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Computational Aspects of the Symmetric Eigenvalue Problem of Second
Order Tensors

S. Hartmann

This article is dedicated to the memory of our friend and colleague J¨urgen Olschewski who devoted his life to scientific research.

The symmetric eigenvalue problem of second order tensors or3 × 3 matrices, respectively, is a frequently treated
topic in the field of Computational Mechanics because there exist analytical solutions. However, there are several
known difficulties in the numerical computation of the analytical formulae which are recapitulated in this article.
In order to show this, a sensitivity analysis is applied and a comparison of different procedures to calculate the
eigenvalues, eigenvectors and eigendyades is carried out.

1 Introduction

The eigenvalue problem of symmetric second order tensors or their3 × 3 matrix representation is of interest in
finite element computations, for instance, where the calculation of principal stresses, strains or particular isotropic
tensor functions is required. There, the computation of the eigenvalue problem is carried out several million times,
which requires fast and, of course, accurate results. In the past, several analytical formulae for the computation of
the right or left stretch tensorsU =

√
C andV =

√
B and their inversesU−1 andV−1 have been carried out,

whereC = FTF is the Right Cauchy-Green tensor,B = FFT the Left Cauchy-Green tensor andF, detF > 0,
the deformation gradient (see, for example, Hoger and Carlson (1984); Ting (1985); Franca (1989)). At first
sight it is an interesting fact that the eigenvalues and eigenvectors can be determined analytically. However, it
is known that the eigenvalue computation, which is based on the solution of the characteristic polynomial, is not
suitable to calculate the eigenvalues because it is connected with numerical difficulties in the case of eigenvalues
being close to each other (see, for example, Schwarz et al. (1972)). Nevertheless, this topic has been treated in
several publications. Franca (1989) and Simo and Hughes (1998) discuss such problems, where Franca (1989) has
the objective of calculating the square root of a positive definite second order tensor. Although their benchmark
example of eigenvalues with a highly different order is beyond the order of physical applications, such states may
occur during an iterative solution scheme as in the non-linear finite element method. (Simo and Hughes, 1998,
p.244) mentioned that the eigenvalue computation near the identity tensor yields solutions which might be wrong.
Therefore, they change some analytical expressions, which, however, does not change the basic problem. In this
article we investigate and recall some of these problems by employing a sensitivity analysis yielding analytical
expressions of invariants which are equivalent to two or three equal eigenvalues. Furthermore, two known but
stabilized algorithms are compared with the fully numerical computation of the eigenvalue problem in order to
show the principal problems.

A second and subsequent problem is linked to the eigenvector computation or, if it is more of interest, the com-
putation of the eigendyades because its precision depends essentially on the accuracy of the eigenvalues. In the
Appendix a special procedure to compute the eigenvectors is summarized. As mentioned in Morman (1986), Simo
and Taylor (1991), Miehe (1998) and Miehe (1993) the eigendyades can be computed not only by the eigenvector
computation but much more efficiently by the evaluation of isotropic tensor function. This computation is taken
into account as well.

In the following we use bold-faced roman letters for second order tensors,B = bij~ei ⊗ ~ej , where we restrict
ourselves to cartesian coordinates and geometrical vectors with an arrow,~n = ni~ei. Here, the vectors~ei define
orthogonal unity vectors. Matrices are symbolized by bold-faced, capital, sans-serif letters,B ∈ R

3×3, and column
vectors byn ∈ R

3.

At first, we recall some basic relationships which are necessary for the subsequent considerations. In the symmetric
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eigenvalue problem

B~n = λ~n or B n = λn, B = BT ∈ R
3×3 andn ∈ R

3, (1)

we look for the directions~n which are mapped onto themselves by the tensorB = BT . The proportionality factor
λ is called theeigenvalueand the direction~n concerned denotes theeigenvector. By means of a rearrangement of
Eq.(1),

(B − λI)~n = ~0, or (B − λI)n = 0, (2)

it is obvious that for~n 6= ~0 the determinant of the tensorB − λI has to vanish, leading to the characteristic
polynomial of third order

P (λ) = det(B− λI) = −λ3 + IBλ2 − IIBλ + III B = 0. (3)

I and I∈ R
3×3 are the identity tensor and identity matrix, respectively. The polynomial coefficients define the

principal invariants

IB = trB, IIB =
1
2

(
(trB)2 − trB2

)
, III B = detB (4)

with the trace operatortrB = bii (doubleii symbolize the sum from 1 to 3). The analytical solution of the
polynomial corresponds toCardano’s formula. An extensive derivation of these formulae is given, for example, in
Smirnow (1986), see also Bronstein and Semendjajew (1987). It is a well-known fact that in the case of symmetric
tensors only real roots exist. In this case the solution reduces to thecasus irreducibilis

λk =
1
3

(
IB + 2

√
I2B − 3IIB cos

β + (k − 1)2π

3

)
, k = 1, . . . , 3 (5)

β = arccos
2I3B − 9IBIIB + 27III B

2
√

(I2B − 3IIB)3
. (6)

Positive definite tensors have merely positive eigenvalues and the three cases of Fig. 1 may occur, i.e. three distinct

P (λ)

λ

P (λ)

λ

P (λ)

λ

Figure 1: Curves of characteristic polynoms in the case of single and multiple eigenvalues (for positive definite
tensors)

eigenvalues,λ1 6= λ2 6= λ3 6= λ1, one multiple eigenvalue,λ1 = λ2 6= λ3, and three multiple eigenvalues,
λ ≡ λ1 = λ2 = λ3. The first question treats the computation of the eigenvalues (5), which is studied in the
subsequent section. On the basis of these results we have to compute the eigenvectors~nk, k = 1, 2, 3, or, if it is of
interest, the eigendyadesNk = ~nk ⊗ ~nk, which are investigated in the sections following the next one.

2 Computation of eigenvalues

In this section we recall and discuss the numerical computation of the analytical expressions (5)-(6). In Tab. 1 an
algorithm (standard version) is proposed, where we incorporate some stabilization aspects mentioned by (Press
et al., 1992, p.179) for a numerically stable algorithm in wide ranges of a given tensorB and further interrogation
commands regarding different tolerances. These commands are incorporated in the algorithmic boxes.

(Simo and Hughes, 1998, p. 244) emphasize that the computation of Eq.(5) leads to sensitive solutions “near the
origin”, B ≈ I, and propose changing thearccos function into thearctan function

arccosx = arctan
√

1 − x2

x
. (7)

This statement must be enlarged and investigated in more detail because the difficulties are only transferred but
not avoided. Therefore, we have to study the basic problem of the computation of the analytical expressions and
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Table 1: Eigenvalue computation using thearccos-function
Given: B = BT ∈ R3×3

SOLVE IB = tr B

IIB =
1

2
(I2B − tr B2)

III B = det B

p = I2B − 3IIB

IF (p < 0) THEN p = 0
SOLVE

s =
√

p

IF (s < tol) THEN λ1 = λ2 = λ3 = IB
3 RETURN

SOLVE
q = 2I3B − 9IB IIB + 27III B

IF (|q| < tol) THEN q = 0
SOLVE

t =
q

2s3

IF (|t| > 1) THEN t = sign(t)
SOLVE β = (arccos t)/3

r =
2

3
s

λk =
IB

3
+ r cos

�
β +

2π

3
(k − 1)

�
for k = 1, 2, 3

look at a perturbation of the eigenvalue calculation. In Tab. 2 a modified version of the algorithm of Simo and
Hughes (1998) is given because in some situations the original procedure does not work very well. Here, various
tolerance interrogations are introduced as well in order to obtain a more stable algorithm. The procedures of Tab. 1
and Tab. 2 are compared in an example which is discussed in the subsequent section.

3 Sensitivity analysis of the eigenvalue computation

In the following, we try to find out which cases could lead to problems in the eigenvalue computation on the basis
of analytical considerations. To this end, we look at the Gateaux derivative, defined by

Dxi f(. . . , xi, . . .)[dxi] =
d
ds

f(. . . , xi + sdxi, . . .)|s=0, (8)

of the eigenvaluesλk in Eq.(5), by a change of the original tensorB, DB λk(B)[H]. This term represents the main
part of an error in the tensorB

λk(B + H) = λk(B) + DB λk(B)[H] + . . . (9)

Then, in respect of Eq.(5), we have

DB λk(B)[H] = DB λk(IB(B), IIB(B), III B(B))[H] =
= DIB λk(z)[DB IB(B)[H]] + DIIB λk(z)[DB IIB(B)[H]] + DIII B λk(z)[DB III B(B)[H]] =

=
∂λk

∂IB
h1 +

∂λk

∂IIB
h2 +

∂λk

∂III B
h3 (10)

with z = (IB, IIB, III B) and

h1 ≡ DB IB(B)[H] = I ·H,

h2 ≡ DB IIB(B)[H] = (IBI − B) ·H,

h3 ≡ DB III B(B)[H] = III BB−1 ·H = (adjB) · H.

Here, we have assumed a symmetric tensorB. Then

adjB = B2 − IBB + IIBI (11)
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Table 2: Eigenvalue computation using thearctan-function
Given: B = BT ∈ R3×3

SOLVE IB = tr B

IIB =
1

2
(I2B − tr B2)

III B = det B

p = IIB − 1

3
I2B

q = − 2

27
I3B +

1

3
IB IIB − III B

IF (p > −tol) THEN λ1 = λ2 = λ3 = IB
3 RETURN

SOLVE

t =
−q

2
p

(−p)3/27
IF (|t| > 1) THEN t = sign(t)
SOLVE

s = 2

r
−p

3

r =

√
1 − t2

t

β =
1

3
arctan r

λk =
IB

3
+ s cos

�
β +

2π

3
(k − 1)

�
for k = 1, 2, 3

defines the adjoint of a tensor. The partial derivatives in (10) are given by

∂λk

∂IB
=

1
3

(
1 +

2IB
p

cosαk − 2
3
p sinαk

∂β

∂IB

)
, (12)

∂λk

∂IIB
=

1
3

(
−3

p
cosαk − 2

3
p sinαk

∂β

∂IIB

)
, (13)

∂λk

∂III B
= −2

3
p sin αk

∂β

∂III B
, (14)

where we introduce the abbreviationsp =
√

I2B − 3IIB andαk = 1
3 (β + (k − 1)2π). Furthermore, we need the

derivatives∂β
∂IB

, ∂β
∂IIB

and ∂β
∂III B

for β given in Eq.(6). Because from the formβ = arccos
(

g(IB,IIB,III B)
h(IB,IIB)

)
with

g(IB, IIB, III B) ≡ 2I3B − 9IBIIB + 27III B and h(IB, IIB) ≡ 2
√(

I2B − 3IIB
)3

(15)

we have

∂β

∂x
= − 1√

1 − (
g
h

)2

∂g
∂x

h − g ∂h
∂x

h2
, x = IB, IIB (16)

∂β

∂III B
= − 1√

1 − (
g
h

)2

1
h

∂g

∂III B
. (17)

Now, we see in Eqns.(12) and (13) that for the casep → 0, i.e.

I2B − 2IIB −→ 0 (18)

the derivatives are not limited. Additionally, in Eqns.(16) and (17) the caseh ≈ g

2I3B − 9IBIIB + 27III B ≈ 2
(
I2B − 3IIB

)3/2
(19)

might cause numerical difficulties. Other cases could be very large invariants IB, IIB or IIIB which are beyond
physical orders and therefore not of interest.
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Case (18) occurs in the case of spherical tensors, i.e. nearly three equal eigenvalues. In order to show this, we look
at the second invariant of the deviator of the tensorB, namelyBD = B − 1

3 (trB)I,

J2(B) =
1
2

(
(trBD)2 − BD ·BD

)
= −1

2
BD ·BD = −1

3
(I2B − 3IIB) ≤ 0, (20)

i.e. in the case of a vanishing deviator relation (18) occurs. Then, the tensor becomes a spherical tensor and we
have three equal eigenvalues. The dot symbolizes the inner product of two second order tensors,A · B = aijbij .

The second problematic case (19) concerns two equal eigenvalues,λi = λj 6= λk. In order to show this, we first
look at the right-hand side of Eq.(19) leading to

2
(
I2B − 3IIB

)3/2
= 2(λk − λi)3 = 2(λ3

k − 3λ2
kλi + 3λkλ2

i − λ3
i ). (21)

The left-hand side is given by means of

IB = 2λi + λk → I3B = 8λ3
i + 12λ2

i λk + 6λiλ
2
k + λ3

k (22)

IIB = λ2
i + 2λiλk → IBIIB = 2λ3

i + 5λ2
i λk + 2λiλ

2
k (23)

III B = λ2
i λk (24)

and leads to the relation

2I3B − 9IBIIB + 27III B = 2(λ3
k − 3λ2

kλi + 3λkλ2
i − λ3

i ), (25)

which is equivalent to Eq.(21). Incidentally, for two equal eigenvalues there is a connection between the third
invariant of the deviator

J3(B) = detBD =
1
27

(
2I3B − 9IBIIB + 27III B

)
(26)

and the second invariantJ2 of Eq.(20), namely

27J3 ≈ 2(−3J2)3/2. (27)

As a result we have obtained two relations of invariants, namely relation (27) andJ2 → 0. Both define indicators
that the eigenvalue computation could fail if procedures based on analytical expressions are applied.

Using thearctan function instead of thearccos function temporarily avoids the caseg/h > 1 in arccos(g/h)
(see definitions (15)) which might be caused by numerical inaccuracies. However, the argument1 − t2 could be
negative due to numerical inaccuracies, see Tab. 2. In other words, the sensitivity of the eigenvalue problem does
not vanish.

A proposed perturbation of the eigenvaluesλ̃1 = λ1(1 + δ), λ̃2 = λ2(1 − δ) andλ̃3 = λ3/((1 + δ)(1 − δ)), see
Miehe (1993), overcomes the distinction of different equations of the solution. However, the computation of the
eigenvectors or eigendyades, and accordingly the calculation of isotropic tensor functions fundamentally depends
on the precision of the eigenvalues and therefore we have to accept additional inaccuracies.

The numerical sensitivity of the closed form solution of symmetric eigenvalue problems is already known (see,
for example, (Schwarz et al., 1972, p.106 ff.) and (Kielbasinski and Schwetlick, 1988, p.354 ff.)) because an
accumulation of points occurs near multiple roots and therefore the points are difficult to distinguish. It is worth
thinking about the purely numerical solution utilizing iterative solution schemes, because these procedures are
much more stable. In order to emphasize the basic problem, we investigate an example of a perturbed spherical
tensor and compare different procedures.

4 Example

Let us look at the matrix

B =




1

1 +
ε

4

√
3ε

4√
3ε
4

1 +
3ε

4


 , (28)
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which is used to study the behaviour of different methods using the factorε, 0 < ε < 1. We have the exact
eigenvaluesλ1 = 1, λ2 = 1 andλ3 = 1 + ε and the eigenvectors

n1 =




1
0
0


 , n2 =




0
−
√

3/2
1/2


 , n3 =




0
−1/2
−
√

3/2


 .

Selecting an arbitraryB11, so that we have three distinct eigenvalues, does not alter the problem under consider-
ation. Now, we apply the algorithms of Tab. 1 and 2 and an iterative solution scheme; here, the double precision
version of theLAPACK driver routineDSYEV of (Anderson et al., 1992, p.211) is applied. The calculations are
carried out on a PENTIUM III/600 PC underLINUX operating system utilizing theg77 FORTRAN compiler.
The eigenvalues are investigated for different perturbationsε, where we obtain the results of Tab. 3. In the case

Table 3: Eigenvalue computation using different methods
ε = 10−3 λ1 λ2 λ3

exact 0.1000000000000000E+01 0.1000000000000000E+01 0.1001000000000000E+01
arccos method 0.9999999999997780E+00 0.9999999999997780E+00 0.1001000000000445E+01
arctan method 0.9999999999998613E+00 0.9999999999998613E+00 0.1001000000000278E+01
LAPACK-routine 0.1000000000000000E+01 0.1000000000000000E+01 0.1001000000000000E+01

ε = 10−5 λ1 λ2 λ3

exact 0.1000000000000000E+01 0.1000000000000000E+01 0.1000010000000000E+01
arccos method 0.9999975598691122E+00 0.1000003333333333E+01 0.1000009106797554E+01
arctan method 0.9999976429858176E+00 0.1000003170570670E+01 0.1000009186443512E+01
LAPACK-routine 0.1000000000000000E+01 0.1000000000000000E+01 0.1000010000000000E+01

ε = 10−7 λ1 λ2 λ3

exact 0.1000000000000000E+01 0.1000000000000000E+01 0.1000000100000000E+01
arccos method 0.9999999718730994E+00 0.1000000033333333E+01 0.1000000094793567E+01
arctan method 0.1000000033333333E+01 0.1000000033333333E+01 0.1000000033333333E+01
LAPACK-routine 0.9999999999999999E+00 0.1000000000000000E+01 0.1000000100000000E+01

of ε = 10−3 the results are quite satisfactory. The accuracy of the closed solution decreases rapidly for smaller
ε = 10−3, i.e. as the eigenvalues become closer the results deteriorate. For a tolerance tol= 10−14 thearctan
version yields three equal eigenvalues in the case ofε = 10−7 (see Tab. 1 and 2). The iterative solution leads to
the most reliable technique (in respect of the error bounds of the numerical symmetric eigenvalue problem, see
(Anderson et al., 1992, pp.53-54) and the literature cited therein).

If we look at the computation time, the analytical solutions might be preferred. In a finite element calculation
the eigenvalue problem has to be computed several million times. Therefore, we solve the eigenvalue problem
20,000,000 times. Tab. 4 shows a comparison between the algorithm of Tab. 2, called (a), and the iterative LAPACK
routine, called (b). The collapse of thearctan version forε = 10−7 lies in the detection of multiple eigenvalues and
leads to a fast but inaccurate solution. The closed form solution is twice as fast as the iterative method. However,
the total computational costs are very small in comparison to practical finite element applications. Moreover,
the applied LAPACK algorithms have been developed for large eigenvalue problems and calculate all machine
precision numbers in each call. Thus, the comparison is questionable. A specially adapted iterative scheme can
save much more time. However, this lies beyond the scope of the article.

The aforementioned problems do not only occur for two equal eigenvalues. As mentioned before, inaccurate results
occur in the case of three multiple eigenvalues as well. In such cases, an iterative method has to be given priority.

A further important aspect touches on the affect of inaccuracies on the eigenvector~nk and eigendyade computation
Nk = ~nk ⊗~nk, which are shown in Appendix A and B. In the case of the eigenvector computation we revert to the
aforementioned example. The calculation of the eigenvectors shown in Tab. 5 only turns out to be reliable under
certain circumstances, because we have to calculate the difference of two non-precise eigenvalues (see Tab. 3). If
the user-defined tolerance tol in Tab. 5 is too small, we obtain basic inaccuracies in the eigenvectors. This might
yield B∗ = QT BQ to be a non-diagonal matrix, i.e. the off-diagonal coefficients are of the order of the eigenvalues.
On the other hand, if tol is too large, the algorithm detects three equal eigenvalues.

If we look at the efficiency of the eigenvector computation, we again solve the eigenvalues and eigenvectors
20,000,000 times to produce the results of Tab. 4. In case (b) we apply the eigenvalue calculation of Tab. 2 and the
eigenvector computation of Tab. 5 and compare them with the iterative LAPACK routine. The iterative scheme is
twice as slow as the closed form solution, but has the advantage of a robust calculation.
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Table 4: Comparison of computation time from the point of view of closed form solution and iterative method (a)
eigenvalue computation (b) eigenvalue and eigenvector computation

ε = 10−3 ε = 10−5 ε = 10−7

closed form solution
(a) 52 [s] 59 [s] 22 [s]
(b) 1.21 [min] 1.24 [min] 26 [s]

iterative solution
(a) 1.48 [min] 1.48 [min] 1.48 [min]
(b) 2.55 [min] 2.55 [min] 3.00 [min]

The third aspect of the sensitivity of the eigenvalue computation treats its influence on the eigendyade computation
during the calculation of an isotropic tensor function. In Appendix B the numerical calculation is summarized. In
order to get an impression of the sensitivity of the calculation, we deal again with the example (28) and look for
f(B) = expB =

∑3
k=1(expλk)~nk ⊗ ~nk with the analytical solution

f(B) =
1
4


 4e

e(3 + eε)
√

3e(eε − 1)√
3e(eε − 1) e(1 + 3eε)


 . (29)

In the case ofε = 10−8 and the tolerance tol= 10−10, which is used in Tab. 7, the analytical and the numerical
solution do not correspond. The algorithm behaves in a very unstable manner. Therefore, we had to assume a
higher tolerance tol, which, however, could yield only diagonal terms inf(B).

Finally, we study the necessary computational work of isotropic tensor functions. In the case ofε = 10−3, see
Eq.(29), the calculation off(B) = exp B usingB in Eq.(28) needs for2 × 107 evaluations 1.51 [min] if one uses
the eigenvector calculation of Tab. 5. By means of the direct eigendyade calculation of the algorithm in Tab. 7 only
1.16 [min] is required. The eigenvalues were calculated by means of thearccos-method contained in Tab. 1.

5 Conclusions

In this article we have related investigations derived in Numerical Mathematics in the context of the symmetric
eigenvalue problem of3× 3 matrices to methods applied in Computational Mechanics. In this respect a sensitivity
analysis is applied to the eigenvalue computation using the analytical solution which is based of the characteristic
polynomial. As a result two expression are found expressing difficulties for spherical tensors and a relation between
the second and third invariant of the deviator. Both relations are connected to three and two equal eigenvalues and
could be indicators for switching between procedures based on the analytical expressions and fully numerical
algorithms.

Additionally, different procedures of the eigenvalue computation of symmetric second order tensors are compared,
namely the original formulation of Cardano’s rule using thearccos function, a reformulation using thearctan
function and a fully numerical method. The analytical formulations always yield larger inaccuracies for nearly
equal eigenvalues as it is estimated by the sensitivity analysis. The extratime of the fully numerical method is
neglectable to the total time of computation in a practical finite element application.

In conlusion, the analytical solutions of the eigenvalue problem of symmetric second order tensors should only be
of interest in theoretical considerations. In practical applications, however, the numerical procedures have to be
preferred since they yield much more accurate and trustworthy solutions.
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Appendix

A Computation of eigenvectors

The calculation of the eigenvectors~nk, which correspond to the eigenvaluesλk, is well-known. However, a
concrete implementation is not known to the author and, accordingly, shown in the following. In the case of the
eigenvector calculation one has to solve the homogeneous linear system of equation (2)2 and prescribe one or two
components of the eigenvectorsnk. However, we have to introduce different cases depending on the number of
equal eigenvalues.

In the case of three different eigenvaluesλ1 6= λ2 6= λ3 6= λ1 the matrixB − λkI has a maximum of rank 2 and
leads to three different eigenvectors with unique directions. Here, we propose the following procedure: first of all,
we set the first coefficient of the eigenvector identical to 1 and solve a resulting linear system of two equations.
Here, we choose 

 b11 − λ b12 b31

b12 b22 − λ b23

b31 b23 b33 − λ







1
v2

v3


 =




0
0
0


 ,

and solve the last two equations[
b22 − λ b23

b23 b33 − λ

] {
v2

v3

}
=

{ −b12

−b31

}
(30)

producing the solution

{
v2

v3

}
=




b31b23 − (b33 − λ)b12

(b22 − λ)(b33 − λ) − b2
23

b12b23 − (b22 − λ)b31

(b22 − λ)(b33 − λ) − b2
23


 . (31)

If (b22 − λ)(b33 − λ) − b2
23 = 0, then both equations are linear dependent. In this case we choosev2 = 1 and

obtain 
 b11 − λ b12 b31

b12 b22 − λ b23

b31 b23 b33 − λ







v1

1
v3


 =




0
0
0




with the resulting equations [
b11 − λ b31

b23 b33 − λ

] {
v1

v3

}
=

{ −b12

−b23

}
(32)

and the solution {
v1

v3

}
=




b23b31 − (b33 − λ)b12

(b11 − λ)(b33 − λ) − b2
31

b12b31 − (b11 − λ)b23

(b11 − λ)(b33 − λ) − b2
31


 . (33)

If the denominator of (32) is also identical to zero, we must choosev3 = 1 and solve
 b11 − λ b12 b31

b12 b22 − λ b23

b31 b23 b33 − λ







v1

v2

1


 =




0
0
0


 ,

i.e. [
b11 − λ b12

b12 b22 − λ

] {
v1

v2

}
=

{ −b31

−b23

}
(34)

with the result {
v1

v2

}
=




b23b12 − (b22 − λ)b31

(b11 − λ)(b22 − λ) − b2
12

b31b12 − (b11 − λ)b23

(b11 − λ)(b22 − λ) − b2
12


 . (35)

This procedure has to be carried out for each eigenvalue, so that we obtain three different eigenvectors. However, it
is more convenient to calculate only two eigenvectors and solve the last one by means of the cross product, because
all eigenvectors should lead to a right-handed coordinate system.
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If we have two identical eigenvalues, then we obtain a single eigenvector resulting from the unique eigenvalue
and an additional rank deficiency, so that we can choose a further coefficient of the eigenvector. Then, we obtain
further equations from the linear systems (30), (32) and (34):v1 = v2 = 1:[

b22 − λ b23

b23 b33 − λ

] {
1
v3

}
=

{ −b12

−b31

}
=⇒ v3 =

−b23 − b31

b33 − λ
(36)

v2 = v3 = 1: [
b11 − λ b31

b31 b33 − λ

] {
v1

1

}
=

{ −b12

−b23

}
=⇒ v1 =

−b31 − b12

b11 − λ
(37)

v3 = v1 = 1: [
b11 − λ b12

b12 b22 − λ

] {
1
v2

}
=

{ −b31

−b23

}
=⇒ v2 =

−b12 − b23

b22 − λ
(38)

Again, the third eigenvector can be solved by the cross product.

In the case of three identical eigenvalues, we obtain a further rank deficiency. Then, the eigenvectors are arbitrary.
We choose[n1n2n3] = [e1e2e3]. Since the “length” of the eigenvectors is arbitrary, we normalize them by

ni =
vi

‖vi‖ with ‖vi‖ =
√

v2
(i)1 + v2

(i)2 + v2
(i)3. (39)

The algorithm is depicted in Tab. 5 and 6.

Table 5: Calculation of the matrixQ = [n1n2n3] containing the eigenvectors columnwise

GivenB = BT ∈ R3×3, λ1, λ2, λ3

Control number of equal eigenvalues
Compute d1 = |λ1 − λ2|

d2 = |λ2 − λ3|
d3 = |λ3 − λ1|

3 equal eigenvalues
IF ((d1 < tol) and (d2 < tol) and (d3 < tol)) THEN Q = I RETURN
2 equal eigenvalues
IF (d1 < tol) THEN

Compute n3, n1 according to Tab. 6 and n2 = n3 × n1

ELSE IF (d2 < tol) THEN
Compute n1, n2 according to Tab. 6 and n3 = n1 × n2

ELSE IF (d3 < tol) THEN
Compute n2, n1 according to Tab. 6 and n3 = n1 × n2

Distinct eigenvalues
ELSE

Compute n1, n2 according to Tab. 6 and n3 = n1 × n2

END IF
RETURN

B Computation of eigendyades

We finally look at the computation of the eigendyadesNk = ~nk ⊗ ~nk, i.e. particular tensor functionsf(B) like
lnB, expB or B1/2. In the case of distinct eigenvalues these tensor functions are represented by

f(B) =
3∑

k=1

f(λk)~nk ⊗ ~nk =
(
III Bλ−1

k I + (λk − IB)B + B2
)
D−1

k , (40)

291



Table 6: Computation of eigenvectors for given eigenvalueλk.
Given: B = BT ∈ R3×3 andλ

Compute D = (b22 − λ)(b33 − λ) − b2
23

IF (|D| > tol) THEN

8<
:

v1

v2

v3

9=
; = 1

D

8<
:

D
b31b23 − (b33 − λ)b12

b12b23 − (b22 − λ)b31

9=
; GOTO 1

Compute D = (b11 − λ)(b33 − λ) − b2
31

IF (|D| > tol) THEN

8<
:

v1

v2

v3

9=
; = 1

D

8<
:

b23b31 − (b33 − λ)b12

D
b12b31 − (b11 − λ)b23

9=
; GOTO 1

Compute D = (b11 − λ)(b22 − λ) − b2
12

IF (|D| > tol) THEN

8<
:

v1

v2

v3

9=
; = 1

D

8<
:

b23b12 − (b22 − λ)b31

b31b12 − (b11 − λ)b23

D

9=
; GOTO 1

Compute D = b33 − λ

IF (|D| > tol) THEN

8<
:

v1

v2

v3

9=
; = 1

D

8<
:

D
D

−b23 − b31

9=
; GOTO 1

Compute D = b11 − λ

IF (|D| > tol) THEN

8<
:

v1

v2

v3

9=
; = 1

D

8<
:

−b31 − b12

D
D

9=
; GOTO 1

Compute D = b22 − λ

IF (|D| > tol) THEN

8<
:

v1

v2

v3

9=
; = 1

D

8<
:

D
−b12 − b23

D

9=
; GOTO 1

1 n = ‖v‖ =
p

v2
1 + v2

2 + v2
3

n = 1
nv

see Ting (1985), Morman (1986), Simo and Taylor (1991) and Miehe (1993), i.e. the eigendyades have the repre-
sentation of an isotropic tensor function

Nk = ~nk ⊗ ~nk =
(
III Bλ−1

k I + (λk − IB)B + B2
)
D−1

k (41)

with

Dk =
3∏

i=1\k

(λi − λk) = 2λ2
k − λkIB + III Bλ−1

k , k = 1, . . . , 3. (42)

In this context we have to point out that the equivalent form of Eq.(41)

Nk =
Π3

i=1\k(λiI − B)

Dk
(43)

is already known as Sylvester’s theorem, see (Bowen and Wang, 1976, p.144). In the case of two equal eigenvalues
λ1 = λ2 6= λ3, see (Morman, 1986, Eq.(15)), we have by means of

B =
3∑

k=1

λk~nk ⊗ ~nk = λ1I + (λ3 − λ1)~n3 ⊗ ~n3 (44)

the isotropic tensor function
f(B) = f(λ1)I + (f(λ3) − f(λ1))~n3 ⊗ ~n3 (45)

with
N3 = ~n3 ⊗ ~n3 =

(
III Bλ−1

3 I + (λ3 − IB)B + B2
)
D−1

3 , (46)

D3 = 2λ2
3 − λ3IB + III Bλ−1

3 , D1 = D2 = 0. Now, the eigendyadesN1 andN2 are not unique. In the case of
three equal eigenvaluesλ ≡ λ1 = λ2 = λ3 we have

B = λI bzw. f(B) = f(λ)I. (47)

Tab. 7 shows a possible algorithmic treatment of the eigendyade calculation.
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Table 7: Computation of isotropic tensor functions in spectral representation
GivenB = BT ∈ R3×3, λ1, λ2, λ3

Compute d1 = λ1 − λ2, d2 = λ2 − λ3, d3 = λ3 − λ1

3 equal eigenvalues
IF ((|d1| < tol) and (|d2| < tol) and (|d3| < tol))

THEN f = f(λ1)I RETURN

Compute B2

2 equal eigenvalues
IF (|d1| < tol) THEN

Compute D3 = −d2d3

N3 = (λ2
1I − 2λ1B + B2)/D3

f = f(λ1)I + (f(λ3) − f(λ1))N3

ELSE IF (|d2| < tol) THEN
Compute D1 = −d1d3

N1 = (λ2
2I − 2λ2B + B2)/D1

f = f(λ2)I + (f(λ1) − f(λ2))N1

ELSE IF (|d3| < tol) THEN
Compute D2 = −d1d2

N2 = (λ2
3I − 2λ3B + B2)/D2

f = f(λ3)I + (f(λ2) − f(λ3))N2

END IF
RETURN
3 distinct eigenvalues
Compute D1 = −d1d3, D2 = −d1d2, D3 = −d2d3

h1 = (λ2λ3)/D1, h2 = −(λ2 + λ3)/D1, h3 = 1/D1

N1 = h1I + h2B + h3B2

h2 = (λ1λ3)/D2, h2 = −(λ1 + λ3)/D2, h3 = 1/D2

N2 = h1I + h2B + h3B2

h1 = (λ1λ2)/D3, h2 = −(λ1 + λ2)/D3, h3 = 1/D3

N3 = h1I + h2B + h3B2

Compute f = f(λ1)N1 + f(λ2)N2 + f(λ3)N3
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