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Abstract 

The notion of one-step-M-estimators is generalized for estimating general lin- 
ear aspects of homoscedastic or heteroscedastic conditionally contaminated linear 
models with general parametrization and general underlying design. For such con- 
taminated lineal: models it is shown that the generalized one-step-M-estimators 
at  random and deterministic designs with finite support are asymptotically nor- 
mally distributed with maximum asymptotic bias and asymptotic covariance ma- 
trix only depending on the score function of the one-step-M-estimator and the 
true variances of the model. This is obtained by deriving their asymptotic linear- 
ity under relative simple assumptions which are easy to verify and which admit 
a wide scope of applications. An example demonstrates the applicability of the 
results. 

l Introduction 

A general linear model 

is considered where XN = (XlN, ..., X N N ) ~  E RN is the  vector of observations, ZN = 
( Z ~ N ,  ..., Z N N ) ~  E RN t h e  vector of error variables, P E R P  an  unknown parameter vector, 
dN = (tlN, ..., ~ N N ) ~  E TN the  vector of experimental conditions, i.e. t he  design, a : T + 1RP 
t h e  vector of known "regression" functions, A ( d N )  = (a(tlN), ..., a(tNN))* E RN the design 
matrix. T h e  set of used experimental conditions T should be  finite and remain the  same with 
growing sample size. For deterministic designs dN we assume that  the  corresponding design 

N measures 6~ = etnN (e t  denoting the  Dirac measure on t E T )  converge weakly t o  
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a design measure 5  for N + oo. But besides those deterministic designs we also regard 
random designs dN = ( t l N ,  ..., tNN)T  where t l N ,  ..., t r ~ ~  are realizations of random variables 
T I N ,  ..., T N N  which are independent and identically distributed according to a design measure 
6. 

The ideal linear model: For deterministic designs we assume that in the ideal (central) 
model the error variables Z I N ,  ..., ZNN have known or unknown variances a 2 ( t l N ) ,  ..., a2(tNJV) 
so that -&ZIN, ..., &ZNN are independent and identically distributed according to a 
symmetric distribution P  = P ~ ~ N I " ( ~ ~ N )  with mean 0 ,  variance 1 and bounded Lebesgue 
density f ( 2 ) .  For random designs it is assumed that ( Z 1  N ,  T I N ) ,  . . . , ( Z N N ,  T N N )  are indepen- 
dent and identically distributed where the distribution P ~ ~ J " I ~ ( ~ ~ N ) I ~ ~ N " ~ N  of l Z n N  o(t N given 
TnN = tnN is a symmetric distribution P with mean 0 ,  variance 1  and boun~ed  Lebesgue 
density f ( 2 ) .  

But if some outlying observations and gross errors may occur then a conditionally contam- 
inated linear model is more adequate than the ideal model, in particular for designed exper- 
iments. The homoscedastic conditionally contaminated model with random designs, which 
was regarded in Bickel(1981, 1984), Rieder (1985, 1987), Muller (1987) and Kurotschka and 
Miiller (1992), can be generalized to the heteroscedastic case with random designs as well as 
with deterministic designs as follows. 

The conditionally contaminated linear model: For random designs the distribution 
of & z n N  given TnN = t  is a contaminated distribution of the form 

and for deterministic designs the distribution of -&ZnN is a contaminated distribution of 
the form 

QnN(dz )  := P ~ ~ N I ~ ( ~ ~ N ) ( ~ z )  = (1  + ~ - ~ 1 ~  R ~ ( z ,  t n N ) )  P ( d z )  

where R > 0 and 

q E Q := { g  : R X T  + R; esssup Iq(z, t) l  < W ,  q ( z , . ) P ( d z )  = 0 ,  
P@6 1 

g( - ,  t )  2 - r ( t )  for all t  E T for some r  : T -+ [o, W ]  with Jrd6  5 l } .  

All sequences ( Q N ) ~ E ~  = ( ( Q N  8 5 ) N ) ~ ~ ~  and ( Q N ) ~ e ~  = ( ( Q I N  8 ... 8 Q N N ) ) N E N ,  
respectively, define the conditional contamination neighbourhood FR wit h radius R around 
the ideal model ( ( P  8 6 ) N ) ~ E N  and ( P N ) j v E N ,  respectively. 

For such general contaminated linear models we propose in Section 2 generalized one- 
step-M-estimators for estimating a linear aspect p(P) = C P ,  C  E 4 e r x P ,  of the unknown 
paramenter vector p. In Section 3 we show the asymptotic normality of these estimators 
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by extending Bickel's (1975) proof of asymptotic linearity of one-step Huber estimators at 
the ideal model. Here the asymptotic linearity of the estimators is only used for deriving 
the asymptotic normality of the estimators at the conditionally contaminated linear model 
because it provides the relevant robustness criteria for designed experiments (see Kurotschka 
and Miiller (1992) and Miiller (1992)). But the asymptotic linearity of the estimators may 
also have other applications in particular for other neighbourhoods of the ideal model as were 
regarded by Rieder (1980, 1985, 1987, 1993). The asymptotic linearity of the estimators is 
shown under simple assumptions which are easy to verify and which include all relevant 
cases in particular for optimal robust estimation at the conditionally contaminated model. 
Thereby, in opposite to Rieder (1980, 1985, 1993) and Schick (1987) we do not assume that 
the initial estimator of the one-step-M-estimator is discretized, and in opposite to Simpson et 
al. (1992) we also allow score functions of the one-step-M-estimators which are unbounded 
or not continuous. In particular we allow score functions basing on sign functions which play 
an important role for optimal robust estimation. An example in Section 4 demonstrates the 
applicability of the results in particular for optimal robust estimation. All proofs are given 
in Section 5. 

We regard one-step-M-estimators because they are very general, their calculation is easy 
and they easily can be extended for estimation of arbitrary linear aspects p(P) = CD of P 
(see Muller (1987) and Kurotschka and Muller (1992)). To include also the case that the 
variances u2(t) may be unknown and different here one-step-M-estimators are defined as 
follows. 

DEFINITION 2.1 An estimator pN : RN X T~ + W is called an one-step-M-estimator 
for cp(P) = Cp with score function 11, : lR X T -+ I?, initial estimator PN : RN X T~ -+ RP 
for p and variance estimators i?k(t) : RN X TN -+ R+ for u2(t),  t E T,  i$ 

@(xN, d ~ )  = C&(XN, d ~ )  
1 N 

Z n N - a  t n N  X N Y ~ N )  t 
+R x n = 1  ' ( ;NitnN\(x:$N) nN ) ~ N ( ~ ~ N ) ( x N , ~ N ) .  

Note that these one-step-M-estimators are scale equivariant if the variance estimators 
and the initial estimator are scale equivariant. Possible scale equivariant initial and variance 
estimators are the least squares estimators and the corresponding empirical variance esti- 
mators. But to ensure good robustness properties, also at small sample sizes, better initial 
estimators and variance estimators are scale equivariant robust estimators, for example high 
breakdown point estimators. But for the asymptotic considerations of this paper only the 
following conditions on the initial estimator and the variance estimators are relevant: 

(2.1) f i ( a ( ? ) ,  ..., a(TZ))T(jN - p) is tight at the ideal model where T = {T*, ..., rz}. 

(2.2) f i ( zN( t )  - u(t)) is tight at the ideal model for all t E T. 
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Condition (2.1) is due to the possibility that P itself may be not identifiable. 

For the score functions the following simple conditions are assumed (compare the condi- 
tions given in Maronna and Yohai (1981)): 

$ J ~ ( . ,  t )  is antisymmetric, continuous and there exists ll(t),  ..., lL(t) so that 

$o(., t )  has bounded and continuous derivatives on IR \ {ll(t), ..., lL(t)), 

Condition (2.3) can be generalized as Lemma 2.1 below shows but in this form it is easy to 
check. The condition (2.4) is due to the aspect which shall be estimated and can be often 
fulfilled for a given score function by multiplying with a suitable matrix. For example the 
score functions of the Hampel-Krasker estimator (see Hampel (1978), Krasker (1980)), of 
the Krasker-Welsch estimator (see Krasker and Welsch (1982)) and of all optimal robust 
estimators for linear aspects characterized in Miller (1987), Kurotschka and Miller (1992) 
and Miiller (1992) fulfill condition (2.3) and (2.4). In particular the score functions of all 
robust estimators with minimum asymptotic bias fulfill these conditions. 

LEMMA 2.1 If $ = ($1, ..., $,)T : IR X T -t R' satisfies condition (2.3) then 

(2.5) X(b, S, t ,  a )  := , t ( a  + S) P(dz)  is for all t E T, a E R' ) 
continuously digerentiable in a neighbourhood of (b, S) = (0,O) where 

and there exists I( E IRf and antisymmetric and monotone increasing functions $f ( - , t )  : 
R +  R and$;(.,t): R +  R with 

$F (&, t) ( g  + S) is as function of s continuous on [F, $1 for U// z E R, 

for all j E {l, ..., r ) ,  t E T, k E R ,  a E R+ and h, s,p  E [y ,  51. 
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3 Asymptotic linearity and normality 

The following theorem shows the asymptotic linearity of the generalized one-step-M-estimators. 
To formulate this property for random designs as well as for deterministic designs let 

$ n ~ ( b ,  S )  := $ 
- a ( t n ~ ) ~ ( P  + b) , t n N )  ( o ( t . ~ )  + S )  for deterministic designs 
~ ( t n ~ )  + 

and 

"f!'nN(b. 6 )  := $ tXnN - a ( T n ~ ) ~ ( @  + b) , T ~ N )  (O(TnN) + S )  for random designs. 
a ( T n ~ )  + 

T H E O R E M  3.1 If FN is an one-step-M-estimator for v(@) = CP with score function "f!' 
h 

satisfying conditions (2.3) and (2.4), or (2.4), (2.5) - (2.11), initial estimator ,BN satisfying 
condition (2.1) and variance estimators GN(t )  satisfying condition (2.2) then 

1 N P(ID(~N - lp(/3) - G n ~ ( O ,  O)I  > L )  Nz 0 for all L > 0 and all ,L3 E RP 

at the ideal model. 

The asymptotic linearity of the one-step-M-estimators implies their asymptotic normality 
at the conditionally contaminated linear model. As in Bickel (1981), Rieder (1985, 1987), 
Muller (1987) and Kurotschka and Muller (1992) this follows immediately by the Third 
Lemma of LeCam (see HGjek and ~ id i ik  (1967) p.208). Only for deterministic designs addi- 
tionally Lindeberg's condition and weak convergence of the design measures SN have to be 
used. 

T H E O R E M  3.2 Let GN be an one-step-M-estimator for cp(P) = CP with score function 
"f!' satisfying conditions (2.3) and (2.4), initial estimator pN satisfying condition (2.1) and 
variance estimators 3N( t )  satisfying condition (2.2). Then 

with maximum asymptotic bias 

SUP {R $ ( z ,  t ) a ( t ) q ( z ,  t )P(dz)b(d t ) ;  q E Q )  = R ess sup l$(z , t )g(t) l .  J P86 
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Robust one-step-M-estimators should have a bounded maximum asymptotic bias. From 
Theorem 3.2 it is clear that this is only possible if the score function itself is bounded. 
Optimality criteria for robust one-step-M-estimators can be derived from the asymptotic 
covariance matrix. See for the homoscedastic case with known variance and random design 
Bickel(1981, 1984), Rieder (1985, 1987), Miiller (1987) and Kurotschka and Muller (1992). 
In particular Theorem 3.2 shows that the results in Muller (1987, 1992) concerning optimal 
random designs for robust estimation in homoscedastic normal linear models with known 
variances are also true for homoscedastic normal models with unknown variances and for 
deterministic designs. 

4 Example 

Consider an one-way classification model with three treatments 1,2,3 where the observations 
are given by 

with t E {l, '43) = T, a(t)  = (lIl)(t),  1{2)(t), 1{3) ( t ) )~  and P = (P1, ,B2, /?3)T. Assume that 
at the ideal model the error variables Z(t)  are normal distributed with mean 0 and unknown 
variance ~ ( t ) ~ .  For estimating the linear aspect v(@) = (Pl, Pz - PI, P3 - a simple 
design measure is 6 = $(el + e, + e,). A deterministic design sequence (dN)NEN for which 
the corresponding design measures ( 6 ~ ) ~ ~ ~  converges weakly to this design measure 6 is for 
e xa mp leg ivenb~d~  = (1,2,3), dq = (1,2,3,1), ds = (1,2,3,1,2), ds = (1,2,3,1,2,3), d7 = 
(1,2,3,1,2,3,1) and so forth. 

An optimal most robust score function for estimating v(P) at the design measure 6 in the 
homoscedastic model is (see Muller (1987), Kurotschka and Muller (1992)) 

(1, -1, sgn(z) 3 fi for t = 1, 

(O,1, o ) ~  sgn(z) for t = 2, 

(O,O, sgn(z) v for t = 3, 

with b = 3 fi and y = (20(by) - 1); = 0.32 where @ denotes the standard normal 

distribution function. This score function satisfies condition (2.3) and (2.4) so that an one- 
step-M-estimator with this score function, with initial estimator satisfying (2.1) and variance 
estimators satisfying (2.2) is according to Theorem 3.1 asymptotically linear. Moreover, 
according to Theorem 3.2, at the conditionally contaminated model with radius R this 
estimator is also asymptotically normally distributed with a maximum asumptotic bias equal 

to R - 3& . max{o(l), 0(2), 4 3 ) ) .  Another score function which also satisfies condition 

(2.3) and (2.4) and is optimal for robust estimation with bias bound 2b (see Miiller (1987), 
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Kurotschka and Miiller (1992)) is given by 

l 
( l ,  - l ,  sgn(z) m ' " { ~ ~  "1 for t = 1, 

G(z, t) = (0,1,0)T sgn(z) n1i11{l$2 for t = 2, 

(0,0, sgn(z) for t = 3, 

where again b = 3 fi and v = (2@(2bv) - l )& z 0.19 and W = (2@(2bw) - 1); r;: 

0.33. At the conditionally contaminated model an one-step-M-estimator with this score 
function is asymptotically normally distributed with maximum asymptotic bias equal to 

R 6 f i  max{a(l),  a(2) ,  a(3)) .  

5 Proofs 

Proof of Lemma 2.1 

Set $,(z, t )  = c(t)sgn(z) then II, = and condition (2.5) follows for II,, by integrating 
and for $0 by exchanging integration and differentiation. Condition (2.3) also implies that 
the increasings parts $$ of the components $oj of $o are antisymmetric, continuous and 
differentiable with bounded and continuous derivative on 112 \ {ll(t), ..., lL(t)}, i.e. there 
exists > l with 

and 

for all j E { l ,  ..., r), z, h E R, t E T. Setting KO = 8K; then for = $0 conditions (2.7) - 
(2.10) are obviously fulfilled and condition (2.11) follows from 

For $ = $J, the conditions (2.9) - (2.11) are fulfilled for I(, = 2 max{l, sup{ f (2); z E B ) )  
max{c, c 2 )  where f is the Lebesgue density of P and c = inax{lc(t)l; t E T). Note that for 
h 2 0  



Chr. H. Muller 

For general + = +o + +, conditions (2.8) - (2.11) are fulfilled for Ii' = 4rna~{I{~,  I( , )  using 
Holder inequality for condition (2.8), (2.9) and (2.11). 

Proof of Theorem 3.1 

If T = {rl,  ..., 71) and (a(rl),  ..., ~ ( 7 ~ ) )  is not of full rank then one can regard a transformed 
model XnN(tnN) = h ( t . ~ ) ~ $ +  znN where p is identifiable and ..., ~ ( 7 ~ ) )  is of full rank 
(see Miiller (1987) and Kurotschka and Miiller (1992)). Therefore without loss of generality 
one can assume that (~ (71 ) )  ..., a ( q ) )  is of full rank and that condition (2.1) implies tightness 
of a ( &  - 8 )  itself. 

Setting 

$,~t(b, S) := $ n ~ ( b ,  s ) l i t } ( t n ~ )  for deterministic designs, 
+ n ~ t  (b, S) := $nN(b7 S) 1 (TnN) for random designs, 

and 

XnNt ( b ,  S) := E('$nNt (b7 S)) 

X(b, S, t ,  a ( t ) )  l{t)(t,N) for deterministic designs, 
X(b, S, t ,  a(t))6({t)) for random designs, 

one gets with condition (2.4) 

- ~nNt(pN -B,  cN(t) - ~ ( t ) )  + X n ~ t  (030)) I - 
The first term (5.12) is for deterministic designs less than 
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and for random designs less than 

where 

Thus because of condition (2.5), (2.1) and (2.2) and because of the weak convergence of 
JN = zLl etnN the first term (5.12) converges for deterministic designs as well as for 
random designs to zero. 

To show that the second term (5.13) also converges to zero one can show this for the 
increasing components t,bT and t+bJy separately, i.e. one can assume without loss of generality 
that for every t E T the function t,b(.,t) is monotone increasing with values in R. Although 
II ,  may be not of the form $(z,t) = c(~)T,I(z) with 77 : R -+ IR the proof now follows along 
the lines of the proof in Bickel (1975): 

Because 0(75(8N - P) is tight there exists for every y > 0 a k(y) > 0 with P(& - /?l, > 

3) < where [/?los denotes the maximum of the absolute values of the coordinates of 8. 
The cube I-%, $$]P can be discretized by bh, ..., b y )  so that for every b from the cube 

there exists b h  with Jbh - bl 5 -&. Setting for deterministic designs 

and for random designs 

and 

one gets for every b with lbk  - bl < -&, because $ is monotone increasing, 

IvnNt(b',,O,s) - ~nNt(brO,s)I 5 ~ n N t ( ~ k , h N t , ~ )  - ~ n N t ( b k , - ~ N t , ~ )  

for all S E R where hNt = la(t)l-&. Tlris implies 
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Condition (2.10) implies for every s E [- T ,  T ]  

a ( t )  + s < 4 f i 1 c l h ~ t l -  5 5 Ii' la(t)l y. 4 
If I  is the number of experimental conditions t in T one gets with Chebyshev inequality and 
condition (2.9) for every 6 > 0 

and for every h. E R 

Furthermore condition(2.11) provide for every p E [-y, y] and every h. E R 

Because of condition (2.8) the sequence SNt(O, 0 ,  0 ) ,  N E N, is tight so that with (5.17) and 
(5.18) for all t ,  l and h. the sequence of stochastic processes SNt(b)v,  -&, -) : [-y, F] + 

R, N E N ,  is tight (see Billingsley (1968) p.95). Therefore for every 6 > 0 and every y > 0 
there exist N,,, E LW and r).,, with mini*; t E T )  2 r),,? > 0 so that 

and 

P ( I ~ N ( ~ )  - g(t)l > 7.n) < 5 
for all t E T and N 2 N,,,. Moreover N,,, can be chosen so that the probabilities in (5.15) 
and (5.16) are also less than + for N 2 N,,?. Then one gets for the term (5.13) for all 
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1 N 

p ( 1 n N d ,  ~ N ( t ) - ~ ( t ) )  - "bn~t(oY0) 

-~nNt(fiN-~,sN(t)-o(t))  +Xn~t(o, 0))l > 6 )  

7 < C t E T ~ ( ~ ~ p { ~ ~ N t ( ~ , o , ~ ) - ~ N t ( b , ~ , ~ ) ~ ;  lblm 5 % , I ~ I  <v. ,7)  > 5 )  + 2- 7 

I ztET C::) P(SUP{IS~~(O, oJ o)-sNt(b, 0, S)I; - ~ L I  5 &, ISI 5 qCf71 > 3 
+ 22 

7 
5 r for all N 2 N,,?. 
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