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Summary

In this thesis, several algorithms for distributed model predictive control over digital
communication networks with parallel computation are developed and analyzed.
Distributed control aims at efficiently controlling large scale dynamical systems
which consist of interconnected dynamical systems by means of communicating
local controllers. Such distributed control problems arise in applications such as
chemical processes, formation control, and control of power grids. In distributed
model predictive control the underlying idea is to solve a large scale model predictive
control problem in a distributed fashion in order to achieve faster computation
and better robustness against local failures. Distributed model predictive control
often heavily relies on frequent communication between the local model predictive
controllers. However, a digital communication network may induce uncertainties
such as a communication delays, especially if the load on the communication network
is high. One topic of this thesis is to develop a distributed model predictive control
algorithm for subsystems interconnected by constraints and common control goals
which is robust with respect to time-varying communication delays.

The main focus of this thesis is to reduce the communication requirements in
distributed model predictive control by means of event-based communication, i.e. a
controller only communicates if a triggering condition is met. While the paradigm
of event-based communication has been analyzed in great detail in the context of
networked control systems it has not been applied to distributed model predictive
control. In this thesis a well-known cooperative distributed model predictive control
algorithm, which optimizes the input sequences of the subsystems in parallel, is
extended to event-based communication. In the original algorithm every controller
communicates with every other controller in every iteration. No results with respect
to the convergence rate of the algorithm are available in the literature. Therefore,
the convergence properties of the cooperative distributed model predictive control
algorithm with periodic communication between the controllers are analyzed in
detail, a bound on the convergence rate is derived, and two approaches to choose
parameters used in the algorithm are discussed.

Based on these results two approaches to cooperative distributed model predictive
control with event-based communication are developed. In the first method the
convergence results are used to analyze how the locally optimized input sequences
influence the global convergence. This allows defining communication events for
each controller which are only triggered if this results in a sufficient improvement of
closed-loop performance. If a communication event is triggered for a controller the
controller has to communicate with all other controllers. The second approach is

v
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based on analyzing when and between which controllers communication is required
in order to achieve good closed-loop performance. The resulting triggering functions
answer the question of when to communicate for each pair of controllers, thereby
further reducing the load on the communication network. These results also allow
quantifying the performance loss due to communication delays and packet loss.
Another aim of this thesis is to extend some of the results on distributed MPC with
event-based communication to the class of piecewise affine dynamics.

Distributed model predictive control often only results in suboptimal solutions,
for example when an iterative algorithm has to be terminated early due to time
constraints. This suboptimality, as well as uncertain communication and control
goals such as consensus can significantly complicate the stability analysis. To ac-
count for these aspects, the notion of input-to-state practical stability (ISpS) and
ISpS-Lyapunov functions is extended in this thesis to allow considering stability
with respect to a set (e.g. a consensus subspace), and to obtain stronger stability
results for suboptimal (distributed) model predictive control. This result is used
throughout the thesis for stability analysis of the proposed algorithms for different
problems setups, i.e. with and without terminal constraint and for different classes
of interconnections.
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1. Introduction and Literature

Review

1.1. Introduction

In this thesis, distributed model predictive control algorithms for interconnected
dynamical systems are developed and analyzed. The general problem structure is
shown in Figure 1.1. The overall control system consists of interconnected dynami-
cal systems P i and local model predictive controllers Ci, which exchange information
over a digital communication network Ck,p. The subsystems may be interconnected
either physically or through a common control goal. Physical interconnections as
well as common control goals typically arise in applications such as chemical pro-
cesses, water distribution systems, or control of power grids. In contrast, dynamical
systems only coupled by a common control goal are often encountered in formation
control problems, for example autonomous vehicles tasked with keeping a formation
while following a lead vehicle.

Model predictive control (MPC) is an optimal control method based on planning
optimized future control actions by means of online numerical optimization [90].
A main advantage of MPC is that constraints on the operating region and control
inputs can be considered, and the performance of the closed-loop can be optimized

P1 P2

P3

C1 C2

C3

Ck,p

Figure 1.1.: Dynamical systems P i with local model predictive controllers Ci, inter-
connections (black) and communication links (dashed, red).
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1. Introduction and Literature Review

with respect to a cost function. The cost function can be used to encode control
goals, such as stabilization of a set point, tracking of a reference trajectory, or
specifications arising from economic considerations [3]. The main idea behind MPC
is to utilize a model of the dynamical system under control to predict the future
behavior of the system for an input sequence planned over a finite time horizon.
This planned input sequence is optimized in each time step in order to achieve
optimal performance and to accommodate hard constraints. The first input of the
predicted sequence is then applied to the dynamical system and the procedure is
repeated in every time step, such that the controller always plans ahead. MPC has
received much interest in the field of control theory as well as in a wide range of
applications, and a comprehensive theory for analyzing stability, robustness, and
optimality of MPC is available if a single centralized MPC is considered (cf. [49],
[90]). This is not the case for the distributed setting shown in Figure 1.1, where
the assumptions made in the literature with regard to the class of systems, types
of interconnections, and communication between local model predictive controllers
widely vary and many open questions remain.

Typically, control problems arising from physical interconnections are modeled as
interconnected dynamics of the subsystems P i and have been tackled to a consid-
erable extent within the framework of decentralized control (cf. [99], [75]). Within
this framework, the structure of the interconnection between the subsystems is ex-
ploited in order to decompose the overall system into a set of smaller subsystems,
for which control laws only requiring knowledge of the local state of each subsystem
may be designed. Such a control law is called decentralized. However, in the gen-
eral case no stabilizing decentralized controller may exist, and even if it exists, the
closed-loop performance may be significantly degraded compared to a centralized
approach. Therefore, decentralized control of strongly interconnected systems is a
challenging problem. At the same time, centralized control of large scale dynamical
systems is often not desirable because it requires fast transmission of large amounts
of data to and from a centralized location, and the control system is more sensitive
to faults (e.g. breakdown of the centralized controller). Furthermore, centralized
model predictive control of large scale dynamical systems may not be feasible due
to the computational complexity of the resulting optimization problems.

Today, embedded systems and digital communication networks can be deployed
at low cost and in a wide range of environments, while offering ample computational
power and bandwidth. These technologies can be utilized to increase control perfor-
mance by exchanging information between the controllers of different subsystems.
This results in distributed control laws [94] which can be used if no stabilizing de-
centralized control law exists, and which typically also offer increased performance
compared to decentralized control. Based on this paradigm, distributed MPC aims
to combine the advantages of decentralized MPC [80] and centralized MPC by using
communicating local controllers to spread the computational complexity across the
controllers of the subsystems, while at the same time offering increased closed-loop
performance compared to decentralized control. Typically, two main challenges
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1.1. Introduction

arise in such a distributed control scheme: the communication may be uncertain,
and the local controllers lack information about the state of the overall system. The
thesis aims to provide insight into these problems for some classes of interconnected
linear systems, and extend some results to piecewise affine systems.

From the point of view of communication aspects such as the scheduling proto-
cols of the underlying communication network, time-varying delays, and packet loss,
often have to be considered. While the effect of these phenomena on closed-loop sta-
bility and performance of centralized and, more recently, decentralized controllers
connected to multiple sensors and actuators through a communication network has
been analyzed in the area of networked control systems (NCS), few results in this
direction are available for distributed model predictive control or distributed control
in general. Besides the general advantages mentioned earlier, MPC seems particu-
larly suited to deal with uncertain communication, because the planned state and
input sequences can be used to compensate for network effects.

The second, more important, challenge is that the local controllers lack informa-
tion about the state of the overall system. Exchanging the states and planned inputs
between all controllers via the communication network, if feasible, results in a high
load on the communication network. This is not desirable, because it often results
in large delays or packet loss. Hence, the main aim of this thesis is to develop dis-
tributed model predictive algorithms in which a communication link between two
controllers Ci is not always active, but only activated if it is required to achieve
the desired closed-loop performance. This raises the question of how to achieve a
good trade-off between control performance and load on the communication net-
work. In particular, it is of interest to analyze when and between which controllers
communication is required in order to achieve high performance. In the context of
networked control systems the first question of when to communicate has lead to the
paradigm of event-based control, in which communication does not occur at fixed
time intervals, but only if a triggering condition is met. The idea of this thesis is
to extend this concept to the communication between distributed model predictive
controllers. This approach is motivated by the observation that: (i) there is often
no significant change in the communicated data between subsequent messages and
that (ii) the input computed by a local controller is often only weakly affected by
information communicated by controllers of weakly interconnected subsystems.

Finally, the thesis aims to extend some of the results to the case of piecewise affine
subsystems, which can be used to approximate hybrid and nonlinear dynamics [53].
Hybrid dynamics are characterized by a combination of continuous and discrete
states and inputs and can be used to model a wide range of dynamical systems
[76]. While it may seem that results on distributed MPC for linear systems can
easily be extended to piecewise affine systems, this is usually not the case due to
the possibly discontinuous and complex dynamics exhibited by this class of systems.
Consequently, only few results in the literature on distributed MPC are applicable
to piecewise affine systems.

5



1. Introduction and Literature Review

Outline of the Dissertation

In the remainder of this chapter relevant publications from the fields of network con-
trol systems and distributed control, with a focus on distributed model predictive
control, are reviewed. Chapter 2 presents the theoretical background and begins
with a formal definition of the problem setup, i.e. the system dynamics, control
goals, and different classes of interconnections considered throughout this thesis are
introduced. Next, the concept of input-to-state practical stability (ISpS) is intro-
duced, and a novel sufficient condition for ISpS using ISpS-Lyapunov functions is
presented. The chapter closes with an introduction to basic concepts from optimiza-
tion theory and an overview of results from the field of distributed optimization.

Distributed MPC algorithms with communication at each time step (and itera-
tion) are presented in Chapter 3 and 4. A distributed MPC algorithm for dynam-
ically decoupled systems with common control goals and delayed communication
is presented in Chapter 3. Chapter 4 starts by briefly reviewing a cooperative dis-
tributed MPC algorithm. This algorithm is used as the starting point for the results
on event-based communication in the remainder of the thesis. Subsequently, results
on the convergence rate and choice of parameters of the algorithm are provided.

These results are required for the main contribution of this thesis with respect to
event-based communication in distributed MPC, which are presented in Chapter 5
to 7. In Chapter 5, a cooperative distributed MPC algorithm, in which a controller
communicates with all other controllers if an event is triggered, is developed and an-
alyzed. In Chapter 6, this idea is extended to events which trigger communication
between specific controllers. These triggering conditions provide insight into the
question of when and between which controllers communication is required. Fur-
thermore, the proposed framework allows to analyze the impact of communication
delays and packet loss on the closed-loop performance of the algorithm.

Results on distributed model predictive control with event-based communication
for piecewise affine systems are presented in Chapter 7. Finally, in Chapter 8 the
results are summarized, the proposed distributed MPC schemes are compared, and
some possible directions for future research are discussed.

1.2. Literature Review

This section provides an overview over the relevant literature from the field of
networked control systems, distributed control and distributed MPC. Distributed
MPC algorithms are classified by their underlying architectures, communication
requirements, as well as the assumptions made with respect to the interconnections
between subsystems. Based on this classification the state of the art of distributed
MPC algorithms with respect to the aims of this thesis is discussed in more detail.

For a broader introduction to the field of control over digital communication
networks the reader is referred to the book [74].
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1.2. Literature Review

Networked Control Systems with single-loop Structure

Within the field of networked control systems the research mostly focuses on the
analysis of stability and performance when a given controller, which was designed
without considering the effects of the communication network, is connected to sen-
sors and actuators via a digital communication network. Specifically, effects such as
communication delays, packet loss, clock offsets, quantization, and the influences of
protocols for scheduling and access to the communication network may have to be
considered (cf. [54]). For example, in the popular try-once-discard (TOD) protocol
only the node with the largest difference to its last communicated value is granted
access to a shared communication network [113].

An important development in this area is the paradigm of event-based control, in
which communication does not occur periodically but only when an event occurs.
These events are often based on the difference of the current value to a previously
communicated value or directly based on the decrease of Lyapunov functions [89].
In [54] networked control is investigated in a very general setting, in which non-
linear dynamics in continuous time as well as many network induced phenomena
are considered. For a given system, controller, and protocol (e.g. TOD), small
gain type arguments are used to obtain bounds on the communication delays and
transmission intervals of the underlying communication network which guarantee a
certain degree of performance. For linear systems and controllers less conservative
results are obtained in [25] by integrating the system model, controller, a model of
the communication network, and scheduling protocols into a switched linear system.

To further reduce the load on the communication network, event-based control
is combined with a model based event-generator in [77]. The main idea is to use
a model of the dynamical system in both the controller and the event-generator,
which is located at the sensor, to predict the behavior of the closed-loop system. In
this scheme, communication is only required if the actual behavior of the dynamical
system differs from the predicted behavior (e.g. because of disturbances).

In all these cases, the controller and the dynamical system are described in con-
tinuous time and communication events may be triggered at any time. Therefore,
the state of the system needs to be sampled continuously and the underlying com-
munication network has to be designed for the shortest possible time between events
which may arise. In order to improve resource allocation and avoid the continuous
monitoring of the system state, periodic event-triggered control has been proposed
in [52]. In this framework, the triggering conditions are only evaluated at periodic
sampling times, thereby combining the advantages of periodic sampling and com-
munication with the reduced amount of communication resulting from event-based
control.

In contrast, only few results on MPC considering a wider range of network induced
uncertainties or event-based communication are available. For example, centralized
model predictive control over communication networks has been considered in [9],
where stochastic delays and sampling intervals are considered, and in [8], where the

7



1. Introduction and Literature Review

communication between the sensors and the model predictive controllers is event-
based.

Networked Control Systems with multiple control loops

The approaches discussed so far consider the case of a single controller. Recently,
decentralized control with event-based communication between the local sensors,
decentralized controllers, and local actuators has been analyzed in [4] considering
network induced uncertainties. The case without network induced uncertainties
is considered in more detail in [106]. In [74] Section 5.4 and Section 5.6 optimal
decentralized event-based control based on dynamic programming is discussed. In
all these works the controllers are decentralized, i.e. do not use measurements
or inputs of interconnected subsystems. To achieve improved performance, the
approach from [106] has been extended in [105] by introducing additional events,
which trigger communication between the decentralized controllers.

Generally, the paradigm of event-based control is well suited to provide an answer
to the question of when to communicate to trade-off load on the communication net-
work and robustness / performance. However, the question of where (i.e. between
which controllers) communication is required in a distributed control structure re-
mains largely unanswered within this framework.

Linear Distributed Control

In contrast to these results on event-based control, the research in the field of linear
distributed control is mostly concerned with designing controllers which achieve a
good trade-off between control performance and the number of communication links
between controllers. The main idea in this line of thought is that the distributed
controllers can directly access the local sensors and actuators and communicate with
each other. The goal is to design a controller and a communication topology which
is as sparse as possible. For example, simultaneous optimization of distributed
state feedback controllers and the underlying communication topology with respect
to a quadratic closed-loop performance criterion and the cost incurred by each
communication link is considered in [45]. Similarly, designing sparse linear quadratic
regulators has been investigated [71] and the design of sparse H∞ controllers has
been considered in [98]. In other words, these approaches provide insight into which
controllers need to communicate in order to achieve good closed-loop performance,
but the communication is time-triggered and periodic.

Distributed Model Predictive Control

Many significantly different algorithms for distributed MPC have been proposed in
the literature and the assumptions with respect to the type of interconnections be-
tween subsystems and the communication network differ largely. While this makes

8



1.2. Literature Review

a comparison difficult, the algorithms can be classified according to these aspects.
This classification is based on the categories previously introduced by the author in
[48].

With respect to the communication, the following categorization is possible:

(a) It is assumed that the communication between the controllers does not induce
any uncertainties or delays, or their effect is assumed to be negligible. There-
fore, all network properties are ignored in the analysis. The vast majority of
distributed MPC algorithms (e.g. [91], [112], [83], [26], [50], [86], [108], [65],
[37], [59], [104] ) fall into this category.

(b) The communication channel is assumed to introduce a constant delay (e.g. [33],
[24], [57]).

(c) The communication network induces bounded, time-varying delays (e.g. [42],
[72], [47]).

(d) Packet loss induced by the communication network is considered in a worst-case
fashion, e.g. by utilizing upper bounds on the number of consecutive packet
losses (e.g. [42], [1])

(e) The communication network induces bounded, time-varying delays and packet
loss (e.g. [42])

In general, relatively few investigations study the effect of delayed information ex-
change and there are no results for distributed model predictive control which con-
sider a network model as detailed as the ones used to analyze the impact of com-
munication delays, packet loss, clock offsets, and protocols in the field of network
control systems (e.g. [54]).

With respect to the topology of the communication network and the type
of information exchanged the following cases are considered:

(a) Any local controller can exchange state and optimization variables with all other
controllers at the same time (cf. [112], [104]).

(b) Only the controllers of subsystems which are directly interconnected exchange
state and optimization variables. Commonly this is referred to as neighboring
communication (cf. [47],[83],[91],[37]).

(c) Only the states of neighboring subsystems are exchanged (cf. [61], [1]).

An exchange of information between all controllers, if feasible, usually results in
an unnecessarily high load on the communication network and negatively affects
scalability. On the other hand, the effects of only partially available information
can significantly complicate the design and analysis of distributed MPC algorithms.
Thus, a main aim of this dissertation is to analyze the effect of communicated

9



1. Introduction and Literature Review

information on the overall control performance and only activate a communication
link if it is required.

Distributed model predictive control algorithms can be further classified with
respect to the frequency at which local optimizations and communication between
the controllers take place:

(a) Controllers optimize and exchange information only once per sampling period
(non-iterative), for example see [42], [30], [26], [83], [108], [91].

(b) Information is optimized and exchanged iteratively (i.e. multiple times) within
each sampling period (cf. [112], [104], [37]).

While iterative algorithms allow for higher performance and may result in the cen-
tralized optimal solution, they often require many iterations and are often not suited
to deal with communication delays and packet loss.

A related aspect is the architecture of the algorithm. In particular the following
distinction can be made:

(a) All controllers solve their local problems and exchange information in parallel
as discussed in e.g. [33], [47], [37], [86], and [112].

(b) Local problems are solved in a given sequence and each local controller has
to wait for the information of the preceding controller in the sequence before
starting its own computations or rely on previously communicated information
(cf. [91], [83], [50], [108], [65]).

(c) Local problems are solved in parallel and information is exchanged with a coordi-
nator who solves a master problem and redistributes the results to all controllers
(cf. [23], [2], [94], [95])

In practice, sequential algorithms may be problematic for medium to large-scale
systems because the local computation times and communication delays between
the controllers are aggregated.

Finally, the following types of interconnections can be considered:

(a) The subsystems are interconnected by dynamics, i.e. states and inputs of one
subsystem influence the states of other subsystems, see e.g. [112], [30], [92].

(b) The subsystems are dynamically decoupled but a common control goal, for
instance consensus or synchronization, leads to interconnection by costs (cf.
[47], [83], [33]).

(c) In principle, all types of interconnections can also be modeled by common equal-
ity and inequality constraints, which involve the states and inputs of different
subsystems. Common examples are collision avoidance constraints in formation
control (cf. [42], [91]) and interconnected dynamics (cf. [37], [115]).

10



1.2. Literature Review

More detailed comparisons between the methods proposed in this thesis and the
algorithms proposed in the literature can be found at the end of the corresponding
chapters.

Sequential algorithms for dynamically decoupled linear systems coupled only by
constraints have been proposed in [91], [108], [109], [65], and nonlinear systems cou-
pled by constraints and costs are considered in [83]. All these algorithms employ
terminal constraints, communicate periodically in time triggered fashion, and do
not consider any uncertainties induced by the communication network. While the
algorithms proposed in [91], [108], [109], [65] offer robustness with respect to local
disturbances, the algorithm in [83] is not robust. A non robust extension of [91],
which does not require a terminal constraint can be found in [50]. However, the
assumptions required to ensure stability of the algorithm are very hard to verify
in general. The case of decoupled dynamics, coupled constraints and costs typi-
cally arises in applications such as formation control of robots or control of groups
of autonomous vehicles. In such a scenario, the controllers often employ wireless
communication, which is inherently uncertain, and have limited local computation
power. This is why time-varying communication delays as well as computation
times should be considered. However, only a few limited results in this direction
were available at the outset of this thesis. Therefore, one of the goals of this thesis
is to develop a method for the case of decoupled dynamics which offers robustness
with respect to communication delays and offers parallel computation to mitigate
the impact of computation delays. A modified version of the algorithm proposed in
[91] with parallel optimization was recently proposed in [86], but no communication
delays are considered. It should be noted that the vast majority of the relevant
works cited in this section has been developed in parallel to the results presented
in this thesis.

To the best of the author’s knowledge no non-iterative sequential or parallel al-
gorithm has been proposed which guarantees convergence to the optimal solution
for interconnected MPC problems. Nonetheless, several algorithms for dynamically
coupled subsystems which use parallel optimization and often only require neigh-
boring communication have been proposed. In most cases, these results rely on the
inherent robustness and stability properties of the local controllers. Within this
line of research the local controllers are often non-cooperative [30] and control tasks
such as set point stabilization, tracking of reference trajectories [29], and so called
plug-and-play distributed control (cf. [92], [59]) are considered. In plug-and-play
distributed control a subsystem and its local controller may join or leave the overall
system during runtime, provided that certain conditions hold. These conditions are
checked online in a distributed fashion. Most of these results rely on set-theoretic
small-gain-type conditions and therefore may not be suitable for strongly intercon-
nected subsystems. Similarly, in [110] dissipativity properties are utilized in order to
obtain a non-iterative distributed MPC scheme with limited information exchange
for nonlinear systems in a cascade structure. A non-iterative distributed MPC algo-
rithm with neighboring communication for dynamically interconnected subsystems
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based on game theory has been proposed (e.g. [79]). However, in comparison this
algorithm often exhibits lower control performance than comparable algorithms [2].
Overall, despite the inherent conservativeness of small gain approaches these algo-
rithms have been successfully applied to application examples and utilize a rather
sparse communication topology. However, it is not clear how the restriction to
neighboring communication affects the control performance, or if a different, equally
sparse, communication topology may result in improved performance.

To avoid the drawbacks of non-iterative algorithms so called iterative algorithms
have been proposed which are based on the exchange of either primal (i.e. inputs)
or dual variables (see Section 2.4 for an introduction to the concepts of duality in
optimization and distributed optimization). The idea of this thesis is to start from
an iterative scheme with full communication and direct optimization of the local
inputs, analyze when and between which controllers communication is required,
and provide conditions under which the scheme can be terminated early (i.e. after
any number of iterations). Based on the paradigm of event-based control the aim
of this thesis is to leverage the flexibility of digital communication networks and
decide when and where to communicate by means of triggering functions, which
are periodically evaluated online. In the context of dynamically decoupled systems
coupled only by cost, a so called event-based scheme is proposed in [28] and [27], in
which the controllers exchange information in a time triggered periodic fashion, and
the local MPC problems are computed in an event-based fashion. In contrast, the
aim of this thesis is to develop algorithms which reduce the load on the communica-
tion network by exchanging information between controllers only if communication
is required to ensure good control performance.

Iterative schemes based on dual decomposition have been proposed in e.g. [115],
[37], [23], [34]. A distinction should be made between distributed model predictive
control algorithms, which consider the closed-loop nature of model predictive con-
trol (cf. [34]), and results on distributed optimization algorithms [36]. The latter
class of algorithms aims at directly solving a centralized MPC problems and focuses
on aspects such as computation time, optimality, and convergence properties. Typ-
ically, closed-loop properties are not considered in this context. A brief overview of
results from distributed optimization for control is given in Section 2.4.

In the context of duality based distributed MPC, [37] describes an iterative algo-
rithm based on dual decomposition and a distributed suboptimal stopping criterion.
However, it is not guaranteed that the distributed stopping criterion holds after a
finite number of iterations. A primal-dual hierarchical distributed MPC algorithm,
which guarantees convergence to a feasible solution in a finite number of iterations
has been proposed in [23]. While dual decomposition can be used to tackle a wide
class of problems, the number of iterations and messages required to obtain a sta-
bilizing solution is often large. Furthermore, the primal cost may increase over the
iterations, which is problematic if the optimization has to be terminated early due
to time or communication constraints.

A cooperative iterative distributed MPC algorithm which directly optimizes the
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inputs (i.e. the primal variables) of subsystems interconnected by states, inputs,
and possibly input constraints is investigated in [112] and [104]. This algorithm
ensures stability of the closed-loop when terminated at any iteration, and is guar-
anteed to converge to the global optimal solution in the limit (i.e. for an infinite
number of iteration). However, no results on the convergence rate or how to chose
crucial parameters of the algorithm are available in the original works. Further-
more, the algorithm requires a full information exchange between all controllers in
every iteration and time step. To reduce the load on the network, a hierarchical
algorithm was proposed in [103], in which subsystems are grouped into clusters by
the designer and communication within a cluster is used more frequently than be-
tween clusters. However, no results are available on how to perform the clustering
to achieve a good trade-off between communication and performance.

Aims of the Dissertation

In conclusion, it can be seen that network induced uncertainties such as time-
varying communication delays have received little attention in the literature on
distributed MPC. However, these aspects may have strong implications on stability
and feasibility of distributed MPC. Therefore, one aim of this thesis is to analyze
the impact of uncertain communication on distributed MPC, and to provide
results on the robustness with respect to time-varying delays.

Similarly, the use of event-based communication has been studied to a consid-
erable extent for centralized and decentralized controllers in the field of networked
control systems, but no results are available for distributed MPC. In particular,
it has been shown in the context of networked control systems, that event-based
communication is well suited to reduce the load on the communication network
while maintaining high control performance. The main aim of this thesis is to
develop distributed MPC algorithms which utilize event-based communication

between the controllers. Specifically, it needs to be analyzed when and between

which controllers communication is required in order to achieve good closed-loop
performance.

Finally, only few results on distributed MPC are directly applicable to hybrid

systems. Hence, this thesis aims to extend some of the results on distributed

MPC with event-based communication to the class of piecewise affine dy-

namics.
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2. Problem Setup and Theoretical

Background

In this Chapter the problem setup, notation, and relevant theoretical background on
stability analysis and mathematical optimization is presented. The following section
introduces the system dynamics, control goals, and model of the communication
network considered throughout this thesis. In Section 2.3 relaxed conditions for
input-to-state practical stability are presented which allow considering suboptimal
solutions, robustness aspects, and stability with respect to a set (e.g. consensus).
Finally, in Section 2.4 some basic concepts of mathematical optimization, which
are required to analyze and discuss the properties of different distributed MPC
algorithms, are presented.

2.1. Problem Setup and Notation

The general problem structure considered throughout this thesis is shown in Figure
1.1. The overall control system consists of a set N = {1, . . . , Ns} of possibly
interconnected dynamic systems P i with local model predictive controllers Ci. The
subsystems may be interconnected by dynamics or through a common cost function.
To achieve cooperation of the controllers, a distributed control scheme is used in
which the controllers Ci exchange information over a communication network Ck,p,
which may induce uncertainties such as packet loss or delays. The aim of this thesis
is to develop distributed model predictive controllers in which a communication link
between two controllers is not always active, but only activated if it is required to
achieve the desired closed-loop performance. The time-invariant interconnections
between subsystems due to dynamics, constraints, and costs may be described by a
directed graph G = (N , I), where the set of nodes corresponds to the subsystems
and each edge I ⊆ N × N represents an interconnection between two subsystems.
The index set N i = {i1, . . . , iN i

s
} ⊆ N contains the indices of all N i

s subsystems
interconnected with subsystem P i: N i := {j|(i, j) ∈ I or (j, i) ∈ I, i �= j}. In the
following it is assumed that G is connected. If G is not connected, the problem
can be decomposed into a set of fully disconnected problems which often results in
faster convergence and reduced communication.
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System Dynamics

The dynamics of the overall system are given by the following time-invariant discrete-
time system with discrete-time k:

xk+1 = f(xk, uk), (2.1)

where xk ∈ X ⊆ R
n, and uk ∈ U ⊆ R

m are the state and input vector of the overall
system, f : X×U → R

n, and X and U are the state and input constraints. The state
and input vector are partitioned, such that xk = (x1

k; . . . ; xNs

k ), uk = (u1
k; . . . ; uNs

k )

and xi
k ∈ R

ni

, where e.g. (x1
k; . . . ; xNs

k ) := [(x1
k)T . . . (xNs

k )T ]T denotes a stacked

column vector, and ui
k ∈ R

mi

are the local state and input variables of P i, which
may be coupled by the dynamics, costs, or constraints. In particular, the subsystem
dynamics considered are linear time-invariant, such that the dynamics of the overall
system are given by

xk+1 = Axk + Buk, (2.2)

with A ∈ R
n×n, B ∈ R

n×m. In Chapter 7, decoupled piecewise affine systems:

xi
k+1 = Ai

pixi
k + Bi

piui
k + gi

pi, if xi
k ∈ X

i
pi, (2.3)

are considered, where X
i
pi is a convex polyhedral region of the partitioned state-

space of P i. The affine dynamics parametrized by Ai
pi, Bi

pi, gi
pi is valid in the region

with index pi ∈ {1, . . . , N i
p}.

In the following xk+l|k denotes the state at time k + l predicted at time k. Bold
vectors denote a sequence over a finite prediction horizon N ≥ 2, i.e. ui

k =

(ui
k|k; . . . ; ui

k+N−1|k) ∈ R
Nmi

, and xi
k = (xi

k|k; . . . ; xi
k+N |k) ∈ R

(N+1)ni

denotes the

sequence of planned inputs and predicted states of the subsystem P i. The stacked
global state and input vector are denoted by xk = (x1

k; . . . ; xNs

k ) ∈ X ⊆ R
(N+1)n and

uk = (u1
k; . . . ; uNs

k ) ∈ U ⊆ R
Nm, with corresponding constraints X, U obtained by

stacking U and X.

Control Objectives and Centralized MPC Problem

The control objective is specified by a set, which is used to define the global cost
function:

Σ := {z ∈ X × U |z = (x; u), Γxx = 0, Γuu = 0} , (2.4)

with matrices Γx ∈ R
n×n, Γu ∈ R

m×m. The set Σ either specifies an equilibrium of
the overall system (i.e. z = (0; 0)) or may be used to define control tasks such as
synchronization (e.g. x1 = . . . = xi = . . . = xNs). Based on this set, a cost function
V : X × U → R≥0 is defined which encodes a common objective:

V(xk, uk) = ‖xk+N |k‖2
P +

∑N−1

l=0
‖xk+l|k‖2

Q + ‖uk+l|k‖2
R, (2.5)
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where e.g. ‖xk+N |k‖2
P = (xk+N |k)T Pxk+N |k and the weighting matrices are given

by Q := ΓT
x Γx , R := ΓT

u Γu such that Q = QT � 0 and R = RT � 0. The curled
inequality symbols 	,� denote strict and non-strict matrix inequalities. It directly
follows that ‖x‖2

Q + ‖u‖2
R = 0, ∀z ∈ Σ, and ‖x‖2

Q + ‖u‖2
R > 0, ∀z /∈ Σ. It should be

noted that the set Σ is not used as a constraint, but is used to establish properties
of the cost function.

Further restrictions for the weighting matrices, such as R 	 0, will be introduced
in the following chapters when required. Finally, a terminal constraint T ⊆ R

n for
the last predicted state xk+N |k may be required in some cases.

Assumption 2.1. It is assumed that Σ is chosen such that zk ∈ Σ implies that
∃uk+1 : (xk+1; uk+1) ∈ Σ. Furthermore, it is assumed, that the state, terminal and
input constraints X, T, and U are full-dimensional, compact and contain 0 in their
interior.

The centralized MPC problem is then given by

V ∗(xk) := min
uk+l|k,xk+l|k

V(xk|k, uk) (2.6)

s.t. xk+l+1|k = f(xk+l|k, uk+l|k), ∀l ∈ {0, . . . , N − 1}

xk+l|k ∈ X, uk+l|k ∈ U, ∀l ∈ {0, . . . , N − 1}

xk|k = xk, xk+N |k ∈ T

In centralized MPC the state xk is sampled at each time step k, the problem (2.6) is
solved, and the first input of the optimized input sequence u∗(xk) = u∗

k|k is applied to
the system. It can be seen that the model predictive controller is defined implicitly
through an optimization problem. While the explicit solution to MPC problems
with linear and piecewise affine dynamics can, in principle, be computed (cf. [6],
[13]) the required computations are too complex even for some small to medium
scale systems. Therefore, the explicit computation of model predictive controllers
for medium to large scale interconnected systems is not feasible.

Models for Distributed MPC

As discussed in the previous chapters, the aim of this thesis is to develop distributed
model predictive control algorithms in which each controller Ci only optimizes the
input sequence ui

k and event-based communication between the controllers is used.
However, given these requirements, the centralized problem (2.6) is too general. In
particular, considering all types of coupling may lead to problems which can only
be solved efficiently by a centralized algorithm. For this reason, the vast majority
of the literature on distributed MPC focuses on more specific cases and throughout
this thesis different cases focusing on specific types of coupling will be considered
and commonalities between the different problem setups will be discussed.

The first case focuses on decoupled dynamics and coupling by state constraints
and control goals. This structure arises in applications where there is no physical
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interconnection between the subsystems, but a common control goal should be
achieved.

Case 2.1. The dynamics are decoupled and given either by linear dynamics (2.2)
with A = blkdiag(A1, . . . , ANs), B = blkdiag(B1, . . . , BNs) and the pairs (Ai, Bi)
are stabilizable for all i ∈ N , or by piecewise affine dynamics (2.3) with g1 = 0,
Σ = {0} and the pairs (Ai

1, Bi
1) are stabilizable for all i ∈ N .

Coupling is induced by a common control goal encoded by potentially fully cou-
pled costs and coupled state constraints X. The input constraints are compact and
decoupled, i.e. U := U

1 × . . . × U
Ns.

In the case of linear dynamics (2.2) it is assumed that the constraints are specified
by the following polytopes:

Bn
ε (0) ⊆ X = {xk ∈ R

n |CXxk ≤ bX}, (2.7)

Bmi

ε (0) ⊆ U
i = {ui

k ∈ R
mi

|C i
U
ui

k ≤ bi
U
}, (2.8)

where CX ∈ R
hX×n, bX ∈ R

hX, C i
U

∈ R
hi
U×mi

, bi
U

∈ R
hi
U. Bn

r (x) denotes a closed
ball of dimension n, radius r, and with center x. For the case of piecewise affine
dynamics (2.3) the input constraints are defined accordingly but the definition of the
state constraints is more involved and will be given in Chapter 7.

This structure typically arises in formation control problems. For example, to
control platooning vehicles in a leader-follower scenario the cost can be used to
formulate that all vehicles follow the lead vehicle as closely as possible subject to
coupled state constraints which ensure collision avoidance.

In contrast, in the second class of problems only linear dynamics and local con-
straints are considered. The following cases all result in decoupled local constraints.

Case 2.2. [104] The dynamics may be fully coupled, R 	 0 holds, the pair (A, B) is
stabilizable and is transformed into a distributed model based on its Kalman canon-
ical form. The terminal constraint T is an equality constraint, and N needs to be
sufficiently large to zero the unstable modes of the distributed model at the end of the
prediction horizon. The decoupled input constraints U := U

1(xk)× . . .×U
Ns(xk) are

compact, include so called “stability” constraints, and are given by polytopes which
contain 0 in their interior. Finally, no state constraints are present, i.e. X := R

n.
The endpoint and “stability” constraints do not result in any coupled input con-
straints (for details see [104]), and the “stability” constraints are not required in
this thesis. In addition to the case considered in [104] coupled costs are considered
in this thesis.

This formulation is motivated by physically interconnected subsystems. Typical
application examples for this class of interconnections are chemical processes [104],
water distribution systems [107], as well as power generation [112]. In contrast, the
next case considers physically decoupled subsystems interconnected by a common
control goal, such as formation control.
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2.2. Model of the Communication Network

Case 2.3. The costs are coupled and Q 	 0, R 	 0, i.e. Σ = {0}. The dynamics
are decoupled, i.e. A = blkdiag(A1, . . . , ANs), and B = blkdiag(B1, . . . , BNs), and
(Ai, Bi) are controllable. The input, state, and terminal constraints are compact
and decoupled, i.e. U := U

1 × . . . × U
Ns, X := X

1 × . . . × X
Ns, T := T

1 × . . . × T
Ns

and are given by polytopes containing 0 in their interior.

Finally, the last case considers a similar setup to Case 2.2, but without terminal
constraint. The motivation for removing the terminal constraint is, that a terminal
constraint often requires using a large prediction horizon, complicates the MPC
problem and is hard to satisfy when using a decentralized initialization. However,
removing the terminal constraint may significantly complicate the theoretical anal-
ysis of both centralized and distributed MPC.

Case 2.4. The costs and dynamics may be fully coupled, it holds that R 	 0, and
the pair (A, B) is stabilizable. The input constraints U := U

1 × . . . × U
Ns are

compact and decoupled and no state constraints and terminal costs are present, i.e.
T = X := R

n and P = 0.

Assumption 2.2. For the Cases 2.2 to 2.4, it is assumed that the constraints, if
they are applicable to the specific case, are given by polytopes:

Bni

ε (0) ⊆ X
i = {xi

k ∈ R
ni

|C i
X
xi

k ≤ bi
X
}, (2.9)

Bmi

ε (0) ⊆ U
i = {ui

k ∈ R
mi

|C i
U
ui

k ≤ bi
U
}, (2.10)

Bni

ε (0) ⊆ T
i = {xi

k ∈ R
ni

|C i
T
xi

k ≤ bi
T
}. (2.11)

In the case of coupled constraints the decomposition of the global system into
subsystems may be altered such that the constraints are decoupled (see e.g. [104]).
However, this may result in large local optimization. From a theoretical point of
view, the decoupled constraints are crucial for guaranteeing convergence of the coop-
erative distributed algorithms considered in this thesis to the centralized optimizer
despite the fact that each controller only optimizes its local input sequences.

2.2. Model of the Communication Network

In order to evaluate the local control law Ci the state xj
k of Pj and input sequence

u
j
k of Cj, j ∈ N \ i may be required. Therefore, this information is exchanged

between the controllers via a communication network. The topology of the network
is modeled by the time-varying communication graph Ck,p = (N , Ek,p) with nodes N
corresponding to the controllers Ci, and a time-varying set of edges Ek,p ⊆ N × N .
The edges are controlled, e.g. a communication link from Ci to Cj can be activated
or deactivated by the controller Ci. However, in some cases it is assumed that
packets may be delayed or lost by the communication network after a they have
been sent by a controller.
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2. Problem Setup and Theoretical Background

Therefore, the states and inputs of interconnected subsystems and controllers
may not be known exactly for one of the following reasons:

• the communication link between Cj and Ci is not active,

• Cj was recomputed directly after communication, resulting in a different value,

• the communication network introduces uncertainties, such as delays or packet
loss.

To model that the received information does not always match the exact values, the

superscript (̂·)
i,j

denotes a variable used by Ci instead of the variable (·)j defined for
subsystem Pj. For instance, consider the case shown in Figure 2.1 in which two con-
trollers may exchange information on the local state and input. The local variables
x̂i,j

k , ûi,j
k are updated if information is received via the communication network. If

no updated information is received, for example due to packet loss, the values x̂i,j
k ,

ûi,j
k may no longer be identical to xj

k and uj
k. In contrast, x̂i,j

k = xj
k and ûi,j

k = uj
k is

only guaranteed to hold if no communication imperfections are considered and the
controllers do not change their local values without communicating the new values
first.

Time and Time Synchronization

An important aspect in distributed control, both from the point of view of com-
munication and control, is time synchronization. From the communication point
of view, a deterministic transmission of communicated values can often only be

P1, . . . , PNs

Ci

Cj

Ck,p

xi
k, ui

k
x̂i,j

k,p,ûi,j
k

xj
k, uj

kx̂j,i
k ,ûj,i

k

ui
k

uj
k

xi
k

xj
k

Figure 2.1.: Update of local variables x̂i,j
k , ûi,j

k by communication.
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achieved if a corresponding time slot for the transmission was reserved by the net-
work scheduler. Otherwise, collisions and packet loss may occur. Furthermore,
communication protocols which do not rely on predetermined schedules but use ar-
bitration to control access to the communication network online also crucially rely
on clock synchronization (see e.g. [21]).

Similarly, distributed control algorithms often require time synchronization to
ensure that communicated state or input sequences can be interpreted correctly by
the receiver. For instance, a state measurement corresponds to a particular absolute
time, but if the clocks of the controllers are not synchronized different controllers
will associate this measurement with different points in time. Finally, in order to
compensate for communication delays, messages sent by the local controllers may
contain a timestamp, which allows the receiver to reconstruct possible communica-
tion delays if the clocks are synchronized.

In distributed MPC the optimization of the input sequence may be performed
iteratively within each time-step. To this end, the extended time vector (k, p) is
introduced, where k is the discrete time and p is the iteration index at time k. The
corresponding sampling time for the discrete time k is denoted by Δt, and the time
for each iteration is denoted by Δtp  Δt. The extended discrete time vector starts
at (0, 0) and is updated as follows based on the absolute time t:

(k, p) :=

⎧⎨
⎩(k + 1, 0) if t = kΔt + Δt,

(k, p + 1) if t = kΔt + pΔtp + Δtp.
(2.12)

In other words, at the end of each sampling interval Δt the discrete time k is
incremented and the iteration index p is reset to 0. Within a sampling interval the
iteration index p is incremented when the time Δtp has passed. The progress of
(k, p) is shown on a timeline in Figure 2.2.

Assumption 2.3. It is assumed that the clocks of the controllers are synchronized
and sampling, actuation, and iterations are performed synchronously.

This assumption is implicitly made in the vast majority of publications deal-
ing with distributed MPC and distributed control in general. In the context of
networked control systems few works consider bounded clock offsets / clock jitter

(k, p)Δtp

Δt

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (1, 0) (1, 1)

Figure 2.2.: Timeline showing the extended time vector (k, p), sampling time Δt,
and time per iteration Δtp.
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but these results are not directly applicable to distributed model predictive control
and, in most cases, not directly applicable to distributed control in general. For
instance, in [54] jitter is considered for the analysis of networked implementations
of a single, explicitly known controller which communicates with multiple sensors,
actuators and a shared communication network. However, as discussed before, it is
not computationally feasible to compute the explicit solution of distributed MPC.

In the area of distributed optimization several algorithms with asynchronous it-
erations have been proposed (cf. [17] and the references therein). However, when
applying these algorithms to distributed MPC problems sampling and actuation
would still require clock synchronization between the controllers. Furthermore, the
method proposed in [17] is only applicable to problems with decoupled costs. In
[111] a distributed MPC scheme with asynchronous iterations and possibly asyn-
chronous sampling / actuation is proposed, where processes are grouped according
to their time scales. For each time scale the cooperative distributed MPC from [112]
is applied and the controllers of different time scales are periodically synchronized.
This algorithm still requires perfectly synchronized clocks and leads to a rather
complex scheme with additional communication requirements which grow with the
number of time scales under consideration.

In most cases, the requirement of synchronized clocks is not problematic as shown
in the wide literature on clock synchronization in communication networks. Even
in multi-hop and wireless networks clock synchronization with high accuracy is
possible (cf. [38]) and often required if a deterministic communication protocol is
used (see e.g. [20] for a protocol well suited for event-based control in multi-hop
networks).

2.3. Input-to-State Stability

As discussed before, the input sequence computed by distributed MPC algorithms
may not be optimal and uncertainties induced by the communication network may
affect stability of distributed MPC. Furthermore, using event-based communication
the closed-loop system is often only practically stable, i.e. the state converges to
a bounded neighborhood of the control goal. Throughout this thesis the notion
of input-to-state practical stability (ISpS) and ISpS-Lyapunov functions is used as
framework for stability analysis. This allows for investigating suboptimal solutions,
practical stability, and robustness with respect to uncertain communication.

In the following a definition of ISpS with respect to a set of states is introduced.
The main purpose of this extension is to allow for a wider range of control goals
(e.g. consensus) instead of only considering stability with respect to a given set
point. Based on this definition, conditions for input-to-state practical stability in
terms of ISpS-Lyapunov functions are given which are less restrictive than those
proposed in the literature (cf. [58], [68]). Specifically, the new conditions allow
establishing ISpS with respect to a set and relax a condition which may not hold
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when using suboptimal or distributed MPC. To establish the ISpS properties the
following classes of comparison functions, which were first introduced in [51], are
used:

Definition 2.1. A function αc : R≥0 → R≥0 is of class K if it is continuous, strictly
increasing and αc(0) = 0; it is of class K∞ if it is a K -function and αc(s) → ∞ as
s → ∞. A function βc : R≥0 × R≥0 → R≥0 is of class K L if, for each fixed k ≥ 0,
the function βc(·, k) is of class K , and for each fixed s ≥ 0, the function βc(s, ·) is
decreasing and βc(s, k) → 0 as k → ∞.

Based on these classes of comparison functions, the following definition introduces
the notion of regional input-to-state practical stability (ISpS). The notion of input-
to-state stability (ISS) was first proposed by Sontag in the context of continuous
time systems (cf. [101]). In the following, let xk+l denote the solution of a perturbed
discrete-time dynamical system xk+1 = fd(xk, ωk) at time k + l obtained by forward
recursion starting at the state xk. The following definition is required to ensure
existence of the solution under all possible realizations of the bounded disturbance
ωk ∈ W for all k ≥ 0.

Definition 2.2. A set X ⊆ X is robust forward invariant with respect to the dy-
namics fd : X × W → R

n if for all x ∈ X and all disturbances ω ∈ W holds that
fd(x, ω) ∈ X .

Here a discrete-time version of input-to-state practical stability (ISpS) with re-
spect to a set Σ is used which extends the definitions proposed in [58] and [68] to
stability with respect to a set Σ. To this end, let ‖xk‖Σ := infz∈Σ‖xk − z‖ denote
the distance of xk from the set Σ.

Definition 2.3. A system xk+1 = fd(xk, ωk) is input-to-state practically stable
(ISpS) in X with respect to a set Σ, if X is robust forward invariant with respect to
xk+1 = fd(xk, ωk), ωk ∈ W, and there exists a K L -function βc, a K -function γc,
and a constant dc ≥ 0 such that for each x0 ∈ X , all ωl ∈ W, l ∈ N0, and all k > 0
it holds that

‖xk‖Σ ≤ βc(‖x0‖Σ, k) + γc(‖ω[0:k−1]‖) + dc,

where ω[k1:k2] := (ωk1; . . . ; ωk2) denotes a time sequence starting at time k1 and
truncated at time k2, and ‖ω[k1:k2]‖ := maxl∈{k1,...,k2}‖ωl‖. The system is said to be
input-to-state stable (ISS) in X with respect to Σ if dc = 0.

If Σ only contains the origin (i.e. Σ = {0}) the standard definition of regional or
global (if X = R) ISpS [68] is recovered. If dc = 0 and Σ = {0} the definition of
ISS from [58] is recovered. Finally, the system is asymptotically stable in the sense
of Lyapunov if dc = 0, Σ = {0}, and ωk = 0 for all k ≥ 0.

The following result is an extension of the results in [68] and shows that regional
ISpS (ISS) with respect to a set can be established by means of ISpS- / ISS-Lyapunov
functions.
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2. Problem Setup and Theoretical Background

Theorem 2.1. Let d1, d2 ∈ R≥0, let a1, a2, a3, ae ∈ R>0 with a3 < a2, and L ∈ N>0.
Furthermore, let α1(s) := a1sae, α2(s) := a2sae, α3(s) := a3sae, σ ∈ K , and it holds
that X is robust forward invariant with respect to xk+1 = fd(xk, ωk), ωk ∈ W. Let
V : X → R≥0 be a function such that for all x ∈ X , it holds that

α1(‖x‖Σ) ≤ V(x) ≤ α2(‖x‖Σ) + d1, (2.13)

and for all xk ∈ X , and all ωl ∈ W,l ∈ {k, . . . , k + L − 1} it holds that

V(xk+1) − V(xk) ≤ σ(‖ωk‖) + d2, (2.14)

V(xk+L) − V(xk) ≤ −α3(‖xk‖Σ) + Lσ(‖ω[k:k+L−1]‖) + Ld2. (2.15)

Then it holds that system xk+1 = fd(xk, ωk) is ISpS in X with respect to Σ and
the ISpS property holds for

βc(s, k) := α−1
1

(
3�� k

L�α2(s)
)

, (2.16)

γc(s) := α−1
1

(
3L

1 − �
σ(‖ω[0:k−1]‖)

)
, (2.17)

dc :=

⎧⎨
⎩α−1

1

(
3d1 + 3

1−�
d2

)
if L = 1,

α−1
1

(
3(L + 1)d1 + 3L

1−�
d2

)
if L > 1,

(2.18)

where �y� denotes the largest integer that does not exceed y, � = 1 − a3/a2, and
α−1

i (·) denotes the inverse function of αi(·).

Proof. Following the arguments used in [68] for the case Σ = {0}, it holds for all
x ∈ X \ Σ that (α2(‖x‖Σ))−1(V(x) − d1) ≤ 1 and

V(x) − α3(‖x‖Σ) ≤ V(x) −
α3(‖x‖Σ)

α2(‖x‖Σ)
(V(x) − d1). (2.19)

With � = 1 − a3

a2
∈ (0, 1) it holds for all x ∈ X \ Σ that

V(x) − α3(‖x‖Σ) ≤ �V(x) + (1 − �)d1. (2.20)

Using the same argument as in [68], it can be shown that this inequality holds for
all x ∈ X because V(x)−α3(‖x‖Σ) = �V(x)+(1−�)V(x) ≤ �V(x)+(1−�)d1 holds
for all x ∈ Σ. Next, in contrast to [68], the relaxed conditions (2.14) and (2.15) are
used. It directly follows from (2.14) and (1 − �)d1 ≥ 0 that

V(xk+1) ≤ V(xk) + (1 − �)d1 + σ(‖ωk‖) + d2 (2.21)

holds, and substituting (2.20) into (2.15) results in

V(xk+L) ≤ �V(xk) + (1 − �)d1 + Lσ(‖ω[k:k+L−1]‖) + Ld2. (2.22)
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Because X is robust forward invariant the inequalities (2.21) and (2.22) can be
applied to obtain an upper bound on the Lyapunov function at a time k and the
worst case disturbance is given by considering ‖ωl‖ ≤ ‖ω[0:k]‖ for all l ∈ {0, . . . , k}.
Next, (2.21) implies for all k ∈ {0, . . . , L − 1} that

V(xk) ≤ V(x0) + k(σ(‖ω[0:k−1]‖) + d2 + (1 − �)d1). (2.23)

Furthermore, for k ∈ {L, . . . , 2L − 1} inequality (2.22) and L ≥ 1 implies that

V(xk) ≤ �V(xk−L) + L(σ(‖ω[0:k−1]‖) + d2 + (1 − �)d1).

Using that k − L ∈ {0, . . . , L − 1} and substituting V(xk−L) from (2.23) results in

V(xk) ≤ �V(x0) + (�(k − L) + L)(σ(‖ω[0:k−1]‖) + d2 + (1 − �)d1).

Considering any interval k ∈ {aLL, . . . , (aL +1)L−1} induction over aL ∈ N0 gives:

V(xk) ≤ �aLV(x0) + (L + �L + . . . + �aL(k − aLL))(σ(‖ω[0:k−1]‖) + d2 + (1 − �)d1).

It follows for k = aLL:

V(xk) ≤ �aLV(x0) + (L + �L + . . . + �aL−1L)(σ(‖ω[0:k−1]‖) + d2 + (1 − �)d1),

and for all k �= aLL:

V(xk) ≤ �aLV(x0) + (L + �L + . . . + �aLL)(σ(‖ω[0:k−1]‖) + d2 + (1 − �)d1).

This bound can be rewritten as follows:

V(xk) ≤ �� k
L�V(x0) +

(∑� k−1
L �

l=0
�l

)
L(σ(‖ω[0:k]‖) + d2 + (1 − �)d1),

and the empty sum
∑−1

l=0 �l is defined to be 0. Using the upper bound on the
Lyapunov function from (2.13) it holds that

V(xk) ≤ �� k
L�(α2(‖x0‖Σ) + d1) +

(∑� k−1
L �

l=0
�l

)
L(σ(‖ω[0:k−1]‖) + d2 + (1 − �)d1).

Furthermore, considering � ∈ (0, 1) it holds that �� k
L� − �� k−1

L �+1 + L ≤ L̄, where

L̄ :=

⎧⎨
⎩1 if L = 1,

L + 1 if L > 1.

In combination with the identity
∑� k−1

L �
l=0 �l = (1 − �� k−1

L �+1)/(1 − �) ≤ 1/(1 − �)
this results in

V(xk) ≤ �� k
L�α2(‖x0‖Σ) + L̄d1 +

L

1 − �
(σ(‖ω[0:k−1]‖) + d2),
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for all xk ∈ X , ωl ∈ W,l ∈ {k, . . . , k + L − 1}, k ≥ 0, and L ≥ 1. The remainder
of the proof again follows the arguments made in [68]. In particular, the bound
α1(‖xk‖Σ) ≤ V(xk) can be used to establish that

‖xk‖Σ ≤ α−1
1

(
�� k

L�α2(‖x0‖Σ) + L̄d1 +
L

1 − �
(σ(‖ω[0:k−1]‖) + d2)

)
,

and applying the inequality α−1
1 (s1 + s2 + s3) ≤ α−1

1 (3s1) + α−1
1 (3s2) + α−1

1 (3s3)
results in

‖xk‖Σ ≤ α−1
1

(
3�� k

L�α2(‖x0‖Σ)
)

+ α−1
1

(
3

L

1 − �
σ(‖ω[0:k−1]‖)

)
+ α−1

1 (3ζ),

where ζ = L̄d1 + L
1−�

d2. The theorem follows by noting that βc(s, k) ∈ K L because

it is decreasing in k, limk→∞ �� k
L� = 0, α2(s) ∈ K∞, and α−1

1 (s) ∈ K∞. Furthermore
1/(1 − �) > 0 implies that dc ≥ 0, and γc(s) ∈ K because σ(s) ∈ K

It should be noted that this result does not require any assumptions on the
continuity of either fd(xk, ωk) or V(xk). Furthermore, letting L = 1 and Σ = {0}
the results from [68] are recovered. Besides formulating the result with respect to a
set Σ instead of the origin, the main difference to [68] is that Theorem 2.1 does not
require the condition (2.15) to hold for L = 1. Among other cases, this relaxation
is useful when analyzing the stability properties of suboptimal model predictive
control policies. Also, this result can be seen as extension of the ideas used to
prove LaSalle’s invariance principle (cf. [66] for the discrete-time case) to robust
control problems. In particular, it can be seen that the Lyapunov function is not
required to be strictly decreasing over time, even if ωk = 0, d2 = 0, as long as it
decreases between k and k+L. This is conceptually similar to the arguments used by
LaSalle, namely that an undisturbed discrete-time system with continuous dynamics
fd(xk, 0) and Lyapunov function V(xk), with V(xk+1) ≤ V(xk), is asymptotically
stable with respect to the largest set on which V(xk) remains constant for all time.
For example, one may consider the case where E denotes the set of states xk for
which V(xk) is constant, and the largest invariant set contained in E is the origin.
In this case, starting anywhere in E \ {0} the state will leave the set E \ {0} in
finite time and the Lyapunov function will be strictly decreasing at this time. The
result in Theorem 2.1 can be interpreted as extension of this argument to robust
control and the case of discontinuous dynamics, such as the piecewise affine systems
discussed in Chapter 7.

Stability of Distributed Model Predictive Control

In nominal centralized MPC (i.e. ωk = 0 for all k) the optimal finite horizon cost
V ∗(xk) given by (2.6) is typically used as Lyapunov function, and under suitable
assumptions the conditions in Theorem 2.1 hold for V ∗(xk) with d1 = d2 = 0,
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and L = 1. These assumptions are, that there exists an input sequence such that
the dynamics remain inside the constraints and can be steered to x = 0, that
(x; u) = (0; 0) is an equilibrium of the dynamics, and that the costs are positive
definite with respect to the equilibrium (i.e. Q 	 0, R 	 0). In this case optimality
implies V ∗(0) = 0 and (2.13) holds with d1 = 0. In addition (2.22) holds with
d2 = 0 if either a suitable terminal constraint is used, or the prediction horizon N
is chosen large enough [49].

However, if (2.6) is not solved to optimality the conditions generally only hold
for d1 > 0, i.e. only practical stability can be established. In the field of suboptimal
model predictive control this problem is usually resolved by employing a terminal
constraint and using a terminal controller to reinitialize the input sequence of the
MPC once the state reaches a subset of the terminal constraint [87]. In this case, the
upper bound in (2.13) holds with d1 = 0. Because a distributed MPC algorithm may
not converge to the global optimum, or may have to be terminated before reaching
the global optimum due to time or communication constraints distributed model
predictive control is often inherently suboptimal. However, the approach from [87]
is not desirable in the distributed setting, because a suitable terminal constraint and
terminal control law may involve all subsystems and introduce further strong inter-
connections into the problem. Furthermore, the reinitialization procedure requires
additional global communication. Another approach to deal with suboptimality is
to utilize a terminal constraint and an extended state vector (xk, uk) instead of the
state vector xk. In this case, the bounds in (2.13) hold with d1 = 0 but (2.15) does
not hold with L = 1 and d2 = 0. In [104] an additional “stability” constraint is
added to the distributed problem in order to ensure that (2.15) holds with L = 1
and d2 = 0. However, this additional constraint complicates the problem and may
be problematic if disturbances are present (i.e. if ωk �= 0). In contrast, a terminal
constraint and an extended state vector can be used to establish that the conditions
in Theorem 2.1 hold for suboptimal solutions with L = N and d1 = d2 = 0. There-
fore, both asymptotic stability and robust stability can be established without the
additional “stability” constraints.

2.4. Some Basics of Mathematical Optimization

Throughout this thesis model predictive controllers, which aim to solve an optimiza-
tion problem of the type shown in (2.6) in a distributed fashion, are considered. For
the case of linear subsystems, quadratic costs, and convex constraints the resulting
optimization problems are convex. If the dynamics are piecewise affine the MPC
problem becomes non-convex, namely a mixed-integer quadratic program. This
section briefly reviews important results on mathematical optimization.
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Convex Sets and Functions

Definition 2.4. (cf. [10], [15])

(a) A subset S of Rny is convex if it includes for every pair of points the line segment
that joins them, or in other words, if

(1 − θ)y1 + θy2 ∈ S, ∀y1, y2 ∈ S, ∀θ ∈ [0, 1].

(b) A function fc : S → R on a convex set S is convex relative to S if

fc(θy1 + (1 − θ)y2) ≤ θfc(y1) + (1 − θ)f(y2), ∀y1, y2 ∈ S, ∀θ ∈ [0, 1],

and the function fc is strictly convex if the above inequality is strict for all
y1, y2 ∈ S with y1 �= y2, and all θ ∈ (0, 1).

(c) A differentiable function fc : S → R on a convex set S is strongly convex relative
to S if there exists m ∈ R>0 such that

fc(y2) ≥ fc(y1) + ∇fc(y1)
T (y2 − y1) +

m

2
‖y2 − y1‖

2, ∀y1, y2 ∈ S.

It is strictly convex if the above inequality is strict for y1 �= y2 and m = 0 (i.e.
strong convexity implies strict convexity), and convex if the above inequality
holds for m = 0.

Convex Optimization

The problem of finding an y ∈ S which minimizes a convex function fobj : Rny → R

over a set S ⊆ R
ny and the corresponding optimal value f ∗

obj are described by

min
y∈S

fobj(y), f ∗
obj = inf

y∈S
fobj(y), (2.24)

where inf denotes the infimum, i.e. the greatest lower bound on fobj(y) with y ∈ S.
Likewise, in the case of maximization the optimization problem and optimal value
are denoted by

max
y∈S

fobj(y), f ∗
obj = sup

y∈S
fobj(y), (2.25)

where sup denotes the supremum, i.e. the least upper bound on fobj(y) with y ∈ S.
If there exists y∗ ∈ S such that fobj(y

∗) = f ∗
obj then fobj attains its minimum

/ maximum over S at y∗, where y∗ denotes the optimal solution. The following
version of the Weierstrass extreme value theorem gives conditions under which the
minimum is attained.

Theorem 2.2. (cf. [10], Proposition A.8) Let S be a nonempty subset of Rny and
let fobj : S → R be lower semicontinuous at all points of S. Assume that one of the
following conditions holds:
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2.4. Some Basics of Mathematical Optimization

(a) S is compact,

(b) S is closed and fobj is coercive (i.e. fobj(y) → ∞ as ‖y‖ → ∞),

(c) There exists a scalar cLev such that the level set {y ∈ S|fobj(y) ≤ cLev} is
nonempty and compact,

(d) fobj(y) is strongly convex.

Then, there exists y∗ ∈ S such that fobj(y
∗) = infy∈S fobj(y).

A proof for (a) to (c) can be found in [10]. To establish (d) note that if fobj(y) is
strongly convex it is also continuous and all its level sets are bounded by closed balls
(see [15], Section 9.1.2). It directly follows that (d) implies (c). In the following,
min will be used instead of inf if the minimum is attained, and max instead of sup if
the maximum is attained. If S = ∅ the optimization problem is said to be infeasible.
In this case f ∗

obj takes values in R̄ := [−∞, ∞]. In particular, infy∈∅ fobj(y) = ∞ and
supy∈∅ fobj(y) = −∞ (cf. [93]). The following Proposition from [10] is concerned
with first-order optimality conditions:

Theorem 2.3. (cf. [15],[10]) Let S be a nonempty convex subset of Rny . If fobj is
convex and differentiable then y∗ ∈ S is optimal if and only if

∇fobj(y
∗)T (y − y∗) ≥ 0, ∀y ∈ S,

and every local minimum is a global minimum. If in addition fobj is strictly convex,
then the optimizer y∗ is unique.

A proof can be found in [15], Section 4.2.3, and the uniqueness of the optimizer
follows from [10], Proposition B.10.

The set S may be described by hi inequality constraints fineq,i(y) ≤ 0, i ∈
{1, . . . , hi}, and he equality constraints feq,i(y) = 0, i ∈ {1, . . . , he}:

S =

{
y ∈ R

ny

∣∣∣∣∣ fineq,i(y) ≤ 0, ∀i ∈ {1, . . . , hi},
feq,i(y) = 0, ∀i ∈ {1, . . . , he}

}
,

where fineq,i : Rny → R and feq,i : Rny → R. Then, the optimization problem (2.24)
is equivalently described by

min
y

fobj(y) (2.26)

s.t. fineq,i(y) ≤ 0, ∀i ∈ {1, . . . , hi}, (2.27)

feq,i(y) = 0, ∀i ∈ {1, . . . , he}, (2.28)

and (2.25) can be rewritten in similar fashion.
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Duality

The Lagrangian L : Rny × R
hi × R

he → R of problem (2.24) is given by

L(y, λ, ν) = fobj(y) +
∑hi

i=1
λifineq,i(y) +

∑he

i=1
νifeq,i(y), (2.29)

and λ = [λ1, . . . , λhi
]T , ν = [ν1, . . . , νhe]

T are the Lagrange multipliers associated
with inequality and equality constraints. Based on the Lagrangian the Lagrange
dual function

gd(λ, ν) := inf
y∈C

L(y, λ, ν)

is defined, which has the property that gd(λ, ν) ≤ f ∗
obj holds for all λ ≥ 0, all ν, and

the optimal value f ∗
obj of (2.24) (cf. [15]). Furthermore, the so called Lagrange dual

problem is given by

g∗
d := max

λ≥0
gd(λ, ν), (2.30)

with optimal value g∗
d and optimal multipliers (λ∗, ν∗). If the primal problem (2.24)

is convex and a so called constraint qualification holds, then strong duality holds.
This implies g∗

d = f ∗
obj. The simplest constraint qualification is Slater’s condition,

which requires that a strictly feasible point, i.e. y ∈ int(S), exists. Another type
of constraint qualification is Linear Independence Constraint Qualification (LICQ),
which is satisfied if the gradients of the active constraints, evaluated at the primal
optimizer y∗, are independent (cf. [88]).

KKT optimality conditions

Assuming that a constraint qualification holds, there exist primal and dual points
y∗, (λ∗, ν∗) such that Karush-Kuhn-Tucker (KKT) conditions for optimality hold.
The KKT conditions are given by (cf. [15])

fineq,i(y
∗) ≤ 0, ∀i ∈ {1, . . . , hi} (2.31)

feq,i(y
∗) = 0, ∀i ∈ {1, . . . , he} (2.32)

λ∗
i ≥ 0, ∀i ∈ {1, . . . , hi} (2.33)

λ∗
i fineq,i(y

∗) = 0, ∀i ∈ {1, . . . , hi} (2.34)

∇fobj(y
∗) +

∑hi

i=1
λ∗

i ∇fineq,i(y
∗) +

∑he

i=1
ν∗

i ∇feq,i(y
∗) = 0. (2.35)

The first two conditions imply primal feasibility, the third condition dual feasibility
and the last two conditions imply optimality. When the problem is convex, and the
equality constraints are affine, the KKT conditions are both necessary and sufficient
for optimality (cf. [15], Section 5.5.3).
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Mixed-Integer Programming

In the case of hybrid dynamics, which involve discrete states and inputs, the MPC
problem (2.6) becomes a mixed-integer program, which involves continuous variables
as well as variables which are restricted to the set of integers Z. The optimization
problem then becomes:

min
y

fobj(y) (2.36)

s.t. fineq,i(y) ≤ 0, ∀i ∈ {1, . . . , hi}, (2.37)

feq,i(y) = 0, ∀i ∈ {1, . . . , he}, (2.38)

yi ∈ Z, ∀i ∈ I , (2.39)

where I is the index set of optimization variables restricted to Z. The optimization
problem (2.36) is called a convex mixed-integer nonlinear program (convex MINLP)
if it becomes convex when the constraint (2.39) is relaxed to a convex constraint. If
the costs are linear and the constraints are affine, it is called a mixed-integer linear
program (MILP, cf. [97]). Convex MINLP and MILP may have multiple global
optima and can be solved by algorithms such as branch and bound and cutting
plane approaches which iteratively solve convex or linear approximations of the
convex MINLP and are guaranteed to find a global optimum (cf. [70]). However,
in the worst case the computation time of these algorithms grows combinatorial
with the number of integer variables. In the case of piecewise affine dynamics (2.3),
polytopic inequality constraints, affine equality constraints, and a quadratic cost
function (2.5) the MPC problem (2.6) becomes a mixed-integer quadratic program.
In this case, if the integer variables yi with i ∈ I are either fixed or relaxed to the set
yi ∈ [0, 1] a quadratic program is obtained. Thus, this problem belongs to the class
of convex MINLP. Properties of convex MINLP and solution algorithms for this
class of problems can be found in, e.g., [70] and [69]. In [62] fast numerical methods
for the (centralized) solution of model predictive control problems involving integer
variables are investigated, however only discrete inputs are considered.

Distributed Optimization

In general most distributed optimization methods of interest in the context of dis-
tributed model predictive control fall into the category of either primal or dual de-
composition. The main idea of these methods is to decompose a large optimization
problem into several small problems which can be solved in parallel. This concept
is especially useful with respect to distributed MPC because the computations can
be distributed across communicating local controllers, spreading the computational
load across controllers of different subsystems. The following optimization problem:

f ∗
obj = min

y1∈S1,y2∈S2

fobj,1(y1) + fobj,2(y2) (2.40)

s.t. fineq,1(y1) + fineq,2(y2) ≤ 0, (2.41)
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consists of two convex subproblems, local variables y1 ∈ R
ny1 , y2 ∈ R

ny2 and convex
coupled constraints. While many different formulations are used in the literature,
most distributed MPC algorithms using dual decomposition rely on this type of
formulation. Therefore it is used here to provide a concise introduction to decom-
position methods.

In primal decomposition, the coupling constraint is split by introducing a variable
yt ∈ R

np, such that the following two subproblems are obtained:

fobj,1(yt) = inf
y1∈S1

fobj,1(y1), s.t. fineq,1(y1) ≤ yt

fobj,2(yt) = inf
y2∈S2

fobj,2(y2), s.t. fineq,2(y2) ≤ −yt.

Next, a so called master problem is introduced which minimizes the cost over yt

and is equivalent to the original problem (2.40):

fobj(yt) = min
yt

fobj,1(yt) + fobj,2(yt).

This problem is solved iteratively by solving f ∗
obj,1(yt) and f ∗

obj,2(yt) for a given
yt, updating the variable yt by a method with low computational complexity (e.g.
subgradient methods) and repeating the process until a stopping condition holds.
Given a feasible initialization for yt the cost fobj(yt) upper bounds f ∗

obj at any
iteration and converges to f ∗

obj if a suitable method is used to update yt. Since the
update of yt is computationally cheap large savings in computation time may result
due to the parallel optimization of the subproblems.

In dual decomposition the coupling constraint is dualized by forming a partial
Lagrangian (2.29) with respect to the coupled constraints:

L(y1, y2, λ) = fobj,1(y1) + fobj,2(y2) + λT (fineq,1(y1) + fineq,2(y2)).

This results in the following two subproblems for given dual variables λ:

gd,1(λ) = inf
y1∈S1

fobj,1(y1) + λT fineq,1(y1)

gd,2(λ) = inf
y2∈S2

fobj,2(y2) + λT fineq,2(y2),

and the master problem is given by maximizing the dual function of the original
problem (2.40):

gd(λ) = max
λ≥0

gd,1(λ) + gd,2(λ).

This problem is again solved iteratively by updating λ with a suitable method (e.g.
a subgradient step). Then gd(λ) lower bounds f ∗

obj in every iteration and converges
to f ∗

obj over the iterations. For more details on subgradient methods used to update
yt or the dual variables λ in such a scheme see e.g. [35] and the references therein.
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While the framework of primal and dual decomposition in combination with sub-
gradient methods offers a powerful tool for distributed convex optimization, the
convergence of such schemes is often slow and requires many iterations. Further-
more, using dual decomposition in combination with subgradient methods may
not yield a feasible solution in a finite number of iterations and the primal cost
fobj,1(y1) + fobj,2(y2) may increase from one iteration to the next. This is problem-
atic if the algorithm has to be terminated early due to computation or communi-
cation constraints. In particular, because the dual function only provides a lower
bound on the cost of the original problem convergence rates for the dual function
do not necessarily have any implication for convergence of the primal cost. Thus, if
a distributed algorithm based on dual decomposition and the subgradient method
is terminated early it is in general not possible to give bounds on the suboptimality
of the resulting primal solution (cf. [63]).

Different methods have been proposed in the literature to address these shortcom-
ings. In [37] a duality based distributed MPC algorithm and distributed stopping
criterion based on the relaxed dynamic programming inequality are presented, which
guarantee bounded suboptimality. However, this distributed stopping criterion may
not hold at the optimum, in which case a centralized stopping criterion is used. A
dual algorithm which generates a feasible solution in a finite number of iterations
was proposed in [23] using primal updates and a constraint tightening approach. In
[36] an accelerated gradient method with significantly improved convergence rate
compared to previous dual decomposition based methods is proposed. Recently
the alternating direction method of multipliers (ADMM) first proposed in [16] has
gained interest in the field of duality based distributed model predictive control [31]
to obtain stronger guarantees if the distributed optimization has to be terminated
before convergence. Furthermore, other approaches such as distributed interior
point methods [85] and distributed simplex methods [18] have been investigated for
special classes of distributed optimization problems arising in control. In [82] Nes-
terov’s first order scheme and a proximal center algorithm are used in combination
with event-based communication to solve convex optimization problems with either
separable cost or separable constraints. While this method reduces the communi-
cation requirements, the number of iterations and communication events is still far
too large to be applied to distributed MPC problems. A second order method for
solving quadratic programs in a distributed fashion is proposed in [63]. While the
results are rather promising and show a significant speed-up compared to gradient
based methods, no proof of convergence is available. Furthermore, in many cases
the communication requirements may again be prohibitive for distributed MPC.
Overall, only few works on distributed optimization algorithms consider closed-loop
properties.

Finally, most distributed optimization algorithms are ill-suited for the discontinu-
ity and non-convexity of mixed-integer programs arising from hybrid dynamics. In
fact, there are only very few results on distributed MPC and optimization of hybrid
or piecewise affine systems, such as [14] where dual decomposition and Lagrangian
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relaxation are applied to a distributed MPC problem arising from discrete-time
linear system with discrete inputs.

Also, none of the methods discussed above can be directly applied to the dis-
tributed solution of optimal control problems which involve nonlinear continuous-
time dynamics. A possible solution in this case was proposed in [64], where the
solution of the continuous-time dynamics is distributed among all nodes and a se-
quence of convex problems is constructed in order to approximate the original opti-
mal control problem. These convex problems may then be solved by the algorithms
discussed above.
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3. Distributed Model Predictive

Control Based on Robust

Optimization

This chapter deals with distributed model predictive control (distributed MPC) for
interconnected linear time invariant systems with decoupled dynamics and coupling
via a common cost function as well as common convex state constraints. Such
problems commonly arise in formation control problems such as vehicle platooning
or control of satellite formations. For instance, the control task for a platoon of
vehicles in a leader-follower scenario is to follow the lead vehicle with a constant
spacing while avoiding collisions.

Similar control tasks have been considered in [83] in the framework of a non-
iterative sequential distributed MPC algorithm without communication delays, and
in [33] where constant communication delays and parallel computation is considered
for subsystems only interconnected by costs. The aim of this chapter is to develop
a non-iterative distributed MPC algorithm with parallel optimization which can be
used for subsystems interconnected by constraints, as well as control tasks such as
the synchronization of subsystem trajectories, and offers robustness against bounded
time-varying communication delays.

This chapter is mostly based on results previously published in [42], [47] and the
book chapter [48]. In the algorithm presented in this chapter, local model predic-
tive controllers optimize the local inputs in parallel. The controllers exchange state
measurements and predicted input sequences via possibly delayed communication
and consider information received from controllers of interconnected systems in the
local optimization problem. However, due the communication delays the commu-
nicated information is inherently uncertain. The main idea in [42] is to introduce
constraints which ensure that the difference between previously communicated in-
put sequences and actual inputs is bounded and to communicate those bounds.
Locally robust model predictive controllers (cf. [39]) are used to ensure robustness
with respect to these bounded uncertainties. The local robust MPCs optimize a
sequence of nominal inputs as well as feedback policies for the delayed informa-
tion. This optimization can be implemented as a tractable quadratic program. The
resulting distributed MPC algorithm renders the overall system input-to-state prac-
tically stable [47]. In this chapter, the stability proof given in [47] is adapted to
the framework presented in Theorem 2.3. This provides additional insight into the
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3. Distributed Model Predictive Control Based on Robust Optimization

problem, as well as improved bounds. In particular, in [47] the neighborhood of
the control goal that the state is guaranteed to converge to for k → ∞ strongly
depends on the initialization of the distributed MPC at k = 0. This drawback has
been resolved here by applying the results from Theorem 2.3.

3.1. Distributed System Model and Control

Objectives

In this chapter, Ns discrete-time linear and time invariant (LTI) systems P i which
are modeled by the difference equations

xi
k+1 = Aixi

k + Biui
k (3.1)

are considered. These subsystems with local input ui
k ∈ U

i ⊆ R
mi

are interconnected
by global state constraints xk ∈ X ⊆ X

1 × . . . × X
Ns ⊆ R

n. In order to obtain a
suitable decomposition, it is assumed that each coupled cost term and constraint
is assigned to one local controller. In other words, if a constraint involves x1

k and
x2

k a decomposition is chosen such that either C2 depends on x2
k and x1

k, and C1

only depends on x1
k, or C1 depends on x1

k and x2
k, and C2 only depends on x2

k. This
decomposition allows using neighboring, one way, communication between each pair
of controllers, resulting in low communication requirements and an algorithm which
is well suited to deal with delayed communication.

The index set N i = {i1, . . . , iN i
s
} ⊆ N contains the indices of all the subsystems

with which P i is coupled through costs or constraints X. In other words, if (j, i) ∈ I
then Ci depends on the states of Pj or inputs computed by Cj. The communication
graph for the non-iterative algorithm proposed in this chapter is time-invariant and
given by Ek,0 := I for all k.

Assumption 3.1. It is assumed that the interconnection graph G does not contain
any cycles.

For example, consider the subsystems shown in Figure 3.1. Without the assump-
tion that there are no cycles in the graph G, uncertainties could be amplified while
propagating through the distributed controllers Ci and could affect the controller
they originated from. Without this assumption some properties used in this chapter
may not hold.

In order to consider the coupled costs and constraints, the following augmented
prediction model for the subsystem P i is defined:

x̃i
k+l+1|k = Ãix̃i

k+l|k + B̃iũi
k+l|k, (3.2)

where Ãi = blkdiag(Ai, Ai1, . . . , A
i
Ni

s ), B̃i = blkdiag(Ai, Bi1 , . . . , B
i
Ni

s ), and the

augmented state and input vector are given by x̃i
k+l|k := (xi

k+l|k; xi1

k+l|k; . . . ; x
i
Ni

s

k+l|k) ∈
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C1
C1 C2

C2

C3

C3

C4

C5

Figure 3.1.: Interconnection graphs G which satisfy Assumption 3.1.

R
ñi

and ũi
k+l|k := (ui

k+l|k; ui1

k+l|k; . . . ; u
i
Ni

s

k+l|k) ∈ R
m̃i

, with ñi = ni +
∑

j∈N i nj , and

m̃i = mi +
∑

j∈N i mj. It should be noted that (3.2) does not induce coupling in the
dynamics. Instead, the purpose of introducing states of interconnected subsystems
into a local model is to explicitly consider the coupled constraints and the coupled
costs. Using this augmented model, corresponding constraints x̃i

k|k ∈ X̃
i can be

defined, which include the coupled constraints. Furthermore, the set Σ, defined in
(2.4), can be decomposed into sets

Σi :=
{

z̃i ∈ R
ñi

× R
m̃i
∣∣∣z̃i = (x̃i; ũi), Γi

xx̃i = 0, Γi
uũi = 0

}
, (3.3)

which depend on extended local state vectors z̃i
k and collect the equalities of Σ

corresponding to the decomposition given by N i. A local cost function can be
formulated which is positive definite with respect to Σi:

Vi(x̃i
k, ũi

k) = ‖x̃i
τ,k+N |k‖2

P̃ i +
∑N−1

l=0
‖x̃i

k+l|k‖2
Q̃i + ‖ũi

k+l|k‖2
R̃i, (3.4)

where Q̃i := (Γi
x)T Γi

x � 0 and R̃i = (Γi
u)T Γi

u � 0 represent the weighting matrices
obtained by decomposition of the control objectives given by (2.5). It follows that
‖x̃i

k‖2
Q̃i + ‖ũi

k‖2
R̃i = 0, ∀z̃i

k ∈ Σi, and ‖x̃i
k‖2

Q̃i + ‖ũi
k‖2

R̃i > 0, ∀z̃i
k /∈ Σi. The term

‖x̃i
τ,k+N |k‖2

P̃ i is a terminal cost defined below.

The local cost functions (3.4) and constraints x̃i
k|k ∈ X̃

i depend on the states
and control actions of interconnected subsystems. This introduces some degree of
cooperation between the local controllers which locally optimize (3.4). However,
the states and planned inputs of interconnected subsystems Pj , j ∈ N i are not
exactly known by the controller Ci due to the communication delays and parallel
optimization. With respect to the communication the following assumption is made:

Assumption 3.2. It is assumed that the communication between controllers is sub-
ject to a bounded time-varying communication delay, that the clocks of the con-
trollers are synchronized, and messages include a timestamp. The delay of a mes-
sage sent by Cj and received at time k by Ci is denoted by τ i,j

k and bounded by
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3. Distributed Model Predictive Control Based on Robust Optimization

1 ≤ τ i,j
k ≤ τmax, where the lower bound follows from the fact that the controllers Ci

optimize in parallel. It is further assumed that the prediction horizon of the MPC
is chosen such that N � τmax and that Aj and Bj are known to all controllers Ci,
j ∈ N j.

To model the discrepancy between the actual states, inputs, and values ob-
tained through delayed communication, let ûi,j

k+l|k = uj
k+l|k+l + δûi,j

k+l|k ∈ R
mj

and

x̂i,j
k+l|k = xj

k+l|k+l + δx̂i,j
k+l|k ∈ R

nj

denote uncertain predictions that the controller

Ci has of the states xj
k|k and inputs uj

k|k of a subsystem Pj, j ∈ N i with cor-

responding uncertainties δx̂i,j
k|k and δûi,j

k+l|k ∈ ΔU
i,j
k+l|k. The predictions for Pj,

j ∈ N i are obtained through communication as follows: At each time step k each
local controller Cj communicates the state xj

k|k and its planned inputs ûi
k+l|k for all

l ∈ {0, . . . , N −1}. This information is received by Ci with a delay of τ i,j
k time steps,

such that e.g. x̂i,j

k−τ
i,j

k
|k

:= xj

k−τ
i,j

k

and ûi,j
k+l|k := ûj,j

k+l|k−τ
i,j

k

. Using this information,

the following local prediction model is obtained:

ˆ̃xi
k+l+1|k = Ãi ˆ̃xi

k+l|k + B̃i ˆ̃ui
k+l|k, (3.5)

where the state, input and corresponding uncertainties for the non-local states and
inputs are given by

ˆ̃xi
k+l|k :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xi
k+l|k

x̂i,i1

k+l|k
...

x̂
i,i

Ni
s

k+l|k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, ˆ̃ui
k+l|k :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ui
k+l|k

ûi,i1

k+l|k
...

û
i,i

Ni
s

k+l|k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, δ ˆ̃ui
k+l|k :=

⎡
⎢⎢⎢⎢⎣
δûi,i1

k+l|k
...

δû
i,i

Ni
s

k+l|k

⎤
⎥⎥⎥⎥⎦ , δ ˆ̃xi

k+l|k :=

⎡
⎢⎢⎢⎢⎣
δx̂i,i1

k+l|k
...

δx̂
i,i

Ni
s

k+l|k

⎤
⎥⎥⎥⎥⎦ ,

and ˆ̃xi
k|k ∈ X̃

i ⊆ R
ñi

, δ ˆ̃xi
k|k ∈ R

ñi−ni

, ˆ̃ui
k|k ∈ R

m̃i

, δ ˆ̃ui
k|k ∈ R

m̃i−mi

. In the worst case,

the last exactly known state at time k may be x̃i
k−τmax|k−τmax

and the last predictions

received are ûj,j
k+l|k−τmax

with l ∈ {−τmax, . . . , N − 1 − τmax} for all j ∈ N i, i.e. Ci

can perform a forward prediction starting from x̂i
k−τmax|k = x̃i

k−τmax|k−τmax
using the

model (3.5). The error of the prediction of non-local states can also be obtained by
forward prediction according to:

δx̂i,j
k+l+1|k = Ãiδx̂i,j

k+l|k + B̃iδûi,j
k+l|k, ∀j ∈ N i, (3.6)

where δx̂i,j
k−τmax|k = 0. It follows that δ ˆ̃xi

k|k can be eliminated from the problem

at hand because it is a function of δ ˆ̃ui,j
k+l|k with l ∈ {−τmax, . . . , 0}. Thus, a pre-

diction model which considers the uncertainty of the communicated information
is obtained. In the following, ui

k|k will be constrained to a time-varying set U
i
k|k

by each controller Ci to ensure that the uncertainties affecting the interconnected
controllers Cj bounded.
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To establish recursive feasibility and practical stability of the distributed MPC
algorithm, a terminal control law given by a delayed state feedback of the form

ũi
k =

[
K i

T

0m̃i−mi×ñi

]
︸ ︷︷ ︸

=:K̃i
T

x̃i
k+1−τmax

(3.7)

is used to account for possible communication delays.
In order to explicitly include such a delay into a linear discrete time system for

controller design, the extended state vector x̃i
τ,k = (x̃i

k; . . . ; x̃i
k−τmax+1) ∈ R

τmaxñi

is
defined (cf. [22]), which leads to the following standard assumptions [81] adapted
to the delayed feedback formulation.

Assumption 3.3. For each system (3.5), there exists a terminal controller (3.7)

with K i
T ∈ R

mi×ñi

, a corresponding terminal weight P̃ i = (P̃ i)T � 0 , and a terminal
set T̃i ⊆ X̃

i × . . . × X̃
i, such that the following holds for all x̃i

τ,k ∈ T̃
i:

1. The terminal controller renders the terminal set robust forward invariant with
respect to δ ˆ̃ui

k, i.e. x̃i
τ,k+1 ∈ T̃

i holds for all δûi,j
k ∈ U

j and:

x̃i
τ,k+1 =

[
Ãi 0(τmax−2)ñi×ñi B̃iK̃ i

T

I(τmax−1)ñi 0(τmax−1)ñi×ñi

]
x̃i

τ,k +

[
B̃i

0(τmax−1)ñi×m̃i

] [
0

δ ˆ̃ui
k

]
. (3.8)

2. The terminal control law satisfies the input constraints:

ui
k =

[
0mi×(τmax−1)ñi K i

T

]
x̃i

τ,k ∈ U
i.

3. The terminal cost is a Lyapunov function for the undisturbed closed-loop sys-
tem (3.8) in the sense that

‖x̃i
τ,k+1‖2

P̃ i − ‖x̃i
τ,k‖2

P̃ i ≤ −‖x̃i
τ,k‖2

Q̃i,

for δ ˆ̃ui
k = 0, and with Q̃i = blkdiag

(
Q̃i, 0ñi×ñi, . . . , 0ñi×ñi,

[
Ki

0
m̃i×ñi

]T
R̃i
[

Ki

0
m̃i×ñi

])
,

4. z̃k+l ∈ Σ, ∀l ∈ {−τmax + 1, . . . , 0} implies ‖x̃i
τ,k+1‖2

P̃ i = 0 for the undisturbed
closed-loop system (3.8).

The terminal set is specified by the polytope

T̃
i = {x̃i

τ,k ∈ R
τmaxñi

|C i
T
x̃i

τ,k ≤ bi
T
}, (3.9)

with C i
T

∈ R
hi
T×τmaxñi

, bi
T

∈ R
hi
T and can be computed using standard set-theoretic

approaches (c.f. [12]).
Overall, it can be seen that Assumption 3.1 is crucial to the decomposition used

in this chapter. In particular, Assumption 3.3 would need to be extended with a
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small gain condition or similar arguments if Assumption 3.1 does not hold. While
extensions in this direction may be possible along the lines of the arguments made in
[92] they are not essential to the conclusions drawn in this section. Furthermore, it
is well known that results based on small gain techniques may be very conservative.
Instead, if the coupling graph contains cycles the cooperative methods proposed in
subsequent chapters may be preferable.

3.2. Robust Optimization for Distributed MPC

The distributed model presented in the previous section is subject to uncertainties
δûi

k+l|k, hence the local MPC has to compute a sequence of future control inputs,
such that the state constraints are maintained for all possible future realizations of
δûi

k+l|k. However, computing an open-loop control sequence which robustly satisfies
the constraints may be very conservative or impossible even for relatively small
uncertainties.

Considering Assumption 3.2, the actual input uj
k of a subsystem j ∈ N i will be

known to the controller Ci with a delay of τmax time steps. The uncertainties in
(3.5) can be computed at time k + l + τmax based on δûi,j

k+l|k = ûi,j
k+l|k − uj

k+l|k+l.
Hence, a delayed affine feedback

ui
k+l|k = ûi

k+l|k +
∑l−τmax

r=1−τmax
K i

l,r|k δ ˆ̃ui
k+r|k, ∀l ∈ {0, . . . , N − 1} , (3.10)

of the uncertainties δ ˆ̃ui
k+r|k can be applied to the distributed control problem and

the uncertainty in ui
k+l|k only arises from the feedback of values which are not

known at time k. It should be noted that within the distributed MPC algorithm
this feedback is optimized at time k for future times k + l with l ∈ {1, . . . , N − 1}.
Because the actual communication delays at k + l are not known at time k the
worst-case delay τmax has to be used in (3.10) and the optimization.

Remark 3.1. A similar approach is used in robust optimization: For instance in
[7], an approach to uncertain linear programming is presented where a part of the
solution, referred to as “adjustable variables“, are parametrized in affine form in the
uncertain parameters. In robust MPC for linear systems xk+1 = Axk+Buk+ωk with
additive disturbance ωk similar control laws which are affine in the past disturbances
have been proposed in [73], [39] and [100], i.e. the predicted control input uk+l|k for
l ∈ {0, . . . , N −1} is an affine function of the disturbances ωk to ωk+l−1. An efficient
method to optimize such a control law under constraints and disturbances bounded
by a polytope is presented in [39], where it was shown that the resulting problem is
convex and equivalent to an affine state feedback parametrization.

The feedback (3.10) policy is expressed as follows:

ui
k = ûi

k + Ki
kδ ˆ̃ui

k, (3.11)
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where bold letters denote vectors which contain values over the prediction horizon
N , such that at time k:

ûi
k :=

⎡
⎢⎢⎢⎣

ûi
k|k
...

ûi
k+N−1|k

⎤
⎥⎥⎥⎦ , ˆ̃xi

k :=

⎡
⎢⎢⎢⎣

ˆ̃xi
k|k
...

ˆ̃xi
k+N |k

⎤
⎥⎥⎥⎦ , ˆ̃ui

k :=

⎡
⎢⎢⎢⎣

ˆ̃ui
k|k
...

ˆ̃ui
k+N−1|k

⎤
⎥⎥⎥⎦ , δ ˆ̃ui

k :=

⎡
⎢⎢⎢⎣
δ ˆ̃ui

k+1−τmax|k
...

δ ˆ̃ui
k+N−1|k

⎤
⎥⎥⎥⎦ ,

and the vector ûi
k can be interpreted as the planned control input of the controller

Ci in the absence of uncertainties. Let [T i
K

, T
\i
K

] denote a permutation matrix, such

that ˆ̃ui
k = [T i

K
, T

\i
K

] (ûi
k; û

\i
k ), and û

\i
k = (û

\i

k|k; . . . ; û
\i

k+N−1|k) contains all predictions

of non-local inputs û
\i

k+l|k = (ûi,i1

k+l|k; . . . ; û
i,i

Ni
s

k+l|k). Using T i
K

the feedback policy (3.11)
can be rewritten such that

ũi
k = ˆ̃ui

k + T i
K

Ki
kδ ˆ̃ui

k, (3.12)

Based on this feedback policy an uncertain prediction model over the whole pre-
diction horizon can be formulated:

ˆ̃xi
k = Ãi ˆ̃xi

k|k + B̃i(ˆ̃ui
k + T i

K
Ki

kδ ˆ̃ui
k) + Giδ ˆ̃ui

k, (3.13)

which explicitly considers the bounded uncertainties δ ˆ̃ui
k ∈ D

i
k ⊆ R

qi

, where qi =

(N+τmax−1)(m̃i−mi), and the matrix Gi := B̃iT
\i
K

. In other words, the uncertainty

δûi,j
k+l|k only affects the local inputs ui

k+l|k through the feedback matrix Ki
k. In the

following this model will be used to optimize over local feedback policies which
guarantee robust constraint satisfaction for the overall system. The state constraints
X̃i = X̃

i×. . .×X̃
i×T̃

i, the time-varying input constraints Ũi
k ⊆ Ũ

i
k|k×. . .×Ũ

i
k+N−1|k

with Ũ
i
k|k := U

i
k|k×R

m̃i−mi

, and the set D
i
k over the prediction horizon are expressed

by the following inequalities:

X̃i =
{

x̃i
k ∈ R

ñi(N+1)
∣∣∣C

X̃ix̃
i
k ≤ b

X̃i

}
, (3.14)

Ũi
k =

{
ũi

k ∈ R
m̃iN

∣∣∣C
Ũi

k
ũi

k ≤ b
Ũi

k

}
, (3.15)

D
i
k =

{
δ ˆ̃ui

k ∈ R
qi×1

∣∣∣C
D

i
k
δ ˆ̃ui

k ≤ b
D

i
k

}
, (3.16)

where C
Ũi

k
∈ R

hi
U×m̃iN , b

Ũi
k

∈ R
hi

U, C
D

i
k

∈ R
hi

D
×qi

, b
D

i
k

∈ R
hi

D , and hi
D

is the

number of faces of the disturbance polytope of Ci given by D
i
k := ΔŨ

i
k+1−τmax|k ×

. . . × ΔŨ
i
k+N−1|k and ΔŨ

i
k+l|k := ΔU

i,i1

k+l|k × . . . × ΔU
i,i

Ni
s

k+l|k.

The feedback Ki
k ∈ K

i ⊆ R
miN×qi

has the following block structure:

Ki
k =

⎡
⎢⎢⎢⎢⎢⎣

0mi×m̃i−mi 0mi×m̃i−mi · · · 0mi×m̃i
τ

K i
k+1,k+1−τmax|k 0mi×m̃i−mi · · · 0mi×m̃i

τ

...
. . . . . .

...
K i

k+N−1,k+1−τmax|k · · · K i
k+N−1,k+N−1−τmax |k 0mi×m̃i

τ

⎤
⎥⎥⎥⎥⎥⎦ , (3.17)
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where m̃i
τ := τmax(m̃i − mi), K i

l,r|k ∈ R
mi×(m̃i−mi) is the feedback gain at time l

for the uncertainty of the inputs of connected subsystems Pj, j ∈ N i at time r.
The set Ki encodes the block structure shown in (3.17), which ensures that at time
k + l only the uncertainties which are known at this time are used in the control
law. Considering the control law (3.12) and the prediction model (3.13), the set of
admissible control policies is given by

Ki
(
ˆ̃xi

k|k, Ũi
k, D

i
k

)
:=

⎧⎪⎪⎨
⎪⎪⎩(Ki

k, ˆ̃ui
k)

∣∣∣∣∣∣∣∣
∀δ ˆ̃ui

k ∈ D
i
k :

ˆ̃xi
k = Ãi ˆ̃xi

k|k + B̃i ˆ̃ui
k + (B̃iT i

K
Ki

k + Gi)δ ˆ̃ui
k,

ˆ̃xi
k ∈ X̃i, ˆ̃ui

k + T i
K

Ki
kδ ˆ̃ui

k ∈ Ũi
k, Ki

k|k ∈ K
i

⎫⎪⎪⎬
⎪⎪⎭ .

(3.18)

In order to simplify the notation, the following matrices are defined similar to the
ones in [39]:

Fi
x̂i :=

[
C

X̃iÃi

0hi
U

N×ñi

]
, Fi

k :=

⎡
⎣CX̃iB̃i

C
Ũi

k

⎤
⎦ , Fi

δi :=

[
C

X̃iGi

0hi
U

N×qi

]
, f i

k :=

[
b

X̃i

b
Ũi

k

]
. (3.19)

At time k, a control law admissible for the constraints is a pair (Ki
k, ûi

k) which
satisfies the state, input and terminal constraint, (3.12), (3.17), and the dynamics
(3.13) for all disturbances given by the set (3.16). The set (3.18) can be rewritten
as follows:

Ki
(
ˆ̃xi

k|k,Ũi
k, D

i
k

)
=

⎧⎪⎨
⎪⎩(Ki

k, ˆ̃ui
k)

∣∣∣∣∣∣∣
Ki

k|k ∈ K
i :

Fi
k
ˆ̃ui

k|k + max
δ ˆ̃ui

k
∈D

i
k

(
Fi

kT i
KKi

k + Fi
δ

)
δ ˆ̃ui

k ≤ f i
k − Fi

x̂i
ˆ̃xi

k|k

⎫⎪⎬
⎪⎭,

(3.20)

where the maximization is to be interpreted row-wise and the dual of the maximiza-
tion of the j-th row is given by

minsi
k,j

(b
D

i
k
)T si

k,j s.t. (C
D

i
k
)T si

k,j = (Fi
kT i

K
Ki

k + Fi
δi)j, si

k,j ≥ 0, (3.21)

where (·)j denotes the j-th row. Under the assumption that the disturbance set
contains 0 in its interior, i.e. ∃δ ˆ̃ui

k ∈ int(Di
k), Slater’s constraint qualification holds

and the row-wise maximization in (3.20) and minimization in (3.21) give the same
result. Considering that the primal is a maximization problem any feasible pair of
dual parameters can be used to upper bound the result of the maximization (cf.
Section 2.4 and note that max fobj = min −fobj). By combining the vectors si

k,j a

matrix Si
k with slack variables is obtained, and utilizing (3.21), the set of admissible

control policies is given by

Ki
(
ˆ̃xi

k|k, Ũi
k, D

i
k

)
=

⎧⎪⎪⎨
⎪⎪⎩(Ki

k, ˆ̃ui
k)

∣∣∣∣∣∣∣∣
∃Si

k ≥ 0, Ki
k|k ∈ K

i :

Si
kC

D
i
k

= (Fi
kT i

K
Ki

k + Fi
δ),

Fi
k
ˆ̃ui

k + Si
kb

D
i
k

≤ f i
k − Fi

x̂i
ˆ̃xi

k|k

⎫⎪⎪⎬
⎪⎪⎭ . (3.22)
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Because this set is the projection of a convex polytope, it is convex (cf. [39] for the
non-distributed case). Furthermore, because the maximization in (3.20) is a convex
problem there is no duality gap and it follows that (3.20) and (3.22) are equivalent.
In combination with a suitable quadratic cost function for the states and inputs, a
single quadratic program is obtained.

This formulation is particularly useful for the distributed case, since ûi
k can be

used as prediction of future inputs of P i. Furthermore, the control law (3.12) will
maintain the state and input constraints over the prediction horizon in the presence
of uncertainties. Deviations from the planned input sequence ûi

k can be bounded
by the following set ΔUi

k = ΔU
i
k|k × . . . × ΔU

i
k+N−1|k:

ΔUi
k =

{
δûi

k ∈ R
miN

∣∣∣ ∃δ ˆ̃ui
k ∈ D

i
k : δûi

k = Ki
kδ ˆ̃ui

k

}
, (3.23)

and these sets could be directly communicated to the controllers Cj of intercon-
nected subsystems j ∈ N j. However, computing the projection in (3.23) may be
computationally expensive and may lead to a time-varying number of faces in the
polytope ΔU

i,i
k . Both of these issues are avoided here by exploiting the structure

of the problem formulation in (3.20).
Note that the term Si

kb
D

i
k

in (3.22) tightens the state and input constraints on
the nominal prediction, such that they are satisfied for the uncertain system and
the affine uncertainty feedback. By collecting the rows of Si

k corresponding to the

local input constraints U
i
k+l|k in a matrix Si

Uk+l|k
∈ R

hi
U, it follows from (3.19) to

(3.22) that

Si
Uk+l|k

b
D

i
k

= max
δûi

k
∈D

i
k

(
C i

Uk+l|k
K

i,l
k

)
δ ˆ̃ui

k, (3.24)

with row-wise maximization and Ki
k = (Ki,0

k , . . . , K
i,N−1
k ). Based on this observa-

tion, the following set can be defined, which contains all possible deviations of the
affine disturbance feedback (3.12) from the planned input sequence ûi

k:

ΔU
i,i
k+l|k =

{
δûi

k+l|k ∈ R
mi
∣∣∣C i

Uk+l|k
δûi

k+l|k ≤ Si
Uk+l|k

b
D

i
k

}
, (3.25)

and ΔU
i,i
k+l|k = Bmi

εn
(0), where εn > 0 denotes the numerical tollerance, if the right

hand side in (3.25) is empty. Thus, Slater’s constraint qualification holds for the
maximization in (3.20). These sets are then communicated to the interconnected
controllers for all l ∈ {0, . . . , N − 1}.

3.3. Distributed MPC Algorithm

In the distributed scheme each controller Ci communicates its state xi
k, the sequence

of predicted nominal inputs ûi
k+l|k, and the uncertainty of the prediction ΔU

i
k+l|k
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3. Distributed Model Predictive Control Based on Robust Optimization

for all l ∈ {0, . . . , N − 1 + τmax} to the controllers Cj, for all j : i ∈ N j, i.e. to all
interconnected controllers. In order to compensate for communication delays, the
sequences are prolonged according to:

ûi
k+l|k := K i

T
ˆ̃xi

k+l|k, ΔU
i
k+l|k := U

i, ∀l ∈ {N − 1, . . . , N − 1 + τmax}. (3.26)

To ensure feasibility of the scheme, local control actions have to be consistent with
previously communicated information. To achieve this, each controller shifts its un-
certain communicated information one step forward to obtain new input constraints
for the local robust MPC problem at the next time step for l ∈ {1, . . . , N − 1}:

U
i
k+l|k+1 := ΔU

i
k+l|k ⊕ {ûi

k+l|k} ⊆ U
i
k+l|k, (3.27)

where ⊕ denotes the minkowski sum, the last inequality directly follows from the
definition of ΔU

i
k+l|k. If the controller Ci receives information from controller Cj ,

it computes the corresponding delay τ i,j
k and stores the most recent information in

a buffer. The most recent values are given by k̄i,j = arg max0≤l≤k l − τ i,j
l and the

corresponding delay by τ i,j

k̄
. In each time step these values are used to initialize the

predictions for interconnected subsystems as follows:

x̂i,j

k̄−τ
i,j

k̄
|k

:= xj

k̄−τ
i,j

k̄

, ∀l ∈ {−τ i,j

k̄
, . . . , N − 1}, (3.28)

ûi,j
k+l|k := uj

k+l|k̄−τ
i,j

k̄

, ∀l ∈ {−τ i,j

k̄
, . . . , N − 1}, (3.29)

ΔU
i,j
k+l|k := ΔU

j

k+l|k̄−τ
i,j

k̄

, ∀l ∈ {−τ i,j

k̄
, . . . , N − 1}, (3.30)

for all (i, j) ∈ N × N i. Beyond the prediction horizon it is assumed that the inputs
of interconnected subsystems are given by ûi,j

k+l|k := 0, and ΔU
i,j
k+l|k := U

j for all

l > N − 1 (cf. Assumption 3.3).
Finally, the following local optimization problem is obtained, which depends on

the local state, the time-varying input constraints, and the delayed information of
interconnected controllers:

V i∗(ˆ̃xi
k|k, û

\i
k , ûi

k) = min
ûi

k
,Ki

k|k

‖x̂i
τ k+N |k‖2

P̃ i +
N−1∑
l=0

‖ˆ̃xi
k+l|k‖2

Q̃i + ‖ˆ̃ui
k+l|k‖2

R̃i (3.31)

s.t. ˆ̃xi
k+l+1|k = Ãi ˆ̃xi

k+l|k + B̃i ˆ̃ui
k+l|k, ∀l ∈ {0, . . . , N − 1}

x̂i
τ k+N |k = (ˆ̃xi

k+N |k, . . . , ˆ̃xi
k+N−τmax+1|k),(

Ki
k, ˆ̃ui

k

)
∈ Ki

(
ˆ̃xi

k|k, Ũi
k, D

i
k

)
,

and the input sequences of interconnected subsystems û
\i
k are fixed to values ob-

tained from delayed communication. The last line in (3.31) implies that the state
and input constraints and the terminal constraint are satisfied for all disturbances
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(3.16), and (ûi
k, Ki

k|k)∗ denotes the locally optimized pair of the control policy pa-

rameters. In the following δu
\i
k+1 = û

\i
k+1 − û

\i
k denotes the difference between

predictions used by Ci at consecutive time steps.
Algorithm 3.1 describes the overall distributed MPC scheme. The input con-

straints used by Ci and consequently the disturbance sets of interconnected con-
trollers Cj are time-varying. The first control obtained from (3.31) is applied in a
receding horizon fashion, such that ui

k = ûi
k|k and it follows that δ ˆ̃ui,j

k+l|k+l = 0 for
all l ≤ −τmax.

The input constraints restrict the solution of Ci at k +1 to input sequences which
are consistent with previously communicated information. Thus, they ensure that
a controller can only deviate from its plan by a previously communicated amount.
It follows from (3.27) and the communication scheme that

ΔU
i,j
k+l|k+1 ⊕ {ûi,j

k+l|k+1} ⊆ ΔU
i,j
k+l|k ⊕ {ûi,j

k+l|k}, (3.32)

i.e. the uncertainty for a time k + l predicted at time k cannot increase at k + 1. In
the following theorem this property of Algorithm 3.1 and Assumption 3.3 is used

Algorithm 3.1: Distributed MPC Algorithm

1: INITIALIZATION: At k = 0 the state xj

−τ
i,j

k

and initial input sequence uj

l|−τ
i,j

k

for all l ∈ {−τ i,j
k , . . . , N − 1} are known to all Ci, i : j ∈ N i, and ΔU

i,j
l|0 := U

j.
2: for all k ≥ 0 do

3: for all subsystems i ∈ N do

4: for all j ∈ N i do

5: If information is received, compute the delay τ i,j
k based on timestamps

6: Store the most recent information (i.e. received at k̄i,j = arg max0≤l≤k l−

τ i,j
l ) in a buffer

7: Update the predictions according to (3.28) to (3.30)
8: end for

9: Measure the local state xi
k and compute the local predictions x̂i,j

k|k according

to (3.5)
10: Solve the local optimization problem (3.31), and apply ui

k = ûi
k|k

11: Prolong the sequence of inputs and disturbance sets according (3.26)
12: Compute the input consistency constraints U

i
k+l|k+1 for k + 1 according to

(3.25) and (3.27)
13: Communicate xi

k, ûi
k+l|k, ΔU

i
k+l|k for all l ∈ {0, . . . , N − 1 + τmax}, and a

timestamp to all Cj , j : i ∈ N j

14: end for

15: Set k := k + 1
16: end for
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3. Distributed Model Predictive Control Based on Robust Optimization

to establish recursive feasibility of the distributed MPC algorithm.

Theorem 3.1. If Assumption 3.3 holds and the problem (3.31) is feasible for all
subsystems at time k = 0, the problem remains feasible for all times k > 0, and the
state and input constraints xk ∈ X, ui

k ∈ U
i are satisfied for all times k > 0.

Proof. Feasibility of the problem at k = 0 implies that there exists a pair (Ki
k, ˆ̃ui

k)
which steers the system into the terminal constraint T̃i in N steps under all possible
realizations of the uncertainties δ ˆ̃ui

k, while satisfying all constraints. Furthermore,
at k + 1 the uncertainty δ ˆ̃ui

k+1−τmax
will be known exactly. If new predictions are

received from interconnected controllers, the consistency constraints ensure that
δui,j

k+l|k+1 = ûi,j
k+l|k+1 − ûi,j

k+l|k ∈ ΔU
i,j
k+l|k for all l ∈ {1, . . . , N} and all j ∈ N \ i. This

implies that at k + 1 a feasible input sequence up to k + N − 2 is given by

⎡
⎢⎢⎢⎣

ûi
k+1|k+1

...
ûi

k+N−2|k+1

⎤
⎥⎥⎥⎦ = (ûi

k + Ki
kδu

\i
k+1)+, (ûi

k)+ =

⎡
⎢⎢⎢⎣

ûi
k+1|k

...
ûi

k+N−2|k

⎤
⎥⎥⎥⎦ , (3.33)

where (·)+ denotes shifting a sequence one time step forward, i.e. the terminal
constraint is satisfied for k + N − 1.

Furthermore, by Assumption 3.3 the control law (3.7) renders the terminal con-
straint robust forward invariant while satisfying the local input constraints. Thus,
the terminal controller can be used to prolong the sequence of inputs and controllers
(Ki

k, ˆ̃ui
k), such that the terminal constraint is satisfied at k + N under all realiza-

tions of the uncertain parameters. Because the terminal constraint is a subset of
the state constraints, it follows that all constraints are satisfied at k + N .

To this end, the terminal control law is applied to the state x̃i
k+N+1−τmax

:

ui
k+N = Ki

T
x̃i

k+N+1−τmax
, (3.34)

ui
k+N = Ki

T
ˆ̃xi

k+N+1−τmax
+ Ki

Tδ ˆ̃xi
k+N+1−τmax

, (3.35)

where ˆ̃xi
k+N+1−τmax

can be found by forward recursion of (3.5) based on ˆ̃xi
k−τk |k+1

and ˆ̃ui
k+l|k+1 with l ∈ {−τk, . . . , N − τmax}, resulting in

ûi
k+N−1|k+1 = Ki

T
ˆ̃xi

k+N+1−τmax
.

The second term in (3.35) is uncertain and by recursively applying (3.6) it can
be seen that there exists matrices Ai

l, such that

δ ˆ̃xi
k+N+1−τmax|k+1 :=

∑N−τmax

l=2−τmax
Ai

lδ ˆ̃ui
k+l|k.

Overall, it follows that a feedback for ui
k+N which satisfies the causality constraint

(3.17) can be constructed based on Ki
k and the terminal control law, such that Ki

k+1
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is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0mi×m̃i−mi 0mi×m̃i−mi · · · 0mi×m̃i−mi 0mi×m̃i
τ

K i
k+2,k+2−τmax|k 0mi×m̃i−mi · · · 0mi×m̃i−mi 0mi×m̃i

τ

...
. . . . . .

...
...

K i
k+N−1,k+2−τmax|k · · · K i

k+N−1,k+N−1−τmax |k 0mi×m̃i−mi 0mi×m̃i
τ

Ki
TAi

2−τmax
. . . . . . Ki

TAi
N−τmax

0mi×m̃i
τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Finally, it follows from (3.32) that sets ΔU
i,j
k+l|k+1 which bound the uncertainty are

shifted by the same amount as the predictions (i.e. δvi,j
k+l|k) and cannot increase

over time. Considering the dynamics (3.13) it follows that the control policy at
k = 1, constructed based on the control policy at k = 0, is feasible. Feasibility for
all times k > 1 follows by induction over k, which directly implies that the state
constraints hold for all time under all realizations of the uncertainties.

Next, the framework of input-to-state practical stability (ISpS) presented in Sec-
tion 2.3 is used to investigate the stability properties of the overall system in closed-
loop with the distributed MPC scheme given in Algorithm 3.1 with respect to Σi.
To this end, the extended state vector z̃i

k = (z̃i
k|k; . . . ; z̃i

k+N−1|k) and corresponding

set Σi := Σi × . . .×Σi are defined. The local prediction for z̃i
k is denoted by ˆ̃zi

k, and
δẑi

k := ˆ̃zi
k − ˆ̃zi

k−1 denotes a deviation from previously received trajectories. Next, let

Z
i denote the set of initial extended states z̃i

k for which the optimization problem
(3.31) is feasible. Furthermore, Vi

z(ˆ̃z
i
k) denotes the cost formulated with respect to

ˆ̃zk, i.e. Vi
z(ˆ̃z

i
k) is obtained by substituting the dynamics into Vi(x̃i

k, x̃i
k) for x̃i

k+N |k.

Theorem 3.2. If the problem (3.31) is feasible for all subsystems at time k = 0,
the distributed MPC scheme in Algorithm 3.1 applied in closed-loop renders the
extended state vectors z̃i

k ISpS in Z
i with respect to Σi and the uncertainties δẑi

k.

Proof. In order to establish the ISpS property of the distributed MPC, the cost
function Vi

z(ˆ̃z
i
k) is used as ISpS-Lyapunov function. Note that the cost does not

depend on (Ki
k|k)∗ but only on the planned input and state sequences. The lower

bound αi
1(‖ˆ̃zi

k‖
Σ

i) follows directly from the definition of the cost. Similarly, since

Vi
z(ˆ̃z

i
k) is a quadratic function of ˆ̃zi

k and zero if ˆ̃zi
k ∈ Σi (cf. Assumption 3.3.4) it

directly follows that there exists αi
2 ∈ K such that Vi

z(ˆ̃z
i
k) ≤ αi

2(‖ˆ̃zi
k‖

Σ
i).

Next, consider the case that δẑi
k = 0. The feasible input sequence constructed in

the proof of Theorem 3.1 can be used to bound the cost at k + 1 as follows:

Vi
z(ˆ̃z

i
k+1) − Vi

z(ˆ̃zi
k) ≤ ‖ˆ̃xi

k+N |k+1‖2
Q̃i + ‖ˆ̃ui

k+N |k+1‖2
R̃i + ‖x̂i

τ k+N+1|k+1‖2
P̃ i (3.36)

− ‖ˆ̃xi
k|k‖2

Q̃i − ‖ˆ̃ui
k|k‖2

R̃i − ‖x̂i
τ k+N |k‖2

P̃ i. (3.37)

Assuming ûi,j
k+N |k+1 = 0 and considering Assumption 3.3 it follows that

Vi
z(ˆ̃zi

k+1) − Vi
z(ˆ̃z

i
k) ≤ −‖ˆ̃xi

k|k‖2
Q̃i − ‖ˆ̃ui

k|k‖2
R̃i. (3.38)
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Applying this inequality recursively results in

Vi
z(ˆ̃z

i
k+N ) − Vi

z(ˆ̃z
i
k) ≤

∑N−1

l=0
−‖ˆ̃xi

k+l|k+l‖
2
Q̃i − ‖ˆ̃ui

k+l|k+l‖
2
R̃i. (3.39)

First, the case δẑi
k+l = 0 is considered, and the initialization (3.33) is used recur-

sively starting at time k. This results in ˆ̃xi
k+l|k+l = ˆ̃xi

k+l|k and ˆ̃ui
k+l|k+l = ˆ̃ui

k+l|k.
Therefore, it follows that

Vi
z(ˆ̃z

i
k+N ) − Vi

z(ˆ̃zi
k) ≤

∑N−1

l=0
−‖ˆ̃xi

k+l|k‖2
Q̃i − ‖ˆ̃ui

k+l|k‖2
R̃i. (3.40)

Next, the case δẑi
k �= 0 is considered. Because ˆ̃zi

k+N linearly depends on the

disturbances δẑi
k, Vi

z(ˆ̃z
i
k) is Lipschitz continuous, and by construction of Q̃i and R̃i,

there exists αi
3 ∈ K and σi ∈ K such that

Vi
z(ˆ̃z

i
k+N ) − Vi

z(ˆ̃zi
k) ≤ −αi

3(‖ˆ̃zi
k‖

Σ
i) + σi(‖δẑi

[k:k+N−1]‖). (3.41)

Theorem 2.1 with L = N and d1 = d2 = 0 then implies that

‖ˆ̃zi
k‖

Σ
i ≤ β

c
(‖ˆ̃zi

0‖Σ
i, k) + γ

c
(‖δẑi

[0:k−1]‖), ∀k > 0.

Finally, due to the consistency constraints the maximal difference δz̃max := max‖z̃i
k−

ˆ̃zi
k‖ is bounded, and it directly follows that

‖z̃i
k‖

Σ
i ≤ βc(‖z̃i

0‖Σ
i , k) + γc(‖δẑi

[0:k−1]‖) + dc, ∀k > 0,

where d
c

:= αi
1(3αi

2(δz̃max))−1 + δz̃max.

3.4. Simulation Results

To illustrate the class of interconnected systems, consider the control of a platoon
of three vehicles in a leader-follower scenario shown in Figure 3.2. The control goal
is to ensure that the vehicles follow the lead vehicle with a given constant spacing
while avoiding collisions. Instead of following a given reference trajectory, the lead
vehicle aims to achieve its own control goal, for instance reaching a destination

d1
kd2

k

p

Figure 3.2.: Platooning vehicles in a leader-follower scenario with position pi
k, dis-

tance di
k, and neighboring communication (dashed).
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while reacting to traffic, speed limits, and other external influences. Therefore, the
lead vehicle can only provide uncertain predictions to the followers. For illustra-
tive purposes it is assumed that the vehicles cannot measure the distance to the
preceding vehicle, i.e. the vehicles can only obtain information about neighboring
subsystems by possibly delayed communication (cf. [42] for the case with distance
measurements).

The local dynamics of the vehicles are modeled by double-integrators with sam-
pling period of ΔT = 0.3s and are given by

xi
k+1 =

[
1 0.3
0 1

]
xi

k +

[
0.045
0.3

]
ui

k ∀i ∈ {1, . . . , 3}. (3.42)

The local states xi
k are given by xi

k = ((xp)
i
k − (i − 1)cs; (ẋp)

i
k), where (xp)i

k is the
position, (ẋp)

i
k is the velocity, and cs = 15m is the desired spacing between the

vehicles. The local inputs represent the acceleration and are physically limited to
−3 ≤ uk ≤ 3. The common control goal is given by

Σ :=
{

z ∈ R
n+m

∣∣∣ ∀i ∈ {1, 2} : xi = xi+1, ui
k = ui+1

k

}
.

The upper bound on the communication delay is τmax = 2. Each vehicle is further
coupled to its predecessor by constraints on the distance and the relative velocity
given by (−15m, −20m

s ) ≤ xi+1
k − xi

k ≤ (100m, 20m
s ). In other words, the vehicles

should not collide, the maximal distance between each pair of vehicles is 100m and
the maximum speed difference is 20m

s . In this example, each vehicle is only coupled
to the preceding vehicle resulting in the index sets N 1 = {1}, N 2 = {2, 1}, N 3 =
{3, 2}, and the augmented state vector x̃i

k = (xi
k; xi−1

k ) for i = {2, 3}. Introducing
coupling between the first and third vehicle would lead to N 3 = {3, 2, 1} and may
result in better control performance. However, this results in a higher computational
complexity, more communication, and complicates Assumption 3.3.

The inputs of the last vehicle are constrained by U
(3) = [−3, 3]. In order to

fulfill Assumption 3.3, the input constraints have to be less restrictive along the
platoon. For this example, the input sets are parametrized by U

i−1 = cUi with
0 < c ≤ 1, i.e. the original input constraints are satisfied. Starting from c = 1 the
parameter c was reduced until Assumption 3.3 holds, this was the case for c = 0.74.
From a practical point of view, these tightened constraints are required due to the
parallel computation and delayed communication. For instance, for a decelerating
lead vehicle, a follower may only be able to react after a communication delay.
Thus, only stronger declaration of the follower can prevent a collision.

In comparison to algorithms where the distance can be measured, Assumption
3.3 introduces some conservatism. In contrast, in [42] the distance can be measured
without a delay and both the scaling factor c and the desired spacing can be chosen
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3. Distributed Model Predictive Control Based on Robust Optimization

less conservatively. The cost function is identical for all followers with the weights:

Q̃i =

⎡
⎢⎢⎢⎢⎣

5 0 −5 0
0 1 0 −1

−5 0 5 0
0 −1 0 1

⎤
⎥⎥⎥⎥⎦ , R̃i =

[
0.1 −0.1

−0.1 0.1

]
.

Simulation results for three vehicles, for the prediction horizon N = 10, and constant
communication delay of τ i,j

k = 2 are shown in Figure 3.3. In the first row, the
position, velocity, and input of the leader are shown. The subsequent rows show
the distance to the preceding vehicle, the relative velocity, and the input of the
followers. At time t = 0sec the distance between the vehicles starts to decrease,
but due to the fact that the vehicles always deviate from previously communicated
information the control error never goes to zero. Figure 3.4 shows the inputs of the
first and second vehicle, as well as the predicted inputs and bounds at t = 40sec. In
particular at t = 40sec, the lead vehicle communicates a mild breaking maneuver
but actually applies full braking as shown in Figure 3.4. This leads to a decrease
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Figure 3.3.: Simulation results for a platoon of three vehicles using the distributed
MPC scheme.
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Figure 3.4.: Mismatch of communicated and actual behavior. The input of the lead
vehicle and first follower deviates from the communicated predicted
inputs (bold) but is within the communicated bounds (dashed).

in the distance between vehicle one and two, but collisions are robustly avoided.
Similarly, the acceleration at ca. t = 75sec is not communicated by the lead vehicle,
which leads to a temporary increase in distance between the first and second vehicle.

The control error of the third vehicle with respect to the second one is smaller
because of the larger input set of the third vehicle. This enables the third vehicle
to compensate deviations of the second vehicle from its communicated information
more quickly.

Solving the local robust MPC problems for one vehicle and one time step takes
between ca. 70ms and 100ms using one core of an AMD Phenom II X4 920 with
4GB RAM using CPLEX 12.1.

3.5. Discussion

In this chapter, a distributed closed-loop MPC algorithm based on results from
robust optimization was presented which can be applied to dynamically decoupled
linear systems coupled by convex constraints and costs.

A main advantage of the proposed algorithm is that the controllers Ci only require
neighboring communication once per time-step and the local optimization problems
are solved in parallel. The distributed MPC algorithm ensures that coupled con-
straints hold even if the communication between controllers is subject to bounded
time-varying communication delays. This robustness is achieved by optimizing a
control law which explicitly considers values which will be received at a later time.
This control law can be computed efficiently by using approaches from centralized
robust MPC and robust optimization.

While most distributed MPC algorithms only consider the stabilization of an
a-priori fixed set point, the proposed method can also deal with more general con-
trol tasks, such as the synchronization of subsystem trajectories. Similar control
tasks have been considered in [83], where a sequential distributed MPC for synchro-
nization of non-linear systems is proposed which guarantees asymptotic stability.
However, in [83] the subsystem do not optimize in parallel but in a given sequence.
Furthermore, communication delays are not considered. Hence, the main compli-
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3. Distributed Model Predictive Control Based on Robust Optimization

cating factors considered in this chapter are not present in [83].
In general only few results are available which consider distributed MPC with

time-varying communication delays. Communication delays in distributed MPC
for dynamically decoupled nonlinear systems coupled by a common cost function
are analyzed in an input-to-state stability framework in [33]. However, the delays
are assumed to be constant and no coupled constraints are considered, while the
method proposed in this chapter offers strong robustness results even for time-
varying delays. On the other hand, the construction of the terminal constraint
and controller required by Assumption 3.3 is a hard problem if the coupling graph
contains cycles. While small gain arguments may allow extending the proposed
method to this case such results may be very conservative.

Robust local model predictive controllers are also employed in the distributed
algorithms proposed in [91], [108], [109] for subsystems only interconnected by in-
equality constraints. However, these algorithms only offer robustness with respect
to disturbances acting on the local systems, not uncertainties arising from the com-
munication delays. More importantly, these algorithms are not directly applicable
to the case of common control goals specified by coupled costs. A variant of the
algorithm proposed in this chapter which considers local disturbances can be found
in [42].

Finally, the robust satisfaction of constraints is guaranteed by means of con-
straints which ensure consistency of locally planned input sequences with previously
communicated information. This principle is borrowed from [57] and [19], where a
min-max distributed MPC for dynamically coupled nonlinear subsystems was pro-
posed, but only a one-step delay is considered. Consistency constraints are also
used in [26] to ensure only stability, not feasibility, and the consistency constraints
are chosen a-priori by the designer. In contrast, in the algorithm at hand the con-
sistency constraints are time-varying and constructively obtained online from the
solution of the local robust MPC problems.

In the distributed MPC algorithm developed in this chapter, delayed communi-
cation and consistency constraints are used to ensure robust feasibility. However,
a closer inspection of the proof of Theorem 3.2 reveals that in terms of the robust
stability guarantees the consistency constraints only bound the increase of the cost
due to communication and optimization. Even for the case τmax = 1, where the
controllers optimize in parallel and the state of the interconnected subsystem is
known exactly, the cost may increase from one time step to the next due to the par-
allel optimization. Furthermore, the influence of the consistency constraints on the
closed-loop performance of the algorithm is not clear. Hence, it is not clear how to
compute consistency constraints in order to ensure good closed-loop performance,
even if the consistency constraints are computed and adapted online as proposed in
this chapter.
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Predictive Control

In this chapter, linear dynamics and problem formulations with decoupled con-
straints are considered. In contrast to the approach in the previous chapter, the
algorithm discussed in this chapter utilizes communication between all controllers,
is applicable to a wider class of interconnection structures, and introduces stronger
cooperation between the controllers. The stronger cooperation between the con-
trollers allows for a detailed analysis of the convergence properties, suboptimality,
and the influence of the local optimization on the global convergence.

After presenting a common formulation resulting from Cases 2.2 and Case 2.4
(i.e. coupled dynamics and costs, no state constraints) and Case 2.3 (i.e. decou-
pled dynamics and constraints, coupled costs), the cooperative distributed model
predictive control algorithm first proposed in [112] is briefly reviewed, and its prop-
erties are compared to the algorithm presented in the previous section. The main
aim of this chapter is to provide bounds on the convergence rate of the cooperative
distributed MPC algorithm, which also give insight into how the coupling between
subproblems and the information exchanged by the controllers affect convergence.
Furthermore, two approaches to determine parameters used in the algorithm to
ensure fast convergence are proposed and compared.

It is well known that the iterative algorithm proposed in [112] is guaranteed
to converge to the global optimum in the limit (cf. [104]). However, except for
some of the results of this chapter which have been previously published in [44] no
results on the convergence rate are available in the literature. In large parts, this
chapter is based on the preliminary results on the convergence rate of the cooperative
distributed MPC algorithm previously published in [44] and results submitted for
publication in [46]. The analysis of the convergence properties of the algorithm
with full communication is used as a starting point for developing the cooperative
distributed MPC algorithm with event-based communication presented in the next
chapter.
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4.1. Review of Cooperative Distributed MPC with

Parallel Optimization

This chapter focuses on linear discrete-time dynamics:

xk+1 = Axk + Buk, (4.1)

and the cases 2.2 to 2.4 given in Section 2.1. For all three cases, the cost function
V(xk, uk) can be equivalently rewritten into a function of the state xk and the
input sequence uk by substituting the dynamics (4.1) into the cost function (2.5)
(see Appendix A.1). This results in

V (xk, uk) = uT
k Huk + xT

k Fuk + xT
k Hxxk, (4.2)

with H = HT 	 0, H ∈ R
Nm×Nm, F ∈ R

n×Nm and Hx ∈ R
n×n. Furthermore,

decoupled local constraints ui
k ∈ Ui(xk) ⊆ U

i × . . . × U
i over the whole prediction

horizon are obtained by considering the local input constraints, as well as substi-
tuting the dynamics into the state and terminal constraints (cf. Appendix A.1).

In this section, the cooperative algorithm first proposed in [112], which uses
communication between all controllers in every time step and iteration, as well as
its known properties are briefly reviewed. Throughout this chapter the following
assumptions are made:

Assumption 4.1. It is assumed that:

1. the communication between the controllers does not induce any uncertainties
such as delays or packet loss,

2. the clocks of the controllers are synchronized and iterations are performed syn-
chronously, i.e. after a fixed amount of time Δtp  Δt every controller has
solved its local optimization and proceeds to the next iteration,

3. the distributed MPC algorithm is initialized with a feasible solution.

Cooperative Distributed MPC Algorithm

Within the distributed MPC algorithm, given in Algorithm 4.1, the local input
vector is optimized by each subsystem, in each time-step k, and in each iteration p:

ρi
k,p := arg minui

k
V (xk, uk) (4.3)

s.t. ui
k ∈ Ui(xk), u

j
k = u

j
k,p, ∀j ∈ N \ i.

In other words, each controller only optimizes its local input, and the inputs of
all other controllers Cj, j ∈ N \ i are fixed to constant values obtained in the
previous iteration. The algorithm can be seen as a form of primal decomposition.
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4.1. Review of Cooperative Distributed MPC with Parallel Optimization

After each iteration the optimized input sequences ρi
k,p are exchanged between all

controllers and the following iteration is performed to obtain new input sequences
for all subsystems:

uk,p+1 :=
∑

i∈N
wi

k,pūi
k,p, (4.4)

where ūi
k,p := (u1

k,p; . . . ; ρi
k,p; . . . ; uNs

k,p) denotes the candidate input sequence com-

puted by controller Ci, and thhe weights wi
k,p ∈ R>0 have to satisfy

∑
i∈N wi

k,p = 1.

The iteration (4.4) can be equivalently formulated locally for all controllers Ci,
i ∈ N :

ui
k,p+1 := wi

k,pρ
i
k,p + (1 − wi

k,p)ui
k,p. (4.5)

The update of the input sequence (4.4) in each iteration can either be performed by
a coordinator (i.e. centralized) or in a distributed fashion. Concerning the conver-
gence results in this chapter, both these implementations are equivalent. However,
the communication requirements are not identical. Therefore, in the following a
distributed implementation is considered, i.e. each subsystem computes uk,p+1 in
parallel based on (4.4).

It can be seen, that the distributed MPC algorithm is of the nonlinear Jacobi type
[11] in which all local optimization problems are solved in parallel and exchanged
between all controllers. In contrast to classic Jacobi algorithms, this algorithm also
includes the convex update step (4.4), which ensures that the cost V (xk, uk,p) is
decreasing in the iterations p. In contrast to [112], the weights used in (4.5) may
be time varying. This allows to consider algorithms which depend on the com-
municated information, e.g. weights which are optimized online. In this case, an
algorithm may be obtained in which the local input sequences ui

k,p are updated

Algorithm 4.1: Cooperative distributed MPC iterations in k for all Ci [112]

1: Given k, xk, uk,0, p = 0, pmax > 0, and ε > 0:
2: while p ≤ pmax do

3: Solve (4.3) and communicate ρi
k,p to all controllers

4: Compute uk,p+1 according to (4.4)
5: if ‖uk,p+1 − uk,p‖ ≤ ε then

6: break

7: else

8: p := p + 1
9: end if

10: end while

11: Apply ui
k|k,p to the system (4.1)
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sequentially (similar to nonlinear Gauss-Seidel algorithms [11]), but the optimiza-
tion is still performed in parallel (see Section 4.3.2). Overall it can be seen, that
the convergence speed may strongly depend on the weights wi

k,p. Therefore, it is
investigated in Section 4.3 how to choose the weights to obtain fast convergence.

When the distributed MPC is applied in closed loop, Algorithm 4.1 is performed
in each time step until the stopping criterion ‖uk,p+1 − uk,p‖2 ≤ ε holds or the max-
imum number of iterations pmax is reached. In the algorithm it is assumed that the
full state vector is known to each subsystem. However, because no disturbances act
on the subsystems the state information only needs to be communicated once. Af-
terwards each controller can predict the current state of another subsystem exactly
based on the known input sequences.

Convergence and Stability Properties

The main advantages of the cooperative distributed MPC algorithm over the dis-
tributed MPC based on robust optimization presented in Chapter 3 are that arbi-
trary coupling graphs can be considered, no consistency constraints are required,
and the controllers do not have to solve robust model predictive control problems.
While the consistency constraints used in the Chapter 3 only bound the increase
in the cost, the convex combination in (4.4) ensures that the cost is decreasing in
the iterations p. Given a feasible initial guess, (4.4) ensures that all iterates are
feasible even in the presence of coupling constraints and, if no coupling constraints
are present, as p → ∞, the cost converges to the centralized optimum V ∗(xk) (cf.
[104]). In [104] an extension to ensure convergence in the presence of coupling
constraints is proposed. Specifically, each controller Ci optimizes over all the in-
puts interconnected with ui

k,p by a constraint. This procedure can be interpreted
as changing the decomposition of the global input vector into local input vectors
such that the resulting constraints are decoupled. While this idea can be directly
combined with the results presented in this thesis, it potentially results in much
more complex local optimization problems.

As discussed in Chapter 3, the consistency constraints also complicate the stabil-
ity analysis. This is not the case for Algorithm 4.1. In fact, it was shown in [104]
that for Case 2.2 an initialization uk+1,0 for the next time step k+1 can be obtained
based on uk,p̄k

, where p̄k denotes the last iteration performed in time k, which is
stabilizing for system (2.2). It therefore follows that, in this case, the algorithm can
be stopped at any time (k, p) and still exponentially stabilizes the overall system.

On the other hand, a major drawback of the cooperative distributed MPC de-
scribed in Algorithm 4.1 are its communication requirements. Specifically, all con-
trollers communicate with all other controllers in every iteration, i.e. the edges
of the communication graph Ck,p are given by Ek,p := (N × N ) \ ∪i∈N (i, i) for all
(k, p). Obviously, this results in a very high load on the communication network.
However, since no communication links are excluded a-priori the cooperative dis-
tributed MPC algorithm is a good starting point to investigate when and between
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which controllers communication is required.
Another issue is that no convergence rate is given in [112] and the subsequent

works. Consequently it is not clear how the weights wi
k,p or the communicated infor-

mation affect the convergence of the scheme. Finally, there are no results on how to
choose the threshold ε ∈ R>0 in the stopping criterion such that the suboptimality
is bounded, or a good trade-off between suboptimality and the number of messages
is obtained. Clearly, these last two points are problematic both from a theoretical
and practical point of view.

The next section is concerned with investigating the convergence properties of
the cooperative distributed MPC, analyzing how the convergence depends on the
strength of coupling between subsystems, and computing weights wi

k,p which en-
sure fast convergence. Specifically, optimized time-invariant weights are compared
to weights obtained in each iteration by online optimization. Based on these re-
sults, cooperative distributed MPC algorithms with event-based communication are
derived in the following chapters.

4.2. Convergence Rate of Cooperative Distributed

MPC

In order to analyze the convergence properties of Algorithm 4.1, the following cen-
tralized optimization problem with U(xk) := U1(xk) × . . . × UNs(xk) is considered:

u∗
k = arg min

uk∈U(xk)
V (xk, uk). (4.6)

Because of R 	 0 it holds that V (xk, uk) is strongly convex and the optimizer u∗
k

exists and is unique (cf. Theorem 2.2). Next, let Vd(xk, uk,p) denote the difference
between the cost at the current iterate and the centralized optimum:

Vd(xk, uk,p) := V (xk, uk,p) − V (xk, u∗
k). (4.7)

It should be noted that the centralized optimizer u∗
k is not known before convergence

of the distributed MPC algorithm and is only used here to investigate how fast
the algorithm converges to V (xk, u∗

k). The following two preliminary results are
concerned with bounding the gradient of V (xk, uk,p) in terms of Vd(xk, uk,p), and
providing a measure of the coupling induced between local optimization problems
by the Hessian H of (4.2), which will be used to analyze the convergence of the
algorithm and to derive optimized weights wi

k,p.
To analyze the coupling in the Hessian H, note that the Hessian H can be rear-

ranged to obtain

(uk,p)T Huk,p =

⎡
⎣ui

k,p

u
\i
k,p

⎤
⎦T [

H i H i
c

(H i
c)

T H\i

] ⎡⎣ui
k,p

u
\i
k,p

⎤
⎦ , (4.8)
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where H i ∈ R
Nm×Nm and ui

k,p are the local part of the Hessian and the input

sequence of P i, H\i ∈ R
N(m−mi)×N(m−mi) is the non-local part of the Hessian, and

u
\i
k,p ∈ R

N(m−mi) contains the inputs of all subsystem Pj,j ∈ N \ i. In other words

u
\i
k,p is given by

u
\i
k,p := (u1

k,p; . . . ; ui−1
k,p ; ui+1

k,p ; . . . ; uNs

k,p).

Finally, H i
c ∈ R

Nm×N(m−mi) is the coupling between ui
k,p and the matrices are

directly obtained by rearranging the rows and columns of H accordingly.

Proposition 4.1. [46] For all i ∈ N there exists a constant ci
H ≥ 1 given by

ci
H = minci ci (4.9)

s.t. ci(H i − H i
c(H

\i)−1(H i
c)

T ) � H i (4.10)

Proof. Applying the Schur complement [15] to (4.8) and considering H 	 0 it
directly follows that H i 	 0, H\i 	 0 and H i − H i

c(H
\i)−1(H i

c)
T 	 0. It follows

that there exists ci ≥ 0 such that (4.10) holds. Because of H i
c(H

\i)−1(H i
c)

T � 0 it
holds that H i − H i

c(H
\i)−1(H i

c)
T � H i, and it follows that ci

H ≥ 1.

The value ci
H may be interpreted as the strength of coupling between the local

optimization problems, e.g. H i
c = 0 (i.e. no coupling in the Hessian) implies ci

H = 1,
while ci

H → ∞ as the strength of coupling increases. In Figure 4.1 the multipliers
ci

H , i = {1, 2} and level sets uT H(aH)u ≤ 1 are shown for

uk =

[
u1

k

u2
k

]
, H(aH) =

[
1 aH

aH 2

]
, aH ∈

[
0,
√

(2)
)

. (4.11)

The level sets and H(aH) illustrate that the value ci
H can be interpreted as the

strength of coupling, i.e. for aH = 0 one obtains ci
H = 1 and H(aH) is a diag-

onal matrix. Increasing aH results in an increase in ci
H and, at the same time,

(uk)T H(aH)uk more strongly depends on the cost term that contains both u1
k and

u2
k.
Next, let Δuk,p := u∗

k − uk,p denote the difference between the global optimizer
and current iterate, and let Δui

k,p := (0; . . . ; ui∗
k − ui

k,p; . . . ; 0) ∈ R
Nm denote the

difference to the global optimizer for controller Ci and consider the following multi-
pliers μ̄i

k,p defined by

μ̄i
k,p :=

∇V (xk, uk,p)T Δui
k,p

∇V (xk, uk,p)T Δuk,p

, if Δuk,p �= 0, (4.12)

and any 0 ≤ μ̄i
k,p ≤ 1 with

∑
i∈N μ̄i

k,p = 1 if Δuk,p = 0. The values involved

are shown in Figure 4.2, and it can be seen that ∇V (xk, uk,p)T Δui
k,p is not neces-

sarily smaller than zero. However, due to strong convexity of V (xk, uk,p) it holds
that V (xk, u∗

k) > V (xk, uk,p) + ∇V (xk, uk,p)T Δuk,p if Δuk,p �= 0 (cf. Definition
2.4), and it directly follows from V (xk, u∗

k) − V (xk, uk,p) < 0 for Δuk,p �= 0 that
∇V (xk, uk,p)T Δuk,p < 0 if Δuk,p �= 0.
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u
2

u1

ci H

aH

ci
H → ∞

−4 −2 0 2 40 0.5 1 1.5
−4

−3

−2

−1

0

1

2

3

4

0

2

4

6

8

10

Figure 4.1.: Multipliers ci
H and level sets of (uk)T H(aH)uk ≤ 1 for H(aH) according

to (4.11).

u∗
k

∇V (xk, uk,p)T (u − uk,p) > 0∇V (xk, uk,p)T (u − uk,p) < 0

u2

u1

Δu2
k

Δu1
k

uk,p

Figure 4.2.: Level sets of V (xk, uk,p) (gray), sets ∇V (xk, uk,p)T (u − uk,p) > 0,
∇V (xk, uk,p)T (u − uk,p) < 0, and the distances Δui

k,p to the optimizer.

Proposition 4.2. [46] Given μ̄i
k,p according to (4.12) it holds that

∑
i∈N μ̄i

k,p = 1,

and for all i ∈ N with μ̄i
k,p ≥ 0 it holds that

∇V (xk, uk,p)T Δui
k,p ≤ −μ̄i

k,pVd(xk, uk,p). (4.13)
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Proof. Considering∑
i∈N

∇V (xk, uk,p)T Δui
k,p = ∇V (xk, uk,p)T Δuk,p,

it can be seen that
∑

i∈N μ̄i
k,p = 1. Next, applying Taylor’s Theorem to V (xk, uk,p)

developed in uk,p and noting that ∇2V (xk, uk,p) = 2H results in

V (xk, u∗
k,p) =V (xk, uk,p) + ∇V (xk, uk,p)T (u∗

k − uk,p) + (u∗
k − uk,p)T H(u∗

k − uk,p),

and it directly follows that

∇V (xk, uk,p)T (u∗
k − uk,p) = −Vd(xk, uk,p) − (u∗

k − uk,p)T H(u∗
k − uk,p). (4.14)

Substituting (4.14) into (4.12) results in

∇V (xk, uk,p)T Δui
k,p = −μ̄i

k,p(Vd(xk, uk,p) + (u∗
k − uk,p)T H(u∗

k − uk,p)), (4.15)

and considering (Δuk,p)T H(Δuk,p)T ≥ 0 and μ̄i
k,p ≥ 0 inequality (4.13) directly

follows.

Proposition 4.3. [46] Given ci
H according to (4.10) it holds that for every state

xk, and every input iterate uk,p there exists multipliers

μi
k,p ≥ 0,

∑
i∈N

μi
k,p = 1,

such that the bound

(μi
k,p)2

4ci
H

Vd(xk, uk,p) ≤ V (xk, uk,p) − V (xk, ūi
k,p) (4.16)

holds.

Proof. Applying Taylor’s Theorem to Vd(xk, uk,p) developed in u∗
k,p results in

Vd(xk, uk,p) = ∇V (xk, u∗
k)T (uk,p − u∗

k) +
1

2
(uk,p − u∗

k)T ∇2V (xk, u∗
k)(uk,p − u∗

k)

Theorem 2.3 and optimality of u∗
k imply that ∇V (xk, u∗

k)T (uk,p − u∗
k) ≥ 0, and it

directly follows that

Vd(xk, uk,p) ≥ (Δuk,p)T HΔuk,p (4.17)

holds. Next, H can be rearranged and partitioned as in (4.8) to obtain

Vd(xk, uk,p) ≥ inf
u

\i

k,p
∈U\i(xk)

⎡
⎣Δui

k,p

Δu
\i
k,p

⎤
⎦T [

H i H i
c

(H i
c)

T H\i

] ⎡⎣Δui
k,p

Δu
\i
k,p

⎤
⎦ ,

≥ inf
Δu

\i

k,p

⎡
⎣Δui

k,p

Δu
\i
k,p

⎤
⎦T [

H i H i
c

(H i
c)

T H\i

] ⎡⎣Δui
k,p

Δu
\i
k,p

⎤
⎦ ,
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where Δu
\i
k,p ∈ R

N(m−mi) contains the difference to the optimum for all controllers

j �= i. With the minimizer Δu
\i
k,p = −(H\i)−1(H i

c)Δui
k,p it holds that

Vd(xk, uk,p) ≥ (Δui
k,p)T

(
H i − H i

c(H
\i)−1(H i

c)
T
)

Δui
k,p.

Considering Proposition (4.1) it holds that

ci
HVd(xk, uk,p) ≥ (Δui

k,p)T H iΔui
k,p. (4.18)

Next, a candidate input sequence ϑi
k,p is parametrized by ϑi

k,p = ui
k,p+θi

k,p(u∗i
k −ui

k,p)

with a step size θi
k,p ∈ [0, 1]. Because of ui

k,p ∈ Ui(xi
k) and u∗i

k ∈ Ui(xi
k) it holds

that ϑi
k,p ∈ Ui(xi

k). Applying Taylor’s Theorem to V (xk, uk) results in

V (xk, ϑ̃
i

k,p) = V (xk, uk,p) + θi
k,p∇V (xk, uk,p)T Δui

k,p +
(θi

k,p)2

2
(Δui

k,p)T HΔui
k,p,

(4.19)

where ϑ̃
i

k,p := (u1
k,p, . . . , ϑi

k,p, . . . , uNs

k,p). Considering (4.18) and (4.13), it holds for

all i ∈ N with μ̄i
k,p ≥ 0 that

V (xk, ϑ̃
i

k,p) ≤ V (xk, uk,p) +
(
(θi

k,p)2ci
H − θi

k,pμ̄i
k,p

)
Vd(xk, uk,p). (4.20)

Based on this, the following step size θi
k,p is chosen:

θi
k,p :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if μ̄i
k,p < 0,

μ̄i
k,p

2ci
H

if 0 ≤ μ̄i
k,p ≤ 1,

1
2ci

H

if μ̄i
k,p > 1.

(4.21)

Substituting θi
k,p into (4.19) and (4.20) it can be verified that

V (xk, ϑ̃
i

k,p) ≤ V (xk, uk,p) −
(μ̌i

k,p)2

4ci
H

Vd(xk, uk,p)

holds with the following multipliers:

μ̌i
k,p :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if μ̄i
k,p < 0,

μ̄i
k,p if 0 ≤ μ̄i

k,p ≤ 1,

1 if μ̄i
k,p > 1,

(4.22)

where the last case follows from ( 1
2ci

H

)2ci
H −

μ̄i
k,p

2ci
H

≤ − 1
4ci

H

for all μ̄i
k,p > 1. Finally,

with μi
k,p :=

μ̌i
k,p∑

i∈N μ̌i
k,p

and
∑

i∈N μ̌i
k,p ≥ 1 it follows that (μi

k,p)2 ≤ (μ̌i
k,p)2, and it

holds that

V (xk, ϑ̃
i

k,p) ≤ V (xk, uk,p) −
(μi

k,p)2

4ci
H

Vd(xk, uk,p).

Considering V (xk, ūi
k,p) ≤ V (xk, ϑ̃

i

k,p), the proposition follows.
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4. Cooperative Distributed Model Predictive Control

This result implies that if Vd(xk, uk,p) > 0, there always exist local candidate
input sequences ūi

k,p which will result in a decrease of the global cost. Furthermore,

it can be seen that the definition of the step size θi
k,p and multipliers μi

k,p may lead

to some conservatism in this formulation if there exists i ∈ N such that μ̄i
k,p > 1.

However, there exist initial conditions where μi
k,p = μ̄i

k,p holds, i.e. in general
no further conservatism is introduced. The next results states that a bound on the
convergence rate can be established which depends on the weights wi

k,p, the coupling

strength ci
H , and on the multipliers μi

k,p.

Theorem 4.1. [44] The difference to the optimal cost Vd(xk, uk,p) converges ac-
cording to

Vd(xk, uk,p+1) ≤ βk,pVd(xk, uk,p), (4.23)

with rate

0 ≤ βk,p ≤ 1 −
1

4

∑
i∈N

wi
k,p

(μi
k,p)2

ci
H

(4.24)

and it holds that βk,p < 1 for all wi
k,p > 1 and

∑
i∈N wi

k,p = 1.

Proof. Considering the update of the inputs (4.4), the cost function at (k, p + 1) is
given by

V (xk, uk,p+1) = V
(
xk,

∑
i∈N

wi
k,pūi

k,p

)
. (4.25)

It follows from convexity of V (xk, uk,p+1) that

V (xk, uk,p+1) ≤
∑

i∈N
wi

k,pV (xk, ūi
k,p). (4.26)

Considering Proposition 4.3, the following upper bound on the optimal cost of
the local minimization problem (4.3) is obtained:

V (xk, ūi
k,p) ≤ V (xk, uk,p) −

(μi
k,p)2

4ci
H

Vd(xk, uk,p). (4.27)

Finally, substituting (4.27) back into (4.26) yields

V (xk, uk,p+1) ≤
∑
i∈N

wi
k,pV (xk, uk,p) − wi

k,p

(μi
k,p)2

4ci
H

Vd(xk, uk,p)

≤ V (xk, uk,p) −
∑
i∈N

wi
k,p

(μi
k,p)2

4ci
H

Vd(xk, uk,p)

Subtracting V (xk, u∗
k|k) on both sides results in (4.23) and

βk,p ≤ 1 −
∑
i∈N

wi
k,p

(μi
k,p)2

4ci
H

.

Furthermore, for any μi
k,p ≥ 0,

∑
i∈N μi

k,p = 1 and any choice of wi
k,p > 0,

∑
i∈N wi

k,p =
1, it directly follows that βk,p < 1.
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It can be seen that a smaller βk,p implies faster convergence and that βk,p may
strongly depend on the choice of weights wi

k,p, which may be time-varying.

4.3. Optimized Parameters for Fast Convergence

In the work on the cooperative distributed MPC Algorithm 4.1 no results are given
on how to choose the weights wi

k,p to achieve fast convergence. Based on the con-
vergence rate derived in the previous section, the impact of the weights on the
convergence of the overall algorithm can be analyzed, and optimized weights can
be derived. In this section, bounds on the convergence rate βk,p for different choices
of wi

k,p are discussed. Specifically, time-invariant weights and weights which are
optimized online are considered.

4.3.1. Optimized Time-Invariant Weights

The convergence rate βk,p can be bounded by βk,p ≤ β̄:

β̄ = min
wi

k,p

max
μi

k,p

1 −
1

4

∑
i∈N

wi
k,p

(μi
k,p)2

ci
H

, (4.28)

i.e. β̄ is guaranteed a-priori for all μi
k,p (worst-case). In the following problem (4.28)

will first be solved for time-invariant weights wi, i.e. time-invariant weights which
minimize the bound βk,p given in Theorem 4.1 are computed. Subsequently, it is
investigated if optimizing the weights in each time step and iteration results in an
improved bound.

Theorem 4.2. [44] The optimal solution of (4.28) is given by wi
k,p =

√
ci

Hc−1
r with

cr =
∑

i∈N

√
ci

H . The resulting bound on the convergence rate is

β̄ = 1 −
1

4

(∑
i∈N

√
ci

H

)−2

. (4.29)

Proof. Let μk,p := (μ1
k,p; . . . ; μNs

k,p) and wk,p := (w1
k,p; . . . ; wNs

k,p) denote the vectors of

multipliers μi
k,p and weights wi

k,p. Instead of solving the inner maximization problem
in (4.28), the maximizer can be computed by solving the following problem:

min
μk,p

∑
i∈N

wi
k,p

(μi
k,p)2

ci
H

, s.t.
∑

i∈N
μi

k,p = 1, μk,p ≥ 0. (4.30)

The corresponding KKT conditions (cf. Section 4.3.2) with multipliers λi and ν are
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4. Cooperative Distributed Model Predictive Control

given by

2wi
k,p

ci
H

μi
k,p − λi + ν = 0, ∀i ∈ {1, . . . , Ns} (4.31)

λi ≥ 0, ∀i ∈ {1, . . . , Ns} (4.32)

λi(−μi
k,p) = 0, ∀i ∈ {1, . . . , Ns} (4.33)

μi
k,p ≥ 0, ∀i ∈ {1, . . . , Ns} (4.34)∑

i∈N
μi

k,p = 1. (4.35)

It can be verified that the KKT conditions hold for ν = −2cz, λi = 0, and

μi
k,p = cz

ci
H

wi
k,p

, cz =

⎛
⎝∑

i∈N

ci
H

wi
k,p

⎞
⎠−1

.

Since the problem is convex, satisfaction of the KKT conditions is sufficient to es-
tablish optimality. Therefore, the parametric minimizer is given by μi

k,p(wi
k,p, ci

H) =

cz
ci

H

wi
k,p

. Substituting μi
k,p = cz

ci
H

wi
k,p

into (4.28) results in

β̄ = min
wk,p

1 −
1

4
z2
∑

i∈N

ci
H

wi
k,p

, (4.36)

β̄ = min
wk,p

1 −

⎛
⎝4
∑

i∈N

ci
H

wi
k,p

⎞
⎠−1

. (4.37)

It remains to find weights which solve this minimization problem. The minimizer
w∗

k,p of (4.37) is identical to

w∗
k,p = arg min

wk,p

∑
i∈N

ci
H

wi
k,p

, s.t.
∑

i∈N
wi

k,p = 1, wk,p > 0. (4.38)

The solution to this minimization problem can again be computed explicitly by
means of the KKT conditions given by

−
ci

H

(wi
k,p)2

− λi + ν = 0, ∀i ∈ {1, . . . , Ns} (4.39)

λi ≥ 0, ∀i ∈ {1, . . . , Ns} (4.40)

λi(−wi
k,p) = 0, ∀i ∈ {1, . . . , Ns} (4.41)

wi
k,p > 0, ∀i ∈ {1, . . . , Ns} (4.42)∑

i∈N
wi

k,p = 1. (4.43)

The KKT conditions are satisfied for wi
k,p =

√
ci

Hc−1
r with cr =

∑
i∈N

√
ci

H , λi = 0
and ν = c2

r. Substituting into (4.37) gives (4.29).
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4.3.2. Online Optimization of Weights

To improve performance, one may optimize over wi
k,p online after exchanging the

planned input of each subsystem, which also allows to relax the condition wi
k,p > 0 to

wi
k,p ≥ 0. However, optimizing the weights online requires either additional compu-

tation by all controllers or additional information exchange, even if the subproblems
are fully decoupled. In such an implementation, weights wi

k,p are optimized for given

candidate input sequences ūi
k,p in every iteration:

w∗
k,p = arg min

wk,p

V
(
xk,

∑
i∈N

wi
k,pū

i
k|k,p

)
. (4.44)

For the time invariant weights the condition wi
k,p > 0 is required to ensure conver-

gence for all initial conditions. If the optimal weights are chosen in each iteration
depending on the initial condition the constraint wi

k,p > 0 can be relaxed to wi
k,p ≥ 0.

The following result states that optimizing the weights at each time (k, p) in general
does not result in an improved bound β̄.

Theorem 4.3. [44] When optimizing the weights wi
k,p in every iteration, the con-

vergence rate βk,p is bounded by:

βk,p ≤ 1 −
1

4

(∑
i∈N

√
ci

H

)−2

= β̄,

for all p ≥ 0.

Proof. In terms of the convergence rate βk,p, optimizing the weights online results
in the following problem:

min
wk,p

1 −
1

4

∑
i∈N

wi
k,p

(μi
k,p)2

ci
H

, s.t.
∑

i∈N
wi

k,p = 1, wi
k,p ≥ 0,

which can be used to compute the parametric minimizer wi
k,p(μi

k,p, ci
H), i.e. weights

which depend on the current multipliers μi
k,p, for all i ∈ N . The corresponding

KKT conditions are given by

−
(μi

k,p)2

ci
H

− λi + ν = 0, ∀i ∈ {1, . . . , Ns} (4.45)

λi(−wi
k,p) = 0, ∀i ∈ {1, . . . , Ns} (4.46)

wi
k,p ≥ 0, ∀i ∈ {1, . . . , Ns} (4.47)∑

i∈N
wi

k,p = 1. (4.48)

These conditions hold for j∗
k,p = arg maxi(μ

i
k,p)2(ci

H)−1, wj∗
k,p = 1, λj∗

k,p
= 0, and

ν =
(

μ
j∗

k,p

k,p

)2 (
c

j∗
k,p

H

)−1

, λs = −(μs
k,p)2(cs

H)−1 +
(

μ
j∗

k,p

k,p

)2 (
c

j∗
k,p

H

)−1

.
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Since the problem is convex, satisfaction of the KKT conditions is sufficient to
establish optimality. Substituting into (4.28) yields

β̄ = 1 −
1

4
min
μk,p

max
i

(μi
k,p)2

ci
H

, s.t.
∑

i∈N
μi

k,p = 1, μi
k,p ≥ 0. (4.49)

Next, let υi denote a variable used to parameterize feasible solutions μi
k,p(υi) =√

ci
Hc−1

r + υi, for all
∑

i υi = 0. For υi = 0 for all i ∈ N it follows that

(μ1
k,p(0))2(c1

H)−1 = . . . = (μNs

k,p(0))2(cNs

H )−1 = c−2
r > 0.

This implies:

max

⎧⎨
⎩(μ1

k,p(0))2

c1
H

, . . . ,
(μNs

k,p(0))2

cNs

H

⎫⎬
⎭ ≤ max

⎧⎨
⎩(μ1

k,p(υ1))2

c1
H

, . . . ,
(μNs

k,p(υNs))2

cNs

H

⎫⎬
⎭ .

In other words, μi
k,p =

√
ci

Hc−1
r is the optimal solution. Substituting into (4.49)

results in (4.29).

This bound can be slightly improved if more than one iteration is performed
per time-step. In this scenario, the convergence rate of the weights using online
optimization is given by:

Theorem 4.4. When optimizing the weights wi
k,p in every iteration, the convergence

rate βk,p for p > 1 is bounded by:

βk,p ≤ 1 −
1

4

(∑
i∈N \jmin

√
ci

H

)−2

, (4.50)

where jmin = arg mini∈N

√
ci

H .

Proof. Convexity of V (xk, uk,p) as well as optimality of u∗
k imply that

∇V (xk, uk,p)T Δuk,p ≤ 0. (4.51)

On the other hand if j∗
k,p−1 = i it holds that wi

k,p = 1 and optimality of ui
k,p = ρi

k,p−1

with respect to problem (4.3) implies that

∇V (xk, uk,p)T (0n1×1; . . . ; ui∗
k − ρi

k,p−1; . . . ; 0nNs×1) ≥ 0, (4.52)

and it follows that μ̄i
k,p ≤ 0 and μi

k,p = 0. Using this additional constraint in (4.49)
and the same arguments as in the proof of the previous theorem, results in

βk,p ≤ 1 −
1

4

(∑
i∈N \j∗

k,p

√
ci

H

)−2

. (4.53)

With −
(∑

i∈N \j∗
k,p

√
ci

H

)−2

≤ −
(∑

i∈N \jmin

√
ci

H

)−2

the theorem follows.
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This result implies that if more than one iteration is performed the convergence
may be improved by optimizing the weights online. If the algorithm is applied in
closed-loop with the threshold ε > 0, strict convexity of V (xk, uk,p) implies that

Vd(xk, uk,p) > 0 and it follows that there exists j ∈ N such that μj
k,p > 0. Because

of μi
k,p = 0 for i = j∗

k,p−1 it holds that j∗
k,p �= j∗

k,p−1. Therefore, Theorem 4.4 implies
that a sequential algorithm in which only one controller updates its input sequence
in each iteration, and no controller updates its input sequence in two consecutive
iterations, guarantees faster convergence than using the time-invariant weights given
in Theorem 4.2 if more than one iteration is performed.

However, this sequence is not known a-priori and finding this sequence either
requires knowledge of the values of the multipliers μi

k,p, which are unknown even
online because they depend on u∗

k, or requires the solution of the problem (4.44)
restricted to weights that are either 0 or 1. This requires the solutions of all local
optimization problems (4.3) and is a non-convex problem. It follows that such a
sequence can only be obtained after all local problems have been solved and the
solutions have been exchanged between all controllers.

Contrary to this, in typical sequential algorithms the sequence is fixed a-priori and
computation and communication are performed according to this sequence. How-
ever, the best sequence cannot be chosen a-priori and, in the worst case, only offers
slightly faster (or as fast if pmax = 1) convergence than using time-invariant weights.
Furthermore, fixing any sequence a-priori may, without further assumptions, result
in extremely slow convergence. For instance, if the sequence does not contain all
subsystems, a sequential algorithm may not progress towards the optimum at all.
This suggests that in a sequential algorithm with a-priori fixed sequence at least
Ns iterations need to be performed per time-step to guarantee any cost improve-
ment. In particular, choosing any weight wi

k,p = 1 a-priori may not result in any

convergence, for instance if V (xk, uk,p) = V (xk, ūi
k,p).

Benefits of Online Optimization

The results in the previous section show that optimizing the weights wi
k,p online

does, in general, not result in an improved bound β̄. However, the convergence
speed may be improved by online optimization of the weights wi

k,p if the state xk

and input sequence uk,p, which are encoded by the multipliers μi
k,p, allow for fast

convergence. This is made precise in the following two theorems, in which the bound
on the convergence rate is minimized with respect to μi

k,p.

Theorem 4.5. [44] Given time-invariant weights wi
k,p =

√
ci

Hc−1
r , the multipliers

μj∗

k,p = 1 with

j∗ = arg maxj∈N

(
cr

√
cj

H

)−1

,
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and μj
k,p = 0 for all j ∈ N \ j∗ minimize β̄ and the minimum is given by

β̄min = 1 −
1

4

(
cr mini∈N

√
ci

H

)−1

. (4.54)

Proof. Substituting wi
k,p =

√
ci

Hc−1
r into (4.24) and minimizing the bound β̄ for the

multipliers μi
k,p instead of maximizing results in

μ∗
k,p = arg max

μk,p

∑
i∈N

(μi
k,p)2

cr

√
ci

H

, s.t.
∑

i∈N
μi

k,p = 1, μk,p ≥ 0, (4.55)

i.e. the maximization of a convex function, which is a non-convex problem. If the
feasible set is a bounded polytope, the optimal value is attained at a vertex of the
feasible set1. Only the vertices of the box 0 ≤ μi

k,p ≤ 1 that also lie in the subspace∑
i∈N μi

k,p = 1 are vertices of the feasible set of (4.55). It directly follows that the

vertices are given by vectors vj = (v1
j , . . . , vi

j , . . . , vNs

j ) ∈ R
Ns and vi

j is defined as
follows for all j ∈ N :

v
i
j =

⎧⎨
⎩0 if i �= j,

1 otherwise.

Therefore, the maximum is given by μj∗

k,p = 1 with j∗ = arg maxi∈N

(
cr

√
ci

H

)−1

and

substituting into (4.55) results in (4.54).

Similarly, one can minimize the bound on the convergence rate in the case of
online optimization of the weights.

Theorem 4.6. [44] If the weights are optimized online, the bound β̄ is minimized
by μjm

k,p = 1 with jm = arg mini∈N ci
H and μi

k,p = 0 for all i ∈ N \ jm. The minimum
is given by

β̄min = 1 −
1

4

(
mini∈N ci

H

)−1
. (4.56)

Proof. In the proof of Theorem 4.3 it was shown that the optimal weights are
ws = 0, for all s ∈ N \ j∗, λj∗ = 0, wj∗ = 1 and j∗ = arg maxi(μ

i
k,p)2(ci

H)−1

(cf. (4.45)-(4.48)). Substituting into (4.24) and minimizing for the multipliers μi
k,p

results in

β̄min = 1 −
1

4
max
μi

k,p

max
i

(μi
k,p)2

ci
H

s.t.
∑

i∈N
μi

k,p = 1, μk,p ≥ 0.

It can be seen, that the optimal solution is given by μjm

k,p = 1 with jm = arg mini ci
H .

Substituting into (4.24) completes the proof.

1Convexity of the cost function implies that at any point v̄ on a line segment between two vertices
vi and vj the cost is lower or equal than at vi and vj .
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4.4. Numerical Example

To compare the convergence rates obtained in the previous sections to the actual
convergence rate, the distributed MPC given in Algorithm 4.1 is applied to dis-
tributed MPC problems with decoupled dynamics, local constraints, and poten-
tially fully coupled costs using the time-invariant weights derived in Theorem 4.2
and the optimized weights given in (4.44). Specifically, the subsystems are modeled
by double-integrator dynamics

xi
k+1 =

[
1 1
0 1

]
xi

k +

[
0.5
1

]
ui

k,

with local input and state constraints ui
k ∈ [−1, 1], xi

k ∈ [−1, 1] × [−1, 1], and
randomly generated fully coupled costs V (xk, uk,p). Note that regardless of which
case is considered the quadratic program solved by the cooperative distributed MPC
always has this structure and, more importantly, any randomly generated coupling
by costs or dynamics will result in a cost function with the same properties as the
ones randomly generated here. Thus, this comparison is valid for all three cases
considered in this section.

To evaluate the influence of the number of subsystems, Algorithm 4.1 was used to
solve problems ranging from Ns = 2 to Ns = 25 subsystems. For each value of Ns

(i.e. each number of subsystems) 40 problems were generated based on 10 random
cost functions and 4 random initial conditions. The distributed MPC algorithm was
initialized with a decentralized solution, i.e. by ignoring all interconnections, and 20
iterations were performed for each problem. The actual rate of convergence βk,p =
Vd(xk,uk|k,p+1)

Vd(xk,uk|k,p) was computed and compared to the bound β̄ given in the previous

sections. In Table 4.1 the mean, minimal and maximal ratio (taken over all random
examples and iterations) between the actual rate of convergence γk,p and bound β̄
is given.

These results highlight that the difference between the actual convergence rate
and bound β̄ strongly depends on the number of subsystems. For instance, for Ns =
2 the algorithm converges approximately twice as fast as indicated by Theorem 4.2.
However, as the number of subsystems increases, the actual convergence approaches
the bound β̄. This could be expected because for a large number of subsystems the
weights wi

k,p of individual subsystems become small and may limit the progress of
the algorithm per iteration. Furthermore, it can be seen that optimizing the weights
online on average only results in slightly faster convergence for the random examples
considered here.

4.5. Discussion

The results in the previous sections reveal a strong connection between the weights
wi

k,p, the strength of the coupling between subsystems indicated by ci
H , and the
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Ns Optimized time-invariant weights Online optimization of weights

max mean min max mean min
2 2.335 2.072 1.944 20.98 2.519 1.944
3 1.533 1.418 1.294 1.665 1.446 1.322
4 1.354 1.322 1.298 1.446 1.362 1.317
5 1.263 1.225 1.174 1.299 1.242 1.177
7 1.176 1.135 1.099 1.191 1.142 1.101
10 1.121 1.101 1.071 1.128 1.105 1.073
15 1.066 1.059 1.052 1.073 1.060 1.053
20 1.051 1.043 1.034 1.058 1.044 1.035
25 1.044 1.039 1.030 1.049 1.040 1.030

Table 4.1.: Ratio β̄
βk,p

between the bound β̄ and actual convergence rate βk,p.

convergence rate βk,p. In particular, due to the summation over ci
H > 1 in (4.29)

the bounds on the convergence rate β̄ directly depends on the number of subsystems
Ns. This could be expected, because the condition

∑
i∈N wi

k,p = 1 results in small

weights wi
k,p if Ns is large. In turn, this implies that the progress of each of the

local input variable updates (4.5) becomes small if Ns is large.

With respect to optimizing the weights online, it can be seen that, in general,
this does not result in improved a-priori guarantees for the convergence rate com-
pared to the optimized time-invariant weights. However, faster convergence may be
achieved by optimizing wi

k,p online depending on the number of iterations and initial
conditions. For instance, if the inputs of only a few controllers are far away from
the optimum, the convergence of the distributed MPC algorithm may no longer
depend on the number of subsystems when optimizing the weights online. This is
made precise in Theorem 4.6.

It has to be noted that the results for the best case scenarios are somewhat
conservative, especially in the case of Theorem 4.6. Assuming that there exists
a subsystem j with cj

H = 1 (i.e. no coupling), then βk,p ≤ 0.75. At the same
time, if only the input of this subsystem is suboptimal, then the cost will actually
converge after one step. The best weight for this case, wj

k,p = 1 and ws
k,p = 0

for all s �= j, is correctly identified in the proofs of Theorem 4.3 and Theorem
4.6. However, the possible improvement of the cost by controller Cj in this case is
underestimated through (4.27) by a factor of 4. Thus, the reason for the discrepancy
in the convergence rate in this case are the bounds established in the proof of
Proposition 4.3.

Overall it can be seen that the communication requirements of this algorithm may
be problematic because communication between all controllers is required in every
iteration and every time step. Nonetheless, the cooperative distributed MPC with
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full communication is a good starting point for an event-based algorithm since it can
be analyzed how the communicated information affects convergence and therefore
control performance. Furthermore, because the communication topology is not
restricted a-priori as in [103], this algorithm allows to communicate between any pair
of controllers if necessary. While there is no robustness with respect to uncertain
communication, a possible solution to compensate for communication delays τk 
Δt is to only optimize the input sequence for uk+1|k to uk+N−1|k, and to use the
additional constraint uk|k = uk|k−1 to ensure consistent application of the control
inputs.

Results on closed-loop application of the cooperative distributed MPC algorithm
with full communication can be readily obtained from the more general results given
in Section 5.3, where the stability properties of this algorithm in conjunction with
event-based communication are analyzed.

The results in this chapter imply that the primal cost converges at least with
O(cp) and 0 < c < 1. Recently accelerated gradient methods and dual decom-
position have been used to solve mixed L1/L2-problems, which result from MPC
problems with sparse coupling by costs, constraints and dynamics [36]. These al-
gorithms achieve a convergence rate of O

(
1
p2

)
, with iteration number p, for the

dual cost and the distance between the current primal iterate and optimal primal
solution. However, the implications for the primal cost before the termination of
the algorithm are not directly clear, because the dual cost does not provide any
insight into the suboptimality of the associated primal solution. In particular, the
primal cost may increase from one iteration to the next, which may be problematic
if the optimization has to be terminated before the optimum is reached. This is
relevant because, in practice, closed-loop distributed MPC is almost always ter-
minated early due to the time constraints and communication constraints. Some
results concerned with early stopping of distributed MPC based on dual decom-
position have been developed recently and can be found in [34]. However, these
results only apply to distributed MPC without terminal constraint, the number of
iterations may be quite large, and the impact of coupling between the subsystems
as well as communication between the controllers is hard to analyze. In contrast,
the algorithm analyzed in this chapter can be terminated at any iteration if a suit-
able terminal constraint is used (see e.g. [104] and Section 5.3). Furthermore, as
shown in the next chapters, the methodology presented in this chapter can be used
to analyze how communication affects convergence and to derive triggering rules for
communication and distributed stopping criteria.
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5. Event-Based Communication

Based on Cost Decrease

In the cooperative distributed MPC algorithm discussed in the previous chapter
every controller communicates with every other controller in each iteration. This
results in a large number of messages which may not be required. Specifically, often
the local solution does not change much between iterations, or the resulting change
in the cost function is small. In this chapter, a triggering condition for commu-
nication is presented which eliminates communication in these cases and can be
directly used as a distributed stopping criterion for the iterative cooperative dis-
tributed MPC algorithm. Subsequently, the convergence rate and suboptimality
of the algorithm with event-based communication are analyzed by using the frame-
work presented in the previous chapter. The results on event-based communication,
convergence and suboptimality have been submitted for publication in [46]. The
stability properties of the closed-loop are analyzed using the stability results on
input-to-state stability derived in Section 2.3.

5.1. Communication Events and Distributed MPC

Algorithm

The cooperative distributed MPC with event-based communication relies on the
same local optimization used in the cooperative distributed MPC with full time-
triggered communication and throughout this chapter it is assumed that Assump-
tion 4.1 holds. The difference between the two algorithms lies in the update of the
variables, which involves communication.

The generator for a communication event considered in this chapter is obtained
by locally comparing the cost V (xk, uk,p) before and the cost V (xk, ūi

k,p) after the

local optimization (4.3). Specifically, if the difference V (xk, uk,p) − V (xk, ūi
k,p) is

small, this indicates that the local optimization of Ci did not significantly improve
the closed-loop performance. In this case, the result of the local optimization is not
communicated and is discarded. This results in the following triggering mechanism
for communication:

Tk,p :=
{
i ∈ N

∣∣∣V (xk, uk,p) − V (xk, ūi
k,p) > γi

}
, (5.1)

where Tk,p denotes the index set of controllers which communicate at time (k, p),
and γi ∈ R>0 is the threshold for triggering a communication event. Specifically,
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if a communication event is triggered for Ci the result of the local optimization is
communicated to all other controllers. This results in a time-varying communication
graph Ck,p given by Ek,p := (Tk,p × N ) \ ∪i∈N (i, i).

Next, the iteration (4.4) is modified such that only the candidate input sequences
ūi

k,p of controllers Ci, i ∈ Tk,p which communicated in time (k, p) are considered, i.e.
if Tk,p �= ∅ the iteration (4.4) becomes:

uk,p+1 :=
∑

i∈Tk,p
wi

k,pū
i
k,p, (5.2)

and if Tk,p = ∅ the iterative distributed MPC scheme with event-based communica-
tion given in Algorithm 5.1 terminates. As discussed above, local updates which do
not sufficiently improve the cost are not communicated and discarded. The stop-
ping criterion Tk,p = ∅ can be readily checked by every controller by checking if any
data was received.

Assumption 5.1. It is assumed that the weights wi
k,p ∈ R>0 are chosen such that∑

i∈Tk,p
wi

k,p =1 holds if Tk,p �= ∅.

The following result establishes that the cost is strictly decreasing if communica-
tion takes place. It will be used to bound the number of iterations required for the
stopping criterion Tk,p = ∅ to hold.

Proposition 5.1. [46] For each iteration, the cost V (xk, uk,p) is decreasing and
decreases by at least γmin := mini∈N γi if, and only if, Tk,p �= ∅.

Proof. Considering (5.2) and Tk,p �= ∅, the cost function at iterate p + 1 is given by

V (xk, uk,p+1) = V
(

xk,
∑

i∈Tk,p
wi

k,pūi
k,p

)
. (5.3)

It follows from convexity of V (xk, uk,p+1) that

V (xk, uk,p+1) ≤
∑

i∈Tk,p
wi

k,pV (xk, ūi
k,p), (5.4)

V (xk, uk,p+1) ≤ V (xk, uk,p) −
∑

i∈Tk,p
wi

k,p

(
V (xk, uk,p) − V (xk, ūi

k,p)
)

.

Next, based on the triggering condition in (5.1) it can be verified that

V (xk, uk,p+1) ≤ V (xk, ui
k,p) −

∑
i∈Tk,p

wi
k,pγi (5.5)

Finally, considering Assumption 5.1 and γmin > 0 it directly follows that

V (xk, uk,p+1) ≤ V (xk, ui
k,p) − γmin, (5.6)

if Tk,p �= ∅. If Tk,p = ∅, the algorithm terminates with uk = uk|k,p.

The next result investigates sufficient conditions for the number of iterations
required such that the stopping criterion Tk,p = ∅ holds.
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Algorithm 5.1: Event-based distributed MPC iterations in k for each Ci

1: Given k, xk, uk,0, p = 0, pmax, and γi:
2: while p ≤ pmax do

3: Solve (4.3) and check if i ∈ Tk,p according to (5.1)
4: If i ∈ Tk,p communicate ρi

k,p to all controllers
5: Construct Tk,p based on the received information
6: if Tk,p = ∅ then

7: break

8: else

9: Compute uk,p+1 according to (5.2) and set p := p + 1
10: end if

11: end while

12: Apply ui
k|k,p to the system (4.1)

Theorem 5.1. [46] If Vd(xk, uk,0) ≤ γmin it holds that Ωk,p = ∅. If Vd(xk, uk,0) ≥
γmin, there exists p ≤ p̃k with

p̃k = �(γmin)−1Vd(xk, uk,0)�,

such that the stopping condition Ωk,p = ∅ holds.

Proof. Because of V (xk, u∗
k) ≤ V (xk, ūi

k,p̃k
), it directly follows that Vd(xk, uk,p) <

γmin implies V (xk, uk,p) − V (xk, ūi
k,p) < γmin and Ωk,p = ∅.

Next, assume that for Vd(xk, uk,0) ≥ γmin no number of iterations p ≤ p̃k−1 exists
such that Ωk,p = ∅ holds. By Proposition 5.1 the cost decreases by γmin > 0 in each
iteration if Ωk,p �= ∅. Therefore, after p̃k iterations it holds that Vd(xk, uk,p̃k

) ≤ γmin,
which implies Ωk,p̃k

= ∅, and the theorem follows.

This result shows that the algorithm terminates after a finite number of iterations
and the stopping condition Tk,p = ∅ may hold before reaching the global optimum.
However, the stopping condition may hold earlier then Vd(xk, uk,p) < γmin, i.e.
Theorem 5.1 gives a sufficient condition for the number of iterations p such that
Tk,p = ∅ holds.

Another important aspect is how to chose the thresholds γi and the suboptimality
of the input sequence when the algorithm terminates. From the results of Theorem
5.1 it can be seen that smaller thresholds γi result in more iterations. Intuitively this
should also result in a solution with smaller suboptimality. This is made precise in
the following theorem which shows that the thresholds γi can be chosen to guarantee
a bound Vd(xk, uk,p) ≤ V̄d on the suboptimality at termination.

Theorem 5.2. [46] Given a bound V̄d > 0 and ci
H according to Proposition 4.1, a

finite number of iterations p̃k exists such that the event-based scheme with thresholds
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γi = V̄d

4Ns
2ci

H

terminates after pk ≤ p̃k iterations with

p̃k =

⌊
4N2

s cmax
H

Vd(xk, uk,0)

V̄d

⌋
, (5.7)

and Vd(xk, uk,pk
) ≤ V̄d.

Proof. Theorem 5.1 shows that there exists pk ≤ p̃k such that Tk,pk
= ∅ holds.

Together with (5.1) this implies V (xk,uk,pk
) − V (xk,ūi

k,pk
) < γi. With the local

thresholds γi := V̄dNs
−2

4ci
H

it follows from Proposition 4.3 that

(μi
k,pk

)2

4ci
H

Vd(xk, uk,pk
) ≤

V̄dNs
−2

4ci
H

, ∀i ∈ N . (5.8)

Summation over all i ∈ N gives:

∑
i∈N

(μi
k,pk

)2Vd(xk, uk,pk
) ≤

∑
i∈N

V̄dNs
−2, (5.9)

and it directly follows that

Vd(xk, uk,pk
) ≤

V̄dNs
−1∑

i∈N (μi
k,pk

)2
. (5.10)

Therefore, an upper bound on Vd(xk, uk,pk
) can be obtained by maximizing the right

hand side of (5.10) with respect to μi
k,p:

minμi
k,p

∑
i∈N

(μi
k,p)2, s.t. μi

k,p > 0,
∑

i∈N
μi

k,p = 1. (5.11)

The corresponding KKT conditions with multipliers λi for inequality constraints,
and the multiplier ν for the equality constraints are given by

2μi
k,p − λi + ν = 0, ∀i ∈ {1, . . . , Ns} (5.12)

λi ≥ 0, ∀i ∈ {1, . . . , Ns} (5.13)

λi(−μi
k,p) = 0, ∀i ∈ {1, . . . , Ns} (5.14)

μi
k,p ≥ 0, ∀i ∈ {1, . . . , Ns} (5.15)∑

i∈N
μi

k,p = 1. (5.16)

It can be verified that the KKT conditions hold for μi
k,p = Ns

−1, λi = 0 and

ν = −2Ns
−1. Since the problem is convex, the KKT conditions are sufficient for

optimality. Substituting into (5.10) results in Vd(xk, uk,pk
) ≤ V̄d, and the theorem

follows. Finally, substituting γmin = V̄dNs
−2

4cmax
H

into the results of Theorem 5.1 results

in (5.7).
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Depending on the suboptimality Vd(xk, uk,0) at initialization, three different cases
have to be considered.

Theorem 5.3. [46] The cost difference Vd(xk, uk,p) converges

(I) to

Vd(xk, uk,pk
) ≤ V̄d

if V̄d ≤ Vd(xk, uk,0) and Tk,pk
= ∅,

(II) to

Vd(xk, uk,pk
) ≤ Vd(xk, uk,0)

if V̄dNs
−2

4cmax
H

≤ Vd(xk, uk,0) ≤ V̄d and Tk,pk
= ∅,

(III) and for Vd(xk, uk,0) ≤ V̄dNs
−2

4cmax
H

the algorithm terminates immediately with pk =
0.

Proof. (I) directly follows from Theorem 5.1, Theorem 5.2, and γmin = V̄dNs
−2

4cmax
H

,

where cmax
H := maxi∈N ci

H ≥ 1. To show (II), note that by Proposition 5.1, the cost
is decreasing. Finally (III) directly follows from Theorem 5.1.

5.2. Rate of Convergence and Optimized Weights

In order to draw comparisons to cooperative distributed MPC with full communi-
cation it is of interest how the event-based communication and choice of weights
wi

k,p affects the convergence rate of the algorithm. The convergence rate can be
computed based on the framework presented in the previous chapter. Theorem
5.3 implies that the algorithm may terminate if Vd(xk, uk,p) ≤ V̄d. Thus, a rate of
convergence can only be provided for the case Vd(xk, uk,p) > V̄d.

Theorem 5.4. If Vd(xk, uk,p) > V̄d the difference to the optimal cost Vd(xk, uk,p)
converges according to

Vd(xk, uk,p+1) ≤ βk,pVd(xk, uk,p), (5.17)

with the convergence rate

βk,p = 1 −
1

4

∑
i∈Tk,p

wi
k,p

(μi
k,p)2

ci
H

. (5.18)
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Proof. By substituting (4.16) into (5.4) and considering
∑

i∈Tk,p
wi

k,p = 1, it holds
that

V (xk,uk,p+1)≤V (xk,uk,p)−
∑

i∈Tk,p

wi
k,p

(μi
k,p)2

4ci
H

Vd(xk, uk,p)

Subtracting V (xk, u∗
k) on both sides results in

Vd(xk, uk,p+1) ≤ βk,pVd(xk, uk,p+1), (5.19)

with βk,p =
(

1 −
∑

i∈Tk,p
wi

k,p
(μi

k,p)2

4ci
H

)
.

In the case of communication between all controllers (Tk,p = N ) this becomes (cf.
Theorem 4.1)

βk,p = 1 −
1

4

∑
i∈N

wi
k,p

(μi
k,p)2

ci
H

. (5.20)

In other words, the convergence of the scheme may be slowed down by the event-
based approach because not all controllers participate in the scheme in each iteration
p. On the other hand, in the case of full communication the weights wi

k,p have to

satisfy
∑

i∈N wi
k,p = 1 to ensure that the costs are decreasing, but in the event-based

case only
∑

i∈Tk,p
wi

k,p = 1 is required (cf. Proposition 5.1). This may lead to faster
convergence.

The following result is concerned with establishing an upper bound βk,p ≤ β̄k,p and
corresponding time-invariant weights wi

k,p := f i
w (Tk,p), which minimize the bound.

Theorem 5.5. [46] If Vd(xk, uk,p) > V̄d, the rate of convergence βk,p is bounded by:

βk,p ≤ β̄k,p = 1 −
κ2

k,p

4

(∑
i∈Tk,p

√
ci

H

)−2

< 1, (5.21)

with 0 < κk,p ≤ 1. The corresponding weights are given by

wi
k,p =

⎧⎨
⎩
√

ci
HfT (Tk,p)−1 ∀i ∈ Tk,p,

0 ∀i /∈ Tk,p,
(5.22)

with fT (Tk,p) =
∑

i∈Tk,p

√
ci

H .

Proof. Considering Proposition 4.3, the triggering condition (5.1), and γi := V̄dN−2
s

4ci
H

,

inequality (5.8) holds for all i ∈ N \ Tk,p, and it directly follows that

√
Ns

−2V̄dVd(xk, uk,p)
−1 ≥ μi

k,p, ∀i ∈ N \ Tk,p. (5.23)
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Summation over i ∈ N \ Tk,p gives:

Nnc
k,pNs

−1
√

V̄dVd(xk, uk,p)
−1 ≥

∑
i∈N \Tk,p

μi
k,p, (5.24)

where Nnc
k,p := card(N \ Tk,p) is the cardinality of N \ Tk,p. Next, letting

κk,p := 1 − Nnc
k,pN−1

√
V̄dVd(xk, uk,p)−1

,

it directly follows from
∑

i∈N μi
k,p = 1 that

κk,p ≤
∑
i∈N

μi
k,p −

∑
i∈N \Tk,p

μi
k,p =

∑
i∈Tk,p

μi
k,p, (5.25)

and 0 < κk,p ≤ 1 holds for Vd(xk, uk,p) ≥ V̄d. In order to obtain an upper bound on
the convergence rate, one has to solve:

β̄k,p = min
wi

k,p

max
μi

k,p

1 −
1

4

∑
i∈Tk,p

wi
k,p

(μi
k,p)2

ci
H

, (5.26)

subject to μi
k,p ≥ 0,

∑
i∈Tk,p

μi
k,p ≥ κk,p, wi

k,p ≥ 0, and
∑

i∈Tk,p
wi

k,p = 1. The KKT

conditions for the inner maximization, which is parametric with respect to wi
k,p and

κk,p, are given by

2wi
k,p

ci
H

μi
k,p − λi + ν = 0, ∀i ∈ {1, . . . , Ns} (5.27)

λi ≥ 0, ∀i ∈ Tk,p (5.28)

λi(−μi
k,p) = 0, ∀i ∈ Tk,p (5.29)

μi
k,p ≥ 0, ∀i ∈ Tk,p (5.30)∑

i∈Tk,p
μi

k,p = κk,p. (5.31)

It can be verified that the KKT conditions hold for μi
k,p = cz

ci
H

wi
k,p

κk,p and cz =(∑
i∈Tk,p

ci
H

wi
k,p

)−1

, ν = −2czκk,p and λi = 0. Because the problem is convex, sat-

isfaction of the KKT conditions implies optimality of the solution. Substituting

μi
k,p = cz

ci
H

wi
k,p

κk,p into (5.26) results in

β̄k,p = min
wi

k,p

1 −
κ2

k,p

4
∑

i∈Tk,p

ci
H

wi
k,p

, (5.32)

β̄k,p = 1 −
κ2

k,p

4 minwi
k,p

∑
i∈Tk,p

ci
H

wi
k,p

. (5.33)
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The KKT conditions for this problem are given by

−
ci

H

(wi
k,p)2

− λi + ν = 0, ∀i ∈ Tk,p (5.34)

λi ≥ 0, ∀i ∈ Tk,p (5.35)

λi(−wi
k,p) = 0, ∀i ∈ Tk,p (5.36)

wi
k,p > 0, ∀i ∈ Tk,p (5.37)∑

i∈Tk,p
wi

k,p = 1. (5.38)

The KKT conditions hold for wi
k,p =

√
ci

HfT (Tk,p)−1 with fT (Tk,p) =
∑

i∈Tk,p

√
ci

H ,

λi = 0 and ν = fT (Tk,p)2 for all i ∈ Tk,p, and wj
k,p = 0 for j ∈ N \ Tk,p. In other

words, the optimal weights in the case of event-based communication depend on

the communication topology given by Tk,p. Substituting wi
k,p =

√
ci

HfT (Tk,p)−1 for
all i ∈ Tk,p into (5.32) results in the following bound:

β̄ = 1 −
κ2

k,p

4

(∑
i∈Tk,p

√
ci

H

)−2

. (5.39)

In contrast to the case of full time-triggered communication, the optimized weights
and the corresponding bound on the convergence rate for the case of event-based
communication depend on the set of communicating controllers. Furthermore, be-
cause of κ → 0 as Nnc

k,p → Ns and Vd → V̄d the convergence of the algorithm with

event-based communication slows down close to V̄d. In contrast, the bound on the
convergence rate in case of full communication (cf. Theorem 4.2) is time-invariant:

β̄ = 1 −
1

4

(∑
i∈N

√
ci

H

)−2

. (5.40)

Nonetheless, the convergence of the event-based scheme may be faster. Assuming
that Tk,p ⊂ N , it holds that

(∑
i∈Tk,p

√
ci

H

)−2

>
(∑

i∈N

√
ci

H

)−2

,

which may lead to improved convergence in some cases. This applies, for example,
if ci

H � cj
H for i �= j and all j ∈ N \ i and i /∈ Tk,p, i.e. subproblem i is strongly

interconnected but ūi
k,p did not significantly improve the cost.

5.3. Stability Analysis

In this section stability of the distributed MPC algorithm with event-based com-
munication in closed-loop with (2.2) is investigated. For Case 2.2 (i.e. coupled
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dynamics and costs, no state constraints) and Case 2.3 (i.e. decoupled dynamics,
coupled costs, decoupled constraints) a terminal constraint is used and asymptotic
stability can be established. In Case 2.4 (i.e. coupled dynamics and costs, no state
constraints) no terminal constraint or cost are used and only practical stability can
be established. In all cases, the ISpS framework presented in Section 2.3 is used
to deal with suboptimal solutions. To specify the control objective the set Σ from
(2.4), with the additional assumption that Γu is chosen such that R := ΓT

u Γu 	 0,
is used. The weight Q = QT � 0 is again given by Q := ΓT

x Γx .

Stability Using Terminal Costs and Terminal Constraints

Assumption 5.2. For the cases 2.2 and 2.3, it is assumed that the terminal cost
P , terminal set T (cf. cases 2.2 and 2.3) and terminal controller uk = KTxk are
chosen such that the following conditions hold for all xk ∈ T:

1. KTxk ∈ U,

2. xk+1 = (A + BKT)xk ∈ T,

3. ‖Axk + Buk‖2
P = 0, ∀(xk, uk) ∈ Σ

4. ‖Axk + BKTxk‖2
P − ‖xk‖2

P ≤ −‖xk‖2
Q − ‖Kxk‖2

R.

The first two conditions imply feasibility of the terminal control law, the third
condition ensures that the terminal cost is zero at the control goal, and the fourth
condition encodes that the terminal control law is stabilizing. If Σ = {0} such
a terminal constraint, terminal cost, and controller can always be constructed for
Case 2.2 (cf. [104]) and Case 2.3 (see Appendix A.2). In the general case Σ �= {0}
it may not be possible to satisfy Assumption 5.2 depending on the dynamics and
the construction of the set Σ.

Since the cost is decreasing with the iterations p, it is sufficient to show that the
initialization uk+1,0 for the next time step stabilizes the system. Let p̄k with p̄k ≤ p̃k

denote the number of iterations performed in time k. For the cases 2.2 and 2.3, the
terminal control law KT is used to initialize the algorithm for the next time step,
i.e. the following initialization is performed locally by each controller Ci:

uk+1,0 := (uk+1|k,p̄k
; . . . ; uk+N−1|k,p̄k

; KTxk+N |k,p̄k
). (5.41)

The following result states that asymptotic stability of the closed-loop can be es-
tablished for the extended state vector zk,p = (zk|k,p; . . . ; zk+N−1|k,p) with respect to
corresponding set Σ := Σ × . . . × Σ. To this end, let zk+l|k,p = (xk+l|k,p; uk+l|k,p) for
all l ∈ {0, . . . , N − 1} denote the states and inputs planned for time k + l at (k, p),
and let Z denote the feasible set of (2.6) for zk,p. Furthermore, Vz(zk,p) denotes the
cost formulated with respect to zk,p, i.e. by substituting the dynamics for xk+N |k

such that Vz(zk,p) = V (xk, uk|k,p).
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Theorem 5.6. Given a feasible initialization z0,0 ∈ Z, the following holds for the
distributed MPC in closed-loop with (2.2) at any iteration p ≥ 0 if Assumption 5.2
holds:

(I) the distributed MPC problem is feasible for all k ≥ 0,

(II) the closed-loop is asymptotically stable with respect to Σ.

for the cases 2.2 and 2.3.

Proof. To show (I), note that a feasible initialization at k = 0 implies xN |0,0 ∈ T.
Using this solution as initialization for k = 1 according to (5.41) implies xN |1,0 ∈ T.
By Assumption 5.2 it holds that KTxN |1 ∈ U and (A + BKT)xN |1,0 ∈ T and it
follows that the initialization for k = 1 given by (5.41) is feasible. Statement (I)
follows by induction over k and noting that feasibility is preserved at any iteration
because of the purely local constraints in (4.3).

To establish (II) the case that no iterations take place is considered first, i.e.
p̄k+l = 0 for all l ∈ N0. With the extended state vector zk,p and considering (5.41)
it holds for any p̄k that

Vz(zk+1,0) − Vz(zk,p̄k
) ≤‖xk+N |k+1,0‖2

Q + ‖uk+N |k+1,0‖2
R + ‖xk+N+1|k+1,0‖2

P

− ‖xk|k,p̄k
‖2

Q − ‖uk|k,p̄k
‖2

R − ‖xk+N |k,p̄k
‖2

P .

Considering Assumption 5.2 it follows that the cost is decreasing:

Vz(zk+1,0) − Vz(zk,p̄k
) ≤ −‖xk|k,p̄k

‖2
Q − ‖uk|k,p̄k

‖2
R. (5.42)

Applying this inequality and the initialization (5.41) for N − 1 time steps results in

Vz(zk+N,0) − Vz(zk,p̄k
) ≤ −

∑N−1

l=0
(‖xk+l|k,p̄k

‖2
Q + ‖uk+l|k,p̄k

‖2
R), (5.43)

because applying (5.41) implies that uk+l|k+l,0 = uk+l|k,0, xk+l|k+l,0 = xk+l|k,0 for
all l ∈ {0, . . . , N − 1} . Next, Proposition 5.1 then implies that Vz(zk+N,p̄k+N

) ≤
V(zk+N,0) and it holds that

Vz(zk+N,p̄k+N
) − Vz(zk,p̄k

) ≤ −
∑N−1

l=0
(‖xk|k,p̄k

‖2
Q + ‖uk|k,p̄k

‖2
R). (5.44)

It directly follows from the construction of Q and R that there exists α3(‖zk,p̄k
‖Σ)

such that Vz(zk+N,p̄k+N
) − Vz(zk,p̄k

) ≤ −α3(‖zk,p̄k
‖Σ). Furthermore, the definition

of the costs (2.5) implies that there exists α1(‖z‖Σ) such that α1(‖z‖Σ) ≤ Vz(z)
holds. Finally, because Vz(z) is a continuous quadratic function of z and Vz(z) = 0
if z ∈ Σ it follows that there exists α2(‖z‖Σ) such that Vz(z) ≤ α2(‖z‖Σ).

In other words Vz(zk,p) can be used as ISpS-Lyapunov function and the conditions
of Theorem 2.1 hold for L = N , d1 = d2 = 0, and ωk = 0 for all k ∈ N0 which
implies that the closed-loop is asymptotically stable.
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The result given above establishes asymptotic stability with respect to Σ for both
Case 2.2 and Case 2.3 based on Assumption 5.2. In contrast in [104], the terminal
constraint T has to be choosen such that all unstable modes of the system are
zero at the end of the prediction horizon (i.e. Assumption 5.2 holds with KT = 0
and Σ = {0}) and an additional explicit “stability” constraint is used to establish
exponential stability.

Stability Without Terminal Costs or Terminal Constraints

In Case 2.4 no terminal constraint or terminal cost is employed. In general, this
implies that no terminal control law is known. Thus, the following initialization for
k = k + 1 will be used:

ui
k+1,0 := (ui

k+1|k,p̄k
; . . . ; ui

k+N−1|k,p̄k
; 0). (5.45)

In the following it is shown that the system is practically stable by using the cost
V (xk, uk|k,p̄k

) at termination (i.e. Tk,p̄k
= ∅) as ISpS-Lyapunov function. To this

end, we require the following assumption with respect to the optimal cost V ∗(xk)
of the centralized MPC (2.6):

Assumption 5.3. For Case 2.4 it is assumed that the prediction horizon N is
chosen such that there exists a set X = {xk ∈ R

n | V ∗(xk) ≤ cLev} with cLev ∈ R>0

and a constant 0 ≤ η < 1, such that

V ∗(Axk + Bu∗(xk)) − V ∗(xk) ≤ −η (‖xk‖2
Q + ‖u∗(xk)‖2

R), (5.46)

and

V ∗(Axk + Bu∗(xk)) + V̄d ≤ cLev (5.47)

holds for all xk ∈ X .

The reader is referred to [49] and [35] for further discussions on how to verify
(5.46). The contraction of the level sets of V ∗(xk) due to (5.46) may then be used
to establish (5.47), which ensures invariance of X with respect to the dynamics
(2.2) in closed-loop with the suboptimal distributed MPC (cf. [12]). Because the
implications of this assumption are not clear if Σ �= {0}, only the case Σ = {0} is
considered here.

Theorem 5.7. Given xk ∈ X , X according to Assumption 5.3, and a feasible initial
solution at time k = 0, the distributed MPC applied to Case 2.4 with stopping
criterion Tk,p̄k

= ∅:

(I) is recursively feasible,

(II) renders the dynamics (2.2) practically stable in X with respect to the origin.
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Proof. The re-initialization at k = k + 1 according to (5.41) implies uk+1|k+1,0 ∈ U.
Statement (I) follows by induction over k and noting that feasibility is preserved at
any iteration p as shown in the proof of Proposition 4.3.

To establish (II), note that V ∗(xk) is a continuous function and V ∗(xk) = 0 if
xk = 0 (cf. [6]). It directly follows that there exists α2(‖xk‖) such that

α1(‖xk‖) ≤ V ∗(xk) ≤ α2(‖xk‖) (5.48)

holds for all xk ∈ X and α1(‖xk‖) := λmin(Q)‖xk‖2. Next, Theorem 5.3 implies
that V ∗(xk) ≤ V (xk, uk,p̄k

) ≤ V ∗(xk) + V̄d and (5.48) becomes:

α1(‖xk‖) ≤ V (xk, uk,p̄k+1
) ≤ α2(‖xk‖) + d1,

where d1 = V̄d. It follows from (5.47), Theorem 5.3, and xk+1 = Axk +Buk|k,p̄k
that

V (xk+1, uk+1,p̄k
) ≤ V ∗(Axk + Bu∗(xk)) + V̄d ≤ cLev (5.49)

holds, i.e. xk+1 ∈ X for all xk ∈ X and the state remains in X for all k ∈ N0. For
all xk ∈ X Assumption 5.3 implies that

V ∗(Axk + Bu∗(xk)) − V ∗(xk) ≤ −η (‖xk‖2
Q + ‖u∗(xk)‖2

R) (5.50)

holds. Finally, considering V ∗(xk) ≤ V (xk, uk,p̄k
) and (5.49) it directly follows that:

V (xk+1, uk+1,p̄k+1
) − V (xk, uk,p̄k

) ≤ V (xk+1, uk+1,p̄k+1
) − V ∗(xk) (5.51)

≤ V ∗(Axk + Bu∗(xk)) + V̄d − V ∗(xk) (5.52)

≤ −α3(‖xk‖) + d2, (5.53)

with α3(‖xk‖) := λmin(Q)‖xk‖2, d2 = V̄d, and the conditions of Theorem 2.1 hold
with L = 1, d1 = d2 = V̄d, ωk = 0 for all k ∈ N0. It directly follows that the
closed-loop dynamics are practically stable in X with respect to Σ = {0}.

It follows from Theorem 2.1 that the state xk converges to a bounded neighbor-
hood of the origin, i.e. limk→∞ xk ∈ Br

dc
(0), and dc can be made arbitrarily small

by choosing an appropriate bound V̄d (cf. Theorem 2.1 for the relationship between
d1,d2 and dc). Because no state or terminal constraints are present and the input
constraints are assumed to be decoupled, a feasible initialization can directly be
obtained locally by ignoring all interactions.

Alternatively, ISS for Case 2.4 may be established by rewriting the closed-loop
dynamics into a perturbed system which uses the input of the centralized MPC (2.6),
and the difference between the input computed by the suboptimal distributed MPC
and centralized MPC is considered as a bounded disturbance ωk. In this case a
weaker assumption on the set X may be used, but it is not obvious how to verify
this assumption (cf. [46]). In contrast Theorem 5.7 provides a tighter bound Br

dc
(0)

and Assumption 5.3 can be verified as outlined above.
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5.4. Numerical Examples

To evaluate Algorithm 4.1 and Algorithm 5.1, both are applied to distributed MPC
problems with decoupled double-integrator dynamics, local input and state con-
straints, Ns = 5 to Ns = 30 subsystems. For each number of subsystems 20 ran-
dom, potentially fully coupled costs were generated and each resulting problem was
solved for four random initial conditions and an initialization obtained by ignor-
ing all interconnections. To define suitable thresholds γi, the optimal costs V ∗(xk)
were computed, V̄d = cV V ∗(xk) was defined, and simulations were performed for
cV := {0.1, 0.5, 1}. The event-based algorithm was applied until the stopping crite-
rion Tk,p̄k

= ∅ holds, and problems which did not require any communication were
discarded. Afterwards, Algorithm 4.1 was applied for p̄k iterations starting from
the same initial conditions.

Table 5.1 gives the mean over all problem instances for the number of itera-
tions and the number of communication events of the event-based algorithm ek

relative to the number of communication events ef
k := Nsp̄k of the algorithm with

time-triggered communication. For the event-based algorithm the number of com-
munication events triggered for each controller Ci and each time step is given by
ei

k :=
∑p̄k

p=0 ei
k,p, ei

k,p = 1 if i ∈ Tk,p, and ei
k,p = 0 if i /∈ Tk,p. In other words ei

k,p

indicates whether or not a communication event was triggered for Ci at (k, p). The
overall number of communication events triggered by the event-based algorithm is
then given by ek :=

∑Ns

i=1 ei
k. The number of communication events by the event-

based algorithm as percentage of the number of messages of the algorithm with full
communication is given by ek/ef

k . It should be noted that communication events for
initialization are not included because they are identical for both algorithms and
are only required once at (k, p) = (0, 0) if the algorithm is applied in closed loop.

The value ek/ef
k directly shows the reduction in communication. Specifically, a

larger choice of V̄d (i.e. larger cV ) results in fewer messages and iterations, but

Table 5.1.: Averages for number of iterations, ratio of communication events.

p̄k ek/ef
k [%]

Ns cV = 0.1 0.5 1 0.1 0.5 1

5 6.2 3.3 2.3 0.51 0.40 0.31
7 10.3 5.0 3.3 0.52 0.39 0.32
10 14.5 7.4 5.1 0.52 0.36 0.30
15 27.0 15.0 10.3 0.55 0.42 0.35
20 34.9 19.1 13.5 0.53 0.40 0.33
25 48.7 28.3 19.8 0.55 0.43 0.37
30 59.1 34.2 25.2 0.57 0.44 0.37
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may also result in stronger suboptimality. For instance, for cV = 0.1 and Ns = 30
the number of messages was reduced by 43% compared to the algorithm with full
communication, and for cV = 1 the number of messages was reduced by 63% The
resulting suboptimality of the solutions is shown in Table 5.2, where it can be seen
that a larger cV results in larger suboptimality at convergence.

Table 5.2 gives, for each number of subsystems Ns, the mean over all problem
instances of the relative suboptimality at convergence (i.e. Tk,p = ∅). The relative
suboptimality for each initial value is given by

Vd,rel(xk) :=
Vd(xk, uk,p̄k

)

V ∗(xk)
.

With the bounds V̄d = cV V ∗(xk) it directly follows from Theorem 5.3 that Vd,rel(xk) ≤
cV holds. The results show that the relative suboptimality Vd,rel(xk) at convergence
is in fact much smaller than cV . This is especially true if the number of subsystems
Ns is large and can be explained by the fact that the condition Tk,p = ∅ used for the
suboptimality bound holds for all subsystems with values just below their threshold
γi. However, as the number of subsystems increases this scenario is very unlikely
and typically only the triggering rules of a few subsystems are close to γi.

Furthermore, it can be seen that due to the smaller thresholds (i.e. smaller cV )
more iterations are performed if Ns is large. Finally, the event-based approach
reduces the number of messages and converges faster, i.e. after the same number
of iterations, the suboptimality is lower for the event-based algorithm. The reason
for this is that the weights are based on the communicated information which may
allow for faster convergence as discussed below Theorem 5.4 and Theorem 5.5.

To illustrate the proposed cooperative distributed MPC algorithm with event-
based communication in closed loop, the following numerical example motivated
by a system of coupled water tanks with pumps and outlets (see Figure 5.1) taken

Table 5.2.: Average of the relative suboptimality
Vd(xk,uk,p̄k

)

V ∗(xk)
at convergence.

Event-based communication Full communication

Ns cV = 0.1 0.5 1 0.1 0.5 1

5 0.00481 0.01709 0.03512 0.01422 0.03802 0.05278
7 0.00245 0.01167 0.02256 0.00813 0.02581 0.03766
10 0.00170 0.00787 0.01374 0.00655 0.01964 0.02838
15 0.00117 0.00532 0.01027 0.00474 0.01532 0.02453
20 0.00089 0.00399 0.00731 0.00358 0.01184 0.01828
25 0.00076 0.00329 0.00653 0.00311 0.01054 0.01770
30 0.00064 0.00289 0.00525 0.00266 0.00924 0.01458
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u1

u2 u3
a

u3
b

u4

P1 P2 P3P4

h = 0

Figure 5.1.: Coupled water tanks [41].

from [41] is used. Specifically, Algorithm 4.1 and Algorithm 5.1 are applied to the
case without terminal constraint. Both Algorithms are initialized to a decentralized
solution at k = 0, and the input sequence uk+1,0 for k + 1 is initialized according
to (5.45). The tanks are modeled as second order systems, where the states x =
(x1

k; x2
k; x3

k; x4
k) ∈ R

8 with xi
k = (hi

k; ḣi
k) ∈ R

2 correspond to the water level hi
k and

time-derivative ḣi
k of the water level. The inputs u = (u1; u2; u3

a; u3
b ; u4) control the

pumps and outlets to fill/release water. The interconnected dynamics of the tanks
are given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.95 0.3718 0.05 0 0 0 0.005 0
0 0.5353 0 0 0 0 0 0

0.05 0 0.9 0.3718 0.05 0 0 0
0 0 0 0.5353 0 0 0 0
0 0 0.05 0 0.95 0.3718 0 0
0 0 0 0 0 0.5353 0 0
0 0 0 0 0 0 1 0.3718
0 0 0 0 0 0 0 0.5353

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.54)

and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1282 0 0 −0.1282 0
0.4647 0 0 −0.4647 0

0 0.1282 0 0 0
0 0.4647 0 0 0
0 0 0.1282 0.1282 0
0 0 0.4647 0.4647 0
0 0 0 0 0.1282
0 0 0 0 0.4647

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.55)
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The overall goal is to control the water levels hi
k to zero while using the outlets

as little as possible. This is formulated by a cost function with:

Q = diag(0.5, 0.1, 0.5, 0.1, 0.5, 0.1, 0.5, 0.1), R = diag(2, 40, 40, 1, 10).

The input constraints are given by 0 ≤ u1
k ≤ 10, −10 ≤ u4

k ≤ 10, and −10 ≤
ui

k ≤ 0 for i ∈ {2, 3}. Simulations were performed for an initial water level of
h0 = (−20; 0; 10; 0), a prediction horizon of N = 20, and a maximum number of
iterations per time step of pmax = 20. For Algorithm 5.1, the bound V̄d = 25 was
chosen to reduce the number of messages without strongly degrading performance
and, in this example, the tolerance ε = 10−3 was used for Algorithm 4.1. Simulation
results for the water levels and inputs are shown in Figure 5.2.

It can be seen that, due to the high cost for the control inputs u2 and u3
a, only

the inputs u1 and u3
b are used. The enlarged area shows slight changes in the

inputs if a communication event is triggered. Overall, the states converge close to
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Figure 5.2.: Simulation results for the coupled water tanks using the event-based
algorithm (inset: enlarged input sequence).
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the control goal despite the event-based communication, highlighting the practical
stability property of the closed loop.

The number of communication events ei
k per controller Ci and time step k, the

number of iterations per time step, and suboptimality Vd(xk, uk|k,p) are shown in
Figure 5.3. It can be seen that the number of events rapidly decreases after a couple
of time steps and events only occur occasionally. Furthermore, the stopping criterion
Tk,p̄k

= ∅ holds after a few iterations. In contrast, the number of communication

events ef
k = Nsp̄k per time step for Algorithm 4.1 remains relatively high. Over all

iterations and time steps, 115 communication events are generated by Algorithm
5.1 compared to 2636 for Algorithm 4.1. Finally, the last plot in Figure 5.3 shows
the suboptimality Vd(xk, uk,p) resulting from Algorithm 4.1 and Algorithm 5.1. For
comparison, the absolute costs are V (x0, u0,0) ≈ 1100 and V (x45, u45,0) ≈ 2). It can
be seen that Algorithm 4.1 requires both more iterations and communication while
not providing substantially improved performance.
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Figure 5.3.: Number of communication events ei
k, number of iterations per time-

step, and suboptimality Vd(xk, uk,p̄k
).
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5.5. Discussion

In this chapter, the distributed MPC algorithm analyzed in Chapter 4 is combined
with a suitable triggering function for communication events. In each iteration the
controllers Ci compute candidate input sequences by solving the same problem used
in Chapter 4, but the controllers only exchange information if a communication
event is triggered. This approach significantly reduces the load on the communi-
cation network compared to communicating in every time step and iteration, while
often achieving comparable performance. Specifically, a communication event is
triggered only if the optimized input sequence computed by Ci sufficiently improves
the closed-loop performance of the overall system. The cooperative distributed
MPC algorithm with event-based communication terminates if no communication
occurs in an iteration. This simple distributed stopping condition can be easily
checked and ensures that the suboptimality of the input sequence is below a pre-
scribed bound V̄d. This bound can be made arbitrarily small at the expense of
triggering more communication events and performing more iterations. Therefore,
V̄d allows for a trade-off of closed-loop performance and the load on the communi-
cation network. Additionally, the convergence properties of this distributed MPC
algorithm are analyzed and bounds on the number of iterations and on the con-
vergence rate are established. Based on the bounds on the convergence rate, the
algorithm with time-triggered communication analyzed in Chapter 4 can be com-
pared with the algorithm utilizing event-based communication. On the one hand,
the bounds on the convergence rate suggest that the convergence of the algorithm
with event-based communication slows down the closer it gets to termination be-
cause only few controllers may participate in the algorithm. On the other hand it
may converge faster than the cooperative distributed MPC algorithm with time-
triggered communication because the weights are adjusted in each iteration based
on the set of communicating controllers Tk,p in order to achieve fast convergence.
Simulation results show that on average the event-based approach offers slightly
faster convergence for a set of randomly created examples.

Overall the algorithm with event-based communication is well suited for closed-
loop application because the initialization computed at each time step often already
provides good control performance and only few additional communication events
are required to further optimize the input sequence. Furthermore, stability results
for different types of coupling between subsystems and for distributed MPC with
and without terminal constraints are provided based on the initialization computed
at each time step, and the suboptimality of the input sequences resulting from
applying the cooperative distributed MPC. In contrast to parallel algorithms based
on dual decomposition the algorithm can be terminated at any iteration in Case 2.2
and Case 2.3 while retaining all advantages of utilizing parallel optimization.

The event-based approach to communication achieves comparable performance to
the case of time-triggered communication analyzed in Chapter 4 and mitigates the
drawback of utilizing too many iterations or too much communication. However,
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two aspects remain open. First, if a communication event is triggered the corre-
sponding controller Ci has to communicate information to all other controllers, even
if the local optimization of a controller Cj only weakly (or not at all) depends on
the communicated information. Therefore, it should be possible to reduce the load
on the communication network even further by employing triggering rules which
do not only decide when to communicate, but also indicate with which controller
information needs to be exchanged.

Secondly, it is not clear how uncertain communication affects the cooperative
distributed algorithms with time-triggered or event-based communication. While
the algorithm may be modified to cope with small delays τk  Δt by restricting the
optimization to uk+1|k to uk+N−1|k, this does not provide an answer to the question
of how uncertain communication affects the performance of the algorithm.

These questions will be investigated in the next chapter based on analyzing the
sensitivity of the solutions of the local optimization problems (4.3) with respect to
the communicated information.
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Based on Sensitivity Analysis

In the event-based distributed MPC algorithm developed in the previous chapter
a controller Ci sends information to all other controllers Cj, j ∈ N \ i when a
communication event is triggered for Ci. If the number of subsystems is large, this
results in large number of messages, which may not be required. The approach
presented in this chapter aims to reduce the load on the communication network
further by analyzing between which controllers communication is required. To this
end, the main question is how the local optimizer ρi

k,p of (4.3) changes if the input

sequences u
j
k,p, j ∈ N \ i are only known approximately. For instance, if the

sensitivity of the optimizer ρi
k,p of Ci with respect to the input sequence u

j
k,p of

Pj is low, the controller Cj should only rarely need to communicate information to
controller Ci.

In the following, an event-based communication scheme for the exchange of infor-
mation between controllers is developed, in which each controller Ci only commu-
nicates information to another controller Cj if a communication event is triggered.
In other words, the triggering rules do not only decide when to communicate, but
also indicate to which controller information needs to be communicated. The main
idea behind the algorithm developed in this chapter is to apply Algorithm 4.1 using
approximate information about other subsystems’ states and input sequences. In
this algorithm, event-based communication is used to ensure that the information
assumed by a controller Ci for the state and inputs of Pj does not differ from the
true values too much. Specifically, the implicit function theorem is applied to the
local optimizers ρi

k,p to compute their sensitivity with respect to the communicated
information. Based on this analysis triggering conditions for communication events
are derived which ensure that the possible cost increase, resulting from using as-
sumed values instead of the true values in the local optimization, is bounded. This
allows to analyze the rate of convergence, suboptimality, and closed-loop properties
of the algorithm, as well as the impact of communication delays and packet loss.

The approach used in the sensitivity analysis is conceptually similar to approaches
used to compute the optimizer of a linear centralized MPC problem as explicit
function of the input data (cf. [6]). In fact, if ρi

k,p is known explicitly, bounds on the
sensitivity of the optimal solution with respect to the states and input sequences
of other subsystems can be easily obtained. However, for medium to large scale
systems computing the explicit solution is not feasible due to the high computational
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complexity of this task. Even computing the optimal solution ρi
k,p of the local

problems (4.3) explicitly is, in general, a challenging problem, because the explicit
solution has to be parametrized in the states and input sequences of all subsystems.
Therefore, a high dimensional search space has to be explored to compute the
optimizer explicitly. This typically results in a very high computational complexity
(cf. [6]). In this chapter, this issue is resolved by analytically computing bounds on
the sensitivity with respect to the communicated information without computing
the solution for ρi

k,p explicitly.

In [95] a so called “sensitivity based” algorithm for distributed MPC has been
proposed, but the methodology is very different from the approach considered in this
chapter. In particular, in [95] the “sensitivity” interpretation of the Lagrange mul-
tipliers (cf. [15], Section 5.6.2) and dual decomposition are used by each controller
Ci to construct linear approximations of the costs of an interconnected controller
Cj . Furthermore, every controller communicates with every other controller in every
time step and iteration, the cost function is assumed to be separable, and no results
on closed-loop stability are given.

In contrast, in this chapter the goal is to minimize communication and establish
convergence as well as practical stability of the closed-loop. To this end, rigorous
bounds on the sensitivity of the local optimizer are derived and used to define trig-
gering functions for communication events. The stability properties of the closed-
loop are analyzed for Case 2.3 (coupled costs, decoupled dynamics and constraints)
and Case 2.4 (coupled costs and dynamics, no state or terminal constraints). Be-
cause each controller only knows the states and inputs of interconnected subsystems
and controllers approximately, it is not possible to ensure that the terminal equality
constraint for Case 2.2 (coupled costs and dynamics, no state constraints) holds.
Therefore, the algorithm proposed in this chapter is not applicable to Case 2.2. A
distributed MPC algorithm based on similar ideas has been previously published
by the author in [41] without any formal proofs of convergence, stability of the
closed-loop, or rigorous sensitivity analysis.

6.1. Distributed MPC Using Approximate

Information

The algorithm developed in this chapter is based on Algorithm 4.1 and uses event-
based communication, but does not discard information that is not communicated.
To clearly differentiate between the two Algorithms the input sequence optimized
by the distributed MPC in this chapter is denoted by vk,p, while uk,p+1 denotes the
input sequence obtained by performing one iteration of Algorithm 4.1 starting from
the inputs vk,p.

Updating the local input sequence vi
k,p without communication may lead to a

mismatch between the values used by different controllers. To this end, let v̂
i,j
k,p
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and x̂i,j
k denote the values assumed by controller Ci for the inputs and states of

Pj for all j ∈ N \ i, and let δv̂
i,j
k,p := v̂

i,j
k,p − v

j
k,p and δx̂i,j

k := x̂i,j
k − xj

k denote the

corresponding errors. The value assumed by Ci for the global state is denoted by
x̂i

k,p := (x̂i,1
k,p; . . . ; x̂i,Ns

k,p ), with x̂i,i
k,p := xi

k. Based on these values, the local optimiza-
tion problem (4.3) becomes:

φi
k,p := arg minvi

k
V (x̂i

k,p, vk) (6.1)

s.t. vi
k ∈ Ui(xi

k), v
j
k = v̂

i,j
k,p, ∀j ∈ N \ i.

In contrast, the local optimization using exact information is given by

ρi
k,p := arg minvi

k
V (xk,p, vk) (6.2)

s.t. vi
k ∈ Ui(xi

k), v
j
k = v

i,j
k,p, ∀j ∈ N \ i,

and locally the following iterations (cf. (4.5)) with wi =
√

ci
Hc−1

r (see Section 4.3)

are performed by each controller Ci, i ∈ N :

vi
k,p+1 := (1 − wi)vi

k,p + wiφi
k,p. (6.3)

Using v̄i
k,p := (v1

k,p; . . . ; φi
k,p; . . . ; vNs

k,p), and considering that V (xk, vk,p) one obtains:

vk,p+1 :=
∑

i∈N
wiv̄i

k,p, V (xk, vk,p+1) ≤
∑

i∈N
wi V (xk, v̄i

k,p). (6.4)

In order to compare the difference between the two optimization problems (6.1) and
(6.2), let uk,p denote the input generated based on (6.2), such that for each each
controller Ci, i ∈ N :

ui
k,p+1 := (1 − wi)vi

k,p + wiρi
k,p. (6.5)

With ūi
k,p := (v1

k,p; . . . ; ρi
k,p; . . . ; vNs

k,p) this results in

uk,p+1 :=
∑

i∈N
wiūi

k,p, V (xk, uk,p+1) ≤
∑

i∈N
wi V (xk, ūi

k,p). (6.6)

It can be seen that the difference V (xk, vk,p) − V (xk, uk,p) between the costs using
inexact information and full communication depends on the optimizers ρi

k,p and

φi
k,p given by (6.2) and (6.1), which implicitly depend on the communicated infor-

mation. Therefore, to gain insight into how δv̂
i,j
k,p and δx̂i,j

k affect the overall control

performance, the sensitivity of φi
k,p with respect to δv̂

i,j
k,p and δx̂i,j

k is analyzed in
the next section.

6.2. Sensitivity Analysis

In order to anaylze the impact of using inexact values in the local optimization on
the closed loop, it is crucial to analyze how the optimizer (6.1) changes with regard
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to the communicated information. To reformulate the problem to a more suitable
form, H and F are partitioned according to the subsystems P i:

H =

⎡
⎢⎢⎣

H1,1 · · · H1,Ns

...
. . .

...
HNs,1 · · · HNs,Ns

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

F 1,1 · · · F 1,Ns

...
. . .

...
F Ns,1 · · · F Ns,Ns

⎤
⎥⎥⎦ .

Furthermore, ϕ
\i
k,p = (ϕi

k,p; . . . ; ϕi−1
k,p ; ϕi+1

k,p ; . . . , ϕNs

k,p) ∈ R
ti

denotes the parameter

vector containing the information about subsystems j �= i with ti :=
∑

j∈N i mj +nj ,
and ϕi

k,p = (xi
k; vi

k,p) denotes the actual state and input sequence of subsystem

P i. Based on this, the following local cost function is obtained where the term

R
i(xi

k, ϕ
\i
k,p) collects terms which do not depend on vi

k (i.e. are constant in the local

optimization), such that V i(xi
k, vi

k,p, ϕ
\i
k,p) = V (xk, vk,p), and

V i(xi
k, vi

k, ϕ
\i
k,p) := (vi

k)T H i,ivi
k + (xi

k)T F i,ivi
k + (ϕ

\i
k,p)T F \i

c vi
k + R

i(xi
k, ϕ

\i
k,p), (6.7)

where F \i
c := (F 1,i

c ; . . . ; F i−1,i
c ; F i+1,i

c ; . . . ; F Ns,i
c ; ) and F j,i

c = (F j,i; 2Hj,i). Based on
this local cost function, the optimization problem (6.1) can be rewritten such that

φi
k,p := arg minvi

k
V i(xi

k, vi
k, ϕ

\i
k,p), s.t. f i

in(vi
k, xi

k) ≤ 0, (6.8)

where f i
in(vi

k, xi
k) = Ci

Uvi
k − bi

U(xi
k) ≤ 0 (see Appendix A.1), and f i

in,j(v
i
k, xi

k) with

j ∈ {1, . . . , hi
in} denotes the j-th row of f i

in(vi
k, xi

k). Furthermore, N i denotes the
index set of subsystems interconnected with subsystem i:

N i :=
{
j ∈ N \ i

∣∣∣F j,i �= 0, Hj,i �= 0
}

. (6.9)

The Lagrangian of (6.8) is defined as follows:

L(xi
k, vi

k, ϕ
\i
k,p, λi) := V i(xi

k, vi
k, ϕ

\i
k,p) + (λi)T f i

in(vi
k, xi

k),

where λ = (λi
1; . . . ; λi

hi
in
) is the vector of Lagrange multipliers.

In the following the main idea is to consider the solution of the local optimization
problem (6.8) as implicit function of the communicated information and to compute
the dependency of the optimal value on the communicated information. While the
optimal solution of the local optimization problem is a continuous function of the
communicated values (cf. [6]) it is not continuously differentiable, and it is not clear
how the implicit function theorem could be applied directly. In [32] a method for
sensitivity analysis is presented which resolves this issue by applying the implicit
function theorem to the KKT optimality conditions (cf. Section 2.4) with respect to
the parameters ϕi

k,p. This allows to analyze how the optimal pair (φi
k,p, λi∗

k,p) changes

if the parameters ϕi
k,p change. The approach here is inspired by that in [32], but

the results in [32] are stated for a rather general class of non-convex problems and
require a number of assumptions which are not required for the results presented in
subsequent parts of this chapter.
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Assumption 6.1. It is assumed that for all feasible parameters ϕ
\i
k,p and xi

k of (6.8)

a unique optimal pair (φi
k,p, λi∗

k,p) exists such that:

1. the KKT conditions (2.31) to (2.35) hold,

2. linear independence constraint qualification (LICQ) holds,

3. strict complementary slackness holds, i.e.: λi∗
j,k,p > 0 if f i

in,j(φ
i
k,p, xi

k) = 0.

Assumption 6.1.1 implies that the following optimality conditions hold:

∇φi
k,p

L(xi
k, φi

k,p, ϕ
\i
k,p, λi∗

k,p) = 0, (6.10)

(λi∗
k,p)T f i

in(φi
k,p, xi

k) = 0. (6.11)

Assumption 6.1.2 and Assumption 6.1.3 ensure that the solution to (6.8) is non-

degenerate. If these assumptions do not hold for parameters (ϕ
\i
k,p, xi

k) there are
redundant active constraints which can be removed from the problem, such that
Assumption 6.1 holds without changing the optimizer φi

k,p. Note that the assump-
tion does not require that a solver finds an optimal pair which satisfies Assumption

6.1 online, but only that such a pair exists for each state xi
k and each vector ϕ

\i
k,p.

The variation of the KKT pair (φi
k,p, λi∗) with respect to the communicated in-

formation ϕi
k,p can be analyzed by applying the implicit-function theorem (cf. [84],

Theorem 9.1 and Theorem 9.2) to the optimality conditions (6.10) and (6.11) (cf.
[32], Theorem 3.2.2 to Corollary 3.2.4).

Let J i
vi

k,p
denote the Jacobian of (6.10) with respect to vi

k, λi∗
k,p evaluated at

xi
k, φi

k,p, λi∗
k,p and ϕ

\i
k,p. Furthermore, J i

ϕ
\i

k,p

denotes the Jacobian of (6.11) with re-

spect to ϕ
\i
k,p evaluated at xi

k, φi
k,p, λi∗

k,p and ϕ
\i
k,p:

J i
vi

k,p
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇2
vi

k,p

L ∇vi
k,p

f i
in,1 . . . ∇vi

k,p
f i

in,hi
in

λi
1

(
∇vi

k,p
f i

in,1

)T

f i
in,1 0

...
. . .

λi
hi

in

(
∇vi

k,p
f i

in,hi
in

)T

0 f i
in,hi

in

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.12)

J i

ϕ
\i

k,p

:=
(

∇
ϕ

\i

k,p

∇vi
k,p

L; λi
1(∇ϕ

\i

k,p

f i
in,1)T ; . . . ; λi

hi
in
(∇

ϕ
\i

k,p

f i
in,hi

in
)T
)

. (6.13)

If J i
vi

k,p
is non-singular, the implicit function theorem applied to (6.10) and (6.11)

results in ⎡
⎢⎣∇ϕ

\i

k,p

φi
k,p

∇
ϕ

\i

k,p

λi∗
k,p

⎤
⎥⎦ = (J i

vi
k,p

)−1J i

ϕ
\i

k,p

. (6.14)

101



6. Event-Based Communication Based on Sensitivity Analysis

Under the assumption that J i
vi

k,p
is non-singular, the following two piecewise affine

functions are obtained:

[
φi(ϕ\i)
λi∗(ϕ\i)

]
=

⎡
⎣φi

k,p(ϕ
\i
k,p)

λi∗
k,p(ϕ

\i
k,p)

⎤
⎦+ (J i

v
i
k,p

)−1J i

ϕ
\i

k,p

(ϕ
\i
k,p − ϕ\i), ∀ϕ\i ∈ R(ϕ

\i
k,p). (6.15)

For a given state xi
k this function is valid in a polytopic region R(ϕ

\i
k,p). In particular,

it is well known that the optimizer of problem (6.1) is a continuous, piecewise affine

function of the parameters ϕ
\i
k,p (cf. [6]). By substituting (6.15) into the constraints

and optimality conditions it can be verified that (6.15) is the solution for (6.1) on
a polytopic neighborhood of ϕi

k,p given by:

R(ϕ
\i
k,p) :=

⎧⎪⎪⎨
⎪⎪⎩ϕ\i ∈ R

ti

∣∣∣∣∣∣∣∣
fin(φi(ϕ\i), xi

k) ≤ 0
λi∗(ϕ\i) ≥ 0

(λi∗(ϕ\i)T f i
in(φi(ϕ\i), xi

k) = 0

⎫⎪⎪⎬
⎪⎪⎭

Let ∂S := S \ int(S) denote the boundary of a set S, and ϕ\i
s with s ∈ {1, . . . , N i

R}
denotes parameters such that for every pair of parameters sj and si solving (6.1)
results in different sets of active constraints. The following proposition summarizes
some well known properties of the regions R(ϕ\i

s ) (see e.g. [6] for a proof):

Proposition 6.1. The regions R(ϕ\i
s ) for parameters ϕ\i

s with different sets of active
constraints are non-empty, do not overlap, and the boundary of two neighboring
regions belongs to both regions. In other words ϕ\i ∈ int(R(ϕ\i

s1
)) implies ϕ\i /∈

int(R(ϕ\i
s2

)) for all s1 �= s2 and for neighboring regions there exists ϕ\i such that

ϕ\i ∈ ∂R(ϕ\i
s2

), and ϕ\i ∈ ∂R(ϕ\i
s1

).

Applying (6.15) to the problem at hand leads to:

J i
vi

k,p
=

[
2H i,i (Ci

U)T

λ̃i
k,pCi

U
f̃ i

in,k,p

]
, J i

ϕi,k,p =

[
(F \i

c )T

0ri×ti

]
, (6.16)

where λ̃i
k,p = diag(λi∗

k,p), f̃ i
in,k,p = diag(Ci

Uφi
k,p − bi

U(xi
k)) and 0ti×ri ∈ R

ti×ri

is a
zero matrix.

Proposition 6.2. The matrix J i
vi

k,p
is non-singular for every optimal pair (φi

k,p, λi∗)

which satisfies Assumption 6.1.

Proof. For every optimal pair (φi
k,p, λi∗) there exists a permutation matrix T i

k,p ∈

{0, 1}ri×ri

, such that T i
k,p(T i

k,p)T = I and

T i
k,pf̃ i

in,k,p(T i
k,p)T =

[
0 0

0 f̆ i
in,k,p

]
, T i

k,pλ̃i
k,p(T i

k,p)T =

[
λ̌i

k,p 0

0 0

]
, (6.17)
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where 0 denotes a zero matrix of appropriate dimension, f̆ i
in,k,p denotes a diagonal

matrix containing the inactive constraints f i
in,j < 0, and λ̌i

k,p is a diagonal matrix

containing the multipliers of the active constraints. Furthermore, Či
U and C̆i

U

denote the half spaces of the active and inactive constraints, such that T i
k,pCi

U
=

(Či
U, C̆i

U). Considering T i
k,p(T i

k,p)T = I, and T̆ i
k,p := blkdiag(I, T i

k,p) it holds that

T̆ i
k,pJ i

vi
k,p

(T̆ i
k,p)T =

[
2H i,i (Ci

U
)T (T i

k,p)T

T i
k,pλ̃i

k,p(T i
k,p)T T i

k,pCi
U

T i
k,pf̃ i

in,k,p(T i
k,p)T

]
,

=

⎡
⎢⎢⎣

2H i,i

λ̌i
k,pČi

U 0

0 0

(Či
U

)T (C̆i
U

)T

0 0

0 f̆ i
in,k,p

⎤
⎥⎥⎦ .

Assumption 6.1.2 implies that the rows of Či
U

are linearly independent, and because

of Assumption 6.1.3 it holds that λ̌i
k,p and f̆ i

in,k,p are full rank. Together with H i,i 	 0

it follows that T̆ i
k,pJ i

v
i
k,p

(T̆ i
k,p)T and J i

v
i
k,p

are non-singular.

Considering the structure of J i
ϕi,k,p, only the upper left block of (J i

vi
k,p

)−1 is re-

quired to analyze the variation of φi
k,p. To this end (J i

vi
k,p

)−1 is partitioned such

that

(J i
vi

k,p
)−1 =

⎡
⎣K i(ϕi

k,p) (J i
vi

k,p

)−1
1,2

(J i
vi

k,p

)−1
2,1 (J i

vi
k,p

)−1
2,2

⎤
⎦ ,

where K i(ϕi
k,p) ∈ R

mi×mi

. The following result is concerned with establishing prop-

erties of K i(ϕi
k,p), which are used to study the sensitivity of the local optimization

problems.

Theorem 6.1. For every feasible parameter vector ϕi
k,p and corresponding optimal

pair (φi
k,p, λi∗) according to Assumption 6.1, it holds that 0 � K i(ϕi

k,p) � Ξi, where

Ξi := (2H i,i)−1.

Proof. Performing blockwise inversion for J i
vi

k,p

according to (6.16) results in

K i(ϕi
k,p) =Ξi − Ξi(C i

U
)T
(
−f̃ i

in,k,p + λ̃i
k,pC i

U
Ξi(C i

U
)T
)−1

λ̃i
k,pΞi,

=Ξi − Ξi(C i
U)T (T i

k,p)T T i
k,p

(
−f̃ i

in,k,p + λ̃i
k,pC i

UΞi(C i
U)T

)−1

(T i
k,p)−1T i

k,pλ̃i
k,p(T i

k,p)T T i
k,pΞi,

where Ξi = (2H i,i)−1 = (Ξi)T 	 0. Considering (6.17), (T i
k,p)−1 = (T i

k,p)T , T i
k,pCi

U
=

(Či
U

, C̆i
U

), and (T i
k,pΞi(T i

k,p)T )−1 = T i
k,p(Ξi)−1(T i

k,p)T it follows that

K i(ϕi
k,p) = Ξi− Ξi

⎡
⎣Či

U

C̆i
U

⎤
⎦T⎡⎣λ̌i

k,pČi
U

Ξi(Či
U

)T λ̌i
k,pČi

U
Ξi(C̆i

U
)T

0 −f̆ i
in,k,p

⎤
⎦−1 [

λ̌i
k,p 0

0 0

] ⎡⎣Či
U

C̆i
U

⎤
⎦Ξi.
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Performing blockwise inversion it follows that

K i(ϕi
k,p) = Ξi − Ξi

⎡
⎣Či

U

C̆i
U

⎤
⎦T [

(Či
U

Ξi(Či
U

)T )−1 0

0 0

] ⎡⎣Či
U

C̆i
U

⎤
⎦Ξi,

and

K i(ϕi
k,p) = Ξi − Ξi(Či

U)T (Či
UΞi(Či

U)T )−1Či
UΞi.

Because Ξi = (Ξi)T 	 0 and Či
U is full rank it holds that (Či

UΞi(Či
U)T )−1 	 0.

This results in

Ξi(Či
U

)T (Či
U

Ξi(Či
U

)T )−1Či
U

Ξi 	 0,

and it directly follows that K i(ϕi
k,p) � Ξi. It remains to show that

Ξi − Ξi(Či
U

)T (Či
U

Ξi(Či
U

)T )−1Či
U

Ξi � 0. (6.18)

It follows from the Schur complement [15] that (6.18) holds if and only if

⎡
⎣ Ξi Ξi(Či

U)T

Či
U

Ξi Či
U

Ξi(Či
U

)T

⎤
⎦ � 0, (6.19)

holds. Multiplying (6.19) from the left by T i
Ξ :=

[
I 0

−Č
i
U I

]
and from the right by

(T i
Ξ)T results in

[
Ξi 0
0 0

]
� 0. (6.20)

This holds because Ξi 	 0 and it follows that (6.18) holds and the theorem follows.

Based on this result, the next theorem bounds the change in the difference be-
tween two primal optimizers obtained for different parameter vectors.

Theorem 6.2. Given two feasible parameter vectors ϕ
\i
1 and ϕ

\i
l it holds that

‖(H i,i)
1
2 (φi(ϕ

\i
l ) − φi(ϕ

\i
1 ))‖ ≤ ‖0.5(H i,i)− 1

2 (F \i
c )T (ϕ

\i
l − ϕ

\i
1 )‖. (6.21)

Proof. If ϕ
\i
l ∈ R(ϕ

\i
1 ) then it holds that

φi(ϕ
\i
l ) − φi(ϕ

\i
1 ) = K i(ϕ

\i
1 )(F \i

c )T (ϕ
\i
l − ϕ

\i
1 ). (6.22)

If the parameter vectors ϕ
\i
l , ϕ

\i
1 result in different active constraint combinations

they are not in the same polytopic region R of the piecewise affine control law
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(6.15). The difference in the optimizer φi for the two parameter vectors can be

obtained by considering more than one region. Let ϕ\i
s = ϕ

\i
1 + θs(ϕ

\i
l − ϕ

\i
1 ) with

s ∈ {2, . . . , l − 1} and θ1 = 0 < θ2 < . . . < θl−1 < θl = 1 denote points on
the boundary between every two neighboring polytopic regions intersected by the

line ϕ
\i
1 + θ(ϕ

\i
l − ϕ

\i
1 ) with 0 ≤ θ ≤ 1. Because the regions are convex and non-

empty, it holds that ϕ\i
s ∈ ∂R(0.5(ϕ

\i
s−1 + ϕ\i

s )), ϕ\i
s ∈ ∂R(0.5(ϕ\i

s + ϕ
\i
s+1)) for all

s ∈ {2, . . . , l − 1}, and it holds that

φi(ϕ
\i
l ) − φi(ϕ

\i
1 ) =

∑l−1

s=1
K i(0.5(ϕ\i

s + ϕ
\i
s+1))(F \i

c )T (ϕ
\i
s+1 − ϕ\i

s ). (6.23)

In other words, the optimizer can be obtained by constructing a line between ϕ
\i
1

and ϕ
\i
l and considering the matrices K i of the regions R intersected by that line.

Furthermore, it directly follows from (6.23) and the triangle inequality that

‖(H i,i)
1
2 (φi(ϕ

\i
l ) − φi(ϕ

\i
1 ))‖ = ‖

l−1∑
s=1

(H i,i)
1
2 K i(0.5(ϕ\i

s + ϕ
\i
s+1))(F \i

c )T (ϕ
\i
s+1 − ϕ\i

s )‖,

≤
∑l−1

s=1
‖(H i,i)

1
2 K i(0.5(ϕ\i

s + ϕ
\i
s+1))(H i,i)

1
2 ‖‖(H i,i)− 1

2 (F \i
c )T (ϕ

\i
s+1 − ϕ\i

s )‖.

Because K i(ϕ\i) and (H i,i)
1
2 are symmetric and positive semidefinite (see the proof

of Theorem 6.1), it follows that for all feasible ϕ\i the norm is given by the largest
eigenvalue (cf. [55]):

‖(H i,i)
1
2 K i(ϕ\i)(H i,i)

1
2 ‖ = λmax((H i,i)

1
2 K i(ϕ\i)(H i,i)

1
2 ).

Based on Theorem 6.1 it holds that K i(ϕ\i) � Ξi for all feasible ϕ\i, and with
Ξi = (2H i,i)−1 it follows that

‖(H i,i)
1
2 K i(ϕ\i)(H i,i)

1
2 ‖ ≤ ‖(H i,i)

1
2 Ξi(H i,i)

1
2 ‖ ≤ 0.5.

Overall this results in

‖(H i,i)
1
2 (φi(ϕ

\i
l ) − φi(ϕ

\i
1 ))‖ ≤ 0.5

∑l−1

s=1
‖(H i,i)− 1

2 (F \i
c )T (ϕ

\i
s+1 − ϕ\i

s )‖,

≤ 0.5
∑l−1

s=1
‖(H i,i)− 1

2 (F \i
c )T (ϕ

\i
s+1 − ϕ\i

s )‖,

≤ 0.5
∑l−1

s=1
‖(H i,i)− 1

2 (F \i
c )T (ϕ

\i
1 + θs+1(ϕ

\i
l − ϕ

\i
1 ) − ϕ

\i
1 − θs(ϕ

\i
l − ϕ

\i
1 ))‖,

≤ 0.5
∑l−1

s=1
‖(H i,i)− 1

2 (F \i
c )T ((θs+1 − θs)(ϕ

\i
l − ϕ

\i
1 ))‖,

≤ 0.5
∑l−1

s=1
(θs+1 − θs)‖(H i,i)− 1

2 (F \i
c )T (ϕ

\i
l − ϕ

\i
1 )‖,

≤ ‖0.5(H i,i)− 1
2 (F \i

c )T (ϕ
\i
l − ϕ

\i
1 )‖.
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This results directly allows to analyze the sensitivity of the local optimizer with

respect to different parameter vectors ϕ
\i
l and ϕ

\i
1 . In particular, given the difference

between ϕ
\i
l and ϕ

\i
1 the difference in the resulting optimizers φi(ϕ

\i
l ) and φi(ϕ

\i
1 )

can be bounded without explicitly computing the optimizers. For instance, if ϕ
\i
l

is the true value of the parameter vector and ϕ
\i
1 is the value used by controller Ci

the previous result allows to give a bound on the resulting difference in the local
optimizer. In the next Section, this result is used to derive a triggering function
for communication events which ensures that the difference in the locally optimized
input sequences remains below a given bound.

6.3. Communication Events

Based on the sensitivity analysis in the previous section, triggering conditions for
a communication event between a pair of controllers can be constructed which
guarantee that the impact of the event-based communication on the convergence
and closed-loop performance of the cooperative distributed MPC is bounded. To
this end let ϕ̂i,j

k,p denote the value assumed by Cj for ϕj
k,p and let δϕ̂i,j

k,p := ϕ̂i,j
k,p − ϕj

k,p

denote the corresponding difference. At the end of each iteration (k, p), the following
initialization is performed for (k, p + 1):

(ϕ̂i,j,−
k,p+1; ξj,i,−

k,p+1) = (ϕ̂i,j
k,p; ξj,i

k,p), (6.24)

where (·)− denotes a value before an update through communication. Because ϕ̂i,j
k,p

is a local value of Ci, the vector ξj,i
k,p is used by Cj to keep track of ϕ̂i,j

k,p. In other

words, if a communication event is triggered both ξj,i
k,p and ϕ̂i,j

k,p are updated such

that ξi,j
k,p = ϕ̂i,j

k,p, i.e. Cj stores the last value communicated to Ci. However, if the

communication network induces uncertainties, ξi,j
k,p = ϕ̂i,j

k,p may no longer hold (see
Section 6.5).

At the beginning of each iteration (k, p), i.e. before the local optimization problem
is solved, the current values are communicated from controller Cj to controller Ci if
the triggering condition ‖M

i,j(ξj,i,−
k,p − ϕj

k,p)‖ > γi holds:

(ϕ̂i,j
k,p; ξj,i

k,p) :=

⎧⎨
⎩(ϕj

k,p; ϕj
k,p) if ‖M

i,j(ξj,i,−
k,p − ϕj

k,p)‖ > γi

(ϕ̂i,j,−
k,p ; ξj,i,−

k,p ) otherwise
, (6.25)

where M
i,j = 0.5(H i,i)− 1

2 (F j,i
c )T . In other words, if ϕ̂i,j,−

k,0 = ξj,i,−
k,0 and the com-

munication network does not induce any uncertainties it holds for all p ∈ N0 that
ϕ̂i,j

k,p = ξj,i
k,p. In terms of the errors, this results in ‖M

i,jδϕ̂i,j
k,p‖ = 0 if communi-

cation occurs and ‖M
i,jδϕ̂i,j

k,p‖ ≤ γi otherwise. Thus, as shown in the following
theorem the difference between the costs resulting from applying the iteration (6.5)
(i.e. using full time-triggered communication) and the iteration (6.3) (i.e. using the
communication events (6.25)) is bounded.
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6.3. Communication Events

Theorem 6.3. Using the communication events (6.25) with thresholds γi = γ
card(N i) ,

γ ∈ R≥0, and update (6.25), it holds for all p > 0, all xk ∈ X , and compact sets X
and U that

V (xk, v̄i
k,p) − V (xk, ūi

k,p) ≤ V̄e := ceγ + γ2,

where ce ∈ R>0 is given by

ce ≥ max
x∈X ,u∈U

‖xT (F 1,i; . . . ; F Ns,i)(H i,i)− 1
2 + 2uT (H1,i; . . . ; HNs,i)(H i,i)− 1

2 ‖

Proof. Applying Theorem 6.2 and the triangle inequality to ‖(H i,i)
1
2 (φi

k,p − ρi
k,p)‖

results in

‖(H i,i)
1
2 (φi

k,p − ρi
k,p)‖ ≤

∑
j∈N i‖M

i,jδϕ̂i,j
k,p‖ ≤ γ, (6.26)

where the last inequality follows from the updates (6.25) and γi = γ
card(N i)

. Applying

Taylor’s theorem to V (xk, ūk,p) results in

V (xk, v̄i
k,p) − V (xk, ūi

k,p) = ∇V (xk, ūi
k,p)T (v̄i

k,p − ūi
k,p) + (v̄i

k,p − ūi
k,p)T H(v̄i

k,p − ūk,p),

= ∇V (xk, v̄i
k,p)T (0; . . . ; φi

k,p − ρi
k,p; . . . ; 0) + (φi

k,p − ρi
k,p)T H i,i(φi

k,p − ρi
k,p),

≤ ce‖(H i,i)
1
2 (φi

k,p − ρi
k,p)‖ + ‖(H i,i)

1
2 (φi

k,p − ρi
k,p)‖2,

≤ ceγ + γ2 =: V̄e,

for all p > 0. Furthermore, the maximizer ce is attained because X and U are
assumed to be compact (cf. Theorem 2.2).

It should be noted that V̄e can be made arbitrarily small by choosing a suitable
threshold γ ∈ R≥0. In particular, a smaller threshold γ results in a smaller bound V̄e,
but in general also results in a higher load on the communication network. Theorem
6.3 only bounds the resulting cost difference from performing one iteration using
the communication events (6.25) instead of full communication, but does not bound
the suboptimality arising from performing multiple iterations. Therefore, the next
theorem investigates the influence on the convergence of the overall algorithm.

Theorem 6.4. If the assumptions of Theorem 6.3 hold, the cost difference to the
optimum converges over the iterations p according to

Vd(xk, vk,p) ≤ β̄pVd(xk, vk,0) +
1 − β̄p

1 − β̄
V̄e,

and in the limit the solution converges to lim
p→∞

Vd(xk, vk,p) ≤ (1 − β̄)−1V̄e.
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Proof. It follows from Proposition 4.3 that

V (xk, ūi
k,p) ≤ V (xk, uk,p) −

(μi
k,p)2

4ci
H

Vd(xk, uk,p). (6.27)

Next, summation over all i ∈ N , subtracting V ∗(xk) on both sides, and substituting
wi

k,p and μi
k,p from Theorem 4.2 results in

∑
i∈N

wiV (xk, ūi
k,p) − V ∗(xk) ≤ β̄Vd(xk, vk,p). (6.28)

Furthermore, it follows from Theorem 6.3 and the convexity of the cost V (xk, vk,p)
that

V (xk, vk,p) ≤
∑

i∈N
wiV (xk, v̄i

k,p) ≤
∑

i∈N
wiV (xk, ūi

k,p) + V̄e. (6.29)

Considering (6.28), this results in

Vd(xk, vk,p+1) ≤
∑

i∈N
wiV (xk, v̄i

k,p) − V ∗(xk) ≤ β̄Vd(xk, vk,p) + V̄e. (6.30)

Applying this inequality iteratively from (k, 0) to (k, p) results in

Vd(xk, vk,p) ≤ β̄pVd(xk, vk,0) +
∑p−1

l=0
β̄lV̄e = β̄pVd(xk, vk,0) +

1 − β̄p

1 − β̄
V̄e,

for all p > 1 and with 0 ≤ β̄ < 1 the theorem directly follows.

In conclusion, using the communication events (6.25), the edges of the time-
varying communication graph Ck,p are given by

Ek,p =
{
(i, j) ∈ N × (N \ i)

∣∣∣‖M
j,i(ξi,j,−

k,p − ϕi
k,p)‖ > γj

}
, (6.31)

and the impact of the communication events on the cooperative distributed MPC
can be made arbitrarily small by choosing a suitable threshold γ ∈ R≥0. Another
question is when to terminate the iterative algorithm in order to guarantee bounded
suboptimality.

Stopping Condition

Terminating the algorithm early (i.e. before convergence of Vd(xk, vk,p) below a
bound) may result in strongly suboptimal solutions. Thus, a stopping criterion
which bounds the suboptimality of the input sequence obtained from the distributed
MPC may be required. Let Tk,p ⊆ N denote the set of controllers which communi-
cate at time (k, p):

Tk,p := {i ∈ N |∃j ∈ N : (i, j) ∈ Ek,p } . (6.32)
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A simple choice would be to assume p ≥ 1 and terminate the scheme if Tk,p = ∅ for
any p ≥ 1. However, this stopping condition cannot be verified by every controller
Ci because the communication is no longer global when a communication event is
triggered. Furthermore, Tk,p = ∅ in combination with the communication event
(6.25) is, in general, not suitable to guarantee a certain degree of suboptimality. To
begin with, a lack of communication by a controller Ci may not have any implications
with respect to the local costs optimized by Ci, because (M i,j)T

M
i,j � 0 may not

be strictly positive definite. Furthermore, Tk,p̄k
= ∅ does not guarantee that Tk,p �= ∅

holds for all p > p̄k, because (6.3) results in an updated input sequence.
In other words, the triggering condition ensures that the information required to

compute the inputs is available to each controller, but is not suitable to bound the
suboptimality of the algorithm. The following preliminary results are required to
derive a stopping criterion which implies bounded suboptimality.

Proposition 6.3. The suboptimality Vd(xk, vk,p) is bounded by

Vd(xk, vk,pk
) ≤ (1 − β̄)−1

(∑
i∈N

wi
(
V (xk, vk,pk

) − V (xk, v̄i
k,pk

)
)

+ V̄e

)
,

Proof. Based on (6.30) it holds that∑
i∈N

wiV (xk, v̄i
k,p) − V ∗(xk) ≤ Vd(xk, vk,p) + (β̄ − 1)Vd(xk, vk,p) + V̄e, (6.33)∑

i∈N
wiV (xk, v̄i

k,p) ≤ V (xk, vk,p) + (β̄ − 1)Vd(xk, vk,p) + V̄e, (6.34)

(1 − β̄)Vd(xk, vk,p) ≤ V (xk, vk,p) −
∑

i∈N
wiV (xk, v̄i

k,p) + V̄e, (6.35)

(1 − β̄)Vd(xk, vk,p) ≤
∑

i∈N
wi(V (xk, vk,p) − V (xk, v̄i

k,p)) + V̄e. (6.36)

The proposition follows by solving (6.36) for Vd(xk, vk,p).

This result shows that a bound on the suboptimality Vd(xk, vk,p) can be obtained
by checking the weighted sum of the differences V (xk, vk,p) − V (xk, v̄i

k,p). However,
this requires global communication.

In the next theorem a stopping condition which is based on the local costs

V i(xi
k, vi

k,p̃k
, ϕ̂

\i
k,p̃k

) is given. This condition can be checked by using local com-
putations and limited global communication.

Theorem 6.5. If the condition

V i(xi
k, vi

k,p, ϕ̂
\i
k,p) − V i(xi

k, φi
k,p, ϕ̂

\i
k,p) ≤ ζ − γ‖(vi

k,p − φi
k,p)T 2(H i,i)

1
2 ‖, (6.37)

holds for ζ ∈ R>0 and all i ∈ N , the suboptimality is bounded by

Vd(xk, vk,p) ≤ (1 − β̄)−1
(
ζ + V̄e

)
=: V̄d.

Proof. By construction of V i(xi
k, vi

k,p, ϕ
\i
k,p) it holds that

V (xk, vk,p) − V (xk, v̄i
k,p) = V i(xi

k, vi
k,p, ϕ

\i
k,p) − V i(xi

k, φi
k,p, ϕ

\i
k,p).
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However, locally only ϕ̂
\i
k,p is available to compute the costs. This results in

V i(xi
k, vi

k,p, ϕ̂
\i
k,p) − V i(xi

k, φi
k,p, ϕ̂

\i
k,p) (6.38)

= V i(xi
k, vi

k,p, ϕ
\i
k,p) − V i(xi

k, φi
k,p, ϕ

\i
k,p) + (δϕ̂

\i
k,p)T F \i

c (vi
k,p − φi

k,p), (6.39)

= V (xk, vk,p) − V (xk, v̄i
k,p) + (δϕ̂

\i
k,p)T F \i

c (vi
k,p − φi

k,p). (6.40)

Considering the triggering condition (6.25), it holds that

‖(δϕ̂i,j
k,p)T F j,i

c (vi
k,p − φi

k,p)‖ = ‖(vi
k,p − φi

k,p)T 2(H i,i)
1
2 0.5(H i,i)− 1

2 (F j,i
c )T δϕ̂i,j

k,p‖,

≤ ‖(vi
k,p − φi

k,p)T 2(H i,i)
1
2 ‖‖M

i,jδϕ̂i,j
k,p‖,

≤ γi‖(vi
k,p − φi

k,p)T 2(H i,i)
1
2 ‖.

Next, by definition of γi it holds for all i ∈ N that

‖(δϕ̂
\i
k,p)T F \i

c (vi
k,p − φi

k,p)‖ ≤
∑

j∈N i γi‖(δϕ̂i,j
k,p)T F j,i

c (vi
k,p − φi

k,p)‖, (6.41)

≤ γ‖(vi
k,p − φi

k,p)T 2(H i,i)
1
2 ‖. (6.42)

Based on this it follows from (6.40) that

V (xk, vk,p) − V (xk, v̄i
k,p) ≤V i(xi

k, vi
k,p, ϕ̂

\i
k,p) − V i(xi

k, φi
k,p, ϕ̂

\i
k,p)+ (6.43)

γ‖(vi
k,p − φi

k,p)T 2(H i,i)
1
2 ‖.

If (6.37) holds, this results in

V (xk, vk,p) − V (xk, v̄i
k,p) ≤ ζ, (6.44)

and the theorem follows by substituting this bound into the bound given in Propo-
sition 6.3 and noting that

∑
i∈N wiζ = ζ.

In the following, the condition (6.37) for all i ∈ N is used as a stopping criterion
if a bound on the suboptimality is required. It can be seen that this stopping
criterion cannot be checked without some form of centralized coordination or global
communication. This could have been expected because the controllers cooperate,
perform the iterations synchronously, and the suboptimality is a property of the cost
of the overall system. The stopping criterion may be checked by communicating
with one controller which acts as a centralized coordinator. Alternatively, network
wide arbitration [20] can be used used to check whether the stopping condition
(6.37) holds for all controllers.

Furthermore, if the stopping condition holds for p̃k ≥ 0 it follows that Vd(xk, vk,p̃k
) ≤

(1 − β̄)−1(ζ + V̄e). Substituting this bound into Vd(xk, vk,p+1) ≤ β̄Vd(xk, vk,p) + V̄e

results in Vd(xk, vk,p̃k+1) ≤ (1 − β̄)−1(β̄ζ + V̄e). It follows that the algorithm can be
terminated at any iteratation p ≥ p̃k and the bound Vd(xk, vk,p) ≤ V̄d still holds.

Another aspect is whether or not this stopping condition is guaranteed to hold
for a finite number of iterations.
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Proposition 6.4. If ζ > 2γ‖(vi − φi)T 2(H i,i)
1
2 ‖ holds for all vi ∈ Ui := U

i ×
. . . × U

i, and all φi, the stopping condition (6.37) holds after a finite number of
iterations.

Proof. Because of V ∗(xk) ≤
∑

i∈N wiV (xk, v̄i
k,p) and the convergence result given in

Theorem 6.4 the cost converges if Vd(xk, vk,p) > (1 − β̄)−1V̄e but cannot decrease
below V ∗(xk). This implies that

∑
i∈N

wi(V (xk, vk,p) − V (xk, v̄i
k,p)) ≤ cζ (6.45)

holds after a finite number of iterations for cζ ∈ R>0. In other words, either the
convergence slows below this bound or the cost may increase because Vd(xk, vk,p) <
(1 − β̄)−1V̄e holds.

By the same arguments employed in the proof of Theorem 6.5, (6.45) implies that

∑
i∈N

wi(V i(xi
k, vi

k,p, ϕ̂
\i
k,p) − V i(xi

k, φi
k,p, ϕ̂

\i
k,p)) ≤ cζ + γ‖(vi

k,p − φi
k,p)T 2(H i,i)

1
2 ‖.

Furthermore, optimality of φi
k,p with respect to the local optimization problem (6.1)

implies that 0 ≤ V i(xi
k, vi

k,p, ϕ̂
\i
k,p) − V i(xi

k, φi
k,p, ϕ̂

\i
k,p) holds. Therefore, after a finite

number of iterations it holds that

V i(xi
k, vi

k,p, ϕ̂
\i
k,p) − V i(xi

k, φi
k,p, ϕ̂

\i
k,p) ≤ cζ + γ‖(vi

k,p − φi
k,p)T 2(H i,i)

1
2 ‖. (6.46)

In turn, this implies that V i(xi
k, vi

k,p, ϕ̂
\i
k,p) − V i(xi

k, φi
k,p, ϕ̂

\i
k,p) ≤ ζ − γ‖(vi

k,p −

φi
k,p)T 2(H i,i)

1
2 ‖ holds for ζ > 2γ‖(vi

k,p − φi
k,p)T 2(H i,i)

1
2 ‖ and the proposition di-

rectly follows.

It can be seen that this result may be very conservative because, even though
(vi

k,p−φi
k,p) is usually small at convergence, the bound ζ > 2γ‖(vi

k,p−φi
k,p)T 2(H i,i)

1
2 ‖

has to hold for all vi and φi. Because the corresponding sets are compact such a
ζ exists, but it may be very large, resulting in a very conservative bound on the
suboptimality. Another reason for the conservatism of this bound, as well as the
bounds given in Theorem 6.4 and Theorem 6.5 is that in the worst-case all trigger-
ing conditions may just be below their respective thresholds. However, in practice
this scenario is very unlikely, especially if the number of subsystems is large.

6.4. Stability Analysis

Stability Using Terminal Costs and Terminal Constraints

For Case 2.3 (coupled costs, decoupled dynamics and constraints) it is assumed
that Assumption 5.2 holds and the algorithm may be terminated at any iteration
0 ≤ p̄k ≤ pmax, i.e. no stopping criterion is used. This is motivated by the fact
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6. Event-Based Communication Based on Sensitivity Analysis

that checking any suitable stopping criterion requires additional communication.
At the same time, iterations in which no new information is received only require
a low computational effort because (6.8) does not need to be solved again. As
in the previous chapter, the initialization for (k + 1, 0) is obtained based on the
terminal control law KT. The overall cooperative distributed MPC scheme is given
in Algorithm 6.1.

The following initialization is performed locally by each controller Ci for its local
input sequence:

vi
k+1,0 := (vi

k+1|k,p̄k
; . . . ; vi

k+N−1|k,p̄k
; K i

T
xi

k+N |k,p̄k
), (6.47)

where xi
k+N |k,p̄k

= (Ai)Nxi
k +

∑N−1
l=0 (Ai)N−1−lBivi

k+l|k,p̄k
. Similarly, the values as-

sumed by Ci for all j ∈ N \ i are initialized as follows:

ϕ̂i,j,−
k+1,0 := P

jϕ̂i,j,−
k,p̄k

, ξj,i,−
k+1,0 := P

jξj,i,−
k,p̄k

, (6.48)

with the linear predictor P
j given by

P
j :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aj Bj 0 · · · 0
0 0 Imj · · · 0
...

...
...

. . .
...

0 0 0 · · · Imj

Kj
T
(Aj)N Kj

T
(Aj)N−1Bj · · · · · · Kj

T
Bj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.49)

These computations can be carried out by all controllers without additional commu-
nication, and by keeping track of which values were communicated, each controller
can check the triggering condition used in in (6.25).

Algorithm 6.1: distributed MPC with terminal constraint for each subsystem P i

1: Given γ, k = 0, p = 0, ϕ̂i,j
0,0 = ξj,i

0,0, and v
i,j
0,0 for all j ∈ N \ i:

2: for k ≥ 0 do

3: while p ≤ pmax do

4: If ‖M
j,i(ξi,j,−

k,p − ϕi
k,p)‖ > γj send ϕi

k,p to Cj

5: Based on the communicated information update ϕ̂i,j
k,p and ξj,i

k,p according
to (6.25)

6: Solve (6.1) and compute vi
k,p+1 according to (6.3)

7: Set ϕ̂i,j,−
k,p+1 = ϕ̂i,j

k,p, ξj,i,−
k,p+1 = ξj,i

k,p, for all j ∈ N \ i, and set p = p + 1
8: end while

9: Apply ui
k = vi

k|k,p to the system (2.2)

10: Compute the initialization for k + 1 according to (6.47), (6.48) and
set (k, p) = (k + 1, 0).

11: end for
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The following result states that practical stability of the closed-loop can be es-
tablished for the extended state vector zk,p with respect to the corresponding set
Σ := Σ × . . . × Σ if Assumption 5.2 holds (cf. Section 5.3).

Theorem 6.6. Given a feasible initialization z0,0 ∈ Z, the following holds for the
distributed MPC given in Algorithm 6.1 and Case 2.3 at any iteration 0 ≤ p ≤ pmax

if Assumption 5.2 holds:

(I) the distributed MPC problem is feasible for all k ≥ 0,

(II) the closed-loop is practically stable with respect to Σ.

Proof. Recursive feasibility can be established by showing that the initialization
(6.47) is feasible for (k + 1, 0) and that feasibility is preserved at every iteration
(see the proof of Theorem 5.6). These arguments hold for Algorithm 6.1 because
the constraints are purely local and only the non-local information is uncertain.
Therefore, it holds that xk+l ∈ X = X for all l > 0, if xk ∈ X.

Furthermore, it is established in the proof of Theorem 5.6 that the cost is de-
creasing if no iterations take place at k + l (i.e. p̄k+l = 0) for all l ∈ N0:

Vz(zk+1,0) − Vz(zk,p̄k
) ≤ −‖xk|k,p̄k

‖2
Q − ‖uk|k,p̄k

‖2
R. (6.50)

Applying this inequality and the initialization (6.47) for N − 1 time steps results in

Vz(zk+N,0) − Vz(zk,p̄k
) ≤ −

∑N−1

l=0
(‖xk+l|k,p̄k

‖2
Q + ‖uk+l|k,p̄k

‖2
R) (6.51)

because applying (6.47) implies that uk+l|k+l,0 = uk+l|k,0, xk+l|k+l,0 = xk+l|k,0 for all
l ∈ {0, . . . , N − 1}. Next, Theorem 6.4 and p̄k ≤ pmax for all k ≥ 0 imply that

Vz(zk+N,p̄k+N
) ≤ V(zk+N,0) + 1−β̄pmax

1−β̄
V̄e and it holds that

Vz(zk+N,p̄k+N
) − Vz(zk,p̄k

) ≤ −α3(‖zk,p̄k
‖Σ) + N

1 − β̄pmax

1 − β̄
V̄e.

Finally, as shown in Theorem 5.6 there exist α1(‖z‖Σ) and α2(‖z‖Σ) such that
α1(‖z‖Σ) ≤ Vz(z) ≤ α2(‖z‖Σ) holds. In other words Vz(zk,p) can be used as ISpS-
Lyapunov function and the conditions of Theorem 2.1 hold for L = N , d1 = 0,

d2 = 1−β̄pmax

1−β̄
V̄e, and ωk = 0 for all k ∈ N0 which implies that the closed-loop is

practically stable.

Stability Without Terminal Costs or Terminal Constraints

For Case 2.4 (coupled costs and dynamics, no state or terminal constraints), the
initialization for (k + 1, 0) is obtained as follows for all j ∈ N \ i:

ϕ̂i,j,−
k+1,0 := P

jϕ̂i,j,−
k,p̄k

, ξj,i,−
k+1,0 := P

jξj,i,−
k,p̄k

, vi
k+1,0 := (vi

k+1|k,p̄k
; . . . ; vi

k+N−1|k,p̄k
; 0)

(6.52)
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and the following linear predictor P
j is chosen:

P
j :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Inj 0 0 · · · 0
0 0 Imj · · · 0
...

...
...

. . .
...

0 0 0 · · · Imj

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (6.53)

The overall distributed MPC algorithm without terminal constraint includes a dis-
tributed stopping criterion and is given in Algorithm 6.2.

The linear predictor P
j used by each subsystem may have a strong influence on

the number of messages and robustness of the algorithm with respect to communi-
cation uncertainties. For instance, the difference δϕ̂i,j

k+1,0 and the resulting value of
the triggering function is given by

‖M
i,jδϕ̂i,j

k+1,0‖ = ‖M
i,j(Pjϕ̂i,j

k,p̄k
− P

jϕj
k,p̄k

+ P
jϕj

k,p̄k
− ϕj

k+1,0)‖, (6.54)

≤ ‖M
i,j

P
jδϕ̂i,j

k,p̄k
‖ + ‖M

i,j(Pjϕj
k,p̄k

− ϕj
k+1,0)‖. (6.55)

Obviously, P
j should be chosen such that both the first and second term remain

as small as possible, such that the increase in the triggering function remains small
from one time step to the next. However, there is a trade-off involved because
a predictor which minimizes the increase in the second term may result in large
increase in the first term. In particular if the predictor P

j is unstable, the first term
depending on δϕ̂i,j

k,p̄k
may grow very fast. The predictor given in (6.49) for the case of

decoupled dynamics in conjunction with using a terminal constraint is both stable,

Algorithm 6.2: distributed MPC without terminal constraint for each subsystem P i

1: Given γ, ζ, stopi = 0, k = 0, p = 0, ϕ̂i,j
0,0 = ξj,i

0,0, and v
i,j
0,0 for all j ∈ N \ i:

2: for k ≥ 0 do

3: while stopi = 0 for all i ∈ N do

4: If ‖M
j,i(ξi,j,−

k,p − ϕi
k,p)‖ > γj send ϕi

k,p to Cj

5: Based on the communicated information update ϕ̂i,j
k,p and ξj,i

k,p according
to (6.25)

6: Solve (6.1) and compute vi
k,p+1 according to (6.3)

7: If (6.37) holds set stopi = 1
8: Set ϕ̂i,j,−

k,p+1 = ϕ̂i,j
k,p, ξj,i,−

k,p+1 = ξj,i
k,p, for all j ∈ N \ i, and set p = p + 1

9: end while

10: Apply ui
k = vi

k|k,p to the system (2.2)

11: Compute the initialization for k + 1 according to (6.52) and
set (k, p) = (k + 1, 0)

12: end for
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and using this predictor, the second term in (6.55) is equal to zero. In contrast,
when not using a terminal constraint and considering fully coupled dynamics it is
not obvious how to choose P

j. Using the local part of the dynamics Aj and Bj in
the predictor may result in an unstable P

j, and it is not clear if this would result
in slower increase of the triggering function. Furthermore, a more complicated
predictor which considers the interconnected dynamics may either require larger
messages (e.g. communication of predicted state trajectories), or have to consider
the interconnections between the different subsystems by involving ϕ̂i,j for all j ∈ N i

in the prediction. Both of these approaches complicate the analysis. At the same
time, it is not obvious if they provide any improved bounds, because the additional
information provided by these approaches is also not accurate and P

j may again
be unstable.

In the following, it will be shown that the closed-loop system is practically stable
by means of an ISpS-Lyapunov function.

Theorem 6.7. Given xk ∈ X , X according to Assumption 5.3, and a feasible initial
solution at time k = 0, the distributed MPC applied to Case 2.4 with the stopping
criterion given by Theorem 6.5:

(I) is recursively feasible,

(II) renders the system practically stable in X with respect to the origin.

Proof. According to Theorem 6.5 it holds that V̄d = (1− β̄)−1(ζ + V̄e) for all xk ∈ X

if the stopping criterion V i(xi
k, vi

k,p̃k
, ϕ̂

\i
k,p̃k

) − V i(xi
k, φi

k,p̃k
, ϕ̂

\i
k,p̃k

) ≤ ζ holds for all
i ∈ N . Based on this bound, a proof can be obtained by the same arguments made
in Theorem 5.7.

This result does not depend on P
i. However, the robustness results given in the

next section with respect to uncertain communication may strongly depend on P
i.

6.5. Uncertain Communication

Due to effects such as communication delays and packet loss the difference δϕ̂i,j
k,p

may become larger than allowed by the triggering conditions. Therefore, the impact
of packet loss and communication delays can be modeled as an enlargement of the
threshold γ, which will be denoted by γd ≥ γ.

To this end, the following assumption is made with respect to the uncertainties
induced by the communication network.

Assumption 6.2. It is assumed that the communication between controllers is sub-
ject to a bounded time-varying communication delay. The delay, in number of it-
erations, of a message sent from Ci to Cj at time (k, p) is denoted by τ i,j

k,p ∈ N0.
Messages which do not arrive after τmax ∈ N0, τmax ≤ pmax iterations or before the
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next time step (k +1, 0) are considered lost, and the maximal number of consecutive
packet losses between any pair of controllers (Ci, Cj), (i, j) ∈ N × (N \ i) is bounded
by τl ∈ N0.

This network model allows considering both packet loss and bounded delays
smaller than the sampling time Δt. The restriction to the case of small delays is
made because the algorithm considered in this chapter is iterative and, in contrast
to the algorithm proposed in Chapter 3, does not explicitly consider communication
delays in the local optimization. For instance, Algorithm 6.2 often requires multiple
iterations and communication events per time step and is therefore ill suited to deal
with communication delays. In this case, a network only affected by packet loss
may be described by τmax = 0 and τl ∈ R>0. To analyze the effect of delays and
packet loss let (ki,j

e , pi,j
e ) < (ki,j

e+1, pi,j
e+1) < . . . < (ki,j

e+τl+1, pi,j
e+τl+1) denote a sequence

of times of communication events between Cj and Ci, and (k1, p1) < (k, p) denotes
that (k, p) is a later point in time than (k1, p1), i.e. k1Δt + p1Δtp < kΔt + pΔtp.

In the case of delayed communication, an event results in a delayed update of
the assumed values, e.g. in the worst case: ϕ̂i,j

k,p+τmax
:= ϕj

k,p and ξj,i
k,p := ϕj

k,p if

‖M
i,j(ξj,i,−

k,p − ϕj
k,p)‖ > γi. This situation is shown in Figure 6.1, which gives an

example for the evolution of the actual values ϕj
k,p of subsystem Pj, the value ϕ̂i,j

k,p

assumed by Ci for ϕj
k,p, the value ξj,i

k,p used by Ci to evaluate the triggering condition,

and the corresponding bounds on the difference between ϕ̂i,j and ϕj
k,p. In the figure,

multiple iterations for each time step k are shown and the message sent from Cj

to Ci at (4, 2) arrives with a delay of three iterations. Similarly, a communication
event is triggered at (5, 0) and the message arrives at (5, 3). It can be seen that the
difference is outside of the bounds due to the delayed communication.

In the case of a packet loss (6.25) becomes:

(ϕ̂i,j
k,p; ξj,i

k,p) :=

⎧⎨
⎩(ϕ̂i,j,−

k,p ; ϕj
k,p) if ‖M

i,j(ξj,i,−
k,p − ϕj

k,p)‖ > γi

(ϕ̂i,j,−
k,p ; ξj,i,−

k,p ) otherwise
, (6.56)

i.e. it no longer holds that ϕ̂i,j
k,p = ξj,i

k,p. This situation is depicted in Figure 6.2,
which shows the evolution of the assumed and true values for an unstable predictor
P

j. Specifically, a communication event is triggered at time (6, 0) and the message
sent from Cj to Ci is lost and ϕ̂i,j

6,0 is not reset. In contrast, the value ξj,i
6,0 used by

Cj to evaluate the triggering condition is reset because Cj is not aware that the
message was lost. The same situation occurs at (6, 3), and at this point ϕj

k,p and

ξj,i
k,p reach an equilibrium. However, because ϕ̂i,j

k,p was not reset and the predictor is

unstable, the difference between ϕ̂i,j
k,p and ξj,i

k,p grows with each time step and results

in an unbounded error δϕ̂i,j
k,p.

Thus, in order to bound the difference ϕ̂i,j
k,p it is assumed that the dynamical

system ϕ̂i,j
k+1,0 = P

jϕ̂i,j
k,0 is marginally stable. It directly follows that there exist
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Figure 6.1.: Evolution of ϕj
k,p (black), ϕ̂i,j

k,p (blue), ξj,i
k,p (red, dashed) and correspond-

ing thresholds (magenta, dashed) for τmax = 0 and τl = 0 (upper sub-
plot) and τmax = 3 and τl (lower subplot).
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Figure 6.2.: Evolution of ϕj
k,p (black), ϕ̂i,j

k,p (blue), ξj,i
k,p (red, dashed) and correspond-

ing thresholds (magenta, dashed) for τmax = 0 and τl = 0 (upper sub-
plot) and τmax = 0 and τl = 2 (lower subplot).

scalars ci
P ≥ 1 such that the following holds for all l ∈ N0, all i ∈ N , and all δϕ̂i,j

k,p:

ci
P‖M

i,jδϕ̂i,j
k,p‖ ≥ ‖M

i,j(Pj)lδϕ̂i,j
k,p‖, ∀j ∈ N i. (6.57)

Furthermore, because U and X are assumed to be compact, there exist constants
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ci
ϕ ∈ R≥0 such that for all p > 0, all i ∈ N , and all ϕj

k,p it holds that

ci
ϕ ≥ ‖M

i,j(ϕj
k,p − ϕj

k,p+1)‖, ∀j ∈ N i, (6.58)

ci
ϕ ≥ ‖M

i,j(ϕj
k,p̄k−1 − ϕj

k+1,0)‖, ∀j ∈ N i, (6.59)

where the first line bounds the increase in the triggering function from one iteration
to the next, and the second inequality bounds the increase of the triggering function
due to one iteration and the reinitialization for the next time step. To obtain tight
bounds on γd the smallest ci

P and ci
ϕ should be used for which the conditions (6.57)

to (6.59) hold.
The following result is concerned with the case of delayed communication τmax ∈

N0 without packet loss (i.e. τl = 0). It follows from Assumption 6.2 that τl = 0
implies that τmaxΔtp ≤ Δt − pmaxΔtp.

Theorem 6.8. If τmax ∈ N0, τl = 0 (i.e. τmaxΔtp ≤ Δt − pmaxΔtp), ‖M
i,jδϕ̂i,j

0,0‖ ≤

γi, and ξj,i
0,0 = ϕ̂i,j

0,0 for all (i, j) ∈ N ×(N \i) it holds for all (k, p) that ‖M
i,jδϕ̂i,j

k,p‖ ≤

γi + τmaxci
ϕ.

Proof. The conditions ‖M
i,jδϕ̂i,j

0,0‖ ≤ γi and ξj,i
0,0 = ϕ̂i,j

0,0 ensure that ‖M
i,jδϕ̂i,j

k,p‖ ≤

γi and ξj,i
k,p = ϕ̂i,j

k,p for (k, p) < (ki,j
1 , pi,j

1 ). Next, using (6.58), and the fact that ϕ̂i,j
k,p

and ξj,i
k,p are updated at most τmax iterations apart it follows that

‖M
i,j(ϕ̂i,j

k,p − ξj,i
k,p)‖ ≤ τmaxci

ϕ, (6.60)

for all (k, p). Furthermore, because ξj,i
k,p is updated immediately when a communi-

cation event is triggered it holds that

‖M
i,j(ξj,i

k,p − ϕj
k,p)‖ ≤ γi, (6.61)

for all (k, p). This results in

‖M
i,jδϕ̂i,j

k,p‖ = ‖M
i,j(ϕ̂i,j

k,p − ξj,i
k,p + ξj,i

k,p − ϕj
k,p)‖, (6.62)

≤ ‖M
i,j(ϕ̂i,j

k,p − ξj,i
k,p)‖ + ‖M

i,j(ξj,i
k,p − ϕj

k,p)‖, (6.63)

≤ γi + τmaxci
ϕ, (6.64)

for all (k, p) and the theorem follows.

This result shows that this algorithm is rather ill-suited to deal with communica-
tion delays if multiple iterations are performed. In particular, the bound V̄e grows
rapidly with τmax if it is computed based on ‖M

i,jδϕ̂i,j
k,p‖ ≤ γi + τmaxci

ϕ. This could
be expected, because in contrast to Algorithm 3.1 communication delays are not
explicitly considered in the local optimization. The next result focuses on the case
τmax = 0 and τl ∈ R>0, i.e. only considers packet loss.
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Theorem 6.9. If τmax = 0, τl ∈ R>0, ‖M
i,jδϕ̂i,j

0,0‖ ≤ γi, and ξj,i
0,0 = ϕ̂i,j

0,0 for all
(i, j) ∈ N × (N \ i) it holds that

‖M
i,jδϕ̂i,j

k,p‖ ≤
∑τl

l=1
(ci

P)l(γi + ci
ϕ) + γi.

Proof. Let (ki,j
e , pi,j

e ) denote the time of the last update which was not lost and
let (ki,j

e+τl+1, pi,j
e+τl+1) denote the time of the next update guaranteed to arrive. For

(ki,j
e , pi,j

e ) ≤ (k, p) < (ki,j
e+1, pi,j

e+1) it holds that ‖M
i,jδϕ̂i,j

k,p‖ ≤ γi because no event

was triggered in this time interval. For (ki,j
e+1, pi,j

e+1) ≤ (k, p) < (ki,j
e+2, pi,j

e+2) it holds
that

‖M
i,jδϕ̂i,j

k,p‖ = ‖M
i,j(ϕ̂i,j

k,p − ξj,i
k,p + ξj,i

k,p − ϕj
k,p)‖, (6.65)

≤ ‖M
i,j(ϕ̂i,j

k,p − ξj,i
k,p)‖ + ‖M

i,j(ξj,i
k,p − ϕj

k,p)‖, (6.66)

≤ ‖M
i,j(ϕ̂i,j

k,p − ξj,i
k,p)‖ + γi. (6.67)

Next, let si,j
e = ki,j

e+1 − ki,j
e denote the number of time steps between consecutive

events. For (ki,j
e+1, pi,j

e+1) < (k, p) < (ki,j
e+2, pi,j

e+2) considering the forward prediction

ϕ̂i,j
k+1,0 = P

jϕ̂i,j
k,p̄k

results in

‖M
i,jδϕ̂i,j

k,p‖ ≤ ‖M
i,j(Pj)s

i,j
e+1(ϕ̂i,j

k
i,j
e+1,p

i,j
e+1

− ξj,i

k
i,j
e+1,p

i,j
e+1

)‖ + γi, (6.68)

≤ ci
P‖M

i,j(ϕ̂i,j

k
i,j
e+1,p

i,j
e+1

− ξj,i

k
i,j
e+1,p

i,j
e+1

)‖ + γi, (6.69)

≤ ci
P(γi + ci

ϕ) + γi. (6.70)

The last line follows from ‖M
i,j(ϕ̂i,j

k,p−ϕj
k,p)‖ ≤ γi for (k, p) < (ki,j

e+1, pi,j
e+1), inequality

(6.58), which implies that ‖M
i,j(ϕ̂i,j

k
i,j
e+1,p

i,j
e+1

− ϕj

k
i,j
e+1,p

i,j
e+1

)‖ ≤ γi + ci
ϕ, and ξj,i

k
i,j
e+1,p

i,j
e+1

=

ϕj

k
i,j
e+1,p

i,j
e+1

. By the same arguments it holds for (ki,j
e+2, pi,j

e+2) ≤ (k, p) < (ki,j
e+3, pi,j

e+3)

that

‖M
i,jδϕ̂i,j

k,p‖ ≤ ‖M
i,j(Pj)s

i,j
e+2(ϕ̂i,j

k
i,j
e+2,p

i,j
e+2

− ξj,i

k
i,j
e+2,p

i,j
e+2

)‖ + γi, (6.71)

≤ ci
P‖M

i,j(ϕ̂i,j

k
i,j
e+2,p

i,j
e+2

− ξj,i

k
i,j
e+2,p

i,j
e+2

)‖ + γi, (6.72)

≤ ci
P(ci

P(γi + ci
ϕ) + γi + ci

ϕ) + γi, (6.73)

≤ (ci
P)2(γi + ci

ϕ) + ci
P(γi + ci

ϕ) + γi. (6.74)

The theorem follows by induction over the event times up to (ki,j
e+τl+1, pi,j

e+τl+1) and

noting that ‖M
i,jδϕ̂i,j

k
i,j
e+τl+1,p

i,j
e+τl+1

‖ = 0. Furthermore, if no further event is triggered

after (ki,j
e+τl

, pi,j
e+τl

) the difference remains within the bounds because

‖M
i,j(Pj)se+τl (ϕ̂i,j

k
i,j
e+τl

,p
i,j
e+τl

− ξj,i

k
i,j
e+τl

,p
i,j
e+τl

)‖ ≤ ci
P‖M

i,j(ϕ̂i,j

k
i,j
e+τl

,p
i,j
e+τl

− ξj,i

k
i,j
e+τl

,p
i,j
e+τl

)‖

holds for all se+τl
∈ N0 (cf. (6.57)).
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This result highlights that the choice of P
j has a strong influence on the ro-

bustness of the algorithm with respect to packet loss, even if only stable P
j are

considered. For instance, it can be seen that P
j = I may result in significantly

smaller bounds than P
j given by (6.49) or (6.53). This can be interpreted as

follows. According to (6.55) it holds that

‖M
i,jδϕ̂i,j

k+1,0‖ ≤ ‖M
i,j

P
jδϕ̂i,j

k,p̄k
‖ + ‖M

i,j(Pjϕj
k,p̄k

− ϕj
k+1,0)‖. (6.75)

The forward predictions used in (6.48) and (6.52) were chosen to reduce the two
terms on the right hand side. Choosing the predictors such that ci

P is close to 1, the
second term grows significantly faster and more communication events are triggered.
At the same time, the impact of applying forward predictions to inaccurate data
is diminished. Overall, the fact that the forward prediction error grows slower
and communication events are triggered more frequently reduces the impact of lost
packets. Thus, if τmax = 0 and τl = 1 reasonable performance may be obtained by
choosing P

j such that ci
P = 1 and choosing a suitably small threshold γ. In the

next theorem a combination of delays and packet loss is considered.

Theorem 6.10. If τmax ∈ R>0, τl ∈ R>0, ‖M
i,jδϕ̂i,j

0,0‖ ≤ γi, and ξj,i
0,0 = ϕ̂i,j

0,0 for all

(i, j) ∈ N × (N \ i) it holds that ‖M
i,jδϕ̂i,j

k,p‖ ≤ γi
d, with

γi
d :=

∑τl

l=1
(ci

P)l(γi + ci
ϕ) + γi + τmaxci

ϕ.

Proof. Let ϕ̄i,j
k,p denote the values of ϕ̂i,j

k,p which would be obtained in the case τmax =
0, τl ∈ R>0. Considering Theorem 6.9 it follows that

‖M
i,j(ϕ̄i,j

k,p − ϕj
k,p)‖ ≤

∑τl

l=1
(ci

P)l(γi + ci
ϕ) + γi, (6.76)

for all (k, p). Furthermore, using the same arguments made in the proof of Theorem
6.8 ‖M

i,j(ϕ̂i,j
k,p − ϕ̄i,j

k,p)‖ ≤ τmaxci
ϕ holds for all (k, p). This results in

‖M
i,jδϕ̂i,j

k,p‖ = ‖M
i,j(ϕ̂i,j

k,p − ϕ̄i,j
k,p + ϕ̄i,j

k,p − ϕj
k,p)‖, (6.77)

≤ ‖M
i,j(ϕ̂i,j

k,p − ϕ̄i,j
k,p)‖ + ‖M

i,j(ϕ̄i,j
k,p − ϕj

k,p)‖, (6.78)

≤
∑τl

l=1
(ci

P)l(γi + ci
ϕ) + γi + τmaxci

ϕ, (6.79)

for all (k, p) and the theorem follows.

The bounds V̄e = ceγd+γ2
d and V̄d = (1−β̄)−1(ζ+V̄e) in the case of delays or packet

loss can now be computed based on an enlarged threshold γd := maxi∈N γi
d card(N i).

In the case of delays it may be impossible to pick a γ ∈ R≥0 such that Assumption
5.3 holds, which is crucial to establish practical stability of the algorithm without
terminal constraint (cf. Theorem 6.7). On the other hand, if τmax = 0, τl = 1
and suitable P

j and γ ∈ R>0 is chosen it may be possible to establish practical
stability of the closed-loop. In other words, the iterative algorithm without terminal
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constraint in general requires a communication network which ensures transmission
of the data without significant delays and small number of lost packets. Because of
the decoupled dynamics, practical stability of the algorithm with terminal constraint
can be established for a communication network with significant delays and packet
loss, but the resulting suboptimality may be large.

6.6. Numerical Example

To illustrate the proposed scheme in closed loop, Algorithm 6.2 is applied to the
numerical example motivated by a system of coupled water tanks introduced in the
previous chapter (see Figure 5.1). Using the bounds computed in Theorem 6.3,
the thresholds γ and ζ would have to be chosen in the range of 10−3 to guarantee
the same suboptimality bounds as in Section 5.4. However, as discussed below
Proposition 6.4 these bounds may be very conservative. In order to allow for a better
comparison of the communication requirements of Algorithm 5.1 and Algorithm
6.2, the thresholds γ = 1.5 and ζ = 0.5 were chosen based on simulations. These
thresholds provide comparable closed-loop performance to the results shown for
Algorithm 5.1 in Section 5.4. All other parameters are identical to those used in
Section 5.4, e.g. pmax = 20, N = 20.

Simulation results for the water levels and inputs are shown in Figure 6.3. Again,
only the inputs of subsystem 2 and 4 are used due to the high cost for the control
inputs of tank 1 and 3. It can be seen that in contrast to Algorithm 5.1 (cf. Figure
5.2) the inputs are not oscillating close to the equilibrium. This can be explained
by the fact that in Algorithm 5.1 small updates to the control inputs are discarded,
while they are applied but not communicated in Algorithm 6.2.

 

u4u3
bu3

au2u1

k

u
k

h4h3h2h1

x
k

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

−5

0

5

−20

−10

0

10

Figure 6.3.: Simulation results for the coupled water tanks using Algorithm 6.2.
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6. Event-Based Communication Based on Sensitivity Analysis

The number of communication events triggered between each pair of controllers
Ci and Cj is shown in Figure 6.4. In particular, ei,j

k =
∑p̄k

p=0 ei,j
k,p, where p̄k again

denotes the last iteration performed at time k, and ei,j
k,p = 1 if (i, j) ∈ Tk,p and

ei,j
k,p = 0 otherwise. While a communication event in Algorithm 5.1 is global (e.g.

may require Ns − 1 messages), a communication event in Algorithm 6.2 results
in one message being sent from one controller to one other controller. Figure 6.4
does not include messages used to verify the stopping criterion. The total number
of messages for information exchange between controllers is 58, compared to 345
messages (115 events) used by Algorithm 5.1. In the implementation chosen for this
example, the stopping criterion (6.37) is verified as follows. Each controller checks
whether (6.37) holds, and only if this condition does not hold, a message is sent to a
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Figure 6.4.: Number of communication events ei,j
k per time step k.
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controller which acts as coordinator. This controller subsequently sends a message
to all other controllers. Note that these messages are very small compared to the
58 messages used to communicate the states and input sequences. In the chosen
implementation 93 messages were required to verify the stopping criterion.

The resulting suboptimality Vd(xk, vk,p) is shown in Figure 6.5. In comparison
to Figure 5.3 it can be seen that, for the chosen thresholds, the suboptimality of
Algorithm 6.2 is about three times larger than that of Algorithm 5.1 for k = 0,
but significantly smaller for k > 2. Similarly, Algorithm 6.2 performs slightly more
iterations at k = 0, but significantly less for k > 0. For comparison, the absolute
costs are V (x0, v0,0) ≈ 1100 and V (x45, v45,0) ≈ 1.5).

Figure 6.6 shows the costs V (xk, vk,p̄k
) of the closed-loop resulting from Algorithm

6.2 and Algorithm 5.1 for identical initial conditions. Overall it can be seen that
Algorithm 5.1 performs slightly worse than Algorithm 6.2 in this example for k ≥ 5,
while requiring both more iterations and communication than Algorithm 6.2.

With respect to the messages required to verify the stopping criterion, it should be
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Figure 6.5.: Number of iterations and suboptimality Vd(xk, vk,p) for Algorithm 6.2.
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Figure 6.6.: Comparison of the costs V (xk, vk,p̄k
) resulting from Algorithm 6.2 and

Algorithm 5.1 (cf. Section 5.4) for k ≥ 5.

123



6. Event-Based Communication Based on Sensitivity Analysis

noted that from the point of view of computational complexity the stopping criterion
may not be required. Specifically, the computational cost of iterations is very low
if no new information is received in an iteration, because the optimization problem
(6.8) does not need to be solved in this case. Based on this observation, Algorithm
6.2 was applied to the example at hand without stopping condition for pmax = 20
iterations. This resulted in 60 messages and comparable performance to the results
obtained by using a stopping condition, while the number of optimization problems
solved was only increased from 207 to 211. Therefore, if a reasonably small pmax can
be chosen a-priori, such that the suboptimality after pmax iterations is sufficiently
small, using a stopping criterion may not result in less computational complexity.

6.7. Discussion

In this chapter, a distributed MPC algorithm with event-based communication
based on sensitivity analysis is developed. The main idea in this chapter is to
analyze how the communicated information affects the local optimization by means
of sensitivity analysis. In contrast to the approach used in Chapter 5, this answers
the question of when to communicate as well as the question between which con-
trollers information needs to be exchanged. Specifically, the analysis in Chapter 5
is concerned with how strongly the local optimization influences the global cost. In
contrast, the analysis in this chapter goes one step further and also considers how
strongly the result of the local optimization depends on the information exchanged
between interconnected controllers.

In each iteration the controllers Ci compute candidate input sequences by solv-
ing the same problem used in Chapter 4, but the optimization does not require
exact knowledge of the states and input sequences of interconnected subsystems
and controllers. To this end, each controller Ci assumes values for the states and
inputs of interconnected subsystems. These values are synchronized by event-based
communication if the difference between the assumed and the true values is above
a certain threshold. Based on these triggering conditions, a distributed MPC al-
gorithm is obtained, in which the triggering conditions not only decide when to
communicate but also between which controllers. A downside of this approach is
that the algorithm cannot be applied to Case 2.2, i.e. it is either applicable to
subsystems with coupling only by costs, or to coupled dynamics and cost without
terminal constraint. In the latter case, the algorithm cannot be terminated at any
iteration, but only if a stopping condition ensuring bounded suboptimality holds.

Developing a rigorous stopping condition for the algorithm discussed in this chap-
ter is a challenging problem because the triggering conditions for communication are
no longer directly related to the suboptimality of the current iterate. Furthermore,
ensuring bounded suboptimality of the algorithm requires that a stopping condition
holds for all the controllers at the same time. To this end, a stopping condition
is derived which can be checked in a distributed fashion, i.e. all computations are
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performed locally and communication is only required to ensure that the condition
holds for all controllers. If a terminal constraint is used, this check can be omitted
and the algorithm can be terminated at any iteration. Because the states and in-
put sequences of other subsystems and controllers are only known approximately,
only practical stability can be guaranteed even when using a terminal constraint.
In contrast, Algorithm 5.1 with event-based communication guarantees asymptotic
stability of the closed-loop if a terminal constraint is used.

The threshold γ ∈ R>0 in the sensitivity based algorithm allows for a trade-off
between how closely, in terms of the costs, the sensitivity based algorithm tracks
the input sequences generated by the algorithm with full communication discussed
in Chapter 4. In other words, a small threshold γ ∈ R>0 ensures that the resulting
input sequence closely resembles that of the algorithm from Chapter 4, while a larger
threshold will result in less communication and larger suboptimality. Therefore,
the threshold γ again allows for a trade-off between the load on the communication
network and closed-loop performance.

Finally, the framework presented in this chapter also allows quantifying the im-
pact of packet loss and communication delays. In particular, it is shown that both
delays and packet loss can be modeled as enlargement of the threshold γ. These
results indicate that the cooperative distributed MPC algorithm is not well suited
to deal with communication delays and, in many cases, should be modified to better
cope with packet loss. This could have been expected because, in contrast to the
robust Algorithm presented in Chapter 3, delays are not explicitly considered in the
local optimization. With respect to packet loss the lack of robustness is also not
surprising because the main aim of the sensitivity based approach to distributed
MPC with event-based communication is to reduce the load on the communication
network by only communicating information which is absolutely required. There-
fore, in comparison to algorithms which employ communication more frequently,
the loss of one or multiple messages will have a larger impact. The theoretical re-
sults given in this chapter for the case of packet loss support this interpretation, i.e.
they show that by modifying parameters of the algorithm such that communication
events are triggered more frequently, the impact of packet loss on the closed-loop
performance can be diminished.

Similarly to Algorithm 5.1, the sensitivity based distributed MPC is well suited
for closed-loop application if the communication network does not induce uncer-
tainties. While it cannot be applied to Case 2.2, the sensitivity based algorithm
allows for a further reduction of the load on the communication network. In par-
ticular, in Algorithm 5.1 a communication event for a controller Ci always requires
this controller to send information to all other controllers Cj, j ∈ N \ i, even if the
interconnection graph G is sparse. In contrast, the triggering conditions based on
sensitivity analysis typically only result in communication if the interconnections
between two controllers are significant and therefore result in a sparse communi-
cation graph Ck,p if the interconnections between subsystems and controllers are
sparse.
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DMPC of Piecewise Affine

Systems

In this chapter, cooperative distributed MPC for decoupled discrete-time hybrid
systems with piecewise affine dynamics, which are interconnected by costs and pos-
sibly non-convex constraints, is investigated. Centralized MPC of piecewise affine
systems of medium to large scale is often not feasible due to the computational
complexity of the resulting optimization problem. Because of this, distributed con-
trol of interconnected piecewise affine systems is of great interest, but few results
are available in the literature which are applicable to piecewise affine systems. In
[14] an iterative distributed MPC algorithm for hybrid systems is considered, but
only within the scope of linear systems with discrete inputs. In principle, the results
presented in [83] and [50] for non-linear dynamics may be applied to piecewise affine
systems, but the algorithms are sequential and the assumptions made in [50] are
very hard to verify. In any case, because of the relatively long computation times
of local problems involving piecewise affine dynamics a sequential approach may be
problematic.

The algorithm presented in Chapter 3 employs parallel optimization, but because
the local controllers do not truly cooperate, interactions are partially modeled as
disturbance and a robust local controller is required. However, the literature on
robust MPC of piecewise affine systems is rather sparse and the available techniques
appear to be either only applicable to systems of very low dimension [60] or with
only very small disturbances, i.e. weak interactions [67].

Finally, the cooperative distributed MPC algorithm presented in the previous
chapters is not directly applicable to distributed MPC of piecewise affine systems
because it requires convexity of the cost function V (xk, uk) (i.e. with the dynam-
ics substituted into the costs). In [102] an extension of the algorithm discussed in
Chapter 4 to nonlinear systems is proposed, which recomputes the weights wi

k,p on-
line in order to ensure that the cost is decreasing in each iteration even though the
costs V (xk, uk) are not convex. However, it is assumed that V (xk, uk) is twice con-
tinuously differentiable and full communication between all controllers is required.
Because the costs V (xk, uk) are, in general, neither convex nor twice continuously
differentiable for piecewise affine dynamics, these results are not applicable.

The results presented in this chapter have been previously published in part
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in [43] and use parallel local optimization, event-based sequential communication,
and compensation of small communication delays. The event-based approach also
resolves the issue of access to the communication network. Specifically, only sub-
systems with a cost decrease above a certain threshold participate in a round of
communication, and only the subsystem which offers the largest cost decrease (i.e.
largest increase in global control performance) is granted access to the network.

7.1. Distributed System Model

In this chapter, distributed MPC of Ns dynamically decoupled hybrid subsystems
P i with discrete-time affine dynamics defined on a polyhedral partition of the con-
tinuous state space is considered. The dynamics are given by

xi
k+1 = Ai

pixi
k + Bi

piui
k + gi

pi, if xi
k ∈ X

i
pi (7.1)

As discussed in Section 2.1, the affine dynamics parametrized by Ai
pi , Bi

pi, gi
pi is

valid in the region with index pi ∈ {1, . . . , N i
p} resulting in decoupled dynamics. In

order to ensure that the solution of (7.1) is unique it is assumed that the polyhedral
regions do not overlap. In order to define adjacent regions without non-overlapping
boundaries and no gap between them, the regions X

i
pi are often defined as the

intersection of a finite number of open and closed half-spaces in the literature on
piecewise affine systems.

However, when formulating optimal control problems based on the dynamics (7.1)
this approach results in both theoretical and numerical issues. From a theoretical
point of view using strict inequalities (i.e. open half-spaces) results in an optimal
control problem which may not have a minimum but only an infimum (cf. Section
2.4). Furthermore, numerical solvers are subject to a numerical tolerance εn ∈
R>0 and the underlying algorithms (e.g. interior point methods) often produce
solutions which are not strictly feasible. For these reasons, most numerical solvers
either do not support strict inequalities, or internally use a conversion to non-strict
inequalities similar to the approach used in the subsequent parts of this chapter.
Overall it can be seen that these issues are partially inherent to piecewise affine
systems and partially caused by the fact that optimal control problems for piecewise
affine systems can typically only be solved numerically.

Due to these effects the regions X
i
pi are defined as closed sets reduced in size by

a tolerance ε > εn:

X
i
pi = {xi

k ∈ R
ni

|C i
X

pi
xi

k ≤ bi
X

pi
− ε}, (7.2)

where C i
X

pi
∈ R

hi
X
pi

×n
, and bi

X
pi

∈ R
hi
X
pi .

The subsystem may be interconnected by costs and common state constraints, and
the input constraints are assumed to be decoupled. In order to define the state con-
straints, let Xc = {xk ∈ R

n|CXcx ≤ bXc} denote coupled polyhedral state constraints
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with CXc ∈ R
hXc×n, bXc ∈ R

hXc . Furthermore, let X
e
r := {xk ∈ R

n|CXe
r
xk ≤ bXe

r
},

with CXe
r

∈ R
hXe

r
×n, bXe

r
∈ R

hXe
r denote Ne regions which are excluded from the

feasible set. Then, the overall state constraint is given by

X :=

⎧⎪⎪⎨
⎪⎪⎩xk ∈ R

n

∣∣∣∣∣∣∣∣
xi

k ∈ ∪
N i

p

pi=1X
i
pi, ∀i ∈ N ,

xk ∈ X
c,

xk /∈ X
e
r, ∀r ∈ {1, . . . , Ne}

⎫⎪⎪⎬
⎪⎪⎭ . (7.3)

This formulation allows to approximate arbitrary non-convex constraints, and the
constraint xk /∈ X

e
r for all r ∈ {1, . . . , Ne} can be formulated by mixed-integer linear

constraints (see below).
The following assumptions are made in order to ensure that the solutions of the

difference equations (7.1) are unique, and that the dynamics are continuous and
stabilizable in a neighborhood of the control goal.

Assumption 7.1. It is assumed that for all i ∈ N :

1. (Xi
j1

⊕ Bni

ε (0)) ∩ (Xi
j2

⊕ Bni

ε (0)) = ∅ for all j1 �= j2, with j1, j2 ∈ {1, . . . , N i
pi},

2. Bmi

ε (0) ⊆ U
i, Bn

ε (0) ⊆ X, and 0 ∈ int(Xi
1),

3. the pair (Ai
1, Bi

1) is stabilizable and gi
1 = 0.

Assumption 7.1.1 ensures that the solutions of the difference equations (7.1) are
unique. Furthermore, Assumption 7.1.2 and Assumption 7.1.3 ensure that the dy-
namics are continuous and stabilizable in a neighborhood of the control goal. These
properties will be used to establish stability of the distributed MPC algorithm.

The following assumptions are made in order to establish recursive feasibility and
stability of the distributed MPC algorithm:

Assumption 7.2. It is assumed that there exists a terminal control law uk = K1xk,
with K1 = blkdiag(K1

1 , . . . , KNs

1 ), with K i
1 ∈ R

mi×ni

, and a decoupled, compact,
terminal set T = T

1 × . . . × T
Ns:

T ⊆ (X1
1 × . . . × X

Ns

1 ) ∩ (Xc \ ∪Ne

r=1X
e
r), (7.4)

with 0 ∈ int(T), and P = blkdiag(P 1, . . . , P Ns), such that the following holds for all
xk ∈ T:

(i) ‖xk‖2
P − ‖(A1 + B1K1)xk‖2

P ≥ ‖xk‖2
Q + ‖K1xk‖2

R,

(ii) (A1 + B1K1)xk ∈ T, K1xk ∈ U.

It can be seen that the generalization of these assumptions to the case Σ �= {0}
may become quite complicated and hard to verify. Therefore, only the case Σ = {0}
is considered here. A terminal control law and constraint satisfying Assumption 7.2
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can always be constructed (cf. Appendix A.2 with (Ai, Bi) = (Ai
1, Bi

1) and X1

instead of X). The centralized MPC Problem is given by

(x∗
k, u∗

k) = arg minxk,uk
V(xk, uk) (7.5)

s.t.

xi
k+1+l|k = Ai

pixi
k+l|k + Bi

piui
k+l|k + gi

pi, if xi
k+l|k ∈ X

i
pi, ∀i ∈ N , ∀l ∈ {0, . . . , N − 1},

uk+l|k ∈ U, ∀l ∈ {0, . . . , N − 1},

xk+l|k ∈ X
c, ∀l ∈ {0, . . . , N − 1},

xk+l|k /∈ X
e
r, ∀r ∈ {1, . . . , Ne},∀l ∈ {0, . . . , N − 1},

xk+N |k ∈ T, xk|k = xk

The dependency of the dynamics on the condition xi
k ∈ X

i
pi can be formulated as

linear mixed-integer constraint by introducing N
∑

i∈N (N i
p −1) binary variables (cf.

[5]). The non-convex constraint xk /∈ X
e
r holds if, and only if, one component of

the componentwise inequality CXe
r
xk > bXe

r
holds for each r ∈ {1, . . . , Ne}. This

condition can again be formulated using
∑Ne

r=1 hXe
r

integer variables (see e.g. [114],
[96]). These reformulations may also be (partially) automated by using high level
modeling tools such as YALMIP [78]. While the resulting MIQP can be solved to
optimality (cf. Section 2.4), the computational complexity is high due to a large
number of binary variables arising from the combinatorial nature of the dynamics
(7.1). Thus, to allow for fast local computations in the distributed algorithm it is
important to reduce the number of binary variables by decomposing (7.5).

In the following, τmax  Δt denotes an upper bound on the communication de-
lays which are compensated by the distributed MPC algorithm. This assumption
is based on the observation that even for piecewise affine systems of low dimension
the computation times for MPC are often much larger than typical communication
delays. Obviously, MPC can only be applied to piecewise affine systems if the de-
sired closed-loop performance can be achieved by sampling times Δt larger than the
computation time. In this case, it appears reasonable to employ parallel computa-
tion and assume that the local computation time and communication delay τmax is
smaller than one sampling period.

7.2. Distributed Algorithm

Within the distributed MPC algorithm, the state and input vector of the local
and neighboring subsystems is optimized by each controller Ci. To this end, let
N i

0 := N i ∪ {i} denote an index set containing the indices of the subsystem P i

and of all subsystems with which P i is directly interconnected. In the distributed
algorithm, each controller Ci optimizes over its own inputs and those of directly
interconnected subsystems. Therefore, the resulting local optimization problem
also depends on the state and input sequences of the subsystems Ps, s ∈ N i

1 \ N i
0

for N i
1 := ∪j∈N i

0
N j

0 .
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Each controller optimizes the input and state trajectory by solving the following
MIQP in each time-step k and iteration p = 0:

(x̂i∗
k ; ûi∗

k ) = arg minx̂k,ûk
V(x̂k, ûk) (7.6)

s.t.

x̂i,j
k+1+l|k = Aj

pj x̂
i,j
k+l|k + Bj

pj û
i,j
k+l|k + gj

pj , if x̂i,j
k+l|k ∈ X

j
pj , ∀j ∈ N i

0, ∀l ∈ {0, . . . , N − 1},

ûk+l|k ∈ U, x̂k+l|k ∈ X
c, ∀l ∈ {0, . . . , N − 1},

x̂k+l|k /∈ X
e
g, ∀r ∈ {1, . . . , Ne}, ∀l ∈ {0, . . . , N − 1},

x̂i,s
k+l|k = xs

k+l|k,0, ûi,s
k+l|k = us

k+l|k,0, ∀s ∈ N i
1 \ N i

0, ∀l ∈ {0, . . . , N − 1},

x̂i,q
k+l|k = 0, ûi,q

k+l|k = 0, ∀q /∈ N i
1, ∀l ∈ {0, . . . , N − 1},

x̂k+N |k ∈ T, ûk|k = uk|k,0,

where x̂i,j
k+l|k and ûi,j

k+l|k denotes a state and input sequence planned by Ci for a

subsystem Pj and x̂i∗
k , and ûi∗

k contain the planned states and inputs for all sub-
systems and over the whole prediction horizon. In other words, each controller
optimizes a subset of the overall state and input sequences and the state and input
sequences not optimized by Ci are fixed to constant values from the initialization
xk,0 and uk,0. Because only the piecewise affine dynamics of subsystem P i ∈ N j

0

have to be considered, the number of binary variables used to encode the depen-
dency of the dynamics on the polyhedral partition of the state space is reduced to
N
∑

j∈N j
0
(N j

p − 1). Furthermore, the number of integer variables required to model

the constraint x̂k+l|k /∈ X
e
g, for all r ∈ {1, . . . , Ne} is reduced because only the con-

straints involving the subsystems P i, i ∈ N i
1 need to be considered. This results

in a large reduction of computational complexity if the interconnections are sparse.
Furthermore, the optimizer in iteration p given by (x̄i

k,p, ūi
k,p) does not depend on

states and inputs of Pq, q /∈ N i
1. Thus, these states and inputs are set to 0 (which

is feasible by Assumption 7.1.1).
The main idea is to solve the local problems in parallel once per time step and

to compute a new global solution by iteratively combining the local solutions. To
this end, the local candidate solution (x̄i

k, ūi
k) in each iteration is given by

x̄i,j
k+l|k,p :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̂i∗,j
k+l|k if j ∈ N i

0,

xj
k+l|k,p if j ∈ N i

1 \ N i
0,

0 otherwise,

∀l ∈ {0, . . . , N},

ūi,j
k+l|k,p :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ûi∗,j
k+l|k if j ∈ N i

0,

uj
k+l|k,p if j ∈ N i

1 \ N i
0,

0 otherwise,

∀l ∈ {0, . . . , N − 1}.

In other words, the locally optimized values x̂i∗,j
k+l|k, ûi∗,j

k+l|k are combined with the
current iterates for sequences which have not been optimized locally. This candidate
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solution is compared to the corresponding sequence (x̌k,p, ǔk,p) without the locally
optimized values, given by

x̌j
k+l|k,p :=

⎧⎨
⎩xj

k+l|k,p if j ∈ N i
1,

0 otherwise,
∀l ∈ {0, . . . , N},

ǔj
k+l|k,p :=

⎧⎨
⎩uj

k+l|k,p if j ∈ N i
1,

0 otherwise,
∀l ∈ {0, . . . , N − 1}.

Next, these two solutions are compared as follows:

ΔVi
k,p :=

⎧⎨
⎩V(x̌i

k,p, ǔi
k,p) − V(x̄i

k,p, ūi
k,p) if (x̄i

k,p; ūi
k,p) ∈ Υ,

−∞ otherwise,
(7.7)

where Υ denotes the set of state and input sequences (xk; uk) for which all con-
straints of (7.5) hold. A communication event is then triggered for the controller
Ci with the largest cost decrease ΔVi

k,p above a threshold γ ∈ R>0. In other words,
the set of communicating controllers is given by

Tk,p := arg max
i∈N

ΔVi
k,p, s.t. ΔVi

k,p ≥ γ. (7.8)

If ΔVi
k,p < γ for all i ∈ N , no communication takes place, and the algorithm

terminates. The computation of the maximum over all controllers Ci requires some
form of global coordination, but can be efficiently implemented in a wide range of
shared and distributed communication networks by means of a suitable arbitration
scheme (see e.g. [20]). If Tk,p is not a singleton, a priority assigned to each controller
may be used for arbitration. This approach also effectively avoids packet collisions
(and therefore packet loss) by ensuring that only one controller can access the
network at a time. The global state and input sequences are updated as follows:

xj
k+l|k,p+1 :=

⎧⎨
⎩x̂i∗,j

k+l|k if j ∈ N i
0,

xj
k+l|k,p otherwise,

∀l ∈ {0, . . . , N}, (7.9)

uj
k+l|k,p+1 :=

⎧⎨
⎩ûi∗,j

k+l|k if j ∈ N i
0,

uj
k+l|k,p otherwise,

∀l ∈ {0, . . . , N − 1}, (7.10)

with i ∈ Tk,p, i.e. only the planned inputs and states which were optimized by
the controller Ci, i ∈ Tk,p are updated. By definition of x̌k,p and ǔk,p it holds
that V(xk,p, uk,p) = V(x̌i

k,p, ǔi
k,p) + R

i
k,p, where R

i
k,p is a remainder that only de-

pends on u
j
k,p and x

j
k,p with j /∈ N i

1. Considering (7.9), it holds for i ∈ Tk,p that

V(xk,p+1, uk,p+1) = V(x̄i
k,p, ūi

k,p) + R
i
k,p. Therefore, by construction of (7.7), the

triggering rule (7.8), and (7.9), it holds for i ∈ Tk,p that ΔVi
k,p = V(xk,p, uk,p) −

V(xk,p+1, uk,p+1).
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The communication scheme (e.g. (7.7) to (7.9)) may be repeated if enough time
is left before the next sampling instant. Otherwise p̄k denotes the last iteration
performed in time k and the initialization for k + 1 is computed by shifting the
sequences obtained at (k, p̄k) one time step forward and prolonging it with the
terminal control law, i.e.:

ui
k+l|k+1,0 := ui

k+l|k,p̄k
, ∀l ∈ {1, . . . , N − 1} (7.11)

xi
k+l|k+1,0 := xi

k+l|k,p̄k
, ∀l ∈ {1, . . . , N} (7.12)

ui
k+N |k+1,0 := K i

1xi
k+N |k,p̄k

, xi
k+1+N |k+1,0 := (Ai

1 + Bi
1K i

1)x
i
k+N |k,p̄k

. (7.13)

Each controller Ci can locally compute these initializations for all j ∈ N i
1, because

the required values are known through communication. The overall scheme is given
by Algorithm 7.1, where t denotes the current absolute time, and k the current
time step. The communication scheme is illustrated in Figure 7.1. Similarly to
sequential algorithms, a feasible initialization for all Cj, j ∈ N i

1 has to be assigned
to each controller Ci. Within the algorithm, feasibility of a combination of the
current state and input sequences and local candidate solutions is checked, and
combinations which are either not feasible or do not lead to a cost reduction are
discarded (similar to [83]). In particular, this implies that an update by Ci at time

(k, p) is feasible and decreases the cost as long as N i
1 ∩N j

1 = ∅ for all j ∈ ∪l=p−1
l=0 Tk,l.

Algorithm 7.1: Distributed MPC Algorithm

1: Initialization: u0,0, x0,0, (k, p) = (0, 0)
2: while k ≥ 0 do

3: Each controller Ci applies ui
k|k

4: The local optimization problem (7.6) is solved in parallel by all Ci, i ∈ N
5: while t < (k + 1)Δt − τmax do

6: Each Ci computes ΔVi
k,p according to (7.7) and Tk,p according to (7.8)

7: Arbitration results in i∗ ∈ Tk,p or Tk,p = ∅
8: if Tk,p = ∅ then

9: break

10: else

11: Ci∗ sends (x̄i∗
k ; ūi∗

k ) to all Cj , j ∈ N 1
i∗.

12: Each Cj , j ∈ N 1
i∗ computes the updated sequences for p + 1 to (7.9) and

sets p̄k := p, p := p + 1
13: end if

14: end while

15: Each Ci computes the initialization for (k + 1, 0) according to (7.11) to (7.13)
and sets (k, p) := (k + 1, 0).

16: end while
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Line of Algorithm 7.1

(z1∗

k , v1∗

k )N 0
1

33 44 66 1111

k k + 1

C1C1

C2 C2

C3C3

u1
k|k

u2
k|k

u3
k|k

u1
k+1|k+1

u2
k+1|k+1

u3
k+1|k+1

Figure 7.1.: Steps from Algorithm 7.1 (dashed) and communication (dotted, shown
for C1).

With respect to the communication requirements it can be seen that the threshold
γ ∈ R>0 can be used to establish a trade-off between communication and closed-
loop performance, since updates which improve the cost by less than γ are not
communicated and are discarded. The absolute time and communication delays
τk ≤ τmax  Δt are explicitly considered in line 5 of Algorithm 7.1, i.e. the number
of iterations is limited by the communication delay and computation time. These
delays are compensated by the fact that the algorithm only optimizes over the input
and state sequence starting at k + 1, while already applying the input for time k
which was computed at k − 1.

7.3. Stability Analysis

A similar approach to the one used in the previous chapters can be used to es-
tablish asymptotic stability of the distributed MPC given in Algorithm 7.1. Let
zk,p = (zk|k,p; . . . ; zk+N−1|k,p) again denote an extended state vector with zk+l|k,p =
(xk+l|k,p; uk+l|k,p) for all l ∈ {0, . . . , N − 1}, and let Z denote the set of feasible
zk,p for problem (7.5). Furthermore, Vz(zk,p) denotes the cost formulated with re-
spect to zk,p, i.e. by substituting the dynamics for xk+N |k such that Vz(zk,p) =
V(xk,p, uk|k,p).

Proposition 7.1. It holds that Vz(zk,p) = 0 if zk,p = 0 and there exists cd ∈ R>0

such that Vz(zk,p) is a continuous quadratic function on a ball Bnz
cd

(0) of dimension
nz = N(n + m).

Proof. Assumption 7.1.1 and Assumption 7.1.2 imply for all i ∈ N that gi
1 = 0,

xi
k = 0 ∈ int(Xi

1), and xi
k = 0 /∈ X

i
j for all j ∈ {2, . . . , N i

pi}. Furthermore, by
Assumption 7.2 it holds that xk = 0 ∈ T. Therefore, zk,p = 0 implies xk+N |k,p =
0 ∈ T and it directly follows that Vz(zk,p) = 0 if zk,p = 0.
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The fact that T is compact and 0 ∈ T imply that there exists cd ∈ R>0 such
that xk+N |k,p ∈ T for all zk,p ∈ Bnz

cd
(0) ⊆ (T × U) × . . . × (T × U) . It follows

from the linearity of the dynamics on T that Vz(zk,p) is a quadratic function for
zk,p ∈ Bnz

cd
(0).

Theorem 7.1. Suppose that Assumption 7.2 is satisfied and a feasible initialization
exists. Then, Algorithm 7.1 ensures feasibility for all times, as well as asymptotic
stability of the closed loop.

Proof. By assumption a feasible initialization exists, is known to all subsystems,
and it holds that xk+N |k,0 ∈ T. Next, consider the local optimization problem
(7.6), the hypothetical update of the state and input variables in (7.9), and note
that any infeasible update is discarded because feasibility is checked in (7.8) and
all variables required to check feasibility locally are included in the local candidate
solution x̄i

k,p, ūi
k,p. It follows that xk+N |k,p ∈ T at any iteration p. The initialization

for the time step k + 1 is computed according to (7.11) to (7.13). Assumption 7.2
then directly implies that ui

k+N |k+1,0 ∈ U
i and xi

k+N+1|k+1,0 ∈ T
i. In other words,

the initialization for (k + 1, 0) is feasible and remains feasible for any number of
iterations p. Feasibility for all times follows by induction over k. Therefore, it is
assumed that zk,p ∈ Z in the remainder of the proof.

It directly follows from the definition of the cost (2.5) that there exists α1(‖zk,p‖)
such that α1(‖zk,p‖) ≤ Vz(zk,p) holds. Considering Proposition 7.1 there exists
α̃2(‖zk,p‖) such that Vz(zk,p) ≤ α̃2(‖zk,p‖) holds for all zk,p ∈ Bnz

cd
(0). Next, the fact

that T is compact (cf. Assumption 7.2) implies that Z is compact and it follows from
Theorem 2.2 that the maximum Vmax := maxzk,p∈Z Vz(zk,p) is finite. This implies
that there exists a constant cm ∈ R such that Vmax ≤ cmα̃2(‖zk,p‖) =: α2(‖zk,p‖)
for all zk,p ∈ Z \ Bnz

cd
(0) and it follows that Vz(zk,p) ≤ α2(‖zk,p‖).

Considering the initialization for k + 1 based on (7.11) and (7.13) it holds that

Vz(zk+1,0) − Vz(zk,p̄k
) = ‖xk+N |k+1,0‖2

Q + ‖uk+N |k+1,0‖2
R + ‖xk+N+1|k+1,0‖2

P

−‖xk|k,p̄k
‖2

Q − ‖uk|k,p̄k
‖2

R − ‖xk+N |k,p̄k
‖2

P .

Furthermore, by Assumption 7.1.3 it holds that

Vz(zk+1,0)−Vz(zk,p̄k
) ≤ −‖xk|k,p̄k

‖2
Q − ‖uk|k,p̄k

‖2
R. (7.14)

Applying this inequality and the initialization for N − 1 time steps results in

Vz(zk+N,0) − Vz(zk,p̄k
) ≤ −

∑N−1

l=0
(‖xk+l|k,p̄k

‖2
Q + ‖uk+l|k,p̄k

‖2
R). (7.15)

Finally, by construction of the triggering rules for communication events only up-
dates which decrease the cost by at least γ ∈ R>0 are performed and for any number
of iterations p this results in

Vz(zk+N,p) − Vz(zk,p̄k
) ≤ −

∑N−1

l=0
(‖xk+l|k,p̄k

‖2
Q + ‖uk+l|k,p̄k

‖2
R). (7.16)
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Therefore, the conditions of Theorem 2.1 hold with L = N , d1 = d2 = 0, and
it follows that the distributed MPC renders the extended state vector zk,p of the
piecewise affine system asymptotically stable in Z.

7.4. Numerical Example

The following numerical example concerned with controlling a platoon of Ns = 7
identical vehicles was previously published in [43]. The vehicles are modeled by
switched second order dynamics with three regions Xi

pi, which model in abstraction
changes in the dynamics due to shifting gears and nonlinear effects. The states are
given by xi

k = ((xp)i − (i−1)cs, (ẋp)
i), where (xp)i is the position, (ẋp)

i the velocity,
and cs = 5m the desired spacing between vehicles. Thus, (xp)

i+1
k − (xp)

i
k = cs

is equal to xi+1
k − xi

k = 0. The cost is formulated such that the distance of the
first vehicle from the desired position and the spacing between each vehicle and its
follower are penalized. Furthermore, the problems are interconnected by collision
avoidance constraints between subsequent vehicles, i.e. xi+1

k − xi
k > −5m. The

coupling structure is given by

N 0
1 := {1, 2}, N 0

2 := {1, 2, 3}, N 0
3 := {2, 3, 4}, N 0

4 := {3, 4, 5},

N 0
5 := {4, 5, 6}, N 0

6 := {5, 6, 7}, N 0
7 := {6, 7}.

The piecewise affine dynamics are parametrized by

Ai
1 =

[
1 1
0 0.95

]
, Bi

1 =

[
0.5
1

]
, gi

1 =

[
0
0

]
,

Ai
2 =

[
1 1
0 0.75

]
, Bi

2 =

[
0.4
0.8

]
, gi

2 =

[
0

1.11

]
,

Ai
3 =

[
1 1
0 0.75

]
, Bi

3 =

[
0.25
0.5

]
, gi

3 =

[
0
0

]
.

The corresponding regions X
i
pi are specified by

X
i
1 :=

{
xi

k ∈ R
ni
∣∣∣∣ (−0.278 + ε)

m

s
≤
[
0 1

]
xi

k ≤ (5.55 − ε)
m

s

}
,

X
i
2 :=

{
xi

k ∈ R
ni
∣∣∣∣ (5.55 + ε)

m

s
≤
[
0 1

]
xi

k ≤ (27.78 − ε)
m

s

}
,

X
i
3 :=

{
xi

k ∈ R
ni
∣∣∣∣ (−5.55 + ε)

m

s
≤
[
0 1

]
xi

k ≤ (−0.278 − ε)
m

s

}
,

for all i ∈ N . Simulation results for N = 30 and γ = 1 are shown in Figure 7.2,
where the subplots show the position, velocity, and input of each vehicle.

The threshold γ = 1 was chosen to closely emulate the behavior of time-triggered
communication and the scheme is initialized with a suboptimal centralized solution.
The last plot shows the number of communication events per time step, which was
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Figure 7.2.: Simulation results for a platoon of Ns = 7 vehicles.
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limited to three. It can be seen that the vehicles cooperate to reach the desired
spacing. For example, P1 (blue) does not accelerate strongly until ca. k = 7,
thereby allowing P2 (green) to reach the desired spacing. For k ≤ 11 the subsys-
tems communicate frequently, but for k > 11 the local solutions do not sufficiently
improve the overall cost and are no longer communicated. Nonetheless, the vehicles
reach the desired position and no collisions between vehicles occur.

Using CPLEX 12 on an AMD Phenom II X4 920 with 4 GB RAM, the compu-
tation times for the local problems (7.6) range from 0.1s to 3s, the sum of local
computation times is between 1s and 10s, and a comparable centralized problem
typically required between 3s and 100s. In order to allow for real-time operation,
shorter prediction horizons, or longer sampling intervals of the subproblems may be
used.

7.5. Discussion

In this chapter, a distributed MPC algorithm for dynamically decoupled piecewise-
affine systems interconnected by costs and constraints is developed. The main
challenge in this setting is that no assumptions about the continuity of the dynam-
ics or the costs can be made and the optimal costs are, in general, not convex. At
the same time, even for distributed problems of low to medium scale the compu-
tational complexity is relatively high, therefore the centralized problem has to be
decomposed to reduce the computational complexity.

The proposed algorithm can be seen as a modification of the algorithms discussed
in the previous chapters, in which the weight wi

k,p of the controller Ci which commu-
nicates is equal to one and all other weights are zero, i.e. the controllers optimize
the local candidate solutions in parallel but employ sequential communication. In
contrast to [102], no assumptions about the continuity of the costs is made, global
communication is only partially required in the arbitration phase, and the computa-
tion of adjusted weights (which are either one or zero) is carried out in a distributed
fashion by the arbitration.

Compared to sequential distributed MPC algorithms (e.g. [83], [50]), the parallel
local optimization ensures that the overall computation times scale well with the
system size. Furthermore, this enables the compensation of the delays due to com-
putation as well as small communication delays. The communication scheme uses
arbitration based on the cost improvement to only grant one subsystem access to
the communication network at a time to reduce the load on the network and avoid
packet collisions. Furthermore, each subsystem only communicates with a set of
neighboring subsystems with which it is interconnected directly or via one other
subsystem. The method, including the arbitration scheme, is suitable for multi-hop
networks with shared communication channels.

Similarly to sequential distributed MPC algorithms the algorithm developed in
this chapter does not guarantee convergence to the optimal centralized solution
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in each time step. Due to the non-convexity of the optimal costs this problem
remains open except for very limited classes of hybrid systems. For example, in
[14] a parallel algorithm based on dual decomposition and Lagrangian relaxation is
proposed which converges to a so called “differential maximum” of the dual function
over the iterations p. However, the hybrid systems considered in [14] are restricted
to linear dynamics with discrete inputs. In contrast, the algorithm developed in
this chapter utilizes parallel optimization of the primal variables and can be applied
to piecewise affine dynamics which allow to approximate a wide range of hybrid
dynamical systems.
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In this thesis different methods for distributed model predictive control with a fo-
cus on linear discrete-time systems and event-based communication have been pre-
sented. Specifically, in Chapter 3 concepts from robust optimization are used to deal
with time-varying delays in distributed MPC of dynamically decoupled discrete-
time linear subsystems interconnected by costs and constraints. Based on results
for cooperative MPC with time-triggered communication given in Chapter 4, two
approaches for event-based communication are derived in Chapter 5 and Chapter 6
for linear discrete-time systems and different classes of interconnections. Finally, in
Chapter 7 some results for distributed MPC of piecewise affine systems are given.
In this chapter, the different methods are compared, the results are summarized,
and some directions for future research are discussed.

8.1. Summary and Comparison of the Proposed

Methods

Throughout this thesis, distributed model predictive control algorithms with par-
allel computation and communication between the local controllers are considered.
The different methods can be broadly categorized into methods with time-triggered
periodic communication (i.e. in every time step or iteration) and methods with
event-based communication in which communication only occurs if a triggering
condition holds. A further classification can be made based on the class of dynam-
ical systems and interconnections considered. In the following the results for the
different algorithms are briefly summarized and compared. Because the algorithms
discussed are inherently suboptimal, stability analysis can be a challenging problem.
To resolve this issue, conditions for input-to-state practical stability less restrictive
than those available in the literature are presented in Section 2.3.

The algorithm presented in Chapter 3 for dynamically decoupled linear-discrete
time systems interconnected by costs and constraints utilizes ideas from robust op-
timization to ensure that constraints are robustly satisfied even in the presence of
communication delays. In particular, the controllers communicate once per time
step over a communication network with time-varying bounded delays, which may
be larger than one time step. These delays are explicitly considered in the local
optimization problems by means of optimizing over a delayed affine feedback. Lo-
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cal constraints then ensure that each subsystem does not deviate too much from
its previously planned and communicated trajectory, such that robust constraint
satisfaction is guaranteed. However, this rather strong result comes at the expense
of a high computational complexity of the local optimization problems and is only
applicable to a limited class of interconnection graphs G . Specifically, Assumption
3.3 essentially states that the distributed, delayed, terminal control law renders the
terminal constraint invariant even when other subsystems do not cooperate. This
assumption is quite strong but similar in scope to the assumptions made in [50],
and is implicitly made in many other works which rely on small gain type results.
In numerical examples and using commercial solvers the computational complex-
ity of the algorithm is about one to two orders of magnitude higher compared to
a nominal MPC problem. Even when resorting to more efficient approaches (cf.
[40]) the worst-case computational complexity of the local problems is still much
higher than that of comparable state of the art methods in nominal MPC (cf. [56]).
On the other hand, the algorithm provides good robustness and performance in
the presence of large communication delays, utilizes parallel computation to avoid
drawbacks of sequential algorithms, and can also be applied to control tasks such
as synchronization. Therefore, this algorithm is well suited for problems such as
formation control over unreliable communication networks.

In contrast, the cooperative distributed MPC algorithm with parallel computation
discussed in Chapter 4 relies heavily on communication and cooperation of the local
controllers. The results in Chapter 4 focus on three specific classes of interconnected
discrete-time linear systems which result in decoupled input constraints (cf. Cases
2.2 to 2.4) and cover application scenarios such as formation control, water or energy
distribution systems, and chemical processes. For these cases the original centralized
problem can be solved to optimality by the iterative cooperative distributed MPC
algorithm first proposed in [112]. However, the scalability of this method is limited
by the fact that each controller has to communicate with every other controller in
each iteration. Furthermore, the original works on this algorithm do not provide any
convergence rate. Without a result on the convergence rate it is difficult to judge the
scalability of the method with respect to the number of subsystems. Therefore, in
Chapter 4 a bound on the convergence rate is given, which depends on the strength
of coupling between subsystems in the centralized MPC problem as well as the
number of subsystems. Furthermore, these results give some insight into the role of
the information exchanged between the controllers and allows choosing parameters
used in the algorithm to ensure fast convergence.

Based on these results, the cooperative distributed MPC algorithm is combined
with a suitable triggering condition for communication events in Chapter 5. In
the resulting algorithm with event-based communication, each controller solves the
same local optimization problem used in the cooperative distributed MPC discussed
in Chapter 4, but results of this optimization are only communicated to all other
controllers if the triggering condition holds. Local optimization results which are
not communicated are discarded. This results in an iterative algorithm with sig-
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nificantly reduced communication requirements and, in many cases, slightly faster
convergence than the original algorithm. The improved convergence speed observed
in the simulation examples can be formally explained by the fact that locally op-
timized candidate sequences which do not result in a large global cost decrease
are discarded. Compared to the algorithm with time-triggered communication,
this gives higher priority to the candidate solutions which provide a larger global
cost decrease. Furthermore, based on the triggering conditions for communication
a distributed stopping criterion is given which can be verified without additional
computations or communication and ensures bounded suboptimality. Overall this
improves the scalability of the cooperative distributed MPC algorithm discussed
in Chapter 4 because significantly less communication is required, the convergence
speed is slightly improved, and the computational complexity is not increased. On
the other hand, this cooperative distributed MPC with event-based communication
requires a controller Ci to send information to all other controllers Cj, j ∈ N \ i if its
triggering condition holds. In other words, this approach only answers the question
of when to communicate. Furthermore, it is not clear which impact uncertainties
induced by the communication network have on the algorithm. In comparison with
the robust distributed MPC the computational complexity of this algorithm is much
lower, but the algorithm is iterative and requires a communication network which
does not induce any uncertainties. However, in some cases the algorithm can be
terminated at any iteration and asymptotic stability is still guaranteed. In contrast,
the robust distributed MPC only ensures practical input-to-state stability.

To further reduce the load on the communication network, the cooperative dis-
tributed MPC algorithm is combined with a triggering condition which triggers
communication events between pairs of controllers in Chapter 6. In other words,
these triggering conditions are used to decide when and between which controllers
to communicate. These triggering conditions are obtained by computing how the
optimizer of the local MPC problems changes if the communicated information
changes. Based on this result it can be determined how accurately a controller
needs to know the state and input sequence of each interconnected subsystem and
controller. Compared to the algorithm with event-based communication presented
in Chapter 5, this results in a further reduction of the load on the communication
network. In particular, since the controllers no longer need to communicate with
all other controllers, the scalability of the algorithm is improved. However, there
are some drawbacks: the algorithm in general converges more slowly than the algo-
rithm discussed in Chapter 4 and Chapter 5, it is not applicable to one of the three
classes of interconnected linear discrete-time systems under consideration because
the terminal equality constraint required in Case 2.2 can no longer be included in
the local optimization, and verifying the stopping condition which ensures bounded
suboptimality requires additional communication. Nonetheless, this algorithm can
be used to further reduce the load on the communication network. Furthermore,
the framework proposed in Chapter 6 allows to quantify the impact of time vary-
ing communication delays and packet loss on the closed-loop performance of the
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distributed MPC algorithm. The results suggest that the number of messages ex-
changed between the controllers has been reduced to a point where every message
is important and packet loss and small delays (i.e. smaller than the sampling time)
may strongly degrade closed-loop performance.

Finally, in Chapter 7 a modification of the algorithm developed in Chapter 5 is
presented which is tailored to a class of dynamically decoupled hybrid systems de-
scribed by discrete-time piecewise affine dynamics. Because the original centralized
MPC problem is no longer convex, no results on the suboptimality can be given and
only one controller may update the input sequence per iteration. The algorithm uses
a variant of the triggering condition proposed in Chapter 5 and compensates both
for computation times and small communication delays. Overall this approach sig-
nificantly reduces the load on the communication network and also greatly reduces
the computational complexity compared to a centralized formulation.

The main contributions of this thesis can be summarized as follows:

• Robust optimization is utilized to ensure constraint satisfaction and robust sta-
bility for distributed MPC of discrete-time linear subsystems interconnected by
costs and constraints in the presence of bounded time-varying communication
delays. The delays are partially compensated by communicating timestamped
input sequences. As discussed in Section 1.2, only few results on distributed
MPC over delayed communication networks are available in the literature.
Compared to those results, the contribution of this thesis is that time-varying
delays are explicitly considered in the local optimization.

• Rigorous convergence results are given for the cooperative distributed MPC
algorithm first proposed in [112] which relate the convergence of the algorithm
to a measure for the coupling strength of the subsystems in the original (cen-
tralized) MPC problem, the number of subsystems, and parameters used in
the algorithm. Based on these results, the parameters of the algorithm are
optimized for fast convergence. No results in this direction were known in the
literature before.

• Event-based communication protocols are proposed which significantly reduce
the load on the communication network by avoiding communication of infor-
mation which does not improve closed-loop performance, is redundant, or not
required by the receiving controller. The results focus on linear discrete-time
systems and some results are extended to the case of hybrid systems given
by dynamically decoupled piecewise affine discrete-time dynamics. Despite
the vast literature on event-based control in the context of networked control
systems, no results on event-based communication in distributed MPC are
available at the moment.

• Conditions for input-to-state practical stability in terms of ISS-Lyapunov func-
tions are proposed which are less restrictive than those available in the liter-
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ature and allow to establish robust stability of suboptimal distributed MPC
without additional measures commonly used in suboptimal MPC (e.g. stability
constraints, reinitialization of the controllers in a neighborhood of the control
goal). Furthermore, the results allow to consider ISpS with respect to a set of
states (e.g. consensus) and are well suited to analyze stability of suboptimal
distributed MPC with event-based and / or uncertain communication.

Furthermore, all algorithms developed in this thesis utilize parallel local compu-
tation to avoid the potentially large aggregated computation times of sequential
approaches.

8.2. Outlook

The main ideas developed in this thesis can be extended in various directions and
a number of open questions remain. In the following some possible directions for
future research are discussed:

• The assumptions made in distributed MPC with respect to the local dynam-
ics, properties of the communication network and types of interconnections
largely differ (see the discussion in Section 1.2). While the results given in this
thesis are applicable to a wide range of control problems, it would be desir-
able to extend the results to a wider class of interconnections and dynamics.
In particular, the results in Chapter 3 could be extended to include coupled
dynamics and more general coupling graphs G . Similarly, the algorithms pre-
sented in Chapter 4 and Chapter 5 are in theory applicable to subsystems with
interconnected constraints. However, as discussed in the corresponding chap-
ters, extensions are required to ensure convergence to the centralized optimal
solution. Finally, in theory the triggering conditions developed in Chapter 5
should be applicable to a wide class of distributed MPC algorithms. There-
fore applying these ideas to different distributed MPC algorithms may provide
some interesting results.

• In many cases the interconnections between subsystems are rather sparse and
only a few neighboring subsystems are strongly interconnected. Therefore,
using hierarchical approaches may prove useful in order to obtain faster con-
vergence and reduce the amount of communication. Some results in this di-
rection can be found in [103], where subsystems are grouped into clusters and
communication within a cluster is used more frequently than between clus-
ters. However, it is not clear how to perform the clustering and to the best
of the author’s knowledge, no results have been published on how to effec-
tively re-partition the overall system if there exists some freedom in choosing
the partition of the overall system. The results of Theorem 4.1, in particu-
lar (4.18) and the preceding analysis, link the convergence of the distributed
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MPC algorithm to the structure of the Hessian. This gives some insight into
the problem of partitioning the overall system.

• Recently, the field of plug-and-play model predictive control (cf. [59]) has
gained considerable interest. The main idea behind plug-and-play control is
that controllers (and their corresponding subsystems) may join or leave the
overall system during runtime if the distributed controller can be reconfigured
to ensure stability. This entails a reconfiguration of the distributed control
law as well as reconfiguration of the communication topology. The paradigm
of event-based communication as well as the sensitivity analysis performed in
Chapter 6 may be useful in this regard to automatically adapt the communi-
cation topology if the interconnection structure changes (e.g. by updating the
local triggering functions).

• While the cooperative algorithm with event-based communication developed
in Chapter 6 significantly reduces the number of messages sent over the com-
munication network, the simulation results show that a large number of small
messages may be required to ensure a synchronous termination of the algo-
rithm with guaranteed suboptimality. This is not desirable from both a prac-
tical and a theoretical point of view. Therefore, to achieve better scalability of
distributed MPC algorithms the results have to be extended to asynchronous
iterations and stopping criteria. Extensions in this direction may be based on
only applying the algorithm synchronously within groups of strongly intercon-
nected subsystems.

• Finally, the distributed MPC algorithms proposed in this thesis implicitly as-
sume some degree of cooperation between the controllers and are based on the
assumption that models describing the dynamics of the subsystems are either
available to the controllers of neighboring subsystems (e.g. Algorithm 3.1) or
to the controllers of all subsystems (e.g. Algorithm 4.1 and Algorithm 5.1).
This raises two questions. First of all, in truly large scale systems, such as
power grids, it may not be practical or desirable to share local models with all
controllers. For example, two competing utility companies may not want to
share the dynamic models or local control goals of their power plants. While
many distributed MPC algorithms are available that do not require sharing
the local models (e.g. [50], [91], [83]) these algorithms require global model
knowledge in the design phase to verify the underlying assumptions. Even if
this step can be solved in distributed fashion, these algorithms rely on commu-
nicating both the predicted state and input trajectories. This information can
be directly used to reconstruct the local closed-loop dynamics and therefore
does not provide much (if any) additional privacy while resulting in additional
communication. Secondly, a single malicious controller could easily exploit
the assumption that the controllers cooperate as well as the knowledge of the
dynamics of other subsystems to destabilize the overall system by communi-
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cating false information. Therefore, it is of paramount importance to develop
methods which detect malicious controllers and do not require exact knowledge
of all dynamic models or communication of full input and state trajectories.
While this problem is quite complicated in general, a starting point may be
to analyze how strongly the local optimization problems depend on the model
data and local costs of interconnected subsystems.
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Appendix A. Formulation of Costs

and Constraints

A.1. Condensed Problem Formulation

All future states can be expressed based on the current state and predicted input
sequence uk as follows:

⎡
⎢⎣

xk|k
xk+1|k

...
xk+N |k

⎤
⎥⎦

︸ ︷︷ ︸
xk

=

⎡
⎢⎣

In

A
...

AN

⎤
⎥⎦

︸ ︷︷ ︸
=:A

xk +

⎡
⎢⎢⎣

0 0 ··· 0
B 0 ··· 0
A B ··· 0
...

...
...

...
AN−1B AN−2B ··· B

⎤
⎥⎥⎦Tup

︸ ︷︷ ︸
=:B

uk|k,p, (A.1)

where Tup ∈ R
Nm×Nm is a permutation matrix, such that:

Tupuk = (uk|k; . . . ; uk+N−1|k).

With the Kronecker product ⊗, the cost over the prediction horizon N is given by
V (xk, uk) = xT

k Qxk + uT
k Ruk, with Q := blkdiag(IN ⊗ Q, P ), R := (Tup)T (IN ⊗

R)Tup, where IN denotes the identity matrix of dimension N . Substituting (A.1)
one obtains H := BT QB + R, F := 2AT QB, Hx := AT QA. For Case 2.3 and
Case 2.4 local input constraints

Ui(xi
k) := {ui

k ∈ R
miN |Ci

Uui
k ≤ bi

U(xi
k)}

over the horizon N − 1 are obtained by considering the local input constraints, as
well as substituting the dynamics into the state and terminal constraints, such that

Ci
U

:=

⎡
⎢⎢⎣

IN ⊗ C i
U[

IN−1 ⊗ C i
X

0
0 C i

T

]
Bi

⎤
⎥⎥⎦ ,

bi
U

(xi
k) :=

⎡
⎢⎢⎣

1N ⊗ bi
U[

1N−1 ⊗ bi
X

bi
T

]
−

[
IN−1 ⊗ C i

X
0

0 C i
T

]
Aixi

k

⎤
⎥⎥⎦ ,

where Ai and Bi are the local dynamics (Ai, Bi) over the prediction horizon. In
Case 2.4 no state constraints are present, i.e. C i

X
= 0, bi

X
= 0, C i

T
= 0, and bi

T
= 0.

For the derivation of A and B and the constraints Ui(xk) for Case 2.2, see [104]
and the references given therein.
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A.2. Terminal Costs and Constraints for Dynamically

Decoupled Systems

Because the pairs (Ai, Bi) are stabilizable, there exists a control law K and matrix
Pd = P T

d 	 0 with

K = blkdiag(K1, . . . , KNs), Pd = blkdiag(P 1
d , . . . , P Nl

d ),

such that

Pd − (A + BK)T Pd(A + BK) 	 cQIn

holds for some cQ ∈ R>0. It directly follows that there exists

P = blkdiag(P 1, . . . , P Nl)

with P = P T 	 0 such that

P − (A + BK)T P (A + BK) � Q − KT RKT .

A polyhedral terminal set T can be obtained by computing an invariant set of
(A + BK) which lies in X (see [12]). In particular, the terminal set T is fully
decoupled, if a hypercube Hn

c := {xk ∈ R
n|‖xk‖∞ ≤ c} ⊆ X centered on 0 is used

to initialize such a procedure. Finally, the assumptions made with respect to the
constraints in Section 2.1 ensure that the terminal set is non-empty.
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List of Symbols

Equalities, Inequalities and Definitions

A := B A is defined to be B

A = B, A �= B A is equal to B, A is not equal to B

A ∈ B, A /∈ B A is an element of a set B, A is not an element of a set B

A ⊂ B, A ⊆ B a set A is a subset of a set B, A is a subset of or equal to the
set B

A < B, A ≤ B component wise inequality of vectors A = (a1; . . . ; an) ∈ R
n

and B = (b1; . . . ; bn) ∈ R
n: ai < bi for all i ∈ {1, . . . , n},

ai ≤ bi for all i ∈ {1, . . . , n}

A ≺ B, A � B inequality of symmetric positive definite matrices A ∈ R
n×n

and B ∈ R
n×n: yT

A y < yT
By for all y ∈ R

n, yT
A y ≤ yT

By
for all y ∈ R

n

Functions

αc : R≥0 → R≥0 comparison function

βc : R≥0×N0→R≥0 ISpS comparison function

γc : R≥0 → R≥0 ISpS comparison function

�·� : R → Z floor function, �y� := maxi∈Z i ≤ y

f : X × U → X uncontrolled dynamics of the overall system

fd : X × W → X perturbed dynamical system

gd : Rh → R Lagrange dual function with h dual multipliers

L : Ry × R
h → R Lagrangian with y primal variables and h dual multipliers

V : X × U → R≥0 objective function

V : X → R≥0 ISpS-Lyapunov function
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V : X × U → R≥0 objective function, future states xk+l|k for l ∈ {1, . . . , N} are
eliminated by substituting f(xk, uk) into V(xk, uk).

V ∗ : X → R≥0 objective function V (xk, u∗
k) for optimal input sequence u∗

k

Vz : Z → R>0 objective function formulated using zk obtained by substituting
xk+N |k := f(xk+N−1|k, xk+N−1|k) into V(xk, uk).

Vd : X × U → R≥0 cost difference to the optimum:
Vd(xk, uk,p) := V (xk, uk,p) − V (xk, u∗

k)

General

⊗ Kronecker product

(·)[k1:k2] time sequence from k1 to k2: ω[k1:k2] = (ωk1 ; . . . ; ωk2)

(·)k,p time-varying value at time (k, p)

(·)i value associated with subsystem P i or controller Ci

(·)\i vector or matrix with the entries corresponding to P i or Ci

removed

(̂·)
i,j

value used by controller Ci for a value of subsystem Pj

(·)p matrix, vector, or set associated with a region p

(·)k|k,p vector or feedback matrix predicted for time k at time (k, p)

(·)∗ optimal value, e.g. optimal input at time k: u∗
k

(̃·)
i

augmented value, e.g. augmented state vector x̃i
k := (xi

k; xj
k)

Ci local model predictive controller of subsystem P i

Ck,p time-varying communication graph: C = (N , Ek)

δ(·) uncertainty of a value, e.g.. δûi,j
k = ûi,j

k − uj
k

I edges of the interconnection graph G : I ⊆ N × N

G interconnection graph: G = (N , IG)

(k, p) discrete time k and iteration index p at time k

t discrete time k

Ns, N i
s number of subsystems, of subsystems interconnected with P i
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List of Symbols

P i dynamical subsystem i

p number of iterations

Ek,p edges of the communication graph Ck,p : Ek,p ⊆ N × N

Δt sampling time, i.e. time increment for each time step k

Δtp time increment for each iteration p

τ i,j
k,p time-varying communication delay between Ci, Cj

τmax maximal communication delay between any pair of controllers:
τmax ≥ τ i,j

k for all (i, j) ∈ Ek,p, (k, p) ≥ (0, 0)

t continuous time t

Scalars and Constants

βk,p convergence rate of distributed algorithm at time k and itera-
tion p.

β̄ upper bound on convergence rate βk,p

ci
H coupling strength in Hessian matrix H

c(·) constant scalars

dc constant in ISpS comparison function

ε small positive constant

εn numerical tolerance

γ threshold of triggering conditions for a communication event

λi multiplier of the i-th inequality constraints

μi
k,p multipliers used to analyze cooperative distributed MPC

N finite prediction horizon: N ∈ N, N ≥ 2

νi multiplier of i-th equality constraints

pmax maximal number of iterations per time step

θ step size, e.g.: yθ = (1 − θ)y1 + θy2

wi
k,p weight used in cooperative distributed MPC
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ζ threshold used in the stopping condition of distributed MPC
with sensitivity based communication

Sets

{·} discrete set

\ relative complement: S1 \ S2 := {y ∈ S1 | y /∈ S2}

× cartesian product of sets: S1×S2 := {(y1; y2) | y1 ∈ S1, y2 ∈ S2}

∩ intersection of sets: S1 ∩ S2 := {y | y ∈ S1 and y ∈ S2}

⊕ Minkowski sum: S1 ⊕S2 := {y | ∃y1 ∈ S1, y2 ∈ S2 : y = y1 +y2}

∪ union of sets: S1 ∪ S2 := {y | y ∈ S1 or y ∈ S2}

∂ boundary of a set: ∂S := S \ int(S)

N, N0 set of natural numbers, set of natural numbers including 0

R>0, R≥0 set of positive real numbers, set of non-negative real numbers

R
n set of real vectors with n elements

R̄ set of extended real numbers: R̄ := R ∪ {−∞, ∞}

Z set of integers

Bn
r (y) closed ball of dimension n ∈ N, radius r ∈ R>0, and with center

y ∈ R
n: Bn

r (y) := {ȳ ∈ R
n | ‖ȳ − y‖ ≤ r}

card(S) cardinality of a set S

D uncertainty affecting robust distributed MPC

Hn
c hypercube of dimension n, diameter c, and with center 0:

Hn
c := {xk ∈ R

n|‖xk‖∞ ≤ c}

int(S) interior of the set S

Ki admissible affine feedback policies

N set of subsystems: N = {1, . . . , Ns}

N i set of subsystems Pj interconnected with P i

Σ set specifying control objectives

T terminal constraint: U ⊆ X
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List of Symbols

U input constraint: U ⊆ R
m

U input constraints over the prediction horizon N :
U := U × . . . × U ⊆ R

Nm

ΔU constraint on input uncertainties, e.g.: δûi,j
k ∈ ΔU

i
k

W compact set of disturbances

X state constraint: X ⊆ R
n

X state constraints over the prediction horizon N :
X := X × . . . × X ⊆ R

(N+1)n

X subset of or equal to the state constraints: X ⊆ X

Z feasible set of extended state vectors zk

Vectors and Matrices

0y×h zero matrix 0y×h ∈ R
y×h of dimension y × h

1y×h matrix or vector of ones of dimension y × h

(y1; . . . ; ys) stacked column vector or matrix yj ∈ R
nyj

×my :

(y1; . . . ; ys) :=
[
(y1)

T . . . (ys)
T
]T

(·)T transpose of a vector or matrix

(·)−1 inverse of a matrix

A, B, g matrices and vector defining linear or piecewise affine dynamics

A, B, G matrices defining linear dynamics with uncertain inputs over
the whole prediction horizon

C(·), b(·) matrix and vector defining a polytope, e.g:
X := {x | CX x ≤ bX}

H Hessian matrix of a quadratic function

Iy identity matrix Iy ∈ R
y×y of dimension y:

K feedback matrix

λ vector of Lagrange multipliers of inequality constraints

λmin(·), λmax(·) smallest and largest eigenvalue of a matrix
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List of Symbols

μk,p vector of multipliers μi
k,p

‖(·)[k1:k2]‖ maximal norm of a sequence: ‖ω[k1:k2]‖ := maxl∈{k1,...,k2}‖ωl‖

‖·‖ Euclidean norm of a matrix or vector

‖·‖∞ infinity norm of a matrix or vector

‖·‖C norm with respect to a set C, e.g.: ‖xk‖Σ := infz∈Σ‖xk − z‖

‖·‖M weighted norm with weight M , e.g.: ‖x‖2
M := xT Mx

ν vector of Lagrange multipliers of equality constraints

ωk disturbance acting on the dynamics fd

P terminal weight for xk+N |k: P = P T � 0

φi
k,p local input sequence optimized by distributed MPC with sen-

sitivity based communication

Q weighting matrix for the state xk: Q = QT � 0

ρi
k,p local input sequence optimized by Ci

R weighting matrix for the input uk: R = RT � 0

T(·) transformation / permutation matrix

Δui
k,p difference to the global optimizer for P i at time (k, p)

Δuk,p difference to the global optimizer at time (k, p)

uk input of the overall system at time k

ui
k input of subsystem P i at time k

uk,p input sequence over the horizon N ≥ 2 (p is omitted if no
iterations are performed): uk,p := (uk|k,p; . . . ; uk+N−1|k,p)

ui
k,p input sequence of P i over the horizon N ≥ 2 (p is omitted if

no iterations are performed): ui
k,p := (ui

k|k,p; . . . ; ui
k+N−1|k,p)

ūi
k,p local candidate input sequence formed by Ci

vk,p input sequence over the prediction horizon computed by the
distributed MPC with sensitivity based communication

vi
k,p input sequence of subsystem P i over the prediction horizon

computed by distributed MPC with sensitivity based commu-
nication
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List of Symbols

v̄i
k,p local candidate input sequence formed by Ci used in distributed

MPC with sensitivity based communication

xk state of the overall system at time k

xi
k state of subsystem P i at time k

xk,p state sequence over the horizon N ≥ 2 (p is omitted if no
iterations are performed): xk,p := (xk|k,p; . . . ; xk+N |k,p)

zk extended state vector over the horizon N ≥ 2:
zk := (zk|k; . . . ; zk+N−1|k)

zk extended state vector: zk := (xk; uk)
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[72] J. Liu, D. Muñoz de la Peña, and P. D. Christofides, “Distributed model
predictive control of nonlinear systems subject to asynchronous and delayed
measurements,” Automatica, vol. 46, no. 1, pp. 52 – 61, 2010.
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[89] R. Postoyan, A. Anta, D. Nešić, and P. Tabuada, “A unifying lyapunov-based
framework for the event-triggered control of nonlinear systems,” Proceedings
of the 50th IEEE Conference on Decision and Control and European Control
Conference, pp. 2559 – 2564, 2011.

[90] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and De-
sign. Nob Hill Publishing, 2009.

[91] A. Richards and J. P. How, “Robust distributed model predictive control,”
International Journal of Control, vol. 80, no. 9, pp. 1517 – 1531, 2007.

[92] S. Riverso, M. Farina, and G. Ferrari-Trecate, “Plug-and-play decentralized
model predictive control for linear systems,” IEEE Transactions on Automatic
Control, vol. 58, no. 10, pp. 2608 – 2614, 2013.

[93] R. T. Rockafellar and R. J. B. Wets, Variational Analysis, ser. Die
Grundlehren der mathematischen Wissenschaften. Springer, 1998.

[94] R. Scattolini, “Architectures for distributed and hierarchical model predictive
control – a review,” Journal of Process Control, vol. 19, no. 5, pp. 723 – 731,
2009.

[95] H. Scheu and W. Marquardt, “Sensitivity-based coordination in distributed
model predictive control,” Journal of Process Control, vol. 21, no. 5, pp. 715
– 728, 2011.

[96] T. Schouwenaars, “Safe trajectory planning of autonomous vehicles,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2006.

[97] A. Schrijver, Theory of Linear and Integer Programming, ser. Wiley Series in
Discrete Mathematics & Optimization. John Wiley & Sons, 1998.

[98] S. Schuler, P. Li, J. Lam, and F. Allgöwer, “Design of structured dynamic
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