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Chapter 1

Introduction

Owing to the recent experimental advances in heavy–ion accelerator and storage ring tech-

niques, it becomes possible nowadays to produce, to accelerate and, then, to store highly

stripped ions up to bare uranium U92+. Within the last decade, these – heavy – ions have

proved to be a unique tool in a large number of case studies in many areas of modern physics

(see Figure 1.1). For example, in nuclear and particle physics, heavy ion collisions may help

us to explore the properties of the heavy as well as superheavy elements or even (in the ul-

trarelativistic regime) of the quark–gluon plasma. Furthermore, the interaction of the intense

ion beams with the solid targets allows to produce and to investigate dense plasma phenomena

associated with high energy density matter, a topic of high interest in astrophysics as well as

plasma physics. Apart from the fundamental research, heavy ions are widely used in differ-

ent applications such as the cancer therapy in biophysics or, let us say, the interaction of the

energetic ions with matter in material sciences.

Of course, experiments with highly–charged ions have also opened up new and very promising

opportunities in atomic physics. These opportunities are generally related to the studies of

one– or few–electron systems in the exceptionally strong electromagnetic fields produced by

the heavy nuclei. Such ”extreme” conditions may lead, in particular, to the quite remarkable

effects both in electronic structure of the few–electron ions as well as in their collision dynamics

(Warczak 2003). Obviously, these two general aspects of atomic physics with heavy ions are

strongly correlated with each other. While, for instance, ion collisions are usually applied in

atomic structure studies in order to populate the excited states, the knowledge on the structure

is highly required for the proper analysis of the collision experiments.

In atomic structure studies, for instance, the heavy ions provides us with the unique possibility

to test quantum electrodynamics (QED) in a regime where its standard treatment, based

on the perturbation expansion in terms of α · Z parameters (Mohr et al 1998), is no longer a

suitable tool. While, in particular, for the neutral hydrogen (Z = 1), the fine structure constant

α = 1/137.036 � 1 ensures the fast convergency of the perturbation expansion, for the high–Z

system, where α·Z approaches to unity, we have to deal with all orders of expansion coefficients.

One of the most important tools for investigation of these higher order QED corrections is given

by the measurements of the Lamb shift in heavy few–electron ions. In this contribution, for

example, a number of experiments have been performed recently in order to study the ground–
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Figure 1.1: Heavy ion research in modern physics and related natural sciences (Metag 2000).

state Lamb shift in hydrogen– as well as helium–like uranium ions (Beyer et al 1995, Stöhlker

et al 2000, Gumberidze 2003). These measurements provided new and very accurate results

which are now well understood within the theoretical treatment (Beier 2000, Yerokhin and

Shabaev 2001, Yerokhin et al 2003).

Beside of the electronic structure, the strong electromagnetic field of heavy nuclei strongly affect

the dynamical behaviour of ions. In order to explore this second important aspect of heavy

ion (atomic) physics, intensive experimental and theoretical studies have been focused recently

on the relativistic collisions of high–Z projectile ions with low–Z target atoms (Eichler and

Meyerhof 1995). However, since, these collisions give rise to a broad variety of recombination,

ionization and excitation processes, we will restrict our discussion here to the particular case

of studies with bare highly–charged ions. One of the most basic processes in collisions of

such – bare – ions is the transfer of an electron between the low–Z target atom and a fast

moving projectile. For not too high collision velocities, this process is governed by the so–

called nonradiative electron capture (NRC), at which the energy and momentum transfer in

collision is shared between projectile, target and the captured electron. The nonradiative

capture, however, possesses a dramatic velocity dependence σNRC ∼ v−12 (Oppenheimer 1928)

and, hence, typically plays no role at projectile energies of more than Tp ∼ 100 MeV/u. At such

highly energetic collisions, the electron transfer is accompanied by the simultaneous emission

of a photon carrying away the excess energy and momentum. This process, typically denoted

as the radiative electron capture (REC), attracts nowadays much experimental as well as

theoretical attention. It is related, in particular, to the developments in the field of the ion

storage rings where the electron recombinations are the dominant (ion) loss processes. Another

and even more fundamental interest arises from the fact that, for high–Z projectiles and low–Z

targets, the REC process is almost identical to the radiative recombination (RR) of the ion

with a free electron which, in turn, is the inverse of the photoelectric effect (cf Figure 1.2).

Therefore, the measurements on the radiative electron capture by heavy ions allow us to study

the strong filed effects in the photoionization which is, in fact, one of the most fundamental

interaction processes between light and matter (Ichihara et al 1994, Stöhlker et al 1999).

2
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Figure 1.2: In the relativistic collisions of high–Z projectiles with low–Z target atoms, an electron may

be radiatively captured into a bound ion state. Since a loosely bound target electron may be considered

as quasi–free, the radiative electron capture (REC) is almost identical to the radiative recombination

(RR) of a projectile ion with free electron, which is the time–inverse photoionization process (PI).

In this contribution, the radiative electron capture by bare high–Z ions has been intensively

studied during the last decade at the GSI (Gesellschaft für Schwerionenforschung) storage ring

in Darmstadt. Such measurements become possible nowadays due to the considerable progress

in the precision x–ray spectroscopy. In particular, application of the efficient x–ray detectors

allowed to explore not only the total REC cross sections but also the angular distributions of the

emitted recombination photons (Stöhlker 1999, Stöhlker et al 2000). These – angular resolved

– measurements proved to be an extremely precise tool for investigation of the relativistic

and magnetic interaction effects in the electron capture processes. The proper theoretical

description of these higher–order effects requires, however, the fully relativistic treatment for

both the electronic wavefunctions as well as the electron–photon interaction operator (Pratt et

al 1977, Eichler and Meyerhof 1995). In Chapter 2, therefore, we will discuss in detail the

basic relations of this exact relativistic treatment and then emphasize the general agreement

between the theoretical computations and the experimental data.

The former experimental and theoretical studies on the total and, especially, angle–differential

REC cross sections have certainly revealed an important knowledge on the dynamics of electron

recombination in the presence of the strong electromagnetic fields. This knowledge, however,

is still incomplete mainly because both (the total and angle–differential) cross sections are

not sensitive to the magnetic (spin) states of the projectile ion and target atom as well as to

the polarization of the emitted radiation. In order to get an access to this – highly precise –

magnetic substate information, a new generation of electron capture experiments is currently

under the way at the GSI storage ring (Stöhlker et al 2003a). In these experiments, one

may explore the polarization of the emitted x–ray photons as well as the different correlation

phenomena arising in the REC into excited ionic states.

In this contribution, we outline here the recent progress in polarization and correlation studies

on the radiative electron capture into highly–charged ions. The theoretical background of

such studies is given by the exact relativistic treatment which is (in the moment) the most

accurate description of the REC process. In particular, following this approach, below we

will make no difference between the REC and the radiative recombination (RR) processes,

assuming, therefore, a target electron as quasi–free. Exact relativistic treatment, however,

3



has to be placed in a proper framework that would provides us with a simple access to the

polarization and correlation properties of particles. Most naturally, this framework is given

by the density matrix theory whose basic principles are summarized in Chapter 3. Starting

from these principles, we theoretically describe the two–step REC process in which a quasi–free

electron is radiatively captured into an excited ion state that later decays under the emission

of a characteristic photon. Explicit expressions are derived for the observable properties of the

recombination and the subsequent decay x–ray photons as well as for the magnetic sublevel

population of the residual (hydrogen–like) ion. While, of course, these expressions may be

employed for the description of an arbitrary one–, two– and even multi–step recombination

process, in Chapter 4 we consider only two cases which are, in fact, typical for nowadays

experiments (Stöhlker 1999, Warczak 2003). In the first case, which is a trivial example of

one–step recombination, an electron is captured into the K–shell of bare projectile ion. Since,

however, the total as well as angle–differential K–REC cross sections have been well studied

before, we restrict our treatment to the polarization of the emitted x–rays. In our theoretical

analysis, emphasis is placed on the effect of the spin–polarization of the incident particles on

the linear polarization of the recombination photons. We show, in particular, that non–zero

polarization of the electron target leads to an overall rotation of the linear polarization of light

out of the reaction plane. This theoretical finding may have an considerable impact for the

experimental studies both in atomic and nuclear physics where the problem of ”measuring”

the polarization of the target atoms (or electrons) and ion beams attracts now much interest.

Beside of the recombination into the ground ionic state, we also implement the density matrix

approach in order to study the second typical experimental situation: electron capture into the

2p3/2 level and the subsequent Lyman–α1 (2p3/2 → 1s 1/2) decay. For such two–step recombi-

nation process, we explore in detail not only the individual properties of the first and second

steps but also the correlated photon emission which may be observed in the coincidence (e, 2γ)

experiment. It is shown, in particular, that similar to the linear polarization of the recombina-

tion photons, the photon–photon correlations appear to be much sensitive to the polarization of

the incident particles and provides, therefore, an alternative route for the polarization studies

on the heavy ion beams. In Chapter 5 we give a summary of these theoretical results and

their implication for the future experimental research, while, finally, six – most important –

works on electron recombination which have been published by us during the last three years

are included in Chapter 8.

4



Chapter 2

Radiative electron capture: Present

status of studies

Theoretical studies on the radiative electron capture (as well as the radiative recombination)

have a very long tradition. Since the early days of the development of quantum mechanics

this process has been known as the time–reversed photoionization. On this basis, and by ap-

plying the principle of the detailed ballance, Stobbe in 1930 presented a general formalism

for describing the radiative recombination into arbitrary projectile states within the frame-

work of a nonrelativistic dipole approximation. This – nonrelativistic – approach has been

reviewed in later theoretical studies which have incorporated the relativistic effects in the pho-

toionization and, consequently, the radiative recombination processes. For example, the first

order relativistic Born approximation has been applied in 1931 by Sauter in order to calcu-

late the K–shell (photoionization as well as recombination) total and angle–differential cross

sections. The Sauter theory, however, provided unsatisfactory results for the photoionization

of the medium–Z and high–Z atoms and, hence, was modified in the beginning of sixties by

Gavrila (1960) and Nagel (1960) who included the next order Born corrections. Of course,

owing to the computational difficulties, these corrections have still based on the approximate

wavefunctions for both bound and continuum (relativistic) electrons. However, in the light

of the recent progress in computer technologies, the rigorous relativistic calculations became

possible which included both exact relativistic electron wavefunctions as well as all multipoles

in the electron–photon interaction operator (Pratt et al 1973, Eichler and Meyerhof 1995).

Although theoretically the radiative electron capture has been known for a long period, the

emission of the recombination photons was observed for the first time only in the early seventies

by Raisbeck and Yoiu (1971), Schnopper et al (1972) and Kienle et al (1973) and since then

became a subject of intensive experimental studies. In the beginning, however, most of these

experimental efforts were focused on the radiative electron capture by the light–Z and medium–

Z projectile ions (Tanis et al 1978, Spindler et al 1979, Tawara et al 1982, Anholt et al 1984)

for which the relativistic and high–order multipole effects were rather small. Only with the

recent experimental advances in heavy–ion accelerators and ion storage rings, more possibilities

arise to study the relativistic collision of high–Z projectile ions with low–Z target atoms (or free

electrons). For such collisions, for example, a large number of measurements have been carried

5
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Figure 2.1: Layout of the heavy ion synchrotron/storage ring facility SIS/ESR (from www.gsi.de).

out at the GSI storage ring in Darmstadt in order to explore the total and angle–differential

recombination cross sections (Stöhlker et al 1995, Stöhlker 1999). These experimental findings,

whose brief outline is given in Section 2.1, are now well understood within the framework of

(above mentioned) exact relativistic description. The basic relations of this treatment as applied

to the electron capture process are summarized then in Section 2.2.

2.1 Experimental studies at the ESR storage ring

During the last ten years, the radiative electron capture into the bound states of highly–charged

projectile ions has been intensively studied at the GSI laboratory in Darmstadt. This experi-

mental facility was established more than 30 years ago in order to provide the heavy ion research

in the atomic, nuclear, plasma, solid state physics as well as in the related natural sciences.

Nowadays, GSI is the complex accelerator structure which consists of the linear accelerator

UNILAC (UNIversal Linear ACcelerator), the heavy ion synchrotron SIS (Schwerionensyn-

chrotron), and the experimental storage ring ESR (cf Figure 2.1). The accelerator facilities

UNILAC and SIS are usually applied in order to produce (in the required charge states) and

to accelerate the beams of the ions which later can be accumulated into the ESR storage ring.

In fact, the ESR offers the unique opportunities to store fully stripped heavy ions up to bare

uranium U92+ at energies between 50 and 560 MeV/u and to employ them for a broad range of

atomic as well as nuclear physics experiments (Blasche and Franzke 1994, Mokler and Stöhlker

1996). The measurements on the radiative electron capture, for example, are typically per-

formed at the ESR internal jet target (Reich et al 1997) where the thin gaseous targets from

H2 up to Xe are used with the densities of about ρ ∼ 1012 particles/cm3. In the reaction cham-

6



ESR

Figure 2.2: The internal ESR jet–target allows to explore the projectile x–ray emission at various

observation angles from nearly 0◦ to 150◦ with respect to the ion beam. Emitted photons are observed

in coincidence with the down–charged ions, detected by the particle counter behind the dipole magnet.

ber of this target, as seen from Figure 2.2, the stored projectile ions cross a perpendicularly

oriented molecular or atomic supersonic gas jet and, therefore, may (radiatively) capture the

loosely bound target electrons. The associated photon emission is then observed by the set of

the x–ray detectors which are viewing the gas–jet/beam interaction zone at the different angles

from almost 0◦ up to 150◦. Moreover, in order to ensure that the photon is emitted due to

the electron recombination, the signal from the x–ray detector is always counted in coincidence

with the signal from the particle detector which registers the down–charged particles (cf Figure

2.2).

In recent years, the experimental set–up 2.2 has been successfully implemented in order to

explore the total as well as the angle–differential cross sections for the electron capture into

the K– and L–shells of bare high–Z projectile ions (Stöhlker et al 1995, Brinzanescu 2000).

For instance, Figure 2.3 displays the measured angular distribution of the K–REC photons for

the bare uranium projectile ions U92+ with energies Tp = 88 MeV/u and Tp = 310 MeV/u.

The experimental data, moreover, are compared with the theoretical calculations based on the

nonrelativistic dipole approximation (dashed line) as well as on the exact relativistic treatment

(solid line). While the details on this – relativistic – treatment will be given in the next Section,

here we will mention only a good agreement between the theory and experimental results. In

particular, the strong photon emission is confirmed for the forward directions which has to

be attributed to the spin–flip electron transition arising due to interaction of the electron

magnetic momentum with the magnetic field of the fast moving projectile (Ichihara et al 1994,

Stöhlker et al 1999). The spin–flip transition, however, clearly manifests itself only for the

electron capture by high–Z relativistic ions which, therefore, prove to be a very sensitive tool

for studying the magnetic interaction effects in the ion–atom (ion–electron) collisions.

7
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Figure 2.3: Experimental angular distributions of the photons emitted in the K–REC into bare uranium

ions ions with projectile energies Tp = 88 MeV/u (left panel) and Tp = 310 MeV/u (right panel). The

solid line represents the theoretical predictions based on the exact relativistic treatment (Brinzanescu

2000, Stöhlker et al 1999, 2001).

Beside the measurements on the REC (total and angle–differential) cross sections, the gas–jet

target facility has also been employed to study the characteristic photon emission following

the electron recombination into the excited ion states. Special emphasis has been placed, in

particular, on the electron capture into the 2p3/2 state of bare uranium ions and the subsequent

Lyman–α1 (2p3/2 → 1s1/2) decay. From the observed emission pattern of the decay radiation

(cf Figure 4.4), the information on the magnetic sublevel population of the 2p3/2 state was

extracted (Stöhlker et al 1997). However, when compared with the theoretical calculations

based on the exact relativistic description (Eichler 1994, Eichler et al 1998), these experimental

findings showed a remarkable variance, which could not be attributed neither to additional

cascade feeding processes nor to further corrections to the electron capture process. As it

will be discussed later in Section 4.2, such derivation indicates the magnetic effects in the

bound–bound electron transitions which become sizable for high–Z projectile ions.

2.2 Theoretical treatment: Exact relativistic description

The experimental results on the REC total cross sections and the angular distributions of the

recombination photons are well reproduced nowadays by the theoretical computations based on

the exact relativistic treatment. Within this approach, when applied to the collisions of high–Z

projectiles with low–Z ions, the loosely bound target electrons are usually regarded as quasi–

free. Therefore, it is a good approximation to substitute the REC process by the radiative

recombination (RR) of a free electron into a bound state of projectile ion which is usually

considered in its rest frame (projectile frame). Beyond this assumption, the description of the

electron capture is rigorous by using exact relativistic wavefunctions for both initial–free and
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final–bound electrons and by including retardation, i.e. all multipole orders of the photon field

(Ichihara et al 1994, Eichler and Meyerhof 1995). In Subsection 2.2.1 we employ these exact

wavefunctions to evaluate the matrix element for the free–bound electron transition which then

can be used for calculations of the RR cross sections. Since, however, the cross sections are

obtained within the projectile frame, their Lorentz transformation to the laboratory frame is

required and briefly discussed in Subsection 2.2.2.

2.2.1 Evaluation of the free–bound transition amplitude

Obviously, the computations of the radiative recombination cross sections can be traced back

to the evaluation of the transition amplitude for the capture of a free electron into a bound

ionic state under the simultaneous emission of recombination photon. Within the first–order

perturbation theory, this amplitude is given by (Pratt et al 1964, Alling and Johnson 1965)

MRR
bp (ms, λRR, µb) =

∫

d3rψ†
jbµb

(r)α û∗
λRR

e−ikRRr ψpms(r) (2.1)

where ψpms(r) and ψjbµb
(r) denote the Dirac–Coulomb wavefunctions for the incident free

electron with well defined asymptotic momentum p and spin projection ms and for the final

hydrogen–like bound state |nb jb µb〉, respectively. Moreover, the (relativistic) electron–photon

interaction is described by the transition operator α ûλRR
ei kRRr where kRR is the wavevector

of the emitted (recombination) photon and the unit vector ûλRR
refers to photon’s right–hand

(λRR = +1) and left–hand (λRR = -1) circular polarization (Berestetskii et al 1971).

For the further simplification of the transition amplitude (2.1), we need to decompose both,

the photon as well as the free–electron wave functions into partial waves in order to make later

use of the techniques of Racah’s algebra. However, as discussed previously in a number of

works (Eichler et al 1998, Surzhykov et al 2002a, Klasnikov et al 2003), we first have to decide

about a proper quantization axis (z–axis) for this decomposition, depending – of course – on

the particular process under consideration. For the radiative recombination of a projectile ion

(at rest) with a free moving electron, the only really preferred direction of the overall system

is given by the electron momentum p which we will adopt below as the quantization axis. To

evaluate the transition amplitude (2.1) for such choice of the quantization axis, we shall start

from the rotation of the photon field (Rose 1957)

ûλRR
eikRRr =

√
2π

∞
∑

L=1

M=+L
∑

M=−L

iL
√

2L+ 1 AλRR
LM (r)DL

MλRR
(kRR → z), (2.2)

which is – most conveniently – expressed in terms of its (electric and magnetic) multipole

components (Eichler et al 1998):

AλRR
LM (r) = A

(m)
LM (r) + iλRR A

(e)
LM (r) . (2.3)

Each of these multipoles may be written, respectively, as

A
(m)
LM (r) = jL(kr)TM

L,L,

A
(e)
LM (r) = jL−1(kr)

√

L+ 1

2L+ 1
TM

L,L−1 − jL+1(kr)

√

L

2L+ 1
TM

L,L+1 , (2.4)
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where jL(kr) is the spherical Bessel function and TM
L,Λ is the vector spherical harmonics of

rank L (Edmonds 1996).

By inserting now the right–hand side of expansion (2.2) into the matrix element (2.1), we can

represent the transition amplitude

MRR
bp (ms, λRR, µb) =

√
2π

∞
∑

L=1

M=+L
∑

M=−L

i−L
√

2L+ 1D L∗
MλRR

(kRR → z)

×
∫

d3r ψ†
jbµb

(r)αAλRR∗
LM (r)ψpms(r) (2.5)

in terms of its electric and magnetic multipole matrix elements which, however, still include

a continuum electron wavefunction with definite momentum p and helicity ms. Therefore,

this wavefunction also has to be represented as the partial wave decomposition which, for the

particular choice of the quantization axis along the electron momentum p, simply reads as

(Eichler and Meyerhof 1995):

ψpms(r) =
∑

κ

il ei∆κ
√

4π(2l + 1) 〈l0 1/2ms | jms〉 ψEκms(r) (2.6)

where the summation runs over all partial waves κ = ±1,±2..., i.e. over all possible values

of the Dirac’s angular momentum quantum number κ = ±(j + 1/2) for l = j ± 1/2. In this

notation, the (nonrelativistic angular) momentum l represents the parity of the partial waves

and ∆κ is the phase shift which arises due to the Coulomb potential of a pointlike nucleus

(Bethe and Maximon 1954). Moreover, the partial waves

ψEκms(r) =
1

r





PE κ(r) χms
κ (r̂)

i QE κ(r) χms
−κ(r̂)



 (2.7)

separate into a radial and an angular parts, where the two radial functions PE κ(r) and QE κ(r)

are often called the large and small components of the partial wave and the corresponding

angular parts χms
κ (r̂) and χms

−κ(r̂) are the standard Dirac spin–angular functions (Edmonds

1996, Varshalovich et al 1988).

Applying the decomposition (2.6) of the continuum electron wave and by making use of the

Wigner–Eckart theorem (Zare 1998, Balashov et al 2000), the amplitude (2.5) may be finally

expressed as:

MRR
bp (ms, λRR, µb) =

√
8 π

∞
∑

L=1

M=+L
∑

M=−L

∑

κ

i−L + l ei∆κ
√

(2L+ 1)(2l + 1)D L∗
MλRR

(kRR → z)

× 〈l0 1/2ms | jms〉 〈jms LM | jbµb〉
〈

nb jb

∣

∣

∣

∣

∣

∣αAλRR∗
L

∣

∣

∣

∣

∣

∣Eκj
〉

, (2.8)

where
〈

nb jb

∣

∣

∣

∣

∣

∣
αAλRR∗

L

∣

∣

∣

∣

∣

∣
Eκj

〉

are the reduced matrix elements for the free–bound electron

transition (Surzhykov et al 2002b). We can further simplify these matrix elements by using

the calculus of the irreducible tensor operators (Edmonds 1996, Balashov et al 2000). That is,

according to Equations (2.3) and (2.4), the reduced free–bound matrix element is written
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〈

nb jb

∣

∣

∣

∣

∣

∣αAλRR∗
L

∣

∣

∣

∣

∣

∣Eκj
〉

=
〈

nb jb
∣

∣

∣

∣α jL(kr)T∗
L,L

∣

∣

∣

∣Eκj
〉

− iλRR

[

√

L+ 1

2L+ 1

〈

nb jb
∣

∣

∣

∣α jL−1(kr)T
∗
L,L−1

∣

∣

∣

∣Eκj
〉

−
√

L

2L+ 1

〈

nb jb
∣

∣

∣

∣α jL+1(kr)T
∗
L,L+1

∣

∣

∣

∣Eκj
〉

]

(2.9)

in terms on the (reduced) magnetic and electric multipole matrix elements which, in turn, can

be decomposed into the radial and angular parts as (Eichler et al 1998):

〈

nb jb
∣

∣

∣

∣α jΛ(kr)T∗
L,Λ

∣

∣

∣

∣Eκj
〉

= −i
∫

dr Qnb jb
(r) jΛ(kr)PE κ(r)

〈

χ−κb

∣

∣

∣

∣σT∗
L,Λ

∣

∣

∣

∣χκ

〉

+ i

∫

dr Pnb jb
(r) jΛ(kr)QE κ(r)

〈

χκb

∣

∣

∣

∣σT∗
L,Λ

∣

∣

∣

∣χ−κ

〉

. (2.10)

The angular part of the amplitude (2.10) is given by the matrix element of the rank L spherical

tensor σT∗
L,Λ = [Y ∗

Λ ⊗ σ]L that can be evaluated (for the arbitrary κ1 and κ2) to

〈

χκ1

∣

∣

∣

∣σT∗
L,Λ

∣

∣

∣

∣χκ2

〉

=

√

3

2π
[j1, L,Λ, l2]

1/2 〈l20,Λ0 | l10〉







l2 1/2 j2

Λ 1 L

l1 1/2 j1







, (2.11)

by using a proper decomposition in terms of orbital and spin sub–states (Edmonds 1996,

Varshalovich et al 1998). Moreover, for a pointlike nucleus and use of exact Dirac–Coulomb

wavefunctions, the radial integrals in Equation (2.10) can also be expressed analytically by

means of the hypergeometric functions 2F1(a, b; c; z) (Trautmann et al 1983, Valluri et al 1984).

These (analytical) evaluations for both the radial and the angular matrix elements have been

carried out by using the two computer–algebraic packages RACAH (Fritzsche 1997, Fritzsche

et al 2001) and DIRAC, where the latter one represents a toolbox of Maple procedures designed

for studying the properties and dynamical behaviour of hydrogen–like ions (Inghoff et al 2001).

2.2.2 Lorentz transformation of the cross sections

We may apply now the free–bound transition amplitude (2.8) in order to calculate the char-

acteristics of the radiative recombination process. For example, the angle–differential cross

section for the capture of an unpolarized electron into a bound |nb jb〉 state of bare projectile

ion is given by the well–known formula (Eichler and Meyerhof 1995, Eichler et al 1996):

dσRR
nb jb

dΩRR
(θRR) =

kRR

4α

(

α2

βγ

)2
∑

λRR ms µb

∣

∣MRR
bp (ms, λRR, µb)

∣

∣

2
, (2.12)

where we have averaged over the spin projections ms = ± 1/2 of the incident electron and

summed over the magnetic sublevels µb of the residual ion as well as the polarizations λRR = ± 1

of the emitted (recombination) photon. Moreover, the Lorentz factor γ = 1/
√

1 − β2 is related

to the (relative) electron velocity β = v/c.
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Figure 2.4: Angular distributions of the photons emitted in the radiative electron capture into the K–

shell of bare uranium ion with energy Tp = 220 MeV/u. Distributions are shown within the laboratory

(left panel) and the projectile (right panel) frames.

Obviously, the angle–differential cross section (2.12) describes the emission of the recombination

photons in the projectile system (i.e. the rest frame of the ion). However, as discussed in

Section 2.1, the electron capture processes are typically observed in the laboratory system in

which the projectile ions is moved with velocity β towards the target atoms (electrons). Since

this is opposite to the direction of electron motion as seen from the projectile (cf Figure 2.4),

we have first to replace the angle θRR of the photon emission with the π − θRR and then

Lorentz–transform this – new – angle to the laboratory system (primed quantities):

cos θRR =
cos θ′RR − β

1 − β cos θ′RR

. (2.13)

By means of the angle transformation (2.13), we may finally obtain

dσRR
nb jb

dΩ′
RR

(θ′RR) =
1

γ2
(

1 − β cos θ′RR

)2

dσRR
nb jb

dΩRR
(θRR) (2.14)

the angular distribution of the recombination photons in the laboratory frame (Eichler and

Meyerhof 1995). Figure 2.4 displays, for instance, the angle–differential cross sections for the

K–shell recombination of bare uranium projectiles U92+ with energy Tp = 220 MeV/u which are

calculated within the projectile as well as laboratory frames. As seen from these calculations,

the Lorentz transformation partially cancels the forward shift of the photon emission pattern

as measured in the projectile frame and therefore leads to the nearly symmetrical angular

distribution in the laboratory frame (Spindler et al 1979, Stöhlker et al 2001). This cancellation

effect, however, does not abolish the strong photon emission at the forward angles close to

θ′RR = 0◦ which, as mentioned above, is a clear signature of the magnetic interaction effects in

relativistic heavy–ion collisions.
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Chapter 3

Density matrix theory

The most natural framework for studying the polarization and correlation phenomena in the

electron capture processes is given by the density matrix theory. Originally, this theory was

introduced by von Neumann in 1927 to describe the statistical concepts in quantum mechanics

and, hence, for the first time has been used mainly in statistical physics. In the middle of fifties,

however, the applications of the density matrix have been gaining more and more importance

in many other fields of physics. In atomic physics, for example, and combined particularly with

the concept of spherical tensor, the density matrix approach was developed by Fano (1957).

Since then, the density matrix has been utilized successfully in a large number of case studies on

the polarization properties and the correlation between emitted particles and light (Blum 1981,

Balashov et al 2000). Today, this formalism provides us with a tool of great elegance for our

theoretical understanding of electron–atom and electron–ion collisions, the excitation of atomic

autoionizing states (Balashov 1999), the polarization effects in the radiative and Auger decays

(Berezhko and Kabachnik 1977), the theory of cascade processes, or even lifetime interferences

in resonantly excited atoms (Kitajima et al 2002).

Since, however, the concept of the density matrix and statistical tensors as well as their appli-

cations in polarization and correlation studies have been presented in a number of works (Fano

1957, Fano and Racah 1959, Blum 1981, Slevin and Chwirot 1990), a rather short outline of

the basic relations will be given in Section 3.1. While, of course, these relations are valid for

any particular representation of the density matrix, the special interest in atomic physics is

typically placed on the representation of the angular momentum. In this contribution, the most

important cases of a spin density matrix of a (free and bound) electron as well as a photon are

discussed in detail in Section 3.2. In particular, we will show how these density matrices are

related to the (observable) polarization properties of both the electron and the photon beams

and, therefore, can be easily implemented to study the polarization and correlation phenomena

in electron–ion collision processes. In Section 3.3, for example, we will apply the basic concept

of the spin density matrix in order to derive the angular distributions and polarization prop-

erties of the photons which are emitted in the two–step radiative recombination of a free (or

quasi–free) electron into an excited state of the bare projectile ion.

13



�������������������������������������������������

�������������������������������������������������

������������

������������

������������

	�		�	
�

�


�������������������������������������������������

�������������������������������������������������

|    >η1

|    >ηm|    >ζn
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�


�������������������������������������������������

��
�
��
�

���
�

���
�

���
�

�������������������������������������������������

������������������������������������������������� ζ|    >1

ρi
ρf

t     +     8t     − 8
Figure 3.1: Time–independent treatment of the collision process; the statistical operators ρ̂i and ρ̂f

describe the ensembles of particles of an ”infinite time” before and after the collision.

3.1 Basic relations: Time–independent description

Within the density matrix theory, the state of a physical system is described in terms of so–

called statistical (or density) operators (Fano 1957). These operators can be considered to

represent, for instance, an ensemble of particles which are — altogether — in either a pure

quantum state or in a mixture of different states with any degree of coherence. Then, the basic

idea of the density matrix formalism is to accompany such an ensemble through the collision

process, starting from an ”initial” state which is prepared at an ”infinite time” before the

collision and reaching the ”final” state of a system at an ”infinite time” after the collision (cf

Figure 3.1). Similar to the scattering theory, this collision process is described by so–called

transition (or T̂–) operator which connects the statistical operators of the initial ρ̂i and the

final ρ̂f states by the standard rule (Blum 1981, Balashov et al 2000):

ρ̂f = T̂ ρ̂i T̂
+ . (3.1)

Instead of applying (operator) Equation (3.1), in practice, it is often more convenient to re–

write the statistical operators in a matrix form. Of course, the matrix of the statistical operator

(or so–called density matrix ) will depend on the particular representation. Using, for instance,

the representation of the individual quantum numbers {ζi}i=1...n and {ηi}i=1...m for both the

initial and final states of the system (see Figure 3.1), the final state density matrix may be

obtained from Equation (3.1) as:

〈

η1 ... ηm | ρ̂f | η′1 ... η′m
〉

=
∑

ζ1 ... ζn

∑

ζ′
1

... ζ′n

〈

η1 ... ηm

∣

∣

∣
T̂
∣

∣

∣
ζ1 ... ζn

〉

×
〈

ζ1 ... ζn | ρ̂i | ζ ′1 ... ζ ′n
〉

〈

ζ ′1 ... ζ
′
n

∣

∣

∣T̂+
∣

∣

∣ η′1 ... η
′
m

〉

, (3.2)

where
〈

η1 ... ηm

∣

∣

∣
T̂
∣

∣

∣
ζ1 ... ζn

〉

is the amplitude of transition from the state |ζ1 ... ζn〉 to the

state |η1 ... ηm〉. Obviously, the particular form of this transition amplitude depends on the

representations {ζi} and {ηi} as well as on the considered collision process (i.e. on the particular

form of the transition operator T̂ ).

Equations (3.1) and (3.2) are basic expressions of the density matrix theory. Assuming that the

initial state of system is well–defined, these Equations provide the complete information about

the system in the final state and, hence, can be used to derive all physical characteristics of the

system such as mean values and distributions of observables. Obviously, however, the outcome
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of some considered experiment will depend on the particular set–up and the capability of the

detectors for resolving the individual properties of the particles. In the density matrix theory,

this set–up of the experiment is typically described in terms of a (so–called) detector operator

P̂ which characterizes the detector system as a whole. In fact, this detector operator can be

considered to project out all those quantum states of the final–state system which leads to a

”count” at the detectors; in the language of the density matrix the probability for an ”event”

at the detector is simply given by the trace of the detector operator with the matrix (3.2):

W = Tr(P̂ ρ̂f ) =
∑

η1 ... ηn

〈

η1 ... ηn

∣

∣

∣P̂ ρ̂f

∣

∣

∣ η1 ... ηn

〉

. (3.3)

Apart from deriving the observable quantities of the system, however, the final state density

matrix (3.2) may be also used in order to separate the density matrices of the subsystems

or individual particles from one another. For instance, the density matrix of a single (k–th)

particle may be found by taking trace of the final state matrix (3.2) over the quantum numbers

of all particles except, certainly, the considered one:
〈

ηk

∣

∣

∣ ρ̂
(k)
f

∣

∣

∣ η′k
〉

=
∑

η1...ηk−1, ηk+1...ηm

〈

η1 ... ηk ... ηm | ρ̂f | η1 ... η
′
k ... ηm

〉

. (3.4)

In some practical applications, using the relation (3.4) is even more convenient than the ”de-

tector operator” technique (3.3). For instance, in the next Section we show that the density

matrix of photons (in the helicity representation) is directly related to their polarization prop-

erties and, therefore, it is not necessary to ”build up” the set of detectors in order to ”measure”

the polarization of light.

3.2 Spin density matrix and statistical tensors

As already mentioned in the previous Section, the density matrix of a system depends on the

given representation. In atomic physics, for example, the polarization properties of particles are

usually described in terms of the density matrix in representation of the angular momentum

(spin, orbital or/and total). Obviously, the dimension and the particular form of such spin

density matrix will be defined by the value of the angular momentum and by the physical

properties of a considered particle. In the following, therefore, we consider the spin density

matrices for three typical cases: a free electron (Subsection 3.2.1), an electron into a bound

hydrogenic state (Subsection 3.2.2) and a photon (Subsection 3.2.3).

3.2.1 Spin density matrix of a free electron

Within the exact relativistic description (2.1), a free electron is described by well defined (and

fixed) asymptotic momentum p and spin projection ms on the quantization axis. Since an

electron (with spin S = 1/2) has only two allowed spin projections ms = ± 1/2, its spin

density matrix is a 2×2 matrix and, hence, may be parameterized by three real parameters

(Kessler 1985, Balashov et al 2000):

〈pms |ρ̂e| pms〉 =
1

2





1 + Pz Px − iPy

Px + iPy 1 − Pz



 . (3.5)
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In fact, parameters Px,y,z are the cartesian coordinates of the polarization unit vector P of an

electron beam and, therfore, depend on the choice of coordinate system. In the radiative recom-

bination, for instance, the coordinate system is usually adopted in a way that the quantization

axis (z–axis) is chosen along the electron momentum p (Surzhykov et al 2002b). For such

choice of the quantization axis, parameter Pz reflects the degree of longitudinal polarization

and two parameters Px and Py denote the transversal polarization of electrons.

3.2.2 Spin density matrix and statistical tensors of a bound electron

In contrast to a free electron function |pms〉 which is built up as a superposition of the partial

waves |E κms〉 with the different angular momenta and parities (cf Equation (2.6)), an electron

into a bound hydrogenic state has well specified principal nb as well as Dirac’s κb = ±(jb +1/2)

quantum numbers. The polarization properties of such bound electron may be described,

therefore, by the spin density matrix 〈nb jb µb | ρ̂e |nb jb µ
′
b〉 with µb, µ

′
b = –jb, –jb +1, ... jb

in the representation of the (total) angular momentum. Instead of using this density matrix,

however, it is often more convenient to represent ionic (or atomic) bound states in terms of so–

called statistical tensors. Although, from a mathematical viewpoint, these statistical tensors are

equivalent to the spin density matrix, they are constructed to represent the spherical tensors of

rank k and component q. Hence, the statistical tensors can be expressed as a linear combination

of the density matrix elements (Percival and Seaton 1957, Blum 1981)

ρ̂kq(jb) =
∑

µbµ′
b

(−1)jb−µ′
b
〈

jbµb jb − µ′b | kq
〉 〈

nb jb µb | ρ̂e |nb jb µ
′
b

〉

(3.6)

following the standard procedure for the coupling of angular momenta. Owing to the properties

of the Clebsch–Gordan coefficients, nonzero tensor components arise only for integer indices

k, q with 0 ≤ k ≤ 2jb and q = −k, −k + 1, ..., k, respectively.

In theory of atomic collisions, however, the statistical tensors (3.6) are usually normalized by

means of zero–rank tensor (Blum 1981, Balashov et al 2000):

Akq(jb) =
ρ̂kq(jb)

ρ̂00(jb)
. (3.7)

These – reduced – statistical tensors have a particular meaning of the population of the indi-

vidual substates |nb jb µb〉 relative to each other. For instance, the (relative) magnetic sublevel

population of the p3/2 state is described by the component A20(jb) of the second–rank tensor

A20(jb = 3/2) =
Njb µb=±3/2 −Njb µb=±1/2

Njb µb=±3/2 +Njb µb=±1/2
(3.8)

which is well known as the alignment parameter (Berezhko and Kabachnik 1977).

3.2.3 Spin density matrix of photon: Polarization parameters

Of course, apart from description of the spin states of electrons or/and atoms, the density

matrix formalism may be also applied for studying the polarization of the photon beams. In the

case of photon, however, the spin density matrix is usually defined in the helicity representation
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Figure 3.2: The Stokes parameters (3.10)–(3.11) and (parameters of the) polarization ellipse (3.12) are

two equivalent sets in order to describe the linear polarization of light in the plane which is perpendicular

to the photon momentum k.

|kλ〉, where (helicity) λ is the spin projection of the photon onto the direction of its momentum

k. Since for the photon (with the intrinsic spin S = 1), helicity takes only two values λ = ± 1

(Berestetskii et al 1971), the spin density matrix is a 2×2 matrix and, therefore, similar to a

free electron matrix (3.5), can be written in the form (Born and Wolf 1970):

〈

kλ |ρ̂γ | kλ′
〉

=
1

2





1 + P3 P1 − iP2

P1 + iP2 1 − P3



 , (3.9)

where P1, P2 and P3 are so–called Stokes parameters of light. In optics, these parameters

are often utilized in experiments in order to characterize the degree of polarization of the

emitted light; while the Stokes parameter P3 reflects the degree of circular polarization, the

two parameters P1 and P2 together denote the (degree and direction of the) linear polarization

of the light in the plane perpendicular to the photon momentum k. Experimentally, these

Stokes parameters are determined simply by measuring the intensities of the light Iχ, linearly

polarized under the different angles χ with respect to the reaction plane (as defined by the

directions of the incoming beam and emitted photons). While the parameter

P1 =
I0 − I90
I0 + I90

, (3.10)

is obtained from the intensities in parallel and perpendicular to the reaction plane, the param-

eter P2 follows a very similar intensity ratio, taken at χ = 45◦ and χ = 135◦, respectively:

P2 =
I45 − I135
I45 + I135

. (3.11)

Of course, the parameters P1 and P2 specify the linear polarization of light completely, i.e.

both the degree of the polarization as well as its direction. In some applications, however, it is

usually more convenient to use another set of polarization parameters. These parameters, for

example, may represent the linear polarization of light in terms of polarization ellipse. Such

an ellipse, defined in the plane perpendicular to the photon momentum k, is characterized
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Figure 3.3: Two–step radiative recombination of an electron into a bare highly–charged ion. In the

first step of such recombination process, a free electron |pms〉 is captured into intermediate ion state

|nb jb〉 under simultaneous emission of the recombination photon |kRR λRR〉. The subsequent decay of

this intermediate (excited) state leads to the emission of the second – characteristic – photon |kλ〉.

by the relative length PL of its principal axis as well as by the angle χ0 with respect to the

reaction plane (cf Figure 3.2). While the angle χ0 which can be expressed in terms of the

Stokes parameters P1 and P2 as (Born and Wolf 1970, Balashov et al 2000):

cos 2χ0 =
P1

√

P 2
1 + P 2

2

, sin 2χ0 =
P2

√

P 2
1 + P 2

2

, (3.12)

indicates the direction under which the linear polarization of light is maximal, the relative

length of principal axis PL =
√

P 2
1 + P 2

2 determines the degree of polarization in this direction.

3.3 Application to the two–step electron recombination

Of course, the basic relations (3.1) – (3.4) of the density matrix theory can be used for inves-

tigation of an arbitrary collision process. In the following, for example, we will employ this

theory in order to study the two–step radiative recombination of bare high–Z ions. To this end,

let us first consider the capture of a free electron into some ”intermediate” ionic state, accom-

panied by the emission of the first – recombination – photon (cf Figure 3.3). For this capture

process, in Subsection 3.3.1, we derive the angular distribution and the polarization parame-

ters of the emitted light as well as the spin density matrix of the residual (”intermediate”) ion.

Obviously, this density matrix contains information about population of the ”intermediate”

ion state and, therefore, has to be applied later to consider its subsequent radiative decay. The

properties of this radiative decay, such as – again – the angular distribution and polarization

of the characteristic radiation are derived finally in Subsection 3.3.2.

3.3.1 Electron capture into bound state of bare ion

In the first step of the electron capture process, the ”initial” state of the (combined) system

is given by a (bare) ion plus a free electron with asymptotic momentum p and spin projection

ms (cf Figure 3.3). Since, for the sake of simplicity, we will restrict our treatment to the case

18



of a zero nuclear spin I = 0, the (spin) state of the initial system ”electron + ion” is then

equivalent to the statistical operator of a free electron ρ̂ i ≡ ρ̂ e.

In the ”intermediate” state of a system, following electron capture, the statistical operator ρ̂b

has to describe both the residual (hydrogen–like) ion |nb jb µb〉 and the recombination photon

emitted with the wave vector kRR and helicity λRR. This – intermediate state – operator can

be obtained from the operator ρ̂i of the initial state by following the standard rule (3.1):

ρ̂b = R̂ ρ̂i R̂
+ = R̂ ρ̂e R̂

+, (3.13)

where the transition operator R̂ describes the electron–photon interaction for the case of radia-

tive recombination. Of course, the particular form of the transition operator R̂ depends on the

framework in which we describe the coupling of the radiation field to the atom. As appropriate

for high–Z ions, below we will always refer to a relativistic treatment of the electron–photon

interaction, which was discussed previously in Section 2.2 .

By means of the free electron operator ρ̂e and relation (3.13), we may obtain the intermediate

state density matrix in the representation of the individual angular momenta

〈

nb jb µb, kRRλRR | ρ̂b |nb jb µ
′
b, kRRλ

′
RR

〉

=
∑

msm′
s

〈

nb jb µb, kRRλRR

∣

∣

∣ R̂
∣

∣

∣pms

〉

×
〈

pms |ρ̂e|pm′
s

〉

〈

pm′
s

∣

∣

∣ R̂+
∣

∣

∣nb jb µ
′
b, kRRλ

′
RR

〉

, (3.14)

where transition amplitude
〈

nb jb µb, kRRλRR

∣

∣

∣
R̂
∣

∣

∣
pms

〉

= C · MRR
bp (ms, λ, µb) for the re-

combination of a free electron under the simultaneous photon emission is given (except from

kinematical factor) by the Equation (2.1). The density matrix (3.14) may be used now in order

to derive the properties of both the emitted photon as well as the residual ion. As mentioned

in Section 3.1, these properties may be ”measured” in a most straightforward way by building

up the proper detector operator P̂ and, then, by taking trace of it product with the statisti-

cal operator (3.13). To determine, for instance, the angular distribution of the recombination

photons, we may assume a detector in a given direction n̂RR which is insensitive both to the

polarization of such photons as well as to the spin substates of the residual ion

P̂RR =
∑

λRRµb

|kRRλRR〉 |nb jb µb〉 〈nb jb µb| 〈kRRλRR| , (3.15)

where the summation over (unobserved) helicities λRR and the magnetic quantum numbers

µb of the ions are performed in order to define a proper detector (3.15). From this detector

operator and the expression (3.14) we can immediately derive the angular distribution (2.12)

dσRR
nbjb

dΩRR
(n̂RR) = Tr(P̂RR ρ̂b) =

∑

λRRµb

〈nb jb µb, kRRλRR | ρ̂b |nb jb µb, kRRλRR〉

=
1

2

∑

λµbms

∣

∣

∣

〈

nb jb µb, kRRλRR

∣

∣

∣ R̂
∣

∣

∣pms

〉∣

∣

∣

2
(3.16)

of the photons which are emitted in the recombination of free unpolarized electrons into a

hydrogenic bound state |nb jb〉.
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Of course, another set of detector operators can be introduced in order to study the polarization

of the emitted photons or, let us say, the magnetic sublevel population of the ion following

electron capture. However, since these (polarization and alignment) properties are directly

related to the spin density matrices of either the outgoing photons (3.9) or the residual ion

(3.6), it is usually more convenient to retain at the density matrix of the final state (3.14).

That is, by applying the standard technique (3.4), this final state density matrix can be spitted

into independent matrices for the recombination photons and the final ions, respectively. For

example, by taking trace over all unobservable quantum numbers of the residual ion we will

immediately obtain the spin density matrix

〈

kRRλRR | ρ̂γ |kRRλ
′
RR

〉

= Tr b (ρ̂b) =
∑

µb

〈

nb jb µb, kRRλRR | ρ̂b |nb jb µb, kRRλ
′
RR

〉

(3.17)

of the recombination photons following electron capture into a bound (hydrogenic) state |nb jb〉
(Surzhykov et al 2001, 2003b). Then, by making use of this matrix and relation (3.9) we can

easily find the Stokes parameters of the emitted radiation in a form:

P1 =
〈kRR + 1 | ρ̂γ |kRR − 1〉 + 〈kRR − 1 | ρ̂γ |kRR + 1〉
〈kRR + 1 | ρ̂γ |kRR + 1〉 + 〈kRR − 1 | ρ̂γ |kRR − 1〉 , (3.18)

P2 = i
〈kRR + 1 | ρ̂γ |kRR − 1〉 + 〈kRR − 1 | ρ̂γ |kRR + 1〉
〈kRR + 1 | ρ̂γ |kRR + 1〉 + 〈kRR − 1 | ρ̂γ |kRR − 1〉 , (3.19)

P3 =
〈kRR + 1 | ρ̂γ |kRR + 1〉 − 〈kRR − 1 | ρ̂γ |kRR − 1〉
〈kRR + 1 | ρ̂γ |kRR + 1〉 + 〈kRR − 1 | ρ̂γ |kRR − 1〉 , (3.20)

where the trace of the photon density matrix (3.17) in the denominator of Equations (3.18)–

(3.20) ensures the proper normalization of these polarization parameters (Balashov et al 2000).

While the density matrix of the recombination photons (3.17) follows the summation of the

(intermediate–state) matrix (3.14) over the magnetic quantum numbers µb of the residual

ion, the spin density matrix of such ion, in contrast, may be obtained by making trace over

unobservable photon quantum numbers. Obviously, however, the choice of these – unobservable

– quantities of emitted light depends on the particular set–up of experiment. If we suppose, for

example, that recombination photons are not detected in the electron capture, the spin density

matrix of the residual ion

〈

nb jb µb

∣

∣ ρ̂ ion
b

∣

∣nb jb µ
′
b

〉

=
∑

λRR

∫

dΩkRR

〈

nb jb µb, kRRλRR | ρ̂b |nb jb µ
′
b, kRRλRR

〉

(3.21)

must include both the summation over the helicities λRR = ± 1 as well as the integration
∫

dΩkRR
over all photon directions. This integration, however, has to be omitted in order to

describe the intermediate ionic states

〈

nb jb µb

∣

∣ ρ̂ ion
b (n̂RR)

∣

∣nb jb µ
′
b

〉

=
∑

λRR

〈

nb jb µb, kRRλRR | ρ̂b |nb jb µ
′
b, kRRλRR

〉

, (3.22)

following the emission of recombination radiation in a given direction n̂RR = (θRR, φRR) with

respect to the incoming electron momentum (Surzhykov et al 2002b). Moreover, when com-

paring with Equation (3.16), we find that the spin density matrix (3.22) is normalized in such
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Figure 3.4: Two possible scenarios for studying the radiative decay of the excited ion state |nb jb〉
produced by the (radiative) electron capture. In the case of ”independent” measurement, the only

characteristic radiation is observed, while the recombination photons remain undetected. In contrast,

both the recombination and subsequent decay photons are measured in ”coincidence” scenario.

a way that its trace is equal to the angle–differential cross for the electron recombination into

(hydrogen–like) ion state |nb jb〉:

Tr ρ̂ ion
b (n̂RR) =

dσRR
nbjb

dΩRR
(n̂RR) . (3.23)

From this relation we may immediately find also the normalization of the (angle–independent)

density matrix (3.21): Tr ρ̂ ion
b = σRR

nbjb
, where σRR

nbjb
=
∫

dΩkRR

dσRR
nbjb

dΩRR
(n̂RR) is the total recom-

bination cross section (Ichihara and Eichler 2000).

3.3.2 Subsequent radiative decay

The density matrices (3.21) and (3.22) describe the intermediate ion state |nb jb〉 following

electron capture for two different cases: while the matrix (3.21) characterizes the population of

the ion as averaged over all photon angles, the matrix (3.22) is related to only those substates

which arise from photon emission in a fixed direction n̂RR = (θRR, φRR). Obviously, these

two situations have to be taken into account in order to accommodate the system through

the subsequent decay which leads to emission of the (second) characteristic photon (cf Figure

3.4). For example, if only the properties of the characteristic radiation are studied while the

recombination photons remain undetected, the theoretical treatment of the radiative decay

have to be started from the density matrix in a form (3.21). In contrast, the simultaneous

measurement of both the recombination and the subsequent decay radiation in the coincidence

scenario is described by the density matrix (3.22) which contains information about the emission

angles n̂RR = (θRR, φRR) of the first–step (recombination) photon.

Since, however, the measurements of the second–step (characteristic) radiation separately from

the recombination x–ray photons are more typical for present–day experiments (Stöhlker et al

1997, Stöhlker 1999), first we will consider the density matrix (3.21) and will utilize, once more,

the relation ρ̂0 = R̂ ρ̂ ion
b R̂+ (cf Equation (3.13)). Similarly to before, the statistical operator

ρ̂0 has to describe the hydrogen–like ion in its final state |n0 j0 µ0〉 as well as the decay photon
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with the wave vector k and helicity λ; in the representation of the individual momenta the

matrix of this operator takes the form (Surzhykov et al 2002b)
〈

n0 j0 µ0,kλ | ρ̂0 |n0 j0 µ
′
0,kλ

′
〉

=
∑

µbµ
′

b

〈

n0 j0 µ0,kλ
∣

∣

∣
R̂
∣

∣

∣
nb jb µb

〉〈

nb jb µb

∣

∣ ρ̂ ion
b

∣

∣nb jb µ
′

b

〉

×
〈

nb jb µ
′
b

∣

∣

∣ R̂+
∣

∣

∣n0 j0 µ
′
0,kλ

′
〉

, (3.24)

where
〈

n0 j0 µ0,kλ
∣

∣

∣
R̂
∣

∣

∣
nb jb µb

〉

represents the matrix element for the radiative bound–bound

electron transition. Within the relativistic description, this matrix is very similar to the free–

bound transition amplitude (2.1):

〈

n0 j0 µ0,kλ
∣

∣

∣
R̂
∣

∣

∣
nb jb µb

〉

= C ·
∫

d3rψ†
j0µ0

(r)α û∗
λ e−ikr ψjbµb

(r) . (3.25)

The only difference in (3.25) is that both (one–electron) wavefunctions represent bound ion

states and, hence, only the photon filed has to be expanded into its multipole components

(2.2). Therefore, evaluation of the transition amplitude (3.25) is completely resembling to the

free–bound case and has been discussed elsewhere (Drake 1988, Pal’chikov 1998).

From the final state density matrix (3.24), the angular distribution of the de–excitation photons

can be obtained, by applying the projection operator P̂0 =
∑

λ µ0

|kλ〉 |n0 j0 µ0〉 〈n0 j0 µ0| 〈kλ|

which ”measures” the characteristic radiation in a given direction n̂ = (θ, φ) being insensitive,

however, to its polarization as well as to sublevel population of the final ion:

dσdec

dΩ
(n̂) = Tr(P̂0 ρ̂0) =

∑

λµ0

〈n0 j0 µ0,kλ | ρ̂0 |n0 j0 µ0,kλ〉

=
∑

µbµ
′

b

∑

λµ0

〈

n0 j0 µ0,kλ
∣

∣

∣ R̂
∣

∣

∣nb jb µb

〉〈

nb jb µb

∣

∣ ρ̂ ion
b

∣

∣nb jb µ
′

b

〉

×
〈

nb jb µ
′
b

∣

∣

∣ R̂+
∣

∣

∣n0 j0 µ0,kλ
〉

. (3.26)

As seen from Equation (3.26), the angular distribution of the characteristic photons still con-

tains knowledge about the electron recombination (i.e. the first step) which, obviously, arises

from the intermediate state density matrix (3.21). This density matrix, however, is obtained

in assumption that first (recombination) photon remains unobserved and, hence, may provide

us only with some ”averaged” information about electron capture. In order to investigate

the radiative recombination in more details, we may consider the coincidence scenario of the

experiment (cf Figure 3.4) in which both first– and second–step photons are measured simul-

taneously. Of course, the theoretical treatment of such photon–photon correlation phenom-

ena is also provided by the relations (3.24) and (3.26) in which, however, the intermediate

state density matrix (3.21) has to be substituted by its ”angular–dependent” form (3.22):
〈

nb jb µb

∣

∣ ρ̂ion
b

∣

∣nb jb µ
′

b

〉

→
〈

nb jb µb

∣

∣ ρ̂ion
b (n̂RR)

∣

∣nb jb µ
′

b

〉

. As the important consequence of

this substitution, the angular distribution (3.26) depends now not only on the angles n̂ = (θ, φ)

of the decay photons but also on the direction n̂RR = (θRR, φRR) at which the recombination

photons are detected: dσdec

dΩ (n̂) → dσdec

dΩ (n̂, n̂RR) and, therefore, displays a general form of the

photon–photon angular correlation function.
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Similarly to the first step, the final state density matrix (3.24) may be applied not only to

derive the observable properties of the characteristic radiation (such as angle–differential cross

section (3.26)) but also in order to separate the spin density matrix of the decay photons:

〈

kλ | ρ̂γ |kλ′
〉

= Tr0(ρ̂0) =
∑

µ0

〈

n0 j0 µ0, kλ | ρ̂0 |n0 j0 µ0, kλ′
〉

. (3.27)

This density matrix can help us to analyze the Stokes (polarization) parameters of the char-

acteristic radiation (cf Equations (3.18)–(3.20)), or even the angular–polarization phenomena

if the polarization of the subsequent decay photons is measured in coincidence with (the angle

of) the recombination radiation.

23



24



Chapter 4

Radiative electron capture:

Advanced studies

Owing to the recent advances in the detector design, a new generation of experiments on the

radiative electron capture became already or are likely to become possible within the next

years. The main accent in these – advanced – studies will be placed either on the polarization

properties of the recombination as well as the subsequent decay photons or on the correlation

phenomena which arise in the electron capture into excited ionic states. In this contribution,

below we will give the classification of these – polarization and correlation – measurements

and will discuss in detail their possible outcome. Most naturally, such theoretical analysis can

be done in the framework of the density matrix theory, whose basic relations (when applied

to the electron recombination) are given in the Chapter 3. Following these relations, we will

describe the (radiative) electron capture into bound states of bare projectile ions and the

subsequent radiative decay as a two–step process (see Figure 3.3). In Sections 4.1 and 4.2, we

then consider the angular distributions and the polarization properties of the emitted radiation,

independent for each step. In contrast, the simultaneous studies of both, first and second,

steps in the photon–photon coincidence measurements are discussed in Section 4.3. Finally,

the prospectives of the electron recombination studies for the (initially) few–electron ions and

ions with non–zero nuclear spins are summarized in Section 4.4.

4.1 Electron capture into a bound ion state (first step)

The capture of an electron into a bound state of bare highly–charged ion leads to the emission of

the recombination photons as well as to the population of the residual ionic states. Therefore,

in order to obtain the complete knowledge about such recombination process, we have to study

the properties of both the residual (hydrogen–like) ions and the emitted light. For instance,

the outgoing radiation is characterized (apart from the well known energies) by its angular

distribution and polarization. Since, however, the angular distributions of the recombination

photons have been intensively studied during recent years both in experiment and in theory

(Eichler and Meyerhof 1995, Stöhlker et al 1994, 1995), below we will restrict our treatment

to their polarization properties. To this end, in Subsection 4.1.1, we describe the relativistic
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Figure 4.1: The Stokes parameters P1 and P2 of the recombination photons which are emitted in the

electron capture into the K–shell of the bare uranium ions with projectile energies Tp = 100 (—), 200

(– –), 300 (– - –) and 400 (– - - –) MeV/u. The Stokes parameters P2 are shown for the capture of

completely polarized electrons. Calculations are presented in the laboratory frame.

computations for the linear polarization of emitted light following capture of electrons into the

K shell of bare uranium projectile ions U92+. In these computations, we place the particular

emphasis on the effect of the incident electron spin–polarization which, as shown, remarkably

modifies the linear polarization of the recombination x–ray photons.

Obviously, while the polarization and the angular distribution of the recombination photons are

observable properties, the sublevel population of the residual ion can not be measured directly

in experiment. However, this population is usually obtained from the measurements on the

subsequent radiative decay of the ion (Stöhlker et al 1997, Surzhykov et al 2002a) if, of course,

an electron is initially captured into excited state. In this contribution, we study the magnetic

sublevel population of the excited states of highly–charged projectile ions as it arises from the

electron recombination. Special attention is paid, in particular, to the alignment parameter of

the 2p3/2 state of the (initially) bare uranium ions U92+. In Subsection 4.1.2 this parameter

is obtained for the direct electron capture into 2p3/2 state, while the cascade feeding from the

higher–laying levels is discussed in Subsection 4.1.3.

4.1.1 Polarization of the recombination photons

Measurements on the polarization of hard x–rays emitted in the electron capture into highly–

charged projectile ions become possible nowadays owing to the application of position sensitive

solid–state detectors (Stöhlker et al 2003). For the recombination of bare uranium ions U92+,

for example, first experiments on the linear polarization of outgoing light have been performed

at the GSI storage ring during the last year. As the preliminary results of these measurements

(Tachenov et al 2003), strong linear polarization within the reaction plane was found for the

K–shell recombination photons. These (preliminary) experimental data – as least qualitatively

– are well reproduced now by the theoretical computations based on the relativistic Dirac’s

treatment (Surzhykov et al 2001). Left panel of Figure 4.1 displays, for example, the Stokes

parameter P1 (see Equation (3.10)) which is calculated for the electron capture into the K–shell

26



Figure 4.2: Rotation of the polarization ellipse of the recombination photons, calculated for three

polarizations of the incident electrons: Pz = 0.0 (– - –), 0.3 (– –) and 1.0 (—) at the photon emission

angle θRR=30◦.

of bare uranium ions with energies in the range 100 ≤ Tp ≤ 400 MeV/u. Moreover, as is typical

for present–day experiments, we assume here that both projectile ions and target electrons (or

atoms) are unpolarized and, therefore, the second Stokes parameter P2 (3.11) is identically

zero for all photon angles θRR (Eichler et al 2002, Surzhykov et al 2003b). Together with the

fact that the P1 parameter is positive and quite large for most emission angles (apart from the

forward and backward directions), it implies that for projectile energies Tp ≤ 400 MeV/u, the

K–shell recombination photons are strongly linearly polarized within the reaction plane.

A rather different situation will arise, however, for the electron capture process in which either

projectile ions or/and atomic target are spin–polarized. In the following, for example, we

analyze the recombination of longitudinally polarized electrons with Pz = 1.0 into unpolarized

uranium ions. As seen from right panel of Figure 4.1, this results in a non–vanishing Stokes

parameter P2 which peaks at around θRR = 30◦ and becomes larger for increasing projectile

energies while the P1 parameter remains unaffected by the electron polarization. Since the

second Stokes parameter P2 reflects the intensity ratio of light, linearly polarized at angles

χ = 45◦ and χ = 135◦ with respect to the reaction plane (3.11), we may conclude that (non–

zero) polarization of the incident electrons leads to an overall rotation of the linear polarization

of the emitted photons out of the reaction plane. Most naturally, this rotation may be observed

if instead of two Stokes parameters P1 and P2 we represent the linear polarization of light in

terms of the polarization ellipse (3.12). Figure 4.2 displays, for example, such an ellipse as

calculated for the photon emission angle θRR = 30◦ and for three different polarizations of the

incident electrons: Pz = 0.0, 0.3 and 1.0. According to the increase of electron polarization

Pz, the (rotation) angle of the principal axis of the polarization ellipse increases from χ =

0◦ for the unpolarized electors (Pz = 0.0) to almost χ = 30◦ for the capture of completely

polarized electrons (Pz = 1.0). The measurements on the (rotation of) polarization ellipse of

the recombination photons may serve, therefore, as a valuable tool for studying the polarization

properties of either the electrons or, respectively, of the (nuclear) spin–polarized ion beams

(Fritzsche and Surzhykov 2003, Surzhykov et al 2003b).
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Figure 4.3: The alignment parameter A2 of the 2p3/2 state following the radiative recombination of a

free electron into bare uranium ion U92+ as a function of projectile energy.

4.1.2 Electron capture into excited states: Alignment parameters

Of course, (future) experiments on the linear polarization of emitted x–ray photons will provide

us with detailed knowledge on the electron recombination in the realm of high–Z ions. However,

another way to learn more about the reaction mechanism is given by the measurements on the

population of magnetic sublevels following electron capture into excited ion states (Stöhlker

et al 1997, Eichler et al 1998). Apart from studying the collision dynamics, this sublevel

population may also help to determine the polarization properties of the incident particles

(Surzhykov et al 2003a). Such – polarization – phenomena, however, will be discussed later,

while in this Section we restrict ourselves to the recombination of unpolarized electrons into an

excited state |nb jb〉 of unpolarized ions. In particular, this capture process leads to an equal

population of all pairs of sublevels with the same modulus of magnetic quantum number |µb|.
Moreover, if, for jb > 1/2, the different pairs of magnetic substates are unequally populated,

the ion is said to be aligned. In the density matrix theory, alignment of the atomic (or ionic)

states is described in terms of one or several reduced statistical tensors Akq (3.7), which are

usually called alignment parameters. As it follows the definition (3.6), these parameters are

related to the spin density matrix (3.21) of the residual ion following electron capture and,

therefore, to the population cross sections σRR
nb jb µb

of the various magnetic substates |nb jb µb〉.
In the case of electron capture into the 2p3/2 state, for instance, only one parameter A2 ≡ A20

is nonzero (apart, of course, A00 ≡ 1), and can be expressed as (Eichler 1994):

A2 =
σRR

2p3/2, µb=±3/2 − σRR
2p3/2, µb=±1/2

σRR
2p3/2, µb=±3/2 + σRR

2p3/2, µb=±1/2

. (4.1)

Since the alignment (4.1) depends on the recombination cross sections σRR
2p3/2, µb

, we may also

expect that it will depend on the collision parameters such as nuclear charge Z and energy Tp

of the projectile ion. In Figure 4.3, for example, we display the parameter A2 for the capture

of an electron into the 2p3/2 state of the bare uranium ion U92+. The alignment parameter

appears to be negative for all collision energies, referring to a predominant population of the

sublevels with |µb| = 1/2. As seen from the Figure, this population is strongest for the lowest

energy, has a minimum around 500 MeV/u and increases again for the higher energies.
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Collision energy A2 Ã2 A2/Ã2

190.7 MeV/u -0.587 -0.360 1.63

220.0 MeV/u -0.568 -0.344 1.65

295.0 MeV/u -0.542 -0.322 1.68

358.0 MeV/u -0.528 -0.300 1.76

392.4 MeV/u -0.523 -0.290 1.80

Table 4.1: The alignment parameters of the 2p3/2 state following the radiative recombination of a

free electron into bare uranium ions U92+. While the parameter A2 describes the sublevel population

arising from the direct electron capture alone, the feeding transitions from higher levels are included in

the parameter Ã2 (Stöhlker et al 1997, Bilyk et al 2003).

4.1.3 Cascade contributions

The alignment parameter (4.1) describes the relative sublevel population of the 2p3/2 state

following direct electron capture. In practice, however, we may expect that apart from the

direct recombination, the feeding transitions from the higher–laying levels will also contribute

to the population of ionic substates. In order to study these – cascade – contributions we may

consider the system of the (so–called) rate equations (Lin and Macek 1987, Bilyk et al 2003)

dNi

dt
= −

<
∑

j

λij Ni +

>
∑

k

λkiNk , (4.2)

which describes the decay dynamics of the magnetic sublevels |i〉 ≡ |nbi
jbi
µbi

〉 produced with

the initial population Ni(0) = C · σRR
nbi

jbi
µbi

. Moreover, in the system of equations (4.2), λij

is the decay rate for the |i〉 → |j〉 transition and Λ is the total number of (excited) sublevels

which are considered in the decay cascade; the index j runs over all levels with total energy

Ej < Ei and k over all those with Ek > Ei.

By performing an integration of the system (4.2), we may find the occupation of the magnetic

sublevels as a function of time Ni = Ni(t). However, in experiments which are typically carried

out at the ESR jet–target (Stöhlker et al 1997, Stöhlker 1999), no time dependence in the

decay dynamics can be explored since the typical lifetimes of the excited ion states are in the

order of τ ∼ 10−14 ÷ 10−17 s. Such tiny lifetimes lead to an (almost) instantaneous decay of

all levels if compared with the length of the target and, hence, to an averaging (over time) the

sublevel populations as observed experimentally. Therefore, in order to ”measure” alignment

Ã2 of the 2p3/2 state which arises both from the direct electron capture as well as from the

cascade feeding, we have to average solutions of the system (4.2) for the four magnetic sublevels
∣

∣2p3/2 , µb = ±1/2,±3/2
〉

and to employ then expression (3.8). In Table 4.1, for example, we

display this alignment as calculated for the bare uranium ions with projectile energies in the

range 190.7 MeV/u ≤ Tp ≤ 392.4 MeV/u. Moreover, in order to emphasize the effect of cascade

feeding we also present the parameter A2 which describes the sublevel population following the

direct electron capture alone (4.1). As seen from the Table, the electron transitions from the

upper levels lead to a considerable reduction of the ”direct” alignment A2 and, therefore, has to
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be taken into account for the proper analysis of experimental data. This reduction, moreover,

enlarges for the higher projectile energies which has to be attributed to the relative increasing

of the electron capture into the highly–excited levels with respect to the capture into 2p3/2

state (Ichihara and Eichler 2000).

4.2 Radiative decay (second step)

If, instead of the ground state, an electron is (radiatively) captured into some excited ion state,

its subsequent decay will lead to the emission of one or several photons until the ground state

is reached. Similarly to the recombination photons, such – subsequent – photon emission is

characterized by its angular distribution and polarization. Both of these properties are closely

related to the magnetic sublevel population of the excited ion state as it arises from the electron

capture (Berezhko and Kabachnik 1977, Takacs et al 1996). However, as discussed previously

in Section 3.3, apart from the collisional parameters such as nuclear charge Z and energy

Tp of projectile ion, this population also reflects the set–up and efficiency of detectors which

are used in order to study the electron recombination process. In the following, we assume

that the recombination photons are not observed in a particular experimental scheme and,

therefore, the subsequent radiative decay is studied separately from the first step (cf Figure

3.4). For such ”separate” measurements, in particular, the population of the 2p3/2 state is

described by the alignment parameter (4.1) which we will apply below in order to study both

the angular distribution (Subsection 4.2.1) as well as the linear polarization (Subsection 4.2.2)

of the Lyman–α1 (2p3/2 → 1s1/2) transition in the hydrogen–like uranium ions U91+.

4.2.1 Angular distribution of the decay photons

Several experiments have been carried out during recent years in order to study the angular

distribution of the subsequent decay photons and, hence, to derive the magnetic sublevel pop-

ulation of the excited ion states following the electron capture (Stöhlker et al 1997, Stöhlker

1999). In particular, by measuring the anisotropic emission pattern of the Lyman–α1 radiation

(see left panel of Figure 4.4), an experimental anisotropy parameter βexp may be elucidated

from the least square adjustment of the general formula

WLy(θ) ∝ 1 + βexp

(

1 − 3

2
sin2 θ

)

(4.3)

for the angular distribution of characteristic photons which is presented here in the projectile

(emitter) frame. The right panel of Figure 4.4 displays, for example, the anisotropy parameters

(solid circles) as obtained for the hydrogen–like uranium ions U91+ produced in the U92+ → N2

collisions as a function of the projectile energy. However, deviations of up to 30 % were found

when these experimental parameters βexp were compared with the calculations (dashed line)

based on the standard electric dipole approximation β = A2/2 where the A2 is the alignment

of the 2p3/2 state (4.1). Originally, this discrepancy was quite surprising since, even for the

hydrogen–like uranium, the electric dipole approximation for the coupling of the radiation field

is known to provide theoretical decay rates with an accuracy of better than 1 % (Drake 1988,

Pal’chikov 1998).
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Figure 4.4: By employing the least square adjustment of Equation (4.3) to the experimental Lyman –

α1 angular distribution (left panel), we may obtain the effective anisotropy parameter βexp for various

collision energies (right panel). The experimentally determined anisotropy parameters (solid circles) are

compared with theoretical predictions based on the electric dipole approximation (dashed line) and the

exact approach (solid line) which includes the E1–M2 multipole mixing term.

Note, however, that in computations on the total decay rates, the contributions from the

different multipoles of the radiation field appear completely additive, while this is not the case

for the angular distribution (as well as polarization) of the emitted photons. In the angular

distribution of the Lyman–α1 x–rays, for example, the incorporation of the – weaker – magnetic

quadrupole (M2) decay branch beyond the electric dipole (E1) term leads to an interference

between the transition (E1 and M2) amplitudes which can be expressed in term of the so–called

structure function (Surzhykov et al 2002a)

f(E1,M2) ∝
[

1 + 2
√

3

〈

1s1/2 ||M2|| 2p3/2

〉

〈

1s1/2 ||E1|| 2p3/2

〉

]

, (4.4)

where 〈||E1||〉 and 〈||M2||〉 are the reduced matrix elements for the bound–bound electric

(magnetic) multipole transitions. The structure function (4.4) modifies the (electric dipole)

anisotropy parameter β which has to be replaced now by the corresponding effective parameter

β → βeff = f(E1,M2) · A20/2 (4.5)

in order to take into account the E1–M2 multipole mixing in the photon angular distribution.

In the dipole approximation, which incorporates only the E1 term to the Lyman–α1 transition,

f(E1,M2) ≡ 1. As seen from Equation (4.4), the main correction to this approach arises from

a mixed term of the E1 and the magnetic quadrupole (M2) components which is proportional

to the ratio of the corresponding amplitudes. For high–Z ions, this ratio is ∝ 0.1, giving rise

to a 20–30 % magnetic quadrupole correction over the dipole approximation. For hydrogen–

like U91+ ions, for instance, the structure function is f(E1,M2) = 1.28, leading to a strongly

modified anisotropy parameter (4.5). That is, as seen from Figure 4.4, the magnetic quadrupole

term M2 in the Lyman–α1 transition shifts up the theoretical curve for the βeff parameter (solid

line) which is now in good agreement with the experimental data.
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Figure 4.5: Linear polarization of the Lyman–α1 radiation following the electron capture into 2p3/2

state of bare uranium ions with energies Tp = 190, 295 and 392 MeV/u. The dashed line represents

the theoretical prediction from the electric dipole approximation, while the solid line incudes also the

magnetic quadrupole decay channel (cf Equation 4.6). Results are presented within the laboratory frame

(i.e. the rest frame of the electron target).

However, for the collision energies less than 100 MeV/u, Figure 4.4 still indicates remarkable

discrepancy between experiment and theory. This discrepancy has to be attributed to the non-

radiative electron capture (NRC) which, as discussed in Chapter 1, is the dominant population

process in the low–energy region. We may explain, therefore, the ”resonance” structure arising

around Tp ∼ 90 MeV/u by the additive contributions to the alignment of the 2p3/2 state from

both the radiative and the nonradiative electron capture processes (Orsic–Muthig et al 2002).

4.2.2 Polarization of the decay photons

The radiative decay of the aligned ion state leads not only to the anisotropic angular distribution

(see Equation 4.3) but also to the non–zero linear polarization of the characteristic x–ray

photons. Similarly to the recombination light, this (linear) polarization can be described in

terms of the two Stokes parameters P1 and P2. By combining the Equations (3.18) and (3.19)

with the spin density matrix (3.27) of the characteristic decay photons, we may find that, for

the Lyman–α1 transition, the Stokes parameter P1 is given in the emitter frame by

P1(θ) ∝
−3

2
A20

2 sin2 θ

[

1 − 2√
3

〈1s1/2||M2||2p3/2〉
〈1s1/2||E1||2p3/2〉

]

1 + A20

2 P2(cos θ)

[

1 + 2
√

3
〈1s1/2||M2||2p3/2〉
〈1s1/2||E1||2p3/2〉

] , (4.6)

while the parameter P2 is equivalent to zero for all emission angles (Surzhykov et al 2003c).

Equation (4.6) includes both, the electric dipole (E1) and magnetic quadrupole (M2) contri-

butions to the Lyman–α1 transition. However, in contrast to the angular distribution (4.3), the

linear polarization of the decay photons is less affected by the E1–M2 multipole mixing. As

seen, for instance, from Figure 4.5, the magnetic quadrupole decay channel in the hydrogen–

like uranium ions U91+ leads to a decrease of the linear polarization by approximately 15 %

when compared with the electric dipole approach. This – relatively small – enhancement are

likely to be measured within the next few years and will provide us, together with the angular

distribution (4.3), with the precise information on the electronic structure of highly–charged

heavy ions.
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4.3 Photon–photon coincidence studies (first ”plus” second steps)

So far, we have discussed the properties of the electron capture into an (excited) ion state

and its subsequent radiative decay separately from each other. These – individual – studies

were found to reveal a great deal of information about the interaction of electrons with the

radiation field in the presence of strong electro–magnetic fields. However, even more detailed

information about the capture process as well as the incident particles can be derived from

the simultaneous measurements of the first– and second–step photons in an (e, 2γ) coincidence

experiment (cf left panel of Figure 3.4). Perhaps, the most simple coincidence measurement

concerns the angle–angle correlations whose theoretical background within the framework of

the density matrix theory was briefly outlined in Subsection 3.3.2. In the following, we will

apply this general theory to the electron capture into 2p3/2 state of uranium projectile U92+

and the study of the subsequent Lyman–α1 angular distributions, where we assume that the

recombination photons are detected in coincidence. In Subsection 4.3.1, for example, we show

that the emission pattern of the decay photons strongly depends on the particular angle under

which the (first) recombination photons are observed. As later discussed in Subsection 4.3.2,

this dependence is sensitive to the spin–polarization of the incident electrons and, therefore,

can be used to determine either polarization of the electron target and/or the projectile ions.

4.3.1 Photon–photon angular correlations

As mentioned in Subsection 4.1.2, the capture of unpolarized electrons into a bound ion state

with total momentum jb > 1/2 leads to an alignment of the magnetic sublevels |nb jb µb〉. For

the particular case of the 2p3/2 level, for instance, the alignment is described by the single

parameter from Equation (4.1). This parameter, however, is obtained by assuming that the

recombination photons are not observed in the given experiment and, hence, the population

of the 2p3/2 state must be averaged over all possible photon angles. An alternative and more

precise measurement may concern the investigation of the magnetic sublevel population which

arises (only) from the emission of outgoing radiation in a given direction n̂RR = (θRR, φRR).

Theoretically, this population is described by the (angle–dependent) spin density matrix (3.22)

of the bound ionic state and, hence, is related to the angular–differential recombination cross

sections [cf Equation (3.23)]. Instead of an ”integral” alignment parameter (4.1) we may

introduce the (so–called) differential alignment parameter (Surzhykov et al 2002b)

A20(n̂RR) =

dσ RR
2p

3/2
,µb=±3/2

dΩRR
(n̂RR) −

dσ RR
2p

3/2
,µb=±1/2

dΩRR
(n̂RR)

dσ RR
2p3/2 ,µb=±3/2

dΩRR
(n̂RR) +

dσ RR
2p3/2 ,µb=±1/2

dΩRR
(n̂RR)

, (4.7)

which depends on the angles n̂RR = (θRR, φRR) under which the recombination photons are

emitted. The left panel of Figure 4.6 displays, for instance, the parameter A20(n̂RR) calculated

for the electron capture into 2p3/2 state of bare uranium ions U92+ with energies Tp = 98, 190

and 295 MeV/u. For these energies, the differential alignment (4.7) is positive in the forward

and backward directions, referring to a predominant population of the µb = ± 3/2 magnetic

substates. In contrast, the emission of the recombination photons at the angles around θRR =

60◦ with respect to the beam direction mainly results – to more than 80 % – in a population
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Figure 4.6: Components of the reduced statistical tensor A2q as a function of the photon emission angle

as measured in the projectile frame. All results are presented for the capture of unpolarized electrons

into the 2p3/2 state of bare uranium ions with energies Tp = 98 (—), 190 (– –) and 295 (– - –) MeV/u.

of the µb = ± 1/2 substates. Such almost exclusive population of the levels with µb = ± 1/2

leads to a negative value of the ”integral” parameter A2 (cf Figure 4.3) as obtained by the

averaging of the differential alignment A20(n̂RR) over all photon angles.

Apart from the differential alignment A20(n̂RR) , the magnetic sublevel population of the

2p3/2 state is also described by the tensor components A2±1(n̂RR) and A2±2(n̂RR) which, as

seen from the definition (3.6), are related to the non–diagonal elements of the density matrix

(3.22). Similarly to the differential alignment (4.7), these parameters depend on the projectile

ion energy as well as on the emission angles of the recombination photons n̂RR = (θRR, φRR),

cf Figure 4.6. They have to be zero, however, for θRR = 0◦ and θRR = 180◦ since the forward (as

well as backward) photon emission does not break the initial axial symmetry of the collisional

system and, therefore, cannot lead to the non–diagonal spin density matrix (Surzhykov et al

2002b). For the same reason the (”integral”) parameters A2±1 and A2±2 are always zero if

the recombination x–ray photons remain unobserved in the particular experiment and, hence,

the integration over the photon angles
∫

dΩRR in the density matrix (3.21) also ”restores” the

axial symmetry of the system.

The reduced statistical tensors A2q(n̂RR) of the 2p3/2 state can be directly employed in order

to derive the properties of the subsequent Lyman–α1 (2p3/2 → 1s1/2) radiation. For instance,

the emission pattern of the characteristic photons is given by the well–known formula:

WLy(n̂, n̂RR) ∝ 1 +
1

2

√

4π

5

2
∑

q=−2

Y2q(n̂)A2q(n̂RR) f(E1,M2) (4.8)

where f(E1,M2) is the structure function (4.4). The angular distribution (4.8) represents the

particular case of the photon–photon angular correlation function for the electron capture into

2p3/2 state and following Lyman–α1 decay. This function depends not only on the emission

angles of the subsequent decay photons but also on the angles n̂RR under which recombination

photons are observed. Figure 4.7 displays, for example, the angular distribution (4.8) for

three different angles θRR = 0◦, 15◦ and 90◦ of the recombination photons with respect to the

beam direction. Moreover, these angular distributions are presented for the case of coplanar

geometry of the experiment, i.e. when both photons are detected within the same plane. As
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Figure 4.7: Angular distributions of the Lyman–α1 radiation following the electron capture into 2p3/2

state of bare uranium projectile with energy Tp = 220 MeV/u. Distributions are presented within the

projectile frame and for the coplanar geometry of coincidence experiment.

seen from the Figure, the Lyman–α1 emission pattern is symmetric around the angle θ =90◦

for a forward emission of the recombination photon (θRR = 0◦) as it can be expected from the

axial symmetry of the overall system. In contrast, the emission of the recombination photon

under any other angles (θRR 6= 0◦ and 180◦) breaks down this symmetry and, hence, gives rise

to an asymmetric angular distribution of the decay photons.

Of corse, the measurements of the decay radiation simultaneously with the recombination x–

ray photons are not a simple experimental task which, in fact, has not been realized so far.

However, owing to the recent advances in x–ray detector technique, the two–photon coincidence

experiments are likely to be carried out at the GSI storage ring within the next few years. These

(future) x–x studies may help us, for instance, to distinguish between the different population

mechanisms of the excited ion states, following either the direct (radiative) electron capture in

this level or a cascade feeding from the upper levels as well as the nonradiative capture processes.

Another important promise of such correlation measurements lays in the fact that they provide

us with a tool for studying the polarization properties of the target electrons (atoms) and/or

the projectile ions, a task which will be briefly discussed in the next Subsection.

4.3.2 Application to the polarization studies

The photon–photon angular correlation function (4.8) was derived for the particular case of

both unpolarized target electrons and projectile ions. Of course, this function needs to be

modified in order to describe, for example, the recombination of the electrons with a well

defined polarization (Pz 6= 0) in respect to the beam direction. The capture of such – spin–

polarized – electrons into the bare projectile ions leads to an orientation of the excited ionic

state which, similarly to an alignment in the ”unpolarized” case (see Subsection 4.1.2), can be

described in terms of the reduced statistical tensors Akq(n̂RR). These tensors, however, have

to reflect the polarization properties of the electron target and, therefore, are generally written

as a sum of two parts, the ”unpolarized” tensor as well as the ”polarized” part weighted by
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Figure 4.8: Angular distributions of the Lyman–α1 radiation following the radiative capture of polar-

ized electrons into 2p3/2 state of bare uranium projectiles with energy Tp = 310 MeV/u. Distributions

are shown for four degrees of polarization of the incident electrons: Pz = 0.0 (—), 0.3 (– –), 0.7 (– - –)

and 1.0 (– - - –). All results are presented within the projectile frame and for the perpendicular geometry

of coincidence experiment.

the electron degree of polarization Pz (Surzhykov et al 2003a):

Akq(n̂RR) = Aunp
kq (n̂RR) + Pz · Apol

kq (n̂RR) . (4.9)

Obviously, the ”unpolarized” tensor Aunp
kq (n̂RR) in the left side of Equation (4.9) refers to

the capture of the unpolarized electrons (Pz = 0) and, hence, describes the alignment of the

residual ion states. The deviation from this aligned population of the magnetic sublevels due

to the capture of polarized electrons arises then from the ”polarized” part Apol
kq (n̂RR) of the

statistical tensor.

By inserting the (generalized) statistical tensors (4.9) into Equation (4.8) we can modify the

photon–photon angular correlation function for the capture of spin–polarized electrons into

2p3/2 state of bare projectile ions and the following Lyman–α1 decay. In particular, this

correlation will reflect now the degree of electron polarization Pz which weights (cf Equation

(4.9)) the five (imaginary) components of the ”polarized” tensor Apol
2q (n̂RR), q = -2, ..., 2.

However, one is typically interested in reduction of the number of these polarization parameters

in order to perform, for instance, the analysis of the experimental data. This reduction may

be achieved by the proper choice of the geometry in the set–up of a coincidence experiment.

If, for instance, the Lyman–α1 photons are observed perpendicular to the reaction plane (i.e.

the plane which is formed by the directions of the beam and the recombination photons), the

corresponding angular distribution simplifies to:

WLy(θ, φ = π/2; n̂RR) ∝ 1 +
1

2

√

3

2

(

1√
6

(

3 cos2 θ − 1
)

Aunp
20 (n̂RR)

− sin2 θ Aunp
22 (n̂RR) − i Pz · sin 2θ Apol

21 (n̂RR)

)

f(E1,M2) , (4.10)

where only one term depends linearly on the degree of polarization Pz and component of the

polarized tensor Apol
21 (n̂RR). As seen from Equation (4.10), while the other two (”unpolarized”)
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terms describe the angular distribution of the Lyman–α1 radiation which is symmetrical with

respect to the plane perpendicular to the beam axis (θ = 90◦), this ”polarized” term gives

rise to an asymmetrical shift in the emission pattern and, hence, to a clear signature of the

electron polarization Pz. Figure 4.8 shows, for example, the Lyman–α1 angular distributions

(4.10) following the capture of the (longitudinally) polarized electrons into the 2p3/2 state of

bare uranium ions with energy Tp = 310 MeV/u. Moreover, these angular distributions are

calculated for the emission of the first (recombination) photons perpendicular to the beam

direction (θRR = 90◦) and for the four different degrees of polarization Pz = 0.0, 0.3, 0.7 and

1.0 of the incident electrons. As seen from the Figure, the asymmetrical shift in the Lyman–

α1 emission pattern increases proportionally to electron polarization Pz and, therefore, can

be applied as a precise tool in coincidence (e, 2γ) experiments for studying the polarization

properties of the incident particles (Surzhykov et al 2003a).

4.4 Outlook: Scenarios for the future studies

In this thesis, we have restricted our treatment of radiative recombination (or radiative electron

capture) processes to the case of bare, unpolarized projectile ions. Such theoretical assumption

corresponds to the typical experimental set–up at the GSI storage ring where the electron

recombination of bare, unpolarized uranium ions U92+ have been observed during recent years.

In the nearest future, however, a new series of measurements are likely to be carried out

which will operate either with nuclear spin–polarized or/and few–electron ions. Theoretical

investigations along these lines are currently under way in our group and are briefly summarized

below. In Subsection 4.4.1 we discuss the extension of the density matrix approach for the

polarization studies with the spin–polarized beams, while the further investigations on the

electron capture into few–electron ions are reviewed in Subsection 4.4.2.

4.4.1 Studies on the spin–polarized ion beams

As discussed in Subsections 4.1.1 and 4.3.1, the polarization of the recombination x–ray pho-

tons as well as the correlated photon emission in (e, 2γ) coincidence experiments are strongly

affected by the polarization properties of the incident particles. So far, however, we have con-

sidered only the case of polarized electrons while the ion beam has been assumed unpolarized

throughout the theoretical analysis. Of course, much greater practical interest may concern

the studies on the nuclear spin polarization of ion beams, a request which have been done

recently by several groups. Since the spin–polarization of the target electrons and the projec-

tile ions occurs rather symmetrical in the collisional process, similar effects on the polarization

and correlation properties of the emitted light can therefore also be expected for the capture

of electrons by polarized ions. The theoretical analysis of the ion polarization studies can be

most easily performed within the density matrix approach as applied above to the electron

recombination processes. This approach, however, has to be extended in order to include the

spin density matrix of the projectile ions 〈I0M0 | ρ̂ion | I0M ′
0〉, whose (proper) parameteriza-

tion is required. For instance, while the longitudinal polarization of the 1/2–spin electron is

described by the single parameter Pz (cf Equation (3.5)), the 9 parameters characterize the

37



polarization state of the projectile ion with the nuclear spin I0 = 9/2. Obviously, in order

to make possible the interpretation of the (future) experimental results, the number of these

(independent) polarization parameters has to be reduced. As seen from Equation (4.10), for

instance, such reduction can be easily achieved if the geometry of the x–ray detectors possesses

proper symmetry. A more detailed theoretical analysis of the polarization effects as caused

by the nuclear spin–polarized ions, will refer, therefore, to the studies on the ”symmetrical”

experimental schemes which would allow us to explore a few polarization parameters while the

others remain unobserved.

4.4.2 Electron capture into the hydrogen–like ions

Until now, we have considered the electron capture into the bound states of bare, highly–charged

ions. Such recombination process, as discussed in this thesis, appears now to be well understood

both by experiment and theory. Less attention, in contrast, has been paid previously to the

electron capture into initially few–electron heavy ions which, in fact, is more difficult to describe

due to the interelectronic effects. A first step towards the interelectronic–interaction studies

was carried out by Stöhlker and co–workes in 1994 who measured the angular distributions

of the x–ray photons emitted in the radiative electron capture into the L–shell of helium–

like uranium ions. These experimental findings, however, were found to be in a very good

agreement with theoretical calculations employing the (final state) lithium–like uranium U89+

as the hydrogen–like system with the effective charge Zeff = 90.3 that takes into account the

electron screening effect. Moreover, later theoretical investigations have proved that such simple

screening–potential approximation yields the dominant part of the interelectronic–interaction

effects in the helium–like heavy ions at a wide region of projectile energies (Yerokhin et al

2000, Shabaev 2002).

The success of the one–electron treatment is obviously related to the fact that in the case of

helium–like ions we consider the electron capture into the closed–shell configuration (1s)2. In

order to explore the electron–electron interactions in detail, therefore, we have to consider the

capture into an open–shell system, the most simple example of which is given by the hydrogen–

like ions. In this contribution, a series of experiments are likely to be carried out soon at

the GSI storage ring to investigate the angle–differential cross sections for the K– as well as

L–shell recombination of the initially hydrogen–like uranium ions. Theoretically, these angular

distributions may be calculated within the framework of the Multi–configuration Dirac–Fock

(MCDF) theory that incorporates (the main part of) the electron–electron interaction effects

(Grant 1974, Fischer et al 2000). Moreover, when combining with the density matrix approach,

the MCDF theory will allow us to study the polarization of the emitted x–ray photons which,

as expected, is even more precise tool for studying the interelectronic effects. A detailed

calculations of the angular distributions as well as polarization properties in the recombination

of hydrogen–like heavy ions is currently under way for which the basis of the technical elements

have been already prepared in the framework of the RATIP program (Fritzsche 2000, 2001).
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Chapter 5

Summary

In summary, the interaction process between a photon and an electron in the presence of a

strong nuclear Coulomb field is discussed from the viewpoint of the radiative recombination and

the radiative electron capture of bare, highly–charged ions. For relativistic ion–atom collisions,

this charge transfer process has been intensively explored recent years both in experiment

and theory. However, while in the past most studies were focused on the total and angle–

differential recombination cross sections, the today’s challenge arises from measurements on

the polarization and correlation properties of the emitted x–ray photons. The great promise

of such advanced experiments lays in the fact that they provide an extremely precise tool to

probe the subtle effects of relativity in heavy ion collisions. Moreover, apart from gaining

more insight into the collision dynamics, these measurements may enable one to derive the

polarization properties of the ion beams, a lane which was closed in the past but now attracts

much interest, both in atomic and nuclear physics.

In this thesis, I have reviewed the advanced – polarization and correlation – studies on the

radiative electron capture by highly–charged ions for which the most natural framework is

given by density matrix theory. Within this theory, we derived the general relations for the

description of the two–step recombination process at which an electron is (radiatively) captured

into a bound ion state which later decays by emission of the second – characteristic – photon. Of

course, these relations can be extended for any multi–step as well as one–step electron capture

process. In the latter case, i.e. for the electron capture into the ground ion state, we investigated

the linear polarization of the recombination x–ray photons which proved to be a valuable tool

for the detection of the polarization of particles involved in heavy ion collisions. For instance,

as seen from our computations for the recombination of bare uranium projectiles U92+, spin–

polarization of the incident electrons generally leads to a rotation of the linear polarization

of light out of the reaction plane. These theoretical findings have evident consequences for

future experimental research where polarization measurements on hard x–ray photons become

possible due to recent developments in position sensitive solid–state detectors (Stöhlker et al

2003).

While the K–shell recombination is a trivial case of the one–step process, the best known

example for the two–step recombination is given by the electron capture into the 2p3/2 state

of bare ion and the subsequent Lyman–α1 (2p3/2 → 1s1/2) decay. For this radiative decay

39



we applied the density matrix theory in order to study the angular distribution as well as

the linear polarization of the characteristic photons. Both these (observable) properties are

found to be considerably affected by the interference between the leading electric dipole decay

channel E1 and much weaker magnetic quadrupole transition M2. For the angular distribution

of the Lyman–α1 decay in hydrogen–like uranium, for instance, this E1–M2 multipole mixing

terms leads to a 30 % effect which removes the former deviation between the experimental and

theoretical results for the alignment of the 2p3/2 ion state (Stöhlker et al 1997, Surzhykov et al

2002a). Moreover, similar interference terms are expected to have considerable impact for the

interpretation of experimental data for any other atomic transition in the high–Z regime. Here

we can mention, for example, the radiative decays following either L–shell vacancy production

in heavy atoms (Papp and Palinkas 1988, Papp et al 1990) or the dielectronic recombination

of high–Z projectile ions (Bhalla et al 1991, Chen and Scofield 1995, Gail et al 1998).

Beside of detailed but independent studies on the properties of the recombination (first step)

and the subsequent decay (second step) photons we also explored the correlated photon emission

which may be observed in x–x coincidence experiments. Emphasis was placed, in particular,

on the photon–photon angular correlations which are, from an experimental viewpoint, the

most simple case of the coincidence measurements. In this contribution, we performed detailed

computations for the electron capture into 2p3/2 state of bare uranium ions and the subsequent

Lyman–α1 angular distributions, where we have assumed that the recombination photon is to

be detected in coincidence. As shown above, the emission pattern of the characteristic radiation

strongly depends not only on the particular angle, under which the recombination photon is

observed, but also on the spin–polarization of the incident particles. Therefore, apart from the

measurements on the linear polarization of the first–step (recombination) photons, the angle–

angle angular correlations offer us a second possibility for studying the polarization properties

of either the target atoms (or electrons) or, respectively, of the ion beams, if the electrons are

captured by the nuclear spin–polarized ions.
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Chapter 6

Zusammenfassung

In dieser Arbeit wird die Wechselwirkung zwischen einem Photon und einem Elektron im

starken Coulombfeld eines Atomkerns am Beispiel des radiativen Elektroneneinfangs beim Stoß

hochgeladener Teilchen untersucht. In den letzten Jahren wurde dieser Ladungsaustausch-

prozess insbesondere für relativistische Ion–Atom–Stöße sowohl experimentell als auch theo-

retisch ausführlich erforscht. In Zentrum standen dabei haupsächlich die totalen und differen-

tiellen Wirkungsquerschnitte. In neuerer Zeit werden vermehrt Spin– und Polarisationseffekte

sowie Korrelationseffekte bei diesen Stoßprozessen diskutiert. Man erwartet, dass diese sehr

empfindlich auf relativistische Effekte im Stoß reagieren und man deshalb eine hervorragende

Methode zu deren Bestimmung erhält. Darüber hinaus könnten diese Messungen auch indirekt

dazu führen, dass man die Polarisation des Ionenstrahls bestimmen kann. Damit würden sich

neue experimentelle Möglichkeiten sowohl in der Atom– als auch der Kernphysik ergeben.

In dieser Dissertation werden zunächst diese ersten Untersuchungen zu den Spin–, Polarisations–

und Korrelationseffekten systematisch zusammengefasst. Die Dichtematrixtheorie liefert hierzu

die geeignete Methode. Mit dieser Methode werden dann die allgemeinen Gleichungen für die

Zweistufen–Rekombination hergeleitet. In diesem Prozess wird ein Elektron zunächst radia-

tiv in einen angeregten Zustand eingefangen, der dann im zweiten Schritt unter Emission

des zweiten (charakteristischen) Photons in den Grundzustand übergeht. Diese Gleichungen

können natürlich auf beliebige Mehrstufen– sowie Einstufen–Prozesse erweitert werden. Im

direkten Elektroneneinfang in den Grundzustand wurde die ”lineare” Polarisation der Rekom-

binationsphotonen untersucht. Es wurde gezeigt, dass man damit eine Möglichkeit zur Bestim-

mung der Polarisation der Teilchen im Eingangskanal des Schwerionenstoßes hat. Rechnungen

zur Rekombination bei nackten U92+ Projektilen zeigen z. B., dass die Spinpolarisation der

einfallenden Elektronen zu einer Drehung der linearen Polarisation der emittierten Photonen

aus der Streuebene heraus führt. Diese Polarisationdrehung kann mit neu entwickelten orts–

und polarisationsempfindlichen Festkörperdetektoren gemessen werden. Damit erhält man eine

Methode zur Messung der Polarisation der einfallenden Elektronen und des Ionenstrahls.

Die K–Schalen–Rekombination ist ein einfaches Beispiel eines Ein–Stufen–Prozesses. Das am

besten bekannte Beispiel der Zwei–Stufen–Rekombination ist der Elektroneneinfang in den

2p3/2–Zustand des nackten Ions und anschließendem Lyman–α1–Zerfall (2p3/2 → 1s1/2). Im

Rahmen der Dichte–Matrix–Theorie wurden sowohl die Winkelverteilung als auch die lineare
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Polarisation der charakteristischen Photonen untersucht. Beide (messbaren) Größen werden

beträchtlich durch die Interferenz des E1–Kanals (elektrischer Dipol) mit dem viel schwächeren

M2–Kanal (magnetischer Quadrupol) beeinflusst. Für die Winkelverteilung des Lyman–α1 Zer-

falls im Wasserstoff–ähnlichen Uran führt diese E1–M2–Mischung zu einem 30%–Effekt. Die

Berücksichtigung dieser Interferenz behebt die bisher vorhandene Diskrepanz von Theorie und

Experiment beim Alignment des 2p3/2–Zustands.

Neben diesen Ein–Teichen–Querschnitten (Messung des Einfangphotons oder des charakter-

istischen Photons) wurde auch die Korrelation zwischen den beiden berechnet. Diese Korre-

lationen sollten in X–X–Koinzidenz–Messungen beobbachtbar sein. Der Schwerpunkt dieser

Untersuchungen lag bei der Photon–Photon–Winkelkorrelation, die experimentell am einfach-

sten zu messen ist. In dieser Arbeit wurden ausführliche Berechnungen der koinzidenten X–

X–Winkelverteilungen beim Elektroneneinfang in den 2p3/2–Zustand des nackten Uranions

und beim anschließenden Lyman–α1–Übergang durchgeführt. Wie bereits erwähnt, hängt die

Winkelverteilung des charakteristischen Photons nicht nur vom Winkel des Rekombination-

sphotons, sondern auch stark von der Spin–Polarisation der einfallenden Teilchen ab. Damit

eröffnet sich eine zweite Möglichkeit zur Messung der Polaristion des einfallenden Ionenstrahls

bzw. der einfallenden Elektronen.
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Surzhykov A, Fritzsche S and Stöhlker Th 2001 Phys. Lett. A 289 213

Surzhykov A, Fritzsche S, Gumberidze A and Stöhlker Th 2002a Phys. Rev. Lett 88 153001
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2002 Phys. Rev. Lett. 88 153001

4. Photon–photon angular correlations in the radiative recombination of bare high–Z ions,

Surzhykov A, Fritzsche S and Stöhlker Th
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2003 Hyperfine Int. 146–147 35–40

11. Polarization and correlation studies on the electron capture into highly–charged ions

Fritzsche S, Surzhykov A and Stöhlker Th
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Abstract

Density matrix theory is applied to re-investigate the radiative recombination and radiative electron capture of high-Z ions.
Attention has been paid particularly to the polarization of the emitted photons. For the recombination of a free electron into the
K-shell of Bi83+ projectiles, we calculated the angular-dependent Stokes parameters for the X-ray emission. We also discuss
the importance of the choice of the quantization axis for understanding the polarization properties of the system both for the
residual ion and the emitted light.  2001 Elsevier Science B.V. All rights reserved.

PACS: 34.80.Lx; 34.80.Nz; 34.70.+e; 32.80.Fb

1. Introduction

The radiative recombination (RR) and radiative
electron capture are two well-established processes
from the study of electron–ion and atom–ion colli-
sions. In these processes, a free or quasi-free electron
is captured into a bound state of the ion, accompa-
nied by the simultaneous emission of a photon. For
bare, high-Z ions, for example, the radiative recom-
bination has been explored in detail by Stöhlker and
co-workers [1,2] at the GSI storage ring during re-
cent years. So far, however, most experiments were fo-
cused on measuring the total and angle-differential re-
combination cross sections which are typically found
in good agreement with theoretical predictions, based
on Dirac’s theory [2,3]. Much less attention, in con-

* Corresponding author.
E-mail address: surz@physik.uni-kassel.de (A. Surzhykov).

trast, has been paid previously to the polarization of
the emitted radiation. A first step towards a polariza-
tion study was carried out by Eichler [4,5] a few years
ago who calculated the alignment of the residual ions
following the capture of an electron into the L- and M-
shells of bare, high-Z ions. Experimentally evidence
for an alignment of the ions in electron capture has
been found recently in collisions of bare ions with light
and medium targets atoms [6]. Till today, however, no
polarization measurements have been performed for
the emitted radiation, mainly because of the lack of
efficient polarization detectors for hard X-rays. Only
in the light of recent improvements in detector tech-
niques, the observation of the photon polarization be-
comes more likely (for instance, at the GSI in Darm-
stadt) within the next few years.

A natural framework for studying the photon and
ion polarization in the recombination of high-Z ions
(following either a single or the subsequent capture
of electrons) is given by the density matrix theory.

0375-9601/01/$ – see front matter  2001 Elsevier Science B.V. All rights reserved.
PII: S0375-9601(01) 00 58 9- 8
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For applications in atomic physics, and combined
particularly with the concept of spherical tensors, this
theory was originally developed by Fano [7] in the late
fifties. Since then, the density matrix theory has been
utilized successfully in a large number of case studies
on the polarization properties and the “correlation”
between emitted particles and light (see Refs. [8,9]
for further examples). Today, this formalism provides
us with a tool of a great elegance for our theoretical
understanding of collision processes or, recently, in
analyzing lifetime interferences in resonantly excited
Auger cascades [10].

In this Letter, we apply the density matrix theory
to the polarization of the photons in the radiative re-
combination of bare, high-Z ions. Relativistic calcula-
tions have been carried out in particular for the Stokes
parameters of the photons, following the capture of a
free electron into the K-shell of Bi83+ ions. In the next
section, we first present a short outline of the density
matrix formalism when applied to the recombination
of ions. The basic relations between the polarization
of the photons and the (final-state) density matrix are
later derived in Section 3. In Section 4, we describe the
computations and give a short discussion of the Stokes
parameter while, finally, a brief summary is given in
Section 5.

2. Application of density matrix theory to the
radiative recombination of ions

In the radiative recombination of bare, high-Z ions,
the initial state of the system (i.e., before the electron
capture) is given by the ion and a free electron. Here,
we may consider an electron with asymptotic momen-
tum p and projection ms , and an ion which is specified
in term of its nuclear charge Z and its spin quantum
numbers I0 and projection M0. In the density matrix
approach [8,9] the initial state is represented by the
density operator ρ̂i which is then just the direct prod-
uct of the operators of the bare ion and the incident
electron ρ̂i = ρ̂0 ⊗ ρ̂e or, in terms of the density ma-
trix (in the representation of the individual momenta),

〈I0M0,pms |ρ̂i |I0M
′
0,pm′

s〉
(1)= 〈I0M0|ρ̂0|I0M

′
0〉〈pms |ρ̂e|pm′

s〉.
Similarly, the final-state density matrix describes

the recombined ion in some final-ionic state |F,Mf 〉

as well as the emitted photon with wave vector k and
helicity λ = ±1 (i.e., the spin projection of the pho-
ton onto the direction of k). For bare ions, the bound-
state |F,Mf 〉 generally results from the coupling of
the electron in the (one-particle) state |jbµb〉 with the
nuclear spin: F = jb + I0. As known from density ma-
trix theory, the statistical operators of the initial and
final states of the system are connected by the transi-
tion operator R̂ which describes the interaction [8],

(2)ρ̂f = R̂ρ̂iR̂
+,

i.e., the photon–ion interaction in the case of a ra-
diative recombination. The particular form of R̂, of
course, depends on the framework in which we de-
scribe the coupling of the radiation field to the elec-
tronic motion in the ion. As appropriate for high-Z
ions, below we always refer to a relativistic frame on
the basis of the Dirac equation [3].

Making use of the initial state (1) and relation (2),
we can easily find also the final-state density matrix in
the representation of the angular momenta,

〈FMF ,kλ|ρ̂f |FM ′
F ,kλ′〉

=
∑

M0M
′
0msm′

s

MRR
b,p(ms,M0, λ,MF )

× MRR∗
b,p (m′

s ,M
′
0, λ

′,M ′
F )

(3)× 〈I0M0|ρ̂0|I0M
′
0〉〈pms |ρ̂e|pm′

s〉,
where we have used the abbreviation

MRR
b,p(ms,M0, λ,Mf ) = 〈FMF ,kλ|R̂|pms, I0M0〉

(4)

to represent the elements of the transition matrix.
The final-state matrix (3) still contains the complete
information about the system (i.e., about the ion “plus”
photon) and can be used to derive the properties of the
photon and the residual ion.

Obviously, the outcome of some given experiment
depends on its particular set-up and on the capability
of the detectors to resolve the individual properties
of particles. In density matrix theory, this set-up of
the experiment is typically described in terms of a
projector operator P̂ which characterizes the detector
systems as a whole. Frankly speaking, this operator
projects out all those quantum states of the final-
state system which leads to a “count” at the detectors
(or simultaneous counts in the case of coincidence
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experiments). In the literature, the operator P̂ is often
called the detector operator; it gives us the probability
to find an “ event” at the detector simply by taking
the trace of its product with the density matrix: W =
Tr(P̂ ρ̂). For example, in order to measure the angular
distribution of the emitted photons in the RR, one
often takes a photon detector in a given direction
n̂ = (ϑ,ϕ), relative to the electron (or beam) direction
which is neither sensitive to the polarization of the
light nor to the spin state of the residual ion:

(5)P̂k =
∑

λFMF

|kλ〉|FMF 〉〈FMF |〈kλ|.

That is, in defining projector (5), we must sum over
λ and the spin quantum numbers F,MF . For the
particular case of a zero nuclear spin (I0 = M0 = 0)
and an unpolarized electron target, which gives rise to
an additional summation over ms , the trace over the
product (P̂kρ̂f ) of matrix (3) leads immediately to the
well-known angular distribution

(6)W(θ) = 1

2

∑

λmsµb

∣

∣MRR
b,p(ms, λ,µb)

∣

∣

2

of the emitted photons [3]. Details about the calcula-
tion of these angular-differential cross section for a re-
combination into bare, high-Z ions have been dis-
cussed by Eichler in several papers [2,3] and con-
firmed in a number of experiments [1].

3. Photon polarization

Another set of detector operators {P̂x} can be de-
fined, of course, to “ measure” the polarization prop-
erties of the emitted photons. Usually, however, it is
more convenient to retain at the density matrix of the
outgoing photons,

〈kλ|ρ̂γ |kλ′〉λ,λ′=±1

(7)= 1

2

(

1 + P3 −P1 + iP2

−P1 − iP2 1 − P3

)

,

since this matrix is directly related to the Stokes para-
meters of the light P1, P2, and P3 [8,9]. In the theory
of light, these parameters are usually used for charac-

terizing the degrees of linear (PL =
√

P 2
1 + P 2

2 ) and
circular (PC ≡ P3) polarization.

The density matrix of photons (7) is obtained from
the final-state density matrix (3) simply by taking the
trace over all quantum numbers of the residual ion [8]:

〈kλ|ρ̂γ |kλ′〉 = TrFMF

(

ρ̂f

)

(8)=
∑

FMF

〈FMF ,kλ|ρ̂f |FMF ,kλ′〉.

In this general form, the photon matrix (8) still applies
for any arbitrary spin of the nucleus. As indicated by
its labels λ and λ′, moreover, this matrix refers to the
helicity representation of the photon states. Assuming
a zero nuclear spin (I0 = M0 = 0), it simplifies to

〈kλ|ρ̂γ |kλ′〉
=

∑

µb

∑

msm′
s

MRR
b,p(ms, λ,µb)M

RR∗
b,p (m′

s , λ
′,µb)

(9)× 〈pms |ρ̂e|pm′
s〉,

while the elements of the transition matrix MRR
b,p ,

which describes the interaction of the ion with the
radiation field, takes the standard form

MRR
b,p(ms, λ,µb)

= 〈jbµb,kλ|R̂|pms〉

(10)= C

∫

d3r ψ+
jbµb

(r)αû∗
λe

−ikrψp,ms (r).

In recent years, this relativistic form of the transition
matrix has been widely used for studying the radiative
recombination of high-Z ions at intermediate and high
collision energies [3]. For a capture into bare ions,
ψjbµb (r) and ψp,ms (r) are the known solutions of the
Dirac Hamiltonian for a bound or continuum electron,
respectively. Moreover, the unit vector ûλ denotes the
polarization of the photons. For the numerical calcula-
tions of the matrix element (10), we used the computer
code DIRAC [11].

4. Calculations and discussion

The matrix element (10) presents the general form
of the photon–electron interaction in a relativistic the-
ory of one-electron ions. For its further simplifica-
tion, one need to “ fix” a quantization axis in order to
make use of a well-defined representation of the wave
functions. This issue has been discussed in detail by
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Eichler [3,5]. In standard calculations, the quantiza-
tion axis is typically chosen parallel to the photon di-
rection since this facilitates the multipole expansion of
the photon field and, hence, results in faster computa-
tions. However, the use of the photon axis for the quan-
tization of the system is not appropriate if we need to
consider some definite spin states of either the incident
electron or the residual ion. For relativistic energies of
the electron, moreover, a sharp spin projection only
arises in parallel to its own propagation [3]. There-
fore, in order to account for such definite spin pro-
jections of the electron and ion, the quantization axis
must be chosen along the direction of the electron for
the projectile, respectively). For evaluating the matrix
element (10), this requires a transformation of the pho-
ton wave function and, eventually, increases the com-
plexity of the computations.

In general, the polarization properties of the sys-
tem in its final state (ion “ plus” electron) will reflect
also the spin state of the incident electron. If we first
consider an unpolarized electron beam, we can still
use the photon axis for quantization since a summa-
tion over all the projections ms occurs. For using this
photon axis, we can simply read off the Stokes para-
meters of the emitted radiation from the density ma-

Fig. 1. Degree of linear polarization PL of the emitted photon
as a function of the laboratory photon angle for the K-shell RR
of Bi83+ projectiles in collisions with unpolarized electrons. The
linear polarization is shown for three different projectile energies:
Tp = 10 MeV/u (—), Tp = 50 MeV/u (––), and Tp = 100 MeV/u
(- - -).

trix (8). Fig. 1 shows the degree of linear polariza-

tion PL =
√

P 2
1 + P 2

2 of the RR photons as function
of the photon angle, drawn for three typical energies
of the projectile. Since, in experiment, the radiative
recombination of ions is usually studied by collisions
of bare, high-Z projectiles with (low-Z) target atoms,
here we present the Stokes parameter for angles mea-
sured in the laboratory system (the rest frame of the
target atoms). No circular polarization occurs for the
case of an unpolarized electron target.

A circular polarization of the photons can be found
only for an (at least partially) polarized electron
target. This requires, however, to distinguish between
different spin states of the electron and to use the
beam axis for quantization (see above). To evaluate
the matrix elements for this choice of quantization, we
may start with a rotation of the photon field which is—
most conveniently—expressed in terms of its (electric
and magnetic) multipole components:

(11)A
λ
LM = ALM(m) + iλALM(e).

Then, a rotation of this field is achieved by

ûλe
ikr =

√
2π

∞
∑

L=1

M=+L
∑

M=−L

iL
√

2L + 1Aλ
LM

(12)× DL
Mλ(k → z),

where DL
Mλ(k → z) denotes the Wigner rotation ma-

trix. Now, inserting the right-hand side of Eq. (12) into
(9) and by making use of the standard expansion for
the product of two Wigner rotation matrices, we find a
representation of the photon density matrix,

〈kλ|ρ̂γ |kλ′〉
= C

∑

νµ

Dν
0µ(k → z)

×
∑

msµbLL′
iL

′−L(−1)ms−µb

×
√

(2L + 1)(2L′ + 1)〈pms |ρ̂e|pms〉
× 〈L′ms − µbLµb − ms |ν0〉〈L′λ′L − λ|νµ〉
× 〈pms |αAλ′

L′ms−µb
|κbµb〉

(13)× 〈pms |αAλ
Lms−µb

|κbµb〉∗,

where all momentum projections refer to the beam
axis.
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Fig. 2. Degree of the circular polarization Pc = P3 as function of the
laboratory photon angle for the K-shell RR of Bi83+ projectiles
in collisions with completely polarized electrons (ms = 1/2).
Notations are the same as in Fig. 1.

The degree of the circular polarization Pc = P3
of the photons for an initially (completely) polarized
electron beam with ms = 1/2 is shown in Fig. 2.
A strong circular polarization will occur in particular
in forward and backward emission of the photons.
As expected from the ϕ-symmetry of the photon
emission, the circular polarization must vanish for
photons which are emitted perpendicular (or nearby)
to the beam line.

Our present study of the photon polarization em-
phasizes the role of a proper choice of the quantiza-
tion axis; a similar discussion was given before by
Eichler and co-workers [5] who showed that, in or-
der to determine the alignment of the residual ion, one
also need to take the electron direction for quantiza-
tion. The knowledge of the alignment is required, for
instance, to understand both, the angular distribution
and the polarization properties of subsequently emit-
ted photons if the initial recombination leads to an ex-
cited state like the capture into one of the L-subshells.

5. Summary

In this Letter, we re-considered the radiative recom-
bination of high-Z ions from the viewpoint of den-
sity matrix theory. This theory provides a consistent
framework to investigate not only the total and angle-
differential cross sections but also all the polarization

properties of the combined system, i.e., the residual
ion and the photon. Here, we applied the theory to
the calculation of the Stokes parameters of the emitted
photons. The degree of linear and circular polarization
has been shown for the recombination of a free elec-
tron into the K-shell of bare Bi83+ projectiles. Apart
from the angle, the polarization depends on the spin
state of both, the projectile and the electron target.

For studying the polarization of the light in the re-
combination of ions, both for single- and multi-step
recombination processes, the role of the quantization
axis has been pointed out. In present-day experiments
with bare ions one can consider, for instance, the cap-
ture of an electron into any of the excited states which,
then, will further decay by the emission of one or sev-
eral subsequent photons. Although only a few of these
multi-step processes have been analyzed so far in de-
tail [5,6], they give rise to a large variety of possi-
ble polarization and correlation measurements in the
(near) future. The density matrix approach, as dis-
cussed in this contribution, will certainly help to an-
alyze such experiments. An extension of this formal-
ism towards two-step RR processes is currently under
work.
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For the Lyman-a1 transition �2p3�2 ! 1s1�2� in hydrogenlike ions an interference between the leading
E1 decay channel and the much weaker M2 multipole transition gives rise to a remarkable modified
angular distribution of the emitted photons from aligned ions. This effect is most pronounced for the
heaviest elements but results in a still sizable correction for medium-Z ions. For the particular case of
hydrogenlike uranium where the angular distribution of the Lyman-a1 x rays following radiative electron
capture has been measured, the former variance with theoretical findings is removed when this E1-M2

interference is taken into account.

DOI: 10.1103/PhysRevLett.88.153001 PACS numbers: 31.30.Jv, 32.30.Rj, 34.70.+e, 34.80.Lx

Radiative transitions in high-Z heavy ions play a key
role for our understanding of the effects of strong Coulomb
fields on the electronic structure of atoms and ions [1].
At high-Z, transition rates and energies are strongly af-
fected by relativistic corrections, and even quantum elec-
trodynamical effects show up in a clear way [2]. One of
the most prominent examples is the Lyman-a1 transition
�2p3�2 ! 1s1�2� in hydrogen or one-electron ions which
serves, e.g., as a precise measure for the 1s Lamb shift in
hydrogenlike ions [3]. In the case of transitions rates, rela-
tivistic effects are manifested by the strongly enhanced im-
portance of magnetic transitions; e.g., the 2s1�2 decay in
high-Z one-electron ions is almost entirely governed by
M1 transitions quite in contrast to the dominant 2E1 de-
cay at lower Z. In fact, the photon angular distribution of
radiative transitions turns out to be more sensitive to mag-
netic and retardation effects than total decay rates. This
was shown for the case of continuum-bound state transi-
tions (radiative electron capture, REC) occurring in colli-
sions of bare uranium ions with light atomic targets [4]. At
high-Z and for not too high collision energies, the transi-
tion rates for REC and the corresponding cross sections are
well described within the dipole approximation [2]. How-
ever, this approach fails to describe the associated photon
angular distributions which are strongly modified by mag-
netic and retardation effects [5].

In this Letter we report on an interference between the
E1 and M2 transition amplitudes in the decay of the 2p3�2

level in aligned hydrogenlike heavy ions which signifi-
cantly alters the photon angular distribution of the Lyman-
a1 transition �2p3�2 ! 1s1�2�. Similar effects are well
known for g transitions between nuclear levels where the
so-called multipole mixing ratios, e.g., for E2 and M1

transitions, provide detailed information about the nuclear
states involved [6]. To the best of our knowledge such
effects have not been reported yet for bound-bound tran-
sitions in highly charged ions. For L-shell vacancy pro-

duction following proton impact, however, evidence for
multipole mixing has been observed [7]. As emphasized
in this Letter, such interferences may have considerable
impact also for the interpretation of experimental data.
For the particular case of hydrogenlike uranium, where
the angular distribution of the Lyman-a1 x rays following
radiative electron capture has been measured, the former
disagreement with theoretical findings [8] is removed when
taking this interference into account.

Because of parity and angular momentum conservation
laws, the Lyman-a1 �2p3�2 ! 1s1�2� decay in hydrogen-
like ions can proceed via either E1 or M2 transitions which
reflect different properties of the electron distribution.
While the electric dipole component describes the charge
oscillations, the magnetic quadrupole reflects the non-
spherical part of the electron motion, i.e., its current dis-
tribution [1]. However, for all hydrogenlike ions up to the
heaviest elements, the magnetic interaction is much weaker
than the electric one, although the decay rate for M2 transi-
tion �GM2 ~ Z8� increases rapidly as a function of the nu-
clear charge Z when compared to the E1 rate �GE1 ~ Z4� .
But even for hydrogenlike uranium �Z � 92� the E1 tran-
sition rate amounts to GE1 � 3.92 3 1016 s21, whereas
the M2 rate GM2 � 2.82 3 1014 s21 contributes less than
1% to the total decay rate. In the past this rather small
contribution was one main reason why — till today — the
M2 component of the radiation field has not been incorpo-
rated in computations on the 2p3�2 decay of hydrogenlike
ions or similar nl ! 1s transitions in the high-Z regime
[9,10]. On the other hand, the Lyman-a1 transition has
been studied intensively both by theory and experiments
during the last decades because the characteristics of this
line, i.e., its polarization and angular distribution, may
reveal subtle information on the population mechanisms
and, thus, on the dynamical processes of high-Z ions. A
number of detailed investigations have been carried out,
for instance, for electron-impact excitation [11–13] as

153001-1 0031-9007�02�88(15)�153001(4)$20.00 © 2002 The American Physical Society 153001-1
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well as for radiative electron capture in collisions of fast
bare projectiles with light target ions [8,14,15].

To discuss the E1-M2 interference effects let us con-
sider a hydrogenlike ion in the 2p3�2 level whose creation
and decay occur as two independent steps, well separated
in time (see, e.g., [8]). In the first step the excited level
is just populated, for instance, by electron capture or exci-
tation which may occur in ion-atom and ion-electron col-
lisions. Because of the directionality of the collision, the
population of magnetic sublevels is likely to deviate from a
statistical distribution. In such cases the levels are aligned,
thereby the pairs of atomic sublevels with the same mag-
netic quantum number (but with opposite signs) will be
necessarily equally populated. Here we assume that nei-
ther the ions nor the target atoms are polarized in ion-atom
collisions.

The alignment of an atomic level is commonly described
in terms of one or several parameters Ak which are related
to the population cross sections s�mn� of the various sub-
levels mn. In the case of the 2p3�2 level only the alignment
parameter A2 is nonzero (apart from A0), and it can be
expressed as [16,17]

A2 �

s�
3

2 , 6
3

2 � 2 s�
3

2 , 6
1

2 �

s�
3

2
, 6

3

2
� 1 s�

3

2
, 6

1

2
�

, (1)

where s�3�2, mn� describes the population of substate mn

of the 2p3�2 level.
In the second step, this 2p3�2 level then decays into the

ground state via the emission of a photon. But although
this photon emission occurs independently of the particular
creation of the level, it may exhibit an anisotropic emission
pattern if the level has been aligned. The angular distribu-
tion of the photons in the emitter frame is related to the
alignment parameter A2 by [11,15]

W�u� � A0 1 A2P2�cosu� ~ 1 1 b20�1 2
3

2 sin2u� ,

(2)

where u is the angle between the direction of the deex-
citation photon and the beam direction while P2�cosu�

denotes the second-order Legendre polynomial. As seen
from expression (2), the angular distribution is completely
determined by the so-called anisotropy coefficient b20 �

aA2, while the coefficient a depends only on the total
angular momenta of the initial and final ionic states, re-
spectively. For the case of the 2p3�2 ! 1s1�2 transition
a � 1�2.

Expression (2) is well known from the literature (see,
e.g., [18]). It includes the contribution from the electric-
dipole �E1� transition, whereas the—weak —magnetic-
quadrupole component �M2� is neglected. This M2

branch, however, can also be taken into account. For
instance, by using the density matrix theory the angular
distribution of radiation in its general form (i.e., including
all allowed multipoles) was obtained by Fano and Racah
[19] (see also [11]). Then, the consistent treatment of
both decay modes in the Lyman-a1 transition finally leads
to the result that both the alignment and the anisotropy
parameters have to be replaced by two corresponding

effective parameters: A2 ! A�eff�
2 and b2 ! b

�eff�
2 .

Note, the overall shape (2) of the angular distribution is
preserved since it depends only on the quantum numbers
of the initial and the final ionic states, respectively.

The two effective parameters A�eff�
2 and b

�eff�
2 can be

expressed as products of the original parameters with a
structure function

A�eff�
2 � A2 ? f�E1, M2�;

b
�eff�
20 � b20 ? f�E1, M2� .

(3)

The alignment parameter (1) depends only on the
population mechanism of the excited level, i.e., on
collisional parameters such as the projectile velocity
or the charge of the target. In contrast, the structure

function f�E1, M2� is independent of the creation process
and merely reflects the electronic structure of the ion.
By applying the density matrix theory, this function
f�E1, M2� can be expressed for the 2p3�2 ! 1s1�2

transition as

f�E1, M2� �

∑
�jjE1jj�2 2 �jjM2jj�2 1 2

p
3 �jjE1jj� �jjM2jj��

�jjE1jj�2 1 �jjM2jj�2

∏
~

∑
1 1 2

p
3

�jjM2jj�
�jjE1jj�

∏
, (4)

where �jjE1jj� � �2p3�2jjaA
�e��L � 1� jj1s1�2� and

�jjM2jj� � �2p3�2jjaA
�m��L � 2� jj1s1�2� are the reduced

matrix elements for the electric (magnetic) bound-bound
multipole transitions of rank L [15,20].

In the dipole approximation, �jjM2jj� � 0 is taken to
be negligible and, thus, f�E1, M2� � 1. As seen from
Eq. (4), the main correction to this approximation arises
from the term which is proportional to the ratio of the
transition amplitudes �jjM2jj���jjE1jj�. For high-Z ions
this ratio is of the order �0.1, leading to a 1% contribu-
tion of the M2 component to the total decay rate. Note
that the E1-M2 interference term does not contribute to
the transition probabilities (and, hence, the lifetimes) be-

cause the angular distribution [Eq. (2)] has to be integrated
over all photon directions. From the properties of the Le-
gendre polynomials,

R
P2�cosu� dV � 0, it is seen that

the integral of the second term in Eq. (2), which contains
the E1-M2 contribution, vanishes. For H-like uranium,
this dimensionless function is as large as 1.28 due to the
E1-M2 interference. Since this function basically depends
on the ratio �jjM2jj���jjE1jj� of the reduced matrix ele-
ments, a non-negligible effect of a few percent remains
even for medium-Z ions. We finally note that this struc-
ture function scales approximately as f�E1, M2� ~ Z2.24

for high-Z ions, while it is f�E1,M2� ~ Z2.03 at lower
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values of Z. Obviously, this is different from a Z4 scaling
as one might expect at a first glance from the correspond-
ing decay rates.

In the following, we focus on REC in relativistic colli-
sions of bare high-Z ions (e.g., U921) with low-Z target
atoms [8,14,15]. In this process, the REC photon must
carry away the excess energy and momentum when the
electron is captured in any of the ionic bound states. Sev-
eral theoretical [14,15] and experimental [8] studies were
performed in the past to explore the capture into the ground
and into the excited states. From a measurement of the
anisotropic emission of the subsequent Lyman-a1 photons,
a rather significant alignment was deduced as confirmed by
relativistic theory. However, when the theoretical and the
observed angular distributions were compared in detail, a
remarkable variance was found which could be attributed
neither to additional cascade feeding processes (for the ex-
cited 2p3�2 level) nor to further corrections to the electron
capture process. This deviation was surprising also in the
sense that REC is otherwise one of the best studied pro-
cesses for bare and few-electron high-Z ions in relativistic
collisions for which an excellent agreement between the-
ory and experiment is typically found [4].

As an example, the observed Ly-a1 angular distribu-
tion (full squares) measured for 309 MeV�u U921 ! N2

collisions is given in Fig. 1 as a function of the labora-
tory observation angle ulab. The experimental anisotropy
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FIG. 1. Experimental Ly-a1�Ly-a2 intensity ratio (solid
circles) measured for 309 MeV�u U921 ! N2 collisions
(laboratory frame) [5]. The solid line depicts the result of
the least-squares adjustment of Eq. (2) to the experimental
data, considering the correct relativistic angle and solid angle
transformation.

coefficient was determined by normalizing the intensity
of the investigated Ly-a1 transition to that of the Ly-a2

�1M1� radiation. Since the latter is isotropic in the pro-
jectile frame and energetically close to the Ly-a1 line, this
method allows us to strongly reduce the influence of pos-
sible systematic uncertainties. For the particular case dis-
played in Fig. 1, an effective anisotropy parameter beff

20

of 20.23 6 0.02 was deduced from a least-squares ad-
justment of Eq. (2) to the experimental Ly-a1�Ly-a2 in-
tensity ratios by considering the correct relativistic angle
and solid angle transformation (see, e.g., [8]). Following
Eqs. (1) and (2), this means that REC favors the popula-
tion of the magnetic substates mn � 61�2 [8].

For our present study we also evaluated the theoretical
alignment parameters for the process of REC occurring
in collisions of bare uranium with light gaseous targets.
The actual computations were all carried out in the frame-
work of Dirac’s theory. The calculation of the alignment
parameter A2 in Eq. (1) requires the evaluation of bound-
free matrix elements for Dirac 4-spinors and was carried
out already before [4,15]. Apart from the impulse approxi-

mation (see, e.g., [4]), no further approximation was made
for the first step of the electron capture. As a result, the
theoretical alignment parameters are the same as reported
previously [15]. However, in order to compare with the
experiments they need to be multiplied with the structure
function f�E1, M2�.

In Fig. 2, we compare the experimental results (solid

points) ([8]) for the effective anisotropy parameters b
eff
20

with the corresponding theoretical findings (full line) as
obtained from Eqs. (3) and (4). The dashed line, obtained
assuming f�E1,M2� � 1, i.e., neglecting the E1-M2

interference term, represents the theoretical treatment of
the anisotropy parameter b20 as calculated by Eichler
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FIG. 2. The experimentally determined effective anisotropy
parameters beff

20 (solid points) for the Lyman-a1 radiation of
U911 produced in U921 ! N2 collisions as a function of col-
lision energy. The dashed line represents the theoretical pre-
dictions for f�E1, M2� � 1, i.e., when the interference term is
neglected. The solid line shows the theoretical b

eff
20 parameter

as defined by Eqs. (3) and (4).
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et al. [15]. As seen from the figure, the former disagree-
ment of the theoretical results from the experimental
values [8] is removed when the interference term is taken
into account.

In conclusion, an interference between the leading E1

decay channel and the—weak —M2 branch was studied
for the case of the Lyman-a1 transition in aligned hy-
drogenlike ions. This interference is found to affect con-
siderably the angular distribution of the emitted photons.
Similarly, it also affects the linear polarization of the
Lyman-a1 radiation, a topic which will be discussed in a
forthcoming publication [21]. For the particular case of
the Lyman-a1 transition in the hydrogenlike uranium fol-
lowing electron capture, the former deviation between the
experimental and theoretical findings for the alignment of
the excited ion state [8] is removed when the interference
correction is taken into account. Also, we have to add that
one may expect similar sizable corrections for any other
atomic transitions in the high-Z regime where beside the
leading E1 term, higher multipole contributions are small
but allowed. Here, e.g., doubly excited states in He-like
ions such as produced by dielectronic recombination must
be mentioned [9,10]. More general, the study of decay
rates and transition matrix elements of atomic transitions
are of great importance to test and advance our basic
knowledge about the physics of strong Coulomb fields as
they are present at high-Z. However, at high-Z, most of
these transitions exhibit such fast decay rates that lifetime
measurements are excluded. Because of the sensitivity of
the effective alignment parameter on the reduced matrix
elements of the multipole transitions involved, the latter
can be addressed by measuring precisely the associated
photon angular distributions. It represents therefore an
experimental tool to study the decay properties of atomic
states in the realm of high-Z ions.

Helpful discussions and the long-standing close col-
laboration with Jörg Eichler are gratefully acknowledged.
We also thank R. W. Dunford and N. M. Kabachnik for
helpful comments on the manuscript.
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Abstract

The radiative recombination of a free electron into excited states of bare, high-Z

ions and the subsequent photon decay are studied in the framework of the density

matrix theory. Emphasis is placed, in particular, on the angular correlation

between the recombination and the decay photons. The general expression for

the photon–photon angular correlation function is derived, based on Dirac’s

equation as appropriate for high-Z ions. Computations for the dependence of

the photon–photon correlation function on the nuclear charge and the projectile

energies are carried out for the capture into the 2p3/2 level and the subsequent

Lyman-α1 (2p3/2 → 1s1/2) radiation.

1. Introduction

In the radiative recombination of ions, a free (or quasi-free) electron is captured into a bound

state under the simultaneous emission of a photon, which carries away the excess energy and

momentum. This process occurs frequently not only in many stellar and laboratory plasmas,

but also in the collision of heavy ions with target electrons at ion storage rings. For fast ions,

for example, the radiative recombination is the dominant (loss) process for the ions in the ring.

In the past, therefore, many experiments have been carried out on the radiative recombination

which first focused on the capture into the 1s1/2 (hydrogen-like) ground state. For this capture,

total and angle-differential cross sections have been measured by Stöhlker et al (1995) in a

series of experiments and were found in good agreement with computations which are based on

Dirac’s equation. If, instead of the ground state, the electron is however captured into any of the

excited states of the ion, the subsequent radiative decay of the excited ions leads to the emission

of one or several characteristic photons until the ground state is reached. During the last few

years, a number of experiments have been performed also for such decay cascades (Stöhlker

1999) since the angular distribution of the characteristic radiation may provide information

3 Author to whom any correspondence should be addressed.
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about the population dynamics in the radiative capture. For the capture of an electron into the

L shell of a bare uranium ion, for instance, a strong alignment was found for the residual ions,

both by experiment (Stöhlker et al 1997) and in computations (Eichler et al 1998).

So far, however, the angular distributions of the photons have been measured separately

in all experiments, either for the recombination or for the subsequent decay photons. More

information about the incident particles and the capture process can be obtained, if both photons

are measured in an (e, 2γ ) coincidence experiment. Apart from studying the dynamics,photon–

photon coincidences may provide information about the polarization of the incident particles

as the axial symmetry of the collision process is broken. Moreover, coincidence measurements

help distinguish between different population mechanisms of the excited states, following

either the (direct) capture of the electron in this level or a cascade feeding from the upper

levels. Owing to recent improvements in the available x-ray detectors, such coincidence

experiments are likely to be carried out at the GSI storage ring in Darmstadt within the next

few years.

In this contribution,we study the angular correlation between the recombinationand decay

photons in the (e, 2γ ) capture of an electron into bare, high-Z ions. Such particle–particle

correlation phenomena can be described most easily in the framework of the density matrix

theory. However, before we present details from this theory, we first summarize the geometry

under which the photon–photon correlations are to be considered. In section 3, then, the general

expressions for the statistical tensors of the ion following electron capture and the two-photon

angular correlation function W (n,nR R) are derived. While, of course, these expressions can

be applied to all hydrogen-like ions, detailed computations on the basis of the Dirac equation

have been carried out for the electron capture into the bare uranium ion U92+. Special attention

was paid to the radiative recombination of a free electron into the 2p3/2 state of such an ion. In

section 4 we discuss how the population of the 2p3/2 state and, then, the angular distribution of

subsequent Lyman-α1 photons depend on the projectile ion energy as well as on the emission

angle of the recombination photon.

2. Geometry of two-photon coincidence experiments

In order to describe (e, 2γ ) coincidence experiments, we shall first agree about the geometry

and coordinates under which the electron–ion collision and the emission of the two photons

are considered. Apart from the direction of the incident beam which, usually, is taken parallel

to the z-axis, we may define the (polar) angles of the recombination and decay photons with

respect to the beam as shown in figure 1. Since, moreover, all results will be presented

within the projectile frame in this paper, i.e. the rest frame of the projectile ion, we adopt the

incident electron momentum p ‖ ez as the quantization axis. Together with the direction of

the recombination photon kR R , this axis defines the reaction plane (x–z plane) so that only one

(polar) angle θR R is needed to characterize the recombination photon, while the two angles

n̂ = (θ, φ) are used to describe the subsequent emission of the decay photon (cf figure 1).

Obviously, the ‘electron + ion’ collision system obeys an axial symmetry which leads

to the angular distribution of the recombination photon, independent of the axial angle φR R .

Hence, if only the recombination photon is detected explicitly, this symmetry is broken for the

subsequent emission of the characteristic decay photon and may result in an angular distribution

which depends on both the directions of the photons relative to each other and with regard

to the quantization axis. This dependence is eventually described by the two-photon angular

correlation function.
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Figure 1. Geometry for the radiative recombination of a free electron into an excited state of a

projectile ion followed by the subsequent photon decay.

3. Density matrix approach to the two-step electron capture

In density matrix theory, the state of a physical system is usually described in terms of the

so-called statistical operators (Blum 1981). These operators can be considered to represent,

for instance, an ensemble of (equally prepared) systems which are—altogether—in either a

pure quantum state or in a mixture of different states with any degree of coherence. The basic

idea of the density matrix formalism is to accompany such an ensemble through the collision

process, starting from a well defined ‘initial’ state and by passing through one or, possibly,

several intermediate states until the final state of the collision and/or decay process is attained.

Hereby, a physical characterization of the process is achieved simply by making use of a proper

set of detectors which ‘measure’ (some or all of) the properties of the involved particles.

In the following, we apply this general concept to the description of a two-step radiative

recombination process. To this end, let us first consider the capture of an electron into an

intermediate ionic state, accompanied by the emission of the recombination photon. For this

capture process, we can derive the density matrix of the intermediate state as well as the angular

distribution of the recombination photons. The relation between the density matrix (and, then,

statistical tensors) of the residual ion and ‘experimental’ set-up is discussed in sections 3.1

and 3.2. It is shown, for instance, that the statistical tensors of the intermediate ion state, as they

arise from the electron capture, are directly related to the recombination photon emission angle

n̂R R = (θR R, φR R). From the intermediate state density matrix, we may continue to derive the

final-state tensors, following the decay of the excited state, and again the angular distribution

of the decay photons as well as the photon–photon correlation function in section 3.3. Finally,

to provide an example of this theory, we consider the Lyman-α1 decay following the capture

of an electron into the 2p3/2 substates of the ions.

3.1. Radiative recombination

In the first step of a radiative recombination process, the ‘initial’ state of the (combined)

system is given by the ion plus a free electron. For the sake of simplicity, here we consider

an electron with well defined asymptotic momentum p and projection ms as well as a (bare)

ion which is just specified by its nuclear charge Z . That is, in all formulae and discussions

below we consider a zero nuclear spin. In this case, the initial spin state ρ̂i of the combined

‘electron + ion’ system is just equivalent to the statistical operators of a free electron ρ̂i ≡ ρ̂e.

In the ‘intermediate’ state, following the capture of the electron, the statistical operators

must describe both the recombined excited ion in some bound substate | jbµb〉 as well as
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the recombination photon with wavevector kR R and helicity λ = ±1 (i.e. with definite spin

projection of the photon along the direction of kR R). As known from density matrix theory,

the statistical operators of the initial and the (subsequent) intermediate states of the system are

simply connected by Blum (1981)

ρ̂b = R̂ρ̂e R̂+, (1)

where R̂ represents the transition operator which describes the photon–ion interaction in

the case of the radiative recombination. The particular form of this interaction operator R̂,

of course, depends on the framework in which the coupling of the radiation field with the

electronic motion is described. As appropriate for high-Z ions, below we always refer to a

relativistic description of the electron–photon interaction, based on Dirac’s equation and the

minimal coupling of the radiation field (Eichler and Meyerhof 1995).

By means of the free-electron operator ρ̂e and relation (1), we may obtain the intermediate-

state density matrix in the representation of the angular momenta

〈 jbµb,kR Rλ|ρ̂b| jbµ
′
b,kR Rλ′〉 =

∑

ms m′
s

〈 jbµb,kR Rλ|R̂|pms〉

× 〈pms |ρ̂e|pm ′
s〉〈pm ′

s |R̂+| jbµ
′
b,kR Rλ′〉 (2)

where 〈 jbµb,kR Rλ|R̂|pms〉 is the transition matrix element for the capture of a free electron

into a bound state under the emission of a photon. This intermediate-state density matrix (2)

still contains the complete information about the system (i.e. about the ion plus photon) and,

hence, can be used to derive the properties of both the photons and the residual ions. Obviously,

however, the outcome of a particular experiment will depend on the set-up and efficiency of

the detectors which are used to record the properties of the particles. In density matrix theory,

this experimental set-up is typically described in terms of a projection operator P̂ which

characterizes the whole detector system. Frankly speaking, this operator simply projects out

all those quantum states of the overall system which lead to a ‘click’ at the detectors (or to a

simultaneous event in the case of coincidence experiments). In the literature, the projection

operator P̂ is often called the detector operator; it helps determine the probability for a ‘count’

at the detectors simply by taking the trace of its product W = Tr(P̂ρ̂) with the density matrix.

To measure, for instance, the angular distribution of the emitted recombination photons,

one often uses a photon detector in a given direction n̂R R = (θR R, φR R) relative to the electron

(or beam) direction, which is sensitive neither to the polarization of the light nor to the spin

state of the residual ion

P̂b
kRR

=
∑

λµb

|kR Rλ〉| jbµb〉〈 jbµb|〈kR Rλ|, (3)

that is, we need to sum over λ and the magnetic quantum numbers µb of the ions in order to

define a proper projector (3). From this projector operator, taking the trace Tr(P̂b
kRR

ρ̂b) over its

product with the density matrix (2), we immediately obtain the well known angular distribution

of the recombination photons

dσ R R
jb

d�R R

(θR R, φR R) =
∑

λms m′
s µb

〈 jbµb,kR Rλ|R̂|pms〉〈pms |ρ̂e|pm ′
s〉〈pm ′

s |R̂+| jbµb,kR Rλ〉 (4)

following an electron capture into a bound-state level with total angular momentum jb.

However, apart from deriving the observable quantities of the emitted photons (such as

their angular distribution or the total cross section), we can also use the intermediate-state

density matrix (2) to separate the density matrices of the individual sub-systems from one

another and to obtain two independent matrices for the recombination photons and the residual
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ions, respectively. For example, the density matrix of only the excited ions just follows from

taking the trace over all unobserved quantum numbers of the emitted photon in (2). If we

suppose that the photon detectors are not sensitive to the polarization of the emitted light, the

density matrix of the ion simply reads

〈 jbµb|ρ̂b(θR R, φR R)| jbµ
′
b〉 =

∑

λ

∑

ms m′
s

〈 jbµb,kR Rλ|R̂|pms〉〈pms |ρ̂e|pm ′
s〉

× 〈pm ′
s |R̂+| jbµ

′
b,kR Rλ〉. (5)

Moreover, when we compare equations (4) and (5), we see that the density matrix of the

intermediate ion state is normalized in such a way that its trace is equal to the angle-differential

cross section for the emission of the recombination photons

Tr ρ̂b(θR R, φR R) =
dσ R R

jb

d�R R

(θR R, φR R). (6)

3.2. Statistical tensors of the excited ion states

The density matrix (5) describes the intermediate ion state following the radiative capture of an

electron and the emission of the photon in direction n̂R R = (θR R, φR R), while the polarization of

the photon remains unobserved. Instead of using this density matrix, however, it is often more

convenient to represent the intermediate state of the ions in terms of the so-called statistical

tensors ρ̂b
kq (θR R, φR R). Although, from a mathematical viewpoint, these statistical tensors are

equivalent to the density matrix, they are constructed to represent the spherical tensors of rank

k and component q . Hence, the statistical tensors can be expressed as a linear combination of

the density matrix elements (Blum 1981)

ρ̂b
kq (θR R, φR R) =

∑

µbµ
′
b

(−1) jb−µ′
b 〈 jbµb jb − µ′

b|kq〉〈 jbµb|ρ̂b(θR R, φR R)| jbµ
′
b〉 (7)

following the standard procedure for the coupling of angular momenta. Owing to the properties

of the Clebsch–Gordan coefficients, nonzero tensor components arise only for integer indices

k, q with 0 � k � 2 jb and q = −k,−k + 1, . . . , k, respectively.

Of course, both the density matrix (5) and the statistical tensors (7) of the intermediate

ion states depend on the electron–photon transition matrix. Within the framework of Dirac’s

theory, the elements of this transition matrix are given by

〈 jbµb,kR Rλ|R̂|pms〉 = C

∫

d3r ψ+
jbµb

(r)αû∗
λe−ikRRrψp,ms

(r) (8)

where ψ jbµb
(r) and ψp,ms

(r) denote Dirac’s wavefunctions for a bound and a free electron,

respectively; moreover, the unit vector ûλ is used to specify the polarization of the photons.

Matrix elements of the type (8) were first implemented by Pratt et al (1973) in studying the

atomic photoeffect for the relativistic energies.

To further simplify the electron–photon transition matrix (8) for practical computations,

we may decompose both the photon as well as continuum wavefunctions into partial waves. As

discussed previously (Surzhykov et al 2001), however, attention has to be paid in this case to

the particular choice of the quantization axis, in dependence on the properties to be considered.

For instance, in using the beam direction as the quantization axis, as outlined in section 2, we

shall start from a rotation of the photon field which is—most conveniently—expressed in terms

of its (electric and magnetic) multipole components

A
λ
L M = A

(m)
L M + iλA

(e)
L M . (9)
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A rotation of the photon field is achieved by

ûλeikrRR =
√

2π

∞
∑

L=1

M=+L
∑

M=−L

iL
√

2L + 1Aλ
L M DL

Mλ(kR R → z), (10)

where DL
Mλ(k → z) denotes the Wigner rotation matrix. Using the expansion (10) of the

photon field in the matrix element (8), we can now represent the electron–photon transition

matrix

〈 jbµb,kR Rλ|R̂|pms〉 = C

∞
∑

L=1

M=+L
∑

M=−L

i−L
√

2L + 1DL∗
Mλ(kR R → z)〈 jbµb|αAλ∗

L M |pms〉 (11)

in terms of its multipole matrix elements which, however, still include a free-electron wave with

definite momentum p and helicity ms . In a second expansion, therefore, we also decompose

these continuum wavefunctions into partial waves (Eichler and Meyerhof 1995)

|pms〉 =
∑

κ

ile−i�κ

√

4π(2l + 1)〈l01/2ms | jms〉|Eκ j〉 (12)

where the summation runs over Dirac’s angular momentum quantum number

κ ≡ κ( j, l) = ±( j + 1/2) for l = j ± 1/2

with l representing the parity of the partial waves |Eκ j〉. In expansion (12), moreover, �κ is

called the Coulomb phase shift which arises due to the −Z/r nuclear potential of a pointlike

charge. Of course, the partial waves

〈r |Eκ j〉 = 1

r

(

PEκ(r)χms
κ

iQEκ (r)χ
ms

−κ

)

(13)

separate into a radial and an angular part and, thus, help carry out the integration over all angles

in the transition matrix elements (11) analytically. In (13), the two functions of the radial part,

PEκ (r) and QEκ (r), are often called the large and small components of the partial wave, while

χms
κ denotes a standard Dirac spin-angular function.

Combining the two expansions (11) and (12) with the density matrix (5) and the definition

of the statistical tensors (7), and by making use of the standard expansion for products of

two Wigner rotation matrices, the statistical tensors of the ion in its intermediate state can be

expressed as

ρ̂b
kq (θR R, φR R) = C

∑

ν

Yν−q (θR R, φR R)Bkq
ν ( jb, jb) (14)

with

Bkq
ν ( jb, jb) =

∑

L L ′

∑

κκ ′λ

iL ′−L il−l′ (−1)− j ′+L−ν+1/2ei(�κ′ −�κ )[L, L ′, j, j ′, l, l ′, k]1/2

× 〈L − λL ′λ|ν0〉〈Eκ j ||αAλ
L ||nb jb〉∗〈Eκ ′ j ′||αAλ

L ′ ||nb jb〉

×
∑

t

〈kqν − q|t0〉〈l ′0l0|t0〉
{

j j ′ t

l ′ l 1/2

}

{

L ′ jb j ′

L jb j

ν k t

}

. (15)

The statistical tensor ρ̂00(θR R, φR R) has a particular meaning. If, namely, the density

matrix is normalized due to relation (6), this rank-zero tensor, again, represents (up to the

factor 1/
√

2 jb + 1) the differential cross section for the capture of an electron into the level

|nbκb〉

ρ̂b
00(θR R, φR R) = 1√

2 jb + 1

dσ R R
jb

d�R R

(θR R, φR R). (16)

70



Photon–photon angular correlations in the radiative recombination of bare high-Z ions 3719

The tensors with non-zero ranks, in contrast, are related to the population of the individual

substates of |nbκbµb〉, relative to each other. Instead of using the statistical tensors (14),

however, it is often more convenient to describe this relative population in terms of the so-

called reduced statistical tensors (Balashov et al 2000):

Akq (θR R, φR R) =
ρ̂b

kq(θR R, φR R)

ρ̂b
00(θR R, φR R)

(17)

which are independent of the particular normalization of the density matrix.

3.3. Subsequent photon emission

The density matrix (5) and the statistical tensors (14) are two different but theoretically

equivalent representations to describe the intermediate state | jbµb〉 of the ions following

the capture of a free electron. To accommodate the system also through the subsequent

characteristic photon emission, which results in the (final-ionic) state | j0µ0〉, it is useful

to return to the density matrix representation (5) and to utilize, once more, the relation

ρ̂0 = R̂ρ̂b R̂+ (cf equation (1)). Similarly to before, the statistical operator ρ̂0 describes both

the ion in its final state | j0µ0〉 as well as the characteristic (decay) photon with wavevector k

and helicity λ; in the representation of the individual momenta this operator takes the form

〈 j0µ0,kλ|ρ̂0| j0µ
′
0,kλ′〉 =

∑

µbµ
′
b

〈 j0µ0,kλ|R̂| jbµb〉〈 jbµb|ρ̂b(θR R, φR R)| jbµ
′
b〉

× 〈 jbµ
′
b|R̂+| j0µ

′
0,kλ′〉 (18)

where 〈 j0µ0,kλ|R̂| jbµb〉 represents the transition matrix for the bound–bound transition

| jbµb〉 −→ | j0µ0〉. From expression (18) of the final-state density matrix, the angular

distribution of the de-excitation photons is obtained by applying the projection operator

P̂0
k =

∑

λµ0
|kλ〉| j0µ0〉〈 j0µ0|〈kλ|:

Wγ (θ, φ; θR R, φR R) = Tr(P̂0
k ρ̂0) =

∑

λµ0

〈 j0µ0,kλ|ρ̂0| j0µ0,kλ〉

=
∑

µbµ
′
bkq

∑

λµ0

(−1) jb−µ′
b 〈 jbµb jb − µ′

b|kq〉〈 j0µ0,kλ|R̂| jbµb〉

× 〈 j0µ0,kλ|R̂| jbµ
′
b〉∗ρ̂b

kq (θR R, φR R), (19)

analogous to equation (3) in the first step. In the second and third line of (19), we only replaced

the intermediate-state density matrix by its statistical tensors (14).

The angular distribution (19) is often called the photon–photon angular correlation

function. In this function, the dependence on the angles (θR R, φR R) of the recombination

photon results from the intermediate-state statistical tensors (14),while the angular dependence

(θ, φ) of the decay photon arises from the bound–bound transition matrix

〈 j0µ0,kλ|R̂| jbµb〉 = C

∫

d3r ψ+
j0µ0

(r)αû∗
λe−ikrψ jbµb

(r), (20)

which is very similar to the bound–free transition matrix element (8). The only difference

in (20) is that both (one-electron) wavefunctions represent bound states and, hence, only the

photon field needs to be expanded into its multipole components (9). Inserting this expansion

of the photon wave into the matrix element (20) and by making use of (10), we can re-write

the photon–photon correlation function as

Wγ (θ, φ; θR R, φR R) = C
∑

kq

ρ̂b
kq (θR R, φR R)Ykq(θ, φ)

1√
2k + 1

∑

L L ′λ

iL ′−L(−1)1+ jb+k+ j0
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× (2 jb + 1)
√

2L + 1
√

2L ′ + 1〈L ′λL − λ|k0〉
{

jb jb k

L L ′ j0

}

× 〈nb jb||αAλ
L ||n0 j0〉∗〈nb jb||αAλ

L ′ ||n0 j0〉. (21)

Again, the term with k = q = 0 represents the total intensity and is often separated from the

rest; with this separation, the common form of the angular correlation function finally reads

(cf Balashov et al (2000))

Wγ (θ, φ; θR R, φR R) =
W 0

γ

4π

(

1 +
1

2

2 jb
∑

k=1

k
∑

q=−k

√

4π

2k + 1
Ykq (θ, φ)Akq(θR R, φR R) f

( jb, j0)

k

)

(22)

where the Akq(θR R, φR R) are the reduced statistical tensors (17) and the structure function

f
( jb, j0)

k = (−1) j0+ jb+k+12
√

2 jb + 1
∑

L L ′λ

√
2L + 1

√
2L ′ + 1〈L ′λL − λ|k0〉

× (−1)L ′−L

{

jb jb k

L L ′ j0

}

〈nb jb||αAλ
L ||n0 j0〉∗〈nb jb||αAλ

L ′ ||n0 j0〉

×
(

∑

Lλ

|〈nb jb||αAλ
L ||n0 j0〉|2

)−1

(23)

arises entirely from the bound-state structure of the ion.

Equation (22), together with the expressions (14)–(15) and (23), represents the general

form of the angular correlation function for a two-step electron capture into bare (high-Z )

ions. In the following, we make use of these relations to analyse both the capture into the 2p3/2

level as well as the subsequent Lyman-α1 decay into the 1s1/2 ground state. As mentioned

before, these two steps of such a cascade have been investigated at the GSI in Darmstadt: so

far, however, always independently of each other. In coincidence measurements at the GSI

storage ring, they are likely to be studied first in order to also explore the correlated emission

of both photons.

4. Angular distribution of the Lyman-α1 radiation

The structure function f
( jb, j0)

k is non-zero only if k is even and 1 � k � 2 jb. For a Lyman-α1

(2p3/2 → 1s1/2) transition with 2 jb = 3, therefore, the angular distribution of the emitted

photons just contains the reduced tensors of rank k = 2,

Wγ (θ, φ; θR R, φR R) =
W 0

γ

4π

(

1 +

√

4π

5

2
∑

q=−2

Y2q(θ, φ)
A2q(θR R, φR R)

2
f

(3/2,1/2)

2

)

. (24)

In this case, moreover, the structure function f
(3/2,1/2)

2 can be easily expressed in terms of

the reduced matrix elements for the electric and magnetic bound–bound multipole transitions

(Surzhykov et al 2002)

f
(3/2,1/2)

2 =
[ |〈||E1||〉|2 − |〈||M2||〉|2 + 2

√
3〈||E1||〉〈||M2||〉∗

|〈||E1||〉|2 + |〈||M2||〉|2
]

∝ 1 + 2
√

3
〈||M2||〉
〈||E1||〉 (25)

where we have introduced the two short-hand notations

〈‖E1‖〉 = 〈2p3/2‖αA
(e)

L=1‖1s1/2〉 and 〈‖M2‖〉 = 〈2p3/2‖αA
(m)

L=2‖1s1/2〉.

Obviously, the structure function becomes f
(3/2,1/2)

2 = 1 in the electric dipole approximation,

i.e. if only the E1 term is considered to contribute the Lyman-α1 transition. The function (25)

therefore describes the deviation from the dipole approximation for the subsequent photon
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emission due to the interference between the leading E1 and the—much weaker—M2

components. For high-Z ions, the ratio 〈||M2||〉/〈||E1||〉 of the two amplitudes is of the order

of ∝ 0.1, leading to 20–30% magnetic quadrupole correction over the dipole approximation.

For hydrogen-like uranium U91+, for instance, the structure function contributes as much as

f
(3/2,1/2)

2 = 1.28 to the angular distribution of the characteristic photon emission (Surzhykov

et al 2002).

As seen from equation (24), there are five parameters in general which characterize

the polarization state of the excited ion. These parameters are given in terms of the

(five) tensor components A2q(θR R, φR R), q = −2, . . . , 2. For the case of initially

unpolarized electrons and projectile ions all these components are real and only three of

these parameters are independent due to the relations A22(θR R, φR R) = A2−2(θR R, φR R) and

A21(θR R, φR R) = −A2−1(θR R, φR R). The component with zero projection A20(θR R, φR R) is

called the differential alignment parameter and can be expressed in terms of the differential

cross sections
dσ RR

jbµb

d�
(θR R, φR R) for the capture of the electron into the magnetic substates | jbµb〉

A20(θR R, φR R) =
dσ RR

jbµb=±3/2

d�
(θR R, φR R) − dσ RR

jbµb=±1/2

d�
(θR R, φR R)

dσ RR
jbµb=±3/2

d�
(θR R, φR R) +

dσ RR
jbµb=±1/2

d�
(θR R, φR R)

, (26)

i.e. the alignment of the residual ion state generally depends on the angle at which the re-

combination photon is observed. Only if this RR photon remains unobserved, the (averaged)

alignment of the ions is described by a single parameter A2 which, in terms of the total

population cross sections, is given by Berezhko and Kabachnik (1977)

A2 =
σ R R

jbµb=±3/2 − σ R R
jbµb=±1/2

σ R R
jbµb=±3/2 + σ R R

jbµb=±1/2

. (27)

The angular distribution of the subsequent photon emission simplifies then to the well known

formula

WLy−α1
(θ) =

W 0
Ly−α1

4π
(1 + β2 P2(cos θ) f

(3/2,1/2)

2 ), (28)

where the parameter β2 = A2/2 is the so-called anisotropy coefficient.

5. Calculations

As seen from expressions (14)–(15) and (22)–(23), the analysis of both the statistical tensors

of the intermediate ion state as well as the photon–photon angular correlation function

Wγ (θ, φ; θR R, φR R) can be traced back to the evaluation of the reduced matrix elements

〈Eκ j ||αAλ
L ||nb jb〉 and 〈nb jb||αAλ

L ||n0 j0〉, respectively. These matrix elements describe the

interaction of an electron with the radiation field for a free–bound and bound–bound electron

transition. Since they arise from the same transition operator (9), all these reduced matrix

elements can be evaluated in a similar way using the calculus of the irreducible tensor operators

(cf Balashov et al (2000)). An explicit expression in terms of (geometrical) spin–angular

coefficients and radial integrals are given in the appendix; for a pointlike nucleus and the

use of exact Coulomb bound-state and continuum wavefunctions, all radial integrals can be

expressed by means of the hypergeometric function 2 F1(a, b; c; z) (Trautmann et al 1983).

All computations of the reduced matrix elements and angular coefficients have been carried

out by using the two computer-algebraic packages RACAH (Fritzsche 1997, Fritzsche et al

2001) and DIRAC, where the latter one, in particular, represents a toolbox of Maple procedures

for studying the properties and the dynamical behaviour of hydrogen-like ions. The DIRAC
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Figure 2. Components of the reduced statistical tensor Akq (θRR , φRR ) as functions of the photon

emission angle. The three tensor components A2q , q = 0, 1 and 2 are displayed for the capture

of an electron into the 2p3/2 level in collisions of the bare uranium ion U92+ at an energy of

Tp = 1 MeV u−1, given in the projectile frame.

program has been developed in our group over the last few years and now supports both

symbolic and numerical computations for quite a variety of different atomic properties.

To calculate the statistical tensors (14) and (15) of the ion following the capture of an

electron with well defined momentum p, a sufficiently large number of the partial waves |κms〉
needs to be taken into account in the expansion (12) of the free-electron wave. As discussed

by Eichler and Meyerhof (1995), the required number of partial waves depends on the ion

projectile energy. For the electron capture into a bound state of 220 MeV u−1 U92+ projectile

ions, we included all partial waves with |κ | � 15.

6. Results and discussion

Several experiments have been carried out during recent years to explore the angular emission

of the photons in the radiative recombination of free (or quasi-free) electrons into the 2p3/2 level

of bare uranium ions and their subsequent decay. So far, however, these angular distributions

were measured only either for the recombination or the decay photons (Stöhlker et al 1997)

but not for both photons in coincidence. Coincidence measurements are planned to be carried

out at the GSI storage ring in Darmstadt later this year.

In the following, we analyse the reduced statistical tensors (17) of the second rank and the

photon–photon angular correlation function (22) for the recombination of an electron into the

2p3/2 level of high-Z ions. Detailed computations have been carried out, in particular, for the

capture into bare uranium for several projectile energies in the range 1 � Tp � 220 MeV u−1.

After the emission of the recombination photon, the residual ion is left in an aligned state which

generally depends on the emission angles θR R . Figure 2 displays the three components of the

reduced statistical tensor A2q(θR R, φR R) for the capture of an electron at a projectile energy of

Tp = 1 MeV u−1; for such energy, the differential alignment parameter A20 is positive in the

forward and backward directions, referring to a preferred population of the two µn = ±3/2

substates. In contrast, the emission of the recombination photon perpendicular to the beam

mainly results—more than 80%—in the population of the µn = ±1/2 substates.
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Figure 3. The reduced statistical tensor A20(θRR , φRR ) of the 2p3/2 state following the radiative

recombination of a free electron into bare uranium ions U92+ with energies Tp = 1, 50 and

220 MeV u−1. All results are presented for the projectile frame.

If the recombination photon remains undetected, as is typical for present-day experiments,

the alignment of the excited ion state is described only by the integral parameter A2 from

equation (27). This integral alignment parameter A2 characterizes the average over all emission

angles of the recombination photon and, hence, can only depend on the projectile energy. For

the capture into bare uranium at a projectile energy of Tp = 1 MeV u−1, for instance, the

overall alignment of the residual ions is A2 = −0.768. This alignment parameter decreases

for higher projectile energies in the range of Tp = 1–300 MeV u−1 as first pointed out by

Stöhlker et al (1997). This behaviour of the integral alignment can be easily seen also from

the energy dependence of the differential alignment parameter A20(θR R, φR R) as displayed in

figure 3. For higher projectile energies, the differential alignment increases in the backward

direction, thus leading to a overall decrease in A2.

Beside of the reduced statistical tensor A20(θR R, φR R), which refers to the differential

alignment, the spin state of the excited ions in the 2p 3/2 level is also described by the parameters

A2±1(θR R, φR R) and A2±2(θR R, φR R), i.e. by the non-diagonal elements of the density matrix.

These (additional) parameters also depend on the projectile energy as well as on the emission

angle of the recombination photon, cf figure 2. They must be zero, however, for θR R = 0◦ and

θR R = 180◦ since a photon emission either in forward or backward directions does not break

the axial symmetry for the intermediate ‘ion plus photon’ system and, hence, cannot lead to

a non-diagonal density matrix in this case. For the same arguments, moreover, the integral

parameters A2±1 and A2±2 are always zero because the integration over the photon angles θR R

also ‘restores’ the axial symmetry again.

As seen from equation (24), the angular distribution of the subsequent Lyman-α1

radiation is closely related to the reduced statistical tensors A2±q(θR R, φR R). In coincidence

measurements, therefore, the distribution of these photons will depend on both the projectile

energy as well as the angle under which the recombination photon is observed. In figure 4,

we display this Lyman-α1 angular distribution for different angles θR R = 0◦, 15◦, 30◦ and

90◦ of the recombination photon with respect to the beam direction. Moreover, these angular
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Figure 4. Angular distribution of the Lyman-α1 radiation following the radiative recombination

of a free electron into the 2p3/2 level of the bare uranium projectiles with energies Tp = 1 and

220 MeV u−1. Distributions are shown for the angles φLy = 0◦, 45◦ and 90◦ with respect to the

reaction plane.

distributions are presented in the planes, tilted by the angles φLy = 0◦, 45◦ and 90◦ with

respect to the reaction plane, and for the two projectile energies Tp = 1 (upper part) and

220 MeV u−1 (lower part). The angular distributions for both projectile energies are normalized

in such a way that the normalization constant is W 0
Ly−α1

= 4π . As expected for a forward

emission of the recombination photon (θR R = 0), the Lyman-α1 distribution is symmetric

around θLy = 90◦ and also has its minimum at this value since, in this case, the differential

alignment A20(θR R, φR R) is positive and the reduced tensor components A2±1(θR R, φR R) and

A2±2(θR R, φR R) are all zero. For all other angles (θR R �= 0◦ and 180◦), these statistical tensors

are generally non-zero, giving rise to an asymmetric distribution of the Lyman-α1 photons in

coincidence measurements.

As the initial axial symmetry is broken for most coincidence experiments (apart from

an observation of the recombination photon in forward or backward direction), the Lyman-

α1 angular distribution also depends on the axial angles φLy. Only if these photons are

measured perpendicular to the reaction plane (φLy = 90◦), a symmetric distribution around

θLy = 90◦ is always obtained as also becomes clear from expression (24). Furthermore, the

alignment effects from the intermediate-state ions can appear either pronounced or suppressed

in dependence on the angles under which the coincidence experiments are carried out.

Until now, we have considered the photon–photon angular correlations for the capture

of an electron into bare uranium ions U92+. Apart from the projectile energies, of course,

these angular correlations will also depend on the charge of the projectiles. Figure 5 shows

the dependence of the Lyman-α1 angular distribution on the nuclear charge of the (bare) ions,
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Figure 5. Charge dependence of the angular distribution of the Lyman-α1 radiation following

radiative recombination of a free electron into the 2p3/2 state of the bare uranium projectile with

energy Tp = 220 MeV u−1. Results are shown for the three nuclear charges Z = 54, 79 and 92.

taken for a emission of the recombination photon perpendicular to the beam (θR R = 90◦).

Again, angular distributions are shown for different axial angles φLy = 0◦, 45◦ and 90◦ of the

Lyman-α1 emission. As seen from this figure, the strongest Z -dependence of the Lyman-α1

distribution will arise for a measurement perpendicular to the reaction plane.

7. Summary

In this paper, we have considered the radiative capture of a free electron into an excited state

of a bare, high-Z ion and its subsequent photon decay in the framework of the density matrix

theory. This theory provides a consistent ground not only to investigate the total and angle-

differential cross sections of the recombination and the decay photons separately but also for

their ‘angular correlation’ in coincidence measurements. Here, we have applied this theory

to the capture into the 2p3/2 level and the study of the subsequent Lyman-α1 (2p3/2 → 1s1/2)

angular distributions, where we have assumed that the recombination photon is to be detected

in coincidence. As shown above, the emission pattern of the subsequent radiation usually

depends strongly on the particular angle at which the recombination photon is observed. Apart

from the coplanar geometry, which might first be utilized by experiment, detailed angular

distributions are presented also for a non-coplanar set-up of the detectors.

In the future, photon–photon angular correlation measurements may serve as a tool for

determining the polarization of either the electron target or the ion beam. Similarly, as in the

present contribution, the density matrix theory may then help analyse different experimental

scenarios and predict the effects of a polarization of the particles. A more detailed analysis of

such polarization effects is currently underway.

Appendix. Evaluation of the transition matrix element

The reduced matrix element 〈naκa||αAλ
L ||nbκb〉, which describes the radiative bound–bound

as well as bound–free (in this case the |naκa〉 vector should be substituted by the partial wave

|Eκ〉) electron transitions, can be decomposed, according to equation (9):

〈naκa||αAλ
L ||nbκb〉 = 〈naκa||A(m)

L ||nbκb〉 + iλ〈naκa||A(e)
L ||nbκb〉. (A.1)
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The magnetic and electric multipole fields can be expressed, respectively, as (Rose 1957)

A
(m)
L M = jL(kr)T M

L ,L , (A.2)

A
(e)
L M = jL−1(kr)

√

L + 1

2L + 1
T M

L ,L−1 − jL+1(kr)

√

L

2L + 1
T M

L ,L+1, (A.3)

where jL(kr) is a spherical Bessel function and the vector spherical harmonics T M
L ,L are

the spherical tensors of rank L, resulting from the coupling of the spherical unit vector

ξm, m = 0,±1 with the spherical harmonics Ylm :

T M
L ,� =

∑

m

〈�M − m1m|L M〉Y�M−mξm . (A.4)

By making use of the equations (A.2) and (A.3) one can evaluate the reduced magnetic

and electric multipole matrix elements as (Grant 1974)

〈naκa||A(m)
L ||nbκb〉 = 1 − (−1)la +lb +L

2
〈 ja||C(L)|| jb〉M̄

(m)
ab (L), (A.5)

〈naκa||A(e)
L ||nbκb〉 = 1 + (−1)la +lb +L

2
〈 ja||C(L)|| jb〉M̄

(e)
ab (L), (A.6)

where the irreducible tensors C(L) can be written in terms of spherical harmonics:

C(L)(θ, φ) =
√

4π

2L + 1
YL(θ, φ). (A.7)

One can evaluate the reduced matrix element of the irreducible tensor C(L) by using the

irreducible operator technique as

〈 ja||C(L)|| jb〉 = (−1)(L)
√

2 ja + 1〈 ja1/2 L0| jb1/2〉. (A.8)

The M̄
(e,m)
ab (L) involve only the radial integrals: explicitly, for magnetic type multipoles,

M̄
(m)
ab (L) = −i√

4π

√

2L + 1

L(L + 1)
(κa + κb)I +

L (k; ab), (A.9)

and for electric type multipoles, written in the velocity gauge (Grant 1974),

M̄
(e)
ab (L) = i√

4π

(
√

L

(L + 1)(2L + 1)
[(κa − κb)I +

L+1(k; ab) + (L + 1)I −
L+1(k; ab)]

−
√

L + 1

L(2L + 1)
[(κa − κb)I +

L−1(k; ab) − L I −
L−1(k; ab)]

)

, (A.10)

where the radial integrals are

I ±
� (k; ab) =

∫ ∞

0

(Pa(r)Qb(r) ± Pb(r)Qa(r)) j�(kr) dr . (A.11)
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Abstract

The radiative recombination of polarized electrons into the excited states of bare, high-Z ions and the subsequent

photon decay are studied in the framework of the density matrix theory. The two-photon angular correlation function is

analyzed for the electron capture into the 2p3=2 state of bare uranium projectile and following Lyman-a1 (2p3=2 ! 1s1=2)

transition. It is shown that the two-photon angular correlation function is sensitive to the incident electron polarization

and, therefore, can be used to determine either the polarization of the electron target and/or the projectile ions.

� 2003 Elsevier Science B.V. All rights reserved.

PACS: 34.80.Lx; 34.80.Nz; 34.70.+e; 32.80.Fb

Keywords: Density matrix theory; High-Z ion; Radiative recombination

1. Introduction

During recent years, a large number of experi-

ments have been carried out at the GSI storage

ring in Darmstadt in order to explore the radiative

recombination (RR) of free (or quasi-free) elec-

trons into the bound states of highly charged ions.

At the beginning, most of the measurements con-

cerned the electron capture into the K-shell of bare

projectile ions. For such capture process, the total

and angle-differential cross sections of the recom-

bination photons have been analyzed in detail by

St€oohlker and co-workers [1] in the middle of

nineties. In later years, several experiments focused

on the RR into the excited states of the projectile

ions, including their subsequent photon decay,

since the angular distribution of the characteristic

photons may provide useful information about the

population of the ionic sublevels following elec-

tron capture. From the measurement of the an-

isotropic emission of the Lyman-a1 radiation, for

instance, a significant alignment of the 2p3=2 state

of hydrogen-like uranium was recently deduced

[2].

So far, however, the angular distributions of the

recombination and subsequent decay photons have

always been measured separately. These – individ-

ual – angular distributions are, in fact, not much

sensitive to the incident particle polarization. In

most theoretical studies of the RR into high-Z ions

[3,4], therefore, it is assumed that neither the

*Corresponding author. Tel.: +49-561-804-45-71; fax: +49-

561-804-40-06.

E-mail address: surz@physik.uni-kassel.de (A. Surzhykov).
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projectile ions nor the target electrons are polar-

ized. This assumption, however, has to be exam-

ined if both, the recombination and decay photons

are measured in coincidence. The simultaneous

detection of both photons, namely, brakes the

axial symmetry of any independent measurement

(with respect to the beam direction) and, therefore,

is expected to be sensitive to the incident particle

polarization. Owing to the recent improvements in

the X-ray detector technique, such (e, 2c) coinci-

dence measurements are likely to be carried out at

the GSI storage ring within the next few years.

2. Theoretical description

In this contribution, we study the angular cor-

relations between the recombination and decay

photons in the capture of a (free) polarized electron

jpmsi into the excited state jnbjbi of a bare pro-

jectile ion. The theoretical background of such

two-photon coincidence studies has been developed

recently by us in the framework of the density ma-

trix theory [5], where we derived the two-photon

angular correlation function both for an unpolar-

ized projectile ion and target electron. Of course,

this correlation function needs to be modified in

order to describe the capture of an electron with a

well-defined spin projection. For relativistic ener-

gies, the spin projection of the electron has a sharp

value only along its direction of propagation p

[3], which we will choose as the quantization axis

(z-axis). For such choice of the quantization axis

the spin density matrix of the electron is given

by [6]:

q̂qe ¼ 1
2
ðÎI þ P r̂rzÞ; ð1Þ

where ÎI is the 2� 2 unit matrix and r̂rz is the Pauli

matrix. As seen from Eq. (1), the polarization of

the electron can be described by the single real

parameter P which is called the degree of polar-

ization and which takes values in the range

	16 P 6 þ 1. Obviously, the degree of polariza-

tion P ¼ 0 corresponds an unpolarized electron

while, in the case of P ¼ 
1, Eq. (1) describes a

completely polarized electron with spin projections

along the quantization axis of ms ¼ 
1=2.

The capture of an unpolarized electron (P ¼ 0)

into an ionic bound state leads to an equal popu-

lation of all pairs of sublevels with the same

modulus of the magnetic quantum numbers jlbj.
Moreover, an ion is said to be aligned if, for

jb > 1=2, different pairs of such magnetic substates

are unequally populated. For a capture of polar-

ized electron, in contrast, one may expect also a

polarization of the residual ion, which means that

the magnetic sublevels can be all populated un-

equally. In the framework of the density matrix

theory the population of the ionic substates is

described in terms of so-called statistical tensors

q̂qkqðhRR;/RRÞ. In general, these tensors depend on

the collisional parameters such as the projectile ion

energy and the nuclear charge as well as on the

angle n̂nRR ¼ ðhRR;/RRÞ with respect to the ion

beam, under which the recombination photon is

detected. Moreover, these statistical tensors also

reflect the polarization properties of the electron

target. Following Eq. (1), the statistical tensors can

generally be written as a sum of two parts, the

unpolarized tensor as well as the polarized

part which is weighted by the degree of polariza-

tion P :

q̂qkqðhRR;/RRÞ ¼ q̂q
unp
kq ðhRR;/RRÞ þ P � q̂qpol

kq ðhRR;/RRÞ:
ð2Þ

In this decomposition, the unpolarized tensor

q̂q
unp
kq ðhRR;/RRÞ refers to the capture of an unpo-

larized electron (P ¼ 0):

q̂q
unp
kq ðhRR;/RRÞ ¼ C

X

m

Ym	qðhRR;/RRÞBkq
m ðjb; jbÞ

ð3Þ

and was derived earlier in [5], cf. Eqs. (14) and

(15). A similar expansion also applies for the po-

larized part q̂q
pol
kq ðhRR;/RRÞ of the statistical tensor

in Eq. (2) which arises due to a capture of a po-

larized electron:

q̂q
pol
kq ðhRR;/RRÞ ¼ i � C

X

m

Ym	qðhRR;/RRÞ ~BBkq
m ðjb; jbÞ

ð4Þ

and where the expansion coefficients take the

form:
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~BBkq
m ðjb; jbÞ ¼ 	2

X

ktms

X

LL0
ð	1ÞL	m	j0

iL
0	Lþl	l0eiðDj	Dj0 Þ

� ½L; L0; l; l0; k�1=2

� hkqm	 qjt0ihL	 kL0kjm0i
� hjmsj

0 	 msjt0ihl01=2msjjmsi
� hl001=2msjj0msihjjkaAk

Lknbjbi
�

� hj0j0kaAk
L0knbjbi

L0 jb j0

L jb j

m k t

8

>

<

>

:

9

>

=

>

;

:

ð5Þ

In these coefficients, moreover, Dj is the Coulomb

phase [3], ½L� ¼ ð2Lþ 1Þ and the reduced matrix

element hjjkaAk
Lknbjbi describes the RR of a free

electron into a bound state jnbjbi of the bare ion. A
possible route to evaluate this reduced matrix el-

ement in the framework of Dirac�s theory has been

discussed previously [5].

Instead of using the statistical tensors (2), it is

often more convenient to describe the relative

population of the ion in terms of the (so-called)

reduced statistical tensors [6] which are normalized

by means of zero-rank tensor:

AkqðhRR;/RRÞ ¼
q̂qkqðhRR;/RRÞ
q̂q00ðhRR;/RRÞ

: ð6Þ

In general, the (reduced) statistical tensors obey

several properties. For instance, since for k ¼
q ¼ 0 the expansion coefficients (5) vanish for all m,

the zero-rank statistical tensor does not depend on

the polarization of the incident electron, i.e.

q̂q00ðhRR;/RRÞ ¼ q̂q
unp
kq ðhRR;/RRÞ. For this reason,

moreover, the reduced statistical tensors (6) can be

also divided into an unpolarized and a polarized

part, similar as in Eq. (2),

AkqðhRR;/RRÞ ¼ A
unp
kq ðhRR;/RRÞ

þ P �Apol
kq ðhRR;/RRÞ ð7Þ

and can be used directly in order to derive the

angular distribution of the subsequent decay

photons. For instance, if we consider the electron

capture into the 2p3=2 state of bare ions, the an-

gular distribution of the Lyman-a1 (2p3=2 ! 1s1=2)

radiation is defined by the reduced statistical ten-

sors of the second rank [5]:

Wcðh;/; hRR;/RRÞ

¼
W 0

c

4p
1

 

þ
ffiffiffiffiffiffi

4p

5

r

X

2

q¼	2

Y2qðh;/Þ
A2qðhRR;/RRÞ

2
f ðE1;M2Þ

!

;

ð8Þ

where we referred to f ðE1;M2Þ as the structure

function [7], which describes the interference be-

tween the leading electric dipole (E1) and – the

much weaker – magnetic quadrupole (M2) transi-

tion amplitudes. For hydrogen-like uranium, for

example, this (dimensionless) function takes the

value of about 1.28.

3. Results and discussion

Eq. (8) displays the general photon–photon an-

gular correlation between the recombination and

the following decay photons and, together with

Eq. (7), how this correlation depends on the po-

larization P of the incident electrons. For the

capture into the 2p3=2 state, for instance, there are

five imaginary components of the polarized tensor

A
pol
2q ðhRR;/RRÞ, q ¼ 	2; . . . ; 2 which are all

weighted by the degree of polarization P . In

practice, however, only two of these parameters

are independent due to the relations: A
pol
21 ¼ A

pol
2	1,

A
pol
22 ¼ 	A

pol
2	2 and A

pol
20 ¼ 0. The number of in-

dependent polarization parameters can be further

reduced by making a proper choice of the geom-

etry in the setup of a coincidence experiment. If,

for instance, the Lyman-a1 photons are observed

perpendicular to the reaction plane (i.e. the plane

which is formed by the directions of the beam and

the recombination photon), the corresponding

angular distribution simplifies to:

Wcðh;/ ¼ p=2; hRR;/RRÞ

¼ W0

4p
1

"

þ 1

2

ffiffiffi

3

2

r

1
ffiffiffi

6
p ð3 cos2 h

�

	 1Þ

�A
unp
20 ðhRR;/RRÞ 	 sin2

hA
unp
22 ðhRR;/RRÞ

	 iP � sin 2hApol
21 ðhRR;/RRÞ

�

f ðE1;M2Þ
#

;

ð9Þ
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where only one term depends linearly on the de-

gree of polarization P and component of the po-

larized tensor A
pol
21 . Obviously, this single term

reflects the polarization properties of the incident

electrons. While the other two (unpolarized) terms

describe the angular distribution of the Lyman-a1

radiation which is symmetrical with respect to the

plane perpendicular to the beam axis (h ¼ 90�), the

polarized term gives rise to an asymmetrical shift

in the emission pattern and, hence, to a clear sig-

nature of the electron polarization P . Fig. 1 shows

the two Lyman-a1 angular distributions following

(i) the capture of unpolarized electrons (solid line)

and (ii) of completely polarized electrons (dashed

line) into the 2p3=2 state of bare uranium projectile

ions with an energy Tp ¼ 310 MeV/u. All calcula-

tions have been carried out in the projectile frame

for the case of perpendicular geometry, i.e. when

the characteristic photon is detected in the plane

which is perpendicular to the reaction plane. As

seen from the Fig. 1, a complete polarization of the

incident electrons results in strongly asymmetrical

angular distribution of the Lyman-a1 radiation.

Moreover this asymmetrical shift is proportional

to the degree P of the electron polarization and,

therefore, can be applied as a precise tool in co-

incidence (e, 2c) experiment for studying the po-

larization of the incident particles.

In the near future, the coincidence experiments

as planned at theGSI storage ring inDarmstadt are,

most likely, to be carried out in a coplanar geometry

(that is, when both photons are detected within the

same plane). In this case, however, the angular

distribution of the Lyman-a1 photons does not de-

pend on the polarization of the incident electrons:

Wcðh;/ ¼ 0; hRR;/RRÞ

¼ W0

4p
1

"

þ 1

2

ffiffiffi

3

2

r

1
ffiffiffi

6
p ð3 cos2 h	 1Þ

�

�A
unp
20 ðhRR;/RRÞ 	 sin 2hA

unp
21 ðhRR;/RRÞ

þ sin2
hA

unp
22 ðhRR;/RRÞ

�

f ðE1;M2Þ
#

ð10Þ

and hence, cannot be used for deriving the polar-

ization properties of the (target) electrons. To

obtain information about the polarization of the

electrons (and/or the projectile ions) also in co-

planar geometry, the setup of the coincidence ex-

periment needs to be modified. For such a

geometry, one possibility consists in measuring the

angle-polarization correlation, i.e. the polarization

of the Lyman-a1 radiation in coincidence with (the

angle of) the recombination photon. By using a

new position-sensitive germanium X-ray detectors,

such angle-polarization coincidence studies may

become likely to be carried out at the GSI storage

ring. The density matrix approach will certainly

help to analyze such type of experiments. A more

detailed investigation of the angle-polarization

correlation function is currently under work.

References

[1] Th. St€oohlker, Phys. Scr. T 80 (1999) 165.

[2] Th. St€oohlker, F. Bosch, A. Gallus, C. Kozhuharov, G.

Menzel, P.H. Mokler, H.T. Prinz, J. Eichler, A. Ichihara, T.

Shirai, et al., Phys. Rev. Lett. 79 (1997) 3270.

[3] J. Eichler, W. Meyerhof, Relativistic Atomic Collisions,

Academic Press, San Diego, 1995.

[4] J. Eichler, A. Ichihara, T. Shirai, Phys. Rev. A 58 (1998) 2128.

[5] A. Surzhykov, S. Fritzsche, Th. St€oohlker, J. Phys. B: At.

Mol. Opt. Phys. 35 (2002) 3713.

[6] V.V. Balashov, A.N. Grum-Grzhimailo, N.M. Kabachnik,

Polarization and Correlation Phenomena in Atomic Collisi-

ons, Kluwer Academic, Plenum Publishers, New York, 2000.

[7] A. Surzhykov, S. Fritzsche, A. Gumberidze, Th. St€oohlker,

Phys. Rev. Lett. 88 (2002) 153001.

Fig. 1. Angular distributions of the Lyman-a1 radiation fol-

lowing the radiative recombination of a free electron into the

2p3=2 state of bare uranium projectile with energy Tp ¼ 310

MeV/u, taken for the emission of the recombination photon

perpendicular to the electron beam (hRR ¼ 90�). Calculations

have been carried out in the projectile frame for the emission of

the Lyman-a1 photons in the plane, perpendicular to the reac-

tion one (/ ¼ 90�).
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The polarization of the emitted photons is studied for the radiative recombination of free electrons into the
bound states of bare, highly charged ions. We apply density matrix theory in order to investigate how the
photon polarization is affected if the incident electrons are themselves spin polarized. For K-shell electron
capture, for instance, the linear polarization of the light, which is measured out of the reaction plane, is defined
by the degree of polarization of the electrons and may be used as a tool for studying the polarization properties
of the electron targets and/or the projectile ions. Detailed computations of the Stokes parameters of x-ray
emission following the radiative recombination of bare uranium ions U921 are carried out for a wide range of
projectile energies and for different polarization states of the incident electrons.

DOI: 10.1103/PhysRevA.68.022710 PACS number~s!: 34.80.Lx, 34.80.Nz, 34.70.1e, 32.80.Fb

I. INTRODUCTION

With the recent experimental advances in heavy-ion ac-
celerators and ion storage rings, more possibilities arise to
study ion-electron and ion-atom collisions. For the relativis-
tic collisions of highly charged ions with low-Z target atoms
~or free electrons!, for instance, a number of case studies on
radiative electron capture, K-shell Coulomb excitation and
ionization of projectiles, electron bremsstrahlung, and even
correlated two-electron capture have proceeded in recent
years at the GSI storage ring in Darmstadt @1#. So far, how-
ever, most of these experiments have dealt with target atoms
~or electrons! and ion beams that are both unpolarized. A
wide range of qualitatively different polarization studies will
be opened up by using spin-polarized projectile ions or/and
target atoms. Such experiments are very likely to be carried
out at the future GSI facilities which will be installed within
the next ten years.

Polarization collision experiments, however, require an
effective tool for diagnostics the polarization properties of
the beam as well as of the target atoms ~or electrons!. It is
necessary, therefore, to find a probe process whose charac-
teristics are sensitive to the polarization states of the collision
system. One such probe process, which we suggest from the
theoretical viewpoint, is the capture of a free ~or quasifree!
electron into a bound state of the projectile ion with the
simultaneous emission of a photon which carries away the
excess energy and momentum. This capture process, denoted
radiative recombination, has been intensively studied during
recent years in the relativistic collisions of high-Z projectile
ions with low-Z target atoms ~or free electrons!. A series of
experiments, for instance, has been carried out at the GSI
storage ring @1,2# in order to explore the total and angle-
differential recombination cross sections, which were found
to be in good agreement with theoretical predictions based
on relativistic Dirac theory @3–5#. However, neither the total

recombination cross section nor the angular distribution of
the emitted photons was found to be ~much! dependent on
the polarization of the ion beam or atomic target and there-
fore they cannot be used for polarization studies.

In contrast to the total and angle-differential cross sec-
tions, the polarization of the emitted photons may appear
very sensitive to the particle polarization. A similar effect,
for instance, has long been known for the atomic photoeffect
@6,7#, where the spin polarization of the emitted electron is
strongly affected by the polarization of the incident photon.
Since the photoeffect is the time-inverse process of radiative
recombination, we can expect that measurements of the po-
larization of the recombination photons will provide us with
information on the spin polarization of the target electrons
~atoms! or ion beam. In fact, such measurements are possible
nowadays for the linear polarization of x-ray photons due to
the recent improvements in position sensitive polarization
detectors. In the last year, for instance, measurements of the
linear polarization of K-shell recombination photons have
been carried out for electron capture into bare uranium ions
U921.

In this paper, we study the linear polarization of the pho-
tons that are emitted due to the capture of free polarized
electrons into bound states of bare, high-Z ions. For such
investigations of the angular distribution and polarization
properties of the emitted radiation, density matrix theory has
been found to be the appropriate framework in order to ac-
company the system through the collision process @8#. Since,
however, the concept of density matrix theory has been pre-
sented elsewhere in a number of places @8–10#, we may
restrict ourselves to rather a short outline of the basic rela-
tions within the two following sections. Starting from the
basic representation of the density matrix, we first derive the
explicit expressions for the Stokes parameters of the recom-
bination photons and simplify them by using the parity prop-
erties of the levels involved. In Sec. II D, moreover, we in-
troduce a ~so-called! polarization ellipse, which helps us to
discuss and better understand the linear polarization of the
emitted x-ray radiation. This representation in terms of an
ellipse also shows explicitly how the polarization of the x*Electronic address: surz@physik.uni-kassel.de
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rays is affected if the incident electrons are also polarized. In
Sec. III, we describe a series of computations that were car-
ried out for the linear polarization of the emitted photons
following the capture of an electron into the K shell of bare
uranium ~projectile! ions U921. As seen from this computa-
tion, polarization of the incident electrons generally leads
also to a rotation of the polarization vector of the light out of
the reaction plane. A summary of this important result and its
implication for future experiments is finally given in Sec. IV.

II. BASIC FORMULAS

A. Polarization vector of the photon

For the radiative recombination of free electrons into
bare, high-Z ions, several case studies are known today,
which are based on Dirac’s equation @4,11–13#. In such a
relativistic treatment of the electronic capture, Dirac-
Coulomb wave functions are usually applied throughout the
computations, both for the incident ~free! electron with well
defined asymptotic momentum p and spin projection ms as
well as for the final bound state unb jbmb& of the electron. In
addition, the emitted—or recombination—photon is typically
described in terms of a plane wave with wave vector k (k
5v/c) and with a polarization that points perpendicular to k
along some unit vector u. The wave vector k and the elec-
tron momentum p span the reaction plane in the experiment.
Of course, the ~polarization! vector u can always be rewritten
in terms of any two ~linearly independent! basis vectors,
such as the circular-polarization vectors u61, which are per-
pendicular to the wave vector k and which for u11 and u21
refer to right- and left-circularly polarized photons @9#, re-
spectively. In such a basis, the unit vector for the linear po-
larization of the emitted x rays can be written as

u~x !5

1

A2
~e2ixu111e ixu21!, ~1!

where x is the angle between u(x) and the reaction plane
~see Fig. 1!.

B. Density matrix approach

While the definition ~1! of the polarization vector u is
appropriate to describe the linear polarization of photons in a
pure polarization state, it is not sufficient if several photons
with different polarization states are emitted in the course of

a capture or collision process. If, for example, we consider a
photon beam in some mixed state, the polarization of the
photons is then better described in terms of the spin-density
matrix. Since the photon ~with spin S51) has only two al-
lowed spin ~or helicity! states ukl& , l561, the spin-density
matrix of the photon is a 232 matrix and, hence, can be
parametrized by the three ~real! Stokes parameters @8,9#

^klur̂gukl8&5

1

2 S 11P3 P12iP2

P11iP2 12P3
D . ~2!

In fact, these parameters are often utilized in experiments in
order to characterize the degree of polarization of the emitted
light; while the Stokes parameter P3 reflects the degree of
circular polarization, the two parameters P1 and P2 together
denote the ~degree and direction of the! linear polarization of
the light in the plane perpendicular to the photon momentum
k. Experimentally, these Stokes parameters are determined
simply by measuring the intensities of the light Ix , linearly
polarized at different angles x with respect to the reaction
plane. For instance, the parameter P1 is given by the inten-
sity ratio

P15

I02I90

I01I90
, ~3!

while the parameter P2 is obtained from a very similar ratio
at angles x545° and x5135°, respectively ~see Fig. 1!:

P25

I452I135

I451I135
. ~4!

As seen from Eq. ~2!, the three Stokes parameters can
obviously also be expressed in terms of the matrix elements
of the photon spin-density matrix. For electron capture into a
bound state unb jbmb& of a ~subsequently hydrogenlike! pro-
jectile ion, an expression for these matrix elements was de-
rived previously @11#:

^klur̂gukl8&5(
nm

D0m
n ~0,u ,0! (

LpL8p8

bLpL8p8

nm
~l ,l8!,

~5!

where u denotes the angle of the photons with respect to the
momentum p of the ~incoming! electrons ~see Fig. 1!. The
angular parameters bLpL8p8

nm (l ,l8) refer to the contributions
of the different multipoles of the radiation field to the polar-
ization state of the emitted photons and can be written as

bLpL8p8

nm
~l ,l8!5 (

msmb

iL81p82L2p~21 !ms2mb@L ,L8#1/2

3^pmsur̂eupms&l
pl8

p8^L8l8L2lunm&

3^L8ms2mbLmb2msun0&

3^pmsuaAL8ms2mb

p8 ukbmb&

3^pmsuaALms2mb

p ukbmb&*, ~6!

FIG. 1. The unit vector u(x) of the linear polarization is defined
in the plane that is perpendicular to the photon momentum k, and is
characterized by an angle x with respect to the reaction plane.
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where @L#52L11 and ^pmsuaALM
p ukbmb& denotes the ma-

trix element for either the electric (p51) or magnetic (p
50) multipole free-bound transition of the electron. The ex-
plicit separation of the transition amplitudes into their elec-
tric and magnetic components, as displayed in Eqs. ~5! and
~6!, will help us later in simplifying the expressions for the
Stokes parameters. Of course, the angular coefficient ~6! still
depends on the ~initially prepared! spin-density matrix

^pmsur̂eupms& , i.e., on the polarization state of the incident
electrons.

The transition matrix elements in the last two lines of
expression ~6! contain the wave function upms& of a free
electron with a definite asymptotic momentum. For further
simplification of the spin-density matrix ~5!, it is therefore
necessary to decompose this continuum wave into partial
waves uEk jms&, in order to apply later the standard tech-
niques from the theory of angular momentum. As discussed
previously @11–13#, however, special care has to be taken
about the choice of the quantization axis since this directly
influences the particular form of the partial wave decompo-
sition. Using, for example, the electron momentum p as the
quantization axis, the full expansion of the continuum wave
function is given by @4#

upms&5(
k

i le iDkA4p~2l11 !^l01/2msu jms&uEk jms& ,

~7!

where the summation runs over all partial waves k561,
62, . . . , i.e., along all values of ~Dirac’s! angular momen-
tum quantum number k56( j11/2) for l5 j61/2. In this
notation, the ~nonrelativistic orbital! momentum l now rep-
resents the parity of the partial waves uEk jms&, and Dk is
the Coulomb phase shift.

Using the decomposition ~7! of the continuum wave func-
tion together with the Wigner-Eckart theorem @8#, the angu-
lar parameters ~6! can be rewritten in the form

bLpL8p8

nm
~l ,l8!

5(
kk8

iL81p82L2pi l2l8e i(Dk2Dk8 )@L ,L8,l ,l8#1/2

3H L L8 n

j8 j jb
J lpl8

p8^L8l8L2lunm&

3^Ek8 j8uuaAL8

p8uunb jb&^Ek j uuaAL
puunb jb&*Ckk8

n ,

~8!

where the polarization properties of the incident electron
now occur only in the coefficient

Ckk8

n
5(

ms

~21 !2ms^pmsur̂eupms&^l01/2msu jms&

3^l801/2msu j8ms&^ j82ms jmsun0&. ~9!

Therefore, making use of these last two expressions, the
evaluation of the spin-density matrix can be traced back to
just the computation of the reduced matrix elements
^Ek j uuaAL

puunb jb& which describe the interaction of an elec-
tron with the radiation field for a ~standard! free-bound tran-
sition. The computation of these matrix elements within the
framework of Dirac theory was discussed elsewhere at sev-
eral places in the past @5,13#.

C. Symmetry properties of the Stokes parameters

The decomposition of the continuum wave functions in
Eqs. ~8! and ~9! helps analyze the symmetry properties of the
two Stokes parameters P1 and P2 and, hence, of the linear
polarization of the emitted light. As seen from the expression
~8!, for instance, the helicity quantum numbers l and l8,
which characterize the different partial waves of the outgoing
photon, appear only in the phase and in the single Clebsch-
Gordan coefficient ^L8l8L2lunm&. From the symmetry
properties of the Clebsch-Gordan coefficients, it therefore
follows immediately that the bLpL8p8

nm (l ,l8) angular coeffi-
cients must also obey the symmetry

bLpL8p8

nm
~21,11 !5~21 ! fbLpL8p8

n2m
~11,21 !, ~10!

where the proper phase is given by f 5L1p1L81p82n .
The symmetry of the angular coefficients enables one, in
turn, to express the two Stokes parameters P1 and P2 in a
simpler form:

P15
^k11ur̂guk21&1^k21ur̂guk11&

^k11ur̂guk11&1^k21ur̂guk21&

5

(
n

D02
n ~0,u ,0! (

LpL8p8

bLpL8p8

n2
~21,1!@11~21 ! f #

2(
n

Pn~cos u ! (
LpL8p8

bLpL8p8

n0
~11,11 !

~11!

and

P252i
^k21ur̂guk11&2^k11ur̂guk21&

^k11ur̂guk11&1^k21ur̂guk21&

52i

(
n

D02
n ~0,u ,0! (

LpL8p8

bLpL8p8

n2
~21,1!@12~21 ! f #

2(
n

Pn~cos u ! (
LpL8p8

bLpL8p8

n0
~11,11 !

,

~12!

which, however, still includes a summation over all the pos-
sible multipoles in the electron-photon interaction. Owing to
parity conservation in the interaction of the electron with the
radiation field, of course, not all of these multipoles will
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contribute in practice to the polarization properties of the
photons, as is reflected above by the phase factor (21) f

[(21)L1p1L81p82n
561. Therefore, in order to under-

stand the effects of parity conservation, we shall return to
expression ~8! for the angular parameters bLpL8p8

nm (l ,l8) and
analyze it in some more detail.

In expression ~8!, of course, the parity selection rules ap-
ply to both of the reduced matrix elements and do require
that the parities of the ~electric and magnetic! multipole
fields must be equal to (21) times the product of the parities
that are associated with the bound state and the ~outgoing!
partial wave, respectively,

~21 !L1p
52pnb jb

pk j5~21 ! lb1l11,

~21 !L81p8
52pnb jb

pk8 j85~21 ! lb1l811, ~13!

which immediately leads to the relation

~21 !L1p1L81p82n
5~21 ! l1l82n. ~14!

However, before we continue with the discussion of the
Stokes parameters, let us first reconsider the coefficient ~9!,
i.e., that part of the bLpL8p8

nm parameter which depends ex-

plicitly on the electron density matrix ^pmsur̂eupms& of the
incident electrons. Since, in the relativistic theory, the pro-
jection of the electron spin has a sharp value only along the
electron momentum, the quantization axis (z axis! is chosen
parallel to p. For spin-1/2 particles, moreover, a single pa-
rameter 21<P<1 is of course sufficient to describe the
polarization of the electrons and hence can be used to ex-
press the electron spin-density matrix

^pmsur̂eupms&5

1

2
~I1Psz!5

1

2 S 11P 0

0 12P
D ~15!

in terms of the unit matrix I and the Pauli matrix sz . In this
parametrization of the initial spin-density matrix, obviously,
a degree of polarization P50 corresponds to a beam of un-
polarized electrons, while P561 refers to a completely po-
larized electron beam with spin projections ms561/2.

We are now prepared to study the influence of an initially
polarized electron beam on the angular and Stokes param-
eters. By inserting expression ~15! into Eq. ~9!, we first see
that the coefficient Ckk8

n can be decomposed into an ‘‘unpo-
larized’’ and a ‘‘polarized’’ component

Ckk8

n
5Ckk8

n
~unpol!1PCkk8

n
~unpol!, ~16!

which, due to the parity rules, behave quite differently under
a ~sign! change in the spin state of the electron ~in either its
initial or final state!. Taking into account the properties of the
Clebsch-Gordan coefficients in Eq. ~9!, we find that these
two parts obey the symmetry relations

Ckk8

n
~unpol!5~21 ! l1l82nCkk8

n
~unpol!,

Ckk8

n
~pol!5~21 ! l1l82n11Ckk8

n
~pol!. ~17!

A similar decomposition as found for the Ckk8

n coefficients
applies of course also to the bLpL8p8

nm (l ,l8) angular param-
eters in Eq. ~8!:

bLpL8p8

nm
~l ,l8!5bLpL8p8

nm
~l ,l8;unpol!

1PbLpL8p8

nm
~l ,l8;pol!, ~18!

where, using Eqs. ~14! and ~17!, the corresponding ‘‘unpo-
larized’’ and ‘‘polarized’’ parts satisfy the two symmetry re-
lations

bLpL8p8

nm
~l ,l8;unpol!

5~21 !L1p1L81p82nbLpL8p8

nm
~l ,l8;unpol!,

bLpL8p8

nm
~l ,l8;pol!

5~21 !L1p1L81p82n11bLpL8p8

nm
~l ,l8;pol!. ~19!

That is, while the unpolarized part of the bLpL8p8

nm parameter
is always zero if the phase f is odd, the same is true for the
polarized part for even f. Making use of this property of the
angular parameter ~18!, we can now simplify the expressions
~11! and ~12! for the Stokes parameters to

P15

(
n

D02
n ~0,u ,0! (

LpL8p8

bLpL8p8

n2
~21,1;unpol!

(
n

Pn~cos u ! (
LpL8p8

bLpL8p8

n0
~11,11 !

,

~20!

P252iP

(
n

D02
n ~0,u ,0! (

LpL8p8

bLpL8p8

n2
~21,1;pol!

(
n

Pn~cos u ! (
LpL8p8

bLpL8p8

n0
~11,11 !

,

~21!

which shows us immediately that only the P2 parameter de-
pends on the polarization P of the incident electrons and that
this parameter is simply proportional to P. Therefore, the
Stokes parameter P2 vanishes identically if the electrons are
initially unpolarized and hence can be used as a very valu-
able tool for studying the polarization of the incident electron
~and/or ion! beam. A measurement of the Stokes parameter
P1, in contrast, will not be affected by the polarization of the
incoming electrons and depends only on the nuclear charge
Z, the projectile energy, and the geometry in the setup of the
photon detectors @11,12#.

D. Polarization ellipse of the photons

The two Stokes parameters P1 and P2 specify the linear
polarization of the radiation completely, i.e., both the degree
of the polarization as well as its direction in the plane per-
pendicular to the photon momentum k. Instead of the Stokes
parameters, however, we may represent the linear polariza-
tion of the emitted x rays also in terms of a polarization
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ellipse which is defined in this plane ~perpendicular to k). In
such a representation, the degree of linear polarization

PL5AP1
2
1P2

2 ~22!

is characterized by the relative length of the principal axis ~of
the ellipse!, and the direction by its angle x0 with respect to
the reaction plane. Figure 2 shows the concept of the polar-
ization ellipse and how x0 is defined; when expressed in
terms of the Stokes parameters, this angle is given by the two
ratios @8#

cos 2x05

P1

PL
, sin 2x05

P2

PL
, ~23!

and can be used to interpret the measurements. While, obvi-
ously, an angle x050 or x05p/2 corresponds to a linear
polarization of the x rays within or perpendicular to the re-
action plane ~and with degree PL5uP1u), any contribution
from a nonzero P2 parameter will rotate the polarization vec-
tor ~i.e., x0Þ0 and x0Þp/2). Recalling, moreover, the lin-
ear dependence of P2;P on the polarization of the incident
electrons, we can therefore conclude that any polarization
vector that is not in the reaction plane or perpendicular to it
reflects a polarization of the ~incident! electrons.

For the case of a polarized electron target ~and for unpo-
larized ions!, we can express the angle x0 of the polarization
ellipse also directly in terms of the polarization P and the
bLpL8p8

nm (l ,l8) angular parameters:

cos 2x05

sign~P1!

A11P
2
R

2
, ~24!

sin 2x05

sign~P2!uPuR

A11P
2
R

2
, ~25!

where

R5U i(
n

D02
n ~0,u ,0! (

LpL8p8

bLpL8p8

n2
~21,1;pol!

(
n

D02
n ~0,u ,0! (

LpL8p8

bLpL8p8

n2
~21,1;unpol!U

~26!

denotes some ratio of the ‘‘polarized’’ and ‘‘unpolarized’’
components of the bLpL8p8

nm parameters. In experiments with
highly charged ions, it is this representation of the angle x0
which, along with theoretical data, may help determine im-
mediately the degree of polarization of the incident electrons
without any need to measure the linear polarization in detail.

III. RESULTS AND DISCUSSION

Measurements on the linear polarization of x-ray radiation
following the capture of electrons into highly charged ions
are no longer impractical today. For the K-shell recombina-
tion of bare uranium ions U921, for example, experiments on
the polarization of the photons were carried out at the GSI
storage ring in Darmstadt during the last year. These studies
on the x-ray polarization became possible owing to the use
of position sensitive germanium detectors. These detectors
enable one to obtain information not only on the degree of
x-ray polarization but also concerning its direction within the
detector plane. They may be used therefore for studying the
polarization of electron ~or atom! targets or even the polar-
ization properties of ion beams at storage rings in the future.

In the following, we analyze the linear polarization of the
photons that are emitted in the radiative recombination of
bare uranium ions with energies in the range 50<Tp
<400 MeV/u. Detailed calculations have been carried out,
in particular, for electron capture into the K shell of U921

projectiles. To explore the effects of a polarized electron tar-
get on the ~linear! polarization of the recombination photons,
two cases are considered: the capture of ~i! unpolarized and
~ii! completely polarized electrons. For these two cases, Fig.
3 displays the Stokes parameters as a function of the obser-
vation angle u of the recombination photons. In the upper
panels of this figure, the P1 parameter for the capture of
unpolarized electrons (P50) is shown; it is positive and
quite large for most angles apart from the forward and back-

FIG. 2. Definition of the polarization ellipse; its principal axis is
characterized by x0, the angle with respect to the reaction plane in
the given measurement.

FIG. 3. The Stokes parameters P1 and P2 of the x-ray photons
that are emitted in electron capture into the K shell of bare uranium
ions. The Stokes parameters are shown for the capture of unpolar-
ized ~top panels! and completely polarized ~bottom panels! elec-
trons. Calculations are presented in the laboratory frame ~i.e., the
rest frame of the electron target!.
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ward directions of emission. As seen from Eq. ~21!, the
Stokes parameter P2 must vanish identically in the case of
unpolarized electrons; since, moreover, P1.0 for projectile
energies Tp<400 MeV/u, the principal axis of the polariza-
tion ellipse always lies within the reaction plane, x050, for
all angles of observation of the recombination photons and
for unpolarized electrons.

A rather different situation arises in the second case ~ii!
for the capture of completely polarized electrons (P51) as
shown in the lower panels of Fig. 3. Here, a nonvanishing
Stokes parameter P2 appears, which peaks at around u
530° and becomes larger for increasing projectile energies,
while the P1 parameter remains unaffected by the polariza-
tion of the electron target. As mentioned above, a nonzero
value of P2 also leads to a rotation of the polarization ellipse
out of the reaction plane. This rotation is seen in Fig. 4,
which displays the polarization ellipses of the recombination
photons at the observation angle u530°, calculated for the
three projectile energies Tp550, 220 and 400 MeV/u. Ac-
cording to the increase of the Stokes parameter P2 at this
angle, the ~rotation! angle x0 of the polarization ellipse in-
creases from 3.5° for Tp550 MeV/u to almost 30° for Tp
5400 MeV/u. As seen from Figs. 3 and 4, therefore, the
effects of the target polarization become apparently more
pronounced if the projectile energy is increased.

So far, we have analyzed the linear polarization of the
recombination photons for the two limiting cases of either
unpolarized or completely polarized electrons. As discussed
above, these two cases can be easily distinguished by the
polarization ellipse whose principal axis must always lie
within or perpendicular to the reaction plane for the capture
of unpolarized electrons. As seen from Eqs. ~24!–~26!, how-
ever, observation of the rotation angle x0 may provide infor-
mation on both the degree as well as the direction of the
electron polarization P(21<P<11) and hence can be
used for studying the spin polarization of the electrons and
atomic targets, respectively. Figure 5 displays the rotation
angle x0 of the polarization ellipse for various degrees of the
electron polarization P, following the capture of electrons
into the K shell of bare uranium ions at a projectile energy

Tp5400 MeV/u. In this figure, the rotation angle x0 is
shown as a function of the observation angle u of the recom-
bination photons ~in the laboratory frame, i.e., the rest frame
of the electron target!; for a given energy of the projectiles,
apparently, the maximal rotation of the polarization ellipse
arises in the forward direction for the emission of recombi-
nation photons. Note, however, that x0 is not defined at the
emission angles u50 and u5180°, because photon emis-
sion in either the forward or backward direction does not
break the axial symmetry for the collision system. At these
two angles, therefore, the linear polarization of the light must
always be zero ~see Fig. 3!. For the same reason also, all
polarization measurements at angles near u50 will become
difficult as the degree of linear polarization PL5AP1

2
1P2

2

!0.1 in this range. For larger emission angles, however, the
~degree of! linear polarization increases and may become as
large as PL'0.5 for emission angles around u530°. At
these angles, the effect from the polarization of the incident
electrons is still quite sizable and leads, for u530° and Tp
5400 MeV/u, to a decrease of the rotation angle x0 from
27.4° for the capture of completely polarized electrons to
4.0° if the polarization of the incident electrons is P50.1.

IV. SUMMARY AND OUTLOOK

Density matrix theory has been applied for studying the
polarization of the emitted photons following the radiative
recombination of bare, high-Z ions. In our theoretical analy-
sis, emphasis was placed particularly on the two questions of
~i! how the polarization of the incident electrons affects the
linear polarization of the recombination photons and ~ii! how
this polarization of the electrons ~or of any atomic target! can
be observed by experiment. As seen from these investiga-
tions, the linear polarization of the recombination photons
may serve as a valuable tool for ‘‘measuring’’ the polariza-
tion properties of the electrons: While the capture of unpo-
larized electrons always leads to x-ray photons that are po-
larized within or perpendicular to the reaction plane, a
rotation of the polarization ellipse occurs for polarized elec-

FIG. 4. Rotation of the polarization ellipses of the recombina-
tion photons, calculated for the three projectile energies Tp

550 MeV/u ~—!, 220 MeV/u ~– –!, and 400 MeV/u ~- - -! at the
photon emission angle u530°.

FIG. 5. Rotation angle x0 of the polarization ellipse in depen-
dence on the observation angle of the recombination photons. The
angle x0 is calculated for the capture of longitudinally polarized
electrons into the K shell of a bare uranium projectile U921 and is
shown for four different degrees of the electron polarization: P

51.0 ~—!, P50.7 ~– –!, P50.4 ~– - –!, and P50.1 ~- - -!.
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trons. Calculations of this ~linear! effect have been carried
out especially for the capture of longitudinally polarized
electrons into the K shell of bare uranium projectiles U921.

For the sake of simplicity, here we considered the case of
polarized electrons, while the ion beam has been assumed
unpolarized throughout the analysis. Owing to the symmetry
of the collision system ‘‘ion plus electron,’’ however, similar
effects on the polarization of the recombination photons as
found for a polarized electron target can also be expected if
the ion beam is polarized. Of course, for a nuclear spin I
.1/2, an enlarged parametrization of the ion density matrix
will be required @cf. Eq. ~15!#. Investigations along these

lines are currently under way and will provide, together with
proper measurements of the photon polarization, a method of
determining the polarization of ~heavy-!ion beams—up to
the present a rather unresolved problem in the physics at
storage rings.

ACKNOWLEDGMENTS

We gratefully acknowledge Dr. Sepp for helpful discus-
sions. This work has been supported by the GSI Project No.
KS-FRT.
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Polarization of the Lyman–α1 line following the radiative recombination

of bare, high–Z ions
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Abstract.

The radiative recombination of a free electron into the 2p3/2 state of bare, highly–charged
ions and the subsequent Lyman–α1 (2p3/2 → 1s1/2) decay are studied theoretically. Special
attention is paid to the linear polarization of the characteristic x-ray radiation. In particular, it
is found that the angular distribution of the Lyman–α1 line polarization is remarkably modified
by the interference between the leading electric dipole E1 decay channel and – the much weaker
– magnetic quadrupole M2 term. Relativistic calculations have been carried out for the electron
capture into bare uranium ion for a wide range of projectile energies.

Keywords: radiative recombination, radiative decay, x–ray polarization, E1–M2 interference

1. Introduction

With the recent experimental advances in heavy–ion accelerators and ion storage
rings, a number of new possibilities arose to study ion–electron and ion–atom
collisions. In these collisions, one of the most basic process is the transfer of an
electron from the target atom to the fast moving projectile ion. For high–energy
collisions of bare ions, this charge transfer is accompanied by the emission of a
photon which carries away the excess energy and momentum. This process, which
is known as the radiative recombination (RR) of ions, has been intensively studied
during recent years at the GSI storage ring in Darmstadt [1]. So far, however,
most of the measurements concerned the capture of an electron into the K–shell
of the projectile ions. If, in contrast, the electron is captured into some excited
state of the ion, its subsequent decay will lead to the emission of one (or several)
photons until the ground state is reached. Such subsequent photon emission is
characterized (apart from the well known energies) by its angular distribution

and polarization. Both of these properties are closely related to the magnetic
sublevel population of the excited ion as it arises from the electron capture [2, 3].
Several experiments have been carried out during last few years in order to study
the angular distribution of the subsequent photons and, therefore, to derive the
alignment of the residual ions [4]. Till today, no polarization measurement has
yet been performed, mainly because of the lack of efficient x–ray polarization
detectors. Owing to recent improvements in the detector techniques, however,

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.
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such polarization experiments are likely to be carried out at the GSI storage ring
within the next few years.

In this contribution, we study the polarization of the Lyman–α1 radiation
following the capture of a free electron into the 2p3/2 state of bare, highly–charged
ions. The most natural framework for such polarization studies is given by the
density matrix theory [5, 6]. For the sake of brevity, in the present paper, we omit
the details of the density matrix formalism when applied to the radiative recom-
bination of bare ions. Instead, we display the final formulas for the alignment
of the excited ionic state and the polarization of the decay photons in Sections
2 and 3. In Section 4, we describe the computations for the linear polarization
of the Lyman–α1 radiation following an electron capture into the bare uranium

ion. A brief summary is given finally in Section 5.

2. Ion alignment following the electron capture

The capture of an unpolarized electron into an ionic bound state |nb jb〉 leads
to an equal population of all pairs of sublevels with the same modulus of the
magnetic quantum numbers |µb| . Moreover, an ion is said to be aligned if, for
jb > 1/2, different pairs of such magnetic substates are unequally populated.
Usually, the alignment of the residual ion is described in terms of one (or several)
parameters Ak which are related to the total cross sections σRR(µb) for the
radiative recombination into the various magnetic sublevels |nb jb µb〉. For the
capture into the 2p3/2 level, for instance, only one parameter A2 is nonzero and
can be expressed as [2, 3]:

A2 =
σRR(µb = 3/2) − σRR(µb = 1/2)

σRR(µb = 3/2) + σRR(µb = 1/2)
. (1)

The calculation of the alignment parameter A2 in the framework of the Dirac
theory has been discussed in detail by Eichler and co–workers [2]. It requires the
computation of free–bound transition matrix elements for the electron–photon
interaction. We calculated these matrix elements and utilized them to obtain
both, the partial cross sections and the alignment parameters by using the Dirac

[7] and Racah [8] programs. The Dirac package has been developed for studying
the properties and behaviour of the hydrogen–like ions and has been used before
for investigating the polarization phenomena in the radiative electron capture [9].

3. Polarization of the subsequent photons

The alignment parameter A2 describes the population of the 2p3/2 ionic state as
it arises from the electron capture. The subsequent decay of such – an aligned

– state may lead both, to an anisotropic angular distribution [2, 3] as well as
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to a non–zero linear polarization of the characteristic x–ray radiation, which is
defined in terms of the degree of polarization [10]:

PL =
I‖ − I⊥
I‖ + I⊥

. (2)

Here, I‖ and I⊥ are the intensities of light, which is linearly polarized in parallel
(perpendicular) respectively to the reaction plane, given by the directions of the
projectile ion and characteristic photon. Of course, the linear polarization (2)
will depend not only on the population of the excited ionic states but also on
the angle θ, under which the decay photon is detected with respect to the ion
beam. For instance, the linear polarization of the Lyman–α1 photons is given in
the emitter frame by the standard expression [10, 11]:

PL(θ) =
−3

2
A2

2 sin2 θ

1 + A2

2 P2(cos θ)
, (3)

where P2 is the second–order Legendre polynomial.
Equation (3) includes only the dominant electric dipole (E1) decay channel

while – the much weaker – magnetic quadrupole component (M2), which also
contributes to the Lyman–α1 transition, is neglected. Although the electric dipole
approximation (3) is certainly appropriate for light ions, it should be questioned
for highly–charged ions since the contribution of the magnetic quadrupole term to
the properties of the Lyman–α1 transition increases dramatically for the higher
nuclear charges Z. As we showed recently, for instance, the angular distribution

of the characteristic radiation is considerably modified by incorporating the mag-
netic quadrupole (M2) term [3]. Of course, the M2 term must also be taken into
account for the linear polarization of the decay photons. By using the density
matrix theory, Equation (3) can easily be extended to include both, the electric
dipole and the magnetic quadrupole components. For the sake of brevity, we leave
out the derivation of the following expression and just present the final result:

PL(θ) =
−3

2
A2

2 sin2 θ

[

|〈||E1||〉|2−|〈||M2||〉|2− 2√
3
〈||E1||〉〈||M2||〉∗

|〈||E1||〉|2+|〈||M2||〉|2

]

1 + A2

2 P2(cos θ)
[ |〈||E1||〉|2−|〈||M2||〉|2+2

√
3〈||E1||〉〈||M2||〉∗

|〈||E1||〉|2+|〈||M2||〉|2
]

∝
−3

2
A2

2 sin2 θ
[

1 − 2√
3

〈||M2||〉
〈||E1||〉

]

1 + A2

2 P2(cos θ)
[

1 + 2
√

3 〈||M2||〉
〈||E1||〉

] , (4)

where the 〈||E1||〉 ≡
〈

2p3/2

∣

∣

∣

∣

∣

∣αA
(e)
L=1

∣

∣

∣

∣

∣

∣ 1s1/2

〉

and 〈||M2||〉 ≡
〈

2p3/2

∣

∣

∣

∣

∣

∣αA
(m)
L=2

∣

∣

∣

∣

∣

∣ 1s1/2

〉

are the reduced matrix elements for the electric dipole and magnetic quadrupole
transitions, respectively [3].
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Figure 1. Degree of linear polarization PL(θ) of the Lyman–α1 radiation following the electron
capture into the 2p3/2 state of bare uranium projectile with energy Tp = 220 MeV/u. The
dashed line represents the results within the electric dipole approximation, i.e. when the magnetic
quadrupole term M2 is neglected. The solid line shows the degree of linear polarization as defined
by Eq. (4)

As seen from Eq.(4), the main correction due to the magnetic quadrupole decay
channel arises from the term which is proportional to the ratio of the transition
amplitudes. For high–Z ions, this ratio is of the order ∝ 0.1, which may lead to the
10–15 % magnetic quadrupole correction over the electric dipole approximation
(3). Moreover, due to the Z scaling rule for the ratio of the transition amplitudes
〈||M2||〉 / 〈||E1||〉 ∝ Z2.2, the non–negligible effect of a few percent remains even
for the medium–Z ions. For instance, for the hydrogen–like xenon Xe53+ this
contribution is still about 4 %.

4. Calculations and discussion

Experimental studies on the linear polarization of the characteristic Lyman–α1

radiation are currently planned to be carried at the GSI storage ring within the
next few years. As seen from the Eqs.(3–4), such polarization measurements can
provide detailed information on the population of the magnetic substates, which is
produced by the electron capture processes. However, for a proper interpretation
of the experimental data, the magnetic quadrupole correction (M2) should be
taken into account since it modifies the linear polarization of the emitted photons.
Figure 1, for instance, shows the degree of linear polarization of the Lyman–α1

radiation as a function of the photon emission angle, drawn for the electron

Surzhykov_APAC.tex; 5/10/2003; 9:55; p.4

102



5

0 30 60 90 120 150 180
0,0

0,1

0,2

0,3

0,4

 

 

D
e

g
re

e
 o

f 
lin

e
a

r 
p

o
la

ri
z
a

ti
o

n

Photon Angle (deg)

Figure 2. Degree of linear polarization PL(θ) of the Lyman–α1 radiation following the electron
capture into the 2p3/2 state of bare uranium ion. Results are shown for the projectile energies:
Tp = 110MeV/u (—), Tp = 220MeV/u (– –) and Tp = 358MeV/u (- -).

capture into the 2p3/2 state of bare uranium ion with energy Tp = 220 MeV/u.
Two different approximations are shown: while the dashed line corresponds to
the electric dipole approximation (i.e. when the magnetic quadrupole term is
neglected), the solid line represents the degree of linear polarization PL(θ) as
defined by Equation (4). Since, moreover, the radiative recombination of ions
is usually studied experimentally by collisions of high–Z projectiles with (low–
Z) target atoms, the linear polarization in Figure 1 is presented for angles as
measured in the laboratory system (the rest frame of the target atoms). As seen
from the Figure, the strongest effect due to the magnetic quadrupole term arises
around the angle of 54 degrees, which corresponds to an angle of θ = 90 degree in
the projectile ion system. At this angle, the degree of linear polarization is 33 %,
which is less than the 38 % as obtained from the electric dipole approximation
(3).

Until now, we studied the degree of linear polarization PL(θ) for the electron
capture into bare uranium projectile with energy Tp = 220 MeV/u. Apart from
the photon emission angle, of course, the linear polarization also depends on
the projectile energy. As seen from Eqs. (3–4), the energy dependence is given
by the alignment parameter (1), which decreases for the energy range of Tp =
110...358 MeV/u from A2 = - 0.655 to A2 = - 0.528 [2]. Of course, decrease of
the alignment parameter also leads to a smaller degree of the linear polarization
for high projectile energies. Figure 2, for instance, shows the degree of linear
polarization (4), drawn for three typical projectile energies. As seen from the
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Figure, the – maximal – linear polarization decreases by one sixth from 36 % to
30 % for the projectile energies Tp = 110...358 MeV/u.

5. Summary

In this contribution, we studied the linear polarization of the Lyman–α1 pho-
tons following the radiative recombination of a free electron into the 2p3/2 state
of high–Z, bare ions. This polarization is found to be significantly affected by
the interference between the leading electric dipole (E1) decay channel and the
weak magnetic quadrupole branch (M2). For the hydrogen–like uranium, the E1–
M2 interference leads to the 15 % enhancement of the linear polarization when
compared with the dipole approximation.

Similar interference effects can be expected also for the polarization of the
the characteristic radiation in few–electron heavy ions. Two interest cases of
this type are, for instance, the radiative decays in the He–like ions following the
KLL–dielectronic recombination [11] or the electron–impact excitation [12, 13].
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1. Stöhlker, Th., Physica Scripta T80 (1999) 165.
2. Eichler, J., Ichihara, A. and Shirai, T., Phys. Rev. A 58 (1998) 2128.
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9. Surzhykov, A., Fritzsche, S. and Stöhlker, Th., Phys. Lett. A 289 (2001) 213.

10. Percival, I.C. and Seaton, M.J., Phil. Trans. R. Soc. A 251 (1958) 113.
11. Chen, M.H. and Scofield, J.H., Phys. Rev. A 52 (1995) 2057.
12. Reed, K.J. and Chen, M.H., Phys. Rev. A 48 (1993) 3644.
13. Inal, M.K. and Dubau, J., J. Phys. B 20 (1987) 4221.

Surzhykov_APAC.tex; 5/10/2003; 9:55; p.6

104



Acknowledgments

First of all, I would like to express very special thanks to my supervisor Dr. Stephan Fritzsche

for the skilful guidance and constant support during all period of my PhD study. His help,

suggestions and encouragement were crucial for the development of the whole work. Moreover,

the warm and friendly relations which have been settled down between us within these years

were also extremely important for my scientific research.

I direct may thanks to Prof. Dr. Burkhard Fricke for accepting me in the theoretical physics

group at Kassel University and for giving me unique opportunity to fulfill this thesis work.

For the close collaboration and fruitful discussions I gratefully acknowledge Dr. Thomas
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