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Abstract. Association rules are used to investigate large databases. The
analyst is usually confronted with large lists of such rules and has to find
the most relevant ones for his purpose. Based on results about knowledge
representation within the theoretical framework of Formal Concept Anal-
ysis, we present relatively small bases for association rules from which all
rules can be deduced. We also provide algorithms for their calculation.

1 Introduction and Motivation

One of the core tasks of Knowledge Discovery in Databases (KDD) is the mining
of association rules (conditional implications). Association rules are statements
of the type ‘67 % of the customers buying cereals and sugar also buy milk (where
7% of all customers buy all three items)’. The task of mining association rules
is to determine all rules whose confidences (67 % in the example) and supports
(7 % in the example) are above user-defined thresholds. Since the problem was
stated [1], various approaches have been proposed for an increased efficiency
of rule discovery in very large databases [2,7,11,30,31]. However, fully taking
advantage of exhibited rules means providing capabilities to handle them. The
problem is especially critical when collected data is highly correlated or dense,
like in statistical databases [11]. For instance, when applied to a census dataset
of 10,000 objects, each of which characterized by values of 73 attributes, exper-
iments result in more then 2,000,000 rules with support and confidence greater

! This paper is a revised and extended version of a presentation given at the workshop
“Bases de Données Avancées”, Bordeaux, France, 1999 [29], and of the technical
report [37].



than or equal 90%. Thus the question arises: How can long lists of association
rules be reduced in size?

Approaches addressing the described issue provide users with mechanisms
for filtering rules, for instance by user defined templates [4, 21], Boolean [26, 35]
or SQL-like [25] operators or by introducing further measures of “usefulness”
[8]; or they attempt to minimize the number of extracted rules a priori by using
information about taxonomies [17, 19, 34] or by applying statistical measures like
Pearson’s correlation or the x2-test [10]. All these approaches have in common
that they lose some information.

Our approach, on the other hand, allows us to significantly reduce the num-
ber of rules without losing any information. We extract only a subset of all
association rules, called basis, from which all other rules can be derived. This
approach is orthogonal to the ones mentioned above and can be combined with
them.

We make use of techniques of Formal Concept Analysis (FCA). Formal Con-
cept Analysis [41,15] arose as a mathematical theory for the formalization of
the concept of ‘concept’ in the early 80ies and is nowadays considered as an
AT theory. It has since then grown to a technique for data analysis, information
retrieval, and knowledge representation with over 200 applications, for analyzing
flight movements at Frankfurt Airport [20], for studying semantics of German
speech-act verbs [16], for examining the medical nomenclature system SNOMED
[33], for IT-security management [9], and for database marketing [18]. FCA pro-
vides a framework for KDD, especially for conceptual clustering and association
rules. A broad discussion of the role of Formal Concept Analysis in data analysis,
decision support, and KDD is provided in [18] and [36].

We use results of Duquenne and Guigues ([12], cf. also [15]) and Luxenburger
[22,23]. The former have studied bases (i.e., minimal non-redundant sets of
rules from which all other rules can be derived) for association rules with 100 %
confidence, and the latter association rules with less than 100 % confidence, but
neither of them considered the support of the rules. We adopt their results to
association rules (where both the support and the confidence are considered) and
provide algorithms for computing the new bases by using iceberg concept lattices
[39]. We follow an approach in two steps. In the first step, we compute the iceberg
concept lattice for the given parameters. It consists of all FCA concepts whose
extents exceed the user-defined minimum support. In the second step, we derive
the bases for the association rules. In this paper, we focus on the second step.
For the first step, we refer to the PASCAL [6] and T1TANIC [38] algorithms.

This two-step approach has two advantages compared to the classical two-
step approach [2] (which computes all frequent itemsets as intermediate result,
and not only those which are intents of frequent FCA concepts):

1. It allows to determine bases for non-redundant association rules and thus to
prune redundancy.

2. Tt speeds up the computation, especially for strongly correlated data or when
the minimum support is low.



In [5], we have presented another pair of bases, which provide rules with
minimal antecedents and maximal consequents. Compared to the results pre-
sented here, they have the disadvantage of a higher total number of rules. For
the approximate rules, M. Zaki has presented similar results in [44]. However,
he does not provide inference rules for support and confidence derivation, does
not discuss minimality of his results, and does not provide algorithms for the
computation of the bases.

The remainder of this paper is as follows. After having recalled some basic
definitions in Section 2, we introduce two bases for association rules in Section 3:
the Duquenne-Guigues basis for exact association rules (i.e., for all rules with a
100% confidence), and the Luzenburger basis for approrimate association rules
(i.e., with a confidence < 100%). In Section 4, algorithms are given which com-
pute the two bases. We conclude the paper with the presentation of experimental
results (Section 5) and a discussion of future work (Section 6).

2 Formal Concept Analysis and the Association Rule
Framework

In this section, we briefly recall the basic notions of Formal Concept Analysis
[41,15] and the association rule problem [1]. For a more extensive introduction
into Formal Concept Analysis refer to [15].

Definition 1. A formal context is a triple K := (G, M, R) where G and M are
sets and R C G x M is a binary relation. A data mining context (or dataset) is
a formal context where G and M are finite sets. Its elements are called objects
and items, respectively. (0,1) € R is read as “object o is related to item i”.

For O C G, we define f(O) :={i € M |Yo € O:(0,i) € R}; and for I C M,
we define dually g(I) := {o€ G | Vi € I:(0,i) € R}. A formal concept is a pair
(0,I) € B(G) x B(M) with f(O) =1 and g(I) = O. O is called extent and
I is called intent of the concept. The set of all concepts of a formal context K
together with the partial order (O1,11) < (02,15) <= 01 C Oy (<= I, C I)
is a complete lattice, called concept lattice of K.

In this setting, we call each subset of M also itemset, and each intent I
also closed itemset (since it satisfies the equation I = f(g(I))). For two closed
itemsets I; and Is, we note Iy < I if Iy C I> and if there does not exist a closed
itemset Is with I C Is C I, .2

In the following, we will use the composed function h := f o g: P(M) — P(M)
which is a closure operator on M (i.e., it is extensive, monotonous, and idem-
potent). The related closure system (i.e., the set of all I C M with h(I) = 1) is
exactly the set of the intents of all concepts of the context.

Definition 2. Let I C M, and let minsupp, minconf € [0,1]. The support

count of the itemset I in K is supp(l) := \g‘g‘)\' I is said to be frequent if

supp(Il) >minsupp. The set of all frequent itemsets of a context is denoted FI.
2 We write X CY if and only if X CY and X # VY.
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ABC - E 0.4 BCE — A 0.4 2/3 C — ABE 0.4 2/4 C — BE 0.4 3/4
ABE — C 0. AC — BE 0.4 2/3 E — ABC 0.4 2/4 E — BC 0.6 3/4
ACE - B 0.4 BE — AC 0.4 2/4 A — BC 0.4 2/3 A —- B 0.4 2/3
AB - CE 04 CE — AB 0.4 2/3 B —» AC 0.4 2/4 B — A 0.4 2/4
AE —- BC 04 AC - B 0.4 2/3 C —- AB 0.4 2/4 C —- A 0.6 3/4
AB —» C 0.4 BC — A 0.4 2/3 A — BE 0.4 2/3 A - E 0.4 2/3
AB — E 0.4 BE — A 0.4 2/4 B —» AE 0.4 2/4 E - A 0.4 2/4
AE - B 0.4 AC - E 0.4 2/3 E - AB 0.4 2/4 C - B 0.6 3/4
AE — C 0.4 CE — A 0.4 2/3 A - CE 0.4 2/3 C - E 0.6 3/4
BC —- E 0.6 BE — C 0.6 3/4 C — AE 0.4 2/4 E = C 0.6 3/4
CE — B 0.6 A — BCE 0.4 2/3 E — AC 0.4 2/4 0 - E 0.8 4/5
A - C 0.6 B — ACE 0.4 2/4 B — CE 0.6 3/4 0 - BE 0.8 4/5
B - E 0.8 0 - C 0.8 4/5 0 — AC 0.6 3/5 0 - BC 0.6 3/5
E — B 0.8 0 — A 0.6 3/5 0P —- B 0.8 4/5 ®» - CE 0.6 3/5
®» - BCE 0.6 3/5

Fig. 1. The example data mining context K and its concept lattice. The table shows
all association rules that hold in K for minsupp = 0.4 and minconf = 1/2.

An association rule is a pair of itemsets I; and I, denoted I, — Iy, where
I, #0. I, and I, are called antecedent and consequent of the rule, respectively.

The support and confidence of an association rule r := I — I are defined
as follows: supp(r) = %, conf(r) = %. If conf(r)=1, then r is

called exact association rule (or implication), otherwise r is called approximate
association rule.

An association rule r holds in the context if supp(r) > minsupp and conf(r) >
minconf. The set of all association rules holding in K for given minsupp and
minconf is denoted AR.

Remark 1. The definition of association rules often includes the additional con-
dition I); N Is = (. This condition helps pruning rules which are obviously redun-
dant, as I} — I and Iy — I\ I; have same support and same confidence. In this
paper, we omit the condition, in order to simplify definitions. When discussing
the algorithms, however, we will use the condition since it saves memory.

The association rule framework has first been formulated in terms of Formal
Concept Analysis independently in [28], [37], and [42]. [28] provided also the first
algorithm (named Close) based on this approach.

Ezample 1. An example data mining context K consisting of five objects (iden-
tified by their OID) and five items is given in Figure 1 together with its concept
lattice. The association rules holding for minsupp = 0.4 and minconf = 1/2 are
shown in the lower table.

In the line diagram, the name of an object g is always attached to the node
representing the smallest concept with ¢ in its extent; dually, the name of an
attribute m is always attached to the node representing the largest concept with



m in its intent. This allows us to read the context relation from the diagram
because an object g has an attribute m if and only if there is an ascending
path from the node labeled by g to the node labeled by m. The extent of a
concept consists of all objects whose labels are below in the diagram, and the
intent consists of all attributes attached to concepts above in the hierarchy. For
example, the concept labeled by ‘A’ has {1, 3,5} as extent, and {A, C} as intent.

An example for an exact rule (implication) which holds in the context is
{A,B} — {C,E}. It can also be read directly in the line diagram: the largest
concept having both A and B in its intent is the one labeled by 3 and 5, and
it is below or equal to (here the latter is the case) the largest concept having
both C and E in its intent. This implication can be derived from two simpler
implications, namely {A} — {C} and {B} — {E}. The aim of the frequent
Duquenne-Guigues-basis which we introduce in the next section is to provide
only a minimal, non-redundant set of implications to the user. That basis will
include the two simpler implications.

At the end of this section, we give some simple facts about association rules.
We will refer to them later as derivation rules.

Lemma 1. Rules 1 and 2 hold for ¢ € {conf,supp}.

1. (X =2 YV)=¢(X 2Y\2), foral ZCXCM,YCM.

2. ¢(h(X) > h(Y))=¢(X = Y), foral X,Y C M.

3. conf(X =Y)=pAconf(Y - Z)=q = conf(X - Z)=p-q,
for all frequent concept intents X CY C Z.

3. supp(X — Z) =supp(Y — Z), forall X, Y C Z.

4. conf(X — X) =1, forall X C M.

Proof. The proofs for the confidence are given in [23].

1. supp(X = Y) =supp(X — Y\ Z) follows from X UY = X U (Y \ Z) and
the definition of the support count.
2. supp(h(X) — h(Y)) = supp(X — Y) follows from g(h(X) U h(Y)) =

g(n(X))Ng(h(Y)) = 9(f(9(X)))Ng(f(9(Y))) = g(X)Ng(Y) = g(XUY) by
using the facts g(f(g(X))) = g(X) and g(X UY) = ¢g(X) N g(Y) provided

in [15].

3. supp(X — Z) = LA _ WAL _ LWL _ qupp(y - 2) 0

3 Bases for Association Rules

In this section, we recall the definition of iceberg concept lattices and show that
one can derive all frequent itemsets and association rules from them. Then we
characterize the Duquenne-Guigues basis for exact association rules and the
Luzenburger basis for approximate association rules and show that all other
association rules can be derived from these two bases.



Frequent closed itemset support]|
0 1.0
{cy 0.8
{AC} 0.6
{BE} 0.8
{BCE} 0.6
{ABCE} 0.4

Fig. 2. Frequent closed itemsets extracted from K for minsupp = 0.4.

Definition 3. A concept (O,I) is called frequent concept if supp(I) (= %) >

minsupp. The set of all frequent concepts is called iceberg concept lattice. An
itemset I is called frequent intent (or frequent closed itemset) if it is intent of
a frequent concept (i. e., its support is at least minsupp). The set of all frequent
closed itemsets in K is denoted FC'.

Ezample 2. The frequent closed itemsets in the context K for minsupp=0.4 are
presented in Figure 2 together with the semi-lattice of all frequent concepts. Both
the table and the diagram provide the same information. Note that, in general,
the set of frequent concepts is not a lattice, but only a semi-lattice (consider e. g.
minsupp= 0.5 in the example).

Lemma 2 ([31]). i) The support of an itemset I is equal to the support of the
smallest closed itemset containing I, i. e., supp(I) = supp(h(I)).

ii) The set of mazimal frequent itemsets {I € FI | BI'€FI:I C I'} is iden-
tical to the set of mazimal frequent closed itemsets {I € FC | 3I'e FC:1 C I'}.

The next theorem shows that the set of frequent closed itemsets with their
support is a small collection of frequent itemsets from which all frequent itemsets
with their support and all association rules can be derived. I. e., it is a condensed
representation in the sense of Mannila and Toivonen [24]. This theorem follows
from Lemma 2.

Theorem 1. All frequent itemsets and their support, as well as all association
rules holding in the dataset, their support, and their confidence can be derived
from the set FC of frequent closed itemsets with their support.

3.1 Duquenne-Guigues Basis for Exact Association Rules

Next we present the Duquenne-Guigues basis for exact association rules. It is
based on the following closure operator.

Theorem 2. The set FIU{M} is a closure system on M, and its related closure
operator = is given by I := h(I) if supp(I) >minsupp and I := M else.

Proof. The set of all frequent itemsets together with M is a closure system, as
well as the set of all concept intents. Hence F'TU{M} is, as intersection of those
two closure systems, also a closure system. The proof of the fact that = is the
corresponding closure operator is straightforward. O



Our basis adopts the results of [12] to the association rule framework, where
additionally the support of the rules has to be considered.

Definition 4. An itemset I C M in K is a ~—pseudo-closed itemset (or pseudo-
closed itemset for short) ® if I # I and for all pseudo-closed itemsets .J with
J C I, we have J C I. The set of all frequent pseudo-closed itemsets in K is
denoted FP, the set of all infrequent pseudo-closed itemsets is denoted IP. In
the (unlikely) case that all itemsets are frequent except the whole set M, we let
IP :={M} (in order to distinguish this situation from the one where all itemsets
are frequent).

The Duquenne-Guigues basis for exact association rules (or frequent Du-
quenne-Guigues basis) is defined as the tuple FDG := (L, IP) with £ :={I; —
h(I1) | Iy € FP} and IP as defined above.

Theorem 3. From the Duquenne-Guigues basis for exact association rules one
can derive all exact association rules holding in the dataset by applying the fol-
lowing rules. Rules ii) to iv) can be applied to L as long as they do not contra-
dict ().

i) If there exists I € IP with I C I, U I5, then I — Iy does not hold (because
its support is too low).
i) X — X holds.
iii) If X = Z holds, then also X UY — Z.
w) If X Y and YU Z — W hold, then also X UZ — W.

Proof. We only sketch the proof here, which applies results of [12] (see also [15]).
One has to check that LU {I—M | I € IP} is the Duquenne-Guigues-basis (in
the traditional sense, cf. to [12,15]) of the closure system FC U {M}. Rule (4)
reflects the implications of the form I — M. O

The Duquenne-Guigues basis for exact association rules is not only minimal with
respect to set inclusion, but also minimal with respect to the number of rules in
L plus the number of elements in TP, since there can be no complete set with
fewer rules than there are frequent pseudo-closed itemsets [12,15]. Observe that,
although it is possible to derive all exact association rules from the Duquenne-
Guigues basis, it is not possible in general to determine their support.*

Ezample 3. The set of frequent pseudo-closed itemsets of K for minsupp=0.4
and minconf=1/21is FP = {{A},{B}, {E}}, the set of infrequent pseudo-closed
itemsets is IP = {{D}}. The Duquenne-Guigues basis is presented in Figure 3.

3 We do not consider pseudo-closed itemsets with respect to other closure operators
than = (especially not with respect to h) in this paper.

4 Even if the support for all rules in the basis is known. With the knowledge about all
frequent closed itemsets and their support however, this is possible (see Theorem 1).



3.2 Luxenburger Basis for Approximate Association Rules

In [22,23], M. Luxenburger discusses bases for partial implications. A partial
implication is an association rule where the support is not considered. He ob-
served that it is sufficient to consider rules between concept intents only, since
conf(X — Y) = conf(h(X) — h(Y)). However, his derivation process does not
only consist of deduction rules which can be applied in a straightforward manner,
but it requires to solve a system of linear equations.

In the KDD process, however, we have to consider the trade-off between the
amount of information presented to the user, and the degree of its explicitness.
The appearance of the system of linear equations indicates that Luxenburger’s
results are in favor for a minimal amount of information presented, and against
a higher degree of explicitness. As one of the requirements to KDD is that the
results should be “ultimately understandable” [13], we want to emphasize more
on the explicitness of the results. Therefore we restrict now the expressiveness
of the derivation process. This forces the association rules presented to the user
to be more explicit.’

In the sequel, we consider the derivation rules given in Lemma 1. We present
a basis for the approximate association rules for these derivation rules.

Definition 5. The Luxenburger basis for approximate association rules is given
by LB := {(r, supp(r),conf(r)) | r =1 - I, I,I € FC, I, < I, conf(r) >
minconf, supp(ls) > minsupp} .

Theorem 4. From the Luzenburger basis LB for approrimate association rules
one can derive all association rules holding in the dataset together with their
support and their confidence by using the rules given in Lemma 1. Furthermore,
LB is minimal (with respect to set inclusion) with this property.

Proof. In order to determine if an association rule r := I — J holds in a con-
text (and for determining its support and its confidence) one can consider the
rule I' = J' with I' := h(I) and J' := h(I U J) which has (by Rules 1 &
2) the same support and the same confidence. If I' = .J', then conf(r) = 1
and supp(r) =supp(l'). If I' # J', then exists a path of approximate rules,
i.e., there are frequent closed itemsets Iy,...,I, with I; — [;;; € LB and
I' = I and I,, = J'. Support and confidence of r can now be determined by
supp(r) = supp(I,) (Rule 3°) and conf(r) = I/ ,' conf (I; = I;1+1) (Rule 3).
Now we show the minimality of LB. Let r := I — .J € LB. We show that
the confidence of r cannot be derived from LB\ {r} by applying the rules of
Lemma 2. Rule 1 cannot be applied forward since J already contains I. It cannot
be applied backward because of I < J. Rule 2 cannot be applied forward since
I = h(I) and J = h(J). It cannot be applied backward as LB contains only rules
with closed antecedent and closed consequent. Rule 3 cannot be applied since
there isno K C M with I - K € LB\ {r} and K — J € LB\ {r} (because of
I < J). Rule 4 cannot be applied since I # J. O

® Note that in the KDD setting the user will never actually perform longer series of
inference steps.
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| Luxenburger basis | 0.8
Approximate rule Support Confidence 3/4/

BCE — A 0.4 2/3 : -

AC - BE 0.4 2/3 |Duquenne-Gu1gues ba51s|

BE — C 0.6 3/4 L (Support)

C - BE 0.6 3/4 A—=C 0.6

C— A 0.6 3/4 B—E 0.8

0 — BE 0.8 4/5 E—~B 0.8

p— C 0.8 4/5 | IP = {{D}} |

Fig. 3. Duquenne-Guigues and Luxenburger bases for minsupp=0.4 and minconf=1/2.

Remark 2. A basis in the sense of [23] is a maximal spanning tree of our basis
(when considered as undirected graph) containing at most one rule with M as
conclusion.b

Example 4. The Luxenburger basis for approximate association rules of K for
minsupp=0.4 and minconf=1/2 is also presented in Figure 3. It provides the
same information as the list in Figure 1, but in a more condensed form. The
Luxenburger basis is visualized in the line diagram in Figure 3: From its defini-
tion it is clear, that each approximate rule in the basis corresponds to (at most)”
one edge in the diagram. The edge is labeled by the confidence of the rule (as a
fraction), and its lower vertice is labeled by its support (as a rational). Implica-
tions (exact rules) can be read in the diagram in the standard way described in
Section 2.

As example for the proof of Theorem 4, let us check if {B} — {A} holds
in the context for minsupp=0.4 and minconf=1/2. We have I := {B} and
J := {A}. The smallest frequent closed itemset containing B is I' := {B, E}
and the smallest one containing A and B is J' := {4, B,C, E}. In the diagram,
I' and J' are always represented by the largest concepts which are below all
attributes in I and IUJ, resp. Between the two concepts we find the path I; := I,
I, :={B,C,E}, and I5 := J'. Hence supp(B — A) =supp(J') = 0.4 > minsupp
and conf(B — A) = conf(Iy — I)-conf(Iy — I3) = 3/4-2/3 = 2/4 > minconf,
which means that the rule holds.

4 Algorithms for Computing the Bases

The algorithms presented in this paper assume that the iceberg concept lattice is
already computed. There are several algorithms for computing iceberg concept

6 The second condition is negligible in KDD, as it follows directly from minsupp > 0 %.

7 In general, there may be edges which do not represent any rule in the Luxenburger
basis. Consider for instance minconf="7/10. In this case, the two lowest edges would
not stand for a valid approximate rule, and would hence not be labelled.



Algorithm 1 Generating the Duquenne-Guigues basis with Gen-FDG.
L {k
if (FCo = {}) then FPy « 0;
else FPy + {};
for (i + 1;i < k; i++) do begin
FP; %FI,‘\FCI';
forall L € FP; do begin
pseudo « true;
forall P € FP; with j < i do begin
if (P C L) and (P.closure ¢ L)
) then do begin
) pseudo < false;
) endif
) end
) if (pseudo = true) then L.closure < minc ({C € FCjs; | L C C});

—_

=== O 00 N O O s W N
DN = O — N o o

1

—_ =
[SAEN

6) end

7) end

8) forall P € JI_, FP; do L + LU {P — (P.closure\P)},
9) IP « 0;

0) forall L € MI do IP + IPU{L"-closure(I)};

1)

1
1
1
1
2
21) IP + minc IP;

lattices: the algorithm Close for strongly correlated data [31], the algorithm A-
Close for weakly correlated data [30], the algorithms CLOSET [32], ChARM [43],
and TITANIC [38,39]. The algorithm PASCAL [6] computes all (closed and non-
closed) frequent itemsets, but can be upgraded to determine also their closures

with almost no additional computation time by using the fact that, for I C M,
hI)=TU{m e M\T| supp(I) = supp(IU{m})} .

When the iceberg concept lattice is computed, then the Duquenne—Guigues basis
and finally the Luxenburger basis are computed.

4.1 Generating the Duquenne-Guigues basis for Exact Association

Rules with Gen-FDG

In this section, we present an algorithm that determines the Duquenne—Guigues
basis using the iceberg concept lattice. This algorithm (which has not been
presented before) implements Definition 4. As it needs to know the closure of
frequent itemsets, it is best applied after an algorithm like PASCAL with the
modification mentioned above, ChARM, or CLOSET.

The pseudo-code is given in Algorithm 1. The algorithm takes as input the
sets F'I;, 1<i <k, containing the frequent itemsets and their support, and the
sets F'C;, 0 <i <k, containing the frequent closed itemsets and their support.
It first computes the frequent pseudo-closed itemsets iteratively (steps 2 to 17).
In steps 2 and 3, the empty set is examined. (It must be either a closed or a



Algorithm 2 Function £*-closure reads X and returns its £*-closure £*(X).

1) Y« X;

2) for (i + 1;i =n;i+ +) do i.used+ false;

3) repeat

4) changed « false;

5) If Subsets(IP,Y) # () then begin Y < M; changed+ true end

6) else for (i + 1;i <m;i+ +) do

7) if X; CY then begin Y + Y UYj; changed+ true end
8) until not changed;

9) returnY

pseudo-closed itemset by definition.) The loop from step 4 to 17 is a direct imple-
mentation of Definition 4 for the frequent pseudo-closed itemsets. The frequent
pseudo-closed i-itemsets, their closure and their support are stored in F'P;. They
are used to generate the set £ of implications of the Duquenne-Guigues basis for
exact association rules DG (step 18).

The set of infrequent pseudo-closed itemsets is determined in steps 19 to 21
using the function £*-closure (Algorithm 2). This function uses the fact that, for
a given closure system, the set of all closed or pseudo-closed sets forms again a
closure system [14]. Hence one can generate all closed sets and pseudo-closed sets
iteratively by using the corresponding closure operator £L*-closure(Z) := J;2 Z;
with ZO = Z and Zi+1 = ZZ U U{Y|X—>Y € ﬁX C Zz} [14] The set £ of
implications has the form £ = {X; - Y1,..., X, = Y, }.

4.2 Generating the Luxenburger Basis for Approximate Association

Rules with Gen-LB

The pseudo-code generating the Luxenburger basis for approximate association
rules is presented in Algorithm 3. The algorithm takes as input the sets F'C;,
0<i<k, containing the frequent closed itemsets and their support. The output
of the algorithm is the Luxenburger basis for approximate association rules LB.

The algorithm iteratively considers all frequent closed itemsets L € FC;
for 2 <4 < k. It determines which frequent closed itemsets L' € |J;; F'C;
are covered by L and generates association rules of the form L' — L\ L' that
have sufficient confidence. During the it" iteration, each itemset L in FC; is
considered (steps 3 to 13). For each set F'C;, 1 <j <1, a set S; containing all
frequent closed j-itemsets in F'C; that are subsets of L is created (step 4). Then,
all these subsets of L are considered in decreasing order of their sizes (steps 5
to 12). For each of these subsets L' € S;, the confidence of the approximate
association rule r := L' — L\ L' is computed (step 7). If the confidence of r is
sufficient, r is inserted into LB (step 9) and all subsets L" of L' are removed
from S;, for I < j (step 10). At the end of the algorithm, the set LB contains
all rules of the Luxenburger basis for approximate association rules. The proof
of the correctness of the algorithm is given in [27].



Algorithm 3 Generating the Luxenburger basis with Gen-LB.

1) LB« {}

2) for (i + 2; i <k; i++) do begin

3) forall L € FC; do begin

4) for (j + 0;J <i;7+ +) do S; « Subsets(FCj, L);

5) for (j«+i—1;J>1;5— —) do begin

6) forall L' € S; do begin

7) conf < L.support / L' .support;

8) if (conf > minconf)

9) then LB + LBU {(L' — (L \ L), L.support, conf)};
10) for (1« j;1 > 11— —) do S; + S; \ Subsets(S;, L');
11) end

12) end

13) end

14) end

5 Experimental Results

We have preformed several experiments on synthetic and real data. The char-
acteristics of the datasets used in the experiments are given in Table 1. These
datasets are the T10I14D100K synthetic dataset that mimics market basket data,®
the C20D10K and the C73D10K census datasets from the PUMS sample file,”
and the MUSHROOMS dataset describing mushroom characteristics.'? In all ex-
periments, we attempted to choose significant minimum support and confidence
threshold values. We varied these thresholds and, for each couple of values, we
analyzed rules extracted in the bases.

Table 1. Datasets.

Name Number of objects|Average size of objects|Number of items
T10I4D100K 100,000 10 1,000
MUSHROOMS 8,416 23 127

C20D10K 10,000 20 386
C73D10K 10,000 73 2,177

Number of Rules. Table 2 compares the size of the Duquenne-Guigues basis for
exact rules with the number of all exact association rules, and the size of the
Luxenburger basis for approximate rules with the number of all approximate
rules. In the case of weakly correlated data (T10I4D100K), no exact rule is
generated. The reason is that in such data all frequent itemsets are frequent

® http://www.almaden.ibm.com/cs/quest/syndata.html
9 ftp://ftp2.cc.ukans.edu/pub/ippr/census/pums/pums90ks.zip
10 ftp://ftp.ics.uci.edu/ cmerz/mldb.tar.Z



Table 2. Number of exact and approximate association rules compared with the num-
ber of rules in the Duquenne-Guigues and Luxenburger bases.

Dataset Exact D.-G. Approximate Luxenburger
(Minsupp) rules  basis || Minconf | rules basis

90% 16,269 3511

T10I14D100K 0 0 70% 20,419 4,004

(0.5%) 50% 21,686 4,191

30% 92,952 4,519

90% 12,011 563

MUSHROOMS 7,476 69 70% 37,671 968

(30%) 50% 56,703 1,169

30% 71,412 1,260

90% 36,012 1,379

C20D10K 2,277 11 70% 89,601 1,048

(50%) 50% 116,791 1,048

30% 116,791 1,948

95% 1,606,726 4,052

C73D10K 52,035 15 90% 2,053,896 4,089

(90%) 85% 2,053,936 4,089

80% 2,053,936 4,089

closed itemsets. However, the Luxenburger basis is relatively small compared to
the number of all rules, since only immediate neighbors with respect to the subset
order (and not arbitrary pairs of sets) are considered. In the case of strongly
correlated data (MusHroOMS, C20D10K and C73D10K), the ratio between the
size of the bases to the number of all rules which hold is much smaller than in
the weekly correlated case, because here only few of the frequent itemsets are
closed and have to be considered.

Relative Performance. Our experiments also show that in all cases the execution
time of Gen-FDG and Gen-LB are insignificantly small compared to those of the
computation of the iceberg concept lattice, since both algorithms need not access
the database. We can conclude that without additional computation time (com-
pared to other approaches, like e.g. Apriori) our approach not only computes
all frequent closed itemsets but also the two bases described in Section 2.

6 Outlook

In this paper, we introduced bases which significantly reduce the number of asso-
ciation rules presented to the user without losing any information; and provided
algorithms for computing them. This work is currently extended in different
directions:

Integrating reduction methods. Templates, as defined in [4,21], can directly
be used for extracting all association rules matching some user specified patterns



from the bases. Information in taxonomies and ontologies associated with the
dataset can also be integrated in the process as proposed in [17, 34] for extracting
bases for generalized (multi-level) association rules. Integrating item constraints
[8,26,35] and statistical measures [10] in the generation of bases requires further
work.

Integration of association rule visualization in Conceptual Information Sys-
tems. Using the technique of conceptual scaling, Conceptual Information Systems
present, the information contained in large databases to the user in conceptual
hierarchies of a manageable size [40, 36, 18]. We work on exploiting this visual-
ization techniques for presenting also association rules to the user.

Supporting the creation of new concepts in Description Logics. In Descrip-
tion Logics, currently approaches are discussed to support the domain expert in
creating new concepts which regroup more specific similar concepts [3]. Those
approaches extend the partial order of the concepts in the terminology to a
lattice and suggest new concepts to the user. Since the more specific concepts
are often defined incoherently, the user is often interested in only approximate
relationships between those concepts, and on a general level only. It is planned
to adapt the bases and the algorithms presented in this paper to that task.
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