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t. Asso
iation rules are used to investigate large databases. Theanalyst is usually 
onfronted with large lists of su
h rules and has to �ndthe most relevant ones for his purpose. Based on results about knowledgerepresentation within the theoreti
al framework of Formal Con
ept Anal-ysis, we present relatively small bases for asso
iation rules from whi
h allrules 
an be dedu
ed. We also provide algorithms for their 
al
ulation.11 Introdu
tion and MotivationOne of the 
ore tasks of Knowledge Dis
overy in Databases (KDD) is the miningof asso
iation rules (
onditional impli
ations). Asso
iation rules are statementsof the type `67 % of the 
ustomers buying 
ereals and sugar also buy milk (where7% of all 
ustomers buy all three items)'. The task of mining asso
iation rulesis to determine all rules whose 
on�den
es (67 % in the example) and supports(7 % in the example) are above user-de�ned thresholds. Sin
e the problem wasstated [1℄, various approa
hes have been proposed for an in
reased eÆ
ien
yof rule dis
overy in very large databases [2, 7, 11, 30, 31℄. However, fully takingadvantage of exhibited rules means providing 
apabilities to handle them. Theproblem is espe
ially 
riti
al when 
olle
ted data is highly 
orrelated or dense,like in statisti
al databases [11℄. For instan
e, when applied to a 
ensus datasetof 10,000 obje
ts, ea
h of whi
h 
hara
terized by values of 73 attributes, exper-iments result in more then 2,000,000 rules with support and 
on�den
e greater1 This paper is a revised and extended version of a presentation given at the workshop\Bases de Donn�ees Avan
�ees", Bordeaux, Fran
e, 1999 [29℄, and of the te
hni
alreport [37℄.



than or equal 90%. Thus the question arises: How 
an long lists of asso
iationrules be redu
ed in size?Approa
hes addressing the des
ribed issue provide users with me
hanismsfor �ltering rules, for instan
e by user de�ned templates [4, 21℄, Boolean [26, 35℄or SQL-like [25℄ operators or by introdu
ing further measures of \usefulness"[8℄; or they attempt to minimize the number of extra
ted rules a priori by usinginformation about taxonomies [17, 19, 34℄ or by applying statisti
al measures likePearson' s 
orrelation or the �2-test [10℄. All these approa
hes have in 
ommonthat they lose some information.Our approa
h, on the other hand, allows us to signi�
antly redu
e the num-ber of rules without losing any information. We extra
t only a subset of allasso
iation rules, 
alled basis, from whi
h all other rules 
an be derived. Thisapproa
h is orthogonal to the ones mentioned above and 
an be 
ombined withthem.We make use of te
hniques of Formal Con
ept Analysis (FCA). Formal Con-
ept Analysis [41, 15℄ arose as a mathemati
al theory for the formalization ofthe 
on
ept of `
on
ept' in the early 80ies and is nowadays 
onsidered as anAI theory. It has sin
e then grown to a te
hnique for data analysis, informationretrieval, and knowledge representation with over 200 appli
ations, for analyzing
ight movements at Frankfurt Airport [20℄, for studying semanti
s of Germanspee
h-a
t verbs [16℄, for examining the medi
al nomen
lature system SNOMED[33℄, for IT-se
urity management [9℄, and for database marketing [18℄. FCA pro-vides a framework for KDD, espe
ially for 
on
eptual 
lustering and asso
iationrules. A broad dis
ussion of the role of Formal Con
ept Analysis in data analysis,de
ision support, and KDD is provided in [18℄ and [36℄.We use results of Duquenne and Guigues ([12℄, 
f. also [15℄) and Luxenburger[22, 23℄. The former have studied bases (i. e., minimal non-redundant sets ofrules from whi
h all other rules 
an be derived) for asso
iation rules with 100%
on�den
e, and the latter asso
iation rules with less than 100% 
on�den
e, butneither of them 
onsidered the support of the rules. We adopt their results toasso
iation rules (where both the support and the 
on�den
e are 
onsidered) andprovide algorithms for 
omputing the new bases by using i
eberg 
on
ept latti
es[39℄. We follow an approa
h in two steps. In the �rst step, we 
ompute the i
eberg
on
ept latti
e for the given parameters. It 
onsists of all FCA 
on
epts whoseextents ex
eed the user-de�ned minimum support. In the se
ond step, we derivethe bases for the asso
iation rules. In this paper, we fo
us on the se
ond step.For the �rst step, we refer to the Pas
al [6℄ and Titani
 [38℄ algorithms.This two-step approa
h has two advantages 
ompared to the 
lassi
al two-step approa
h [2℄ (whi
h 
omputes all frequent itemsets as intermediate result,and not only those whi
h are intents of frequent FCA 
on
epts):1. It allows to determine bases for non-redundant asso
iation rules and thus toprune redundan
y.2. It speeds up the 
omputation, espe
ially for strongly 
orrelated data or whenthe minimum support is low.



In [5℄, we have presented another pair of bases, whi
h provide rules withminimal ante
edents and maximal 
onsequents. Compared to the results pre-sented here, they have the disadvantage of a higher total number of rules. Forthe approximate rules, M. Zaki has presented similar results in [44℄. However,he does not provide inferen
e rules for support and 
on�den
e derivation, doesnot dis
uss minimality of his results, and does not provide algorithms for the
omputation of the bases.The remainder of this paper is as follows. After having re
alled some basi
de�nitions in Se
tion 2, we introdu
e two bases for asso
iation rules in Se
tion 3:the Duquenne-Guigues basis for exa
t asso
iation rules (i. e., for all rules with a100% 
on�den
e), and the Luxenburger basis for approximate asso
iation rules(i. e., with a 
on�den
e < 100%). In Se
tion 4, algorithms are given whi
h 
om-pute the two bases. We 
on
lude the paper with the presentation of experimentalresults (Se
tion 5) and a dis
ussion of future work (Se
tion 6).2 Formal Con
ept Analysis and the Asso
iation RuleFrameworkIn this se
tion, we brie
y re
all the basi
 notions of Formal Con
ept Analysis[41, 15℄ and the asso
iation rule problem [1℄. For a more extensive introdu
tioninto Formal Con
ept Analysis refer to [15℄.De�nition 1. A formal 
ontext is a triple K := (G;M;R) where G and M aresets and R � G�M is a binary relation. A data mining 
ontext (or dataset) isa formal 
ontext where G and M are �nite sets. Its elements are 
alled obje
tsand items, respe
tively. (o; i) 2 R is read as \obje
t o is related to item i".For O � G, we de�ne f(O) := fi 2M j 8o 2 O: (o; i) 2 Rg; and for I �M ,we de�ne dually g(I) := fo 2 G j 8i 2 I : (o; i) 2 Rg. A formal 
on
ept is a pair(O; I) 2 P(G) � P(M) with f(O) = I and g(I) = O. O is 
alled extent andI is 
alled intent of the 
on
ept. The set of all 
on
epts of a formal 
ontext Ktogether with the partial order (O1; I1) � (O2; I2) :() O1 � O2 (() I2 � I1)is a 
omplete latti
e, 
alled 
on
ept latti
e of K .In this setting, we 
all ea
h subset of M also itemset, and ea
h intent Ialso 
losed itemset (sin
e it satis�es the equation I = f(g(I))). For two 
loseditemsets I1 and I2, we note I1 � I2 if I1 � I2 and if there does not exist a 
loseditemset I3 with I1 � I3 � I2.2In the following, we will use the 
omposed fun
tion h := f Æ g:P(M) ! P(M)whi
h is a 
losure operator on M (i. e., it is extensive, monotonous, and idem-potent). The related 
losure system (i. e., the set of all I �M with h(I) = I) isexa
tly the set of the intents of all 
on
epts of the 
ontext.De�nition 2. Let I � M , and let minsupp, min
onf 2 [0; 1℄. The support
ount of the itemset I in K is supp(I) := jg(I)jjGj . I is said to be frequent ifsupp(I) �minsupp. The set of all frequent itemsets of a 
ontext is denoted FI.2 We write X � Y if and only if X � Y and X 6= Y .
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t rule Supp Approximate rule Supp Conf Approximate rule Supp Conf Approximate rule Supp ConfABC ! E 0.4 BCE ! A 0.4 2/3 C ! ABE 0.4 2/4 C ! BE 0.4 3/4ABE ! C 0.4 AC ! BE 0.4 2/3 E ! ABC 0.4 2/4 E ! BC 0.6 3/4ACE ! B 0.4 BE ! AC 0.4 2/4 A ! BC 0.4 2/3 A ! B 0.4 2/3AB ! CE 0.4 CE ! AB 0.4 2/3 B ! AC 0.4 2/4 B ! A 0.4 2/4AE ! BC 0.4 AC ! B 0.4 2/3 C ! AB 0.4 2/4 C ! A 0.6 3/4AB ! C 0.4 BC ! A 0.4 2/3 A ! BE 0.4 2/3 A ! E 0.4 2/3AB ! E 0.4 BE ! A 0.4 2/4 B ! AE 0.4 2/4 E ! A 0.4 2/4AE ! B 0.4 AC ! E 0.4 2/3 E ! AB 0.4 2/4 C ! B 0.6 3/4AE ! C 0.4 CE ! A 0.4 2/3 A ! CE 0.4 2/3 C ! E 0.6 3/4BC ! E 0.6 BE ! C 0.6 3/4 C ! AE 0.4 2/4 E ! C 0.6 3/4CE ! B 0.6 A ! BCE 0.4 2/3 E ! AC 0.4 2/4 ; ! E 0.8 4/5A ! C 0.6 B ! ACE 0.4 2/4 B ! CE 0.6 3/4 ; ! BE 0.8 4/5B ! E 0.8 ; ! C 0.8 4/5 ; ! AC 0.6 3/5 ; ! BC 0.6 3/5E ! B 0.8 ; ! A 0.6 3/5 ; ! B 0.8 4/5 ; ! CE 0.6 3/5; ! BCE 0.6 3/5Fig. 1. The example data mining 
ontext K and its 
on
ept latti
e. The table showsall asso
iation rules that hold in K for minsupp = 0.4 and min
onf = 1/2.An asso
iation rule is a pair of itemsets I1 and I2, denoted I1! I2, whereI2 6= ;. I1 and I2 are 
alled ante
edent and 
onsequent of the rule, respe
tively.The support and 
on�den
e of an asso
iation rule r := I1 ! I2 are de�nedas follows: supp(r) := jg(I1[I2)jjGj , 
onf(r) := supp(I1[I2)supp(I1) . If 
onf(r)=1, then r is
alled exa
t asso
iation rule (or impli
ation), otherwise r is 
alled approximateasso
iation rule.An asso
iation rule r holds in the 
ontext if supp(r) � minsupp and 
onf(r) �min
onf. The set of all asso
iation rules holding in K for given minsupp andmin
onf is denoted AR.Remark 1. The de�nition of asso
iation rules often in
ludes the additional 
on-dition I1\ I2 = ;. This 
ondition helps pruning rules whi
h are obviously redun-dant, as I1 ! I2 and I1 ! I2nI1 have same support and same 
on�den
e. In thispaper, we omit the 
ondition, in order to simplify de�nitions. When dis
ussingthe algorithms, however, we will use the 
ondition sin
e it saves memory.The asso
iation rule framework has �rst been formulated in terms of FormalCon
ept Analysis independently in [28℄, [37℄, and [42℄. [28℄ provided also the �rstalgorithm (named Close) based on this approa
h.Example 1. An example data mining 
ontext K 
onsisting of �ve obje
ts (iden-ti�ed by their OID) and �ve items is given in Figure 1 together with its 
on
eptlatti
e. The asso
iation rules holding for minsupp = 0.4 and min
onf = 1/2 areshown in the lower table.In the line diagram, the name of an obje
t g is always atta
hed to the noderepresenting the smallest 
on
ept with g in its extent; dually, the name of anattribute m is always atta
hed to the node representing the largest 
on
ept with



m in its intent. This allows us to read the 
ontext relation from the diagrambe
ause an obje
t g has an attribute m if and only if there is an as
endingpath from the node labeled by g to the node labeled by m. The extent of a
on
ept 
onsists of all obje
ts whose labels are below in the diagram, and theintent 
onsists of all attributes atta
hed to 
on
epts above in the hierar
hy. Forexample, the 
on
ept labeled by `A' has f1; 3; 5g as extent, and fA;Cg as intent.An example for an exa
t rule (impli
ation) whi
h holds in the 
ontext isfA;Bg ! fC;Eg. It 
an also be read dire
tly in the line diagram: the largest
on
ept having both A and B in its intent is the one labeled by 3 and 5, andit is below or equal to (here the latter is the 
ase) the largest 
on
ept havingboth C and E in its intent. This impli
ation 
an be derived from two simplerimpli
ations, namely fAg ! fCg and fBg ! fEg. The aim of the frequentDuquenne-Guigues-basis whi
h we introdu
e in the next se
tion is to provideonly a minimal, non-redundant set of impli
ations to the user. That basis willin
lude the two simpler impli
ations.At the end of this se
tion, we give some simple fa
ts about asso
iation rules.We will refer to them later as derivation rules.Lemma 1. Rules 1 and 2 hold for � 2 f
onf; suppg.1. �(X ! Y ) = �(X ! Y n Z), for all Z � X �M , Y �M .2. �(h(X)! h(Y )) = �(X ! Y ), for all X;Y �M .3. 
onf(X ! Y ) = p ^ 
onf(Y ! Z) = q =) 
onf(X ! Z) = p � q,for all frequent 
on
ept intents X � Y � Z.3'. supp(X ! Z) = supp(Y ! Z), for all X;Y � Z.4. 
onf(X ! X) = 1, for all X �M .Proof. The proofs for the 
on�den
e are given in [23℄.1. supp(X ! Y ) = supp(X ! Y n Z) follows from X [ Y = X [ (Y n Z) andthe de�nition of the support 
ount.2. supp(h(X) ! h(Y )) = supp(X ! Y ) follows from g(h(X) [ h(Y )) =g(h(X))\g(h(Y )) = g(f(g(X)))\g(f(g(Y ))) = g(X)\g(Y ) = g(X [Y ) byusing the fa
ts g(f(g(X))) = g(X) and g(X [ Y ) = g(X) \ g(Y ) providedin [15℄.3'. supp(X ! Z) = jg(X[Z)jjGj = jg(Z)jjGj = jg(Y [Z)jjGj = supp(Y ! Z) 23 Bases for Asso
iation RulesIn this se
tion, we re
all the de�nition of i
eberg 
on
ept latti
es and show thatone 
an derive all frequent itemsets and asso
iation rules from them. Then we
hara
terize the Duquenne-Guigues basis for exa
t asso
iation rules and theLuxenburger basis for approximate asso
iation rules and show that all otherasso
iation rules 
an be derived from these two bases.
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0.8Fig. 2. Frequent 
losed itemsets extra
ted from K for minsupp = 0.4.De�nition 3. A 
on
ept (O; I) is 
alled frequent 
on
ept if supp(I) (= jOjjGj ) �minsupp. The set of all frequent 
on
epts is 
alled i
eberg 
on
ept latti
e. Anitemset I is 
alled frequent intent (or frequent 
losed itemset) if it is intent ofa frequent 
on
ept (i. e., its support is at least minsupp). The set of all frequent
losed itemsets in K is denoted FC.Example 2. The frequent 
losed itemsets in the 
ontext K for minsupp=0.4 arepresented in Figure 2 together with the semi-latti
e of all frequent 
on
epts. Boththe table and the diagram provide the same information. Note that, in general,the set of frequent 
on
epts is not a latti
e, but only a semi-latti
e (
onsider e. g.minsupp= 0:5 in the example).Lemma 2 ([31℄). i) The support of an itemset I is equal to the support of thesmallest 
losed itemset 
ontaining I, i. e., supp(I) = supp(h(I)).ii) The set of maximal frequent itemsets fI 2 FI j �I 02FI : I � I 0g is iden-ti
al to the set of maximal frequent 
losed itemsets fI 2 FC j �I 02FC: I � I 0g.The next theorem shows that the set of frequent 
losed itemsets with theirsupport is a small 
olle
tion of frequent itemsets from whi
h all frequent itemsetswith their support and all asso
iation rules 
an be derived. I. e., it is a 
ondensedrepresentation in the sense of Mannila and Toivonen [24℄. This theorem followsfrom Lemma 2.Theorem 1. All frequent itemsets and their support, as well as all asso
iationrules holding in the dataset, their support, and their 
on�den
e 
an be derivedfrom the set FC of frequent 
losed itemsets with their support.3.1 Duquenne-Guigues Basis for Exa
t Asso
iation RulesNext we present the Duquenne-Guigues basis for exa
t asso
iation rules. It isbased on the following 
losure operator.Theorem 2. The set FI[fMg is a 
losure system on M , and its related 
losureoperator � is given by I := h(I) if supp(I) �minsupp and I :=M else.Proof. The set of all frequent itemsets together with M is a 
losure system, aswell as the set of all 
on
ept intents. Hen
e FI [fMg is, as interse
tion of thosetwo 
losure systems, also a 
losure system. The proof of the fa
t that � is the
orresponding 
losure operator is straightforward. 2



Our basis adopts the results of [12℄ to the asso
iation rule framework, whereadditionally the support of the rules has to be 
onsidered.De�nition 4. An itemset I �M in K is a � {pseudo-
losed itemset (or pseudo-
losed itemset for short) 3 if I 6= I and for all pseudo-
losed itemsets J withJ � I, we have J � I. The set of all frequent pseudo-
losed itemsets in K isdenoted FP, the set of all infrequent pseudo-
losed itemsets is denoted IP. Inthe (unlikely) 
ase that all itemsets are frequent ex
ept the whole set M , we letIP := fMg (in order to distinguish this situation from the one where all itemsetsare frequent).The Duquenne-Guigues basis for exa
t asso
iation rules (or frequent Du-quenne-Guigues basis) is de�ned as the tuple FDG := (L; IP ) with L := fI1 !h(I1) j I1 2 FPg and IP as de�ned above.Theorem 3. From the Duquenne-Guigues basis for exa
t asso
iation rules one
an derive all exa
t asso
iation rules holding in the dataset by applying the fol-lowing rules. Rules ii) to iv) 
an be applied to L as long as they do not 
ontra-di
t (i).i) If there exists I 2 IP with I � I1 [ I2, then I1 ! I2 does not hold (be
auseits support is too low).ii) X ! X holds.iii) If X ! Z holds, then also X [ Y ! Z.iv) If X ! Y and Y [ Z !W hold, then also X [ Z !W .Proof. We only sket
h the proof here, whi
h applies results of [12℄ (see also [15℄).One has to 
he
k that L [ fI!M j I 2 IPg is the Duquenne-Guigues-basis (inthe traditional sense, 
f. to [12, 15℄) of the 
losure system FC [ fMg. Rule (i)re
e
ts the impli
ations of the form I !M . 2The Duquenne-Guigues basis for exa
t asso
iation rules is not only minimal withrespe
t to set in
lusion, but also minimal with respe
t to the number of rules inL plus the number of elements in IP , sin
e there 
an be no 
omplete set withfewer rules than there are frequent pseudo-
losed itemsets [12, 15℄. Observe that,although it is possible to derive all exa
t asso
iation rules from the Duquenne-Guigues basis, it is not possible in general to determine their support.4Example 3. The set of frequent pseudo-
losed itemsets of K for minsupp=0:4and min
onf=1=2 is FP = ffAg; fBg; fEgg, the set of infrequent pseudo-
loseditemsets is IP = ffDgg. The Duquenne-Guigues basis is presented in Figure 3.3 We do not 
onsider pseudo-
losed itemsets with respe
t to other 
losure operatorsthan � (espe
ially not with respe
t to h) in this paper.4 Even if the support for all rules in the basis is known. With the knowledge about allfrequent 
losed itemsets and their support however, this is possible (see Theorem 1).



3.2 Luxenburger Basis for Approximate Asso
iation RulesIn [22, 23℄, M. Luxenburger dis
usses bases for partial impli
ations. A partialimpli
ation is an asso
iation rule where the support is not 
onsidered. He ob-served that it is suÆ
ient to 
onsider rules between 
on
ept intents only, sin
e
onf(X ! Y ) = 
onf(h(X) ! h(Y )). However, his derivation pro
ess does notonly 
onsist of dedu
tion rules whi
h 
an be applied in a straightforward manner,but it requires to solve a system of linear equations.In the KDD pro
ess, however, we have to 
onsider the trade-o� between theamount of information presented to the user, and the degree of its expli
itness.The appearan
e of the system of linear equations indi
ates that Luxenburger'sresults are in favor for a minimal amount of information presented, and againsta higher degree of expli
itness. As one of the requirements to KDD is that theresults should be \ultimately understandable" [13℄, we want to emphasize moreon the expli
itness of the results. Therefore we restri
t now the expressivenessof the derivation pro
ess. This for
es the asso
iation rules presented to the userto be more expli
it.5In the sequel, we 
onsider the derivation rules given in Lemma 1. We presenta basis for the approximate asso
iation rules for these derivation rules.De�nition 5. The Luxenburger basis for approximate asso
iation rules is givenby LB := f(r; supp(r); 
onf(r)) j r = I1 ! I2, I1; I2 2 FC, I1 � I2, 
onf(r) �min
onf , supp(I2) � minsuppg .Theorem 4. From the Luxenburger basis LB for approximate asso
iation rulesone 
an derive all asso
iation rules holding in the dataset together with theirsupport and their 
on�den
e by using the rules given in Lemma 1. Furthermore,LB is minimal (with respe
t to set in
lusion) with this property.Proof. In order to determine if an asso
iation rule r := I ! J holds in a 
on-text (and for determining its support and its 
on�den
e) one 
an 
onsider therule I 0 ! J 0 with I 0 := h(I) and J 0 := h(I [ J) whi
h has (by Rules 1 &2) the same support and the same 
on�den
e. If I 0 = J 0, then 
onf (r) = 1and supp(r) =supp(I 0). If I 0 6= J 0, then exists a path of approximate rules,i. e., there are frequent 
losed itemsets I1; : : : ; In with Ii ! Ii+1 2 LB andI 0 = I1 and In = J 0. Support and 
on�den
e of r 
an now be determined bysupp(r) = supp(In) (Rule 3') and 
onf (r) = �n�1i=1 
onf (Ii ! Ii+1) (Rule 3).Now we show the minimality of LB. Let r := I ! J 2 LB. We show thatthe 
on�den
e of r 
annot be derived from LB n frg by applying the rules ofLemma 2. Rule 1 
annot be applied forward sin
e J already 
ontains I . It 
annotbe applied ba
kward be
ause of I � J . Rule 2 
annot be applied forward sin
eI = h(I) and J = h(J). It 
annot be applied ba
kward as LB 
ontains only ruleswith 
losed ante
edent and 
losed 
onsequent. Rule 3 
annot be applied sin
ethere is no K �M with I ! K 2 LB n frg and K ! J 2 LB n frg (be
ause ofI � J). Rule 4 
annot be applied sin
e I 6= J . 25 Note that in the KDD setting the user will never a
tually perform longer series ofinferen
e steps.



Luxenburger basisApproximate rule Support Con�den
eBCE ! A 0.4 2/3AC ! BE 0.4 2/3BE ! C 0.6 3/4C ! BE 0.6 3/4C ! A 0.6 3/4; ! BE 0.8 4/5; ! C 0.8 4/5 Duquenne-Guigues basisL (Support)A ! C 0.6B ! E 0.8E ! B 0.8IP = ffDgg
C
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Fig. 3. Duquenne-Guigues and Luxenburger bases for minsupp=0.4 and min
onf=1/2.Remark 2. A basis in the sense of [23℄ is a maximal spanning tree of our basis(when 
onsidered as undire
ted graph) 
ontaining at most one rule with M as
on
lusion.6Example 4. The Luxenburger basis for approximate asso
iation rules of K forminsupp=0.4 and min
onf=1/2 is also presented in Figure 3. It provides thesame information as the list in Figure 1, but in a more 
ondensed form. TheLuxenburger basis is visualized in the line diagram in Figure 3: From its de�ni-tion it is 
lear, that ea
h approximate rule in the basis 
orresponds to (at most)7one edge in the diagram. The edge is labeled by the 
on�den
e of the rule (as afra
tion), and its lower verti
e is labeled by its support (as a rational). Impli
a-tions (exa
t rules) 
an be read in the diagram in the standard way des
ribed inSe
tion 2.As example for the proof of Theorem 4, let us 
he
k if fBg ! fAg holdsin the 
ontext for minsupp=0.4 and min
onf=1/2. We have I := fBg andJ := fAg. The smallest frequent 
losed itemset 
ontaining B is I 0 := fB;Egand the smallest one 
ontaining A and B is J 0 := fA;B;C;Eg. In the diagram,I 0 and J 0 are always represented by the largest 
on
epts whi
h are below allattributes in I and I[J , resp. Between the two 
on
epts we �nd the path I1 := I 0,I2 := fB;C;Eg, and I3 := J 0. Hen
e supp(B ! A) =supp(J 0) = 0:4 �minsuppand 
onf (B ! A) = 
onf (I1 ! I2)�
onf (I2 ! I3) = 3=4 � 2=3 = 2=4 �min
onf,whi
h means that the rule holds.4 Algorithms for Computing the BasesThe algorithms presented in this paper assume that the i
eberg 
on
ept latti
e isalready 
omputed. There are several algorithms for 
omputing i
eberg 
on
ept6 The se
ond 
ondition is negligible in KDD, as it follows dire
tly from minsupp> 0%.7 In general, there may be edges whi
h do not represent any rule in the Luxenburgerbasis. Consider for instan
e min
onf=7/10. In this 
ase, the two lowest edges wouldnot stand for a valid approximate rule, and would hen
e not be labelled.



Algorithm 1 Generating the Duquenne-Guigues basis with Gen-FDG.1) L  fg;2) if (FC0 = fg) then FP0  ;;3) else FP0  fg;4) for (i 1; i � k; i++) do begin5) FPi  FIi n FCi;6) forall L 2 FPi do begin7) pseudo true;8) forall P 2 FPj with j < i do begin9) if (P � L) and (P .
losure 6� L)10) then do begin11) pseudo false;12) FPi  FPi n fLg;13) endif14) end15) if (pseudo = true) then L.
losure  min�(fC 2 FCj>i j L � Cg);16) end17) end18) forall P 2 Sni=1 FPi do L  L [ fP ! (P .
losurenP )g;19) IP  ;;20) forall L 2MI do IP  IP [ fL�-
losure(I)g;21) IP  min� IP ;latti
es: the algorithm Close for strongly 
orrelated data [31℄, the algorithm A-Close for weakly 
orrelated data [30℄, the algorithms CLOSET [32℄, ChARM [43℄,and Titani
 [38, 39℄. The algorithm Pas
al [6℄ 
omputes all (
losed and non-
losed) frequent itemsets, but 
an be upgraded to determine also their 
losureswith almost no additional 
omputation time by using the fa
t that, for I �M ,h(I) = I [ fm 2M n I j supp(I) = supp(I [ fmg)g :When the i
eberg 
on
ept latti
e is 
omputed, then the Duquenne{Guigues basisand �nally the Luxenburger basis are 
omputed.4.1 Generating the Duquenne-Guigues basis for Exa
t Asso
iationRules with Gen-FDGIn this se
tion, we present an algorithm that determines the Duquenne{Guiguesbasis using the i
eberg 
on
ept latti
e. This algorithm (whi
h has not beenpresented before) implements De�nition 4. As it needs to know the 
losure offrequent itemsets, it is best applied after an algorithm like Pas
al with themodi�
ation mentioned above, ChARM, or CLOSET.The pseudo-
ode is given in Algorithm 1. The algorithm takes as input thesets FIi, 1� i� k, 
ontaining the frequent itemsets and their support, and thesets FCi; 0� i� k, 
ontaining the frequent 
losed itemsets and their support.It �rst 
omputes the frequent pseudo-
losed itemsets iteratively (steps 2 to 17).In steps 2 and 3, the empty set is examined. (It must be either a 
losed or a



Algorithm 2 Fun
tion L�-
losure reads X and returns its L�-
losure L�(X).1) Y  X;2) for (i 1; i = n; i++) do i.used false;3) repeat4) 
hanged  false;5) If Subsets(IP; Y ) 6= ; then begin Y  M ; 
hanged true end6) else for (i 1; i � n; i++) do7) if Xi � Y then begin Y  Y [ Yi; 
hanged true end8) until not 
hanged;9) return Ypseudo-
losed itemset by de�nition.) The loop from step 4 to 17 is a dire
t imple-mentation of De�nition 4 for the frequent pseudo-
losed itemsets. The frequentpseudo-
losed i-itemsets, their 
losure and their support are stored in FPi. Theyare used to generate the set L of impli
ations of the Duquenne-Guigues basis forexa
t asso
iation rules DG (step 18).The set of infrequent pseudo-
losed itemsets is determined in steps 19 to 21using the fun
tion L�-
losure (Algorithm 2). This fun
tion uses the fa
t that, fora given 
losure system, the set of all 
losed or pseudo-
losed sets forms again a
losure system [14℄. Hen
e one 
an generate all 
losed sets and pseudo-
losed setsiteratively by using the 
orresponding 
losure operator L�-
losure(Z) := S1i=0 Ziwith Z0 := Z and Zi+1 := Zi [ SfY jX!Y 2 L; X � Zig [14℄. The set L ofimpli
ations has the form L = fX1 ! Y1; : : : ; Xn ! Yng.4.2 Generating the Luxenburger Basis for Approximate Asso
iationRules with Gen-LBThe pseudo-
ode generating the Luxenburger basis for approximate asso
iationrules is presented in Algorithm 3. The algorithm takes as input the sets FCi,0� i�k, 
ontaining the frequent 
losed itemsets and their support. The outputof the algorithm is the Luxenburger basis for approximate asso
iation rules LB.The algorithm iteratively 
onsiders all frequent 
losed itemsets L 2 FCifor 2 � i � k. It determines whi
h frequent 
losed itemsets L0 2 Sj<i FCjare 
overed by L and generates asso
iation rules of the form L0 ! L n L0 thathave suÆ
ient 
on�den
e. During the ith iteration, ea
h itemset L in FCi is
onsidered (steps 3 to 13). For ea
h set FCj , 1� j < i, a set Sj 
ontaining allfrequent 
losed j-itemsets in FCj that are subsets of L is 
reated (step 4). Then,all these subsets of L are 
onsidered in de
reasing order of their sizes (steps 5to 12). For ea
h of these subsets L0 2 Sj , the 
on�den
e of the approximateasso
iation rule r := L0 ! L n L0 is 
omputed (step 7). If the 
on�den
e of r issuÆ
ient, r is inserted into LB (step 9) and all subsets L00 of L0 are removedfrom Sl, for l < j (step 10). At the end of the algorithm, the set LB 
ontainsall rules of the Luxenburger basis for approximate asso
iation rules. The proofof the 
orre
tness of the algorithm is given in [27℄.



Algorithm 3 Generating the Luxenburger basis with Gen-LB.1) LB  fg;2) for (i 2; i � k; i++) do begin3) forall L 2 FCi do begin4) for (j  0; J < i; j ++) do Sj  Subsets(FCj; L);5) for (j  i� 1; J � 1; j ��) do begin6) forall L0 2 Sj do begin7) 
onf  L.support /L0.support;8) if (
onf � min
onf)9) then LB  LB [ f(L0 ! (L n L0); L.support, 
onf)g;10) for (l j; l � 1; l ��) do Sl  Sl n Subsets(Sl; L0);11) end12) end13) end14) end5 Experimental ResultsWe have preformed several experiments on syntheti
 and real data. The 
har-a
teristi
s of the datasets used in the experiments are given in Table 1. Thesedatasets are the T10I4D100K syntheti
 dataset that mimi
s market basket data,8the C20D10K and the C73D10K 
ensus datasets from the PUMS sample �le,9and the Mushrooms dataset des
ribing mushroom 
hara
teristi
s.10 In all ex-periments, we attempted to 
hoose signi�
ant minimum support and 
on�den
ethreshold values. We varied these thresholds and, for ea
h 
ouple of values, weanalyzed rules extra
ted in the bases.Table 1. Datasets.Name Number of obje
ts Average size of obje
ts Number of itemsT10I4D100K 100,000 10 1,000Mushrooms 8,416 23 127C20D10K 10,000 20 386C73D10K 10,000 73 2,177Number of Rules. Table 2 
ompares the size of the Duquenne-Guigues basis forexa
t rules with the number of all exa
t asso
iation rules, and the size of theLuxenburger basis for approximate rules with the number of all approximaterules. In the 
ase of weakly 
orrelated data (T10I4D100K), no exa
t rule isgenerated. The reason is that in su
h data all frequent itemsets are frequent8 http://www.almaden.ibm.
om/
s/quest/syndata.html9 ftp://ftp2.

.ukans.edu/pub/ippr/
ensus/pums/pums90ks.zip10 ftp://ftp.i
s.u
i.edu/~
merz/mldb.tar.Z



Table 2. Number of exa
t and approximate asso
iation rules 
ompared with the num-ber of rules in the Duquenne-Guigues and Luxenburger bases.Dataset Exa
t D.-G. Approximate Luxenburger(Minsupp) rules basis Min
onf rules basis90% 16,269 3,511T10I4D100K 0 0 70% 20,419 4,004(0.5%) 50% 21,686 4,19130% 22,952 4,51990% 12,911 563Mushrooms 7,476 69 70% 37,671 968(30%) 50% 56,703 1,16930% 71,412 1,26090% 36,012 1,379C20D10K 2,277 11 70% 89,601 1,948(50%) 50% 116,791 1,94830% 116,791 1,94895% 1,606,726 4,052C73D10K 52,035 15 90% 2,053,896 4,089(90%) 85% 2,053,936 4,08980% 2,053,936 4,089
losed itemsets. However, the Luxenburger basis is relatively small 
ompared tothe number of all rules, sin
e only immediate neighbors with respe
t to the subsetorder (and not arbitrary pairs of sets) are 
onsidered. In the 
ase of strongly
orrelated data (Mushrooms, C20D10K and C73D10K), the ratio between thesize of the bases to the number of all rules whi
h hold is mu
h smaller than inthe weekly 
orrelated 
ase, be
ause here only few of the frequent itemsets are
losed and have to be 
onsidered.Relative Performan
e. Our experiments also show that in all 
ases the exe
utiontime of Gen-FDG and Gen-LB are insigni�
antly small 
ompared to those of the
omputation of the i
eberg 
on
ept latti
e, sin
e both algorithms need not a

essthe database. We 
an 
on
lude that without additional 
omputation time (
om-pared to other approa
hes, like e. g. Apriori) our approa
h not only 
omputesall frequent 
losed itemsets but also the two bases des
ribed in Se
tion 2.6 OutlookIn this paper, we introdu
ed bases whi
h signi�
antly redu
e the number of asso-
iation rules presented to the user without losing any information; and providedalgorithms for 
omputing them. This work is 
urrently extended in di�erentdire
tions:Integrating redu
tion methods. Templates, as de�ned in [4, 21℄, 
an dire
tlybe used for extra
ting all asso
iation rules mat
hing some user spe
i�ed patterns



from the bases. Information in taxonomies and ontologies asso
iated with thedataset 
an also be integrated in the pro
ess as proposed in [17, 34℄ for extra
tingbases for generalized (multi-level) asso
iation rules. Integrating item 
onstraints[8, 26, 35℄ and statisti
al measures [10℄ in the generation of bases requires furtherwork.Integration of asso
iation rule visualization in Con
eptual Information Sys-tems. Using the te
hnique of 
on
eptual s
aling, Con
eptual Information Systemspresent the information 
ontained in large databases to the user in 
on
eptualhierar
hies of a manageable size [40, 36, 18℄. We work on exploiting this visual-ization te
hniques for presenting also asso
iation rules to the user.Supporting the 
reation of new 
on
epts in Des
ription Logi
s. In Des
rip-tion Logi
s, 
urrently approa
hes are dis
ussed to support the domain expert in
reating new 
on
epts whi
h regroup more spe
i�
 similar 
on
epts [3℄. Thoseapproa
hes extend the partial order of the 
on
epts in the terminology to alatti
e and suggest new 
on
epts to the user. Sin
e the more spe
i�
 
on
eptsare often de�ned in
oherently, the user is often interested in only approximaterelationships between those 
on
epts, and on a general level only. It is plannedto adapt the bases and the algorithms presented in this paper to that task.Referen
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