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Abstract

Copper (Cu) is an essential element for plants and microorganisms and at

larger concentrations a toxic pollutant. A number of factors controlling Cu

dynamics have been reported, but information on quantitative relationships is

scarce. We aimed to (i) quantitatively describe and predict soil Cu concentra-

tions (CuAR) in aqua regia considering site-specific effects and effects of pH,

soil organic carbon (SOC) and cation exchange capacity (CEC), and (ii) study

the suitability of mixed-effects modelling and rule-based models for the analy-

sis of long-term soil monitoring data. Thirteen uncontaminated long-term

monitoring soil profiles in southern Germany were analysed. Since there was

no measurable trend of increasing CuAR concentrations with time in the

respective depth ranges of the sites, data from different sampling dates were

combined and horizon-specific regression analyses including model simplifica-

tions were carried out for 10 horizons. Fixed- and mixed-effects models with

the site as a random effect were useful for the different horizons and signifi-

cant contributions (either of main effects or interactions) of SOC, CEC and pH

were present for 9, 8 and 7 horizons, respectively. Horizon-specific rule-based

cubist models described the CuAR data similarly well. Validations of cubist

models and mixed-effects models for the CuAR concentrations in A horizons

were successful for the given population after random splitting into calibration

and validation samples, but not after independent validations with random

splitting according to sites. Overall, site, CEC, SOC and pH provide important

information for a description of CuAR concentrations using the different

regression approaches.

Highlights

• Information on quantitative relationships for factors controlling Cu dynam-

ics is scarce
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• Site, CEC, SOC and pH provide important information for a description of

Cu concentrations

• Validations of cubist models and mixed-effects models for A horizons were

successful for a closed population of sites
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1 | INTRODUCTION

Copper is an essential element for all forms of life and at
larger concentrations a toxic pollutant for, among
others, plants and microorganisms. In all living organ-
isms and in the soil, the most important Cu oxidation
state is +II. Soil Cu consists of geogenic Cu and addi-
tional anthropogenic inputs (especially organic fer-
tilisers and Cu-containing pesticides) depending on the
anthropogenic activity (i.e., agricultural management,
mining or industrial activity). Since Cu mobility in soils
is very low (the apparent mean transport rate of anthro-
pogenic Cu was estimated to be approximately 1 cm/
year (Bigalke et al., 2010; Bloetevogel et al., 2018)),
anthropogenic activities may mostly affect surface soil
Cu concentrations. Prediction of Cu concentrations in
soils is difficult, not only because of different anthropo-
genic input sources, but also because of a large number
of factors controlling Cu dynamics, such as site-specific
soil properties (determined by the parent material, min-
eralogical composition, and soil texture), precipitation/
dissolution of sparingly soluble salts, concentrations of
soil organic carbon (SOC), pH, cation exchange capacity
(CEC), and extractable Fe, Al and Mn concentrations.
The effects of these factors have been investigated in
detailed analytical studies, which will be summarised
below. However, quantitative information on the rela-
tionship between Cu concentrations and the controlling
factors is scarce.

Site-specific soil properties determined by parent
material, mineralogical composition, and soil texture
may affect Cu dynamics considerably. It is well
established that geogenic Cu concentrations depend on
the Cu present in the parent material (EFSA, 2008). The
importance of texture for Cu dynamics is evident from
the Cu concentrations in aqua regia (CuAR) for the main
texture classes of a data set of 624 German soil monitor-
ing sites: in sandy soils, median CuAR concentrations
were small (7 and 5mg/kg for arable and grassland soils,
respectively) compared to loamy (15 and 21), silty
(17 and 23) and clayey (19 and 21) soils. For forest soils,
there was also a gradient from larger concentrations in

clayey soils to smaller concentrations in all other soils
(UBA, 2004). The importance of texture, which is simply
a particle size fraction, for Cu dynamics can be explained
by the presence of clay minerals and metal hydroxides in
the clay-sized fraction in European soils, which are
known to be of great importance for Cu dynamics at most
sites (Bloetevogel et al., 2018).

Several sparingly soluble Cu salts exist, but these are
important only at sites with very large Cu concentrations,
especially in sandy soils with low sorption
(e.g., precipitation of malachite, cuprite or copper
[I] sulfide), carbonate-containing soils (e.g., precipitation
of CuCO3) or in Cu deposit sites (e.g., chalcopyrite)
(Bloetevogel et al., 2018).

In addition to clay minerals and metal hydroxides,
SOC also affects Cu sorption and thus Cu dynamics. In
soils, there is a large fraction of organically-bound Cu
and soil organic matter plays an important role in Cu
retention (Fijałkowski et al., 2012). Cu dynamics may be
considerably affected by the pH because of the pH
dependency of sorption, complexation, solubilisation,
and desorption processes in soils (Caporale &
Violante, 2016; Dinic et al., 2019). The CEC has also
been reported to be associated with Cu dynamics, but
only to a minor extent. This may be due to actual cation
exchange reactions, and mostly indirectly due to the typ-
ically close positive relationship between CEC and clay
concentration of soils. Additional control factors are
dithionite-extractable Fe and Al concentrations and
oxalate-extractable Mn concentration, and surface com-
plexation models may describe the Cu ion reactions with
the metal (hydr)oxides (Groenenberg & Lofts, 2014;
Peng et al., 2018).

Soil monitoring (see Barth et al., 2000 for detailed
information on its main aims) may contribute to scien-
tific advances for field-scale predictions of CuAR, since
multivariate data sets with CuAR and several of the pre-
dictors given above are available at high spatial and tem-
poral resolution for several sites. For our study, high-
resolution data on CuAR, SOC concentration, pH and
CEC for a number of horizons in soil profiles in southern
Germany were available. We used this information in
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combination with the variable “site”, which aggregates
various site-specific variables (e.g., parent material and
specific mineral composition), for CuAR regressions.

Different regression approaches exist, each with par-
ticular advantages and limitations. The usefulness may
depend on the scale of the variables, the presence of col-
linearity among the predictors, sample size, sampling
design, and research aims. Mixed-effects models are pow-
erful modelling tools (Galecki & Burzykowski, 2013) and
may be the method of choice in many studies for eluci-
dating potential relationships between a response vari-
able and independent variables in soil science. However,
for this approach, requirements are normality of resid-
uals and—if not explicitly implemented otherwise—vari-
ance homogeneity (e.g., Welham et al., 2014; but see
discussions by Schielzeth et al. (2020) and Knief and For-
stmeier (2021)). Such requirements, nevertheless, can be
overcome by using generalised linear mixed models
(Stroup, 2012).

In machine learning approaches, such as regression
trees and rule-based models, the focus is on cross-
validation or calibration–validation approaches rather
than on residual inspections (Lantz, 2019). Such
approaches may be useful especially for large data sets,
which provide an adequate training of the algorithms
during the calibration. Regression trees are especially
useful for complex, nonlinear relationships among inde-
pendent variables and the response variable. Moreover,
in contrast to regression modelling using fixed or mixed
effects, no distributional assumptions about the data are
made (Lantz, 2019). Rule-based models, such as the cub-
ist model, differ from regression trees not only in the
splitting criterion but also because the terminal nodes
(i.e., leaves in regression trees, which contain simple
averages of the response variable) contain linear regres-
sion models (Kuhn & Quinlan, 2021; Lantz, 2019). A
problem—compared to mixed-effects modelling—may be
that temporal dependencies or a hierarchical (multi-stra-
tum) sampling design or both are not adequately
considered.

The objectives of this study were (i) to quantitatively
describe and predict soil CuAR concentrations consider-
ing site-specific effects (which are determined by parent
material, mineralogical composition and texture) and
effects of pH, SOC and CEC, and (ii) to study the suitabil-
ity of mixed-effects modelling and rule-based models for
the data analysis using long-term monitoring soil data.
The predictive ability of the two algorithms was tested in
five-fold partitions of the data set in calibration–
validation approaches with either random splits of the
data set or with random splits according to the site for
subsequent predictions at either existing sites or new
sites, respectively.

2 | MATERIALS AND METHODS

2.1 | Monitoring and soil analyses

Thirteen locations in Bavaria, southern Germany, so-
called focus areas, were selected for soil monitoring with a
high-resolution timeline, primarily to detect the back-
ground noise in short periods of time and thus character-
ise them (Figure 1). A selection criterion was that most
sites should represent the natural background level, that
is, that CuAR concentrations are predominantly geogenic
and thus mostly not related to anthropogenic sources.
Background levels for inorganic substances include a
geogenic component—that is, the substance content of the
soil resulting from the parent rock (lithogenic component)
and the redistribution (enrichment and depletion) of sub-
stances in the soil influenced by pedogenetic processes—
and the ubiquitous substance distribution as a result of dif-
fuse inputs into the soil (Bayerisches Landesamt für
Umwelt, 2011). Land uses included one extensive grass-
land, two intensive grasslands, three coniferous forests,
four pastures, one deciduous forest, one litter meadow,
and a natural fen. The soils of the sites covered a range of
parent materials, soil types (three Cambisols (Ca1 to Ca3),
two Fluvisols (Fl1 and Fl2) a Gleysol (Gl), two Histosols
(Hi1 and Hi2), four Leptosols (Le1 to Le4) and a Luvisol
(Lu)) and textures (Table 1). Concentrations of CuAR in
the topsoil of the sites were mostly low, except for sites Gl
(a silt loam Gleysol) and Fl2 (a sandy loam Fluvisol),
where increased CuAR concentrations of 66 and 77mg/kg,
respectively, were present (Table 1). The parent material
of site Fl2, the site with the highest CuAR concentrations,
is a Holocene river sediment of the Regnitz. This sediment
was deposited shortly after the confluence of the Pegnitz
and the Rednitz, and both rivers previously flowed
through the cities of Nürnberg and Fürth. Thus, the
increased levels of CuAR are quite common for river sedi-
ments in the Nürnberg/Fürth conurbation due to their
proximity to industry.

At each site, soils were analysed to approximately 1 m
(see Table 1 for specific depths, Figure 2) and soil proper-
ties were determined horizon-wise according to the Ger-
man soil taxonomy (Ad-hoc-Arbeitsgruppe Boden, 2005).
Soil sampling took place per date and horizon within the
30m� 30 m core area at 18 individual points on two so-
called rotating sampling axes (Barth et al., 2000) so that
samples were always taken at slightly offset points. One
composited soil sample was formed from each six points
so that there were three standard composited soil samples
in total (three times six points = 18 points). In excep-
tional cases, for example, where surface inhomogeneities
were present, fewer than the three standard composited
soil samples were available. Since thicker topsoil horizons
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were sometimes divided into two depth levels, there were
up to six composited soil samples per date and horizon.
Therefore, the number of replications (consisting of
composited soils) for the A horizons ranged from three
(standard) to 12 (2 A-horizons, one of which is subdivided)
per year with the exception of n = 1 at one site in 1987. At
the initial sampling date, soil texture, concentrations of
SOC and heavy metals as well as pH and CEC were deter-
mined following standard methods according to Barth
et al. (2000). We determined CuAR using DIN ISO 11466
(1997), analysed SOC using a CN element analyser (DIN
ISO 10694, 1996) and measured pH using a 0.01M CaCl2
solution (DIN ISO 10390, 1997). The CEC was measured
using an unbuffered NH4Cl solution.

The sites were monitored regularly from 1986 (sites
Ca1, Fl2, Hi2, Le1, Le3), 1987 (Ca2, Ca3, Hi1, Le2, Le4, Lu),
2000 (Gl) or 2001 (Fl1) onwards. The number of sampling
times in the monitoring period was 3 (Gl, Le4), 5 (Ca3,
Fl1, Fl2, Hi1, Le1, Le2, Le3, Lu) or 6 (Ca1, Ca2, Hi2), and
the final sampling dates were in 2013 or 2016.

2.2 | Statistical analyses

2.2.1 | Descriptive statistics

Statistical analyses were performed with R version 4.05
(R Core Team, 2021). Package unikn (Neth and

FIGURE 1 Location of the soil monitoring sites in Bavaria, southern Germany. Soil types are three Cambisols (Ca1-Ca3), two Fluvisols

(Fl1 and Fl2), a Gleysol (Gl), two Histolsols (Hi1 and Hi2), four Leptosols (Le1-Le4) and a Luvisol (Lu)
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Gradwohl, 2021) was used to show information on sam-
pling time in the profile plots. Descriptive statistics
included boxplots and histograms for CuAR, calculations
of 95%-confidence intervals of differences in means, and
scatter plots for CuAR versus pH, CEC and SOC. 95%-
confidence intervals of differences in means of CuAR con-
centrations between two sampling dates were calculated
for the A horizons—the mineral soil horizon which is
affected the most by anthropogenic Cu inputs—of the
respective sites for the differences between the first and
the last sampling date for those sampling dates where the
data were normally distributed. When CuAR concentra-
tions in the A horizons of the respective sites were not
normally distributed for a particular sampling date, we
tried logarithmic or Box-Cox-transformations of the CuAR
concentrations. Since transformations were not success-
ful, we calculated the 95%-confidence intervals using the
next suitable sampling time. When no normality was
achieved or no CuAR was detected for a given site, 95%-
confidence intervals were not calculated.

Inspections of the temporal courses of the Cu concen-
trations for the different horizons of the sites indicated—
in agreement with prior information on Cu sources and
loads in southern Germany—that there was no trend of
increasing CuAR concentrations with time and no trend

of CuAR translocation with time. For all A horizons,
boxplots and 95%-confidence intervals of differences in
means indicate there was no trend of increasing CuAR
concentrations with time (data not shown). An excep-
tional case was site Fl2, in which a slightly decreasing
trend was noted, but the effect was very close to a differ-
ence of zero and there was no trend of increasing CuAR
concentrations in the next horizon (M horizon) for
this site.

Since there was no trend of increasing CuAR concen-
trations with time, data of different sampling dates were
combined (i.e., disregarding the effect of time and assum-
ing that micro-scale variations of SOC concentrations,
pH and CEC determine CuAR concentrations rather than
time-dependent effects for these monitoring sites with
predominantly geogenic CuAR concentrations) and
horizon-specific data analyses were carried out. Horizons
with smaller numbers of observations (BC and CG) were
excluded from all analyses. Two different modelling
approaches—mixed-effects models and rule-based
models—were applied for the following two modelling
variants: I. Description of the CuAR concentrations for
the different horizons depending on site, SOC, pH and
CEC; and II. Prediction of the CuAR concentrations for
the A horizons—the horizons for which most

FIGURE 2 Depth-wise changes in the concentrations of Cu in aqua regia (CuAR) for the thirteen soil monitoring sites. Information on

sampling year is included by plotting data points with varying colour intensity, with darker blue indicating more recent sampling. Soil types

are three Cambisols (Ca1-Ca3), two Fluvisols (Fl1 and Fl2), a Gleysol (Gl), two Histolsols (Hi1 and Hi2), four Leptosols (Le1-Le4) and a

Luvisol (Lu)
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information was available—for a closed population as
well as for new sites. The approaches and parameteriza-
tions are discussed below.

I. Description of CuAR concentrations for the different
horizons depending on site, SOC, pH and CEC.

I.1 Fixed-effects and mixed-effects modelling.
A fixed-effects model can be used to describe a

response variable y as follows:

y¼X ßþ e, ð1Þ

with y: vector of the response variable, X: design matrix
of the independent variables (e.g., measured values) for the
fixed effects, ß: vector of the fixed effects (e.g., slopes for the
fixed effects), and e: vector of the errors.

A mixed-effects model (e.g., Zuur et al., 2009) is for-
mulated as follows:

y¼X ßþZ uþ e, ð2Þ

with Z: design matrix for the random effects, and u:
vector of the random effects. Random effects are site for
the horizon-specific models and additionally the horizon:
site nested effect for the general model introduced below.

Mixed-effects modelling was performed using the pack-
ages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova
et al., 2017). Horizon-specific models for CuAR were created
considering the regression terms for the variables SOC con-
centrations, CEC and pH as fixed effects (see Table 2 for
optimised intercept and regression coefficients for each

TABLE 2 Parameterization and performance of horizon-specific fixed and mixed-effects models for the response variable CuAR
(mg/kg soil)

Horizon, number of sites and
sample size n Final equationa

Random components (assumed
mean of 0 and variance) ρ RMSE

Organic layer
3 sites, n = 82

�134 + 6.55 SOC + 26.36 pH + 5.45
CEC� 0.05 CEC2� 1.73 SOC * pH�
0.19 SOC * CEC� 0.57
pH * CEC + 0.05 SOC * pH * CEC

Site � N(0, 55)
Residual � N(0, 22)

0.83 4.38

Peat
2 sites, n = 167

111� 3.27 SOC� 50.8 pH + 3.68
CEC + 0.02 CEC2 + 1.45
SOC * pH� 0.05 SOC * CEC� 0.60
pH * CEC

Site � N(0, 50)
Residual � N(0, 75)

0.69 8.46

A
11 sites, n = 258

44.7 + 0.72 SOC� 2.61 pH� 0.62
CEC + 0.0066 CEC2 + 0.45
SOC * pH� 0.05 SOC * CEC

Site � N(0, 1765)
Residual � N(0, 41)

0.95 6.17

AB
4 sites, n = 71

23.3� 10.3 SOC� 4.57 pH� 1.08
CEC + 2.49 SOC * pH + 0.48
SOC * CEC + 0.24 pH * CEC� 0.10
SOC * pH * CEC

Site � N(0, 81)
Residual � N(0, 1.5)

0.73 1.13

AC
3 sites, n = 57

2.19 + 0.20 CEC + 1.87 SOC Site � N(0, 120)
Residual � N(0, 14)

0.95 3.57

M
2 sites, n = 76

397.5� 168.7 SOC� 64.4 pH + 32.9
SOC * pH

Site � N(0, 2118)
Residual � N(0, 387)

0.96 19.0

B
3 sites, n = 98

76.9 � 2.95 SOC� 41.7 pH + 7.71
CEC + 5.26 pH2� 1.19 pH * CEC

Site � N(0, 22)
Residual � N(0, 7.9)

0.80 2.70

BTb

1 site, n = 25
12.4� 1.37 pH� 0.31 CEC + 0.05
pH * CEC

Residual � N(0, 2.9 * 10�2) 0.76 6.37

G
2 sites, n = 39

�0.55 + 13.23 SOC Site � N(0, 0)
Residual � N(0, 19)

0.93 4.23

C
9 sites, n = 106

0.47 + 20.1 SOC� 0.30 CEC + 0.03
CEC2� 0.67 SOC * CEC

Site � N(0, 97.1)
Residual � N(0, 28.9)

0.91 5.06

Abbreviations:ρ, Spearman's rank correlation coefficients between measured and estimated values; RMSE, root mean squared error of calibration (mg /
kg soil).
aThe unit for the intercept is mg/kg soil. The units for the regression terms are mg / kg soil multiplied by the respective reciprocals of the units of the variables
(1st and 2nd order contributions and interactions, SOC: g/100 g, CEC: cmol(+)/kg).
bThe response variable was log-transformed.
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model) and the structural component site as a random
effect (see Table 2 for the residual variance and variance
due to the site effect for each model). Fixed effects com-
prised 1st order and 2nd order polynomial terms as well as
the three two-way interactions and the three-way interac-
tion. Concentrations of clay could not be included as a fixed
effect, since the concentrations were only available for the
site characterizations and not for each sampling.

Model simplifications were carried out as described
by Crawley (2012). First, a non-significant three-way
interaction was removed, followed by eliminations of
non-significant two-way interactions and then removals
of non-significant 2nd and 1st order main effects. Thus,
we considered fixed effects only in the final models in the
case of significant (p≤ 0.05) contributions. Non-
significant effects of the main effects were included only
in the case of a significant interaction or a significant 2nd
order contribution of the main effects.

For the BT horizon, where only one site was avail-
able, a fixed-effect model was used and the same
approach as above was applied, except for the exclusion
of the random site effect.

For the mixed-effects models, the estimation proce-
dure for the variance components was restricted maxi-
mum likelihood, whereas fixed effects were estimated by
generalised least squares and subjected to Wald-type
F-tests using the Kenward-Roger method. Residuals were
inspected for homoscedasticity and normality.

Two model variants A and B were explored in the
mixed-effects modelling which differed in the subsetting
of the data.

2.3 | Model variant A: Horizon-specific
models

For model variant A, homoscedasticity and normality of
residuals were assumed as mandatory conditions for the
horizon-specific final models (see e.g., discussions on resid-
ual inspection in Welham et al. (2014) and Schielzeth et al.
(2020)). In order to achieve the conditions, not only a trans-
formation of the response variable (AC and BT horizons)
was required, but also subsetting of the datasets including
mathematical handling of the CuAR concentrations below
the detection limit was required. Specifically, sites, where
the respective horizons consisted only of CuAR values below
the detection limit, were excluded. For the peat horizon,
residuals were non-normal and we assumed that the uncer-
tainty of values below the detection limit contributed to this
considerably, given the small overall range of CuAR values.
We, therefore, removed zero CuAR values for this horizon
from the data set. For the A horizon, residuals were non-
normal and a log-transformation after the addition of 1 to

the response variable was not successful. We thus just mod-
elled the subset of the A horizon for a restricted range and
found by a trial-and-error procedure that distributional
requirements for the residuals were fulfilled for CuAR≤ 40
mg/kg. For AC, residuals were non-normal and the value
1 was added to the response variable and a log-
transformation was then carried out. For M, residuals were
non-normal, and we modelled the subset of CuAR≤ 150
mg/kg. For BT, residuals were non-normal, and a log-
transformation was carried out as described above. For C,
residuals were non-normal, and a transformation was not
successful. As was done for the peat horizon, we also
removed zero CuAR values from the data set and limited the
data set to a subset of CuAR≤ 40mg/kg.

2.4 | Model variant B: Horizon-specific
and general models

Model variant B used all data available (i.e., no subsetting
and no setting of zero CuAR values as not available) in
order to avoid a bias in CuAR predictions. Schielzeth et al.
(2020) reported that estimates of mixed-effects models
were usually robust to violations of distributional
assumptions of residual and random effects. However,
the accuracy of model estimates needs to be inspected
and critically discussed. Table 2 shows the final equations
for the horizon-specific fixed-effects (horizon BT) and
mixed-effects models including the random terms
(i.e., residual variance for the fixed effects model, and site
and residual variance for the mixed-effects models).

Besides the horizon-specific models described above,
also a general model for all horizons was calculated. For
the general model, the random effect comprised horizons
nested in sites.

I.2 Horizon-specific rule-based cubist models
Horizon-specific modelling was carried out for the

entire data set without subsetting (i.e., the same data set
as for model variant B above) using the packages Cubist
(Kuhn & Quinlan, 2021) and caret (Kuhn, 2021). The
cubist models use a boosting–like procedure called com-
mittees (Kuhn & Johnson, 2018; Kuhn & Quinlan, 2021).
Calibration was carried out using an internal ten-fold
cross-validation, where the number of committee models
was optimised using the values 1, 10, 50 and 100 (Table 3).
The optimal number of committee models was then used
for a description of CuAR concentrations.

2.5 | Model performance parameters

For the fixed-effects model for horizon BT, the coefficient
of determination was calculated and is labelled as R2

f.
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For the mixed-effects models, marginal (R2
m) and condi-

tional (R2
c) pseudo-coefficients of determination were

calculated, which account for the variance explained by
fixed effects (R2

m) and by both fixed and random effects
(R2

c) (Nakagawa et al., 2017). We used the package
MuMIn (Barton, 2020) for the calculations.

For both regression approaches, root mean squared
errors (RMSEs) and Spearman rank correlation coeffi-
cients ρ between measured and modelled CuAR values
were calculated for both calibration and validation sets,
as will be described subsequently.

II. Prediction of the CuAR concentrations for the A hori-
zons for a closed population and for new sites

For the predictive approaches using calibration–
validation procedures, the A horizons were selected for
which in total 258 observations from eleven sites were
available (Table 2). Two procedures were used and are
described below. Model performance parameters were
the same as above and calculated for the calibration and
validation samples.

II.1 Prediction of the CuAR concentrations for the A
horizons for a closed population

Pseudo-independent calibration–validation is useful
for data sets in which the population of interest is avail-
able and future predictions will be of interest solely for
the sites included in the study. An extension to new sites
is not feasible. A five-fold random partitioning of the data
was used to split the 258 observations into a calibration
and a validation sample (n = 129 each in each of the five
folds).

For the calibration sample, mixed-effects modelling
was carried out as above including model simplification.

The optimal model depended on the respective fold of
the random partitioning of the data and included a 1st
order contribution of SOC (two out of five folds), and site
as a random effect.

For the cubist model, the calibration sample was
not only used to optimise the number of committee
models (values of 1, 10, 50 and 100), but also the num-
ber of neighbours (0, 1, 5, and 9) for a subsequent pre-
diction in a grid search. In such a procedure with the
number of neighbours greater than 0, model predic-
tions are automatically adjusted using neighbouring
points from the calibration (or training) set data
(Kuhn & Johnson, 2018; Kuhn & Quinlan, 2021). Opti-
mal values depended on the respective fold of the ran-
dom partitioning of the data and ranged from 1 to
50 for the committee models and from 0 to 9 for the
neighbours. The usage of the variable site in the condi-
tions for the rules ranged from 92% to 100% and for the
other variables from 0% to 47% depending on the vari-
able and fold. The variable usage in the committee
models also differed in the five folds.

II.2 Prediction of the CuAR concentrations for the A
horizons for new sites

For independent calibration–validation, the eleven
sites were randomly assigned to either the calibration
or the validation sample in five folds (e.g., Brown et al.,
2005; Ludwig et al., 2017).

Mixed-effects modelling was carried out as described
above and the optimal models in the five folds differed.
The site was again included as a random effect in the cal-
ibration, which meant that the effect was zero for the val-
idation with new sites.

TABLE 3 Parameterization and performance of horizon-specific rule-based cubist models for the response variable CuAR (mg/kg soil)

Horizon
Number of
committees Variable usage in conditionsa

Variable usage in the model
committeesb ρ RMSE

Organic
layer

10 Site (42%), pH (30%), SOC (10%) CEC (78%), SOC (42%), pH (31%) 0.80 4.92

Peat 100 pH (75%), CEC (60%), SOC (31%) CEC (27%), SOC (16%), pH (16%) 0.82 2.73

A 50 Site (98%), SOC (15%) pH (70%), CEC (65%), SOC (58%) 0.98 5.06

AB 50 CEC (100%), pH (4%) CEC (4%), pH (4%) 0.99 1.01

AC 1 CEC (100%) CEC (100%), SOC (86%) 0.95 3.63

M 1 no conditions CEC (100%), SOC (100%), pH (100%) 0.95 21.7

B 50 CEC (94%), SOC (27%), pH (21%) CEC (30%), SOC (14%), pH (13%) 0.94 0.94

BT 10 no conditions SOC (60%), CEC (50%) 0.72 6.79

G 10 SOC (10%) SOC (100%), pH (50%), CEC (50%) 0.95 3.86

C 100 CEC (86%), site (40%), SOC (22%),
pH (9%)

CEC (49%), SOC (34%), pH (23%) 0.91 3.82

Abbreviations: ρ, Spearman's rank correlation coefficients between measured and estimated values; RMSE, root mean squared error of calibration (mg/kg soil).
aSum of percentages can be <100% since not all committee models contain conditions or >100% since different variables may contribute to a single condition.
bSum of percentages can be <100% since rules may just contain numbers and no variables or >100% since different variables may contribute to a single rule.
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The cubist model only considered the three variables
SOC, pH and CEC. The optimal numbers of committees
and neighbours in the five folds ranged from 1 to 100 and
from 1 to 9, respectively.

3 | RESULTS

3.1 | CuAR concentrations in soil profiles
and horizons

As expected, since there was no viticulture with the
application of Cu pesticides, high organic fertilisation, or
mining activity, there was no measurable trend of
increasing CuAR concentrations with time in the respec-
tive depth ranges for the thirteen sites. Data were there-
fore combined for the different sampling times. Depth-
wise changes in CuAR concentrations showed no consis-
tent pattern (Figure 2). For most sites, CuAR concentra-
tions decreased with depth, but decreases ranged from
approximately linear (site Le2) to approximately exponen-
tial. For sites Fl1, Lu, Le3 and Ca3, however, depth-wise
changes indicated a large scatter (sites Fl1 and Ca3), no
consistent change (site Le3) and even an increase with
depth (site Lu). In total, 991 observations were available
and CuAR concentrations ranged from 0 to 220 mg/kg,
with most (79%) values <30mg/kg. The largest CuAR
concentrations were found at site Fl2 (Figure 2).

Histograms indicated different distributions of CuAR
concentrations in different horizons (not shown). Right-
skewness was common for several horizons, which can
be generally expected for small concentrations since neg-
ative concentrations are not possible. Scatter plots of
CuAR against CEC or SOC showed distinct positive rela-
tionships for some horizons (e.g., AC, M and G horizons),
but relationships were more complex to non-existent for
other horizons (e.g., AB horizons, Figure 3). For pH,
large scattering was observed with inconsistent relation-
ships (Figure 3). Spearman correlations ρ for the pair
CEC-pH were significant (p≤ 0.05) for the horizons
peat, A, AB, AC, BT and C and ranged from �0.32
(AC horizons) to 0.83 (A horizons). Typically, one would
expect a positive relationship for the pair CEC-pH, since
with increasing pH the contribution of variable charges
increases. Indeed, the only negative ρ was observed for
the AC horizons, where the pH range was narrower than
for the other horizons. Spearman correlations ρ for the
pair SOC-pH were significant for the horizons peat, AB,
AC, B, BT, G and C, and ranged from �0.76 (BT) to 0.39
(C). For the pair SOC-CEC, Spearman correlations ρ were
significant for all ten horizons and ranged from �0.54
(BT) to 0.91 (M). For this pair, a positive relationship
would be expected, since SOC may contribute to the
CEC. The expected positive relationship was observed for
all horizons, except for two: peat (sites Hi1 and Hi2) and
BT (site Lu) horizons.

FIGURE 3 Scatter plots for CuAR and pH, soil organic carbon (SOC) concentration and the cation exchange capacity (CEC). Different

colours indicate soils from different sites (Ca1: Black, Ca2 and Ca3: Dark and light grey, Fl1 and Fl2: Dark and light blue, Gl: Dark red, Hi1
and Hi2: Dark and light green, Le1 and Le2: Dark and light pink, Le3 and Le4: Dark and light brown, and Lu: Light red)
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FIGURE 4 Legend on next page.
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I. Description of CuAR concentrations for the different
horizons depending on site, SOC, pH and CEC

I.1 Mixed-effects modelling using model variant A
The subset of the total data set with a restricted range

of CuAR (horizons A, M and C) and removed zero CuAR
values (peat and C horizons) was successfully described
by the fixed-effects (B and BT horizons) and mixed-effects
models with Spearman's rank correlation coefficients ρ
between measured and modelled CuAR concentrations
ranging from 0.76 to 0.98 for the different horizons (data
not shown). However, the subsetting as described above
may result in a severe bias of predictions of CuAR concen-
trations for small or large CuAR concentrations. In order
to overcome this bias, variant B was introduced and used
for all research objectives.

I.2 Mixed-effects and cubist modelling using variant B
The fixed-effects model for the BT horizon and the

mixed-effects models for the other horizons were very
useful to describe the CuAR concentrations as a function
of the fixed effects of CEC, SOC and pH. The coefficient
of determination (R2

f) was 0.56 for the BT horizon, and
conditional pseudo-coefficients of determination R2

c

ranged from 0.58 (peat horizons) to 0.98 (A horizons) for
the mixed-effects models (Figure 4a).

The importance of the random effect of the site
according to differences in R2

m and R2
c was especially

pronounced for the A and AB horizons, and to a lesser
extent for the organic layers and peat, AC, M, B, and C
horizons (Figure 4a), where most of the variation was
explained by site, which consists of the bulked unknown
site-specific information (most likely parent material and
specific mineral compositions). The variance explained
by the random effect of site was especially high for the M
horizons (2118 mg2/kg2) (where also the residual vari-
ance was high) and A horizons (1765mg2/kg2; Table 2).
For the other horizons, the importance of site was much
smaller or negligible as indicated by similar or identical
R2

m and R2
c values (Figure 4a) and small or zero vari-

ances for the random effect of site (Table 2), and the fixed
effects (1st order effects, 2nd order effects and interac-
tions) were very useful for a description of CuAR concen-
trations (Table 2, Figure 4a). For these horizons, the
prediction of CuAR concentrations at new sites may be
more accurate than for the horizons with high or pro-
nounced site effects.

Relationships for the different horizons varied: com-
plex relationships were obtained for eight of the 10 hori-
zons, where one or several significant interactions were
part of the final models (Table 2). In contrast, for the AC
and G horizons, CuAR was described well by a simple lin-
ear relationship with SOC (G horizons) or with CEC and
SOC (AC horizons, Table 2, Figure 4a).

The general mixed-effects model which included hori-
zons nested in site had R2

m and R2
c values of 0.18 and

0.89, respectively. Variances of random effects decreased
in the order site (635 mg2/kg2) > horizon:site nested effect
(147 mg2/kg2) > residual error (125.1 mg2/kg2) and the
fixed effects were SOC, pH, CEC, a squared contribution
of SOC, a SOC:CEC interaction and a three-factor inter-
action. For several horizons and sites, the agreement
between measured and modelled CuAR concentrations
was satisfactory, but the increased CuAR concentrations
in the M and A horizons of the site Fl2 were modelled
only poorly (Figure 4b).

Performances of the horizon-specific rule-based cubist
models were similarly successful compared to those of
the mixed-effects models: RMSEs of the calibrations were
lower for six horizons using the cubist models (peat, A,
AB, B, G and C) and for four (organic layer, AC, M and
BT) using the fixed- and mixed-effects models (Figure 4a,
Tables 2 and 3). The importance of the variables differed
between mixed-effects models and cubist models. For
instance, the site effect was not important for most hori-
zons in the cubist model (Table 3). Also, the simple
mixed-effects model for the G horizons, which consisted
only of SOC and site, was very different from the cubist
model, where all variables were important (Table 3).

II. Prediction of CuAR concentrations for the A horizons
for a closed population and for new sites

For a closed population of A horizons from 11 sites
(i.e., pseudo-independent validation), the mixed-effects
models and the cubist models were very successful in
describing CuAR concentrations in the calibration sam-
ples and a prediction in the validation samples in the
five-fold random splittings of the data set. RMSEs in
the calibrations ranged from 4.57 to 7.32 mg/kg for the
mixed-effects models and from 3.92 to 5.07 mg/kg for the
cubist models. Figure 5 shows the calibration models
with a median performance in the calibration out of
the five folds and the subsequent validation. In the

FIGURE 4 (a) Modelled versus measured CuAR concentrations resulting from horizon-specific mixed-effects models (top rows) and

rule-based cubist models (bottom rows) for the organic layer and peat horizons and the mineral horizons. Coefficients of determination and

conditional and marginal pseudo-coefficients of determination are indicated as R2
f, R

2
c and R2

m. Different colours indicate soils from

different sites (see legend of Figure 3). (b) Modelled versus measured CuAR concentrations resulting from the general mixed-effects model.

Conditional and marginal pseudo-coefficients of determination are indicated as R2
c and R2

m. Different colours indicate soils from different

sites (see legend of Figure 3)
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validations, RMSEs were slightly higher and ranged from
5.58 to 7.93 mg/kg and from 7.01 to 8.55 mg/kg for the
mixed-effects and cubist models, respectively.

The five-fold random splittings of sites into calibra-
tion and validation samples (i.e., independent validation)
showed very good performances of the mixed-effects and
cubist model in the calibrations with RMSEs ranging
from 3.90 to 7.86 mg/kg and from 3.73 to 6.18 mg/kg,
respectively (see Figure 5 for the calibration models with
median performance). In the validations, however, both
approaches were unsuccessful as indicated by high
RMSEs and Spearman's rank correlation coefficients ρ
ranging from �0.67 to 0.52 (mixed-effects models) and
from �0.75 to 0.68 (cubist models).

4 | DISCUSSION

I. CuAR concentrations in soil profiles and horizons
The CuAR concentrations of the soils from 13 south

German sites down to approximately 1 m measured regu-
larly in the period from 1986 to 2016 (N = 991 observa-
tions) were mostly (79%) < 30mg/kg. We observed
moderately large values for three sites and exceptionally

large Cu concentrations of up to 220 mg/kg for one site
(site Fl2). For this site, the large concentrations are due
to the parent material (Holocene river sediment of the
Regnitz), which contained ubiquitously larger CuAR
background values as a result of proximity to industrial
areas. For all sites and horizons, we did not observe
any trend of increasing CuAR concentrations with time
and therefore combined data of different sampling
dates to study whether micro-scale variations of SOC
concentrations, pH and CEC may determine CuAR con-
centrations rather than time-dependent effects for
these monitoring sites with predominantly geogenic
CuAR concentrations.

The scatter plots showed distinct positive relation-
ships between CuAR and CEC and SOC for some hori-
zons, but relationships were more complex to non-
existent for other horizons. The horizon-specific relation-
ships between CuAR and the variables CEC, SOC and pH
suggested that regression models may be suitable for a
description and prediction of CuAR in the different hori-
zons. However, multicollinearity between the variables
pH, CEC and SOC as indicated by high positive or nega-
tive Spearman correlations for several horizons may
increase uncertainties in parameter estimates

FIGURE 5 Modelled versus measured CuAR concentrations of the mixed-effects models and rule-based cubist models for the A

horizons. The sub-plots on the left refer to pseudo-independent calibration and validation (random splitting of the data set). The sub-plots on

the right refer to independent validation (random splitting of the sites). For all cases, calibration and validation plots results referred to those

of median performance in the calibrations with respect to RMSE of five-fold random partitions of the data set (left) or of the sites (right). R2
c,

R2
m, Spearman's rank correlation coefficient ρ and the root mean squared error (RMSE) in mg/kg are given. Different colours indicate soils

from different sites (see legend of Figure 3)
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(Wehrens, 2020) and may hamper interpretation of the
results (Crawley, 2012).

II. Description of CuAR concentrations for the different
horizons depending on site, SOC, pH and CEC

The fixed-effects model for horizon BT and the
mixed-effects models with site as random effect for the
other horizons were generally useful with a coefficient of
determination R2

c of 0.56 and conditional pseudo-coeffi-
cients of determination and R2

c ranging from 0.58 to 0.98.
Overall, the variables CEC, SOC and pH as well as

their interactions were, in many cases, important for suc-
cessful mixed-effects modelling, but the importance of
the variables differed markedly between the horizons.
The importance of SOC (present in nine of the 10 hori-
zon-specific fixed- and mixed-effects models) for a
description of CuAR concentrations is supported by the
known key role of soil organic matter in Cu retention
and the large fraction of organically-bound Cu in soils
(Fijałkowski et al., 2012). The importance of CEC (pre-
sent in eight out of the 10 fixed- and mixed-effects
models) can be explained by the typically close positive
relationship between CEC and clay concentration of soils
and that soils with increased clay concentrations have
larger Cu concentrations (UBA, 2004). The contribution
of pH (present in seven out of the ten models) can be
explained by—among other processes—the pH depen-
dency of Cu adsorption and desorption processes in soils
(Caporale & Violante, 2016). The general mixed-effects
model which included horizon nested in the site was use-
ful, but again reinforced the site- and horizon-specificity of
relationships between CuAR and the variables CEC, SOC
and pH since the random effects horizon nested in site
explained the majority of the variation in CuAR content
(R2

m and R2
c values of 0.18 and 0.89, respectively).

The horizon-specific, rule-based cubist models were
similarly successful compared to the mixed-effects
models: for six of the ten horizons (peat, A, AB, B, G and
C), they performed better than all other modelling
approaches, whereas for the other four horizons (organic
layer, AC, M and BT), fixed- and mixed-effects models
were slightly more successful. The importance of the dif-
ferent variables for a description of CuAR concentrations
differed for the different horizon-specific approaches. For
instance, in contrast to the mixed-effects models, the site
effect was not important for most horizons in the cubist
models. The main reason for this may be the
multicollinearity in the data set of this observational
study (Crawley, 2012).

III. Prediction of the CuAR concentrations for the A
horizons for a closed population and for new sites

Five-fold random partitioning of the data indicated
that performances of the rule-based cubist model and the
mixed-effects model were very promising for the A

horizons for a closed population. The five-fold pseudo-
independent calibration–validation approach (since all
sites are present in both the calibration and validation
sample; Brown et al., 2005; Ludwig et al., 2017) resulted
in accurate predictions for the validation sample. The
results indicate that the approach is useful for estimating
CuAR concentrations in future samplings using the cubist
model or the mixed-effects model approach for a fixed set
of observational sites.

However, independent validation after five-fold ran-
dom splittings of sites into calibration and validation
samples was not successful for either of the regression
approaches, indicating that the three variables SOC, CEC
and pH are not sufficient to accurately predict CuAR con-
centrations for new sites in southern Germany. Improve-
ments in the modelling may be achieved with specific
information on mineralogical compositions.

5 | CONCLUSIONS

A large data set of CuAR concentrations in different hori-
zons of south German monitoring sites over a period of
30 years was analysed. Mixed-effects and rule-based cub-
ist models described the CuAR concentrations in the hori-
zons generally well as functions of the site, CEC, SOC
and pH.

The importance of the different variables for a
description of CuAR concentrations differed for the differ-
ent horizon-specific approaches, and—since model per-
formances of mixed-effects and rule-based cubist models
were similar—the final equations of the mixed-effects
models should be favoured over those of the rule-based
models because the hierarchical sampling design is ade-
quately considered in the mixed-effects models.

Validations of cubist models and mixed-effects
models for the CuAR concentrations in A horizons were
successful for the given population after random splitting
into calibration and validation samples, but not after ran-
dom splitting according to sites. The two types of valida-
tion approaches used in this study (i.e., random splits for
subsequent predictions for the existing sites or splits
according to the site for subsequent predictions for new
sites) highlight the importance of an appropriate data
splitting scheme for testing the intended model usage.
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