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Abstract

Cooperative behaviour of agents within highly dynamic and nonde-
terministic domains is an active field of research. In particular estab-
lishing highly responsive teamwork, where agents are able to react on
dynamic changes in the environment while facing unreliable communica-
tion and sensory noise, is an open problem. Moreover, modelling such
responsive, cooperative behaviour is difficult. In this work, we specify
a novel model for cooperative behaviour geared towards highly dynamic
domains. In our approach, agents estimate each other’s decision and cor-
rect these estimations once they receive contradictory information. We
aim at a comprehensive approach for agent teamwork featuring intuitive
modelling capabilities for multi-agent activities, abstractions over activi-
ties and agents, and a clear operational semantic for the new model. This
work encompasses a complete specification of the new language, ALICA.
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1 Introduction

Mobile robots and software agents can substitute manpower, especially for oper-
ations in dangerous environments such as mine clearance or searching for human
survivors after an earthquake. Even if the complete substitution is normally not
the main driving force for building robots, rescue robotics are one example where
robots might improve the safety of human beings by performing dangerous tasks
for them.

One of the biggest challenges is the design of cooperative behaviours of teams
of such agents1. However, many of the existing approaches like the BDI model
originally by Bratman [3] focus only on a single agent. Similar to human beings,
it is also for robots in many situations more effective to work in a team. For
instance, a team of robots searches through a destroyed building much faster
than a single robot with the same capabilities. Moreover, robots with different
capabilities can complement one another to solve a common goal.

Unfortunately, uncertainties in complex and dynamic multi-agent domains
obstruct coherent teamwork. In particular, team members often have different,
incomplete and sometimes also inconsistent views of their environment. Acting
in such environments often requires swift reactions, which do not allow for com-
munication of particular decisions before acting on them. Instead, agents are
required to make autonomous decisions taking the team and the common goal
into account, while estimating decisions of their teammates.

Furthermore the support of heterogeneous (hardware and software) plat-
forms of mobile robots and software agents is a challenge. In particular, sup-
porting agents with different capabilities and sensors which still can cooperate
and predict each other’s decisions is essential for any comprehensive teamwork
model.

As our work not only focuses on team coordination but also on teamwork,
we first have to explain the difference between two topics. Tambe [30] explains:

[. . . ] the difference between simple coordination and teamwork
[. . . ] focuses on the distinction between ordinary traffic and driv-
ing in convoy. Ordinary traffic is simultaneous and coordinated by
traffic signs, but it is not considered teamwork. Driving in a con-
voy, however, is an example of teamwork. The difference in the two
situations is that while teamwork does involve coordination, in addi-
tion, it at least involves a common team goal and cooperation among
team members.

According to this example, team coordination can be seen as a prerequisite
of teamwork. Even if team coordination is enough under certain circumstances,
there are many situations, in which teamwork is needed to achieve a certain
goal. One very interesting domain to show this is robotic soccer.

RoboCup is an international project to foster AI and robotics research by
providing a standard problem where a wide range of technologies can be in-
tegrated and examined. RoboCup chose to use soccer as a central example
scenario, aiming at innovations to be applied for socially significant problems
and industries.

1We use the term “agent” as a synonym for “software agent” and “robot”.
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In this work, we present A Language for Interactive Cooperative Agents
(ALICA), a formal language describing strategies for cooperative teams of
agents. We focus on its semantics, and explain in detail how agents execute
ALICA programs. For most examples, we use the robotic soccer domain, as it
is not only very dynamic and demanding, but also provides an intuitive under-
standing.

Agents and their behaviour are often described using logic. This is very
useful to analyse and specify a system in terms of concepts like belief, desire,
intention or plan. But as these systems are normally implemented by using
an arbitrary programming language, it is often very difficult to verify whether
this implementation satisfies its specification. This problem is already described
by Wooldridge [33], pg. 298, as the problem of ungrounded semantics. We tack-
led this shortcoming by introducing a one-to-one correspondence of the concepts
used in this specification and those used for the implementation (which is at least
partly described in [32, 28]).

This document describes the specification of ALICA and is organised as
follows: In the following section, we will state requirements for a language used
to describe cooperative behaviour. Section 3 gives an overview of our approach.
Afterwards, in Section 4, we discuss the most important related work, describe
their influence on this work, and examine them with respect to the requirements
stated beforehand.

Section 5 introduces ALICA’s syntax formally, and is followed by the main
part of this work, a detailed discussion of its semantics in Section 6. We conclude
and point out future work in Section 7.

2 Requirements

Suppose a team of robots has to search an earthquake site for survivors. This
team could be composed of several robots with quite different capabilities, such
as an avionic robot for scouting, some ground based robots equipped with gear
to clear debris and some robots with high precision sensors. Suppose further-
more, a human should model the possible behaviour of these robots in advance,
without knowing the precise layout of the earthquake site. The task of mod-
elling this behaviour can be very complex, given conditions such as unreliable
communication, robots moving completely out of communication range of the
rest of the team, incomplete information about the site, the possibility of robots
breaking down, and hence the need for other robots to take over their task. In
some cases, the situation can change very quickly and dramatically, e.g., due
to a building collapsing. Hence, the robots need to react quickly and possibly
independently of each other.

Such highly dynamic and nondeterministic domains impose a number of chal-
lenges for the realisation of responsive yet coherent teamwork of autonomous
agents. Teams of agents operating in such domains have to be robust against
sensory noise, breakdown of individual agents, and unexpectedly changing situ-
ations. Such changes in the environment require the agents to react and adapt
under tight time-constraints, which entails that it is often not possible to explic-
itly communicate, or even agree upon, a decision before acting on it. Unreliable
communication makes maintaining a highly responsive coherent teamwork even
more difficult. On the other hand, some tasks might require agents to agree upon
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their decisions explicitly before acting, such as cooperatively lifting a heavy ob-
ject.

This small example identifies several essential requirements posed on robotic
teams acting in this or similar domains:

High Responsiveness: Individual agents as well as the team as a whole have
to be able to react swiftly to unexpected changes in the environment and
newly discovered information.

Coherent Teamwork: While doing so, the exhibited cooperation must not
degrade completely. Minor temporal breakdowns can be tolerated as long
as they are repaired dynamically.

Robustness The team has to be able to cooperate even confronted with unre-
liable communication and a high amount of sensory noise.

Adaptivity The team must be able to compensate for lost team members, and
be able to integrate new team members in case a replacement robot is
introduced during runtime.

A language that is designed to describe such robust cooperative behaviour
should provide means to support all the requirements above. This again gives
rise to requirements on the modelling language itself:

Formal Grounding Any language describing complex behaviour for au-
tonomous agents needs a formal grounding to allow for automated analy-
ses, such as model checking, of the modelled entities.

Intuitive Understanding Nevertheless, modelling cooperative behaviour
should be intuitive and possible without in-depth knowledge about the
language’s implementation.

Support Heterogeneous Capabilities The language needs to provide facil-
ities to treat agents with different capabilities, such that each agent can
be employed to the best of its capabilities and without unnecessarily en-
dangering an agent by giving it a task it is not suited for.

Global Perspective The scope of the language is teams of agents. Hence,
the behaviour of the team should not emerge from individual single-agent
programs, instead, the language provide means to model team behaviour
explicitly.

Efficiency During runtime, the agents have to react quickly, hence decision
making within the language should be efficient. If planning or other po-
tentially costly reasoning techniques are employed, interleaving with more
reactive decision making techniques must be possible.

Abstraction To foster reusability as well as provide a degree of robustness
against changes in the team composition, the modelling language should
allow for abstractions from agents and from activities. This abstraction
needs to be instantiated during runtime, i.e., autonomously by the agents
in question.
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Explicit Degree of Commitment As stated earlier, some tasks require tight
synchronisations between cooperating agents. Establishing such synchro-
nisations can be costly. Hence, the modelling language should support
multiple degrees of commitment to be explicitly modelled.

Powerful Failure Handling Finally, given that failures on different levels will
eventually occur during runtime, the language should provide means to
deal with them. That is, there should be default failure handling mech-
anisms for different kind of failures, e.g., inability to establish a commit-
ment, unexpected action effects, conflicting beliefs of team members, etc.
Moreover, it should be possible to use domain specific knowledge in order
to define specific failure handling routines.

3 Design Overview

The main notion of ALICA are so-called plans, which capture a specific activity
within a team meant to achieve a certain goal.

A particular plan abstracts from concrete agents by relating to a set of tasks
that need to be accomplished in order for the plan to succeed. This abstraction
allows particular agents to dynamically reassign themselves to tasks they deem
themselves more suited to or tasks that are deemed more important. Hence,
the break-down of a robot can be compensated on the fly. Choosing which task
within a plan they take on is an autonomous decision done by the agents. The
calculated mapping from agents to tasks is called an allocation.

This decision is guided by the role an agent takes on within a team, each role
provides a set of preferences for specific tasks, and is mapped via capabilities
onto agents. In the example in Section 2 for instance, the avionic robot would
be assigned a surveyor role, which probably has a high preference for scouting
tasks and a negative preference for any task that requires physical manipulation.

Due to the two-fold abstraction we introduce here using roles and tasks,
roles can be used rather statically, i.e., the role of an agent changes only if the
team structure changes after an agent leaves the team. In Section 6.1, we give
an overview about our role assignment. However, role assignment is not the
main focus of this paper, therefore we present only a general approach without
details.

Plans can be grouped together to plantypes, providing the agents with sets
of alternative ways of solving a particular problem. Choosing a specific plan
from such a plantype is done autonomously by the agents in question. This
way, a modeller can provide means to accomplish a certain goal under different
circumstances.

The autonomous decisions made by the agents are guided by utility functions
that evaluate a specific allocation for a specific plan based on the beliefs agents
have about the current state of affairs.

Plans are modelled similar to petri-nets, containing states and transitions
guarded by conditions between them. However, each state can contain an arbi-
trary number of plantypes, spanning a hierarchy of plans with which complex
strategies can be composed out of simple ones. Furthermore, at each level,
plantypes can used to abstract from specific plans.

Finally, at the most basic level, agents execute behaviours, small single-agent
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programs that implement specific actions, such as moving to a certain location
or grabbing an object. These behaviours are atomic from the point of view
of ALICA, however, we assume that they can signal success or failure of their
action upwards.

In order to deal with the unreliability and potential cost of communication,
ALICA provides different notions of commitment, by default, an agent assumes
it can estimate decisions made by all other agents and revises its estimations
if it is provided with additional evidence, e.g., through a periodic communi-
cation act. Stronger commitment can explicitly be modelled by synchronised
transitions, which force the involved agents to establish mutual belief about the
corresponding conditions and goals. This is done by explicit communication
acts.

4 Related Work

There are plenty of languages describing agent behaviour. Roughly, they can be
divided in two groups: BDI-based and action-theoretic approaches. Furthermore
we can distinguish between single agent and multi-agent approaches.

BDI The BDI model by Bratman [3] is a model for practical reasoning agents,
imbued with particular mental attitudes, viz: Beliefs, Desires and Intentions.
Beliefs represent the informational state of the agent about the world (including
herself and other agents). The Desires of an agent represent objectives or
situations that the agent would like to accomplish or bring about. Intentions
represent the deliberative state of the agent: what the agent has chosen to do.

Even if BDI is only a single agent model, we have introduced it here as
it builds the base for several existing works. ALICA can be seen as a BDI
language, although in its current form, it lacks an explicit representation of
desires or goals, as it focuses on plans as intentions.

Joint Intentions Theory The Joint Intentions Framework [4] is a theoretical
framework founded on BDI logics. The framework focuses on a team’s joint
mental state, called a joint intention. A team jointly intends a team action
if team members jointly committed to perform an action while in a specified
mental state.

In order to enter a joint commitment, the team members have to establish
appropriate mutual beliefs and individual commitments. Although the Joint
Intentions Theory does not mandate communication and several techniques are
available to establish mutual beliefs about actions from observations (see for
example [15]), currently communication seems the only feasible way to attain
joint commitments. A very interesting key aspect of the Joint Intention Theory
is the commitment to attain mutual belief about the termination of a team
action. This helps to ensure that the team stays updated about the status of the
team actions. Joint intentions and joint commitments provide a basic framework
to reason about coordination required for teamwork as well as guidance for
monitoring and maintaining team activities. However, a single joint intention
for a high-level team goal seems not appropriate to model team behaviour in
detail and to ensure coherent teamwork.
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There exists several different implementation such as GRATE* [17] based on
the Joint Intention Theory. Unfortunately, here also the problem of ungrounded
semantics appears and it is hard to evaluate to which extend the implementa-
tions follow the theory.

Shared Plans Theory In contrast to Joint Intentions, the Shared Plans The-
ory [11, 10] employs a hierarchical structures over intentions, thus overcoming
the shortcoming of single Joint Intention for complex team tasks. The Shared
Plans Theory is not based on a joint mental attitude but on an intentional
attitude called intending that, which is very similar to an agent’s normal in-
tention to perform an action. However, an individual agent’s ’intention that’
is directed towards its collaborator’s action or towards a group’s joint action.
’Intention that’ is defined via a set of axioms that guide an individual to take
actions (including the communication), that enable or facilitate its team-mates,
sub-team or team to perform assigned tasks.

A SharedPlan for group action specifies beliefs about how to do an action and
sub actions [11, 10]. The formal model captures intentions and commitments
toward the performance of individual and group actions. A collaborative plan is
composed of a Mutual belief, of a (partial) recipe, individual intentions to
perform the actions, individual intentions that collaborators succeed in their
sub actions and individual or collaborative plans for sub actions. With the con-
cept of actions and sub-actions the Shared Plans Theory describes a hierarchy
of plans to reach a common goal. This is also the main difference between the
Joint Intentions Theory and the Shared Plans Theory; the Shared Plans The-
ory describes the way to achieve a common goal whereas the Joint Intentions
Theory describes only this common goal. However, the lack of principles like
joint intentions and joint commitments results in limited possibilities to reason
about team coordination and team activities.

There exist several implementations based on the Shared Plans Theory, such
as CAST [34, 35]. Unfortunately, here also the problem of ungrounded semantics
appears and it is hard to evaluate to which extend the implementations follow
the theory.

STEAM & Machinetta STEAM [30, 23] builds on both Joint Intention The-
ory and Shared Plan Theory and tries to overcome their shortcomings. Based
on joint intentions, STEAM builds up hierarchical structures that parallel the
Shared Plan Theory as described in the previous paragraph. So STEAM for-
malises commitments by building and maintaining joint intentions and uses
Shared Plans to treat team’s attitudes in complex tasks, as well as unreconciled
tasks.

ALICA is very similar to and borrows a number of ideas from STEAM, and
thus also from the Joint Intentions Theory and from the Shared Plans Theory.
Just as STEAM, ALICA builds hierarchical structures of team plans that cover
the collaborative behaviour of whole teams and sub-teams, provides mechanisms
to assign agents to (sub-)teams and identifies the need for tracking of actions
performed by teammates. ALICA also parallels the Joint Intentions Theory. In
fact, ALICA can be considered to be a BDI language, although in its current
form, it lacks an explicit representation of desires or goals, as it focuses on plans
as intentions.
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However, in contrast to STEAM, ALICA agents in general do not establish
joint intentions before acting towards a cooperative goal. Instead, each agent
estimates the decisions of its team mates and acts upon this estimation. Con-
flicting individual decisions are detected and corrected using the periodically
communicated internal states of team-mates. Although STEAM provides ap-
proaches for selective communication and tracking of mental attitudes of team-
mates, we argue that for highly dynamic domains and time-critical applications
the strict requirement to establish or estimate a joint commitment before a joint
activity is started has to be skipped. In our opinion, agents that decide and act
until contradictory information is available seem to be much more suitable for
such applications. Nevertheless, ALICA provides language elements to enforce
an explicit agreement, resulting in a joint intention, for activities that require
time critical synchronisations, such as cooperative lifting of an object. Also the
assignment of agents to teams and teams to operators (which encapsulate the ac-
tual team-behaviour) done by STEAM seems to be too static for highly dynamic
domains. For example in a soccer game, a robot that is assigned as defender,
should also be able to take over the tasks of an attacker if it obtains the ball and
the game situation seems to be promising to start an attack over the side-line.
In order to facilitate such behaviour, we provide a slightly different definition
of roles and incorporate the concept of tasks and task prefrences. With its
coordination approach, ALICA also skips the concept of a ’team-leader’ which
STEAM assumes for different purposes in team coordination and in resolving
conflicts.

The project “Machinetta” [27] is based on STEAM. In order to provide
a lightweight and portable implementation of the teamwork framework, “Ma-
chinetta” uses the concept of proxies to build a reusable software package that
encapsulates the teamwork model. Each proxy works closely with a single do-
main agent, representing that agent in the team.

All previously described teamwork models have in common, that they pro-
vide mechanisms to reason about or to establish teamwork, but they do not
go into much detail for the description of the internals of plans or operators.
STEAM for example, and its implementation TEAMCORE [24] just assume
reactive or situated plans, and do not provide support to really ’program’ plans
with regard to sequential and/or parallel actions and do not really specify the
internal control cycle of an agent. Here, agent programming languages have in-
spired the design of ALICA, in particular 3APL [14] and its successor 2APL [6].

3APL is an agent oriented programming language ([14, 5]), aiming at mod-
elling cognitive agents and high level control of cognitive robots. It implements
the BDI model originally by Bratman [3].

ALICA shares many concepts of 3APL, e.g., the definition of the belief base,
substitution of variables and the interpretation of goals as ’goals-to-do’, which
are not described declarative but via plans that are directed towards achieving a
goal. However, in contrast to ALICA, 3APL also facilitates explicit specification
of goals. It introduces rule sets and beliefs to allow reasoning over both, goals
and plans. Moreover, ALICA defines it operational semantics much in the same
way as 3APL through a transition system. In fact, 3APL distinguishes between
a transition system for the pure language elements and a transition system for
the meta-language to specify the control structures of an agent. In ALICA, we
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do not provide this distinction, and thus, the two transition systems are merged
to a single one. Although 3APL implementations support communication in
a FIPA2 [8, 9] compliant manner, explicit multi-agent plans as we support in
ALICA cannot be expressed in 3APL.

2APL by Dastani et al. [6] is a successor of 3APL with a strong emphasis
on multi-agent systems. However, currently 2APL does not feature any way to
model multi-agent plans from a global perspective. Instead, single agent plans
need to be devised which interact with one another.

AgentSpeak(L) allows BDI agents to be specified similar to logic programs
[25]. Rao [25] identified the problem of ungrounded semantics independently of
Wooldridge [33]. Rao [25] tries to overcome this shortcoming by introducing the
AgentSpeak(L) which abstracts an implemented BDI system. AgentSpeak(L) is
a programming language based on a restricted first-order language with events
and actions. Unfortunately, the modelling of multi-agent plans is not possible in
AgentSpeak(L). Interestingly enough, AgentSpeak(L) could be embedded into
3APL [12]. The main result of the work of Hindriks et al. [12] is a proof that
3APL can simulate AgentSpeak(L) and that as a consequence, 3APL has at
least the same expressive power as AgentSpeak(L).

KARO is not a programming language, but an agent logic based on dynamic
logic. However, Hindriks and Meyer [13] proposed a programming language
that directly relates to the logic. We argue that the modalities of dynamic logic
are only of limited use in robotic scenarios, where actions happen over possibly
concurrent time intervals. As such, robotic scenarios are potentially easier to
describe in theories working with time intervals, such as the event calculus [29],
for which no full agent oriented languages exist yet.

Action Theoretic Languages such as GOLOG [20], and FLUX [31], feature
clear and rich second order semantics. However, to our knowledge, there is no
practical action theoretic language that describes multi-agent behaviour. In
general, these languages focus more on knowledge representation and reasoning
about actions than on behaviour specification. However, the strong emphasis on
powerful reasoning techniques appeals in comparison to typical BDI languages.

Hierarchies of Abstract Machines (HAMs), originally by Parr and Russell
[21], are used to describe agent programs in an abstract way in order to improve
performance of reinforcement learning algorithms. This is done by providing
a hierarchical structure in advance to the learning algorithm, such that several
smaller policies have to be learnt instead of a single monolithic one. HAMs have
been extended by Andre and Russell [1] to Programmable HAMs (PHAMs),
providing additional modelling power such as parameters and interrupts. The
general structure of PHAMs, albeit limited to the single agent case, is quite
similar to the structure provided by an ALICA program.

2Foundation for Intelligent Physical Agents
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Moise+ by Hübner et al. [16] introduces the notion of “Agent Organisations”
which rely on the notion of openness and heterogeneity of MAS and poses new
demands on traditional MAS models. These demands include the integration of
organisational and individual perspectives and the dynamic adaptation of mod-
els to organisational and environmental changes. Agent Organisations have been
advocated to deal with agent coordination and collaboration in open environ-
ments [16]. In this context, an organisation is the set of behavioural constraints
adopted by, or enforced on, a group of agents to control individual autonomy
and achieve global goals. Moise+ provides no means to specify actual behaviour,
but instead is ment to be used as an organisational model in conjunction with
an agent language.

Whereas other multi-agent coordination approaches concentrate on or are
more suitable for the coordination of large-scale teams involving a high number
of agents or swarms, ALICA is focused on providing a teamwork model for
small-scale teams of autonomous agents, involving only up to about 20 team-
mates.

Considering all the aspects discussed above, we argue that ALICA enhances
the state of the art in team-work models, as it provides another step towards
a comprehensive approach that provides support for all aspects of team coor-
dination and also for explicit programming of team behaviour from a global
perspective at the same time. With its approach to allow agents to decide and
act towards a certain team-goal without explicit establishment of a joint com-
mitment, it is also very suitable for highly dynamic domains that require fast
decisions and actions and do not allow explicit communication and negotiations
beforehand.

5 Syntax

In this section, we introduce the language elements of ALICA and their syntactic
relationships. In Section 6, we explain their semantics in detail.

5.1 Conventions

In this work, we assume the following notional conventions:

• Set union is denoted by + and subtraction of finite sets by −:

A−B def
= {a|a ∈ A ∧ a 6∈ A ∩B}

• Free variables in formulae are universally quantified if not otherwise stated.

• The following abbreviations are used in first-order formulae:

(∀x ∈ S)φ
def
= (∀x)x ∈ S → φ

(∃x ∈ S)φ
def
= (∃x)x ∈ S ∧ φ

• By img(f) we denote the image of function f in the usual sense.
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5.2 Syntactic Elements of ALICA

An ALICA domain signature consists of

• a set of Agents A, which form the cooperative team;

• a logic L, with language L(Pred, Func) meant to describe the agents’
belief bases with a set of predicates Pred and a set of function symbols
Func.

Given a signature, an ALICA program consists of:

• a set of Roles R, which contains all available roles an agent can take on;

• a set of Plans P, each describing a specific cooperative activity;

• a set of Tasks T , each intuitively describing a function or duty within
plans, meant to be fulfilled by one or more agents;

• a set of States Z, a state occurs within a plan as a step during an activity;

• a set of Transitions W ⊆ Z ×Z × L, connecting states within plans;

• a set of Synchronisations Λ ⊆ 2W , connecting transitions and denoting
the need to synchronise certain actions;

• a set of Behaviours B, encapsulating lower level actions, thus forming the
atomic activities within ALICA;

• a top-level plan p0 ∈ P;

• a top-level state z0 ∈ Z;

• a top-level task τ0 ∈ T ;

• a set of functions, PlanType, each of type 2L(Pred,Func) 7→ P, abstracting
from a set of related plans.

With the exception of L(Pred, Func), all the above sets are considered to be
finite.

The following functions are used to describe a specific ALICA program:

• States : P 7→ 2Z States(p) denotes the states within a plan.

• Tasks : P 7→ 2T Tasks(p) denotes the tasks of a plan.

• ξ : P×T 7→ N0×(N0∪{∞}) is a partial function, associating cardinalities
with tasks in plans. Intuitively, ξ(p, τ) = (n1, n2) denotes that in order to
execute p, at least n1 and at most n2 agents have to commit to task τ .

• Init : P × T 7→ Z, Init(p, τ) denotes the initial state of of task τ in plan p

• Pre: P ∪ B 7→ L(Pred, Func), Pre(p) denotes the precondition of plan or
behaviour p.

• Run: P ∪ B 7→ L(Pred, Func), Run(p) denotes the runtime condition of
plan or behaviour p.
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• PlanTypes : Z 7→ 22L(P red,F unc) 7→P , PlanTypes(z) denotes the set of plan-
types to be executed on state z. We write PlanTypes(z)(F) to denote
the set of plans that are identified by the set of plantypes given a set of
formulae F .

• Behaviours : Z 7→ 2B, Behaviours(z) denotes the set of behaviours to be
executed in state z.

• Success : P 7→ 2Z , Success(p) denotes the set of terminal states of plan p,
which indicate successful execution of the plan.

• Fail : P 7→ 2Z , Fail(p) denotes the set of terminal states of plan p, which
indicate unsuccessful execution of the plan.

• Post : Z 7→ L(Pred, Func), Post(z) is a partial function, that maps ter-
minal states of a plan to postconditions.

• Each plan p ∈ P has a utility function, Up : 2L(Pred,Func) 7→ R, associ-
ated with it. Intuitively, this utility evaluates the applicability of a plan
together with an agent allocation with respect to a given situation. As
aforementioned, a plan describes a specific activity of one or more agents.
An allocation for a plan is a subset of agents executing the tasks of the
plan.

The relationship between transitions and states form a directed graph for
each plan with transitions as edges and states as nodes. Plans, plantypes and
states form a tree-like structure, called plantree. The root node of this tree is
p0, the top-level plan. Over these structures we define the following derived
functions:

• By PlanTypes∗(z) we denote a transitive flavour of PlanTypes, inductively
defined by:

– PlanTypes(z) ⊆ PlanTypes∗(z)

– If f ∈ PlanTypes∗(z) then
(∀z′, p)p ∈ img(f) ∧ z′ ∈ States(p) → PlanTypes(z′) ⊆
PlanTypes∗(z).

• Plans : Z 7→ 2P , Plans(z) denotes the set of plans that can be executed
within state z:

Plans(z)
def
= {p|(∃f ∈ PlanTypes(z))p ∈ img(f)}

• Plans∗ : Z 7→ 2P is the transitive flavour of Plans, defined by:

Plans(z)∗
def
= {p|(∃f ∈ PlanTypes∗(z))p ∈ img(f)}

• Reachable : P ×T 7→ Z denotes the set of states transitively connected to
Init(p, τ), i.e., reachable in p by task τ . It is inductively defined by:

– Init(p, τ) ∈ Reachable(p, τ)

– If z ∈ Reachable(p, τ) then
(∀z′, φ)(z, z′, φ) ∈ W → z′ ∈ Reachable(p, τ)
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• Plans or Behaviours: PB def
= P ∪ B

Example 5.1 (Example Plan). Figure 1 shows a simple example plan. The plan
has the initial state Z0 with the task Task1. Furthermore, the plan contains a
second state Z1 which is reachable by the transition Trans1 from the initial
state, and a final state Z2 which is reachable by the transition Trans2 from the
second state Z1. In each of the first two states a plantype is to be executed:
Pt1 in state Z0 and Pt2 in state Z1. Z2 is a successful terminal state, i.e.,
Success(Plan1) = {Z2}, and as such it does not contain any plantypes. This
restriction will be formally introduced in Section 5.3.

Z0 Z1 Z2

T ask1
0..∞
Pre T rans2

Plan 1
Run

T rans1

P t1 P t2

Figure 1: Example Plan

Next, let us illustrate the hierarchical structure of an ALICA program in
Example 5.2.

Example 5.2 (A hierarchical Plan). This example shows a hierarchical ALICA
program in the robotic soccer domain. In Figure 2 a simple high-level plan for
a throw-in is depicted. The plan has the initial state ThrowInPos with the
task DefaultTask. Furthermore, the plan contains a second state DoThrowIn
which is reachable by a transition from the initial state. In each state a plan-
type has to be executed: the ThrowInPosPT in the state ThrowInPos and the
DoThrowInPT in the state DoThrowIn. As aforementioned, a plantype abstracts
from a set of related plans. In this small example, each plantype has only one
realising plan: ThrowInPosPlan is a realisation of the plantype ThrowInPosPT
and DoThrowInPlan is a realisation of the plantype DoThrowInPT.

ALICA plans can have parameters, which are instantiated during runtime.
This allows to model activities in a very expressive and compact way. The set of
parameters, or variables a plan has is defined by its components. Intuitively, all
free variables in any condition occurring in a plan are parameters. Definition 5.1
captures this relation.

Definition 5.1. We define sets of free variables in plans and behaviours based
on the formulae relevant to a plan or behaviour, respectively.

• For a formula φ ∈ L(Pred, Func), let vars(φ) denote the set of free vari-
ables in φ.

• For a behaviour b ∈ B, let vars(b) denote the union over the free variables
in Pre(b), Run(b), and Post(b).

• For a plan p ∈ P, let vars(p) denote the union over the free variables in
all formulae occurring in p, i.e., in:

– the precondition and the runtime condition,

14



ThrowInPos

DefaultT ask
1..∞
Pre

DoThrowIn SUCCESS
Success

Plan Play
Run

AllInP osition

T hrowInP osP T DoT hrowInP T

Plan
T hrowInP osP lan

Plan
DoT hrowInP lan

Figure 2: Example: Throw-In Plan

– all post conditions,

– all formulae in transitions within p.

Note that terms bound to vars(b) are passed onto the lower level behaviour.
We therefore require that for all behaviours b, Pre(b) ∧ Run(b) grounds all un-
bound variables in vars(b).

Definition 5.2. A parametrisation of a plan p is a substitution, denoted ρ(p),
connecting vars(p) with free variables in plans and behaviours occurring in p.
For all plans p, the domain of ρ(p) is a subset of

{x|(∃p′, z)x ∈ vars(p′) ∧ (p′ ∈ Plans(z) ∨ p′ ∈ Behaviours(z)) ∧ z ∈ States(p)}

and ρ(p) maps onto terms with variables only among vars(p).

Intuitively, a parametrisation is used to hand over variables between plans.
Each occurrence of a plan p in an ALICA program is unique in the sense that
it is standardised apart from every other occurrence, much in the same way as
clauses in logic programs are standardised apart.

Example 5.3 (Parametrisation). This example shows how parametrisation is
used within ALICA. Therefore we introduce a scenario, where a robot should
move a mountain, composed of several small stones, from one place to another.
As the robot is not able to take more then one stone of the mountain, it has to
move stone by stone. In an imperative language, a plan for this task could be
modelled as depicteted in Figure 3. But since variables are referentially trans-
parent in ALICA, this plan is unusable, as the robot would endlessly try to move
the first stone bound to X. Figure 4 shows a referentially correct plan and its
subplan to execute this task. Here the subplan MoveStone to move a single stone
is called as long as the original mountain exists. Each subsequent execution of
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MoveStone is standardised apart from the previous one, hence, every time a
different stone is bound to X.

SelectStone

P ickUpStoneMoveStone

SUCCESS
NoStoneLeft

CanP ickup(X)

StoneP ickedUp(X)

Plan MoveMountain
Run

SelectStone(X)

P ickUp(X)
CarryStone(X)

Dropped(X)

Figure 3: Example: Parametrisation

This declarative treatment of variables is similar to common logic programs.
A rough, illustrative translation of the two plans to programs is given in Figure 5.

5.3 Syntactic Constraints

In the previous section, we introduced the language elements of ALICA and
stated some relationships between them, such as the plantree. We now con-
straint the syntax of an ALICA program in a syntactical manner, in order to
guarantee the intended structure of these relationships.

Let Σsyn be the set containing the following axioms:

• The top-level plan contains precisely one state, z0, and one task, τ0:
States(p0) = {z0} ∧ Tasks(p0) = τ0 (A5.1)

• States belong to at most one plan:
(∀p, p′ ∈ P) States(p) ∩ States(p′) = ∅ ∨ p = p′ (A5.2)

• All plan-task pairs have a valid cardinality interval associated:
(∀p ∈ P, τ ∈ T )τ ∈ Tasks(p)→ (∃n1, n2) ξ(p, τ) = (n1, n2) ∧ n1 ≤ n2(A5.3)

• No transition connects states in different plans:
(∀(z1, z2, φ) ∈ W)(∃p ∈ P)z1 ∈ p ∧ z2 ∈ p (A5.4)

• Failure and Success sets are disjoint subsets of the corresponding state set:
(∀p ∈ P) Success(p) ⊆ States(p) ∧ Fail(p) ⊆ States(p) (A5.5)
∧Success(p) ∩ Fail(p) = ∅
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SelectStone SUCCESS
NoStoneLeft

Success(MoveStone)

Plan MoveMountain
Run

MoveStone

SelectStone

P ickUpStone MoveStone

SUCCESS

StoneP ickedUp(X)

Plan MoveStone
Run

SelectStone(X)

P ickUp(X)

CanP ickUp(X)

CarryStone(X)

Dropped(X)

Figure 4: Example: Referentially Correct Parametrisation

• There is a post condition associated with each success and failure state:
(∀p ∈ P)(∀z ∈ Success(p) ∪ Fail(p))(∃φ) Post(z) = φ (A5.6)

• Synchronisations happen only within a plan:
(∀s ∈ Λ)(∀w,w′ ∈ s)w = (z1, z2, φ1) ∧ w′ = (z3, z4, φ2) (A5.7)
∧(∃p ∈ P)z1 ∈ States(p) ∧ z3 ∈ States(p)

• The hierarchical plan structure does not contain cycles:
(∀p, z)p ∈ Plans∗(z)→ z 6∈ States(p) (A5.8)

• All plans and behaviours are standardised apart:
(∀p, p′ ∈ PB) vars(p) ∩ vars(p′) = ∅ ∨ p = p′ (A5.9)

• Terminal States do not have sub-plans or behaviours attached:
(∀z)((∃p)z ∈ Success(p) ∨ z ∈ Fail(p))→ PlanTypes(z) = ∅ (A5.10)
∧Behaviours(z) = ∅
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%moveMountain1(X):- selectStone(X), canPickUp(X), pickUp(X),
pickedUp(X), moveStone(X), moveMountain1(X).

moveMountain1(X):- noStoneLeft.

moveMountain2 :- moveStone, moveMountain2.
moveMountain2 :- noStoneLeft.

moveStone :- selectStone(X), canPickUp(X), pickUp(X),
pickedUp(X), carryStone(X), dropped(X).

Figure 5: Intuitive translation of two plans to programs.

An ALICA program is valid iff it satisfies Σsyn.

5.4 Plantypes

Plantypes are used to abstract from concrete plans and allow agents to choose
autonomously between different alternative ways of solving a problem or reacting
to a certain situation. Intuitively, a plantype, mapping from set of formulae in
L(Pred, Func) into P, can be seen as a non-deterministic choice operator. An
agent that enters a state z chooses a plan to execute from every plantype in
PlanTypes(z). The possible choices each plantype offers is modelled through a
set of plans. The choice depends on the agent’s belief base and is encapsulated
by the corresponding plan type. All plantypes f are defined by:

f(F)
def
= argmax

p∈Sf

Up(F)

Sf is called the defining set of f , and is modelled by the user as a subset of P.
A deterministic execution of a plan p can be modelled by a plantype with an
associated set that contains only p.

By this definition, a plantype maps onto the plan with the highest utility
with respect to the set of forumlae F . This set should correspond to a believed or
hypothesised situation the agent faces. Note that F is not constraint to believes
about the environment, but can also encompass believes about the internal state
of an agents teammates. If, for example, agent a believes that agent b executes
plan p in plantype P , the utility functions involved can refer to this fact and
evaluate p higher than other plans in P .

6 Semantics

We define an operational semantic for ALICA in terms of a transition sys-
tem [22]. This transition system describes how and when an agent updates its
internal state, and hence how it progresses within an ALICA program. Firstly,
we formally introduce the notion of an agent and an agent configuration, which
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captures the internal state of an agent. Afterwards we describe the notion of
roles and how roles can be mapped to agents. In Section 6.3, we describe the
most important aspect of an agent, namely its belief base, in which an agent
represents both the state of the environment and the state of the team it is part
of.

Within ALICA, an agent is assumed to follow the execution loop depicted
in Figure 6. The major steps within this loop are: (1) Update of its beliefs
(e.g., by incorporating sensor information), (2) Update the plan base wrt. the
transition system, and (3) Execution of all active behaviours according to its
state computed in step (2).

Belief Update

Check and Execute Rules

Execute Behaviours

Figure 6: Agent Execution Loop

Definition 6.1 (Agent). An agent a ∈ A is described by an associated set
Capprov(a). Capprov(a) is the set of capabilities agent a possesses. Every capa-
bility c ∈ Capprov is a tuple (Key, V alue), where Key refers to a fuzzy-set, e.g.,
speed and V alue is either a membership function of that fuzzy-set, representing
notions such as “fast”, or a concrete value, e.g., 4m/s.

Definition 6.2 (Agent Configuration). For any agent a, Conf(a) denotes its
configuration. An agent configuration is a tuple (B,Υ, E, θ,R), where

• B is the agent’s belief base,

• Υ is the agent’s plan base,

• E ⊆ B × Z, the set of behaviours b the agent executes together with the
state in which b occurs, called the context of b,

• θ a substitution,

• R is a set of roles, which are assigned to the agent according to his capa-
bilities.

Intuitively, a configuration captures the dynamic part of an agent.The belief
state refers to the current situation and is subject to dynamic changes. The
plan base reflects an agent’s intention in a procedural manner. The set of
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behaviours refers to actions that are currently ongoing. The substitution θ
holds the current instantiations of plan and behaviour parameters. Whenever
a condition is evaluated, θ is updated. The final part of an agent configuration
is its role set. While roles are comparatively static, they are subject to change
whenever the perceived team composition changes, e.g., if a team member is
incapacitated. Note that an agent can be assigned multiple roles. However, the
number of roles an agent can take, depends heavily on the domain, e.g., in the
RoboCup domain one role per agent is usually sufficient, while in other domains
multiple roles might be necessary, especially if an agent has multiple unrelated
capabilities, such as infrared vision and a gripper. In the following sections, we
will discuss each part of an agent’s configuration in detail.

6.1 Roles

Within ALICA, tasks denote specific activities within plans, while roles are used
to establish a more general team make-up. In realistic scenarios, it is always
possible that an agent breaks down and can no longer participate within a team.
In the same manner, an agent might be assigned to a team during runtime. In
order to take these possibilities into account, we use roles to abstract from
concrete agents and allow for roles to be reassigned dynamically if the team
composition changes. Roles are then mapped to tasks through preferences.

Definition 6.3 (Role). A Role r ∈ R is a tuple (Pref,Capreq, P riority), where

• Pref is a function Pref : T 7→ [−1, 1], that maps all available tasks to a
real number between −1 and 1. Pref(τ) expresses the preferences of agents
assigned to role r towards task τ . A negative preference demonstrate the
incapability of an agent to execute this certain task. If an agent has more
then one role r1, . . . , rn, its preference for a task τ is the maximum of all
corresponding preferences.

• Capreq is a set of capabilities the role requires from the agent. Every
capability r ∈ Capreq is a tuple (Key, V alue,Weight), where Key refers
to a fuzzy-set, e.g., speed, V alue is a membership function of that fuzzy-
set representing for instance “slow”, and Weight is a real value between 0
and 1 expressing the importance of this specific capability for describing
the role.

• Priority is the priority of the role within the complete set of roles.

Definition 6.4 (Role Utility). Whenever an agent joins a team, its roles have to
be assigned according to its capabilities. We calculate a utility Ur of a certain
agent for a certain role using the similarity measure ∆ [36] of the provided
capability of the agent Capprov and the required capability of the role Capreq.
The weighted sum of these values is the utility of one agent for a certain role:
The utility Ur(a) of a role r has the form:

Ur(a) =

{P
(Vpro,Vreq,Wreq)∈Y Wreq·∆(Vreq,Vpro)

|Y | if Y 6= ∅
0 otherwise
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where Y = {(Vpro, Vreq,Wreq)| (Pref,Capreq, P rio) = r

∧(K,Vpro) ∈ Capprov(a)
∧(K,Vreq,Wreq) ∈ Capreq}

Given role utilities, which measure the adequateness of an agent for a certain
role, we can introduce role assignment procedures, which distribute roles among
all agents of the team.

A role assignment procedure should calculate a role assignment maximising
the sum of all role utilities involved under a certain set of constraints such as:

• an agent can take on more than one role, but multiple roles might lower
its efficiency in each of them;

• a role can be assigned to multiple agents;

• all agents should have a role;

• roles can have constraints attached to them, excluding each other.

• . . .

Since role assignment is not the main focus of this work, we simplify the
problem by adopting the following assumptions:

• an agent can only be assigned to exactly one role;

• a role can only be assigned to exactly one agent;

• roles are assigned in order of their priority

Definition 6.5 (Role Assignment). A role assignment is a mapping from the
set of agents A to the set of roles R. Let ~R = (r1, . . . , rn) be a vector containing
all roles in R, such that

∀1≤i<j≤n(Prefri
,Capreqri

, P riori
) = ri ∧ (Prefrj

,Capreqrj
, P riorj

) = rj

∧ Priori
> Priorj

holds. Using this vector, role assignment can be recursively defined as a set RA:

RA =
{

(ri, a) | (a ∈ A′ = A− {b|(rj , b) ∈ RA, j < i}) ∧ a = argmax
c∈A′

Uri
(c)
}

Note that this procedure requires R to be at least as large as A in order to
assign a role to each agent.

Example 6.1 (Example for Role Assignment). Let a and b two agents such
that Agent a provides the capabilites

Capprov(a) = {(Speed, low), (Kicker, true), (Width, large)}

and b the capabilities

Capprov(b) = {(Speed, high), (Kicker, true), (Width, small)}
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Furthermore, let Attacker, Defender and Goalie be three roles in R:

Attacker = (PrefAttacker,CapreqAttacker, P rioAttacker)
Defender = (PrefDefender,CapreqDefender, P rioDefender)

Goalie = (PrefGoalie,CapreqGoalie, P rioGoalie)

Suppose the corresponding priorities are PrioAttacker = 1, PrioDefender = 0.5
and PrioGoalie = 0.7. Furthermore, the corresponding required capabilities are:

CapreqAttacker = {(Speed, high, 0.5), (Kicker, true, 1)}
CapreqDefender = {(Kicker, true, 0.5)}

CapreqGoalie = {(Kicker, true, 1), (Width, large, 0.5)}

For simplicity, assume ∆(x, y) =

{
1 if x = y

0 otherwise
Then, after Definition 6.4 the utility of the agents for the roles is as following:

• The utility of agent a for role Attacker is UAttacker(a) = 0.5·0+1·1
2 = 0.5

• The utility of agent b for role Attacker is UAttacker(b) = 0.5·1+1·1
2 = 0.75

• The utility of agent a for role Defender is UAttacker(a) = 0.5·1
1 = 0.5

• The utility of agent b for role Defender is UAttacker(b) = 0.5·1
1 = 0.5

• The utility of agent a for role Goalie is UGoalie(a) = 1·1+0.5·1
2 = 0.75

• The utility of agent b for role Goalie is UGoalie(b) = 1·1+0.5·0
2 = 0.5

After Definition 6.5, agent a is assigned Goalie and agent b is assigned
Attacker. The role Defender is not assigned to any robot, as only two agents
are available and as this role has the lowest priority.

6.2 Plan Base

The plan base of an agent captures its current intentional state. Specifically,
it denotes which states the agent inhabits for each plan it participates in and
which tasks it committed to. Hence, each element holds a procedural represented
intention.

Definition 6.6 (Plan Base). An agent’s plan base is a set of triples (p, τ, z),
consisting of a plan p, a task τ and a state z. The plan base of an agent a is
denoted by PBase(a). A plan base contains at most one triple for each plan p.

If (p, τ, z) is an element of PBase(a) for an agent a, we say a participates
in p (or executes p), is committed to task τ and inhabits state z. We define
the following macro over plan bases, which captures the hierarchical structure
embedded in it:

Definition 6.7. Plans*(Υ, z) denotes the set of plans that are executed by an
agent with plan base Υ in the context of z. It is defined as:

p ∈ Plans*(Υ, z) iff (∃τ, z′)(p, τ, z′) ∈ Υ ∧ p ∈ Plans∗(z)
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6.3 Belief Base

Let L(Pred, Func) be the language of the belief base. L is a first-order logic3

extended by the modal operators Bela and Ka, for each agent a in A.
The operator Bela expresses individual belief of agent a. Bela φ denotes that

agent a believes φ. Formally and according to the knowledge axioms by Fagin
et al. [7], Bel is defined (as KD45 system) by the following axioms:

• (Bela φ→ ψ)→ (Bela φ→ Bela ψ) (Distribution Axiom)
• Bela φ→ ¬Bela ¬φ (Consistency Axiom)
• Bela φ→ Bela Bela φ (Positive Introspection Axiom)
• ¬Bela φ→ Bela ¬Bela φ (Negative Introspection Axiom)
• (∀x) Bela φ(x)→ Bela((∀x)φ(x)) (Knowledge Quantifier)

These axioms form the notion of strongly rational belief. The modality K
extends Bel towards knowledge: Ka φ

def
= (Bela φ) ∧ φ.

On top of individual belief, we use the usual notions of “everyone beliefs”,
EBel, and mutual belief, MBel. Everyone beliefs is defined by (after Rao et al.
[26]):

EBelA φ
def
= (∀a ∈ A) Bela φ

The formula EBelA φ is satisfiable if and only if all agents a in group A believe
φ. The mutual belief of φ is defined as that all agents a of a group A believe φ
and all of them believe φ mutually. MBelA φ is defined as the fixpoint of:

MBelA φ = EBelA φ ∧ EBelA MBelA φ

This yields an infinite conjunction of the form:

MBelA φ↔ EBelA φ ∧ EBelA EBelA φ ∧ . . . ∧ EBelA . . .EBelA φ ∧ . . .

Meaning, everyone believes φ, believes that everyone believes φ, believes that
everyone believes that everyone believes φ, and so on.

The set of terms in L(Pred, Func) contains certain ALICA specific terms,
such as a constant for each agent in A, and domain-specific terms, such as
coordinates or terms representing physical objects. Formally, the set of terms
in L(Pred, Func) is given by:

• A countable infinite set of variables, X = {x1, x2, . . . , xn, . . .},

• A set of n-ary function symbols (n ≥ 0), Func. Func contains:

– A, B, Z, P, T ,

– a domain-specific set of function symbols, Fdom.

The set of predicates in L(Pred, Func), Pred contains:

3In principle, ALICA can also work with a propositional modal logic, since the set of ground
terms is finite. However, compiling an ALICA program into a propositional logic causes P to
grow exponentially.
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• In(a, p, τ, z), defined to hold iff (p, τ, z) ∈ PBase(a). This allows an agent
to reason about its beliefs about the internal states of other agents. For
instance, Bela In(b, p, τ, z) denotes that a believes b to be committed to τ
in p and that b is currently in state z.

• HasRole(a, r), holding the mapping of an agent a to its roles r,

• Handlef (b, z), which is meant to hold if an agent should handle the failure
of behaviour b in state z,

• Handlef (p), which is meant to hold if an agent should handle the failure
of plan p,

• Failed(p, i), indicating that plan p failed i-times,

• Failed(b, z, i), indicating that behaviour b failed i-times in state z,

• Succeeded(a, p, τ), true iff agent a successfully completed task τ in plan p,

• Alloc(z), true iff an allocation of tasks to agents for state z is deemed
necessary,

• Success(b, z) and Fail(b, z), indicating a success or failure signal from
behaviour b, which is executed in state z, respectively,

• a domain-specific set of predicates, Pdom.

Pdom contains predicates relating to the world representation of the agent, e.g.,
DistanceTo(object, dist) or Carries(agent, object). The language elements in-
troduced here allow agents to reason about the environment (with symbols in
Fdom and Pdom), and about the internal states of itself and its teammates. Thus,
calculations such as role assignment can be done with respect to an agent’s be-
liefs.

In order to capture the relationship between the different predicates reflecting
believes about internal states of agents, we define a set of axioms, Σb. Let Σb

contain for each agent a in A the following:

• Unique Name Axioms over agents, behaviours, plans, and states:

UNA(A,B,P,Z, T )

• If failure handling for a behaviour is needed, it is relevant:

(BelaHandlef (b, z))→ (∃p, τ) In(a, p, τ, z)

• If failure handling for a plan is needed, it is relevant:

(BelaHandlef (p) ∨ Failed(p, i)) → p = p0 ∨ (∃p′, z, τ) In(a, p′, τ, z)
∧p ∈ Plans(z)

• In the same way, if failure handling for a behaviour is needed, it is relevant:

(BelaHandlef (b) ∨ Failed(b, z, i))→ (∃p, τ) In(a, p, τ, z)

24



• An agent’s success in a task is only relevant as long as there is another
agent still within the state that contains the corresponding plan:

Succeeded(a, p, τ)→ (∃z)p ∈ Plans(z) ∧ (∃a′, τ ′, p′)In(a′, p′, τ ′, z)

• Task allocation is only needed for a state inhabited by the agent:

(BelaAlloc(z))→ (∃p, τ) In(a, p, τ, z)

Definition 6.8 (Common Knowledge). Let ΣB be the set given by:

ΣB = Σsyn ∪Σdom ∪Σb

where Σdom is a set of domain-specific axioms, describing the domain, Σb is
the set of axioms regarding an agent belief and Σsyn is the set of syntactic
constraints (see Section 5.3). ΣB is assumed to be common knowledge in A,
i.e., ΣB ∧MBelA ΣB holds.

Definition 6.9 (Belief Base). A set of formulae B ⊂ L(Pred, Func) is a belief
base for agent a iff

ΣB ∪B 6|= ⊥

and
In(a, p, τ, z) ∈ B ↔ (p, τ, z) ∈ PBase(a)

Thus, an agent’s belief base reflects its belief about the world as well as
its belief about all other agents’ internal states, i.e., plan bases. The above
definition results in a belief base that reflects the intuition that an agent always
believes it does what it intentionally is doing. Moreover, the belief base is always
consistent wrt. ΣB. By BelBase(a) we denote the belief base of agent a.

Definition 6.10 (Agent Proof). Let a be an agent, F be a set of formulae, η a
substitution, and φ a formula. Then we denote that a proves φ wrt. F and ΣB

by
F `aη φ

where η is the computed answer of the proof. If it is clear from the context, we
omit a or η.

6.4 Belief Update

The belief base of an agent is updated frequently, either to accommodate for
new sensory data, communication acts or internal updates. Here, we only treat
the last case explicitly. We write B + F to denote that the belief base B is
updated by the (finite) set of formulae F = {f1, f2, . . . , fn}.

B + F
def
= B +

∧
f∈F

f

B − F def
= B +

∧
f∈F

¬f
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We require the belief update operator + to satisfy the KM-postulates [18] U1
- U4, and U8, adopted to accommodate for the static common knowledge, ΣB,
and thus + forms an inertial basic update operator (after Lang [19]):

ΣB ∪(B + f) |= f (U1)
ΣB ∪B |= f → (B + f)↔ B (U2)

If ΣB ∪B and f are both satisfiable then ΣB ∪(B + f) is also satisfiable (U3)
If B ↔ C and f ↔ g then B + f ↔ C + g (U4)

(B ∪ C) + f ↔ (B + f) ∪ (C + f) (U8)

Most importantly, the belief base must be consistent at all times. Note that
consistency wrt. Σb can easily be established by removing literals of the form
Handlef (p, z), Handlef (b), Failure(p, i), Succeeded(a, p, τ), Alloc(z),
Success(b, z), and Fail(b, z).

Assume for example an agent a executes a plan p, In(a, p, τ, z) holds in
BelBase(a), and the agent aborts the execution of p, due to a reaction on a
higher level in the plan hierarchy. Then BelBase(a) is update: BelBase(a)′ =
BelBase(a)− In(a, p, τ, z). If for example an allocation for state z was pending,
Alloc(z) ∈ BelBase(a), it is no longer relevant, and hence Alloc(z) is removed
as well.

6.5 Team Configuration

In ALICA, each agent constantly monitors the actions of its team members wrt.
the plans it participates in. Hence, an agent can not only react to another agent
breaking down and consequently being removed from the team, but also each
agent considers the progress of all other agents when making a decision, such as
committing to a task within a plan.

For this notion of monitoring, we first define what it means for a team to be
working on a plan.

Definition 6.11. Let a be an agent in A and let TeamIn(A, p) denote that
team A ⊆ A executes a plan p, formally:

TeamIn(A, p)
def
= (∀τ ∈ Tasks(p))(∃n1, n2) ξ(p, τ) = (n1, n2) ∧

(∃A′)A′ ⊆ A ∧ n1 ≤ |A′| ≤ n2 ∧
(∀a′ ∈ A)a′ ∈ A′ ↔ (∃z) In(a′, p, τ, z) ∨ Succeeded(a′, p, τ)

If A = A, we abbreviate TeamIn(A, p) by TeamIn(p).

This definition is non-monotonic in the sense that there can be two sets A,
A′ with A′ ⊇ A such that TeamIn(A, p) and ¬TeamIn(A′, p). Hence, an agent’s
assumptions regarding its team are vital for its evaluation of plans.

6.6 Utility Functions

We already introduced a certain kind of utility functions, namely role utilities
in Section 6.1. Here, we are concerned with functions evaluating plans wrt.
situations. These utility functions are pivotal to the way an ALICA program is
executed.
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Definition 6.12 (Utility Function). The utility Up(F) of a plan p wrt. belief
base F has the form:

Up(F) =


−1 if pri(F) < 0
w0 pri(F) +

∑
1≤i≤n wi fi(F) if F |= TeamIn(p)

0 otherwise

A utility function is a weighted sum of several functions pri, f0 . . . fn over belief
states. The function pri evaluates the preferences of all agents involved in
executing plan p towards their current tasks in p:

pri(F) =

{
−1 if (∃a)φ[τ,Pref] ∧ Pref(τ) < 0∑
φ[τ,Pref] Pref(τ) otherwise

where φ[τ,Pref] = HasRole(a, (Pref,Capreq, P rio)) ∈ F ∧ In(a, p, τ, z) ∈ F .
The functions fi are arbitrary functions over belief bases. However, we require
that (∀fi, wi)wifi(F) ≥ 0 for all belief bases F .

We refer to the belief which agent executes which task in a certain plan p as
an allocation of plan p. A formal definition is given in Section 6.7. Intuitively, a
utility function reflects the value of a plan together with an allocation in a certain
situation. The value such a combination has for a team is always positive, unless
the combination is deemed useless, in which case the utility should evaluate to
zero. This is the case if the assumptions F do not satisfy all requirements the
cardinalities pose on an allocation, i.e., if TeamIn(p) does not follow from F .

Moreover, if a preference of a role r assigned to an agent a towards a task
τ is negative and a is allocated to τ , the whole utility is evaluated to −1. This
ensures that an agent will not under any circumstances take on a task with
negative preference. Instead, it would do nothing, which yields a utility of at
least 0. The strict rule employed here is very important in order to describe
roles (and thus, agents) which cannot take on certain tasks. For instance, fragile
avionic robots should never commit to tasks which require physical manipulation
of objects in order to keep themselves from harm.

Definition 6.13. The utility of a set of plans, ~p = (p1, . . . , pn), U~p(F) is a
vector:

U~p(F)
def
= (Up1(F), . . . ,Upn

(F))

Example 6.2 (Simple Utility Function). The following formula shows a simple
example of a utility function.

Up(F) = 0.15 · pri(F) + 0.8 ·DistBallAttack(F) + 0.05 ·DistGoalDefend(F)

with pri(F) as defined in Definition 6.12,

DistBallAttack = max
In(a,p,Attack,z)∈F

1−Dist(Ball, a)
FieldDiagonal

and

DistGoalDefend = max
In(a,p,Defend,z)∈F

1−Dist(OwnGoal, a)
FieldDiagonal
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The utility function in the example consists of three summands:

• Pri(F) evaluates the preferences of each participating agent given by their
roles,

• DistBallAttack depends on the distance between the ball and the robot
committed to task Attack,

• DistBallDefend evaluates the distance between the own goal and the
robot committed to task Defend.

As such, this utility function highly depends on the belief base of the evaluating
agent F . In the next section, we discuss how these utility functions are used to
choose a plan from a plantype and to allocate agents to tasks within plans.

6.7 Task Allocation

Whenever an agent enters a state, it has to decide for all plans within that
state, to which, if any, task it commits to. That is, it has to calculate a task
allocation for all participating agents. Ideally, every agent involved computes
the same task allocation. Within ALICA, the degree of communication involved
in establishing these allocations can be explicitly modelled. Here, we model the
most basic case, which involves no communication during task allocation.

A task allocation C for plan p is a set of formulae of the form In(ai, p, τ, z),
one for each agent ai allocated to participate actively in p. For each In(ai, p, τ, z)
in C, τ is a task relevant for p, i.e., an element of Tasks(p), and z is the initial
state of τ in p, Init(p, τ).

In order for an agent to commit to a task, it has to compute such a task
allocation. Under the weak commitment used here, it is not guaranteed that all
involved agents compute the same allocation, since their belief bases may differ.
These conflicting allocations however can be resolved during the execution of
the plan, see Section 6.9.2.

An agent a with configuration (B,Υ, E, θ) computes a task allocation C for
plan p under a valid belief base F , which acts as an assumption, such that C
satisfies the following constraints:

• ΣB ∪F ∪ C 6|= ⊥

• ΣB ∪F ∪ C `η (Pre(p) ∧ Run(p))θ

• ΣB ∪F ∪ C ` TeamIn(p)

• Up(F ∪ C) ≥ 0

such that Up(F ∪ C) is maximised.
For a plan p and agent a we denote a task allocation satisfying the above

conditions by TAlloc(a, p|F). F acts a set of assumptions describing the belief
state for which the allocation should be valid. If an agent allocates wrt. the
current state, F should equal its belief base. Hence, an agent believed to be
already committed to a task in p will be considered. This allows for a dynamic
repair in case some agents withdraw from a plan and need to be replaced.

Additionally, a task allocation defines a corresponding substitution, σ(a,p,F),
called allocation substitution of task allocation TAlloc(a, p|F). σ(a,p,F) is the
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application of η, the computed answer of the proof of the precondition and
runtime condition of p, to ρ(p).

σ(a,p,F)
def
= ρ(p) ◦ η

Based on this notion of task allocation, we define a recursive version, which
allocates agents to a branch of plans in the plan tree. Intuitively, whenever
an agent enters a state and computes a task allocation for a subplan, it has to
enter the initial states of the tasks it allocated itself to. Hence, it also needs to
compute a task allocation for those initial states and so on.

Definition 6.14 (Ordered Plan List). We call a list of plans ~P = p1, . . . , pn
ordered wrt. the plan tree of a valid ALICA program iff (∀pi, pj ∈ ~P )(∃z′)z′ ∈
States(pi) ∧ pj ∈ Plans∗(z)→ i < j.

Proposition 1. Given a valid ALICA program, for all subsets P of P, there is
an ordered list ~P containing precisely all elements of P .

Proof. Let p < p′ denote that (∃z′)z′ ∈ States(p) ∧ p′ ∈ Plans∗(z). Since the
empty list is ordered wrt. any plan tree and since from Syntactic Axiom A5.7 it
follows that for all plans p and p′, p < p′ → ¬p′ > p the claim holds.

Definition 6.15 (Recursive Task Allocation). Given an agent a with config-
uration (B,Υ, E, θ,R), a valid belief base F , a recursive task allocation for
state z, TAlloc∗(a, z|F), is a set of formulae of the form In(a′, pi, τ, z′). Let
~P = p1, p2, . . . , pn be the ordered plan list containing exactly all plans pi such
that In(a′, pi, τ, z′) is in TAlloc∗(a, z|F) for some agent a′, some task τ , and
some initial state z′. Furthermore, let ~b be the set of behaviours such that
b ∈ ~b ↔ In(a, pi, τ, z′) ∈ TAlloc∗(a, z|F) ∧ b ∈ Behaviours(z′) and let G denote
TAlloc∗(a, z|F) ∪ F .
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Then TAlloc∗(a, z|F) is valid iff:

ΣB ∪G 6|=⊥ (1)

ΣB ∪G `η

∧
p∈~p

Pre(p) ∧ Run(p)

∧ (2)

∧
b∈~b

Pre(b) ∧ Run(b)

 θ ρ(p1) . . . ρ(pn)

(∀p)p ∈ ~P → G `TeamIn(p) (3)

(∀p)p ∈ ~P →p ∈ PlanTypes∗(z)(G) (4)
∧ (∃p′, τ ′, z′) In(a, p′, τ ′, z′) ∈ G
∧ p ∈ PlanTypes(z′)(G)

(∀a′, p′, τ ′, z′) In(a′, p′, τ ′, z′) (5)
∈ TAlloc∗(a, z|F)→z′ = Init(p′, τ ′)

(∀a′, p, τ ′, z′) In(a′, p, τ ′, z′) (6)
∈ TAlloc∗(a, z|F)→(∃p′, τ ′′, z′′) In(a′, p′, τ ′′, z′′) ∈ G∧

p′ ∈ PlanTypes(z′′)(G)
(∀p′) In(a′, p′, τ ′, z′) (7)
∈ TAlloc∗(a, z|F)→Up′(G) ≥ 0

(8)

By Condition 1, a valid task allocation has to be consistent with the assump-
tions and the common knowledge. Hence, by Definition 6.6 and 6.9, an agent
cannot be assigned two conflicting tasks. In particular, an agent already be-
lieved to be participating in a plan p cannot be reassigned. Condition 2 ensures
that all preconditions and runtime conditions of plans assigned are met and
yields an answer substitution an agent uses later on. Furthermore, the yielded
answer substitution are used in the allocation substitution (see Definition 6.16).
Condition 3 rules out partially assigned plans, i.e., enforces that each plan is
executed by a proper number of agents. Condition 4 limits the task allocation to
plans mapped onto by plantypes occurring in states the allocation agent enters
by adopting the allocation.

By Condition 5 each agent that is newly allocated to a task is believed to
be in the corresponding initial state. Condition 6 requires a task allocation to
be complete in the sense that an agent allocated to a plan is either allocated
to or was already believed to be in the state that contains the corresponding
plantype. Finally, Condition 7 ensures that all resulting utility values are not
below 0 and hence the allocation is not considered harmful.

Condition 4 enforces the allocating agent to take on a “local view” during
task allocation, as it does not take into account plans other agents may be forced
to enter by adopting the allocation, but assumes an outcome that is consistent
with its calculations. Obviously, this can lead to inconsistencies between the
different local views of the participating agents. For instance, it might be the
case that a subplan not within an agent’s local view cannot be executed for some
reason, i.e., due to an insufficient number of agents. Since such inconsistencies
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cannot be ruled out completely due to potentially different belief bases, we tol-
erate them here instead of enforcing agents to calculate a more computationally
expensive global view. Section 6.9.2 explains how such inconsistencies are han-
dled. Additionally, it is possible to alleviate this problem at compile time by
propagating cardinalities and preconditions upwards the plan tree.

The precise choice of TAlloc(a, z|F)∗ is subject to a set of utility functions:

{Up(F ∪ TAlloc∗(a, z|F))| In(a′, p, τ, z′) ∈ TAlloc∗(a, z|F)}

We leave the way this optimisation problem is handled open. In our implemen-
tation, a greedy backtracking algorithm is used to search through the plan tree,
starting from the top-most plans. In each step, a plan and an allocation for
that plan is chosen from a single plantype, such that the corresponding utility
is maximised globally.

Definition 6.16 (Recursive Task Substitution). Let ~P = p1, p2, . . . , pn be the
ordered list of all plans allocated in TAlloc∗(a, z|F), and η be the answer sub-
stitution for the proof of the pre- and runtime conditions. Then, the allocation
substitution of TAlloc∗(a, z|F), σ∗(a,z,F) is defined by:

σ∗(a,z,F)

def
= ρ(p1) ◦ . . . ◦ ρ(pn) ◦ η

Example 6.3 (Recursive Task Allocation). Suppose three agents, A = {a, b, c},
have to compute an allocation for plan p1 depicted in Figure 7. For simplicity,
assume all plantypes contain just a single plan. Furthermore, assume that for
all tasks involved, at least one agent needs to commit to it in order to satisfy
Condition 3 of Definition 6.15.

Plan p1

s1
τ1 s2

p2

s3
τ2 s4

p3

Plan p2

s1
τ5 s2

Beh1

Plan p3

s1
τ3 s2

p4

s3
τ4 s4

p5

Figure 7: Example: Plans

Figure 8 shows the procedure of the recursive task allocation from the per-
spective of agent a. First the task allocation for the initial plan p1 is computed.
Suppose, the best allocation for this plan and its tasks is as following:

• τ1: c,

• τ2 : a, b.

Since agent a has allocated itself to task τ2, In(a, p1, τ2, s3) has to be a mem-
ber of its task allocation set. Hence, a has to allocate itself, along with b to
plan p3, the single member of Plans(s3). However, a does not consider plan p2,
which c has to execute according to the calculation so far. For p3, suppose, a
calculates:
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p1 a, b, c

p2 p3

τ1 τ2

a, bc

Recursive Task Allocation
in p3

p1 a, b, c

p2 p3

τ1 τ2

a, bc

p4 p5

τ3 τ4

a b

Figure 8: Example: Recursive Task Allocation

p1 a, b, c

p2 p3

τ1 τ2

a, bc

p4 p5

τ3 τ4

a b

Task allocation
failed in p4

p1 a, b, c

p2 p3

τ1 τ2

a, bc

p4 p5

τ3 τ4

⊥

New
Task allocation

p1 a, b, c

p2 p3

τ1 τ2

c, ba

p4 p5

τ3 τ4

Figure 9: Task Allocation Failure

• τ3 : a,

• τ4 : b.

Now, a has to allocate itself within p4. Assume, it cannot find an allocation
satisfying the corresponding preconditions. In this case, backtracking occurs (see
the tree in the middle of Figure 9). The tree on the right hand side shows the
final task allocation, where agent a has swapped places with agent c within plan
p1. Note, that a has not allocated b and c within p3. This reflects the local view
of a on this plan tree.

6.8 Communication

In the following section, we will introduce a transition rule system, which de-
scribes how agent configurations are changed while an agent executes an ALICA
program. For the transition system to work, agents must either be able to track
each other through the plan tree, by modelling their configuration, or the agents
have to communicate the configurations.

We think that in any practical setting one would adopt both ways to a
certain degree. Communication would be employed as often as it is feasible and
tracking wherever communication is unreliable, costly, or takes too much time.
Here, we assume that the agents inform each other periodically of their plan
base and, if applicable, their success status. This can introduce inconsistencies
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since communication is unreliable and delayed. Most importantly, agents have to
take decisions in between communication periods and in many cases cannot wait
for a communication act to be acknowledged. However, periodic communication
guarantees that each agent is able to update its agent model eventually, assuming
the probability of a sent message being received in finite time is different from
0. Tracking can be used to fill the gaps in between messages.

In this work, we only present a very limited way of tracking, which we
deem sufficient if most communication attempts succeed and the communication
period is not too large in comparison with the duration of the deliberation cycle
of an agent. Future work will evaluate this assumption and discuss tracking
abilities in more detail.

Each agent a communicates a set of literals of the form In(a, p, τ, z) and
Succeeded(a, p, τ) periodically. Each literal is communicated iff it is an element
of BelBase(a). Note also that each agent only communicates its own internal
status, not the status of other agents. In domains, where communication range
is limited and agents have to relay information to each other, these communica-
tion messages need to be extended. A received message of this kind is treated
the same way as new sensor information, and update the receiver’s belief base
accordingly. Hence, each agent is assumed to be truthful.

6.9 Transition Rules

Transition rules define how an agent’s configuration changes during a single
computation step. Each rule is guarded by a condition and transforms a given
configuration into a new one:

RuleName :
Conditions

CurrentAgentConfigurations −→ NewAgentConfigurations

In the following a denotes the agent subject to the transition system. A rule
is applied only if its condition is satisfied, agent configuration Conf(a) unifies
with the left hand side of the transition and no rule with higher precedence is
applicable. If rule r1 has a higher precedence than r2, we write r1 > r2. The
precedence relation over rules, >, is transitive, irreflexive, and antisymmetric.

We distinguish two kinds of transition rules, operational rules, which describe
an agent’s normal operation and repair rules, which provide means to recover
from a failure. Execution of an ALICA program begins with the Init rule.
From there on, the rules Trans and STrans describe how an agent reacts to
transitions within plans. Trans captures the case of normal transitions, STrans
the case of synchronised transitions, which require establishing mutual belief
between all involved agents. The application of both kind of rules is followed by
the application of rule Alloc, which handles recursive task allocation for agents
believed to be in the newly entered state. Finally, the rules BSuccess and
PSuccess modify an agent’s configuration due to success signals from a lower
level (in case of BSuccess) and due to reaching a success state within a plan
(PSuccess).

In principal, these six rules are sufficient to describe the operative behaviour
of the agents involved, unless a failure occurs. Failure handling is done using
repair rules. Here we present a set of ten repair rules, capturing different kinds of
reaction to failures. Some rules presented here are not applicable in all domains,
hence repair rules are somewhat domain dependent.

33



The rule BAbort stops a behaviour that is executed if it signals a failure.
BRedo and BProp handle this failure. BRedo tries to re-execute a failed be-
haviour if possible, while BProp propagates the failure upwards to the plan in
whose context the failed behaviour was executed. PAbort acts similar towards
plans as BAbort does towards behaviours, it stops the failed plan and all plans
and behaviours executed in its context. However, it can be overridden by PRedo
which resets the agent’s state within a failed plan if possible. This avoids com-
putional and possibly communication overhead, as the agent continues to work
on its task, and does not calculate a new allocation.

In case such a “soft” restart through PRedo is impossible and PAbort stops
a plan, PReplace triggers a new task allocation. A new task allocation can also
choose an alternative plan from the corresponding plan type. If all other means
of failure handling are exhausted, PProp propagates a failure upwards to the
parent plan. Finally, PTopFail captures the case where the top-level plan has
failed, and simply triggers a clear initialisation through Init.

There are two special rules, NExpand which triggers a failure if a due task
allocation cannot be performed and Replan which is used to periodically check
the utility of a task allocation, and triggers a new task allocation if the current
utility is deemed to be unsatisfying. Replan thereby allows for highly dynamic
changes in the allocation and thus accommodates for swift changes in the envi-
ronment.

6.9.1 Operational Rules

Operational rules always take precedence over repair rules, following the idea
that a failure might become irrelevant by a change in an agent’s configuration.
Repair rules are geared to preserve a certain status or provide alternatives for
a currently pursued, but failed, intention.

The Initialisation Rule

Init :
Υ = ∅

(B,Υ, E, θ,R) −→ (B + {In(a, p0, τ0, z0), alloc(z0)}, {(p0, τ0, z0)}, ∅, ∅,R)

Intuitively, the Initialisation Rule obligates the agent to start the execution of
the plan tree. This is due whenever an agent’s planbase is empty, i.e., after start
up and whenever an agent’s plan base has been emptied completely due to plan
failures.

The Trans Rule The first rule we discuss controls when and how an agent
follows a transition from one state to another.

Trans :
B `η φθ ∧ (p, τ, z) ∈ Υ, (z, z′, φ) ∈ W ∧ ¬(∃s ∈ Λ)(z, z′, φ) ∈ s

(B,Υ, E, θ,R) −→ ((B − ϑ−b ) + ϑ+
b , (Υ− ϑ

−
p ) + ϑ+

p , E′, θ ◦ η,R)

where

• ϑ−b = {In(a′, p, τ ′, z)|a′ ∈ A, τ ′ ∈ T }
∪ {In(a′, p′, τ ′, z′′)|a′ ∈ A, p′ ∈ Plans∗(z), z′′ ∈ States(p′)}

• ϑ+
b = {In(a′, p, τ ′, z′)| In(a′, p, τ ′, z) ∈ ϑ−b } ∪ {alloc(z′)}
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• ϑ+
p = {(p, τ, z′)}

• ϑ−p = {(p, τ, z)} ∪ Plans*(Υ, z)

• E′ = E − {(b, z)|(p, τ, z) ∈ ϑ−p }

That is, an agent will follow an outgoing transition from state z to z′ if it
currently resides in z and believes the condition φ annotating the transition
to hold. Furthermore, this transition must not belong to a synchronisation
set. Following a transition entails that the agent stops executing all plans and
behaviour that are executed in the context of z, i.e., are in Plans*(P, z). The
addition of alloc(z′) to the belief base encodes the need for a task allocation
with respect to the newly entered state z′. Note that an agent applying this
rule also assumes that every other agent currently in z applies it, i.e., believes
its precondition. This realises a partial tracking of other agents through the
plan tree. Furthermore, the computed answer of the proof of φ, η is appended
to the runtime substitution θ.

The Synchronised Transition Rule handles a transition within a synchro-
nisation set. Intuitively, a synchronisation models the start of a cooperative act
that depends on the involved agents to act in a very small time-frame. The up-
per bound on the size of this time-frame depends on the latency and reliability
of the communication and the precision with which agents can track their team-
mates’ intentions. In the worst case, the condition guarding the Synchronised
Transition Rule cannot be established.

STrans :
(∃A ⊆ A)a ∈ A(∃s ∈ Λ)(z, z′, φ) ∈ s ∧ ψ

(B,Υ, E, θ,R) −→ ((B − ϑ−b ) + ϑ+
b , (Υ− ϑ

−
p ) + ϑ+

p , E′, θ ◦ η,R)

where

• ψ = (∀(z′′, z′′′, φi) ∈ s)(∃a′ ∈ A)B `η MBelA(In(a′, p, τ ′, z′′) ∧ φ∗θ)

• (p, τ, z) ∈ Υ

• φ∗ =
∧

(z′′,z′′′,φi)∈s φi

• ϑ−b = {In(a′, p, τ ′, z)|a′ ∈ A, τ ′ ∈ T }
∪ {In(a′, p′, τ ′, z′)|a′ ∈ A, p′ ∈ Plans∗(z)}

• ϑ+
b = {In(a′, p, τ ′, z′)|a′ ∈ A, τ ′ ∈ T } ∪ {alloc(z′)}

• ϑ+
p = {(p, τ, z′)}

• ϑ−p = {(p, τ, z)} ∪ Plans*(Υ, z)

• E′ = E − {(b, z)|(p, τ, z) ∈ ϑ−p }

Here, an agent will follow a synchronised transition, if and only if it can identify
a group A of agents it is part of, such that a believes that there is mutual
belief in A that all relevant conditions φi hold. Moreover, a has to believe that
there is mutual belief in A that all agents in a are in the correct states, that
is, that every transition in the synchronisation set will be used by one agent.
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Hence, there is mutual belief about the individual intentions to progress along
the synchronised transitions. If the agent believes this condition to hold, it will
act in the same manner as in the case of a normal Transition Rule.

Synchronised Transition Rules take precedence over normal Transition Rules,
STrans > Trans. This is done following the intuition that a synchronisation
guards a part of a plan that is of higher benefit to the team and more difficult
to reach. It is easy to see that the condition of Trans would subsume the
condition of STrans if it were not for the exclusion of synchronisations (¬(∃s ∈
Λ)(z, z′, φ) ∈ s).

The Allocation Rule takes over where the transition rules above left an
agent. It causes a task allocation to be performed, usually in a state just entered.

Alloc :
alloc(z) ∈ B ∧ In(a, p′, τ ′, z) ∈ B ∧ TAlloc∗(a, z|B) 6= ∅

(B,Υ, E, θ,R) −→ (B − {alloc(z)},Υ + ϑ+
p , E + ϑ+

e , θ′,R)

where

• θ′ = θ ◦ σ(a,p,B)

• ϑ+
b = TAlloc∗(a, z|B)

• ϑ+
p = {(p′, τ ′, z′′)| In(a, p′, τ ′, z′′) ∈ ϑ+

b }

• ϑ+
e = {(b(~x)θ′, z)|(p, τ, z) ∈ ϑ+

p ∧ b ∈ Behaviours(z)}

That is, if a believes a task allocation wrt. state z is needed and possible, it
will update its believe base with the allocation TAlloc∗(a, z|B), insert all plans
it is involved in into its plan base, and start to execute all behaviours relevant
to the added plan-task-state-triples, if they are deemed possible. By appending
σ(a,p,B) to the runtime substitution, the agent is bound to the consequences of
the proved conditions during the recursive task allocation.

Since the result of an allocation is only relevant until the agent leaves the cor-
responding state, Transition Rules have a higher precedence than the Allocation
Rule, Trans > Alloc.

Behaviour Success Rule We treat behaviours as atomic actions, which can
fail or succeed at any point in time while running. Such a termination is reflected
by the atoms Success(b, z) and Fail(b, z), where b is the behaviour in question
and z the state in which it is called. These hold exactly if (b, z) is an element of
the agent’s behaviour base and b failed or succeeded in the last computational
step, respectively.

BSuccess :
Success(b, z) ∈ B

(B,Υ, E, θ,R) −→ (B′,Υ, E − {(b, z)}, θ,R)

where B′ = (B − {Success(b, z)}) + {Post(b)θ}.
If a behaviour succeeds, it is stopped and its postcondition is assumed to

hold. Since this rule processes a signal and updates the belief base accordingly, it
takes precedence over the previous rules that modify the plan base, BSuccess >
STrans.
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Plan Success Rule A plan p succeeds iff a state z ∈ Success(p) is reached.

PSuccess :
(p, τ, z) ∈ Υ, z ∈ Success(p)

(B,Υ, E, θ,R) −→ ((B − ϑ−b ) + ϑ+
b ,Υ− ϑ

−
p , E, θ,R)

where

• ϑ−b = {In(a′, p, τ ′, z)|a′ ∈ A, τ ′ ∈ T }

• ϑ+
b = {Succeeded(a, p, τ),Post(z)θ}

• ϑ−p = {(p, τ, z)}

Similar to the Behaviour Success Rule, this rule updates the belief base
with the post condition attached to the terminal state reached. Moreover, the
successful completion of task τ in p is recorded as well, so the agent is not any
longer committed to τ , although the success needs to be communicated to other
agents working on p. Else, it might be the case that they abort the plan due
to an insufficient number of agents working on it. (see Example 6.4). We give
precedence to the success of lower level behaviours, but still treat this success
rule with a higher priority than the Transition Rules, BSuccess > PSuccess >
STrans.

Example 6.4 (Asynchronous Plan Success). This example shows the case that
one task of a plan is finished before another task of that plan. As aforemen-
tioned the successful completion of a task is represented in the belief base and
communicated to other agents. Figure 10 illustrates such a case. Initially the
two agents a and b are allocated to the tasks τ1 and τ2 of plan p. Both tasks
have an associated cardinality of 1..1, which means that exactly one agent must
be allocated to each task for the execution of the plan. Both agents start with the
initial state of their task within the plan. Agent a executes plan p2 and agent b
plan p3. After some time, agent a progresses to the next state s2. Agent b leaves
state s3 following the transition to the success state s4. Now agent b leaves the
plan and therefore it is not longer committed to task τ2. If the successful comple-
tion of task τ2 were not recorded, the plan would be aborted as the cardinalities
of the task are not satisfied. See also Definition 6.11.

Plan p1

s1

τ1
1..1

s2

s4

p2 . . .

s3

τ2
1..1

p3

a

b

1. Task allocation

Plan p1

s1

τ1
1..1

s2

s4

p2 . . .

s3

τ2
1..1

p3

a

b

2. Start execution

Plan p1

s1

τ1
1..1

s2

s4

p2 . . .

s3

τ2
1..1

p3

a

b

3. b finishes succesful

Figure 10: Example: Asynchronous Plan Success
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6.9.2 Repair Rules

Typical BDI languages feature techniques handling failures that occur, e.g., due
to unexpected changes in the dynamic environment agents act in. Classic BDI
languages also distinguish between plan failures and goal failures. The first can
be due to some side constraint being violated, the latter due to the goal itself
becoming impossible to achieve. In ALICA, we have not yet introduced an
explicit representation of goals, this is subject of future work.

Here, we limit ourselves to plan failures, which can happen frequently, de-
pending on the scenario. For instance in robotic soccer, the domain is highly
dynamic and each robot has to make assumptions about the status of its team-
mates, which can prove to be wrong. Repair Rules are special transition rules
which are meant to recover from such failure. There are different ways to han-
dle failures and a specific way can depend on the domain. A failed plan can
be retried, replaced by an alternative, or the failure can be propagated up the
plan tree. In some languages, such as AgentSpeak [25], a failure can even raise
a specific goal, triggering custom plans meant to handle precisely the occurred
failure.

ALICA features a similar way to deal with plan failures explicitly. A failed
plan or behaviour is recognised and causes a corresponding believe to be inserted
in the belief base (Handlef (p) for a plan, and Handlef (b, z) for a behaviour,
respectively). Since the Transition Rule takes precedence over repair rules,
an explicit mechanism can be modelled via a transition. Otherwise, default
handling takes place.

The Behaviour Abortion Rule removes a behaviour from the behaviour
base if its runtime condition is violated or a failure is signalled from a lower
level process by Fail(b, z).

BAbort :
(b, z) ∈ E ∧ (B 6` Run(b)θ ∨ Fail(b, z) ∈ B)

(B,Υ, E, θ,R) −→ (B′,Υ, (E − {(b, z)}), θ,R)

where

• B′ = (B − {(∀i)Failed(b, z, i), Fail(b, z)})
+{Failed(b, z, j), Handlef (b, z)},

• j =

{
i+ 1 if Failed(b, z, i) ∈ B,
1 otherwise.

The belief Failed(b, z, i) keeps track how many times a behaviour had to be
aborted. This allows to consecutively apply different failure recovery rules.
Note that if the corresponding state z is left, e.g., through a transition, this
belief is dropped to keep the belief base consistent with Σb.

The Behaviour Repair Rules act as a default mechanism to handle be-
haviour failure.

BRedo :
Handlef (b, z) ∈ B ∧B ` (Pre(b) ∧ Run(b))θ ρ(b) ∧ Failed(b, z, 1) ∈ B

(B,Υ, E, θ,R) −→ (B′,Υ, E′, θ,R)

where

38



• E′ = E + {(b, z)}

• B′ = B − {Handlef (b, z)}

BProp :
Handlef (b, z) ∈ B ∧ Failed(b, z, i) ∈ B ∧ (i > 1 ∨B 6` (Pre(b) ∧ Run(b))θ)

(B,Υ, E, θ,R) −→ (B′,Υ, E, θ,R)

where

• B′ = (B − {Handlef (b, z), Failed(b, z, i), (∀k)Failed(p, k)})
+ {Handlef (p), Failed(p, j)}

• (p, τ, z) ∈ Υ

• j =

{
j′ + 1 if Failed(p, j′) ∈ B
1 otherwise

BRedo restarts a failed behaviour if possible, BProp propagates the failure up-
wards if restarting has already been tried or is not possible. The universal quan-
tification in (∀k)Failed(p, k) ensures that Failed(p, k) is removed regardless of
the current value of k. It is the case that at most one instance of Failed(p, k)
holds per plan p. Note that the applicability of these rules is subject to the con-
crete domain. For instance, retrying a failed behaviour might not make sense
at all in certain scenarios. In others, a behaviour’s success can be associated
with a known probability distribution, in which case the utility of a retry can
be estimated.

The Plan Abortion Rule is quiet similar to the Behaviour Abortion Rule:

PAbort :
(p, τ, z) ∈ Υ ∧ (z ∈ Fail(p) ∨B 6` Run(p)θ ∨B ` ¬TeamIn(p))

(B,Υ, E, θ,R) −→ ((B − ϑ−b ) + ϑ+
b ,Υ− ϑ

−
p , E − ϑ−e , θ,R)

• ϑ−b = {In(a′, p, τ ′, z)|a′ ∈ A, τ ′ ∈ T }
∪ {In(a′, p′, τ ′, z′)|p′ ∈ Plans∗(z)} ∪ {(∀k)Failed(p, k)}

• ϑ+
b = {Handlef (p), Failed(p, j)}

• ϑ−p = {(p, τ, z)} ∪ Plans*(Υ, z)

• ϑ−e = {(b, z)|(p, τ, z) ∈ ϑ−p }

• j =

{
j′ + 1 if Failed(p, j′) ∈ B
1 otherwise

This rule aborts a plan if the corresponding runtime condition is violated, a
failure state is reached or if the agent believes that the team no longer executes
the plan. Additionally, the rule aborts all plans and behaviours executed in the
context of the current state z, and assumes that all agents involved in executing
p detect the plan failure. Hence, this potentially leaves the agent in a conflicting
belief state, where it still believes that Bela′ TeamIn(p) for some other agent a′.
Resolving this state requires the agent to inform its team-mates about the plan
failure. Here, this is done only implicitly through the periodic communication
of the plan base, see Section 6.8.
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The Plan Repair Rules implement default ways to handle failed plans.
Intuitively, a plan can be restarted, replaced by an alternative or the failure can
be propagated up.

PTopFail :
Handlef (p0) ∈ B

(B,Υ, E, θ,R) −→ (B − {Handlef (p0)}, ∅, ∅, ∅,R)

PTopFail handles failures of the top level plan by resetting the agent configu-
ration, thus triggering Init again. The only way to handle a failure at this level
is to retry the whole program.

PRedo :
(p, τ, z) ∈ P ∧ z ∈ Fail(p) ∧ ¬((∃x)Failed(p, x) ∈ B) ∧B′ ` ψ

(B,Υ, E, θ,R) −→ (B′, (Υ− ϑ−p ) + {(p, τ, z′)}, E′, θ,R)

where

• B′ = (B − ϑ−b ) + {In(a, p, τ, z′), Alloc(z′), Failed(p, 1)}

• ϑ−b = {In(a, p, τ, z)} ∪
{In(a, p′, τ ′, z′)|τ ′ ∈ T ∧ p′ ∈ Plans∗(z)}

• z′ = Init(p, τ)

• ψ = TeamIn(p) ∧ (Pre(p) ∧ Run(p))θ

• ϑ−p = {(p, τ, z)} ∪ Plans*(Υ, z)

• E′ = E − {(b, z)|(p, τ, z) ∈ ϑ−p }

By applying PRedo, an agent retries to fulfil its task within a plan p, if it
has reached a failure state and believes its team is still working on p and that
the preconditions and runtime conditions are still met. Note that evaluating
the condition of this rule requires the agent to hypothesis B′ before applying
PRedo. PRedo takes precedence over PAbort, PRedo > PAbort, so a less
extensive failure handling is tried first. Subsequent failures of the same plan
will not be handled by PRedo due to the insertion of Failed(p, 1) into the
belief base. Since there is only one way to handle failure of the top-level plan,
PTopFail > PRedo.

PReplace :
Handlef (p) ∈ B,Failed(p, 1) ∈ B
(B,Υ, E, θ,R) −→ (B′,Υ, E, θ,R)

where

• B′ = (B − {Handlef (p)}) + {Alloc(z)}

• p ∈ Plans(z)

PReplace handles a failure by triggering a new task assignment for the state in
which p is executed.

PProp :
Handlef (p) ∈ B,Failed(p, 2) ∈ B, (p′, τ, z) ∈ Υ

(B,Υ, E, θ,R) −→ ((B − ϑ−b ) + ϑ+
b ,Υ− ϑ

−
p , E − ϑ−e , θ,R)

where

40



• p ∈ Plans(z)

• ϑ−b = {In(a′, p′, τ ′, z)|a′ ∈ A, τ ′ ∈ T }
∪ {In(a′, p′′, τ ′, z′)|p′′ ∈ Plans∗(z)} ∪ {(∀k)Failed(p′, k)}

• ϑ+
b = {Handlef (p′), Failed(p′, j)}

• ϑ−p = {(p′, τ, z)} ∪ Plans*(Υ, z)

• ϑ−e = {(b, z)|(p′, τ, z) ∈ ϑ−p }

• j =

{
j′ + 1 if Failed(p′, j′) ∈ B
1 otherwise

The last option for an agent confronted with a plan failure is to propagate the
failure upwards, which is done here by aborting the parent plan and triggering
failure handling rules for it. Since a failure should be handled at the lowest level
possible, PReplace > PProp.

The Allocation Failure Rule handles the case where a task allocation can-
not assign any agent to a plan, for instance if a precondition cannot be met. If
an allocation for state z fails, a failure for the corresponding plan p is raised.

NExpand :
Alloc(z) ∈ B,TAlloc∗(a, z|B) = ∅, (p, τ, z) ∈ Υ

(B,Υ, E, θ,R) −→ ((B − ϑ−b ) + ϑ+
b ,Υ− ϑ

−
p , E − ϑ−e , θ,R)

where

• ϑ−b = {Alloc(z)} ∪ {In(a′, p, τ ′, z)|a′ ∈ A, τ ′ ∈ T }
∪ {In(a′, p′, τ ′, z′)|p′ ∈ Plans∗(z)} ∪ {(∀k)Failed(p, k)}

• ϑ+
b = {Handlef (p), Failed(p, j)}

• ϑ−p = {(p, τ, z)} ∪ Plans*(Υ, z)

• ϑ−e = {(b, z)|(p, τ, z) ∈ ϑ−p }

• j =

{
j′ + 1 if Failed(p, j′) ∈ B
1 otherwise

The Replanning Rule treats the case where a plan has not failed but has
a comparatively low utility evaluation. In this case, an agent can trigger a new
task allocation if it believes there exists an allocation which is more suitable to
the current situation.

Replan :
(p, τ, z) ∈ P ∧ Up(B′′)− wsSim(p,B′′, B) > Up(B) + tp

(B,Υ, E, θ,R) −→ ((B′ + ϑ+
b ), (Υ− ϑ−p ) + ϑ+

p , (E − ϑ−e ) + ϑ+
e , θ′,R)

where

• B′ = B − {In(a′, p′, τ ′, z′)|p′ ∈ Plans∗(z)}

• B′′ = B′ + TAlloc∗(a, z|B′)
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• θ′ = θ ◦ σ(a,z,B′)

• ϑ+
b = {In(a′, p′, τ ′, z′)| In(a′, p′, τ ′, z′′) ∈ TAlloc(a, z,B′) ∧ (z′ = z′′ ∨

In(a′, p′, τ ′, z′) ∈ B)}

• ϑ−p = {(p′, τ ′, z′)|p′ ∈ Plans∗(z)}

• ϑ+
p = {(p′, τ ′, z′)| In(a, p′, τ ′, z′) ∈ ϑ+

b }

• ϑ−e = {(b, z′)|(p′, τ ′, z′) ∈ ϑ−p ∧ b ∈ Behaviours(z′)}

• ϑ+
e = {(b, z′)|(p′, τ ′, z′) ∈ ϑ+

p ∧ b ∈ Behaviours(z′)}

• tp is a threshold value,

• ws is a weight,

• Sim(p,F ,G) is a similarity measure:

Sim(p,F ,G) = 1− |{a| In(a, p, τ, z) ∈ F ∧ (∃z′) In(a, p, τ, z′) ∈ G}|
|G|

That is, if a new task allocation for state z has a utility higher than the
current allocation wrt. the situation at hand, the agent will adopt the new
allocation. The threshold value tp limits the applicability of this rule. tp as
well as ws is specific to each plan p. Similar to the transition rule, the current
allocation is removed from belief, plan and behaviour base. The new allocation
is adopted directly, similar to the Task Allocation Rule. This rule has the lowest
precedence.

This rule enables a team to react swiftly to changing situations. Due to the
threshold value and the similarity measure, oscillation can be avoided. However,
it highly depends on the utility function and is therefore domain dependent. In
general, as an agent progresses towards successful completion of its task, the
overall utility should increase. One way to achieve this, given reward functions
for successful completion, is using utilities which obey the Bellman equations [2].

In summary, the presented repair rules form a flexible and customisable sys-
tem to react on failures. Although a complete evaluation as well as a formal
analysis is still pending, preliminary tests have shown promising results, espe-
cially with regards to robustness and adaptiveness of the executing team.

7 Conclusions & Future Work

In this work, we presented a specification language for cooperative behaviour of
autonomous teams. The language, ALICA, is based on BDI languages such as
3APL [14] and teamwork frameworks such as STEAM [30]. With the presented
approach we extend the state of the art towards a comprehensive teamwork
model, especially geared towards highly dynamic domains.

The syntax allows for intuitive description of complex cooperative strategies
in the form of hierarchical plans, while annotations such as preconditions, post-
conditions and utility functions allow to model autonomous decisions in a very
precise manner. Through different degrees of commitments, either by estima-
tion or by explicit synchronisation, a team’s performance can be optimised with
regards to the precise task at hand.
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Roles and tasks form a two-layered abstraction between agents and plans,
thus allowing for both to be specified independently of each other. Roles are
assigned to agents based on their capabilities, and agents are allocated to tasks
based on the current situation as well as the preferences of the roles they are
assigned to. By allocating roles to agents based on the offered and required
capabilities, we directly address one of the most important aspects of hetero-
geneity in teams of heterogeneous agents. Heterogeneity in multi-agent systems
can roughly be divided into the subclasses “communication heterogeneity” (e.g.,
by different communication protocols), “information representation heterogene-
ity” (e.g., different units), “capability heterogeneity” (different agents can have
different capabilities), and “concept heterogeneity” (with different modelling ap-
proaches and reasoning paradigms). In this work we presented a general role
allocation approach, which is to be evaluated in the future.

The semantics of ALICA is described by a transitional rule system, which
defines how agents update their internal state while they execute an ALICA
program. The internal state of an agent consists of its beliefs, its intentions
in the form of procedural plans it is committed to, its roles, its behaviours
in execution and a runtime substitution. This substitution allows for further
abstraction through employment of parametrised plans and actions.

The rule system is both flexible and robust, as it already features rich failure
handling procedures and can easily be extended, e.g., to accommodate planning
and other sophisticated reasoning techniques.

Moreover, the operational nature of the given semantics allow for a one-on-
one correspondence between specification and implementation, thus circumvent-
ing the problem of ungrounded semantics. However, the relationship between
the semantics and BDI theories still needs be examined, in order to bridge this
gap completely. More concrete, we want to evaluate the convertibility of ALICA
to other approaches like 3APL. Convertibility would be also a big step to address
heterogeneity in teams of heterogeneous agents, as this would directly address
the issue of using different behaviour modelling approaches within one team.

Besides pending practical evaluations, the presented system offers plenty of
room for future work. We plan on a complete system to track agents through
an ALICA plan tree by estimating which rules an agent will apply. This should
result in cooperation even more robust against unreliable communication and
sensor noise.

The notion of utility functions to evaluate plans defined here gives rise to
the possibility of employing reinforcement learning through decision theoretic
functions. This can then be combined with symbolic learning techniques to
learn and optimise complex team strategies out of simple ones.
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