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The aim of this paper is the numerical treatment of a boundary value
problem for the system of Stokes’ equations. For this we extend the method
of approximate approximations to boundary value problems. This method
was introduced by V. Maz’ya in 1991 and has been used until now for the
approximation of smooth functions defined on the whole space and for the
approximation of volume potentials.

In the present paper we develop an approximation procedure for the solu-
tion of the interior Dirichlet problem for the system of Stokes’ equations in
two dimensions. The procedure is based on potential theoretical considera-
tions in connection with a boundary integral equations method and consists
of three approximation steps as follows.

In a first step the unknown source density in the potential representation of
the solution is replaced by approximate approximations. In a second step the
decay behavior of the generating functions is used to gain a suitable approx-
imation for the potential kernel, and in a third step Nyström’s method leads
to a linear algebraic system for the approximate source density. For every
step a convergence analysis is established and corresponding error estimates
are given.
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1 Introduction

In 1991 V. Maz’ya proposed a new approximation method called the method of ap-
proximate approximations [9], which is based on generating functions representing an
approximate partition of unity, only. As a consequence, this approximation method does
not converge if the mesh size tends to zero.

For practical computations this lack of convergence does not play an important role
since the resulting error can be chosen less than machine precision. On the other hand,
this method has great advantages due to nice properties of the generating functions, i.e.
simplicity, smoothness and exponential decay behavior [11].

The method of approximate approximations can be used efficiently for the evaluation of
various problems in mathematical physics, e.g. Cauchy problems of the kind Lu = f ,
where L denotes a suitable linear differential operator in Rn. Approximating the right
hand side f by approximate approximations, in many cases explicit formulas for the
approximating volume potentials are obtained containing a one-dimensional integration,
only.

For boundary value problems, the method of approximate approximations has been ap-
plied, too: For example, there are some heuristic considerations concerning the so-called
boundary point method [10] and, moreover, some detailed results about the Dirichlet
problem for the Laplace equation [12, 13].

In the present paper we develop an approximation method for the solution of the interior
Dirichlet problem for the system of Stokes’ equations in two dimensions using approx-
imate approximations. In hydrodynamics the system of Stokes’ equations describe the
stationary flow of a viscous incompressible fluid with low velocity. Solutions to the
system of Stokes’ equations consist of vector field describing the velocity and a scalar
function describing the pressure. The velocity field is called Stokes function.

The procedure is based on potential theoretical considerations in connection with a
boundary integral equations method and consists of three approximation steps as fol-
lows:

In a first step the unknown source density in the potential representation of the solution
is replaced by approximate approximations. In a second step the decay behavior of the
generating functions is used to gain a suitable approximation for the potential kernel, and
in a third step Nyström’s method leads to a linear algebraic system for the approximate
source density. For every step a convergence analysis is established and corresponding
error estimates are given.

The method, which is explicitly carried out here for the interior Dirichlet problem of
the Stokes operator in two dimensions, can also be used for many other boundary value
problems in mathematical physics, whenever a suitable potential theory is available, as
it is e.g. in the case of harmonic, elastic, or hydrodynamic boundary value problems
in general space dimensions. In all these cases there exists also a representation of the
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solution in form of a boundary layer potential, where the unknown source density has
to be determined as a solution of Fredholm boundary integral equations and can be
approximated by the method developed here, too.

2 The Dirichlet problem

Let G ⊂ R2 be a bounded simply connected domain with boundary Γ of class C2. We
consider the following Dirichlet problem for the system of Stokes equations: Find a
velocity field v ∈ C2(G,R2) ∩ C(G,R2) and a pressure function p ∈ C1(G) solving

−∆v +∇p = 0 in G, ∇ · v = 0 in G, v = b auf Γ.

Here the Laplacian ∆ is applied to the components v1 and v2 of the velocity field v =
(v1, v2)T , ∇p = (∂1p, ∂2p)

T denotes the gradient of p and ∇ · v = ∂1v1 + ∂2v2 is the
divergence of v. Furthermore b ∈ C(Γ,R2) is a given boundary value. Using the Gaussian
integral theorem and the fact that v has no divergence, we get the following condition
which is necessary for the existence of a solution∫

Γ

b(y) · n(y) ds(y) = 0. (1)

Here n(y) denotes the outward unit normal in y ∈ Γ.

From hydrodynamical potential theory it is known [14], [15], [17]: If the condition (1) is
fulfilled, the the Dirichlet problem has a solution (v, p). The velocity field v is uniquely
determined and the pressure function p is uniquely determined up to an additive con-
stant.The velocity field v can be represented in G by the hydrodynamical double layer
potential

(Dϕ)(x) :=

∫
Γ

d(x, y)ϕ(y) ds(y) , x ∈ G.

Here the vector field ϕ = (ϕ1, ϕ2)T : Γ→ R2 is an unknown continuous density and the
kernel d(x, y) of the hydrodynamical double layer potential for x ∈ R2 and y ∈ Γ with
x 6= y is defined by the 2× 2 matrix

d(x, y) := −(x− y) · n(y)

π |x− y|4

(
(x1 − y1)2 (x1 − y1)(x2 − y2)

(x1 − y1)(x2 − y2) (x2 − y2)2

)
.

Under the required regularity assumptions on the boundary Γ it follows [8] that the
kernel of the hydrodynamical double layer potential can be continuously extended to
Γ× Γ. So there exists for every x ∈ Γ the so-called direct value

(Dϕ)(x) :=

∫
Γ

d(x, y)ϕ(y) ds(y) , x ∈ Γ.
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Using the jump relations for the hydrodynamical double layer potential [8] we get that
the unknown density ϕ has to be determined as a solution the Fredholm boundary
integral equation system of second kind

1

2
ϕ(x) + (Dϕ)(x) = b(x) , x ∈ Γ,

where (Dϕ)(x) here denotes the direct value.

For every b ∈ C(Γ,R2) which fulfills the condition (1) this Fredholm boundary integral
equation system of second kind has a solution ϕ ∈ C(Γ,R2), which is not uniquely
determined [1], [17]. For numerical purposes we are interested in uniquely solvable
boundary integral equation systems, since after a suitable discretisation these systems
lead to a uniquely solvable linear algebraic system. To establish uniqueness of the
solution we define the operator

N : C(Γ,R2)→ C(Γ,R2) , ϕ 7→ Nϕ

with

(Nϕ)(x) := n(x)

∫
Γ

ϕ(y) · n(y) ds(y)

and instead of the above boundary integral equation system consider the following sys-
tem

1

2
ϕ(x) + (Dϕ)(x)− (Nϕ)(x) = b(x) , x ∈ Γ. (2)

It can be shown [1], [17] that for every b ∈ C(Γ,R2) this system has a unique solution and
that this solution is also a solution of the initial system if the condition (1) is fulfilled.
In the following we will always consider the uniquely solvable system (2).

Let γ : [−1, 1] → Γ be a parameterization of the boundary Γ. Then we obtain both in
x ∈ G for the hydrodynamical double layer potential and in x ∈ Γ for its direct value
the representation

(Dϕ)(x) =

∫ 1

−1

d(x, γ(t))ϕ(γ(t)) |γ′(t)| dt.

Setting
u := ϕ ◦ γ

and
K(x, t) := D(x, γ(t)) |γ′(t)|,

for the hydrodynamical double layer potential in G and for the direct value on the
boundary Γ we get the representation

(Dϕ)(x) =

∫ 1

−1

K(x, t)u(t) dt

=

∫ 1

−1

(
k11(x, t)u1(t) + k12(x, t)u2(t)
k21(x, t)u1(t) + k22(x, t)u2(t)

)
dt.
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3 The approximation procedure

As mentioned above, in G the uniquely determined velocity field can be represented by
the hydrodynamical double layer potential, i.e. we have

v(x) =

∫ 1

−1

K(x, t)u(t) dt , x ∈ G. (3)

In the following we will approximate the velocity field v for x ∈ G by an explicit analytic
expression containing no integrals. This will be done in three steps. To do so, let N ∈ N,
h := 1/N , d > 0.

3.1 The first approximation step

In the first step we replace the components ui of the unknown function u in the integral
representation (3) by the approximate approximations

(ui)d,h : [−1, 1]→ R , (ui)d,h(t) :=
1√
πd

N∑
m=−N

ui(mh) e−
(t−mh)2

dh2

and define for x ∈ G

Ψd,h(x) :=

∫ 1

−1

K(x, t)

(
(u1)d,h(t)
(u2)d,h(t)

)
dt

as an approximation of v(x).

Setting

ud,h(t) :=

(
(u1)d,h(t)
(u2)d,h(t)

)
=

1√
πd

N∑
m=−N

u(mh) e−
(t−mh)2

dh2

we get

Ψd,h(x) =

∫ 1

−1

K(x, t)ud,h(t) dt

=
1√
πd

N∑
m=−N

∫ 1

−1

K(x, t)u(mh) e−
(t−mh)2

dh2 dt.
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3.2 The second approximation step

Since the function

t 7→ e−
(t−mh)2

dh2

decreases rapidly with increasing distance to mh, if the term dh2 is sufficiently small, in
the second step we replace the kernel K(x, t) by K(x,mh) and define for x ∈ G

Φd,h(x) :=
1√
πd

N∑
m=−N

∫ 1

−1

K(x,mh)u(mh) e−
(t−mh)2

dh2 dt

=
1√
πd

N∑
m=−N

K(x,mh)u(mh)

∫ 1

−1

e−
(t−mh)2

dh2 dt

as an approimation for Ψd,h(x).

Using ∫ 1

−1

e−
(t−mh)2

dh2 dt =

√
d

N

∫ m+N√
d

m−N√
d

e−t2 dt =

√
πd

2N
erf

(
m−N√

d
,
m+N√

d

)
we get

Φd,h(x) =
1

2N

N∑
m=−N

K(x,mh)u(mh) erf

(
m−N√

d
,
m+N√

d

)
,

where for a, b ∈ R with a ≤ b the error function is defined by

erf(a, b) :=
2√
π

∫ b

a

e−t2 dt.

3.3 The third approximation step

Since the density ϕ is still unknown we do not know the values u(mh) = ϕ(γ(mh)).
Therefore in a third step we determine approximate values um of u(mh) by using
Nyström’s method [7]. Since u = ϕ ◦ γ is the unique solution of the boundary inte-
gral equation system (2) we have for all x ∈ Γ

1

2
ϕ(x) + (Dϕ)(x)− n(x)

∫
Γ

ϕ(y) · n(y) ds(y) = b(x),

i.e.
1

2
ϕ(x) +

∫ 1

−1

K(x, t)u(t) dt− n(x)

∫ 1

−1

u(t) · n(γ(t)) |γ′(t)| dt = b(x).

So for all s ∈ [−1, 1] we have

1

2
u(s) +

∫ 1

−1

K(γ(s), t)u(t) dt− n(γ(s))

∫ 1

−1

u(t) · n(γ(t)) |γ′(t)| dt = b(γ(s)).

6



Especially, this system of equations is fulfilled in the points s = jh. For j = −N, . . . , N
we then obtain

1

2
u(jh) +

∫ 1

−1

K(γ(jh), t)u(t) dt− n(γ(jh))

∫ 1

−1

u(t) · n(γ(t)) |γ′(t)| dt = b(γ(jh)).

We now require equality if we approximate the integrals by the trapezoidal rule (Nyströms
method) and get

b(γ(jh)) =
N∑

m=−N

(
2− δ|m|N

2N
K(γ(jh),mh) +

1

2
δjm

)
um

−n(γ(jh))
N∑

m=−N

2− δ|m|N
2N

um · n(γ(mh)) |γ′(mh)|.

Here the value um = (u1,m, u2,m)T are approximations to the values u(mh) and δkl

denotes the Kronecker symbol. For the components we find

bi(γ(jh)) =
N∑

m=−N

(
a

(i1)
j,m u1,m + a

(i2)
j,m u2,m

)
, i = 1, 2

with

a
(ik)
j,m :=

2− δ|m|N
2N

kik(γ(jh),mh) +
1

2
δjm δik

−
2− δ|m|N

2N
ni(γ(jh)) |γ′(mh)|nk(γ(mh)).

These 2(2N + 1) equations can be written as the following linear system

a
(11)
−N,−N . . . a

(11)
−N,N a

(12)
−N,−N . . . a

(12)
−N,N

...
...

...
...

a
(11)
N,−N . . . a

(11)
N,N a

(12)
N,−N . . . a

(12)
N,N

a
(21)
−N,−N . . . a

(21)
−N,N a

(22)
−N,−N . . . a

(22)
−N,N

...
...

...
...

a
(21)
N,−N . . . a

(21)
N,N a

(22)
N,−N . . . a

(22)
N,N





u1,−N
...

u1,N

u2,−N
...

u2,N


=



b1(γ(−1))
...

b1(γ(1))
b2(γ(−1))

...
b2(γ(1))


for the determination of the 2(2N + 1) values u1,−N , . . . , u1,N , u2,−N , . . . , u2,N .

Finally, for x ∈ G we set

vd,h(x) :=
1

2N

N∑
m=−N

K(x,mh)um erf

(
m−N√

d
,
m+N√

d

)
as an approximation for Φd,h(x) and hence as an approximation for v(x).
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4 Convergence analysis

To investigate the accuracy of the approximation, we define for x ∈ G the error

F (d, h, x) := |v(x)− vd,h(x)|

and consider the decomposition

F (d, h, x) = |v(x)−Ψd,h(x) + Ψd,h(x)− Φd,h(x) + Φd,h(x)− vd,h(x)|
≤ |v(x)−Ψd,h(x)|︸ ︷︷ ︸

=:F1(d,h,x)

+ |Ψd,h(x)− Φd,h(x)|︸ ︷︷ ︸
=:F2(d,h,x)

+ |Φd,h(x)− vd,h(x)|︸ ︷︷ ︸
=:F3(d,h,x)

,

where Fi(d, h, x) denotes the error in the i-th approximation step.

In the following we assume b ∈ C2(Γ,R2). Then we find ϕ ∈ C2(Γ,R2) due to the
regularizing properties of the double layer potential. Since also Γ is of class C2 we
obtain γ ∈ C2([−1, 1],R2) and hence u ∈ C2([−1, 1],R2).

For the convergence analysis below we need an estimate for the kernel.

For x ∈ G and y ∈ Γ we have

|xi − yi| ≤ |x− y| , i = 1, 2

and
|x− y| ≥ dist(x,Γ) ,

where
dist(x,Γ) := inf

y∈Γ
|x− y|

denotes the distance from x ∈ G to the boundary Γ. Using the Cauchy-Schwarz inequal-
ity we get

|kik(x, t)| =
|(x− γ(t)) · n(γ(t))(xi − γi(t))(xk − γk(t))|

π|x− γ(t)|4
|γ′(t)|

≤ ‖γ′‖∞
π |x− γ(t)|

≤ ‖γ′‖∞
π dist(x,Γ)

, (4)

where ‖ · ‖∞ denotes the supremum norm.

To prove convergence we start with the last step.
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4.1 Convergence in the third step

It is known that Nyström’s method converges in this setting of at least second order
[3, 7]. Hence for sufficiently large N the linear system given above has a unique solution
and there is a constant C > 0 with

max
m∈{−N,...,N}

|ui(mh)− ui,m| ≤ C h2 , i = 1, 2. (5)

This lead to an estimate for the corresponding error in the third step.

Lemma 1. For F3(d, h, x) we have

F3(d, h, x) ≤ 3
√

8C ‖γ′‖∞
π dist(x,Γ)

h2

with the constant C from (5).

Proof. Using the estimates (4), (5) and∣∣∣∣erf

(
m−N√

d
,
m+N√

d

)∣∣∣∣ ≤ 2 (6)

we obtain

F3(d, h, x) ≤ 1

2N

N∑
m=−N

|K(x,mh)(u(mh)− um)| erf

(
m−N√

d
,
m+N√

d

)

≤ 1

2N

N∑
m=−N

√
8 ‖γ′‖∞

πdist(x,Γ)
Ch2 2

=

√
8 ‖γ′‖∞C

π dist(x,Γ)
h3 (2N + 1).

With 2N + 1 ≤ 3N the assertion is proved.

4.2 Convergence in the second step

For x ∈ G and i, k ∈ {1, 2} the function t 7→ kik(x, t) is continuously differentiable in
[−1, 1]. So there exists the constant

L(x) := max
i,k∈{1,2}

max
t∈[−1,1]

|∂tkik(x, t)| (7)

which is needed for the next estimate.
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Lemma 2. For F2(x, d, h) we have

F2(x, d, h) ≤ 6
√

2 ‖u‖∞ L(x)√
π

√
d h ,

where the constant L(x) is defined in (7).

Proof. For t,mh ∈ [−1, 1] and i, k ∈ {1, 2} by the mean value theorem we get

|kik(x, t)− kik(x,mh)| ≤ L(x) |t−mh|.

This leads to the following estimate for the components of Ψd,h − Φd,h:

|(Ψd,h)i(x)− (Φd,h)i(x)| ≤ ‖u1‖∞ L(x)√
πd

N∑
m=−N

∫ 1

−1

|t−mh| e−
(t−mh)2

dh2 dt

+
‖u2‖∞ L(x)√

πd

N∑
m=−N

∫ 1

−1

|t−mh| e−
(t−mh)2

dh2 dt

≤ 2 ‖u‖∞ L(x)√
πd

N∑
m=−N

∫ 1

−1

|t−mh| e−
(t−mh)2

dh2 dt.

Using ∫ 1

−1

|t−mh| e−
(t−mh)2

dh2 dt =
d

N2

(
1− 1

2
e−

1
d

(m−N)2 − 1

2
e−

1
d

(m+N)2
)

≤ d

N2

we obtain

|(Ψd,h)i(x)− (Φd,h)i(x)| ≤ 2 ‖u‖∞ L(x)√
πd

N∑
m=−N

d

N2

=
2 ‖u‖∞ L(x)√

πd

d(2N + 1)

N2
.

With
F2(d, h, x) ≤

√
2 max

i=1,2
|(Ψd,h)i(x)− (Φd,h)i(x)|

we finally get

F2(d, h, x) ≤ 6
√

2 ‖u‖∞ L(x)√
π

√
d h,

as asserted.
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Remark. We notice that the error F2 is getting small if the term
√
d h is getting small,

this means if the Gaussian kernel

t 7→ e−
(t−mh)2

dh2

√
πd

is a good approximation to the Dirac delta function concentrated in the point mh.
Considering this background, the second approximation step is quite natural.

4.3 Convergence in the first step

For m ∈ {−N, . . . , N} we consider the linear spline

sm : R→ R , sm(t) :=

{
1−N |t−mh| , t ∈ [mh− h,mh+ h] ,

0 , elsewhere,

and define the spline interpolants

usp
i,h : [−1, 1]→ R , usp

i,h(t) :=
N∑

m=−N

ui(mh) sm(t) , i = 1, 2

and

usp
h : [−1, 1]→ R2 , usp

h (t) :=

(
usp

1,h(t)

usp
2,h(t)

)
=

N∑
m=−N

u(mh) sm(t).

Since u ∈ C2([−1, 1],R2) we have u1, u2 ∈ C2([−1, 1]) and hence there hold the estimates
[7]

‖ui − usp
i,h‖∞ ≤

1

8
‖u′′i ‖∞ h2 , i = 1, 2. (8)

Using the linear spline interpolant instead of approximate approximations in the first
and second approximation step, we obtain

Ψsp
h (x) :=

∫ 1

−1

K(x, t)usp
h (t) dt

=
N∑

m=−N

∫ 1

−1

K(x, t)u(mh) sm(t) dt

and

Φsp
h (x) :=

N∑
m=−N

K(x,mh)u(mh)

∫ 1

−1

sm(t) dt

=
1

2N

N∑
m=−N

K(x,mh)u(mh) (2− δ|m|N),
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respectively.

The next lemma shows a remarkable convergence result if the parameter d tends to
zero.

Lemma 3. For all x ∈ G we have

lim
d→0

Φd,h(x) = Φsp
h (x).

Proof. Using

lim
d→0

erf

(
m−N√

d
,
m+N√

d

)
= lim

d→0

2√
π

∫ m+N√
d

m−N√
d

e−t2 dt

and
2√
π

∫ ∞
0

e−t2 dt = 1

we get

lim
d→0

erf

(
m−N√

d
,
m+N√

d

)
=


1 , m = −N,
2 , |m| 6= N,
1 , m = N,

hence

lim
d→0

erf

(
m−N√

d
,
m+N√

d

)
= 2− δ|m|N .

This implies

lim
d→0

Φd,h(x) = lim
d→0

(
1

2N

N∑
m=−N

K(x,mh)u(mh) erf

(
m−N√

d
,
m+N√

d

))

=
1

2N

N∑
m=−N

K(x,mh)u(mh) lim
d→0

erf

(
m−N√

d
,
m+N√

d

)

=
1

2N

N∑
m=−N

K(x,mh)u(mh) (2− δ|m|N)

= Φsp
h (x) ,

as asserted.

With help of the above convergence result, the remaining error in the first approximation
step can be controlled, too.

Lemma 4. Let x ∈ G. For every ε > 0 there exists some d0 > 0 such that for all d ≤ d0

we have

F1(d, h, x) ≤ ε+ 4 ‖u‖∞ L(x)h+
6
√

2 ‖u‖∞ L(x)√
π

√
d h+

‖γ′‖∞ ‖u′′‖∞
π dist(x,Γ)

h2.
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Proof. Choose ε > 0. Due to the last Lemma there exists some d0 > 0 such that for all
d ≤ d0 the estimate

|Φsp
h (x)− Φd,h(x)| ≤ ε

holds. Using the inequatities (4), (8) and ‖ui‖∞ ≤ ‖u‖∞ we get

|v(x)−Ψsp
h (x)| =

∣∣∣∣∫ 1

−1

K(x, t)(u(t)− usp
h (t)) dt

∣∣∣∣
≤ 1

2π

∫ 1

−1

|K(x, t)(u(t)− usp
h (t))| dt.

≤
∫ 1

−1

4
‖γ′‖∞

π dist(x,Γ)

1

8
‖u′′‖∞ h2 dt.

=
‖γ′‖∞ ‖u′′‖∞
π dist(x,Γ)

h2.

Furthermore we find

|Ψsp
h (x)− Φsp

h (x)| ≤
N∑

m=−N

∫ 1

−1

|(K(x, t)−K(x,mh))u(mh)| sm(t) dt

≤ 4 ‖u‖∞ L(x)
N∑

m=−N

∫ 1

−1

|t−mh| sm(t) dt

≤ 4 ‖u‖∞ L(x)
N∑

m=−N

h2

3
.

≤ 4 ‖u‖∞ L(x)h,

where L(x) ist the constant defined in (7). Using the decomposition

F1(d, h, x) ≤ |v(x)−Ψsp
h (x)|+ |Ψsp

h (x)− Φsp
h (x)|

+ |Φsp
h (x)− Φd,h(x)|+ |Φd,h(x)−Ψd,h(x)|

and the convergence result from the second step, we obtain the assertion.

Now collecting the estimates from all the three steps, the following main estimate is
proved:

Theorem. Let x ∈ G. For every ε > 0 there exists some d0 > 0 such that for all d ≤ d0

we have

F (x, d, h) ≤ ε+ 4 ‖u‖∞ L(x)h+
6
√

2 ‖u‖∞ L(x)√
π

√
d h

+
‖γ′‖∞

π dist(x,Γ)

(
3
√

8C + ‖u′′‖∞
)
h2 ,

where C is the constant from (5), and L(x) is defined in (7).
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