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Using the functional approach, we state and prove a characterization theorem for classical orthogonal
polynomials on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable) including
the Askey-Wilson polynomials. This theorem proves the equivalence between seven characterization
properties, namely the Pearson equation for the linear functional, the second-order divided-difference
equation, the orthogonality of the derivatives, the Rodrigues formula, two types of structure relations,
and the Riccati equation for the formal Stieltjes function.

Keywords: Classical orthogonal polynomials, Non-uniform lattices, Linear functionals, Divided-difference
equations, Riccati equation, Structure relations, Functional approach
Mathematics Subject Classification (2010) 33C45, 33D45

1 Introduction

Classical orthogonal polynomials (in short COP) on a non-uniform lattice are defined as polynomials (Pn)n

with degree Pn = n, satisfying one of the following orthogonality relations [4, 5, 8, 13, 24]∫
C
Pn(x(s))Pm(x(s))ρ(s)∇x1(s) ds = kn δn,m, kn 6= 0, ∀ n, m ∈ N; (1)

N∑
i=0

Pn(x(si))Pm(x(si))ρ(si)∇x1(si) = kn δn,m, kn 6= 0, ∀ n, m ∈ N, N ∈ N ∪ {∞}, (2)

where N is the set of nonnegative integers, s0 = a, sN = b. Here, C is an appropriate contour in the
complex s-plane, and the weight ρ is a solution of the Pearson-type equation

∆
∇x1(s)

(σ(s)ρ(s)) = ψ(x(s)) ρ(s), (3)

where ψ is a first-degree polynomial and

φ(x(s)) = σ(s) +
1
2
ψ(x(s))∇x1(s) (4)

is a polynomial of degree at most two in x(s), with the border conditions
∫
C ∆

[
σ(s) ρ(s)xk(s− 1

2)
]
ds = 0, k = 0, 1, 2, . . .

σ(s) ρ(s)xk(s− 1
2)

∣∣
s=a, b

= 0, k = 0, 1, 2, . . . ,
(5)
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for orthogonality relation (1) and (2) respectively. ∆ and ∇ are the forward and the backward operators

∆f(x(s)) := ∆f(s) = f(s+ 1)− f(s), ∇f(x(s)) := ∇f(s) = f(s)− f(s− 1),

and
xµ(s) = x(s+

µ

2
), µ ∈ C,

where x(s) is a non-uniform lattice satisfying [4, 25]

x(s+ k)− x(s) = γk∇xk+1(s), k ≥ 0, (6)
x(s+ k) + x(s)

2
= αk xk(s) + βk, k ≥ 0, (7)

with the sequences (αk), (βk), (γk) satisfying the following relations

αk+1 − 2ααk + αk−1 = 0,
βk+1 − 2βk + βk−1 = 2β αk, (8)

γk+1 − γk−1 = 2αk,

and the initial conditions

α0 = 1, α1 = α, β0 = 0, β1 = β, γ0 = 0, γ1 = 1. (9)

The lattice x(s) is explicitly given by [25]

x(s) =

{
c1 q

−s + c2 q
s + c3 for α = q

1
2 +q−

1
2

2 ,
c4 s

2 + c5 s+ c6 for α = 1.
(10)

Costas-Santos and Marcellán [5], using the Pearson equation (3) for the weight function, gave a charac-
terization theorem for classical orthogonal polynomials on the lattice (10), proving the equivalence between:

1. the second-order divided-difference equation{
σ(s)

∆
∇x1(s)

∇
∇x(s)

+ ψ(x(s))
∆

∆x(s)
+ λn

}
Pn(x(s)) = 0, n ≥ 0; (11)

2. the orthogonality of the derivatives (∆Pn+1(x(s))
∆x(s) )n;

3. the Rodrigues formula

Pn(x(s)) =
Bn

ρ(s)
∇

∇x1(s)
. . .

∇
∇xn(s)

(ρn(s)) , with ρk(s) = σ(s+1) ρk−1(s+1), ρ0(s) := ρ(s);

(12)

4. and the second structure relation

Pn(x(s+ 1)) + Pn(x(s))
2

= Cn,n+1
∆

∆x(s)
Pn+1(x(s)) + Cn,n

∆
∆x(s)

Pn(x(s)) + Cn,n−1
∆

∆x(s)
Pn−1(x(s)),

(13)
with Cn,n−1 6= 0.
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Koornwinder [14] in 2007 gave a structure relation for classical orthogonal polynomials of the form

L(pn)(x) = γnAn pn+1(x)− γn−1Cn pn−1(x), (14)

where An and Bn are the coefficients of the three-term recurrence relation

xpn(x) = Anpn+1(x) +Bnpn(x) + Cnpn−1(x),

while L is a linear operator acting on the linear space R[x] of polynomials of the variable x with real
coefficients. In addition L is skew symmetric

〈Lf, g〉 = −〈f,Lg〉, ∀f, g ∈ R[x],

and satisfies
L(xn) = γn x

n+1 + terms of lower degree,

where 〈., .〉 is the inner product with respect to which the corresponding polynomial sequence is orthogonal.
For the specific case of Askey-Wilson polynomials, Koornwinder gave the operator L as

(L(f))[z] =
(1− az)(1− bz)(1− cz)(1− dz)z−2f [qz]− (1− a

z )(1− b
z )(1− c

z )(1− d
z )z2f [ z

q ]

z − z−1
, (15)

with the notation f [z] := f( z+z−1

2 ) = f(x), where x = z+z−1

2 . More details are given in Section 4.

The aim of this paper is to:

1. state the Pearson-type equation for the linear functional of the corresponding classical orthogonal
polynomials, and prove that the Pearson equation for the weight implies the one of the linear func-
tional;

2. state and prove using the functional approach seven equivalent characterization properties for classical
orthogonal polynomials: the four properties given by Costas-Santos and Marcellán [5], plus, the
Pearson equation for the linear functional, the Rodrigues formula for the linear functional, the first
structure relation and the Riccati equation for the formal Stieltjes function;

3. find the link between the structure relation given above by Koornwinder [14] and our second structure
relation;

4. connect this work with the pioneering one by Magnus [15] who gave the Riccati equation for the
associate Askey-Wilson polynomials.

Since the operator Dx reduces to the forward operator ∆ and the Hahn operatorDq

(
Dqf(s) = f(qs)−f(s)

(q−1)s

)
for the lattices x(s) = s and x(s) = qs respectively [8], this work generalizes previous ones characterizing
classical orthogonal polynomials by means of the above mentioned seven equivalent properties. Among
these, we would like to mention [1, 2, 17] for COP of a continuous variable, [12] for COP of a discrete
variable, [21, 20, 3] for COP of a q-discrete variable and [5, 14] for COP on a non-uniform lattice.

In Section 2, we recall known results and link the Pearson equation for the weight with the one of the
linear functional. Section 3 deals with the characterization theorem while the last section provides some
important connections and perspectives.
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2 Known Results and Pearson-type Equations

2.1 Properties of the Companion Operators Dx and Sx

By means of the companion operators Dx and Sx [8]

Dx f(x(s)) =
f(x(s+ 1

2))− f(x(s− 1
2))

x(s+ 1
2)− x(s− 1

2)
, Sx f(x(s)) =

f(x(s+ 1
2)) + f(x(s− 1

2))
2

, (16)

Equation (11) can be rewritten as [7, 8]

φ(x(s)) D2
xPn(x(s)) + ψ(x(s)) SxDxPn(x(s)) + λn Pn(x(s)) = 0, (17)

where

λn = −γn (φ2 γn−1 + ψ1 αn−1). (18)

The operators Dx and Sx, which transform a polynomial of degree n in the variable x(s) into a polynomial
of degree n − 1 and n respectively in x(s), fulfill important relations—which read, taking into account the
shift (compared to the definition in [8]) in the definition of the above defined companion operators, as

Theorem 1 [8]

1. The operators Dx and Sx satisfy the product rules I

Dx (f(x(s))g(x(s))) = Sxf(x(s)) Dxg(x(s)) + Dxf(x(s)) Sxg(x(s)), (19)
Sx (f(x(s))g(x(s))) = U2(x(s)) Dxf(x(s)) Dxg(x(s)) + Sxf(x(s)) Sxg(x(s)), (20)

where U2 is a polynomial of degree 2

U2(x(s)) = (α2 − 1)x2(s) + 2β (α+ 1)x(s) + δx, (21)

and δx is a constant depending on α, β and the initial values x(0) and x(1) of x(s):

δx =
x2(0) + x2(1)

4α2
− (2α2 − 1)

2α2
x(0)x(1)− β (α+ 1)

α2
(x(0) + x(1)) +

β2 (α+ 1)2

α2
. (22)

2. The operators Dx and Sx satisfy the quotient rules

Dx

(
f(x(s))
g(x(s))

)
=

Sxf(x(s)) Dxg(x(s))− Dxf(x(s)) Sxg(x(s))
U2(x(s)) [Dxg(x(s))]2 − [Sxg(x(s))]2

; (23)

Sx

(
f(x(s))
g(x(s))

)
=

U2(x(s)) Dxf(x(s)) Dxg(x(s))− Sxf(x(s)) Sxg(x(s))
U2(x(s)) [Dxg(x(s))]2 − [Sxg(x(s))]2

, (24)

provided that g(x(s)) 6= 0.

3. More generally, relations (19)-(20) and (23)-(24) remain valid if we replace x and x1 by xµ and xµ+1

respectively, µ ∈ C. In particular, the constant δx remains unchanged if we replace x in (22) by
xk, k ∈ Z, i.e.,

δxk
= δx := δ, k ∈ Z. (25)

4. The operators Dx and Sx also satisfy the product rules II

Dx Sx = α Sx Dx + U1(s) D2
x; (26)

S2
x = U1(s) Sx Dx + αU2(s) D2

x + I, (27)

where I is the identity operator If(x) = f(x), and

U1(s) := U1(x(s)) = (α2 − 1)x(s) + β (α+ 1), U2(s) := U2(x(s)). (28)

4



2.2 Properties of the Basis Fn

Looking for suitable bases for the companion operators, Foupouagnigni, Kenfack, Koepf, and Mboutngam
[9] proved the following:

Theorem 2 [9]
The polynomial sequence

Fn(x(s)) = Fn(x(s), x(zx)), with Fn(x(s), x(z)) =
n∏

j=1

[x(s)− xj(z)] , (29)

where zx is the unique solution (provided that the lattice x(s) is quadratic or q-quadratic: i.e. the constants
cj in (10) satisfy c1 c2 6= 0 or c4 6= 0) in the variable t of the equation

x1(t) = x(t),

fulfills the following relations

DxFn(x(s)) = γn Fn−1(x(s)), (30)

SxFn(x(s)) = αn Fn(x(s)) +
γn

2
∇xn+1(zx)Fn−1(x(s)), (31)

Dx
1

Fn(x(s))
= − γn

Fn+1(x(s))
, (32)

Sx
1

Fn(x(s))
=

αn

Fn(x(s))
+
γn

2
∇xn+2(zx)
Fn+1(x(s))

, (33)

where αn, βn and γn are defined in (8).

One straightforward corollary of the previous theorems is the following:

Corollary 1 The coefficients αn and γn fulfill the following relations

αn+1 = ααn + (α2 − 1)γn, γn+1 = αn + αγn, (34)

from which one deduces after some computations involving basic linear algebra that

αn = 1, γn = n, for α = 1, (35)

and

αn =
q

n
2 + q−

n
2

2
, γn =

q
n
2 − q−

n
2

q
1
2 − q−

1
2

, for α =
q

1
2 + q−

1
2

2
. (36)

Proof: This can easily be deduced by applying the operators Dx and Sx to both sides of the following
relation deduced from (29)

Fn+1(x(s)) = (x(s)− xn+1(zx))Fn(x(s)),

and using the product rules (19) and (20). �

Next, by considering, instead of the well-known Stieltjes function S0 of the functional L

S0 [L] (z) =
∞∑

n=0

〈L, xn(s)〉
xn+1(z)

, (37)

but rather its new representation [9] in terms of the appropriate basis Fn

S [L] (z) =
∞∑

n=0

〈L, Fn(x(s))〉
Fn+1(x(z))

, (38)

and using results of the previous theorems, the following result is proved in [9].
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Theorem 3 [9]

S [DxL] (s) = Dx [S(L)] (s), (39)

S [SxL] (s) = α SxS [L] (s) + U1DxS [L] (s). (40)

Here, for a given Q ∈ C[x(s)], QL, DxL and SxL are linear functionals defined as

〈QL, P 〉 = 〈L, QP 〉, 〈DxL, P 〉 = −〈L,DxP 〉, 〈SxL, P 〉 = 〈L,SxP 〉, ∀P ∈ C[x(s)]. (41)

Remark 1

1. The functions S0 [L] and S [L] defined respectively by Equations (37) and (38) are equal. In fact,
if the corresponding polynomial family is orthogonal with respect to a given positive measure µ(x),
then the function S0 reads

S0 [L] (x(z)) =
∫

Supp. µ

dµ(x(s))
x(z)− x(s)

.

The latter expression is equal to (38) by means of the relation (see [9], Corollary 7, page 6)

1
x(z)− x(s)

=
∞∑

k=0

Fk(x(s))
Fk+1(x(z))

, z 6= s.

2. The expression S(fL) can be evaluated using the well-known relation by Maroni [18]

S [fL] (x) = f(x)S [L] (x) + (Lθ0f)(x), f ∈ C[x], (42)

with

θ0f(x) =
f(x)− f(0)

x
,

where the product of the functional L by a polynomial g, Lg, is defined as

Lg(x(s)) =
n∑

k=0

gk

k∑
j=0

〈L, xj(s)〉xk−j(s), with g(x(s)) =
n∑

k=0

gk x
k(s), n ≥ 0. (43)

2.3 Pearson-type Equations

Let (Pn)n be a family of COP on a non-uniform lattice. It is well-known that this polynomial sequence
satisfies [4, 5, 8] Equation (17). By assuming that L is the corresponding regular linear functional

〈L, PnPm〉 = knδn,m, kn 6= 0, ∀n,m ≥ 0, (44)

we obtain using (17) and (41)

0 = 〈L, 0〉
= 〈L, φ(x(s)) D2

xPn+1(x(s)) + ψ(x(s))SxDxPn+1(x(s)) + λn+1Pn+1(x(s))〉, ∀n ≥ 0,
= 〈Dx(φL)− Sx(ψL),DxPn+1(x(s))〉, ∀n ≥ 0. (45)

Since deg(DxPn+1) = n, n ≥ 0, the sequence (DxPn+1(x(s)))n≥0 forms a basis of C[x(s)], therefore

Dx(φL) = Sx(ψL). (46)

Definition 1
We call (46) the Pearson equation for the linear functional L corresponding to the COP (Pn)n satisfying
(17).
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Proposition 1
Let (Pn)n be a polynomial family, orthogonal with respect to the weight function ρ satisfying the Pearson
equation (3) and the border conditions (5). Then, the linear functional U defined on C[x(s)] by

〈U , P 〉 =
∫

C
ρ(s)P (x(s))∇x1(s) ds, (47)

for the orthogonality relation (1), where C is an appropriate contour in the complex s-plane, or by

〈U , P 〉 =
N∑

i=0

P (x(si)) ρ(si)∇x1(si), N ∈ N ∪ {+∞}, (48)

for the orthogonality relation (2), satisfies the Pearson equation (46).

Proof: The proof uses the following relations obtained by direct computation taking into account the
definitions of Dx and Sx

∆
∇x1(s)

[
f(s− 1

2
)
]

= Dxf(s), (49)

Dx(f(s)g(s)) = f(s+
1
2
)Dxg(s) + g(s− 1

2
)Dxf(s). (50)

In the first step, computations using (4), (41) and (47) for P ∈ C[x(s)] give

〈Dx(φU)− Sx(ψU), P 〉 = −〈U , φDxP + ψSxP 〉

= −
∫

C
ρ(s)

[(
σ(s) +

1
2
ψ(x(s))∇x1(s)

)
DxP (x(s)) + ψ(x(s))SxP (x(s))

]
∇x1(s) ds,

= −
∫

C
ρ(s)σ(s) DxP (x(s))∇x1(s) ds (51)

−
∫

C
ψ(x(s))ρ(s)

[
1
2
∇x1(s) DxP (x(s)) + SxP (x(s))

]
∇x1(s) ds.

In the second step, we use (50) for f(s) = P (x(s)) and g(s) = σ(s+ 1
2)ρ(s+ 1

2) and the relation

1
2
∇x1(s) DxP (x(s)) + SxP (x(s)) = P (x(s+

1
2
)),

which is easily deduced by direct computation, to transform (51) into

〈Dx(φU)− Sx(ψU), P 〉 = −
∫

C
Dx

[
σ(s+

1
2
)ρ(s+

1
2
)P (x(s))

]
∇x1(s) ds

+
∫

C
P (x(s+

1
2
))Dx

[
σ(s+

1
2
)ρ(s+

1
2
)
]
∇x1(s) ds

−
∫

C
ψ(x(s))ρ(s)P (x(s+

1
2
))∇x1(s) ds.

In the third step we use the relation

Dx

(
σ(s+

1
2
)ρ(s+

1
2
)
)

= ψ(x(s))ρ(s)

which by means of (49) is equivalent to the Pearson equation (3), and the border conditions (5) to get

〈Dx(φU)− Sx(ψU), P 〉 = 0.

The proof is similar if the linear functional U is represented by (48). �
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3 Characterization Theorem

In this section, we first state and prove the following propositions, which are used to give the proof of the
main results of this paper, stated in Theorem 4.

Proposition 2 The following relations hold for every linear functional L and for all polynomials f
and g.

DxSxf =
1
α

Dx (U1(s)Dxf) +
1
α

SxDxf ; (52)

S2
xf =

1
α

Sx (U1(s)Dxf) +
1
α
U2(s)D2

xf + f ; (53)

fDxg = Dx

[(
Sxf −

U1(x)
α

Dxf

)
g

]
− 1
α

Sx(gDxf); (54)

fSxg = Sx

[(
Sxf −

U1(x)
α

Dxf

)
g

]
− U2(x)

α
Dx(gDxf); (55)(

D2
xf

)
g = Dx [DxfSxg − SxfDxg] +

(
D2

xg
)
f (56)

(SxDxf) g = Sx [DxfSxg − SxfDxg] + (SxDxg) f. (57)

Proof: The proof of the first four relations is obtained by direct computation, starting from the right-hand
side using relations (19), (20), (26), (27) and the following ones linking U1 and U2

Sx(U1(x(s)) = αU1(x(s), Dx(U2(x(s)) = 2αU1(x(s), DxU1(x(s)) = α2 − 1. (58)

Relations (56) and (57) are obtained by direct computation, starting from the right-hand side using relations
(19), (20), (26), (27). �

Proposition 3
The following relations hold for every linear functional L and for all polynomials f, g, φ and ψ.

Dx(φL) = Sx(ψL) =⇒ 〈L, (φD2
xf + ψSxDxf)g〉 = 〈L, (φD2

xg + ψSxDxg)f〉; (59)

Dx (fL) =
(

Sxf −
U1(s)
α

Dxf

)
DxL+

1
α

DxfSxL; (60)

Sx (fL) =
(

Sxf −
U1(s)
α

Dxf

)
SxL+

1
α

DxfDx(U2L); (61)

fDxL = Dx (Sxf L)− Sx (Dxf L) ; (62)

fSxL = Sx (Sxf L)− Dx (U2Dxf L) . (63)

Proof: Relation (59) is obtained by a straightforward application of (41), (56) and (57). Finally, Relations
(60) and (61) are easily deduced from (54) and (55) respectively; while (62) and (63) are direct consequences
of Relations (19) and (20).

Since the polynomial sequence (Qn,m)n≥0 fulfills deg(Qn,m) = n, ∀n ∈ N, there exists [19] a sequence

of linear functionals
(
Q̂n,m

)
n≥0

called dual basis of (Qn,m)n≥0 satisfying

〈Q̂n,m, Qj,m〉 = δn,j , n, j ≥ 0. (64)

Also, every linear functional L can be represented as [19]

L =
∞∑

n=0

〈L, Qn,m〉 Q̂n,m. (65)
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In addition, if (Pn)n is a polynomial sequence orthogonal with respect to the linear functional L, then its
dual basis P̂n is given by [12]

P̂n =
PnL

〈L, PnPn〉
, n ≥ 0. (66)

The derivative of the dual basis Q̂n,m fulfills

Proposition 4
DxQ̂n,m = −γn+1Q̂n+1,m−1 ∀n ≥ 0, ∀m ≥ 1. (67)

Proof: Using the following relation easily deduced from (71)-(72),

Qn,m =
1

γn+1
DxQn+1,m−1, ∀n ≥ 0, m ≥ 1, (68)

we obtain for fixed integers n ≥ 0 and m ≥ 1,

〈DxQ̂n,m, Qj+1,m−1〉 = −〈Q̂n,m,DxQj+1,m−1〉, ∀j ≥ 0

= −〈Q̂n,m, γj+1Qj,m〉, ∀j ≥ 0
= −γn+1δn,j , ∀j ≥ 0

= −γn+1〈Q̂n+1,m−1, Qj+1,m−1〉, ∀j ≥ 0.

In addition,

〈DxQ̂n,m, Q0,m−1〉 = −〈Q̂n,m,DxQ0,m−1〉 = 0 = −γn+1〈Q̂n+1,m−1, Q0,m−1〉.

Therefore,
DxQ̂n,m = −γn+1Q̂n+1,m−1.

�

Proposition 5 Let L be a regular linear functional satisfying the Pearson equation

Dx(φL) = Sx(ψL),

where φ is a polynomial of degree at most 2 and ψ a first degree polynomial. Then, we have

φ2 γn + ψ1αn 6= 0, ∀n ≥ 0, (69)

where φ2 and ψ1 are the leading coefficients of the polynomials φ and ψ with respect to the basis (xn(s))n.
In addition, for any polynomial Pn of degree n in x(s), we have

deg
(
φ(x(s))D2

xPn(x(s)) + ψ(x(s))SxDxPn(x(s))
)

= n, ∀n ≥ 1. (70)

Proof: Application of both sides of the Pearson equation to the polynomial Fn yields the following dif-
ference equation for the moments µ̂n = 〈L, Fn〉

(φ2γn + ψ1αn)µ̂n+1 = un µ̂n + vnµ̂n−1,

where un and vn depend on n and the coefficients of the polynomials φ and ψ. For all the moments to
exist, property (69) is necessary. Relation (70) is easily deduced from (69) since if we write Pn(x(s)) =
anFn(x(s)) + . . . , an 6= 0, then we have

φ(x(s))D2
xPn(x(s)) + ψ(x(s))SxDxPn(x(s)) = anγn(φ2γn−1 + ψ1αn−1)Fn(x(s)) + . . . ,

with anγn(φ2γn−1 + ψ1αn−1) 6= 0, ∀n ≥ 1. �
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Theorem 4
Let L be a regular linear functional, (Pn)n its corresponding monic orthogonal polynomials and Qn,m the
monic polynomial of degree n defined by

Bn,mQn,m = Dm
x Pn+m, m, n ≥ 0, (71)

with

Bn,m =
m−1∏
j=0

γn+m−j =
γn+m!
γn!

, Qn,0 ≡ Pn. (72)

The following properties are equivalent:

(a) There exist two polynomials, φ of degree at most two and ψ of degree one, such that

Dx(φL) = Sx(ψL). (73)

(b) There exist two polynomials, φ of degree at most two and ψ of degree one, such that for any integer
m ≥ 0,

Dx(φ(m)Lm) = Sx(ψ(m)Lm), (74)

〈Lm, Qn,mQj,m〉 = knδj,n, kn 6= 0,∀n, j ∈ N, (75)

where the linear functional Lm and the polynomials φ(m) and ψ(m) are defined respectively by

φ(m+1) = Sxφ
(m) + U1 Sxψ

(m) + αU2 Dxψ
(m), φ(0) ≡ φ, (76)

ψ(m+1) = Dxφ
(m) + α Sxψ

(m) + U1 Dxψ
(m), ψ(0) ≡ ψ, (77)

Lm+1 = Dx

[
U2ψ

(m)Lm

]
− Sx

[
φ(m)Lm

]
, L0 ≡ L, (78)

with the polynomials U2 and U1 given respectively by (21) and (28).

(c) There exist two polynomials, φ of degree at most two and ψ of degree one, such that for any integer
m ≥ 0 the following second-order difference equation holds:

φ(m)(x(s))D2
xQn,m(x(s)) + ψ(m)(x(s))SxDxQn,m(x(s)) + λn,mQn,m(x(s)) = 0, ∀n ≥ 0, (79)

where the polynomials φ(m) and ψ(m) are given by (76), (77) and the constant

λn,m = −γn

{
φ

(m)
2 γn−1 + ψ

(m)
1 αn−1

}
(80)

with
φ(m)(x(s)) = φ

(m)
2 x2(s) + φ

(m)
1 x(s) + φ

(m)
0 , ψ(m)(x(s)) = ψ

(m)
1 x(s) + ψ

(m)
0 , (81)

where the polynomials φ(m) and ψ(m) are defined in (76)-(77).

(d) There exist two polynomials, φ of degree at most two and ψ of degree one, such that for any integer
m ≥ 0 the following Rodrigues relation holds:

γnDx (Qn−1,m+1Lm+1) = αλn,mQn,mLm, ∀n ≥ 1, (82)

where Lm is defined by Equations (76)-(78), and λn,m defined by (80), with the initial condition

〈L, ψ〉 = 0. (83)
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(e) There exist two polynomials, φ of degree at most two and ψ of degree one, such that for any integer
m ≥ 0, there exist three sequences (am

n,n+1)n, (am
n,n)n and (am

n,n−1)n, such that the so-called first
structure relation is satisfied:

ψ(m)S2
xQn,m + φ(m)DxSxQn,m = am

n,n+1Qn+1,m + am
n,nQn,m + am

n,n−1Qn−1,m, ∀n ≥ 1, (84)

with am
n,n−1 6= 0 for n > 2, where the polynomials φ(m) and ψ(m) are defined in (76)-(77).

(f) For any integer m ≥ 0, there exist three sequences (bmn,n+1)n, (bmn,n)n and (bmn,n−1)n, such that the
following relation, called second structure relation, is satisfied:

SxQn,m = bmn,n+1DxQn+1,m + bmn,nDxQn,m + bmn,n−1DxQn−1,m, ∀n ≥ 1, (85)

with bmn,n−1 6= 0 for n > 2.

(g) There exist three polynomials, A, B and C of degree at most two, one and zero respectively such that
the following Riccati equation for the formal Stieltjes function S(L) := S of the linear functional L
is satisfied

A(x(s))Dx(S(L)) = B(x(s))Sx(S(L)) + C. (86)

Proof: Proof of Theorem 1
We organize the proof in the following scheme:

Step 1: (a) ⇒ (b) ⇒ (c) ⇒ (a) which is equivalent to (a) ⇔ (b) ⇔ (c).

Step 2: (b) + (c) ⇒ (d) ⇒ (a) which taking into account Step 1, is equivalent to (c) ⇔ (d).

Step 3: (a) + (b) + (c) ⇒ (f) ⇒ (a) which using Step 1, is equivalent to (a) ⇔ (f).

Step 4: (c) + (f) ⇒ (e) ⇒ (a) which thanks to Step 3 is equivalent to (e) ⇔ (f).

Step 5: (a) ⇔ (g).

Step 1: (a) ⇒ (b) ⇒ (c) ⇒ (a)
Step 1.1 (a) ⇒ (b).

We assume that the property (a) is satisfied and we show by induction on m that (74) and (75) are satisfied
for m ≥ 0. ¿From the Pearson equation (73) and the orthogonality relation (44) for the family (Pn), it is
obvious that the relations (74) and (75) are satisfied for m = 0. Assume that they are satisfied up to a fixed
integer m > 0. Firstly, we use Relation (68) and the definition of Lm+1 given by (78) to get for 0 ≤ j ≤ n,

〈Lm+1, Qn,m+1Qj,m+1〉 = −〈Lm, ψ
(m)U2Dx (Qn,m+1Qj,m+1) + φ(m)Sx (Qn,m+1Qj,m+1)〉

= − 1
γn+1γj+1

〈ψ(m)Lm, U2Dx (DxQn+1,mDxQj+1,m)〉+ 〈φ(m)Lm,Sx (DxQn+1,mDxQj+1,m)〉.

Secondly, we use (54) and (55) for f = Qn+1,m and g = DxQj+1,m

Sx(DxQj+1,mDxQn+1,m) = −αQn+1,mD2
xQj+1,m

+αDx

[(
SxQn+1,m −

U1(x)
α

DxQn+1,m

)
DxQj+1,m

]
,

U2(x)Dx(DxQj+1,mDxQn+1,m) = −αQn+1,mSxDxQj+1,m

+αSx

[(
SxQn+1,m −

U1(x)
α

DxQn+1,m

)
DxQj+1,m

]
,

to obtain after making use of the Pearson equation (74)

〈Lm+1, Qn,m+1Qj,m+1〉 =
α

γn+1γj+1
〈Lm, Qn+1,m

(
φ(m)D2

xQj+1,m + ψ(m)SxDxQj+1,m

)
〉.
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Combination of (74), (75) and Proposition 5 lead to

〈Lm+1, Qn,m+1Qj,m+1〉 =
α(γjφ

(m)
2 + αjψ

(m
1 ))

γn+1
〈Lm, Q

2
n+1,m〉δj,n, 0 ≤ j ≤ n

6= 0, for j = n,

thanks to Proposition 5 with L replaced by Lm.
Next, we show that (74) is satisfied at order m + 1, using mainly the fact it is satisfied at order m. Let

P be a polynomial of degree at least 1. We have

I = 〈−Dx(φ(m+1)Lm+1) + Sx(ψ(m+1)Lm+1),DxP 〉

= 〈Lm+1,
(
φ(m+1)D2

xP + ψ(m+1)SxDxP )
)
〉

= 〈Dx(U2ψ
(m)Lm)− Sx(φ(m)Lm),

(
φ(m+1)D2

xP + ψ(m+1)SxDxP )
)
〉.

Use of relations (52) and (53) for f = P , the previous relation becomes:

I = 〈ψ(m)Lm,−U2Dx

[
φ(m+1)D2

xP + ψ(m+1) [αDxSxP − Dx(U1DxP )]
]

+〈φ(m)Lm,−Sx

[
φ(m+1)D2

xP + ψ(m+1) [αDxSxP − Dx(U1DxP )]
]
〉

= 〈ψ(m)Lm,−U2Dx

[
φ(m+1) D2

xP
]
〉+ 〈ψ(m)Lm,−U2Dx

[
ψ(m+1)Dx [αSxP − U1DxP ]

]
+〈φ(m)Lm,−Sx

[
φ(m+1) D2

xP
]
〉+ 〈φ(m)Lm,−Sx

[
ψ(m+1)Dx [αSxP − U1DxP ]

]
〉.

Using (54) and (55), first for f = DxP , g = φ(m+1), then again for f = αSxP −U1DxP , g = ψ(m+1) , we
obtain after making use of the Pearson equation (74):

I = 〈ψ(m)Lm,DxP Sxφ
(m+1) + (αSxP − U1DxP )Sxψ

(m+1)〉 (87)

+〈φ(m)Lm,DxP Dxφ
(m+1) + (αSxP − U1DxP )Dxψ

(m+1)〉.

By remarking that

SxU1 = αU1, DxU2 = 2αU1, DxU1 = α2 − 1, SxU2 = α2U2 + U2
1 , D2

xψ
(m) = 0,

we get after some computation using (19), (20), (26), (27), (76) and (77)

Sxφ
(m+1) = U1SxDxφ

(m) + αU2D2
xφ

(m) + φ(m) + αU1ψ
(m)

+
[
2αU2

1 + α(2α2 − 1)U2

]
SxDxψ

(m),

Sxψ
(m+1) = SxDxφ

(m) + 2αU1SxDxψ
(m) + αψ(m), (88)

Dxφ
(m+1) = αSxDxφ

(m) + U1D2
xφ

(m) + (4α2 − 1)U1SxDxψ
(m) + (α2 − 1)ψ(m),

Dxψ
(m+1) = D2

xφ
(m) + (2α2 − 1)SxDxψ

(m).

Subtituting (88) into (87) we get after using the product rules (19) and (20)

I = 〈ψ(m)Lm,DxP
(
αU2D2

xφ
(m) + α(2α2 − 1)U2SxDxψ

(m) + φ(m)
)
〉

+〈ψ(m)Lm, αSxP
(
SxDxφ

(m) + 2αU1SxDxψ
(m) + αψ(m)

)
〉

+〈φ(m)Lm,DxP
(
αSxDxφ

(m) + 2α2U1SxDxψ
(m) + α2ψ(m) − ψ(m)

)
〉

+〈φ(m)Lm, αSxP
(
D2

xφ
(m) + (2α2 − 1)SxDxψ

(m)
)
〉

= 〈ψ(m)Lm, α
(
SxPSxDxφ

(m) + U2DxPD2
xφ

(m)
)

+ α(2α2 − 1)U2DxPSxDxψ
(m)〉
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+〈ψ(m)Lm, αSxP
(
2αU1SxDxψ

(m) + αψ(m)
)
〉

+〈φ(m)Lm, α
(
SxPD2

xφ
(m) + DxPSxDxφ

(m)
)

+ αDxP
(
2αU1SxDxψ

(m) + αψ(m)
)
〉

+〈φ(m)Lm, α(2α2 − 1)SxPSxDxψ
(m)〉

= 〈ψ(m)Lm, αSx(PDxφ
(m)) + α(2α2 − 1)U2DxPSxDxψ

(m) + αSxP
(
2αU1SxDxψ

(m) + αψ(m)
)
〉

+〈φ(m)Lm, αDx(PDxφ
(m)) + αDxP

(
2αU1SxDxψ

(m) + αψ(m)
)

+ α(2α2 − 1)SxPSxDxψ
(m)〉.

Use of the Pearson equation (74) allows to get from the previous equation:

I = 〈ψ(m)Lm, α(2α2 − 1)U2DxPSxDxψ
(m) + αSxP

(
2αU1SxDxψ

(m) + αψ(m)
)
〉 (89)

+〈φ(m)Lm, αDxP
(
2αU1SxDxψ

(m) + αψ(m)
)

+ α(2α2 − 1)SxPSxDxψ
(m)〉.

Taking into account the following relations which can easily be deduced from (19), (20), (26) and (27),

Sx

(
U1Dxψ

(m) + αSxψ
(m)

)
= 2αU1SxDxψ

(m) + αψ(m),

Dx

(
U1Dxψ

(m) + αSxψ
(m)

)
= (2α2 − 1)SxDxψ

(m),

we get from the Equation (89, after using again the Pearson equation at the order m:

I = α〈ψ(m)Lm, U2DxPDx(αSxψ
(m) + U1Dxψ

(m)) + SxPSx(αSxψ
(m) + U1Dxψ

(m))〉
α〈φ(m)Lm,DxPSx(αSxψ

(m) + U1Dxψ
(m)) + SxPDx(αSxψ

(m) + U1Dxψ
(m))〉.

= α〈ψ(m)Lm,Sx

(
P (U1Dxψ

(m) + αSxψ
(m))

)
〉+ α〈φ(m)Lm,Dx

(
P (U1Dxψ

(m) + αSxψ
(m))

)
〉

= 0.

Therefore,
Dx(φ(m+1)Lm+1) = Sx(ψ(m+1)Lm+1).

Step 1.2 (b) ⇒ (c).
We assume (b) and fix two nonnegative integers n and m. Then from the following expansion

φ(m)D2
xQn,m + ψ(m)SxDxQn,m =

n∑
j=0

an,jQj,m (90)

we deduce for 0 ≤ k ≤ n

an,k〈Lm, Q
2
k,m〉 = 〈Lm,

(
φ(m)D2

xQn,m + ψ(m)SxDxQn,m

)
Qk,m〉.

Next, taking into account (74), we use the property (59) for φ = φ(m), ψ = ψ(m), f = Qn,m and g = Qk,m

to obtain
an,k〈Lm, Q

2
k,m〉 = 〈Lm,

(
φ(m)D2

xQk,m + ψ(m)SxDxQk,m

)
Qn,m〉.

Therefore, since φ(m)D2
xQk,m + ψ(m)SxDxQk,m is a polynomial of degree at most k, we get

an,k = 0, for k < n.

Finally, we write in (90) Qn,m = Fn(x(s)) + lower terms and identify the coefficient of Fn on both sides
of (90) using relations (30) and (31) to get an,m = −λn,m given by (80).
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Step 1.3 (c) ⇒ (a).
We assume Property (c) and obtain for fixed n ≥ 0 and m = 1 after taking into account (79)

〈Dx(φL)− Sx(φL), Qn,1〉 =
1

γn+1
〈Dx(φL)− Sx(φL),DxPn+1〉

=
−1
γn+1

〈L, φD2
xPn+1 + ψSxDxPn+1〉

=
λn+1,0

γn+1
〈L, Pn+1〉 = 0.

Since (Qn,1)n forms a basis of C[x], we deduce that Dx(φL) = Sx(ψL).
Step 2: (c) ⇔ (d).

Step 2.1 (b) + (c) ⇒ (d).
We assume property (c). Since we have established the above equivalence between properties (a), (b) and
(c), we can then in addition make use of property (b). Let P ∈ C[x]. Using Relations (78) and (68), we
obtain for fixed integers n ≥ 1 and m ≥ 0

〈Dx (Qn−1,m+1Lm+1) , P 〉 = −〈Qn−1,m+1Lm+1,DxP 〉
= −〈Lm+1, Qn−1,m+1DxP 〉

= −〈Dx

(
U2ψ

(m)Lm

)
− Sx

(
φ(m)Lm

)
,
DxQn,m

γn
DxP 〉

=
1
γn
〈Lm, ψ

(m)U2Dx (DxQn,mDxP ) + φ(m)Sx (DxQn,mDxP )〉.

Use of the relations (54) and (55) for f = P and g = DxQn,m

U2Dx (DxQn,mDxP ) = −αP SxDxQn,m + αSx

[(
SxP −

U1

α
DxP

)
DxQn,m

]
,

Sx (DxQn,mDxP ) = −αP D2
xQn,m + αDx

[(
SxP −

U1

α
DxP

)
DxQn,m

]
together with the Pearson equation for Lm, namely (74), transform the previous equation into

〈γnDx (Qn−1,m+1Lm+1) , P 〉 = −α〈Lm,
(
φ(m)D2

xQn,m + ψ(m)SxDxQn,m

)
P 〉.

By means of (79), the latter equation reads

〈γnDx (Qn−1,m+1Lm+1) , P 〉 = αλn,m〈Qn,mLm, P 〉.

Thus, we have
γnDx (Qn−1,m+1Lm+1) = αλn,mQn,mLm.

Equation (79) for n = 1 and m = 0 gives ψ + λ1 P1 = 0. Therefore, 〈L, ψ〉 = −λ1〈L, P1〉 = 0.
Step 2.2 (d) ⇒ (c).

We assume that the property (d) is satisfied. Since (a) ⇐⇒ (b) ⇐⇒ (c), We will show that (a) is satisfied.

First, we use Equation (82) for n = 1 and m = 0, and get taking care that γ1 = 1, the equation

Dx(L1) = αλ1P1L,

which is equivalent to

〈ψL, U2D2
xFn〉+ 〈φL,SxDxFn〉 − 〈L, αλ1P1Fn〉 = 0, ∀n ≥ 0. (91)
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Next, we use the relations (52) and (53) for f = Fn

SxDxFn = αDxSxFn − Dx (U1DxFn) ,
U2D2

xFn = αS2
xFn − Sx (U1DxFn)− αFn,

in Equation (91) to get

〈Sx (ψL)− Dx (φL) , αSxFn − U1DxFn〉 − α〈L, (ψ + λ1P1)Fn〉 = 0.

Because ψ + λ1P1 = 0, we then have:

〈Sx (ψL)− Dx (φL) , αSxFn − U1DxFn〉 = 0.

Since αSxFn − U1DxFn =
(
ααn − (α2 − 1)γn

)
Fn+ lower terms and ααn − (α2 − 1)γn 6= 0, ∀n ≥ 0,

(αSxFn − U1DxFn)n forms a basis of C[x]. We therefore deduce that

Sx (ψL)− Dx (φL) = 0.

Step 3: (a) + (b) + (c) ⇒ (f) ⇒ (a).
Step 3.1 (a) + (b) + (c) ⇒ (f)

We assume (a) and therefore, (b) and (c). Expansion of the polynomial SxQn,m in the basis (Qj,m+1)j≥0

SxQn,m =
n∑

k=0

bn,k Qk,m+1

yields
bn,j〈Lm+1, Q

2
j,m+1〉 = 〈Lm+1, [SxQn,m] Qj,m+1〉, 0 ≤ j ≤ n. (92)

First we use the second-order divided-difference Equation (79) for Qj,m+1, 1 ≤ j ≤ n, next the product
rules (19)-(20), then the Pearson equation for Lm+1 (74) and finally Equation (68), and take into account
the fact that thanks to Proposition 5, λn,m 6= 0, for n ≥ 1, to get

bn,j〈Lm+1, Q
2
j,m〉 =

−1
λj,m+1

〈Lm+1,SxQn,m

{
φ(m+1)D2

xQj,m+1 + ψ(m+1)SxDxQj,m+1

}
〉

=
−1

λj,m+1
〈φ(m+1)Lm+1,Dx (Qn,mDxQj,m+1)− DxQn,mSxDxQj,m+1〉

+
−1

λj,m+1
〈ψ(m+1)Lm+1,Sx (Qn,mDxQj,m+1)− U2DxQn,mD2

xQj,m+1〉

=
γn

λj,m+1
〈Lm+1, Qn−1,m+1

(
φ(m+1)SxDxQj,m+1 + U2ψ

(m+1)D2
xQj,m+1

)
〉.

Since φ(m+1)SxDxQj,m+1 + U2ψ
(m+1)D2

xQj,m+1 is of degree at most j + 1, we use the orthogonality
of (Qn,m+1)n with respect to Lm+1 to deduce that the previous expression vanishes for j + 1 < n − 1.
Therefore, bn,j = 0, 0 < j < n− 2.

For j = n − 2 with n > 2, we get using the first line of the previous equation together with Property
(59) for L = Lm+1, φ = φm+1, ψ = ψm+1, f = Qn−2,m+1 and g = SxQn,m

bn,n−2〈Lm+1, Q
2
n−2,m〉 =

−1
λn−2,m+1

〈Lm+1,SxQn,m

{
φ(m+1)D2

xQn−2,m+1 + ψ(m+1)SxDxQn−2,m+1

}
〉

=
−1

λn−2,m+1
〈Lm+1, Qn−2,m+1

{
φ(m+1)D2

xSxQn,m + ψ(m+1)SxDxSxQn,m

}
〉

=
−αnγn

(
γn−1φ

(m)
2 + αn−1ψ

(m)
1

)
λn−2,m+1

〈Lm+1, Q
2
n−2,m+1〉.
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Therefore, we conclude by means of Proposition 5 with L replaced by Lm+1, that bn,n−2 6= 0, n > 2.
For j = 0, since λ0,m = 0, we cannot use the previous method. Instead, we use Relation (78) to

transform (92) into

bn,0〈Lm+1, Q
2
0,m+1〉 = 〈Lm+1,SxQn,m〉

= 〈Dx(U2ψ
(m)Lm)− Sx(φ(m)Lm),SxQn,m〉

= −〈U2ψ
(m)Lm,DxSxQn,m〉 − 〈φ(m)Lm,S2

xQn,m〉.

Next, we use Relations (52) and (53) for f = Qn,m

DxSxQn,m =
1
α

Dx (U1(s)DxQn,m) +
1
α

SxDxQn,m;

S2
xQn,m =

1
α

Sx (U1(s)DxQn,m) +
1
α
U2(s)D2

xQn,m +Qn,m,

and Relation (78) again to obtain

bn,0〈Lm+1, Q
2
0,m+1〉 =

1
α
〈Lm+1, U1DxQn,m〉

− 1
α
〈Lm, U2(φ(m)D2

xQn,m + ψ(m)SxDxQn,m) + φ(m)Qn,m〉.

Next we use Relation (68) and the Property (59) for φ = φ(m), ψ = ψ(m), f = Qn,m and g = U2 to
transform the previous equation into

bn,0〈Lm+1, Q
2
0,m+1〉 =

γn

α
〈Lm+1, U1Qn−1,m+1〉

− 1
α
〈Lm, Qn,m(φ(m)D2

xU2 + ψ(m)SxDxU2)〉+
1
α
〈Lm, φ

(m)Qn,m〉.

Therefore, bn,0 = 0 for n > 2 thanks to the orthogonality of (Qn,m)n and (Qn,m+1)n with respect to Lm

and Lm+1 respectively. Hence,
bn,j = 0, 0 ≤ j ≤ n− 3,

and

SxQn,m = bn,nQn,m+1 + bn,n−1Qn−1,m+1 + bn,n−2Qn−2,m+1, ∀n ≥ 1,

=
bn,n

γn+1
DxQn+1,m +

bn,n−1

γn
DxQn,m +

bn,n−2

γn−1
DxQn−1,m, ∀n ≥ 1,

= bmn,n+1DxQn+1,m + bmn,nDxQn,m + bmn,n−1DxQn−1,m, ∀n ≥ 1,

where
bmn,n+j =

bn,n+j−1

γn+j
, −1 ≤ j ≤ 1, (93)

with
bmn,n−1 =

bn,n−2

γn−1
6= 0, n > 2.

Step 3.2 (f) ⇒ (a)
We assume Property (f), and denote by (Q̂n,m)n the dual basis associated to (Qn,m)n. Then, expansion of
the linear functional αSxQ̂0,1 − Dx(U1

ˆQ0,1) in the dual basis (Q̂n,0)n = (P̂n)n of (Pn)n

αSxQ̂0,1 − Dx(U1Q̂0,1) =
∑
k≥0

ckP̂k
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yields after using (28)

cj = 〈αSxQ̂0,1 − Dx(U1Q̂0,1), Pj〉 = 〈Q̂0,1, αSxPj + U1DxPj〉. (94)

Application of Dx on both sides of the recurrence relation for the orthogonal family (Pn)n

x(s)Pj = cj,j+1Pj+1 + cj,jPj + cj,j−1Pj−1,

and use of the product rule (19) give

αx(s)DxPj + SxPj = cj,j+1DxPj+1 + cj,jDxPj + cj,j−1DxPj−1.

Then use of Relation (28), the previous equation as well as the structure relation (85) for m = 0 and n = j
produces the relation

U1DxPj = dj,j+1DxPj+1 + dj,jDxPj + dj,j−1DxPj−1,

which combined with the structure relation (85) for m = 0 and n = j gives

αSxPj + U1DxPj = ej,j+1DxPj+1 + ej,jDxPj + ej,j−1DxPj−1.

Finally we deduce from (94), the previous relation and (67) for m = 1

cj = 〈Q̂0,1, αSxPj + U1DxPj〉 = 〈Q̂0,1, ej,j+1DxPj+1 + ej,jDxPj + ej,j−1DxPj−1〉
= 〈−DxQ̂0,1, ej,j+1Pj+1 + ej,jPj + ej,j−1Pj−1〉
= 〈γ1Q̂1,0, ej,j+1Pj+1 + ej,jPj + ej,j−1Pj−1〉
= γ1〈P̂1, ej,j+1Pj+1 + ej,jPj + ej,j−1Pj−1〉
= 0 for j − 1 > 1.

Therefore

αSxQ̂0,1 − Dx(U1Q̂0,1) = c0P̂0 + c1P̂1 + c2P̂2

= φL,

where
φ =

c0P0

〈L, P0P0〉
+

c1P1

〈L, P1P1〉
+

c2P2

〈L, P2P2〉
,

thanks to (66). Application of the linear functional Dx(αSxQ̂0,1 − Dx(U1Q̂0,1)) to the polynomial Pn, and
use of Relations (26) and (67) yields

Dx(φL) = 〈Dx(αSxQ̂0,1 − Dx(U1Q̂0,1)), Pn〉 = −〈Q̂0,1, αSxDxPn + U1D2
xPn〉

= −〈Q̂0,1,DxSxPn〉
= 〈DxQ̂0,1,SxPn〉
= −γ1〈Q̂1,0,SxPn〉
= −γ1〈SxP̂1, Pn〉
= 〈Sx(ψL), Pn〉,

where ψ = −γ1
P1

〈L,P1P1〉 . Summing up, we have

Dx(φL) = Sx(ψL),

where φ is a polynomial of degree at most two and ψ a first-degree polynomial.
Step 4: (c) + (f) ⇒ (e) ⇒ (a).
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Step 4.1 (c) + (f) ⇒ (e)

We assume Property (f) and make use of Property (c) since we have proved above that (f) ⇐⇒
(a) ⇐⇒ (b) ⇐⇒ (c).

Application of Dx to both sides of (85) followed by the multiplication by φ(m) and use of (79) gives for
n ≥ 1

φ(m)DxSxQn,m = bmn,n+1φ
(m)D2

xQn+1,m + bmn,nφ
(m)D2

xQn,m + bmn,n−1φ
(m)D2

xQn−1,m

= −bmn,n+1

(
ψ(m)SxDxQn+1,m + λn+1,mQn+1,m

)
−bmn,n

(
ψ(m)SxDxQn,m + λn,mQn,m

)
−bmn,n−1

(
ψ(m)SxDxQn−1,m + λn−1,mQn−1,m

)
= −ψ(m)Sx

[
bmn,n+1DxQn+1,m + bmn,nDxQn,m + bmn,n−1DxQn−1,m

]
−bmn,n+1λn+1,mQn+1,m − bmn,nλn,mQn,m − bmn,n−1λn−1,mQn−1,m.

A second use of (85) transforms the previous equation into

φ(m)DxSxQn,m + ψ(m)SxQn,m = −bmn,n+1λn+1,mQn+1,m − bmn,nλn,mQn,m − bmn,n−1λn−1,mQn−1,m.

Therefore,

φ(m)DxSxQn,m + ψ(m)S2
xQn,m = am

n,n+1Qn+1,m + am
n,nQn,m + am

n,n−1Qn−1,m, n ≥ 1,

with
am

n,n+j = −bmn,n+j λn+j,m, −1 ≤ j ≤ 1. (95)

In addition, am
n,n−1 = −bmn,n−1 λn−1,m 6= 0 for n > 2 since bmn,n−1 6= 0 and λn−1,m 6= 0 both for n > 2.

Step 4.2 (e) ⇒ (a)
We assume (e) and obtain using (85)

〈Dx(φL)− Sx(ψL),SxQn,0〉 = −〈L, φDxSxQn,0 + ψS2
xQn,0〉

= −〈L, a0
n,n+1Qn+1,0 + a0

n,nQn,0 + a0
n,n−1Qn−1,0〉

= −〈L, a0
n,n+1Pn+1 + a0

n,nPn + a0
n,n−1Pn−1〉

= 0, for n ≥ 2.

For n = 1 and for n = 0, we have

φDxSxP1 + ψS2
xP1 = a0

1,2P2 + a0
1,1P1 + a0

1,0P0 = a0
1,2P2 + a0

1,1P1,

φDxSxP0 + ψS2
xP0 = ψ = a0

0,1P1 + a0
0,0P0 = a0

0,1P1,

since λ0,m = 0,
a0

1,0 = −b01,0λ0,0 = 0, and a0
0,0 = −b00,0λ0,0 = 0.

Summing up, we have

〈Dx(φL)− Sx(ψL),SxQn,0〉 = 0, n ≥ 0, and Dx(φL) = Sx(ψL).

Step 5 (a) ⇔ (g)
Step 5.1 (a) ⇒ (g)

Assuming (a), we take the formal Stieltjes function of both sides of the Pearson equation (73) to get

S [Dx (φL)] (x(s)) = S [Sx (ψL)] (x(s)).
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Use of (39), (40) and (42) transforms the previous equation into

Dx [S (φL) (x(s))] = αSx [S (ψL) (x(s))] + U1(x(s))Dx [S (ψL) (x(s))]
m

Dx [φ(x(s))S(L)(x(s)) + (Lθ0φ) (x(s))] = αSx [ψ(x(s))S(L)(x(s)) + (Lθ0ψ) (x(s))]
+ U1(x(s))Dx [ψ(x(s))S(L)(x(s)) + (Lθ0ψ) (x(s))] .

Finally, we use the product rules (19), (20) and the definition of Lθ0f given by (43) to obtain the following
Riccati equation for S(L)

A(x(s))DxS(L)(x(s)) = B(x(s))SxS(L)(x(s)) + C(x(s))

where

A = Sxφ− αψ1 U2 − U1Sxψ,

B = αSxψ + ψ1 U1 − Dxφ,

C = (αψ1 − φ2)〈L, 1〉,

where φ2 and ψ1 are given by (81).
Step 5.2 (g) ⇒ (a)

Assuming (a), we use Equations (39) and (40) to transform the Riccati Equation (86) into(
A(x) +

U1

α
B(x)

)
S (DxL) =

1
α
B(x)S (SxL) + C(x).

By means of (42), the latter equation is equivalent to

S

[(
A(x) +

U1

α
B(x)

)
DxL −

1
α
B(x)SxL

]
= C(x)− 1

α
(SxL)θ0B(x(s)) + (DxL)θ0

(
A(x) +

U1

α
B(x)

)
.

The right-hand side of the previous relation is a polynomial while the left-hand side is, by definition of the
Stieltjes function of a given linear functional given by (38), an infinite linear combination of { 1

Fn+1
, n ∈ N}.

Therefore, both sides of the previous equation vanish and we obtain:(
A(x) +

U1

α
B(x)

)
DxL −

1
α
B(x)SxL = 0, (96)

and

C(x(s)) =
1
α

(SxL)θ0B(x(s))− (DxL)θ0

(
A(x) +

U1

α
B(x)

)
.

Using Relations (62) and (63), Relation (96) becomes

Dx [(SxH(x) + U2DxK(x))L]− Sx [(DxH(x) + SxK(x))L] = 0, (97)

where
H(x) = A(x) +

U1

α
B(x), K(x) =

1
α
B(x).

Since A and B are polynomials of degree at most two and one respectively, the polynomials

φ = Sx

(
A(x) +

U1

α
B(x)

)
− U2

α
Dx(B(x)), ψ = Dx

(
A(x) +

U1

α
B(x)

)
− 1
α

Sx(B(x))

are of degree at most two and one respectively. Next, we write ψ = uP1 + v and obtain v〈L, 1〉 = 〈L, ψ〉.
Application of both sides of the Pearson equation (97) to the constant polynomial 1 yields 〈L, ψ〉 = 0.
Therefore, ψ = uP1 is of degree exactly 1. �
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4 Important Connections

4.1 Connection with the Structure Relation by Koornwinder

The structure relation (14) given by Koornwinder [14] is related to our results in the following way:

Theorem 5 The structure relation (14) for classical orthogonal polynomials (Pn)n on a non-uniform lattice
satisfying (17) can be expressed in terms of the operator Dx and Sx as

L(pn)(x(s)) = ζ
(
2ψ S2

x + 2φDxSx − ψI
)
pn(x(s)) = γnAn pn+1(x)− γn−1Cn pn−1(x), (98)

where ζ is a constant term.
For the specific case of the Askey-Wilson polynomials, the coefficients φ and ψ are given by [8]

φ(x(s)) = 2 (dcba+ 1)x2 (s)− (a+ b+ c+ d+ abc+ abd+ acd+ bcd)x (s)
+ ab+ ac+ ad+ bc+ bd+ cd− abcd− 1,

ψ(x(s)) =
4 (abcd− 1) q

1
2 x (s)

q − 1
+

2 (a+ b+ c+ d− abc− abd− acd− bcd) q
1
2

q − 1
.

Proof: We assume that (pn)n is a family of polynomial orthogonal with respect to the linear functional L
satisfying the Pearson equation

Dx(φL) = Sx(ψL), (99)

where φ is a polynomial of degree at most two and ψ a first-degree polynomial. Because of the property
(59), the operator O = φD2

x + ψSxDx is symmetric with respect to the inner product

(p, q) = 〈L, pq〉, p, q ∈ R[x(s)], (100)

that is,
(O(p), q) = (p,O(q)), ∀p, q ∈ R[x(s)].

Since O satisfies in addition the property O(pn) = λnpn, with λn 6= λn−1, we deduce thanks to Proposition
2.2 of [14] that the commutator L̃ defined by

L̃(p)(x(s)) = [O, X](x(s)) = O [x(s)p(x(s))]− x(s)O(p)(x(s))

is skew symmetric with respect to the inner product (100) and satisfies the structure relation (14). Compu-
tation using the product rules (19), (20), (26) and (27) give

L̃(p)(x(s)) =
(
2ψ S2

x + 2φDxSx − ψI
)
pn(x(s)) = L(p)(x(s)).

For the recurrence relation (15) which is the specific case of the Askey-Wilson polynomials, in the first step,
we deduce from the notation

[z] =
z + z−1

2
=
qs + q−s

2
= x(s) (101)

that

[qz] = x(s+ 1),
[
z

q

]
= x(s− 1), (102)

x(s+
1
2
) = [

√
qz] =

√
qz

2
+

1
2
√
qz
,

[
z
√
q

]
= x(s− 1

2
). (103)

In the second step, we solve the linear equations

DxSxf(x(s)) =
f(x(s+ 1))− f(x(s− 1))
x(s+ 1

2)− x(s− 1
2)

, S2
xf(x(s)) =

f(x(s+ 1)) + 2f(x(s)) + f(x(s− 1))
4

,
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to get

f(x(s+ 1)) = 2S2
xf(x(s))− f(x(s)) +

(
x(s+

1
2
)− x(s− 1

2
)
)

DxSxf(x(s)), (104)

f(x(s− 1)) = 2S2
xf(x(s))− f(x(s))−

(
x(s+

1
2
)− x(s− 1

2
)
)

DxSxf(x(s)). (105)

In the third step, we substitute (102) in the right-hand side of (15) to obtain an equation in which we
substitute (104) and (105), then (103) to get an equation of the form

L(pn) =
q − 1
2
√
q

(
2ψ([z])S2

xpn(x(s)) + 2φ([z])DxSxpn(x(s))− ψ([z])pn(x(s))
)

(106)

=
q − 1
2
√
q

(
2ψ(x(s)) S2

x + 2φ(x(s))DxSx − ψ(x(s))I
)
pn(x(s)),

where φ and ψ are those of the Askey-Wilson polynomials given above which appeared already in [8]. �

4.2 Connection with some pioneering work by Magnus

In the papers [15, 16], Magnus defined the Laguerre-Hahn orthogonal polynomials on the non-uniform
lattice as the ones for which the formal Stieltjes series of the corresponding functional given by (37) satisfies
a Riccati difference equation (see Equation (2.4) of [15]). He also proved that for a non-uniform lattice, the
associated Laguerre-Hahn orthogonal polynomials are again Laguerre-Hahn orthogonal polynomials, and
he recovered the associated Askey-Wilson polynomials as special case of the Laguerre-Hahn orthogonal
polynomials.

The present work provides a bridge between the theory of Magnus based mainly on the Riccati equation
satisfied by the formal Stieltjes function (37), and the theory of classical orthogonal polynomials based on
the functional approach (which is already extended to the functional approach of the theory of semi-classical
and Laguerre-Hahn orthogonal polynomials [10, 11]).

5 Conclusion and Perspectives

In this work, we have:

1. stated the Pearson-type equation for the linear functional of the corresponding classical orthogonal
polynomials;

2. proved that the Pearson equation for the weight implies the one of the linear functional;

3. stated and proved using the functional approach seven equivalent characterization properties for clas-
sical orthogonal polynomials: the four properties given by Costas-Santos and Marcellán [5] but using
the Pearson equation for the corresponding weight function, plus, the Pearson equation for the linear
functional, the Rodrigues formula for the linear functional, the first structure relation and the Riccati
equation for the formal Stieltjes function;

4. found the link between the structure relation given above by Koornwinder [14] and our second struc-
ture relation;

5. connected this work with the pioneering one by Magnus [15, 16], done using mainly the Riccati
equation for the corresponding orthogonal family.
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Since the operator Dx reduces to the forward operator ∆ and the Hahn operatorDq

(
Dqf(s) = f(qs)−f(s)

(q−1)s

)
for the lattices x(s) = s and x(s) = qs respectively [8], this work generalizes previous ones characterizing
classical orthogonal polynomials by means of the above mentioned seven equivalent properties. Among
these, we would like to mention [1, 2, 17] for COP of a continuous variable, [12] for COP of a discrete
variable, [21, 20, 3] for COP of a q-discrete variable and [5, 14] for COP on a non-uniform lattice.

We end by mentioning that our work completes and generalizes the one of [5], connecting to the pi-
oneering work done by Magnus. In addition, it has interesting perspective which is the completion and
generalization of the work of Magnus [15, 16] by stating and proving—using the functional approach—the
characterization theorems for the semi-classical and Laguerre-Hahn orthogonal polynomials on non-uniform
lattices [10, 11]). This will allow the study of the properties of new orthogonal polynomials obtained by
modifications of the initial ones (see [6] and references therein).
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et al., (Eds) ”Orthogonal Polynomials and their Applications”, Lecture Notes in Mathematics, 1329
Springer-Verlag, Berlin, 1986, 279-290.
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