such solutions are widely discussed
in basic textbooks, well understood and various stan-
dard approaches for their efficient analysis are avail-
able.
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Table 1 Essential nomenclature

Symbol Meaning

z General state-space function

f State-space vector field function

ν Unspecified base frequency

ω Autonomous base frequency

Ω Non-autonomous base frequency

T Coordinate torus

θ Torus coordinate

Z Quasi-periodic/ torus function

Z̃ Discretized torus function

P Phase condition

Beyond this, another well-known type of solutions
are quasi-periodic motions. While being known at
least since the works of Poincaré in the 19th cen-
tury, systematic researchwith the aimoffindinggeneral
approaches is a comparatively young field of research
(cf. Sect. 1.2). Although it might appear as amathemat-
ical curiosity, quasi-periodicity is frequently encoun-
tered in technical applications. Moreover, it is strongly
related to the aforementioned types of stationary solu-
tions and could even be seen as a kind of “higher-order”
periodicity in the sense of the next logical step after
periodic solutions:

• Equilibrium solutions are non-periodic and thus
have no frequency (cf. Fig. 1a)).

• Periodic solutions are associated with a single fre-
quency, which represents the base frequency of
the corresponding Fourier-series. The spectrum
is discrete and exhibits frequencies at integer mul-
tiples of this single base frequency (cf. Fig. 1b)).

• Quasi-periodic solutions are characterized by a
discrete frequency spectrum, which does not con-
sists of integer multiples of one single base fre-
quency. The spectrum consists of linear combina-
tions of at least two independent base frequencies
(cf. Fig. 1c)).

Obviously, all these types of dynamics fit into a com-
mon systematization scheme. Here, the notion of fre-
quencies being “independent” is strongly related to
incommensurability, which will be explained below.

The appearance of multiple independent frequen-
cies can be related to multiple individual sources of
vibration, which affect the system simultaneously: for
instance, such sources may be co-existing mechanisms
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Fig. 1 Relation between different types of stationary solutions
based on the number of independent frequencies ν: (a) equilib-
rium point, (b) periodic motion, (c) quasi-periodic motion with
two independent frequencies

of self-excitation or forcing. Due to the presence of
multiple independent frequencies, the time signals of
quasi-periodic motions do not exhibit a finite period
length: therefore standard numerical and analytical
approaches for periodic solutions are in general hardly
applicable.

Although the theoretical fundamentals of quasi-
periodic motions are well studied (cf. [6]), the anal-
ysis of such motions in practical applications is scarce.
Recent publications started applying selected tech-
niques to identify quasi-periodic motions of flutter
vibrations of tuned bladed disks damped by friction
[30], quasi-periodic localized vibrations in a bladed
disk assembly [19], quasi-periodic motions of rub-
bing self-induced vibrations in rotor-stator dynamics
[40] and quasi-periodic motions of a simplified finite-
elementmodelwith oil-film forces of a symmetric rotor
of a turbocharger [48].

It may be concluded that quasi-periodic motions—
being ageneralizationof periodic ones—areof high rel-
evance in applied dynamics. Unfortunately, only very
few publications of the application oriented engineer-
ing literature are concerned with corresponding meth-
ods and analyses. Therefore, this contribution aims on
giving practitioners an access to this topic by giving
a brief overview and presenting two different standard
methods within a unified framework.

First, common approaches to the topic are discussed
and classified. Furthermore, among the available meth-
ods two particular methods for the calculation of quasi-
periodicmotions—namely, a Finite DifferenceMethod
and a Fourier- Galerkinmethod—are presented and
discussed in detail. Main reasons for this choice are
that these two methods are very popular in engineer-
ing dynamics, work independent of the stability of
the quasi-periodic motion, can easily be implemented
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using standard methods, and thus exhibit the poten-
tial to be applied to large systems (e.g., FEM models).
Moreover, it shall be emphasized that both methods
may be derived within a common framework and thus
exhibit a high degree of similarity regarding their basic
formulation.

1.1 Mathematical definitions

In the following part, some elementary definitions of
relevant mathematical terms are given.

• Incommensurability and frequency basis: [42, p. 9]
Let a = [. . . , ak, . . . ]� be a vector of integer num-
bers and ν = [. . . , νk, . . . ]� be a vector of real-
valued frequencies. The frequencies νk are said to
be incommensurable (rationally independent), if

a�ν =
p∑

k=1

akνk = 0
ν ∈ R

p

a ∈ Z
p (1)

only holds for a = 0. In other words: for a set of
incommensurable frequencies no frequency is an
integer multiple or linear-combination of the oth-
ers. A ν for which this condition holds is called
a frequency basis. To put this in context, see the
following examples:

ν1 = [2, 1.2, 3]� ν2 = [2, 1.2, π ]�
ν3 = [2, π ]� ν4 = [1, π ]�.
ν1 is not incommensurable, since a = [−3, 10, −2]�
fulfills condition (1). ν2 is also not incommensu-
rable since a = [−6, 10, 0]� fulfills condition (1).
ν3 and ν4 are both possible frequency base vectors.

• Quasi-periodic function: [42, p. 9]
If a state z(t) can be stated as:

z(t) = Z(νt) = Z(ν1t, . . . , νpt)

z : R1 �→ R
n,

Z : R1 �→ R
n, ν ∈ R

p

(2)

with ν being a frequency basis, p > 1 and Z being
2π -periodic with respect to any argument

Z(..., νk t, ...) = Z(..., νk t + 2π, ...) ∀k ∈ [1, . . . , p],
then Z is called a quasi-periodic function. The func-
tion maps from t ∈ R to the n-dimensional state-
space. Due to the incommensurability of the p > 1

frequencies ν, the function Z(νt) does not have a
finite period length. For p = 1, Z is a periodic
function (closed curve in state-space), for p = 0,
Z represents a constant function (stationary point
in state-space).

• Coordinate torus, torus function and p-torus:
The set of 2π -periodic coordinates θ=[θ1, ..., θp] ∈
R

p mod 2π is referred to as coordinate torus and
is denoted by T

p. Here, θ is the vector of torus
coordinates. The function

Z(θ) = Z(θ1, . . . , θp) Z : Tp �→ R
n, (3)

that maps from a p-dimensional coordinate torus
to the n-dimensional state-space, is a torus func-
tion. The image of θ under the function Z is
called p-torus and is a hypersurface with no bound-
aries embedded in the n-dimensional state-space.
In other words, each of the arguments θk of a torus
function Z(θ) can be chosen independently from
each other, whereas the arguments νi t of a quasi-
periodic function Z(νt) all depend on time t .

• Density and maxima: [42, p. 10]
The set of values of a quasi-periodic function Z(νt),
which is an infinitely long trajectory in the state-
space is dense in the values Z(θ). Densemeans that
for every small ε and any θ at least one t̂ exists, so
that
∥∥Z(θ) − Z(ν t̂)

∥∥ < ε, ε � 1 (4)

holds. Thus, the 1-dimensional trajectory Z(νt) lies
on the p-dimensional surface of the torus Z(θ) and
passes any point of the torus-surface or arbitrarily
close to it. Roughly speaking, the curve Z(νt), t ∈
R fills the surface Z(θ), θ ∈ T

p completely (see
Fig. 2). In return, everything about the extents of
Z(νt) will be known as soon as the surface Z(θ)

has been determined. It follows that

sup
t∈R1

|z(t)| = max
θ∈Tp

|Z(θ)| = ‖Z(θ)‖0 (5)

[42, p. 11], which gives the equivalence of the
supremum of a quasi-periodic function and the
maximum of a torus function.
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Fig. 2 A torus Z(θ) in state-space about to be filled completely
by a quasi-periodic trajectory z(t)= Z(νt)

1.2 Review and classification of numerical
approaches

The phenomenon of quasi-periodicity has been known
at least since the 19th century,whenPoincaré amongst
others worked on integrable Hamiltonian systems.
The systematic investigation of quasi-periodic func-
tions started in 1925 within the works of Bohr on
almost periodic/quasi-periodic functions [4]. The the-
orywas further developed byBesicovitch [2], vonNeu-
mann [38], Bochner [3] and many more. An outline of
the historic development can be found in [31].

Since the late 1970s, research started on numerical
algorithms, which approximate the invariant p-tori on
which the quasi-periodic solutions evolve. The meth-
ods can roughly be divided in two groups, which either
investigate an invariant closed curve in a Poincaré-
section or the invariant manifold (torus). Most of these
methods can (sometimes after brief adaption) be used
for stable and unstable tori.

The following classification is a slight extension to
that given by Schilder et. al [46]. However, the differ-
ences between the methods are fluid. More extensive
reviews of the methods can be found in [1,25,46]. The
reader should be aware that apart from the methods
detailed below further ones exist in the more theoret-
ical focused literature. However, their application to
large engineering systems may be limited. Examples
are the algorithms presented in [9,10], which are based
on the parametrization method and identify invariant
tori and their invariant normal bundles, as well as the
graph transform method, which can be seen as an inte-
gral form of the method discussed in Sect. 1.2.2, see
[5,7,16,25,26,29].

Fig. 3 An intersection with a two-dimensional plane Σ leads
to an invariant curve, which is densely filled by the intersected
quasi-periodic trajectory

1.2.1 POINCARÉ mapping methods—invariant
closed curve approximation

This class of methods is based on identifying an invari-
ant object in an appropriate Poincaré-section in the
state-space to circumvent the problems related to the
open interval (not finite period length) of the time sig-
nal. The invariant object is constructed by using sec-
tions of the quasi-periodic trajectory z(t).

This method is best explained bymeans of a 2-torus,
because the invariant object is in this context a closed
curve (1-torus). Assume that a stationary trajectory z is
calculated (e.g., by direct time integration), which fills
the p-dimensional torus Z(θ) ⊂ R

n, θ ∈ T
2 densely.

Intersecting this torus with an appropriately defined
(n − 1)-dimensional hyperplane Σ in the state-space
will yield a continuous closed curve (see Fig. 3).

Due to the density of z on the torus, this curve
is also densely filled by intersections of z and Σ .
Now consider trajectories, which start on some point
of this intersection curve: evolving on the torus, they
will again reach the curve after a finite time. Thus,
using a Poincaré-mapping that maps a starting point
on Σ to the corresponding end-point on Σ of a tra-
jectory allows to formulate a shooting-algorithm or
collocation-algorithm, that approximates the intersec-
tion curve by a finite number of m points. Moreover,
once this single intersection curve has been approxi-
mated,m-stationary trajectories on the torus are known
and thus usually enough data are available to describe
the entire torus.
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In principle, two conceptional different approaches
are used in the literature to approximate the invariant
closed curve. The first methodology is based on one
trajectory, by which the invariant closed curve in the
Poincaré-section is approximated. The trajectory is
usually obtained by time integration. This approach
was introduced for quasi-periodic solutions by Kaas-
Petersen in 1986 [27,28] and further developed by Ling
in 1991 [33]. A more recent application for large sys-
tems can be found in [43,44].

The second methodology is based on multiple tra-
jectories, which approximate the invariant closed curve
in the Poincaré-section. Here, all trajectories start
and end on the invariant closed curve. As a result,
a boundary value problem with periodic boundaries
can be deduced. Introduced by Gómez and Mon-
delo in 2001 [22], the authors used a shooting-method
to obtain the trajectories and a Fourier-series to
approximate the invariant closed curve. Because the
authors focused on the restricted three-body problem,
the method is often used in the context of astrodynam-
ics [34,39]. A review can be found in [1]. Further-
more, the authors of [47] proposed in 2007 a similar
approach and gave the interesting note that the con-
tinuation program AUTO [14] can be used to solve
the boundary value problem with periodic boundaries.
Instead of using a shooting-algorithm, Dankowicz and
Schilder utilized in [11] a collocation method to dis-
cretize the trajectories involved in the boundary value
problem. A slight variation to this concept is the flow
box tiling method introduced by Henderson [25]: tra-
jectories on the torus are enclosed by boxes, which
are variable in size. By imposing boundary condi-
tions on each inset and outset of these boxes, the
whole torus can be completely covered with a finite
number of boxes, instead of an infinitely long trajec-
tory.

Approaching tori by means of invariant closed
circles is geometrically descriptive and identifying
one trajectory (first methodology) is a straightforward
implementation, by which almost any time integration
scheme can be combined with shooting-algorithms.
However, despite its appealing simplicity the methods
suffer from several drawbacks, as, for instance:

• Depending on the geometrical complexity of the
intersection curve (i.e., the number of points nec-
essary to approximate it) or on the specific base
frequencies (i.e., close to synchronized states), it

still may demand for a potentially high number of
trajectories.

• The stability of the quasi-periodic motions is a cru-
cial characteristic, because in general the involved
time integration diverges if motions are unstable.

The approach bymeans ofmultiple trajectories (second
methodology) does not depend significantly on the first
stated drawback, but in case of an involved shooting-
algorithm, the second stated drawback applies as well.
This may be circumvented by using multiple shooting-
algorithms, by which the calculation effort increases
considerably formany trajectories or/andmanydegrees
of freedom. Concerning the collocation method, both
of the stated drawbacks do not apply and the interested
reader is referred to [11].

1.2.2 Generalized invariance equation
methods—torus approximation

This class features several of the most popular methods
in the application oriented literature. It is directly based
on the ODEs that describe the dynamical system in the
state-space:

dz
dt

= f (z,Ωt)
z(t) : R1 �→ R

n

f (z,Ωt) : Rn × R
m �→ R

n,

(6)

where it is assumed that z is a quasi-periodic solution.
If the right-hand side does explicitly depend on t , it is
required that

f (z(t),Ωt) = . . .

f (z(t),Ω1t, . . . ,Ωi t, . . . ,Ωmt) = . . .

f (z(t),Ω1t, . . . ,Ωi t + 2π, . . . ,Ωmt)

∀i ∈ [1, m]

(7)

holds. Here, m is the number of incommensurable fre-
quencies of the external excitation. Starting from these
ODEs, PDEs describing a p-torus are derived. There
are two major subclasses, which look very similar, but
significantly differ in the basic idea of the parametriza-
tion approach:
State-Space Parametrization: The first and crucial step
in this approach is to find a local parametrization for
the p-torus in state-space and transform the system
equations (6) to these new coordinates. A common
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choice are p torus coordinates θ ∈ T
p and q =

n − p local coordinates u ∈ R
q , which may often be

interpreted as dependent phase angles and amplitudes
(cf. [36]).

More formally, the p torus coordinates θ describe
the local tangential space, while the coordinates u
belong to the q-dimensional normal space of the torus.

Thus, by virtue of z(t) = ẑ(θ(t), u(t)), Eq. (6) may
be rewritten as a partitioned system

dθ

dt
= ψ(θ , u) (8)

du
dt

= R(θ, u). (9)

Note that an explicit time dependency in Eq. (6) is con-
sidered in Eqs. (8) and (9) in the torus coordinates.
Eliminating the time dependency in Eq. (8) and (9))
yields a system of PDEs that expresses u = u(θ) as:

p∑

j=1

∂u(θ)

∂θ j
ψ j (θ, u) = R(θ , u)

u : T
p �→ R

q

R : Tp × R
q �→ R

q

n = p + q.

(10)

This equation expresses the invariance principle: it
describes that any point (θ , u) on the p-torus is
mapped by R into the tangential subspace of the
p-torus spanned by the subspace vectors ∂u(θ)

∂θ j
. Thus,

ψ j are the coordinates of the point.
Once u = u(θ) is known, it may be inserted into

Eq. (8) yielding

dθ

dt
= ψ(θ). (11)

The solution of this equation describes the motion on
the torus itself. Since the right-hand side of Eq. (11)
is usually not a constant, the tangents of the flow-lines
θ(t) in general will not have the same direction: thus,
the flow on the torus is usually not a parallel flow.
By investigating Eq. (11), synchronization of solutions
may be detected and analyzed.

This approach offers a rather intuitive way to
describe tori andquasi-periodicmotions.Consequently,
it is often used in analytical investigations of periodic
and quasi-periodic motions by transforming to “ampli-
tude” and “phase”-coordinates (or “action” and “angle”
for Hamiltonian systems). Moreover, several numer-
ical schemes like Fourier-Galerkin (Samoilenko
(1987) [42] and Ge and Leung in 1998 [20]), finite dif-
ferences (Dieci et. al in 1991 [13]), collocation (Edoh

and Russel in 2000 [15]) and many more were used
to solve Eq. (10).

However, defining an appropriate torus parametriza-
tion for arbitrary problems is very challenging and will
demand for a high amount of a priori knowledge about
the solution and in particular the geometric features of
the torus. Thus, it will only hardly allow for generalized
algorithmic implementations. Moreover, carrying out
the corresponding nonlinear coordinate transformation
usually turns out to be a costly step. Consequently, this
approach is usually not applicable to larger problems
as they are typical for modern applied dynamics and
engineering.
Hyper-Time Parametrization: In contrast to the state-
space parametrization, this technique does not require
any a priori parametrization or costly transformation
steps and thus is suitable to develop algorithms of broad
applicability. For this reason, the present publication
will focus on this class of methods.

As stated in Sect. 1.1, a general quasi-periodic time
function exhibiting a frequency basis of p incommen-
surable frequencies νk (k = 1, . . . , p) may be written
as:

Z = Z(ν1t, . . . , νpt), (12)

where the arguments νk t depend on t as a single inde-
pendent variable. This function Z is 2π -periodic with
respect to any of its p arguments νk t . Thus, to account
for these periodicities, p new variables θk = νk t
mod 2π ∈ [0, 2π) can be introduced. In short, this
reads

θ(t) = νt mod 2π, θ ∈ T
p. (13)

Due to incommensurability of the base frequencies νk ,
the arguments θ(t) will cover the coordinate torus Tp

densely: in the course of t , the arguments θ(t)will come
arbitrarily close to any freely chosen coordinate θ on
T

p. Consequently, the p entries θi of θ may be treated
as independent variables of a torus function (cf. Sect.
1.1 and Fig. 4).

Correspondingly, the description of the solutionmay
be changed from a one-parametric, quasi-periodic tra-
jectory Z(νt) to a p-parametric torus function Z(θ).
Additionally, if the right-hand side f (z,Ωt) is periodic
within each of its explicitly time-dependent arguments
Ωt as in Eq. (6), the function may be exchanged by
f (Z, θ). Thus, the equation
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p∑

j=1

∂Z(θ)

∂θ j
ν j = f (Z, θ)

Z : Tp �→ R
n

f : Rn × T
m �→ R

n .

(14)

can be formulated. Eventually, instead of computing
a time-trajectory, the problem has been transformed
into seeking for the invariant torus on which the trajec-
tory evolves. Again, the equivalence of the solutions
of Eq. (6) and Eq. (14) is given by the trajectory lying
densely on the torus surface.

Details and further explanations will be given in
Sect. 2.1. Even though being similar in structure to Eq.
(10) obtained by state-space-parametrization, there are
major conceptual differences:

• For every hyper-time θ j the function f (Z, θ)maps
every point on the p-torus Z into the tangential
space ∂Z(θ)

∂θ j
in the state-space.

• Since dθ
dt = [ν1, . . . , νp]� are constant values, all

tangents to the flow θ(t) have the same direction:
thus, the flow on the coordinate torus Tp is a par-
allel flow.

• Once Eq. (14) has been solved, not only the torus
but also basic spectral information of the trajecto-
ries are known.

• There is no need to find a special transformation
of the state-space coordinates z nor to transform
the describing dynamical system accordingly: the
dynamical ODEs may directly be used. Instead, the
transformations involved in this approach change
the independent variables from a single time t to
the p hyper-times θi .

• However, the dimension p of the coordinate torus
T

p (i.e., the dimension of the frequency basis) must
be a priori known. This implies that the method
itself is not capable of describing synchronized (p−
1)-dimensional solutions on a p-dimensional torus.

The resulting PDE (14) may be solved using different
techniques.

Fourier- Galerkin methods (FGM) are especially
popular, since the hyper-time parametrization yields
a PDE on the finite domain T

p with periodic bound-
ary conditions. Resubstituting the hyper-times to time
t reveals that this PDE-based motivation represents
a multi-harmonic balance method (MHBM) in time.
MHBMs are based on the fact that quasi-periodic sig-

nals have a discrete line spectrum. Therefore, the time
solution z(t) may be approximated by a truncated
Fourier-series with linear combinations of p incom-
mensurable base frequencies. This approach is proba-
bly the most popular one to be used for the analysis of
practical problems. Once the invariant manifold Z(θ)

has been determined by solving Eq. (14), correspond-
ing trajectories Z(νt) may easily be reconstructed
by

Z(νt) = Z(νt + θ0). (15)

The first use of the hyper-time approach in the literature
known to the authors was in 1977 by Mitsui applying
a FGM [35]. Since then, a lot of publications have used
hyper-time methods. A concise literature review up to
2012 was given by Guskov [24]. More recent exam-
ples can, e.g., be found in [19,23,30,40,54]. A simi-
lar approach was used in [41], where a multi-domain
spectral collocation method is applied to discretize Eq.
(14), which utilizes Lagrange polynomials instead of
Fourier polynomials as ansatz functions.

An alternative to using ansatz functions is using a
Finite Difference Method (FDM) to discretize the PDE,
where the use of theFDMis not aswide spread in the lit-
erature as the use of the FGM.A rigorousmathematical
classification was done by Schilder in his dissertation
thesis in 2004 [45, in German], or in the corresponding
publications [46,49].

As another approach to solving the invariance PDE
over the domain of torus coordinates, the Method of
Characteristics can be used, which provides solutions
along characteristic curves. This method applies a co-
ordinate-transformation in order to transform the PDE
into a set of ODEs. For the considered invariance equa-
tion, it turns out that the characteristic variable is the
time t and eventually this approach corresponds to the
Poincaré-section-based approach using multiple tra-
jectories (cf. 1.2.1). However, in contrast to the purely
time-based formulation in Sect. 1.2.1, the method of
characteristics yields an obvious way to systemati-
cally define appropriate Poincaré-sections. This very
interesting and promising approach has been described
in [12], [47], for instance, and has been successfully
applied in [18], [21, p. 83–86] recently. However, the
method of characteristics will not be discussed in the
following since this contribution intends to compare
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Fig. 4 Example for torus
coordinates on T

2: (a) torus
coordinates as time
dependent function θ(t), (b)

torus coordinates as
independent variables θ

including local tangent
vector dθ

dt

0 2π

2π

θ1

θ2

θ(t)

(a) (b)

0 2π

2π

θ1

θ2

θ

θ̇

FDM and FGM and highlight the strong similarities of
these two popular methods.

2 Introduction to the application of generalized
invariance equations

As explained above, the class of generalized invari-
ance equation methods provides a unified and system-
atic framework to treat multiple approaches. Among
the different parametrizations, particularly the hyper-
time parametrization offers several advantages, which
allow for analyzing dynamical problems without prior
transformation of the unknown variables or other costly
steps. Therefore, this section presents an introduction
to the computation of invariant p-tori by means of
solving generalized invariance equations in hyper-time
parametrization. To introduce the reader as well as
emphasize basic conceptual details, generalized invari-
ance equations are derived for three different examples
of increasing complexity: a non-autonomous periodic
case, an autonomous periodic and a quasi-periodic case
with two frequencies. The general case is given in the
appendix.

It will be shown that one single framework may be
used to calculate periodic solutions (1-tori) as well
as quasi-periodic solutions with p independent fre-
quencies (p-tori). After that, two of the most com-
mon numerical approaches for solving the governing
equations are presented: the finite difference method
(FDM) and the Fourier- Galerkin method (FGM).
These methods have been implemented in Matlab®.

Please be reminded that continuation schemes can
be used to compute families of stationary solutions
[50]. Because such schemes do not demand a distinct
structures of the underlying algebraic equation sys-
tem, classical continuation algorithms can also be used
to analyze families of quasi-periodic solutions (see,

e.g., [32]). The corresponding algebraic equation sys-
tem can be derived, e.g., by means of the FDM, FGM
or any other method mentioned in the review in Sect.
1.2.

2.1 Generalized invariance equation in hyper-time
parametrization

In order to highlight the origin of base frequencies, the
notation ν = [Ω,ω]� is introduced. Here,Ω describes
a known (i.e., non-autonomous) base frequency and ω

is an a priori unknown autonomous base frequency.

2.1.1 Non-autonomous periodic case

In this first case, the considered system is described by

dz
dt

= f (z,Ωt)
z(t) : R1 �→ R

n

f (z,Ωt) : Rn × R
1 �→ R

n,

(16)

where z is the state-space vector, f is the vector field,
Ω ∈ R

1 is a non-autonomous angular speed (forcing
frequency) and t ∈ R

1 is time. Now assume that Eq.
(16) has a periodic solution z(t) = z(t + 2π

Ω
) and that

f (z,Ωt) = f (z,Ωt +2π) holds. The transformation
and the corresponding differential operator

θ = Ωt mod 2π → d(.)

dt
= d(.)

dθ
Ω, θ ∈ T

1

(17)

changes time dependent functions to torus functions.
Inserting them together with the torus function Z(θ)

into Eq. (16) yields
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dZ
dθ

Ω = f (Z, θ)

Z(0) = Z(2π)

Z(θ) : T1 �→ R
n

f (Z, θ) : Rn × T
1 �→ R

n

(18)

(see also Eq. (14)). In contrast to the time-dependent
function z(t), which is defined on R, Z(θ) denotes the
torus function and is defined onT. Thismay seem like a
trivial step, but Z is nowdefinedon [0, 2π) independent
of the angular speed Ω .

2.1.2 Autonomous periodic case

Considering an autonomous system,which is described
by the ODE

dz
dt

= f (z)
z(t) : R1 �→ R

n

f (z) : Rn �→ R
n .

(19)

Assume Eq. (19) exhibits a periodic solution z(t) =
z(t + 2π

ω
), where ω is the a priori unknown angular

frequency. Inserting a transformation analogous to Eq.
(17) and the torus function Z(θ) into Eq. (19) results
in

dZ
dθ

ω = f (Z)

P = 0

Z(0) = Z(2π)

Z(θ) : T1 �→ R
n

f (Z) : Rn �→ R
n

ω ∈ R
1

(20)

(see also Eq. (14)).
Since the invariance equation dZ

dθ ω = f (Z) provides
n equations for n + 1 unknowns (ω is also unknown),
an additional equation is needed: this is provided by
the so-called phase condition P . Fixing the phase is
required, since (stationary) solutions of autonomous
equations are invariant w.r.t. a linear shift in the ori-
gin of the time/torus-coordinate origin (see, e.g., [37]).
Thus, infinitely many solutions exist. Therefore, the
phase condition assures a solvable equation system by
selecting a single solution.

There are multiple possibilities to formulate such a
phase condition, which differ in complexity and con-
vergence behavior. The most common variants are:

• Derivative condition [50]: an easy-to-implement
phase condition for not too strongly nonlinear sys-
tems is

PD = d

dθ
Z j

∣∣∣∣
θ0

= 0, (21)

where Z j is the j-th component of Z at θ0.
• POINCARÉ condition [50]: this condition implies
orthogonality between the current solution Z and
the derivative of a known nearby solution Z0

(i.e., the previous solution point on a curve). For
example, such a solution is directly available if con-
tinuation schemes are used. The equation

PP = (Z(θ0) − Z0(θ0))
� dZ0

dθ

∣∣∣∣
θ0

= 0 (22)

enforces the current initial point Z(θ0) to lie on a
line, which runs through itself and Z0 and which
is orthogonal to dZ0

dθ . This condition shows a better
convergence behavior than the derivative condition.

• Integral POINCARÉ condition [50]: the condition

PI P =
2π∫

0

Z� dZ0

dθ
dθ = 0 (23)

can be derived by demanding an integral minimum
between Z and Z0 with respect to a θ -shift of the
origin of the autonomous solution [37]. Stated dif-
ferently, the condition demands that the solution
vector Z is orthogonal to the tangent vector dZ0

dθ
in an integral average. It shows typically the best
convergence properties.

2.1.3 Quasi-periodic case

Suppose now that the solution z(t) of equation

dz
dt

= f (z,Ωt)
z(t) : R1 �→ R

n

f (z,Ωt) : Rn × R
1 �→ R

n

(24)

contains two incommensurable angular frequencies
Ω and ω, which represent a frequency base: thus,
the solution is quasi-periodic (cf. Sect. 1.1). Again,
Ω is assumed to be externally prescribed (i.e., non-
autonomous),whileω is an apriori unknownautonomous
frequency of the system. Changing the independent
variables from time t to the new hyper-time coordi-
nates θ1 and θ2, the corresponding transformation of
the differential operator reads
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θ1 = Ωt
θ2 = ωt

→ d(.)

dt
= ∂(.)

∂θ1
Ω + ∂(.)

∂θ2
ω

θ = [θ1, θ2]� ∈ T
2.

(25)

Inserting them together with the torus function Z(θ)

into Eq. (24) yields

∂Z
∂θ1

Ω + ∂Z
∂θ2

ω = f (Z, θ1)

P = 0
Z(0, θ2) = Z(2π, θ2)

Z(θ1, 0) = Z(θ1, 2π),

Z(θ1, θ2) : T2 �→ R
n

f (Z, θ1) : Rn × T
1 �→ R

n

ω ∈ R
1,

(26)

where P = 0 represents an appropriate phase condi-
tions (cf. 2.1.2) to ensure a solvable equation system
(see also Eq. (14)). Again, please notice the conceptual
difference between the solutions z(t) and Z(θ1, θ2): the
first one is a time-dependent trajectory with an infinite
period length. Thus, it is a one-dimensional object over
an infinite domain and the solution to an ODE (cf. Eq.
(24)). In contrast, Z(θ1, θ2) results from a PDE (cf. Eq.
(26)) and is a two-dimensional object, which is defined
on the periodic domain T

2: i.e., an object over a finite
domain, which is embedded in the n-dimensional state-
space.

Despite this conceptual difference, it is admissible
to investigate Z instead of z, since z lies densely in
Z and thus Z contains all values that the trajectory z
can take on. This is captured by Eq. (5), which assures
that the supremum of z and the maximum of Z are
equal, which is especially important for application-
based investigation, where the maximum value of a
motion is often of great importance.

The fact that the entire information contained in z
is also contained in Z is also of great practical use for
other reasons: first, the mere calculation based on time
integration of a trajectory may only be carried out for
stable solutions: the analysis of unstable quasi-periodic
solutions is not possible this way. Moreover, gathering
sufficient information from a time-series may demand
for simulating over very long time intervals, which
implies high numerical costs. Additionally, even very

long and costly simulations are not fully reliable since
there is no assurance criterion whether the simulation
has captured all relevant characteristics or not.

All these problems associated with direct numerical
solution approaches are circumvented by the hyper-
time approach.

2.1.4 Interim summary

The previous examples demonstrated that various types
of stationary solutions—namely, periodic as well as
quasi-periodic solutions—are closely related and may
be cast into a common framework based on the calcula-
tion of invariant tori. Eventually, this is based on chang-
ing the independent variable from the physical time t to
so called hyper-times, which eventually represent the
p different time-scales inherent to a p-periodic prob-
lem. This substitution transforms the original dynam-
ical ODE (in time) to a corresponding PDE over the
hyper-times.As themost important benefit of this trans-
formation step, the domain of the solution is changed
from an infinite (i.e., t ∈ R) to a finite p-dimensional
domain T

p while keeping the same amount of infor-
mation. From a practical point of view, this means that
the entire dynamical information may be available by
only solving a problem of finite dimension. The addi-
tional effort to obtain these information in this gener-
alized framework is solving a PDE instead of an ODE.
However, since solving PDEs by numerical schemes
has become a standard problem in engineering and sci-
ences, this may be considered as minor problem. In
the following, a finite differences method (FDM) and a
Fourier- Galerkinmethod (FGM) will be presented
and compared in detail.

2.2 Finite difference method (FDM)

One approach to solve the resulting invariance equation
is the finite difference method (FDM). In the follow-
ing, the focus is kept on periodic and quasi-periodic
motions with two incommensurable frequencies, since
the extension to an arbitrary number of internal fre-
quencies can easily be formulated (cf. appendix 6.2).

In contrast to Sect. 2.3, where global ansatz func-
tions are used to discretize the solution on the entire
domain, the FDM discretizes the coordinate torus Tp

and provides solutions in specific points. The FDM
is well suited since the underlying coordinate domain
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Fig. 5 Equidistant discretization of a coordinate torus T1 for a
periodic motion
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Fig. 6 Equidistant discretization along θk , k = 1, 2 of a coordi-
nate torus T2 for a quasi-periodic motion

T
p—i.e., a p-dimensional hypercube with periodic

boundaries—is geometrically very simple andmayeas-
ily be discretized. For the cases considered in Sect.
2.1.1 to 2.1.3, the discretization grids are depicted in
Fig. 5 and 6, where i = 0, 1, ..., I and j = 0, 1, ..., J
are the indices of the discretization along θ1 and θ2.
Furthermore, the discretization along each torus coor-
dinate is equidistant, and the distance between two
points is defined by Δθ1 and Δθ2. Due to the dis-
cretization, local approximations of the (partial) deriva-
tives can be formulated with difference schemes. In
this context, it is important to note that the underly-
ing PDEs Eq. (14) and (26) are convection equations,
which demand for an appropriate discretization. In the
following, a third-order upwind scheme is chosen since
it considers the propagation direction of information
( dθk
dt > 0, k = 1, 2). For an approximation on a T

1,
the corresponding upwind scheme reads

D p(i) = 2Z̃ p(i+1)+3Z̃ p(i)−6Z̃ p(i−1)+Z̃ p(i−2)
6Δθ

(27)

and for an approximation on a T2 the scheme is

Dqp,1(i, j) = 2Z̃qp(i+1, j)+3Z̃qp(i, j)−6Z̃qp(i−1, j)+Z̃qp(i−2, j)
6Δθ1

Dqp,2(i, j) = 2Z̃qp(i, j+1)+3Z̃qp(i, j)−6Z̃qp(i, j−1)+Z̃qp(i, j−2)
6Δθ2

.

(28)

where Dk(i, j) ∈ R
n is the approximated derivative

with respect to the discretized direction k = 1, 2 and
Z̃(i, j) ∈ R

n is the local variable vector at each dis-
cretized point (i, j), i ∈ [0, I ], j ∈ [0, J ] . For
a T

1 the local variable vector exhibits the same size
Z̃(i) ∈ R

n , but requires an evaluation at less discretized
points (i), i ∈ [0, I ].

Furthermore, the phase condition in Eq. (23) has
to be reformulated for the discretized coordinate torus
(cf. [46], subsection 4.1). For the autonomous periodic
motion, the phase condition reads

Pp =
I∑

i=0

Z̃ p(i)
� d Z̃ p,0

dθ
(i), (29)

and for the quasi-periodic case one gets

Pqp =
I∑

i=0

J∑

j=0

Z̃qp(i, j)�
∂ Z̃qp,0

∂θ2
(i, j). (30)

Note that the differentiation is carried out in each coor-
dinate direction representing a time-scale involving an
autonomous frequency (here θ2(t) = ω2t). Addition-
ally, choosing a specific index i instead of a summation
would be possible.

Applying these discretization approaches to the
examples introduced inSect. 2.1.1, 2.1.2 and2.1.3 yield
the following algebraic equation systems:

(18) on T1 :
D p(i)Ω − f (Z̃ p(i), θ(i)) = 0, ∀i ∈ [0, I ] (31)

(20) on T
1 :[

D p(i)ω − f (Z̃ p(i))
Pp

]
= 0, ∀i ∈ [0, I ] (32)

(26) on T2 :[
Dqp,1(i, j)Ω+Dqp,2(i, j)ω− f (Z̃qp(i, j), θ1(i))

Pqp

]

= 0, ∀(i, j) ∈ [0, I ] × [0, J ] (33)

Note that the periodicity of the torus functions is easily
considered in the finite differences.
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These systems of nonlinear algebraic equations can
be solved with a Newton-type method. The calcula-
tion time can be significantly reduced by implementing
an algorithm providing the Jacobian-matrix structure
and using sparse matrices.

2.3 Fourier-Galerkin method (FGM)

In the following, the Fourier- Galerkin method
for periodic and quasi-periodic solutions with two
incommensurable frequencies is introduced.Again, the
extension to an arbitrary number of internal frequencies
can easily be formulated (cf. appendix 6.3).

In principle, a nonlinear algebraic equation system
for the determination of the Fourier coefficients is
obtained by Galerkin projection. In contrast to the
finite difference method from Sect. 2.2, the FGM relies
on global ansatz functions.

Formulating the Fourier series for periodic and
quasi-periodic solutions gives

Z̃ p = C0 +
N∑

H=1

CH cos(Hθ) + SH sin(Hθ) (34)

Z̃qp = C0 +
∑

‖H‖≤N

CH cos (H1θ1 + H2θ2)

+ SH sin (H1θ1 + H2θ2) . (35)

Here, the series have directly been formulated over a
T
1 or T2 for usage in the invariance Eq. (18), (20) and

(26). The index is either a scalar H (periodic case) or
a multi-index H = [H1, H2] (quasi-periodic case). Its
integers represent the higher harmonics and the specific
number is determined by the multi-index ‖H‖ ≤ N : it
indicates the summation over all possible integer vec-
tors H , for which ‖H‖ ≤ N holds. The type of norm
(Euclidean norm,maximumnorm, ...) best suited for an
accurate approximation is dependent on the individual
problem. The number N , which refers to the number of
higher harmonics, defines the accuracy of the truncated
series. This number can be adapted for each problem
iteratively until a desired accuracy is reached.
Example: If the maximum norm and the limit N = 1
are chosen ‖H‖∞ ≤ 1, then the included higher har-
monics H are

[
1 0

]
,
[
0 1

]
and

[
1 1

]
. The according

cosine-terms read cos(θ1), cos(θ2) and cos(θ1 + θ2).
Inserting the Fourier series of Eq. (34) and Eq.

(35) into the invariance equations of the examples intro-

duced inSect. 2.1.1, 2.1.2 and2.1.3 yields the following
nonlinear residuals:

(18) on T
1 : R p = dZ̃ p

dθ
Ω − f (Z̃ p, θ) (36)

(20) on T
1 : R p = dZ̃ p

dθ
ω − f (Z̃ p) (37)

(26) on T
2 : Rqp = ∂ Z̃qp

∂θ1
Ω + ∂ Z̃qp

∂θ2
ω − f (Z̃qp, θ1),

(38)

The unknown Fourier coefficients can be obtained
froman algebraic equation systemgiven byGalerkin-
projections on the ansatz functions 1, cos(.), and sin(.),
whereas the projection of the linear terms can be calcu-
lated explicitly. The equations for the non-autonomous
periodic case read

(18) on T1 :
2π∫

0

f (Z̃ p, θ1) dθ = 0

ΩSH − 2

2π

2π∫

0

f (Z̃ p, θ1) cos (Hθ) dθ=0

ΩCH + 2

2π

2π∫

0

f (Z̃ p, θ1) sin (Hθ) dθ=0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

H=1. . .N ,

(39)

the autonomous periodic case

(20) on T
1 :

2π∫

0

f (Z̃ p) dθ = 0

ωSH − 2

2π

2π∫

0

f (Z̃ p) cos (Hθ) dθ=0

ωCH + 2

2π

2π∫

0

f (Z̃ p) sin (Hθ) dθ=0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

H=1 . . . N

2π∫

0

Z̃ p(θ)�
dZ̃ p,0

dθ
dθ = 0. (40)
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Accordingly, the quasi-periodic case reads

(26) on T2 :
2π∫∫

0

f (Z̃qp, θ1) dθ1dθ2 = 0

(Ω H1 + ωH2) SH−

2

(2π)2

2π∫∫

0

f (Z̃qp, θ1) cos (H1θ1+H2θ2) dθ1dθ2=0

(Ω H1 + ωH2)CH+

2

(2π)2

2π∫∫

0

f (Z̃qp, θ1) sin (H1θ1+H2θ2) dθ1dθ2=0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

‖H‖ ≤ N .

2π∫∫

0

Z̃qp(θ2)
� ∂ Z̃qp,0

∂θ2
dθ1dθ2 = 0. (41)

Alternatively, choosing a specific value for θ1 instead of
an integration in the phase conditionwould be possible.
Please note that the periodic boundary conditions are
already identically fulfilled by using Fourier series.
The integration can be performed very efficiently with
a (2D-)FFT algorithm, as, e.g., proposed in [8].

2.4 A note on solution and approximation existence

Concerning existence, proofs for some stationary solu-
tion types and their corresponding approximations can
be found in the literature. Urabe and Stokes proofed
for non-autonomous and autonomousODEs that a peri-
odic solution exists, if aGalerkin approximation with
sufficientlymanyharmonics does.Conversely, the exis-
tence of a periodic solution implies the existence of
an approximation under certain conditions. The cor-
responding proofs and conditions can be found in
[51,52]. For quasi-periodically forced ODEs similar
statements can be found in [53]. Among other things,
the conditions for these existence proofs require that the
solution is isolated and that the associated vector field f
is smooth to some degree. This is often the case in engi-
neering application, but can, e.g., become problematic
in non-smooth systems involving frictional contacts.
Additionally, Samoilenko showed in [42] the existence
of tori for equations being nonlinear in the torus coor-
dinates θ and linear in the normal coordinates u. A

π

θ = ωt

z 2
(t
)

ε = 0.01

π

θ = ωt

z 2
(t
)

ε = 3

Fig. 7 Schematic depiction of the state-space coordinate z2(t)
over hyper-time θ = ωt

proof of the existence of general quasi-periodic solu-
tions and corresponding approximations is not known
to the authors.

However, the discussed methods are hardly applica-
ble without some a priori knowledge. The dimension p
of the torus must be known as well as close-by initial
conditions for the solution of the nonlinear equation
system. Both prerequisites are met, when the methods
are used within a continuation scheme.

3 Method comparison: the VAN-DER-POL

equation

The main focus of this section is to compare the behav-
ior of both presented methods regarding the influence
of the degree of nonlinearity of the considered prob-
lem. Two criteria are chosen to evaluate and compare
both methods.

The first one is the resulting methodological error
estimate. In the context of the FDM, the error estimate
is defined as:

εFDM =
∣∣∣Z̃i i i − Z̃i i

∣∣∣
∣∣∣Z̃i i i

∣∣∣
, (42)
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Table 2 Reference time of one Newton-step used in Figs. 8, 10 and 11

Periodic Quasi-periodic (ε = 0.01) quasi-periodic (ε = 3)

FGM 0.0785 s 0.1433 s 0.1098 s

FDM 0.0237 s 0.2579 s 0.1289 s

0 1 2 3
0

5

10

15

20

ε
0 1 2 3

0

2,000

4,000

6,000

8,000

Fig. 8 Averaged results of a periodic solution continuation with a maximum method specific error estimate/indicator of εFDM =
εFGM = 1e−5

where Z̃i i i is a discrete solution obtained by a third-
order upwind scheme (cf. Sect. 2.2) and Z̃i i is the
discrete solution obtained by a second-order upwind
scheme. Concerning the FGM, an error indicator is
defined as:

εFGM =
∥∥∥∥

2

(2π)p

∫

Tp
|R| dθ

∥∥∥∥
2
, (43)

where R is the residual vector and its absolute value
is integrated over the coordinate torus. The value εFGM
is then equal to the 2-norm of the results and must
be seen as an error indicator rather than an error esti-
mate in the usual sense. Please note that there are
cases (i.e., discontinuous nonlinearities), where resid-
ual norms and error measures may not be well corre-
lated (see, e.g., [17]).Unfortunately, due to the different
approaches of both methods, a suitable common error
measure is not available.

The relative calculation time is the second criterion.
Since both methods are implemented as non-optimized
research codes, a relative quantity for the time is cho-
sen, neglecting the influence of implementation effi-
ciency. In order to suppress the influence of initial con-
ditions, the calculation time of a single Newton-step

is measured. The references for relative time values are
given in Table 2.

In the following, the influence of two different
aspects on these criteria is investigated:

• Influence of nonlinearities: for a given error tol-
erance, the relative calculation time as well as the
necessary number of grid points (FDM) and num-
ber of harmonics (FGM) will be determined as a
function of the degree of nonlinearity. To this end,
a parametric continuation will be carried out.

• Convergence: by analyzing the relative calculation
time as well as the error estimate/indicator while
varying the number of grid points and the number of
harmonics, the h-/p-convergence of both methods
will be investigated.

In order to exclude the influence of background pro-
cesses, each analysis is carried out 30 times, the arith-
metic mean value is determined and the resulting value
is subsequently used.

3.1 Van- der- Pol equation without forcing

For the case of vanishing forcing, the van- der- Pol
equation
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d2x

dt2
+ ε

(
x2 − 1

) dx

dt
+ x = 0 (44)

exhibits periodic oscillation due to a self-excitation
mechanism. The parameter ε controls the nonlinearity
and thus lends itself as continuation parameter to study
the influence of the nonlinearity. Starting with almost
sinusoidal shape for small ε � 1, the solution degener-
ates with growing nonlinearity and eventually exhibits
the typical relaxation oscillations for large values of
ε (cf. Fig. 7).

Equation (44) is transformed into state-space
z=̂[z1, z2]� = [x, dx

dt ]�. The periodic solution is cal-
culated by replacing z(t) : R

1 → R
2 by Z(θ) :

T
1 → R

2 assuming a periodic solution. The base
frequency is unknown, by which a phase condition is
required:

∂Z
∂θ

ω = f (Z)

P =
2π∫

0

Z� ∂Z0

∂θ
dθ = 0

Z(θ) = Z(θ + 2π).

(45)

Figure 8 shows the influence of the nonlinearity on
the performance of both considered numerical meth-
ods. The relative calculation time (left ordinate) and the
method specific approximation resolution (right ordi-
nate) are depicted as function of ε.

The continuation in ε is initialized at ε = 0.01 and
carried out by demanding an upper boundary for the
error estimate/indicator. As soon as this error threshold
is exceeded, the method specific approximation reso-
lution is increased. Figure 8 illustrates this stepwise
growth, where the step height depends on the cho-
sen interval (FDM: 500 mesh points, FGM: 2 harmon-
ics).

Comparing the method specific approximation res-
olution, the FDM requires a relatively high number
of mesh points for small nonlinearities. Since a limit
cycle has to be discretized, a minimum number of
mesh points is inevitable to discretize the time-interval
sufficiently. In contrast to that, the FGM, which is
based on global ansatz functions, can approximate this

θ1 = Ωtθ2 = ωt

z 2
(t
)

θ1 = Ωtθ2 = ωt

z 2
(t
)

Fig. 9 Schematic depiction of the state-space coordinate z2(t)
over the scaled two-dimensional hyper-time θ1 = ωt and θ2 =
Ωt

weaklynonlinear solutionwith loweffort since theperi-
odic solution is already very well approximated by 4
harmonics. Continuing the solution towards stronger
nonlinearities, the relative calculation time evolves
almost quadratic, where the gradient of the FGM is
steeper.

3.2 Forced van- der- Pol equation

The previous investigation indicated a dependency of
the methods on the degree of nonlinearity. In order to
analyze both methods regarding quasi-periodic oscil-
lations, a harmonic forcing term is added to Eq. (44)

d2x

dt2
+ ε

(
x2 − 1

) dx

dt
+ x = f f cos(Ωt). (46)

Choosing the parameters f f = 1.2, Ω = 2.5, ε =
{0.01, 3}, quasi-periodic motions occur. The influence
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Fig. 10 Averaged results of a quasi-periodic solution with an approach refinement for ε = 0.01

0 1 2 3 4

·104
0

20

40

60

0 1 2 3 4

·104
10−2

10−1

100

ε F
D

M

0 50 100 150 200
0

300

600

900

0 50 100 150 200
10−1

100

101

ε F
G

M

Fig. 11 Averaged results of a quasi-periodic solution with an approach refinement for ε = 3

of nonlinearities, namely relaxation type oscillations,
persists when analyzing quasi-periodic solutions (cf.
Fig. 9). In order to calculate quasi-periodic motions
with two independent frequencies, the time-function
z(t) : R

1 → R
2 is replaced by the torus-function

Z(θ1, θ2) : T2 → R
2. The solution contains two inde-

pendent frequencies: Ω and ω. The first one is related
to the externally imposed forcing and thus is known
a priori. However, the second independent frequency
is not known beforehand since it is an autonomous
frequency: thus, as an additional equation one phase-
condition must be added to assure solvability of the
problem. Eventually, this yields

∂Z
∂θ1

Ω + ∂Z
∂θ2

ω = f (Z, θ1)

P =
2π∫∫

0

Z� ∂Z0

∂θ2
dθ1dθ2 = 0

Z(θ1, θ2) = Z(θ1 + 2π, θ2)

= Z(θ1, θ2 + 2π).

(47)

As before, the h-/p-convergence of both methods is
investigated: to this end, the relative calculation time
and the error estimate/indicator are outlined as func-
tions of the number of grid points (FDM) and the
number of harmonics (FGM), respectively. Figure 10
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shows the corresponding results for a weak nonlinear-
ity (ε = 0.01): for the FDM it is observed that a rough
approximation (i.e., with a relatively high error esti-
mate) may be obtained already with very few mesh
points. This error estimate can significantly be reduced
by increasing the number of grid point, which in return
results in an increase of calculation time. In contrast
to that, the FGM achieves a very small residual error
with only very few harmonics. Increasing the number
of harmonics slightly, results in an almost negligible
error with a minor increased relative calculation time.

The corresponding results for a stronger nonlinearity
(ε = 3) are displayed in Fig. 11. For this considerably
strong nonlinearity, the FDM still performs very well:
rough approximationswith an acceptable accuracymay
be obtained on coarse grids. Increasing the number
of grid points, the error estimate significantly drops.
Obviously, the nonlinearities of the considered problem
have only limited influence on the performance of the
approach. In contrast, the FGM is significantly affected
by this strong nonlinearity: large residual errors for
small numbers of harmonics indicate an unacceptable
approximation. In fact, the error even slightly increases
at first, when the number of harmonics is raised: the
FGM requires a sufficiently large number of higher
harmonics for asymptotic convergence to occur. This
statement can be found for non-/autonomous periodic
and non-autonomous quasi-periodic solution types in
the proofs from Urabe and Stokes (see Sect. 2.4).
Decreasing the residual error demands for an extremely
high number of harmonics, whereas the error remains
considerably high.

Comparing both methods for the given van- der-
Pol equations, it may be summarized that the FGM
is better suited for the cases with weak nonlineari-
ties, when solutions can be approximated with a low
number of global ansatz-functions. For stronger non-
linearities, the amount of necessary higher harmonics
increases tremendously, which leads to a substantial
growth in calculation time. Concerning quasi-periodic
oscillations, this effect is amplified due to linear com-
binations of higher harmonics, which becomes increas-
ingly important as the nonlinearities increase.

The FDM requires a certain amount of mesh points
to provide a basic resolution and accuracy of the
approximations of the van- der- Pol equations. It is
found that the accuracy may be effectively improved
by increasing the number of grid points. In contrast to
the FGM, the performance of the FDM is not strongly

Fig. 12 Rotor model

affected by the chosen strong nonlinearities: even for
strong nonlinearities it still provides high accuracy for
a limited number of grid points. Eventually, this very
favorable behavior results from the fact that the FDM
does not explicitly try to approximate the spectral con-
tent, but is only designed to approximate the manifold.

4 An engineering application: simultaneous
forcing and self-excitation in a rotordynamic
model

The presented methods are applied to a minimal rotor-
dynamical model.

The investigated system consists of an isotropic,
unbalanced Jeffcott-rotor (Laval-rotor) with exter-
nal and internal damping, gravitational influence and
nonlinear cubic damping forces (cf. Fig. 12). Introduc-

ing the dimensionless time τ = ω0t (ω0 =
√

c
m ) aswell

as the scaled coordinates q = [x/e, y/e]� (where e is
the mass eccentricity) yields the equations of motion
in dimensionless form:

Mq ′′ + Dq ′ + Kq = rg + ru(ητ) + rnl(q ′), (48)

where (.)′ = d(.)
dτ denotes differentiation w.r.t. the

dimensionless time and

M =
[
1 0
0 1

]
, K =

[
1 2Diη

−2Diη 1

]
,

D =
[
2Di (1 + δ) 0

0 2Di (1 + δ)

]
,

(49)
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are the mass matrix, the matrix of position proportional
terms and the dampingmatrix, respectively. Theparam-
eters Di = di

2mω0
, δ = Da

Di
and η = ωe

ω0
are measures

of internal damping, the ratio of external to internal
damping and the rotational speed ωe. The right-hand
side of Eq. (48) consists of

rg =
[

0
−Fg

]
, ru(ητ) = η2

[
sin(ητ)

cos(ητ)

]
,

rnl(q ′) = D3

[
q ′3
1

q ′3
2

]
,

(50)

where rg is the scaled gravitational force, ru is the forc-
ing due to unbalance and rnl are the nonlinearities. The
parameter Fg = g

eω2
0
captures the influence of gravity,

while D3 = ω0e2d3
m controls the strength of nonlinear-

ities. For D3 = 0 the problem is linear and shows the
typical behavior due to internal damping, as it is dis-
cussed in textbooks on rotordynamics: the particular
solution may easily be calculated. It comprises a con-
stant part due to gravity

qG = Fg

1 + (2Diη)2

[
2Diη

−1

]
. (51)

and a harmonic part with frequency η due to forcing.
Perturbations are governed by the homogeneous

solution: a simple eigenvalue analysis shows that the
particular solution will become unstable at ηcri t =
1 + Da

Di
. Beyond this critical speed the system will

exhibit self-excited vibrations. Thus, for η > ηcri t two
independent excitation mechanisms—namely unbal-
ance and self-excitation due to internal damping—
will affect the system and quasi-periodic solutions will
occur.

For D3 > 0, nonlinear damping will be present in
the system. First, it is found that the stability threshold
is only weakly influenced by these nonlinear terms.
The major effect of this nonlinearity is the limitation
of the amplitudes in the quasi-periodic regime η >

ηcri t . Thus, for the nonlinear system with unbalance
and internal damping the system will show stationary
quasi-periodic oscillations.

In order to calculate invariant solutions of the sys-
tem using the generalized invariance method described
before, Eq. (48) is transformed into the state-space,
where z=[z1, z2, z3, z4]� = [q1, q2, q ′

1, q ′
2]� is cho-
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Fig. 13 Maximum and minimum rotor amplitude A for e =
0.01. (QPS: quasi-periodic motion (stable), PS: periodic motion
(stable), PU: periodic motion (unstable), TS: time simulation)
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Fig. 14 Maximum and minimum rotor amplitude A for e =
0.25 . (QPS: quasi-periodic motion (stable), PS: periodic motion
(stable), PU: periodic motion (unstable), TS: time simulation)

sen. Subsequently, the approaches from Sect. 2 can be
applied without any further considerations.

In order to calculate periodic solutions, the function
z(t) : R

1 → R
4 is substituted by Z(θ1) : T

1 →
R
4. This stationary solution stems from the unbalance

forcing: therefore, the base frequency is a priori known
to be Ω = η and the corresponding torus coordinate is
chosen as θ1 = Ωτ mod 2π . Since the frequency is
known, no phase condition is required. Eventually, the
corresponding boundary value problem reads

dZ
dθ1

Ω = f (Z, θ1), Z(θ1) = Z(θ1 + 2π). (52)

To approximate the quasi-periodic motions with two
independent base frequencies the function z(t) : R1 →
R
4 is replaced by Z(θ1, θ2) : T2 → R

4. The torus coor-
dinates are chosen as θ1 = Ωτ mod 2π and θ2 = ωτ
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mod 2π , whereΩ = η is the imposed frequency of the
unbalance excitation while ω is the a priori unknown
frequency due to self-excitation. The invariant mani-
fold is obtained by solving the boundary value problem

∂Z
∂θ1

Ω + ∂Z
∂θ2

ω = f (Z, θ1),

Z(θ1, θ2) = Z(θ1 + 2π, θ2)

= Z(θ1, θ2 + 2π)

2π∫

0

2π∫

0

Z� ∂Z0

∂θ2
dθ1dθ2 = 0. (53)

The following parameters remain fixed in all continua-
tions: Di = 0.2, δ = 1

3 , D3 = 0.25 and Fg = 0.3924.
For the continuation the parameter η is chosen accord-
ingly to η ∈ [0.01, 2] and two cases of eccentricity are
investigated e = {0.01, 0.25}.

In order to present the continuation results, the
Cartesian rotor coordinates are transformed into polar
coordinates pursuant to

q = qG + q̄, where q̄ =
[

A cosϕ

A sin ϕ

]
(54)

and qG is determined by Eq. (51). The continuation
results are depicted in Figs. 13 and 14. To keep the
figures clear only one continuation result is depicted
(FDM), since both methods provide almost the same
result. Considering all conducted continuations, the
maximum deviation of periodic solutions and quasi-
periodic solutions is max |AFDM,p− AFGM,p| = 6.7e−5

and max |AFDM,qp − AFGM,qp| = 3.1e−3.
First, periodic solutions (P) are calculated onT1: due

to symmetry of the problem, these are circular orbits
around the static displacement and thus the extrema
of A are constant at every η. Evaluation of the Flo-
quet-multipliers reveals a Neimark- Sacker bifur-
cation (NSB): at this point the periodic solutions gets
unstable and a branch of quasi-periodic solutions (QP)
arises. This branch is solved by calculating the invari-
ant manifold on T2. From this, the extrema of the QP-
solutionsmay readily be determined: these are outlined
in Figs. 13 and 14 as solid lines. For the P- and QP-
solutions, the suffixU indicates unstable, while the suf-
fix S indicates asymptotically stable solutions. While
the stability of the P-solution is efficiently assessed by

means of Floquet-multipliers, a similar way for QP-
solutions was not applied here. The stability can be
analyzed by investigating the Lyapunov-exponents.
However, this demands for analyzing long time series,
and thus is not favorable with regard to numerical effi-
ciency. An alternative numerical approachwas recently
developed by Fiedler [18].

Investigating the time simulation (TS) results ver-
ifies the predicted behavior from the continuation in
the stable regions, where the maximum and minimum
amplitudes of the (stable) stationary solutions (P and
QP) coincide with the TS. As soon as the periodic solu-
tion loses its stability, it cannot be identified by the TS.

In order to compare the results of both methods and
analyze the rotor motion, chosen representative results
are depicted in Figs. 15 and 16. These plots are obtained
by reconstructing the time signal from the invariant
manifolds (z(t)=̂Z(Ωt, ωt)). Please note that the ori-
gins of coordinates do not coincide with the orbit cen-
ters due to gravitational force.

Comparing the periodic results in (a), the FGM
and FDM accord very well with the TS. Furthermore,
comparing only the results of both methods does not
show any significant difference (squares and asterisk).
The comparison of the quasi-periodic results is divided
in two pictures. The first one (b) compares the three
approaches over a small time interval, and the second
one (c) shows the same results over a large time inter-
val. The comparison in (b) pursues the investigations
made by the periodic results. Both, the FGM and the
FDM, provide the same results and coincide with the
TS. The long time behavior shows a more completed
picture of the resulting motion but the agreement stays
equally good.

5 Conclusion

Quasi-periodicity is a highly interesting phenomenon,
and its relevance is increasingly recognized by prac-
titioners. Therefore, efficient, robust and easy-to-use
numerical algorithms are needed.

By this paper, the authors intended to contribute an
easily accessible perspective of rigorous mathemati-
cal approaches and numerical implementations, which
may be efficiently used by application oriented engi-
neers. To this end, essential notions, definitions and
concepts have been summarized and put in an applica-
tion oriented context.
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Fig. 15 Rotor orbits for e = 0.01: (a) η = 1.0; (b) η = 1.9, small τ interval; (c) η = 1.9, large τ interval (cf. figure 13)
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Fig. 16 Rotor orbits for e = 0.25: (a) η = 1.0; (b) η = 1.9, small τ interval; (c) η = 1.9, large τ interval (cf. Fig. 14)

First, stationary quasi-periodic motions are defined
as signals with discrete line spectra that contain linear
combinations of incommensurable base frequencies.
Eventually, this implies that the signal does not exhibit
a finite periodicity in time. Of particular importance is
the distinction between stationary trajectories and the
corresponding invariant manifolds, in which the trajec-
tories are densely embedded. Moreover, the concept of
torus functions allowed to reveal inherent periodicities,
which are not visible in the trajectory but become obvi-
ous in the representation as torus function on p-tori.

Based on this theoretical foundation, two numerical
concepts for computing p-tori were presented in the
context of a brief literature review. Among these meth-
ods, the class of hyper-time parametrization methods
seems to be the most promising approach for practi-
cal application, since they do not need any costly and
cumbersome a priori coordinate transformation.

As has been shown, the hyper-time methods are
based on substituting the time-dependent trajectory
z(t)by the torus-function Z(θ1, . . . , θp),whichdescribes
the invariant torus. This parametrization is directly

introduced in the governing equations ofmotion,which
results in a semi-linear partial differential equation of
convection type with periodic boundaries. To assure a
solvable equation system, these PDEs must be accom-
panied by a phase condition for every autonomous base
frequency.

We presented two prominent numerical schemes for
solving these equations: the finite difference method
(FDM) and the Fourier- Galerkinmethod (FGM).A
comparison between these methods in terms of compu-
tation time and degree of nonlinearity showed, that—
based on the investigated example—the finite differ-
ence approach is much faster and more robust for
problems with stronger nonlinearities. The Fourier-
Galerkin method performs better for weaker ones,
where accurate solutions may be obtained with only
a small number of harmonics. A rotordynamic exam-
ple showcased the application of the two methods for
un-/stable forced periodic solutions and quasi-periodic
solutions due to an added autonomous frequency.

However, there is still a multitude of open topics as,
e.g., reliably computing initial conditions, improving
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hyper-time methods to handle bifurcations (as, for
instance, synchronization) and generally improving
robustness of the existing methods.
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6 Appendix

6.1 Generalized Invariance Equation in Hyper-Time

In the following, the generalized invariance equation
in hyper-time is deduced. Note that the three cases dis-
cussed in section 2.1 are included in this formulation.
Suppose that the solution of equation

dz
dt

= f (z,Ωt)
z(t) : R1 �→ R

n

f (z,Ωt) : Rn × R
m �→ R

n

(55)

with Ω = [Ω1, ...,Ωm] contains p incommensurable
angular basis frequencies z(t) = Z(νt). It is assumed
that Ω is externally prescribed. The remaining p −
m angular basis frequencies ω = [ωm+1, ..., ωp] are
unknown autonomous frequencies of the system.

Changing the independent variables from time t to
the new hyper-time coordinates θ = [θ1, ..., θp] ∈ T

p,
the corresponding transformation of the differential
operator reads

θk = Ωk t mod 2π, k = 1, ..., m
θk = ωk t mod 2π, k = m + 1, ..., p

→ d(.)

dt
=

m∑
k=1

∂(.)

∂θk
Ωk +

p∑
k=m+1

∂(.)

∂θk
ωk

(56)

Inserting the latter togetherwith the torus function Z(θ)

into Eq. (55) yields

m∑

k=1

∂Z
∂θk

Ωk +
p∑

k=m+1

∂Z
∂θk

ωk = f (Z, θ̂),

Pk = 0, k = m + 1, ..., p

Z(θ) = Z(θ + 2πek),

Z(θ) : T
p �→ R

n,

f (Z, θ̂) : R
n × T

m �→ R
n,

ω ∈ R
p−m, (57)

where θ̂ = [θ1, ..., θm], ek is the k-th unity vector and
Pk = 0 represents p − m appropriate phase conditions
(cf. 2.1.2) to ensure a solvable equation system.

6.2 Generalized Finite Difference Method

The discretization used in section 2.2 is based on a
general scheme for Tp, which will be presented in the
following. First, each coordinate θk of the p-torus is
discretized by using Ik + 1 equidistant nodes (Δθk),
where the indexing is given by ik = 0, 1, ..., Ik with
k = 1, ..., p. To simplify notations, the vectors

i = [i1, ..., i p]� i ∈ R
p

ek = [0, ..., 0, 1, 0, ..., 0]� ek ∈ R
p

(58)

are introduced,where ek is the k-th unity vector. Choos-
ing a third-order upwind scheme, the differentiation
with respect to the kth torus coordinate is discretized
as:

Dqp,k(i) = 2Z̃(i+ek )+3Z̃(i)−6Z̃(i−ek )+Z̃(i−2ek )
6Δθk

. (59)

The generalized phase condition has to be evaluated
for each torus coordinate involving an autonomous fre-
quency

Pqp,l =
∑

i∈Tp

Z̃qp(i)�
∂ Z̃qp,0

∂θl
(i), l = m + 1, ..., p.

(60)

Note that the sum is taken over the whole manifold and
solely the derivation of the known solution Z̃0 consid-
ers the corresponding direction and, therefore, defines
an additional equation for the unknown autonomous
frequency ωl . Taking the previous steps into account,
the system of nonlinear equations describing a solution
on a discretized T

p is
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⎡

⎢⎢⎣

m∑
k=1

Dqp,k(i)Ωk +
p∑

k=m+1
Dqp,k(i)ωk − f (Z̃qp(i), θ̂(i))

[Pqp,m+1, ...., Pqp,p]�

⎤

⎥⎥⎦

= 0, ∀i ∈ [0, I1] × ... × [0, Ip]
(61)

where θ̂ = [θ1, ..., θm] is a vector containing the torus
coordinate values θi in all non-autonomous directions
and at all discretized points. The calculation of solu-
tions on aTp issues a large number of variables, namely
R

n ×R
I1 ×...×R

Ip . However, the systematic approach
is straightforward.

6.3 Generalized Fourier- Galerkin Method

A generalized Fourier- Galerkin method for a p-
torus formed by m non-autonomous independent fre-
quencies Ω and p − m autonomous frequencies ω is
derived here as an extension to chapter 2.3. First, a p-
dimensional Fourier series

Z̃qp = C0 +
∑

‖H‖≤N

CH cos
(
Hθ�)

+SH sin
(
Hθ�)

(62)

is set up, where Hθ� = [
H1θ1 + · · · + Hpθp

]
is the

scalar product between the higher harmonics vector H
and the torus coordinates vector θ . ‖H‖ ≤ N is amulti-
index. The series is inserted into the general PDE in Eq.
(55) for p-torus coordinates, which gives the residual

Rqp = ∂ Z̃qp

∂θ
ν − f

(
Z̃qp, θ̂

)
, (63)

where ν = [
Ω1, . . . ,Ωm, ω1, . . . , ωp−m

]� and where
f is only dependent on the first m-torus coordinates
θ̂ = [θ1, ..., θm] referring to the non-autonomous fre-
quencies Ω . A Galerkin-projection on the ansatz
functions yields

1

(2π)2

∫

Tp
f (Z̃qp, θ̂) dθ = 0

ν�HSH−
2

(2π)2

∫

Tp
f (Z̃qp, θ̂) cos

(
Hθ�)

dθ = 0

ν�HCH+
2

(2π)2

∫

Tp
f (Z̃qp, θ̂) sin

(
Hθ�)

dθ = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

‖H‖ ≤ N .
∫

Tp
Z̃

�
qp

∂ Z̃qp,0

∂θi
dθ = 0 ∀i ∈ [m + 1, p], (64)

where the last p − m equations are the integral
Poincaré phase conditions for the autonomous fre-
quencies. The integrations in the projections can be
performed by a p-dimensional FFT algorithm.
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