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Influence of Mean Stress on Lifetime Prediction of Adhesive Bonds
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The importance of adhesive bonds in the field of joining technology is increasing due to their advantageous properties. One of
these attributes is the possibility to reduce the weight compared to welded joints in group of components. For a safe design, the
knowledge of the lifetime of these components is essential. Various methods are used for the prediction of the lifetime under
cyclic loading. On the one hand there are test-based methods, on the other hand simulation-based approaches. Test-based
ones are often time-consuming and cost-intensive. In addition, a change in boundary conditions requires new tests. Using
a simulation-based method, it is possible to analyse new boundary conditions rapidly. The following contribution shows a
damage model approach that is able to predict the lifetime of an adhesive bond with high accuracy, by taking into account
the main influencing factors. First, various lifetime influencing factors are presented. Afterwards, the model approach is
extended in regard to the consideration of the important mean stress influence. Finally, the model approach is validated by the
comparison of the model-based lifetime prediction to the one from test data under multiaxial loading.
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1 Lifetime influencing factors

A valid lifetime prediction model for cyclic loading has to consider the main mechanical factors influencing the lifetime. Some
of these can be described by the time-dependent stress function σ:

σ(t) = σm + σasin(2πft+ ϕ) (1)

Included are the mean stress σm, the stress amplitude σa, the frequency f and the phase angle ϕ. Furthermore, several
directions of stresses and their combinations are conceivable. Additional influencing factors are the difference between tensile
and compressive stresses and the order of stress amplitudes. An existing damage model developed in [1] and [2] for the
calculation of the lifetime of adhesive bonds is able to capture the effects mentioned, but the important influence of mean
stress is not explicitly considered.
A central definition for the description of a stress cycle and the evaluation of the mean stress influence is the stress ratio R.
This quantity is defined by the ratio of the minimum σmin and the maximum σmax stress during a cycle:

R =
σmin

σmax
(2)

The range of values of R in the case of cyclic loading is −1 ≤ R ≤ 1. The case R = −1 results in an alternating loading,
i.e. σmin = −σmax. The consequence of R = 1 is σmin = σmax and, thus, a constant loading. The quantity R also allows the
calculation of the mean stress σm when the stress amplitude σa is known, due to the following expression:

σm = σa
1 +R

1−R
(3)

Concerning the mean stress, R = −1 results in a mean stress of zero, while constant stress amplitudes σa and increasing
values of R lead to growing mean stresses σm.
The equations (2) and (3) can be applied for normal and shear stresses. Further important definitions are the expressions for
the calculation of the amplitude and the mean stress, depending on the maximum σmax and minimum σmin values of the stress
history during a cycle. The relationships are as follows:

σa =
σmax − σmin

2
(a), σm =

σmax + σmin

2
(b) (4)

By inserting the equations (2) and (4a) into equation (3), it can be shown that this expression is also defined for R = 1 and is
equal to the expression in (4b).
As stated, the influence of the mean stress is not explicitly considered in the model of [1] and [2]. However, using test data
from [3] and [4], it can be shown that this factor has a significant influence on the lifetime of adhesive bonds and must,
therefore, be taken into account in the model. Figure 1 illustrates the influence of an increasing stress ratio R using the SN-
curves of the mentioned test data. The left part of figure 1 demonstrates the impact of an increasing value of R in the case
of pure shear stress. The right part shows the case of pure tensile stress. In both sections of figure 1, it can be seen that an
increase of the stress ratio R leads to a decrease of the fatigue strength. This is evident by the fact that as R increases, a
smaller amplitude is required to reach the same lifetime. This behaviour is due to the higher mean stress as a result of a higher
stress ratio. Additionally, this figure motivates the need for a consideration of the mean shear and normal stress.
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Fig. 1: Test data-based analysis of influence of stress ratio on fatigue strength left part: pure shear stress with test data from [3]; right part:
pure tensile stress with test data from [4]

2 Damage modeling for adhesive bonds

The lifetime prediction model, developed in [2], is based on the calculation of damage of a thin adhesive layer due to cyclic
loading. This lifetime is reached when the damage variable D takes on a value of D = 1. The model mentioned above is
based on the superposition of a creep damage rate Ḋc and a cycle-dependent fatigue damage part dDf/dN according to [5]
as follows:

dD = Ḋcdt+
dDf

dN
dN (5)

For Ḋc and dDf/dN suitable approaches are chosen to describe the damage behaviour of an adhesive bond. In [1] and [2] the
creep damage evolution Ḋc is modeled according to [6] by the exponential approach:

Ḋc =
1

c0

( ⟨σeqc − σdc⟩
σref(1−D)

)n

(6)

This expression contains the creep limit σdc and the two further model parameters σref and n. A consistent unit is created by
choosing the parameter c0 = 1 s, [2]. The equivalent creep stress σeqc is used to obtain a stress value in the case of multiaxial
stress states and serves as the damage controlling variable. The following invariant-based equivalent stress approach according
to the work of SCHLIMMER [7] was modified and successfully used in [2]:

σeqc =
√
⟨b1c⟨tn⟩2 + b2ctn + t̄2t + t̄2b⟩ with t̄t = tt(1 + b3⟨−Rt⟩) , t̄b = tb(1 + b3⟨−Rb⟩) (7)

The stress components tn, tt and tb result from the assumption of a transverse strain constrained stress state for thin adhesive
layers [1]. This stress state has three independent components, the normal stress component tn and two shear stress compo-
nents tt and tb. The modifications to replace tt with t̄t and tb with t̄b were made to obtain valid lifetime prediction under
alternating loading [2]. For this purpose, b3 = 1 was assumed in [2]. The equivalent stress approach also includes two model
parameters b1c and b2c to model the impact of the normal stress component. The MACAULAY-bracket around the quadratic
normal stress component tn is used to account the difference between tensile and compressive stresses. Due to this modifica-
tion, negative values for the radicand are possible, which result in numerical problems. This is prevented by using a second
MACAULAY-bracket around the entire radicand. This case only occurs if the normal stress component tn is smaller than 0
and leads to an equivalent creep stress of σeqc = 0. In combination with equation (6), the damage growth per time step is
Ḋc = 0 and results in an infinite lifetime. This assumption is based on the observation in [8] that the superposition of a shear
alternating stress with a compressive stress leads to an increase of the lifetime.
The parameters n, σref , σdc, b1c and b2c, occurring in the equations (6) and (7), were determined based on test data from [8].
The resulting set of creep parameters is shown in the following table:

Table 1: Parameter of creep damage and creep equivalent stress approach from [2]

σdc [MPa] σref [MPa] n [-] b1c [-] b2c [MPa]
0 51 19 0.5 12
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The fatigue damage approach is based on the work of LEMAITRE and CHABOCHE. The expression dDf/dN in equation (5)
is modeled by the term:

dD̃

dN
=

D̃α

(1− α)NRf
with D̃ = 1− (1−D)

β+1 (8)

according to [9]. In equation (8), the model quantities NRf and α and the parameter β occur. NRf represents an analytical
approach to describe a SN-curve and can be defined, for example, by the BASQUIN-equation [9]. α is used for the consideration
of the amplitude order, resulting in a model that is able to describe non-linear damage accumulation. The change of variable
from D to D̃ is proposed in [10] to better fit a simulated damage curve to test data. For the model quantity α, the following
equation was proposed in [11]:

α = 1− a

〈
AII −A∗

II

σult − σeqmax

〉
with A∗

II = σdf(1− 3b1mσH) (9)

Here, AII represents the stress parameter, A∗
II describes the influence of mean stress on the fatigue limit σdf due to model

parameter b1m and the mean hydrostatic pressure σH = (I1max+ I1min)/6. σult is a material specific model parameter, which
has to be identified by test data. The quantity σeqmax is the maximum value of an equivalent stress approach during a cycle.
The parameter a is introduced in [10] as a fitting parameter to describe the damage evolution and can only be obtained from
measured damage curves. Due to the quantities AII and σeqmax and their changing values at different load cycles, the model
is able to calculate non-linear damage accumulation. The original model equation for AII according to [11] is based on the
deviatoric stress tensor and is shown in the following.

AII =
1

2

√
3

2

(
σdev
maxij − σdev

minij

)(
σdev
maxij − σdev

minij

)
=

1

2

√
3

2
∆σdev

ij ∆σdev
ij =

1

2
∆σvM = σvMa (10)

The expression for AII includes the maximum σdev
maxij and minimum σdev

minij values of each component of the deviatoric stress
tensor. The simplification of this expression shows that this expression is equal to the half of the difference of the maximum
and minimum values of the VON-MISES equivalent stress. According to equation (4a), this is equal to the amplitude of the
VON-MISES equivalent stress σvMa.
The consideration of the mean stress influence is based on a suitable approach for NRf from equation (8). The approach used
in this contribution can be calculated from the following fatigue damage evolution proposed in [11]:

dDf =
[
1− (1−Df)

β+1
]α
[

AII

M(σH)(1−Df)

]β
dN (11)

By separating and integrating with respect to the integration limits N = 0 to N = NR, as well as Df = 0 to Df = 1, the
following equation can be obtained:

NRf =
1

(1− α)(1 + β)

(
AII

M(σH)

)−β

(12)

This expression includes a mean stress dependent function M which is defined in [11] by:

M(σH) = M0(1− 3b2mσH) (13)

as a function of two model parameters M0 and b2m and the mean hydrostatic pressure σH. The use of σH as the mean stress
component has the consequence that shear mean stresses can not be considered. For this reason, a modification is necessary,
but the basic structure of equation (13) is maintained. The modified expression for the consideration of mean stress σmean is
presented as follows:

M(σmean) = M0(1− 3b2mσmean) (14)

The mean stress σmean included is described by the following expression:

σmean =
σeqfmax + σeqfmin

2
(1− ⟨−Rσ⟩)(1− ⟨−Rt⟩) = σeqfmean(1− ⟨−Rσ⟩)(1− ⟨−Rt⟩) (15)

The dependency of this expression on the normal stress ratio Rσ and shear stress ratio Rt ensures that valid mean stress values
are calculated in the case of alternating propotional loadings (Rσ = −1 or Rt = −1). The values occurring therein are the
minimum and maximum values of the equivalent fatigue stress σeqfmin and σeqfmax during a load cycle. The calculation of
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the equivalent fatigue stress σeqf is based on the expression of the creep equivalent stress from equation (7) and is defined as
follows:

σeqf =
√

⟨b1f⟨tn⟩2 + b2ftn + t̄2t + t̄2b⟩ (16)

In accordance to the creep equivalent stress approach, there are two additional model parameters b1f and b2f to scale the normal
stress component. Also included are the mentioned MACAULEY-brackets and the modified stress components t̄t and t̄b. The
stress parameter AII from equation (10) uses the VON-MISES equivalent stress to transfer a multiaxial stress state into a scalar
quantity. However, this type of equivalent stress is not suitable for predicting the lifetime of an adhesive bond and has to be
modified. For this reason, the equivalent stress approach from equation (16) and their maximum and minimum values during
a cycle are used here as well. However, the structure of the expression from equation (10) as an amplitude of an equivalent
stress approach is retained. This results in the following relationship:

AII,mod =
1 + ⟨−Rσ⟩
(1 +KmRσ)

1

2
(σeqfmax − σeqfmin) =

1 + ⟨−Rσ⟩
(1 +KmRσ)

σeqfa (17)

Equation (17) includes the maximum and minimum values of equivalent fatigue stress σeqf . The term (σeqfmax − σeqfmin)/2
can also be interpreted as the amplitude of the equivalent stress σeqfa. The factor in front of the equivalent stress amplitude is
required to fit the model response to the test data. In this factor, an additional model parameter Km occurs, which has to be
determined by test data. In addition to the adjustment of the stress parameter AII and the mean stress σmean, the parameter α
and A∗

II from equation (9) are also modified and defined as follows:

αmod = 1− a

〈
AII,mod −A∗

II,mod

τu − σeqfmax

〉
with A∗

II,mod = σdf(1− 3b1mσmean) (18)

The modification of α involves the use of the stress parameter AII,mod from equation (17), the replacement of σult by τu =
37MPa, [2], and the substitution of σeqmax by the maximum of equivalent stress σeqfmax which is calculated by the approach
from equation (16).
In addition, the adjusted equations (14), (15), (17) and (18) are used to determine the quantity NRf . This results in the
following expression:

NRf =
1

(1− αmod)(1 + β)

(
AII,mod

M(σmean)

)−β

(19)

The implementation of the described model equations is based on the solution of the differential equation from equation (5).
In [9], a sequential procedure for the solution of this equation is proposed. In the first step the creep damage from equation (6)
is calculated numerically, in [2] and [12] the BDF-2 algorithm is used. The resulting problem is solved by using the NEWTON
procedure in each time step. The second part is the calculation of a fatigue damage increment ∆Df based on a recursion
equation. The use of such a recursion equation results in the fatigue damage being calculated only once per cycle [9]. In [2]
and [12] the fatigue damage is calculated if the maximum of the stress in the cycle is reached. This procedure is also used in
this contribution.
The recursion equation results from the separation and integration of the fatigue damage approach from equation (8). The
integral to be solved is described in [12] as follows

dD̃

dN
=

D̃α

(1− α)NRf
⇒

D̃f2∫

D̃f1

1

D̃α
dD̃ =

N+1∫

N

1

(1− α)NRf
dÑ (20)

The integration limits are the fatigue damage values D̃f1 before and D̃f2 after the ocurrence of the stress maximum. Due to
the calculation of the fatigue damage only once per cycle this fatigue damage values are representative for the entire cycle.
Solving the equation (20) and inserting the integral limits results in the following expression:

D̃f2 =

[
D̃1−α

f1 +
1

NRf

] 1
1−α

(21)

Taking into account the change of variables from D̃ to D from equation (8) and replacing α by αmod from equation (18), the
following equation for calculating the fatigue damage increment ∆Df is obtained:

∆Df = 1−
(
1−

((
1− (1−D)

β+1
)1−αmod

+
1

NRf

) 1
1−αmod

) 1
β+1

−D (22)

Where D is the current damage value, consisting of the damage value before the calculation of the new fatigue damage
increment and the current creep damage. In addition, the model quantities NRf and αmod from equations (18) and (19) as well
as the model parameter β are included.
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3 Parameter identification and validation of the damage model

The implementation of the equations from chapter 2 and their numerical solution enable the identification of the model
parameters. The determination is carried out under consideration of the creep parameters from table 1. The first identification
step is to calculate the fatigue damage parameters M0, b2m and β from equations (14), (15) and (19) using uniaxial test data
from [8] and [13] under pure shear stress with three different stress ratios Rt = −1, Rt = 0.1 and Rt = 0.4. Due to the
assumption of σdf = 0 in [2], the exact value of b1m from equation (18) is not of interest. As mentioned in chapter 2, the
determination of the parameter a is only possible on the basis of measured damage curves, which are not available for the
adhesive under consideration. However, further investigations have shown that the parameter a from equation (18) can be set
arbitrarily. The other model parameters are adjusted in such a way that the prediciton quality is not significantly influenced.
For this reason, a = 1 is assumend according to [12].
The target values of the optimization process are the double-logarithmic number of cycles from the SN-curves of the mentioned
test data sets. An analytical solution of this identification problem is not possible, therefore the software LS-OPT [14], is
used. LS-OPT optimizes the model parameters by minimizing the mean squared error between the simulation and the test
data. Based on the determined fatigue damage parameters, the equivalent stress parameters b1f and b2f from equation (16) and
Km from equation (17) are next calculated. The procedure is the same as for the fatigue parameters, besides that test data sets
under pure normal load from [13] are used. The stress ratios considered are also Rσ = −1, Rσ = 0.1 and Rσ = 0.4. The
resulting set of parameters are listed in the following table:

Table 2: Parameter of fatigue damage approach

M0 [MPa] b2m [MPa−1] β [-] b1f [-] b2f [MPa] Km [-] σdf [MPa], [2] a [-], [12]
55.929 2.84 · 10−3 10.35 0.477 16.89 −0.636 0 1

The values in table 2 are used in combination with the creep damage parameters from table 1 to validate the model approach.
Since the identification is carried out on uniaxial test data sets, the validation is performed by comparing the simulation results
with a test data set of a multiaxial loading, which is characterized by the stress ratios of the individual loading and the ratio
between the shear stress and the normal stress amplitude τa/σa = tta/tna. Figure 2 shows the comparison of the simulation
(red) and the test data (black) from [8] in the case of a multiaxial loading with the stress ratios Rt = Rσ = 0.1 and an
amplitude ratio of τa/σa = 2. The comparison of test data and simulation shows a slight difference in the slope of the SN-

Fig. 2: Comparison of the simulated lifetime with test data from [8] under a multiaxial loading with the stress ratios Rσ = Rt = 0.1 and
amplitude ratio τa/σa = 2

curves. This difference results in an overestimation of the lifetime in the smallest load case. A possible reason for the deviation
is the use of test data from [8] for the validation, although test data from [13] were primarily used for the identification of the
parameters. All in all, this comparison shows a good agreement between test data and simulation.
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4 Summary and outlook

This contribution presents a damage model that can be used for the prediction of the lifetime of an adhesive bond with high
accuracy. The modeling of damage is based on [2] and the work of LEMAITRE and CHABOCHE, [9] and [11]. The model
from [11] has the advantage of considering the mean stress influence by employing additional model parameters. Due to its
development for steel applications, it is necessary to modify the original model for the calculation of the lifetime of an adhesive
bond. Thereby, the stress parameter AII and the calculation of the mean stress σmean are adjusted. In addition, a parameter
identification method was developed and presented. A validation of the model approach is shown based on the comparison of
simulation and multiaxial test data, which indicates a good agreement. The next work is related to the further validation of the
approach by implementing it in a commercial Finite-Element analysis software (FEA) and evaluating the prediction quality
for more complex component geometries.
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