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Abstract

The notion of one-step-M-estimators is generalized for estimating general lin-
ear aspects of homoscedastic or heteroscedastic conditionally contaminated linear
models with general parametrization and general underlying design. For such con-
taminated linear models it is shown that the generalized one-step-M-estimators
at random and deterministic designs with finite support are asymptotically nor-
mally distributed with maximum asymptotic bias and asymptotic covariance ma-
trix only depending on the score function of the one-step-M-estimator and the
true variances of the model. This is obtained by deriving their asymptotic linear-
ity under relative simple assumptions which are easy to verify and which admit
a wide scope of applications. An example demonstrates the applicability of the
results.

1 Introduction

A general linear model
XN = A(dn)B+ Zn

is considered where Xy = (Xin,..., XNN)T € IRY is the vector of observations, Zy =
(Zany -y Zyn)T € IRN the vector of error variables, § € IRP an unknown parameter vector,
dn = (tin, .., tnN)T € TV the vector of experimental conditions, i.e. the design, a: T — IRP
the vector of known "regression” functions, A(dn) = (a(tin), ..., a(tnn))T € IRN*P the design
matrix. The set of used experimental conditions T should be finite and remain the same with
growing sample size. For deterministic designs dy we assume that the corresponding design
measures 6y = & ,]:'=1 et (€: denoting the Dirac measure on t € T) converge weakly to
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a design measure § for N — oo. But besides those deterministic designs we also regard
random designs dy = (tin, ...,tnn)T Where tin, ..., tnn are realizations of random variables
TiN, ..., Tnn which are independent and identically distributed according to a design measure
6.

The ideal linear model: For deterministic designs we assume that in the ideal (central)
model the error variables ZiN, .., Zy~ have known or unknown variances o2(¢1n), ..., o2 (tNN)
so that c'(“N)ZW, ,a(t ZNN are independent and identically distributed according to a
symmetric distribution P = PZnn/o(taN) with mean 0, variance 1 and bounded Lebesgue
density f(z). For random designs it is assumed that (Z,n, Tin), ..., (ZNN, TNN) are indepen-
dent and 1dentlcally distributed where the distribution PZn¥/o(tan o=t of ———Z.n given
TaN = tan is a symmetric distribution P with mean 0, variance 1 and boumfed Lebesgue
density f(z).

But if some outlying observations and gross errors may occur then a conditionally contam-
inated linear model is more adequate than the ideal model, in particular for designed exper-
iments. The homoscedastic conditionally contaminated model with random designs, which
was regarded in Bickel (1981, 1984), Rieder (1985, 1987), Miiller (1987) and Kurotschka and
Miiller (1992), can be generalized to the heteroscedastic case with random designs as well as
with deterministic designs as follows.

The conditionally contaminated linear model: For random designs the distribution
of ﬁZnN given T,y =1 is a contaminated distribution of the form

Qn(dz,t) := PZen1oOITan=t(gz) — (1 4 N~V/2Rg(2,t)) P(dz)

and for deterministic designs the distribution of FZ_TZ"N is a contaminated distribution of
the form

Qun(dz) := PZnn/oUaN)(dz) = (1 + N~Y2Rq(z,t.n)) P(d2)

where R > 0 and

g€Q = {¢:RxT - R esssuplq(z t)| < o0, / )P(dz) =0,
q(-,t) > —¢(t) for all t € T for some € : T — [0, 0] with /cd& <1}

All sequences (QV)ven = ((Qn ® 8)V)nven and (QV)nven = ((Qiv ® ... ® QNN))NeN,
respectively, define the conditional contamination neighbourhood Pg with radius R around
the ideal model ((P ® §)V)nen and (PN )nen, respectively.

For such general contaminated linear models we propose in Section 2 generalized one-
step-M-estimators for estimating a linear aspect (8) = CB, C € IR™*?, of the unknown
paramenter vector 3. In Section 3 we show the asymptotic normality of these estimators
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by extending Bickel’s (1975) proof of asymptotic linearity of one-step Huber estimators at
the ideal model. Here the asymptotic linearity of the estimators is only used for deriving
the asymptotic normality of the estimators at the conditionally contaminated linear model
because it provides the relevant robustness criteria for designed experiments (see Kurotschka
and Miller (1992) and Miller (1992)). But the asymptotic linearity of the estimators may
also have other applications in particular for other neighbourhoods of the ideal model as were
regarded by Rieder (1980, 1985, 1987, 1993). The asymptotic linearity of the estimators is
shown under simple assumptions which are easy to verify and which include all relevant
cases in particular for optimal robust estimation at the conditionally contaminated model.
Thereby, in opposite to Rieder (1980, 1985, 1993) and Schick (1987) we do not assume that
the initial estimator of the one-step-M-estimator is discretized, and in opposite to Simpson et
al. (1992) we also allow score functions of the one-step-M-estimators which are unbounded
or not continuous. In particular we allow score functions basing on sign functions which play
an important role for optimal robust estimation. An example in Section 4 demonstrates the
applicability of the results in particular for optimal robust estimation. All proofs are given
in Section 5.

2 One-step-M-estimators

We regard one-step-M-estimators because they are very general, their calculation is easy

and they easily can be extended for estimation of arbitrary linear aspects ¢(3) = Cf of
(see Miiller (1987) and Kurotschka and Miiller (1992)). To include also the case that the
variances 0%(t) may be unknown and different here one-step-M-estimators are defined as

follows.

DEFINITION 2.1 An estimator @y : RN x TN — IR is called an one-step-M-estimator
for p(B) = CB with score functjon Y : IR xT — IR, initial estimator ﬂN RN x TN 5 Rr
for B and variance estimators 6%(t) : RN x TN — R* for o?(t), t € T, iff

@lzn,dy) = CBn(zn,dn)
+71/-Z:;11/)( £analton) Bl n,dy) JEaN )3N(tnN)(IN,dN).

on(tan)(zNdN)

Note that these one-step-M-estimators are scale equivariant if the variance estimators
and the initial estimator are scale equivariant. Possible scale equivariant initial and variance
estimators are the least squares estimators and the corresponding empirical variance esti-
mators. But to ensure good robustness properties, also at small sample sizes, better initial
estimators and variance estimators are scale equivariant robust estimators, for example high
breakdown point estimators. But for the asymptotic considerations of this paper only the
following conditions on the initial estimator and the variance estimators are relevant:

(21) VN(a(n), T]))T(ﬂ)v B) is tight at the ideal model where T = {n, ..., 71}.
(2.2) VN(@Gn(t ) - a(t)) is tight at the ideal model for all ¢ € T.
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Condition (2.1) is due to the possibility that g itself may be not identifiable.

For the score functions the following simple conditions are assumed (compare the condi-
tions given in Maronna and Yohai (1981)):

(2.3) ¥(z,t) = o(z,t) + c(t)sgn(z) where forallt € T
¥o(-, 1) is antisymmetric, continuous and there exists /1(t), ..., {1(t) so that
o(+, ) has bounded and continuous derivatives on R \ {l1(t), ..., {L(t)},

(2.4) / P(z,t)a(t)T2P(d2)8(dt) = C

Condition (2.3) can be generalized as Lemma 2.1 below shows but in this form it is easy to
check. The condition (2.4) is due to the aspect which shall be estimated and can be often
fulfilled for a given score function by multiplying with a suitable matrix. For example the
score functions of the Hampel-Krasker estimator (see Hampel (1978), Krasker (1980)), of
the Krasker-Welsch estimator (see Krasker and Welsch (1982)) and of all optimal robust
estimators for linear aspects characterized in Miller (1987), Kurotschka and Miiller (1992)
and Miiller (1992) fulfill condition (2.3) and (2.4). In particular the score functions of all

robust estimators with minimum asymptotic bias fulfill these conditions.

LEMMA 2.1 If¢ = (¥1,...,%,;)T : R x T — IR" satisfies condition (2.3) then

(2.5) A(b, s,t,0) = /1/) (—zg—-;{(—?—@,t) (0 + s)P(d2) is for allt € T,o0 € R*

continuously differentiable in a neighbourhood of (b,s) = (0,0) where

1¢]
8—(6,—.5))\(17’3":’0)/“"):(0'0) = (—/lb(z,t)a(t)TzP(dz) | 0rx1),

and there ezists K € IR* and antisymmetric and monotone increasing functions 1,[);'(~,t) :
R — R and ¢ (-,t) : IR — IR with

(2-6) ¥i(t) = d);‘(at) - 11’,"(','3)»
(2.7) ,/,J# (_ﬁ_,t) (o + s) is as function of s continuous on [—Ta, %] forallz € R,

o+ s
(2.8) / E(z, 02P(dz) < oo,
2
(2.9) ¢*(+mt)—¢f(z+f,t) P(d)<1{||

zo+k+h z0+ k R
210 i/ (o () - (50 ) puaa < )
(2.11) /t/)j* (%,t)(ﬁsﬂ) i (z":s” t)(a+s) P(dz) < K|pl?,

orallje{l,..,r},t€T, k€ R, o€ R and h,s,p € [52,%].
J PEelZy
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3 Asymptotic linearity and normality

The following theorem shows the asymptotic linearity of the generalized one-step-M-estimators.
To formulate this property for random designs as well as for deterministic designs let

_ T
Yan(b,s) =9 (XnN d?t(tnj)vl_ &ﬁ +9) ,t,,N) (o(tun) + s) for deterministic designs
N
and
_ T
Pun(b,8) =9 (X"N UFT(“TM)VL? - b),TnN> (o(Twn) + s) for random designs.
nN

THEOREM 3.1 If ¢n is an one-step-M-estimator for o(f8) = CB with score function
satisfying conditions (2.3) and (2.4), or (2.4), (2.5) - (2.11), initial estimator By satisfying
condition (2.1) and variance estimators Gn(t) satisfying condition (2.2) then

P(|\/N(<;5N —(B)— %Z"Nﬂ PYun(0,0)] > €) N=ge for all € >0 and all B € R?

al the ideal model.

The asymptotic linearity of the one-step-M-estimators implies their asymptotic normality
at the conditionally contaminated linear model. As in Bickel (1981), Rieder (1985, 1987),
Miiller (1987) and Kurotschka and Miller (1992) this follows immediately by the Third
Lemma of LeCam (see Hajek and Sidak (1967) p.208). Only for deterministic designs addi-
tionally Lindeberg’s condition and weak convergence of the design measures é5 have to be
used.

THEOREM 3.2 Let oy be an one-step-M-estimator for o(8) = CB with score function
Y satisfying conditions (2.3) and (2.4), initial estimator B satisfying condition (2.1) and
variance estimators on(t) satisfying condition (2.2). Then

L(VN(@n - 2(8)1Q")
N—_'SoN(R/1/)(2,t)a'(t)q(z,t)P(dz)é(dt),/zb(z,t)¢(z,t)Ta(t)gP(dz)é(dt))
for all (QN)nen € Phr,

with mazimum asymptotic bias

sup { R / ¥(z Do (Da(z, OP()6(dD; g € Q) = R esssup (=, o (1)
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Robust one-step-M-estimators should have a bounded maximum asymptotic bias. From
Theorem 3.2 it is clear that this is only possible if the score function itself is bounded.
Optimality criteria for robust one-step-M-estimators can be derived from the asymptotic
covariance matrix. See for the homoscedastic case with known variance and random design
Bickel (1981, 1984), Rieder (1985, 1987), Miiller (1987) and Kurotschka and Miiller (1992).
In particular Theorem 3.2 shows that the results in Miiller (1987, 1992) concerning optimal
random designs for robust estimation in homoscedastic normal linear models with known
variances are also true for homoscedastic normal models with unknown variances and for
deterministic designs.

4 Example

Consider an one-way classification model with three treatments 1,2,3 where the observations
are given by

X(t) = Lay(8) By + 1y (1) B2 + 1y (2)Bs + Z(t) = a(t)'B + 2(2)
with ¢t € {1,2,3} =T, a(t) = (13)(1), Liz»y(2), 1{3)(t))T and B = (B, P2, Bs)T. Assume that

at the ideal model the error variables Z(t) are normal distributed with mean 0 and unknown
variance o(t)?. For estimating the linear aspect ¢(8) = (£1,82 — F1,B8s — B1)T a simple
design measure is 6 = 3(e; + €2 + €3). A deterministic design sequence (dy)nen for which
the corresponding design measures (6n)nen converges weakly to this design measure 6 is for
example given by d3 = (1,2,3), dy = (1,2,3,1), ds = (1,2,3,1,2), ds = (1,2,3,1,2,3), d7 =
(1,2,3,1,2,3,1) and so forth.

An optimal most robust score function for estimating ¢(f3) at the design measure 6 in the
homoscedastic model is (see Miiller (1987), Kurotschka and Miller (1992})

(1,-1,-1)T sgn(2) 3 \/T fort=1,
P(z,t) = { (0,1,0)7 sgn(2) L“_'_Eﬂilﬂl for t = 2,
(0,0,1)T sgn(2) Tﬂﬂijﬂl for t =3,

with b = 3,/3 and y = (2®(by) — 1)} ~ 0.32 where ¢ denotes the standard normal

distribution function. This score function satisfies condition (2.3) and (2.4) so that an one-
step-M-estimator with this score function, with initial estimator satisfying (2.1) and variance
estimators satisfying (2.2) is according to Theorem 3.1 asymptotically linear. Moreover,
according to Theorem 3.2, at the conditionally contaminated model with radius R this
estimator is also asymptotically normally distributed with a maximum asumptotic bias equal
to R-34/3 - max{c(1),0(2),0(3)}. Another score function which also satisfies condition

(2.3) and (2.4) and is optimal for robust estimation with bias bound 25 (see Miiller (1987),
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Kurotschka and Miiller (1992)) is given by
(1, -1,=17T sgn(z) 'm\%:—bﬂ fort =1,
Y(z,t) =< (0,1,0)7 sgn(z) M%M fort =2,

(0,0,1)7 sgn(z) mintlzlzbw} for t =3,

where again b = 31/2% and v = (20(2bv) — l)ﬁi ~ 0.19 and w = (20(2bw) — 1)} =~

2
0.33. At the conditionally contaminated model an one-step-M-estimator with this score
function is asymptotically normally distributed with maximum asymptotic bias equal to

R- 6\/12? -max{o(1),0(2),5(3)}.

5 Proofs

Proof of Lemma 2.1

Set .(2,t) = c(t)sgn(z) then ¢ = 1pg+1). and condition (2.5) follows for 1, by integrating
and for ¥y by exchanging integration and differentiation. Condition (2.3) also implies that
the increasings parts d’oij of the components g; of ¥y are antisymmetric, continuous and
differentiable with bounded and continuous derivative on IR\ {li(¢),...,{1(t)}, i.e. there
exists K; > 1 with

[¥5i(z + b, t) — (2, t)] < K

h|
and
[¥5;(2, )] < Kilz]

for all j € {1,...,7}, 2,h € R, t € T. Setting Ko = 8K? then for ¥ = )y conditions (2.7) -
(2.10) are obviously fulfilled and condition (2.11) follows from

2

" zo+ h ot zo+ h
/¢0j(*g+s+p1t>(0+3+p) ¢0](J+s’t (o +3)| P(dz)
h zo + h 2

< 2 zo + . +

< o [ (|2t e o (22E20)]) pas
2 h2

< 2,029t 2

- ’pl 4I‘l (0‘+$)2 S 'p} I{0~

For ¢ = 1. the conditions (2.9) - (2.11) are fulfilled for K. = 2max{1,sup{f(z);z € R}}-
max{c,c?} where f is the Lebesgue density of P and ¢ = max{lc(t)|;¢ € T'}. Note that for

h>0
zo+k+h zo+ k
FITETRY d
/’sgn< e ) sgn(6+s)lp( z)
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/‘ <z0+k+h) sgn(za:k)zP(dz)
o (2] () < st

For general 3 = v 4 1. conditions (2.8) - (2.11) are fulfilled for K = 4 max{Ky, K.} using
Hélder inequality for condition (2.8), (2.9) and (2.11).

Proof of Theorem 3.1

IfT = {n,.., 71} and (a(‘rl) ,a(77)) is not of full rank then one can regard a transformed
model Xon(ton) = @(tan) B+ ZnN where B is identifiable and (@(r), ..., @(77)) is of full rank
(see Miiller (1987) and Kurotschka and Miller (1992)). Therefore w1thout loss of generality
one can assume that (a(ry),...,a(7)) is of full rank and that condition (2.1) implies tightness

of VN(Bn — B) itself.

Setting
&(t) = /¢(z,t)a(t)TzP(dz),
Yane(d,s) = Yan(d, 8)1 (g (tan) for deterministic designs,
Yani(bys) = Pan(b, )1 (Ton) for random designs,
and

/\nNt(b) 3) = E('/)nNt(bas))
A(b, s,t,0(t))1(tan) for deterministic designs,
A(b, s,t,0(t))8({t}) for random designs,
one gets with condition (2.4)

m(w—so(ﬂ)——z m(oo)]
(512) < Y [VNéw {t})(ﬂN )
Z Oane(By=B,3n(t)=o(1)) = Aane(0,0))

(5.13) + ZM

ﬁ Zul('/’nm(ﬁN—ﬂ,aN(t)—a(t)) — ¥an:(0,0)

= AawelBy=B,8n ()= (1)) + Auwe(0,0))].
The first term (5.12) is for deterministic designs less than

5 er |60 (808D = 3 S 1090w ) VR By - o)
Y er (7 X0 o) VA | (5570 )| 2

Bn-B
an(t)=a(t)
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and for random designs less than

> StV (;fog;g(,)ﬂ . T%l)}

an(t)—a(t)

where
A() = &) By —B) + MBn—B,5n(t)—a(t),t,a(t)) — A(0,0,t,0(t)).

Thus because of condition (2.5), (2.1) and (2.2) and because of the weak convergence of
N = ¥ En_ et the first term (5.12) converges for deterministic designs as well as for
random designs to zero.

To show that the second term (5.13) also converges to zero one can show this for the
increasing components 1/);’ and ¢ separately, i.e. one can assume without loss of generality
that for every t € T the function (-, t) is monotone increasing with values in IR. Although

1 may be not of the form ¢(z,¢) = c(t)n(z) with n : IR — IR the proof now follows along
the lines of the proof in Bickel (1975):

Because \/N(EN — ) is tight there exists for every v > 0 a k() > 0 with P(|EN =Bl >
%%) < ¥ where |8 denotes the maximum of the absolute values of the coordinates of 4.

The cube [—%J %-l]p can be discretized by bY, ..., 55" so that for every b from the cube

there exists by with |by — b| < <K . Setting for deterministic designs
Xun — a(t)T(ﬁ +b)+h
VnNg(b, h,s) =1 ( o(t) s ot (O(t) + s)l(t)(tnN)
and for random designs
Xonv —a®)T(B+b0)+ R
wNt(b, by s) = )t t 1 (Th
s by 3) = ( F2 2L (o10) + 5)1 0 (Taw)
and
Sni(b, b, s) Z (Vane(b, by 8) = E(vane(b, h, 5)))
\/_
one gets for every b with |b}, — b| <R =, because 1 is monotone increasing,

|1/nN,(bN,0,s) — vune(0,0,8)] < unN,(bN,hN,,s) — l/nNg(bN, —hnt, s)
for all s € IR where Ay = la(t)|Z&. This implies
|Sne(0,0,0) — Sne(b,0, )|
ISNt(O)07O) - SNt(bleoaO)l + |SNt(ble0’0) - SNt(b§V707 S)I
+ 1Sne(bly, ke, 8) — Sne(bly, hve, 0)] + [Sne(Blys hne, 0) — Sne(bly, — ks, 0)]
+ !SNt(bS\], —hne,0) — SNt(bs\h —hnt, )|

2 N
+ TN Zn:l |E(VnNt(blNa hNh S) - VnNt(blNy —hNhS))l'
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Condition (2.10) implies for every s € [—129, LY

4

(5‘14) % Z:I:l IE(VnNt(bﬁ\Ia hNhs) - VﬂNt(bs\’) *hNh 3))'
a(t)+s
o)

If I is the number of experimental conditions ¢ in T one gets with Chebyshev inequality and
condition (2.9) for every € > 0

< 4VNK |hye| —2~— < 5K |a(t)] v

(5:15) P(ISn:(0,0,0) = Swiltly,0,0)1 > =)

< EL Ko laey < “J— K o(8) a(t)1V5 k(1) —=
€ \/_

(5.16) P(|Sne(By, ke, 0) — SNt(b},,—hM, 0) > 6

< @K o(t)2)hne] < g K a(t)Z]a(t)]'y\—/l—N
and for every ho € IR
(5.17) P(|SN,(b§v,7hL;v,o) — Sn:(0,0,0)] > ¢€)

< 5 Ko(®) ()78 + 128

< 5 Ko(O) (VG k() + lhal) .
Furthermore condition(?.ll) provide for every p € [-2 zﬁ!l] and every hy € IR
(5:18) E(ISwu(by 2,5) — SwilBly, 22,5 + p))) < K W.

Because of condition (2.8) the sequence Sn:(0,0,0), N € IV, is tight so that with (5.17) and
(5.18) for all ¢, I and kg the sequence of stochastic processes Sy(bly, %, ) [——ﬂ“ﬂ7 1‘(‘9] —
IR, N € IN, is tight (see Billingsley (1968) p.95). Therefore for every ¢ > 0 and every vy > 0
there exist N., € IN and .., with min{lﬁﬁ;t € T} > 7y > 0 so that

P(sup{|Snu(bly,0,0) = Snu(bly, 0, 8)I; Isl < 1en} > ) < 573
P(sup{|Sne(bis hne, 0) = Swe(biy, hne, 8)ls Isl < men} > &) < 5785y
P(sup{|Sne(by, —hne, 0) = Swilbly, —hne, 8 Is| < e} > 57) < 717

and

P(5n(t) = o) > 1) < -

forallt € T and N > N,. Moreover N, ., can be chosen so that the probabilities in (5.15)
and (5.16) are also less than 5771 for N > N.,. Then one gets for the term (5.13) for all
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€> 0 and all 0 < ¥ < syrrmniemmer) (see inequality (5.14))

P(Ce

57 E b=, (0)~ 09
_/\nNt(BN*‘ﬂ,aN(t)—-a(t)) +/\nNt(0,0))| > e)
e PsuP{IS8e(0,0,0) = Sne(6,0,5)]; Bloo < £, 5] < 7} > §) + 2%

L(v) €
> er 2oy P(sup{ISne(0,0,0)—Swu(b, 0,5)l; 16— by] < T I8l < 1} > 7)

=1

IA

IA

Y
2_
+ag

~ for all N > N.,.
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