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Zusammenfassung

Ein bekanntes Resultat fiir einen Zahlkorper K ist die Klassenzahiformel. Sie
stellt einen analytischen Term — das Residuum der Dedekindschen Zetafunktion
(k(s) bei s = 1 —in Relation zu verschiedenen algebraischen Invarianten, darunter
die absolute Diskriminante, den Regulator und die Klassenzahl von K. Eine wei-
tere Formulierung der Klassenzahlformel verwendet den fithrenden Koeffizienten
der Laurentreihenentwicklung von (g (s) bei s = 0. Zusétzlich hiangen beide For-
mulierungen durch die Funktionalgleichung von (x (s) zusammen, welche (x(1—s)
und ((s) in Relation setzt.!

Dieser Zusammenhang wird in verschiedenen Vermutungen verallgemeinert und
verfeinert. Eine dieser Vermutungen ist die dquivariante Tamagawazahlvermu-
tung von Burns und Flach [BF01]. Galoiserweiterungen L|K von Zahlkorpern,
mit denen wir uns in dieser Arbeit im Besonderen beschéftigen, bilden einen
Spezialfall dieser sehr allgemeinen Vermutung, und zwar den Spezialfall des so
genannten Tate-Motivs. Flach gibt in [Fla04] einen Uberblick iiber diese Ta-
magawazahlvermutungen und verwandte Resultate, fiir den wichtigen Spezial-
fall von Zahlkorpererweiterungen existieren jedoch auch explizite Formulierungen
[BIB03, BrB07].

Im Fall einer Galoiserweiterung L|K von Zahlkorpern betrachten wir die voll-
stindige Artinsche L-Reihe Arjx(x,s) zu einem Charakter x der Galoisgruppe
G = Gal(L|K) und die &quivariante Artinsche L-Reihe Apjr(s) = (Apx(x, S))x’
welche alle Charaktere vereint. Die aquivariante Tamagawazahlvermutung bei
s = 0 stellt eine Verbindung zwischen dem fithrenden Koeffizienten (j,(0) der
Laurentreihenentwicklung von Az (s) bei s = 0 und algebraischen Invarianten
der Erweiterung L|K her. Diese Invarianten werden unter anderem von Tates
kanonischer Klasse abgeleitet, welche Tate in [Tat66] definiert.

In der aquivarianten Tamagawazahlvermutung bei s = 1 wird gleichermaflen ei-
ne Relation zwischen dem fiihrenden Koeffizienten (j, (1) der Reihenentwicklung
von Apk(s) bei s = 1 und algebraischen Invarianten, die auf der globalen Fun-
damentalklasse der Kohomologiegruppe H 2(G, C) basieren, vermutet. Hierbei
bezeichnet 'y die Idelklassengruppe von L.

Diese beiden oben genannten Falle der dquivarianten Tamagawazahlvermutung
sind voneinander unabhéngig und werden im Folgenden mit ETNC(L|K,0) und
ETNC(L|K, 1) bezeichnet.?

!Siehe etwa [Neu92, Kap. VII, §5, p. 488 und Satz (5.11)].
2Die Bezeichnung stammt vom englischen Begriff Equivariant Tamagawa Number Conjecture.
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Aus der Funktionalgleichung der Artinschen L-Reihe, die Azjx(1 — s) und
Ak (s) assoziiert, ergibt sich ein Zusammenhang der beiden fiihrenden Koef-
fizienten (7 (0) und (7, (1). Ebenso steht Tates kanonische Klasse per Defi-
nition iiber lokale Fundamentalklassen mit der globalen Fundamentalklasse in
Beziehung. Diese beiden Abhangigkeiten geben Anlass zu einer Kompatibilitats-
vermutung ETNC(L| K, 1). Sie prognostiziert einen Zusammenhang zwischen
Epsilonfaktoren, die in der Funktionalgleichung von Ak (s) auftauchen, und lo-
kalen Fundamentalklassen und wird auch Epsilonkonstantenvermutung genannt.
Diese Kompatibilitatsvermutung gilt genau dann, wenn die beiden Vermutungen
ETNC(L|K,0) und ETNC(L| K, 1) zueinander &quivalent sind [BrB07, Thm. 5.2].

Zusammenfassend ergibt sich das folgende Diagramm, in dem waagerechte Pfei-
le bekannte Zusammenhéange und senkrechte Pfeile vermutete Beziechungen kenn-

zeichnen:
Funktional-

CLllﬁ( ) gleichung CL|[$( )
I 4+ I
| | |
ETNC(L|K,0) «——— ETNC!%(L|K,1) —— ETNC(L|K, 1)
‘ ‘ :
|
|

I
I

I

| I

v M

+
Tates kano- lokale Funda- Globale Funda-
nische Klasse mentalklassen mentalklasse

Breuning studiert in [Bre04b] den lokalen Charakter von ETNC¢(L| K, 1) im
Detail und formuliert eine lokale Epsilonkonstantenvermutung ETNC¢(E|F,1)
fir lokale Erweiterungen E|F iiber Q,. Auflerdem zeigt er, dass die Giiltigkeit
der lokalen Vermutung fiir alle nicht-archimedischen Komplettierungen L, |K,
die globale Vermutung ETNC"(L|K, 1) impliziert.

Die aquivarianten Tamagawazahlvermutungen sind bereits fiir einige Félle be-
wiesen. So ist beispielsweise bekannt, dass ETNC(L| K, 0) und ETNC(L| K, 1) fiir
alle Erweiterungen gelten, in denen L abelsch iiber Q ist [BGO03]. Weiterhin sind
ETNCY¢(L|K,1) fiir abelsche Erweiterungen L|Q und beide Epsilonkonstanten-
vermutungen fiir zahm verzweigte Erweiterungen giiltig [BIB03, Bre04b, BF06].
Dartiber hinaus implizieren die aquivarianten Tamagawazahlvermutungen Chin-
burgs Vermutungen aus [Chi85], und nach Burns [Bur01] ist ETNC(L|K, 0) dqui-
valent zur gelifteten Wurzelzahlvermutung von Gruenberg, Ritter und Weiss
[GRW99.

Einige dieser Vermutungen wurden bereits algorithmisch untersucht. Ein Al-
gorithmus zum Beweis der lokalen Epsilonkonstantenvermutung wird von Bley
und Breuning in [BIBr08] vorgestellt. Dieser wurde bisher jedoch nicht imple-
mentiert, da fiir einige Teilprobleme — unter anderem fiir die Berechnung lokaler
Fundamentalklassen — noch kein effizienter Algorithmus bekannt ist. Unter Ver-
wendung eines lokal-global Prinzips, kann dieser Algorithmus auch zum Beweis
der globalen Epsilonkonstantenvermutung herangezogen werden.
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Die aquivariante Tamagawazahlvermutung bei s = 0 wird von Janssen in
[Jan10] studiert. Sie verwendet eine Konstruktion von Chinburg [Chi89], um
Tates kanonische Klasse zu berechnen, und entwickelt einen Algorithmus, wel-
cher ETNC(L|K,0) numerisch verifizieren kann. In einigen Féllen kann der Al-
gorithmus sogar so modifiziert werden, dass er einen Beweis liefert. Allerdings
ist Chinburgs Konstruktion nur in Erweiterungen L|K anwendbar, in denen eine
Stelle von K existiert, die in L unzerlegt ist. Diese Voraussetzung ist eine sehr
starke Einschrankung an die Erweiterung L|K.

Um die aquivarianten Tamagawazahlvermutungen algorithmisch zu untersu-
chen, ist es also von zentraler Bedeutung effiziente Methoden zur Berechnung der
drei Fundamentalklassen zu kennen. Nach einer Einfithrung verschiedener fiir die
gesamte Arbeit wichtiger Begriffe und Notationen (Kapitel 1), beschéftigen wir
uns im ersten Teil der vorliegenden Arbeit im wesentlichen mit der Herleitung sol-
cher Algorithmen (Kapitel 2 bis 4). Anschlieflend verwenden wir diese im zweiten
Teil fiir rechnerische Untersuchungen der Tamagawazahlvermutungen (Kapitel 5
und 6).

In Kapitel 2 beschéaftigen wir uns mit der Kohomologiegruppe H 2(G, E*) einer
lokalen Galoiserweiterung E|F iiber Q, mit Gruppe G. Wir geben einen endlich
erzeugten Modul E7 an, der einen kohomologischen Isomorphismus H 2(G,EX) ~
H? (G, EY) liefert. Dadurch kénnen wir die Methoden von Holt [Hol06] verwenden,

um die Gruppe H 2(G, E7) explizit zu berechnen (sieche Abschnitt 2.3).

Fiir eine unverzweigte Galoiserweiterung E|F kann die lokale Fundamental-
klasse in dieser Gruppe direkt angegeben werden. Bei allgemeinen Erweiterungen
werden wir die explizite Berechnung von H 2(G, BY) nutzen und direkt aus der
Definition der lokalen Fundamentalklasse eine Konstruktion herleiten. Dies fiihrt
zu Algorithmus 2.5, welcher jedoch fiir Erweiterungen vom Grad [E : Q,] > 10
nicht sehr effizient ist.

In Abschnitt 2.2.2 wird ein leistungsfahigerer Algorithmus fiir die Berechnung
lokaler Fundamentalklassen beschrieben, der auf der Theorie von Serre [Ser79,
Kap. XI, §2] basiert. Insbesondere verzichtet dieser Ansatz vollsténdig auf die
Berechnung von Kohomologiegruppen. Stattdessen wird die lokale Fundamental-
klasse in Proposition 2.14 als Kozykel konstruiert. Der darauf basierende Algo-
rithmus ist fiir die gesamte Arbeit bedeutend.

Als erste Anwendung ermoglicht dieser neue Algorithmus Berechnungen in der
relativen Brauergruppe Br(L|K) einer galloisschen Zahlkérpererweiterung L|K.
Sie wird {iber den Isomorphismus Br(L|K) ~ H? (Gal(L|K), L) durch Kozykel
mit Werten in L und lokal iiber

Br(L|1) = @) A (Gl Ll K.). L) = ) 1

— 77
L, : K, /

durch Invarianten (rationale Zahlen) beschrieben, wobei v alle Stellen von K
durchlauft. Durch die Kenntnis der lokalen Fundamentalklassen konnen wir diese
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lokalen Invarianten explizit berechnen (Algorithmus 2.23) und ebenso einen globa-
len Kozykel aus lokalen Bedingungen konstruieren (Algorithmus 2.27). In beiden
Fallen ist dabei die Einschrankung auf eine endliche Stellenmenge von K die
grofite Herausforderung.

In Kapitel 3 wenden wir uns der Kohomologiegruppe H 2(@, Cp) fiir eine Galois-
erweiterung L|K von Zahlkorpern mit Gruppe G zu. Fiir algorithmische Frage-
stellungen sind wir zunachst wieder daran interessiert, einen endlich erzeugten
Modul C{ zu konstruieren, der einen Isomorphismus H? (G, C’f) ~ ]:IQ(G, Cr)
liefert. Chinburg beweist in [Chi85] die Existenz eines solchen Moduls, und wir
werden in Proposition 3.3 die Konstruktivitat seines Beweises zeigen.

Unter Verwendung der Methoden von Holt konnen wir dann wieder die Ko-
homologiegruppe H? (G, C’f) berechnen. Basierend auf der Konstruktion lokaler
Fundamentalklassen entwickeln wir anschlieffend einen Algorithmus, der die glo-
bale Fundamentalklasse in 2 (G, C’g) berechnet. Dieser Algorithmus ist der erste
Algorithmus seiner Art, aber aus Komplexitédtsgriinden ist er in der Praxis nur
fiir kleine Erweiterungen (vom Grad kleiner als 20 iiber Q) anwendbar.

Die Kompatibilitat der lokalen und globalen Klassenkorpertheorie spiegelt sich
in Tates kanonischer Klasse wieder. In Kapitel 4 wiederholen wir Tates Definition
aus [Tat66], welche unter anderem semi-lokale Fundamentalklassen verwendet.

Von den Algorithmen fiir lokale und globale Fundamentalklassen leiten wir
dann Algorithmen zur Berechnung der semi-lokalen Fundamentalklasse (Algo-
rithmus 4.6) und fiir Tates kanonische Klasse (Algorithmus 4.12) ab. Anschlie-
Bend zeigen wir in Abschnitt 4.5, dass diese Berechnung die Konstruktion von
Chinburg aus [Chi89] verallgemeinert.

Als Hauptresultat der ersten drei Kapitel kénnen wir somit explizite Algorithmen
zur Berechnung lokaler Fundamentalklassen, globaler Fundamentalklassen und fir
Tates kanonische Klasse herleiten.

Im zweiten Teil der vorliegenden Arbeit wenden wir diese Algorithmen fiir
Fundamentalklassen auf Tamagawazahlvermutungen an.

In Kapitel 5 wiederholen wir die Formulierungen der globalen und lokalen Epsi-
lonkonstantenvermutung von [BIB03] und [Bre04b]. Breunings lokal-global Prin-
zip (siche Satz 5.6) zeigt, dass die globale Vermutung ETNC*(L|K,1) durch
einen algorithmischen Beweis der lokalen Vermutung ETNC'¢(E|F, 1) fiir end-
lich viele lokale Erweiterungen E|F bewiesen werden kann.

Diese endlich vielen lokalen Erweiterungen miissen zunachst durch globale Er-
weiterungen dargestellt werden. Dazu konstruieren wir Galoiserweiterungen L|K
von Zahlkérpern mit Stellen w|v, so dass gilt: L, ~ E und K, ~ F. Dabei
muss v eine unzerlegte Stelle sein, d.h. w ist die einzige Stelle tiber v und die
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Koérpergrade [L : K] und [E : F]| sind gleich. Da keine algorithmische Herange-
hensweise bekannt ist, welche den Grad von K tiber QQ klein halt, geben wir in
Abschnitt 5.3.1 verschiedene Heuristiken an und setzen diese im Anschluss bei
lokalen Erweiterungen bis zum Grad 15 ein.

In Abschnitt 5.4 geben wir den Algorithmus von Bley und Breuning [BIBr08|
zum Beweis von ETNC¢(E|F,1) wieder. Unter Verwendung der Berechnung
lokaler Fundamentalklassen mit den Methoden aus Kapitel 2 kann dieser Algo-
rithmus vollstandig implementiert werden. Letztlich konnen wir folgendes rech-
nergestiitztes Resultat (Satz 5.16 und Korollar 5.20) beweisen:

Die globale Epsilonkonstantenvermutung ETNCY(L|K, 1) gilt fiir alle Galoiser-
weiterungen bei denen L in einer Galoiserweiterung M|Q vom Grad < 15 einge-
bettet werden kann.

Zuletzt beschaftigen wir uns in Kapitel 6 mit der aquivarianten Tamagawazahl-
vermutung bei s = 1. Die Formulierung aus [BrB07, § 3| fiir Galoiserweiterungen
L|K von Zahlkoérpern basiert auf einen Komplex Eg welcher aus der globalen
Fundamentalklasse in H2(Gal(L|K),C;) konstruiert wird. Fiir algorithmische
Fragestellungen ist wiederum das Hauptproblem, dass der Komplex FEg nicht
aus endlich erzeugten Moduln besteht. Allerdings erlaubt die Konstruktion des
endlich erzeugten Moduls C’}j bei der Berechnung globaler Fundamentalklassen
aus Kapitel 3 die Definition eines verwandten Komplexes Ef;, der aus endlich
erzeugten Moduln besteht. Ein wesentliches Resultat beweisen wir im Anschluss
in Satz 6.10:

Der Komplex Eg st quasi-isomorph zu Es und kann ebenfalls zur Beschreibung
der Vermutung verwendet werden.

Der Komplex E{; und die Methoden zur Berechnung globaler Fundamentalklas-
sen aus Kapitel 3 werden anschliefend verwendet, um einen Algorithmus fiir die
numerische Verifikation von ETNC(L|Q, 1) zu beschreiben. Abschlielend zeigen
wir in Satz 6.15, dass dieser Algorithmus einen Beweis der aquivarianten Tama-
gawazahlvermutung liefert, sofern alle Charaktere von G rational oder abelsch
sind.
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Introduction

A well know result for a number field K is the class number formula. It relates
an analytic term — the residue at s = 1 of the Dedekind zeta-function associated
to K — to various algebraic terms, for example the absolute discriminant, the
regulator and the class number of K. There also exists a similar formulation using
the leading term of the (x(s) at s = 0, and both formulations are connected by
the functional equation of (x(s) which relates the values (x(1 — s) and (x(s).?

In the past, various conjectures have been established which can be considered
as generalization of these facts. One of these generalization is the equivariant
Tamagawa number conjecture of Burns and Flach [BF01]. Galois extensions L|K
of number fields, which are considered in this thesis, make up a special case in
this conjecture, namely the case for the so-called Tate motive. For a summary
of these conjectures and related results we refer to [Fla04], but for the important
case of number field extensions there are also explicit reformulations of these
conjectures [BIB03, BrB07].

In the case of a Galois extension L|K of number fields we consider the com-
pleted Artin L-function Azx(x,s) associated to the characters x of the Galois
group G =Gal(L|K) and the equivariant Artin L-function Az x(s)= (Arx (X, S)>x
which combines the functions for all characters. The equivariant Tamagawa num-
ber conjecture at s = 0 relates the leading term (zx * (0) in the Laurent series
expansion at s = 0 of the function Azjk(s) to algebraic terms associated to L and
K. These algebraic invariants are constructed from Tate’s canonical class which
is defined by Tate in [Tat66].

Similarly, the equivariant Tamagawa number conjecture at s = 1 relates the
leading term (j, (1) of the series expansion at s = 1 to algebraic invariants
which are based on the global fundamental class of the Tate cohomology group
H2(G, Cp), where C;, denotes the ideéle class group of L.

Those two independet cases of the equivariant Tamagawa number conjecture
are denoted by ETNC(L| K, 0) and ETNC(L|K, 1) respectively.

The two leading terms ¢j, x(0) and G| (1) are connected by a functional equa-
tion which relates Az (s) and Ay (1 — s). Moreover, by definition of Tate’s
canonical class, this class is related to the global fundamental class through local
fundamental classes. From these relations one therefore obtains a compatibility
conjecture ETNC'¢(L|K, 1). It predicts a relation between epsilon factors from
the functional equation and local fundamental classes and is therefore also called

3For example see [Neu92, Chp. VII, §5, p. 488 and Thm. (5.11)].
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epsilon constant conjecture. By [BrB07, Thm. 5.2] the compatibility conjecture
is valid if and only if ETNC(L|K,0) and ETNC(L|K, 1) are equivalent.

To summarize, we have the following diagram in which horizontal arrows in-
dicate known relations and vertical arrows are relations predicted by the conjec-
tures:

functional

e

T !

G110

equation

ETNC(L|K,0) ¢———— ETNC¢(L|K,1) —— ETNC(L|K, 1)
| ;

|
|

I

I
I
| I
v <

+
Tate’s cano- local fundamental Global funda-
nical class classes mental class

In [Bre04b] Breuning studies the local nature of ETNC"(L|K, 1) in more de-
tail and establishes a local epsilon constant conjecture ETNC¢(E|F, 1) for local
number fields E|F. He also shows that the validity of ETNC"¢(L,,| K, 1) for all
non-archimedian completions L,,| K, implies the validity of ETNC*(L|K, 1).

The equivariant Tamagawa number conjectures have already been proved for
some cases. For example, ETNC(L|K,0) and ETNC(L|K, 1) are true for exten-
sions in which L is abelian over Q [BG03], ETNC"¢(L|K, 1) holds for abelian
extensions L|Q [BIB03, BF06], and for tamely ramified extensions the local and
global epsilon constant conjecture are valid by [BIB03] and [Bre04b]. Further-
more, the equivariant Tamagawa number conjectures are known to imply Chin-
burg’s conjectures [Chi85], and in [Bur01] Burns proved that ETNC(L|K,0) is
equivalent to the lifted root number conjecture of Gruenberg, Ritter and Weiss
[GRW99].

Some of the conjectures were already studied algorithmically. An algorithm
to prove the local epsilon constant conjecture is presented by Bley and Breuning
in [BIBr08] but it is not yet implemented because there are some problems for
which no efficient solution was known at that time. One of these problems is
the computation of local fundamental classes. Using a local-global principle and
some theoretical results for the global case, this algorithm can also be used to
prove the global epsilon constant conjecture.

The equivariant Tamagawa number conjecture at s = 0 is considered algorith-
mically by Janssen [Jan10]. She uses a construction of Tate’s canonical class from
Chinburg [Chi89] and presents an algorithm which gives numerical evidence for
ETNC(L|K,0) and also gives a proof for special cases. However, Chinburg’s con-
struction of Tate’s canonical class is only applicable for extensions L|K in which
there is a place of K which is undecomposed in L. This is a strong condition on
L|K and it would be pleasing to find a construction which is applicable in the
general case.
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Outline

To consider equivariant Tamagawa number conjectures algorithmically, it is essen-
tial to have methods for the computation of fundamental classes. In the first part
of this thesis we will develop different methods for the computation of fundamen-
tal classes (Chapters 2 to 4). These algorithms will then be applied to Tamagawa
number conjectures (Chapters 5 and 6). But first we will give an introduction to
several topics which will be needed throughout this thesis (Chapter 1).

In Chapter 2 we consider the Tate cohomology group H 2(G, E*) of a local
Galois extension E|F of number fields with group G. We specify a finitely gener-
ated module E7 for which one has an isomorphism H2(G, EX) ~ H? (G,E') in
cohomology. Using methods described by Holt in [Hol06] we can then explicitly
compute the group H2(G, E), see Algorithm 2.3.

For an unramified extension F|F one can directly specify the local fundamental
class in this group. For arbitrary extensions, the explicit computation of cohomo-
logy groups also allows the construction of the local fundamental class by using
its definition. This leads to Algorithm 2.5 which is, however, not very efficient
for extensions E|F' in which [E : Q,] > 10.

In Section 2.2.2 we develop an efficient algorithm for the computation of the lo-
cal fundamental class in H2(G, EY), based on the theory of Serre [Ser79, Chp. XI,
§2]. Most importantly, this approach avoids the computation of cohomology
groups. Instead, the local fundamental class is directly constructed as a cocycle
in Proposition 2.14. This provides a new algorithm which is relevant throughout
this thesis.

As a first application it allows computations in the relative Brauer group
Br(L|K) for Galois extensions L|K of number fields. It is described by global
cocycles Br(L|K) ~ H?(Gal(L|K), L*) or through

Br(L|K) ~ @ H*(Gal(L.|K,), L)) ~ D mZ/Z

by local invariants (rational numbers), where v ranges over all places of K and w
is a place of L above v. The elements in Br(L|K) can therefore be characterized
by invariants at every place v. In Section 2.3 we show how to compute these
invariants (Algorithm 2.23) and how to construct a global cocycle which satisfies
local conditions (Algorithm 2.27). The main effort in both cases is the restriction
to a finite set of places of K.

In Chapter 3 we deal with the cohomology group H 2(@, Cy) for a Galois exten-
sion L|K of number fields with group G. For algorithmic considerations, we are
again interested in the construction of a finitely generated module C’{ for which
there is an isomorphism H2 (G , C{) ~H 2(G,CL). Chinburg proves the existence
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of such a module [Chi85] and an important step is to make his proof constructive,
see Proposition 3.3.

Using the methods described in [Hol06] one can then compute the cohomology
group H? (G , C{ ) Based on the construction of the local fundamental class we de-

velop Algorithm 3.13 which computes the global fundamental class in H? (G, Ci)
This is the first algorithm to compute the global fundamental class, but for com-
plexity reasons it is only applicable to small extensions (of degree less than 20
over Q) in practice.

The compatibility of local and global class field theory is expressed in Tate’s
canonical class which is considered in Chapter 4. We recall its definition from
[Tat66] which also involves the semi-local fundamental class.

From the algorithms for local and global fundamental classes we deduce al-
gorithms which compute the semi-local fundamental class (Algorithm 4.6) and
Tate’s canonical class (Algorithm 4.12) for arbitrary Galois extensions L|K of
number fields. As a last result, we show in Section 4.5 that this computation
of Tate’s canonical class generalizes the construction described by Chinburg in
[Chi89).

As a result of those three chapters, we develop explicit algorithms to compute the
local fundamental class, the global fundamental class and Tate’s canonical class.

In the second part of this thesis, these algorithms for fundamental classes will
be applied to Tamagawa number conjectures.

In Chapter 5 we recall the formulations of the global and local epsilon con-
stant conjecture for number fields from [BIB03] and [Bre04b]. Using Breun-
ing’s local-global principle (see Theorem 5.6) one can show that the conjecture
ETNC"(L|K, 1) is true if ETNC"°°(E|F, 1) is true for finitely many local number
field extensions L, |K,, and this can be done computationally.

In a first step, we have to represent those local extensions F|F' globally. We
need to construct a Galois extension L|K of number fields with places w|v such
that L, ~ F and K, ~ F. Moreover, this place v must be undecomposed in L.
In other words w must be the only place of L which lies above v and the degrees
[L : K] and [E : F| must be equal. We were not able to give an algorithm for
such a Since no construction is known which keeps the degree of K small, we will
describe several heuristics in Section 5.3.1 and apply them to extensions E|Q,
up to degree 15.

Using the construction of local fundamental classes from Chapter 2 it is possi-
ble to implement the algorithm for the proof of ETNC'¢(E|F, 1) from [BIBr08].
In Section 5.4 we recall the description of this algorithm. Then we can computa-
tionally prove the following result, see Theorem 5.16 and Corollary 5.20:
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The global epsilon constant conjecture ETNC(L|K, 1) is true for all Galois
extensions in which L can be embedded into a Galois extension M|Q which is of
degree at most 15.

Finally, Chapter 6 deals with the equivariant Tamagawa number conjecture at
s = 1. We recall the formulation from [BrB07, §3] for Galois extensions L|K
of number fields which is based on a complex Fg constructed from the global
fundamental class in H2(Gal(L|K), Cp).

To consider this conjecture algorithmically, the main challenge is again the
fact that Eg consists of modules which are not finitely generated. But the con-
struction of the finitely generated module C’£ used in the computation of global
fundamental classes, allows the definition of a complex Eé consisting of finitely
generated modules. As a main result we prove in Theorem 6.10:

The complezes Es and Eg are quasi-isomorphic and we can also use the latter
complex in the description of the conjecture.

The complex Eg and Algorithm 3.13 for the construction of the global funda-
mental class are then used in Section 6.4 to describe an algorithm which numeri-
cally verifies ETNC(L|Q, 1). As a last result we prove in Theorem 6.15 that this
algorithm can actually prove of the equivariant Tamagawa number conjecture at
s = 1 for a single extension L|Q in the case where every character of G is rational
or abelian.






1 Preliminaries

1.1 Tate Cohomology

Let G be a finite group and A a G-module. Then H?(G, A) will denote the Tate
cohomology groups as defined in [NSWO00, Chp. I, §2] or [Neu69, Chp. I, §2].

More precisely, in terminology of [NSW00] the group C?%(G, A) of g-cochains,
the group Z9(G, A) = ker(0,+1) of g-cocycles, and the group BY(G, A) = im(9,)
of g-coboundaries are defined using the cohomological complete standard res-
olution of A with differentials 0,. The g-th cohomology groups ]:Iq(G,A) =
Z9G,A)/B1(G, A) are then called modified cohomology groups (or Tate cohomo-
logy groups). For computational issues we will always use the inhomogeneous
representation, where C°(G, A) = A and C?(G, A) is the group of all functions
y:G1 — Aforg>1.1

Explicitly, the most important cohomology groups for our purposes are those
in degrees —1 to 2:

H°(G,A) == A%/NgA and H G, A) =y, A/ A

where NgA = {Nga = ) .,0a | a € A} is the norm group, n,A = {a €
A | Nga = 0} is the group of elements with trivial norm and Ig A = (ca — a |
a € A;o € G). In degree 1, we obtain the 1-cocycles as 1-cochains x with
x(o71) = ox(7) + x(0) for 0,7 € G and the l-coboundaries are maps z(o) =
(01a)(0) := 0a — a for 0 € G and with a € A. Finally, the 2-cocycles satisfy the
relation

z(oT,p) + x(o,7) = ox(T, p) + x(0, 7p) (1.1)
for o,7,p € G and 2-coboundaries are maps x(o,7) = (Gy)(o,7) = oy(T) —
y(o7) + y(o) with arbitrary 1-cochain y € CY(G, A).

Remark 1.1. Note that the equations above assume that G acts from the left
on A, ie. o(ra) = (o7)a. If G acts from the right, we will use the exponent
notation to avoid confusion and one has the relation (a™)? = a™. The relation
(1.1) for 2-cocycles then becomes (written multiplicatively)

w(p,To)x(r,0) = x(p, 7)x(pT, 0). (1.2)
This will be important when it comes to implementing algorithms into the com-
puter algebra system MAGMA [BCP97] because it prefers right-actions: for ex-
ample the action by the automorphism group of a number field is computed as a
right-action.

In [NSWO00] these inhomogeneous groups are denoted by the script letters ¢, 2 and 2.
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Remark 1.2 (Normalized cocycles). A cochain f € C"(G, A),n>1, is called
normalized if f(o1,...,0,) = 1 whenever one of the o; is 1. Every class in
H"(G, A) can be represented by a (not necessarily unique) normalized cocycle,
cf. [INSW00, Chp. I, §2, Ex. 5].

For example, let g be a 2-cocycle and let A be a division ring. Consider the
constant 1-cochain A : G — L*, o — ¢(1,1)~!. Then one can easily check that
f = 9y(\)g is the normalized cocycle in the class of g in H*(G, A), cf. [Ker07,

§8.1].

For a subgroup H of GG, we denote the restriction map by resH H'(G,A) —
H"(H, A) and (if H is normal) the inflation map by mfG/H . H(G/H, A") —

H"(G, A).

Since we will focus on the computation of fundamental classes in Chapters 2
to 4 we will summarize some results from local and global class field theory in
the following sections. See [NSW00, Chp. VII, §1 and Chp. VIII, §1] for details.

1.1.1 Cohomology of local fields

For a Galois extension L|K of local non-archimedian number fields with group
G the cohomology group H2(L|K) := H?(G, L*) has an important role. Below
we follow the construction of a canonical invariant map for local fields with non-
archimedian valuation. It is based on the following invariant map for unramified
extensions.

Theorem 1.3. For every unramified Galois extension L|K with group G there is
a canonical isomorphism invyx « H*(L|K) — i K]Z/Z induced by the valuation

of L and the evaluation of characters at the Frobenius automorphism ¢ of L|K.
Proof. [NSW00, Chp. VII, §1]. O

Explicitly, the local invariant map is given by

invy gk H(G, L) % H(G,Z) — HY(G,Q/Z) — Z)7.  (1.3)

L : K ]
where the left-hand map is an isomorphism since the unit group Uy, = ker(vy) is
cohomologically trivial, the middle isomorphism is the inverse of the connecting
homomorphism obtained from the short exact sequence 0 - Z — Q — Q/Z — 0
(where Q is cohomologically trivial), and the latter isomorphism sends a character
X to the image of the Frobenius automorphism y(¢).

Similarly, one obtains an invariant map

v HQ([?\K) = Q/Z
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for the maximal unramified extension K of K using the valuation of K with co-
homological trivial kernel Uj. The invariant maps for different Galois extensions
L and N of K with L. C N commute with the injective inflation map infg”g :
H?*(L|K) — H*(N|K) and the restriction map resxli : H*(N|K) — H*(N|L).
If the number fields in these maps are known from the context, we will also write
inf or res.

The following lemma extends this canonical invariant map to the maximal
separable extension K of K.

Lemma 1.4. H*(K|K) ~ H*(K|K).
Proof. [NSW00, Thm. (7.1.3)]. O

This result is obtained by identifying the cohomology groups H?*(L|K) and
H?*(L'|K) for two extensions of the same degree. If K, denotes the unramified
extension of K of degree n, one has isomorphisms

H*(K|K) ~ lim H*(L|K) ~ lim H*(K,|K) ~ H*(K|K)
L neN

where L runs through all finite Galois extensions of K. In each of the direct
limits, two elements are identified, if their inflation to the cohomology of their
composite field is equal. Two different cohomology groups H?(L|K) and H?(L'|K)
can both be considered as subgroups of H*((LL')|K). One therefore often writes
H*(K|K) ~ J, H*(L|K) and H2(K|K) ~ U,en H?(K,|K). Especially, if L is
an arbitrary Galois extension of K and L'|K is the unramified extension of the
same degree, then the inflation of H?(L|K) and H*(L'|K) are the same subgroups
in H2((LL)|K).

Combining the previous results one then obtains a unique local invariant map
invyg : H*(K|K) — Q/Z.

Its restriction to the cohomology of finite Galois extensions L|K provides an
invariant map invyg : HQ(L|K) =, ﬁZ/Z which is compatible with inflation
and restriction.

Theorem 1.5. The cohomology groups H*(L|K) satisfy the conditions of a class
formation® with respect to the invariant maps inv LIK, i€

(a) H'(L|K) =1 for every normal extension L|K.

2In general, class formations can be defined for profinite groups G acting on an discrete module
A, cf. [NSWO00, Def. (3.1.8)]. But here we will omit these details and state the properties
explicitly for the cohomology of local and global fields. These explicit properties can also
be found in [Neu69].
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(b) The invariant maps invyx satisfy:

(i) invp e = invy o infM5 for extensions N|L|K with N|K and L|K

LIK
normal,
(ii) invyg o res%li = [L : Klinvy|x for extensions N|L|K with N|K
normal.
Proof. [NSWO00, (7.1.4) and (7.1.5)]. O

The compatibility of the invariant map with inflation and restriction, as in prop-
erty (b), can also be summarized in the following commutative diagram:
H(L|K) —*— H*(N|K) —*— H*(N|L)
JinVLK J/il’lVNlK J/inVNL (14)

C
[L}K}Z/Z [N}K]Z/Z Z7]7

[L: K] 1
[N:L]

By means of the invariant map one can then identify a canonical generator of

H2(L|K).

Definition 1.6 (Fundamental class). The unique generator upx € H*(L|K),
which is the preimage of ﬁ +Z by the canonical local invariant map invy, g, s
called local fundamental class.

We finish this section by specifying explicit representations of the local funda-
mental class for unramified and archimedian extensions.

Remark 1.7. (a) Let L|K be an unramified extension of degree n and 7 an uni-
formizing element of K. The Galois group Gal(L|K) is generated by the Frobe-
nius automorphism ¢ and the local fundamental class is defined by Theorem 1.3.
Consider the cocycle

1 ifi+75<n

e (1.5)
m ifi+j5>n

c(¢',¢’) = {

from [Rei03, Chp. 7, (30.1)] and apply the isomorphism (1.3). Its image in

H?(G,Z) is the cocycle € C*(G,Z) for which (¢, ¢7) is zero for i +j < n and
one for i + 7 > n.

Embedded in C?(G,Q) the cocycle x is a coboundary since it is the image

of the 1-cocycle y € C*(G,Q) defined by y(¢') = L: For i+ j < n one has

(Ou)(# ') = 'y (7)) —y (™) +y(p') = ZEEE = 0. And for n < i+j < 2n
one has y(¢™7) = 2 and thus (01y)(¢%,¢’) = 1. Hence (01y) = x and the
image of ¢ in C'(G,Q/Z) is the projection Z of x via C'(G,Q) - C(G, Q/Z).
The last isomorphism in (1.3) sends the cocycle 7 € C'(G,Q/Z) to the value
at ¢, which is % + Z. Therefore invyx(c) = % + Z and the cocycle c represents

the local fundamental class of L|K.
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(b) For a Galois extension of local fields with archimedian valuation, there is
actually just one non-trivial extension to consider: the ramified extension L = C
over K =R . In this case G and H2(G, L) = H?(G,C*) are both cyclic groups
of order two. So there is just one generator in the local cohomology group, and we
define this generator to be the local fundamental class for archimedian local fields.
The normalized cocycles ¢(o, 7) in this group are uniquely defined by ¢(o, o) for
o # 1 and the cocycle relation (1.1) directly implies ¢(o, o) € R.

A normalized 2-coboundary ¢ € H2(G,L*) is the image of a normalized 1-
cochain a € C'(G,C*), which implies c(o,0) = o(a(c))a(c) = |a(o)]* > 0.
Therefore, the cocycle

(0,7) 1 forco=1lor7=1
clo,T) =
—1 foro#1and T #1

in C*(G, L*) cannot be a coboundary and, hence, it represents the local funda-
mental class in H*(G, L*).

1.1.2 Cohomology of global fields

Whereas the multiplicative group has an important role in local class field theory,
the counterpart for global class field theory is the idele class group Cf.

For global fields L, we consider the completions L, and their group of integral
units Uy, := OF . For infinite places v, we define Uy, := L. For every place v
we denote the decomposition group by G,.

Definition 1.8 (Idele class group). Let L be a global field. The idéle group
I;, of L s defined as the restricted product I;, = H; L), where v runs through
all places of L. The product is restricted w.r.t. the unit groups Uyp,, i.e. every
element x = (z,) € I, has only finitely many components x,, ¢ Uy, .

The units L™ of L are diagonally embedded into I;,. This diagonal embedding

will be denoted by A and one defines the idele class group by Cp, = I,/ A(L*).

The diagonal embedding A is sometimes also applied implicitly and one writes
Cp = I;/L*. We summarize some properties of idele groups and idele class
groups.

Lemma 1.9. Let L|K be a Galois extension of global fields with group G.

(a) The groups I, and Cy, are G-modules with G action induced by the canonical
G, action on LY.

(¢) H(G,Ip) ~ @, H'(Go, LY).
Proof. [NSW00, Chp. VIII, §1]. O
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As in the local case, one can construct a canonical invariant map on the co-
homology group H?(L|K) := H?*(G,C}), called global invariant map. For the
cohomology group of the idele group this is directly given by local invariant
maps.

Definition 1.10 (Idélic invariant map). Using Lemma 1.9 we obtain a canon-

ical homomorphism inv : [:IZ(G, I) — ﬁZ/Z defined by the sum of the local

invariant maps inv,, : H (G, LX) — ﬁZ/Z. We refer to this map as the
idelic invariant map.

Although the idelic invariant map is not an isomorphism and, hence, does not
satisfy the conditions of a class formation, it is still compatible with inflation and
restriction as in diagram (1.4), cf. [NSW00, Prop. (8.1.10)].

Since H2(G,I;) — H%*(G,C}) is not surjective in general (e.g. see [NSWOO,
Chp. VIII, §1, p. 378]), the idelic invariant map does not directly provide a
well-defined global invariant map. Therefore, we first restrict to cyclic extensions
which can be seen as analogue of the unramified extensions in the local case.

Lemma 1.11. For cyclic extensions L|K with group G the idélic invariant map
and the map H?*(G, I) — H*(G,C}L) are both surjective.

This can be proved using Chebotarev’s density theorem:

Theorem 1.12 (Chebotarev’s density theorem). Let L|K be a Galois ea-
tension of number fields with group G. For every o € G denote its conjugacy
class by G -0 = {rot™' | 7 € G}. Then the set of places v of K, which are
unramified in L and for which o is the Frobenius automorphism ., for some

place w|v, has density %
Proof. [Neu92, Chp. VII, Thm. (13.4)]. O

Corollary 1.13. In every cyclic extension L|K there are infinitely many unram-
ified places, which are undecomposed.

Proof. Let the Galois group G of L|K be generated by 7. A place v of K which
is unramified and undecomposed must have full inertia degree f = #G. Hence,
places v with w|v and ¢, = 7 are unramified and undecomposed. By Cheb-
otarev’s density theorem these places occur with density 1/#G.

This is also true for other generators 7 of G and the total density of unramified
undecomposed places is k/#G, where k is the number of integers 1 < i < #G
for which (i, #G) = 1. O

Using this consequence of Chebotarev’s density theorem, we can given a simple
proof of the surjectivity of the idelic invariant map.
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Proof of Lemma 1.11. By Corollary 1.13 there exists a place v of K which is
undecomposed in L, i.e. there is exactly one place w in L above v and the decom-
position group G, is equal to G. Hence, one can find an element in ﬁz(Gw, LX) =
H?(L,|K,), which is the preimage of ﬁ + Z, and by Lemma 1.9(c) this also

yields a preimage in H 2(G, Ir). In conclusion, the idelic invariant map is surjec-
tive.

The latter assertion follows from H3(G,L*) = H'(G,L*) = 1 for the cyclic
group G. For more details see [NSWO00, Prop. (8.1.15)]. O

Hence, for cyclic extensions we have the following diagram

HX(G, 1) — +7/Z

-
-
-

H2(G,CL)

and by [NSW00, Prop. (8.1.15)] and its proof both of the above surjective maps
have kernel H 2(G, L*). Therefore, the idelic invariant map gives a well-defined
invariant map invy x on F[Q(G, Cr).

This can be generalized to arbitrary extensions by considering the union of
cyclic extensions.

Lemma 1.14. For the cohomology groups of the idele group and the idele class
group there are isomorphisms

H*(Gal(K|K), Ig) ~ | ) H*(Gal(L|K),1})

LK
cyclic

and  H*(K|K)~ | ] H(L|K).
L|IK
cyclic

Proof. [INSW00, Prop. (8.1.9) and proof of Prop. (8.1.20)]. O

As in the local case, this result is obtained by identifying cohomology groups
from extensions of the same degree. In particular, if L|K is an arbitrary Galois
extension and L'|K is a cyclic extension of the same degree, then the inflations
of H*(L|K) and H?(L'|K) are the same subgroup in H*((LL')|K).

The previous results then define a canonical global invariant map

invg : H3(K|K) — Q/Z

and its restriction to the cohomology of finite Galois extensions L|K again pro-

ﬁZ/ Z. The cohomology groups

H?*(L|K) then satisfy the conditions of a class formations with respect to invyx,
of. [NSW00, Thm. (8.1.22)].

vides an invariant map invy g : H*(L|K) —
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Definition 1.15 (Global fundamental class). The unique generator urx €
H?(L|K), which is the preimage of ﬁ + Z by the canonical global invariant
map invy g, 18 called global fundamental class.

1.2 Brauer groups

In preparation for Chapter 2 an overview of Brauer groups and important prop-
erties is given in the following section. A detailed survey of the theory of algebras
and Brauer groups can be found in [Rei03].

The Brauer group is used to study central simple algebras A over a field K,
i.e. finite-dimensional K-algebras with center Z(A) = K which have only trivial
two-sided ideals. They are used to classify division algebras over a field.

Proposition 1.16. Let A be a central simple K-algebra. Then

(i) A~ M,(D), withn € N unique and D is a skew field with center K which
18 unique up to isomorphism, and

(i) there exists a finite Galois extensions L|K such that Ap = A Qg L ~
M, (L).

Proof. The first statement is a consequence of Wedderburn’s theorem [Rei03,
Chp. I, Thm. (7.4)] and the second is proved in [Rei03, Chp. VII, Cor. (28.11)].00

Definition 1.17. A Galois extension LIK as in the previous lemma is called
splitting field for A. Two algebras A and B are called similar, denoted by A ~ B,
if AQg M, (K) ~ B®yg My(K) forr,seN.

Definition 1.18 (Brauer group). The Brauer group Br(K) of K is the group
of similarity classes [A] of central simple K-algebras A with multiplication

[A][B] := [A ®k BJ.

By [Rei03, Chp. I, Thm. (7.6)] the tensor product A @k B is again central and
simple and the multiplication in Br(K) is well-defined.

Definition 1.19 (Relative Brauer group). For an extension L|K, the kernel
Br(L|K) of the restriction homomorphism

Br(K) — Br(L)
[A] = [Aek L]

15 called relative Brauer group.
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Every algebra A € Br(K) has a splitting field L. One therefore obtains the
identity Br(K) = |J; Br(L|K) where L runs through all finite Galois extensions
of K.

For every Galois extension L|K with group G, the relative Brauer group
Br(L|K) can be described cohomologically.

Proposition 1.20. The map H?(G,L*) — Br(L|K), sending a normalized two-
cocycle v € H*(G, L*) to the algebra A = @, Le, with multiplication

( zg: xaeg) ( Z: yT6T> = ; Te0y; (0, T)Eor,

s an isomorphism of groups.
Proof. [NSW00, Prop. (6.3.3) and (6.3.4)]. O

Combining the identifications for Brauer groups and cohomology groups one
also has a cohomological description for the Brauer group:

Br(K) = | JBr(L|K) ~ | JH*(LIK) ~ H*(K|K).

Now consider a local field K. For the Brauer group one then obtains a canonical
isomorphism Br(K) ~ Q/Z through the local invariant map, called the Hasse
imwvariant map. The image of an algebra A under this isomorphism is called the
Hasse invariant of A.3

1.3 Homological algebra

The following sections will give a short overview over some homological construc-
tions used in this thesis. Most of these definitions and facts can be found in
[HS71, Mac75] or [Wei94]. For more details and proofs we refer to those books.

1.3.1 Extensions

Let R be a ring (with one), let A and B be R-modules and fix an injective
resolution

d_ d d
0— B, %I ...

of B, where I, 0 < k is a family of injective modules. For a fixed integer n,
denote J,, := coker(d,_») and the corresponding projection by p, : I,_1 — J,
such that

0 BEh o, 2 g (1.6)

is an exact sequence of length n + 2.

30riginally, the Hasse invariant was defined independently and then proved to coincide
with the invariant obtained from local class field theory, c.f. [Ker07, Thm. (13.10) and
Rem. (13.12)].
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Definition 1.21 (Ext-group). The map p, induces a map p;,: Homg(A, I,,_1) —
Homg (A, J,,) and we define the group of n-extensions by

Exti(A, B) = Homg(4, J,)/ im(p;,)
forn € N and we set Ext%(A, B) = Hompg(A, B).

One can prove that this definition does not depend on the choice of the injective
resolution and one can equivalently define Ext;(A, B) by Homg(Q,,, B)/ ker (i)

using a projective resolution - - - &, P 4, = D, A — 0 with kernel Qn =
ker(d,_1) and i, : Q, — P,_, cf. [HS71, Prop. 8.1].

The group Ext;(A, B) can also be described using the following operation on
n-extensions of A with B.

Definition 1.22 (Baer sum). For two n-extensions e; and ey given by
O—>B—>Ei—>---—>Ef1—>A—>O
fori=1,2 withn > 2, the sum e + ey is defined to be the extension
0—>B—>P—>E2169E22—>---—>E}L_1€BE5_1—>Q—>A—>O

where P is the pushout of B — E] with B — E} and Q is the pullback of E} — A
with B2 — A. If n =1, the sum is defined by

0— B — Q/{((b,—b),be B) - A— 0.

Example 1.23. Consider the case n = 2 and let F, Fs, F} and F, be R-modules
with extensions

e: 0— B FE, — By 5 A—0,
and f: 0— B35 F —F 2 A—0.

Denote the pushout of +; and ¢ by P and the pullback of 71 and w5 by ). They
can explicitly be written as

By o B

((t2(0), —12(b)), b € B)
and Q={(r,y) € By® Fy | m(z) =m(y)} C E2 & F,

P =

Then the sum e + f is the extension
0—B—P—Q—A—0

where the map P — @ is canonically given by the map £, & F| — Ey @ F;. By
the exactness of the extensions e and f, the map P — @ is well defined and the
sum e + f is again an exact sequence.
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The operation on l-extensions is due to Baer, and therefore called Baer sum.
Its generalization was later introduced by Yoneda and defines the following group
structure on n-extensions.

Definition 1.24 (Yoneda group). The group Yexth(A, B) of Yoneda exten-
sions is the set of equivalence classes of n-extensions of A with B generated by

the symmetric-transitive closure of the relation induced by commutative diagrams
of the form

0 B E E, A 0
|| [ (17)
0 B E E! A 0

The addition in this group is given by the Baer sum and the identity is the class
0f0—>Bi>Bi>0i>---LOLALAHOfornEl and the class
of the split extension) - B — B® A — A — 0 forn = 1. Finally, the inverse
of a class E is given by the pushout sequence of E with —idpg.

A verification of the group axioms and other details can be found in [Mac75,
Chp. III, §§ 2 and 5].

Remark 1.25. Considering the pushout with —id g more explicitly, the inverse of
€n—1

the extensions [O —-FE 2B S 25 E S E— 0} € Yexti(Eni1, o)

€n—1

is given by [0 —F3%FE % ... 2L FE, S E, — O]. Since every diagram

—€i—1 e;
Ei E; Eit1

€i—1 —€;
B E; — B

—e;

is commutative, every extension [0 -k - — s = E = O], where
just one of the maps e; is negated, represents the inverse in Yext(Ep 11, Ep).

We will often use the following identifications.

Proposition 1.26. For R-modules A, A;, B and B; there are isomorphisms
Exth (€D Ai, B) ~ [ | Exth(Ai, B), (1.8)
Exth (A, [[ B:) ~ [ Exti(A, By), (1.9)
and Ext%(h, B) ~ Yzext}'%(A, B). (1.10)

Proof. [HS71, Chp. III, Lem. 4.1 and Chp. IV, Thm. 9.1]. O
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If the group Ext%(—, B) is represented using the fixed extension (1.6), then
the isomorphism (1.8) is given by Hom(€D, A;, J,,) ~ [[, Hom (4, J,), i.e. by
restricting the homomorphism to A; for all 4. Similarly, the isomorphism (1.9) is
given by canonical projections if Ext (A, —) is represented by a fixed projective
resolution of A.

Given a homomorphism ¢ € Hom(A, J,,) representing an element in Ext’; (A, B)
one gets the corresponding n-extension in Yext (A, B) by forming the pullback
diagram of p : I,,_y — J, with ¢:

0 B I I, s Q A 0
| L am
0 B [0 . Inf2 [n,1 — Jn — 0

Combining (1.8) and (1.10) there is also an isomorphism
Yext, (@ A;, B) ~ HYext% (A;, B)

and similarly for the second variable using (1.9) and (1.10). We will make this
isomorphism explicit using the following notation from [Mac75]:

For an extension e € Yext(A, B) and a homomorphism ¢ € Hom(C, A), we
write e¢ € Yext’,(C, B) for the pullback sequence of e with ¢. Note that, if ¢ €
Hom(D, C') is another homomorphism, then (e¢)y = e(¢o1)) by the fundamental
property of a pullback. Similarly we write ¢e € Yext,(A, C) for the pushout of
e with ¢ € Hom(B, C) and ¥ (¢e) = (¢ o ¢)e holds for ¢» € Hom(C, D).

Lemma 1.27. (a) The maps

Yexth(Ay @ Ag, B) ~ Yexth(Ay, B) ® Yexty(As, B) (1.12)
e — (et1,eL9)
€171 + egmg < (e1,e2)

with canonical embeddings 1; : A; — A1 ® Ay and projections w; : Ay ® Ay —»
A; are isomorphisms which are compatible with (1.10) and (1.8).

(b) Similarly the maps
Yexth (A, By @ By) ~ Yexth(A, By) @ Yexty(A, Bs)

e > (e, moe)
1161 + Loeg < (€1,€2)

with embeddings v; - B; — B ® By and projections 7; : By & By — B; are
isomorphisms which are compatible with (1.9) and (1.10).
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Proof. (a) We first show that the map
O : Yexth (A & Ag, B) — Yexth(Ay, B) ® Yexth(As, B)

is compatible with (1.10) and (1.8) and then complete the proof by showing that
the maps defined in (1.12) are inverse to each other, i.e. ® o ®~1 = id.

Let C,, denote the complex (1.6) used to describe the groups Extz(—, B). Let
e € Yexth (A & As, B) be any n-extension and let ¢ € Hom(A; & A, J,,) be a
representative of the image of e via (1.10), i.e. e = C,¢. Following (1.8) and
(1.10), the components of the image ®(e) are C,(¢|4,) for ¢ = 1,2, which each
satisfy Cy,(¢]a,) = Cn(d o t;) = (Cro)t; = eu; using the fundamental property of
the pullback. This proves the first part.

Let (e, e2) be a tuple of extensions e; € Yexts(A;, B). The first component of
the image (® o 1) (eq, e2) = ((e1m1 + €2m2)L;)i=1.2 18

(6171'1 + 627T2)L1 = el + €Tl = €1 idAl +€2<7T2L1)

where 7oty is the zero map from A; to As. Hence, ex(mat1) = €20 is the trivial
extension class in Yextd(Aj, B) and (e;m + eama)ty = e1ids, = e;. A similar

computation for the second component shows that (e;m; + eama)ia = ey and
therefore ® o &1 = id.
Part (b) is proved by the dual computations. O

1.3.2 Extensions and cohomology

For a ring R and a finite group G we now consider R[G]-modules.

Proposition 1.28. Let A and B be R[G]-modules for some finite group G. If
A is finitely generated and free as a Z-module, there is also a cohomological

description: ' N
Exthq) (A4, B) =~ H'(G, Hompgg (A, B)). (1.13)

Proof. [Bro94, Chp. III, Prop. (2.2)]. O

For the rest of this section let A and C' be R[G]-modules and let A be finitely
generated and free as a Z-module. Using Propositions 1.26 and 1.28 there are
isomorphisms

YextZ(A, C) ~ Extl(A, C) ~ H"(G,Hom(A, 0)). (1.14)

If Extg (A, C) is described using an injective resolution of C, the corresponding
Yoneda extension in Yextg (A, C') can be constructed by the pullback sequence.
Similarly, for a projective resolution of A one uses the pushout construction. But
the other direction of this isomorphism and the construction of a corresponding
cocycle in H™(G, Hom(A, C)) is not as explicit in general.
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However, the most interesting case for this thesis is A = Z and n = 2. In this
special case, we represent Extg(Z, —) by a fixed projective resolution of Z. The
following explicit constructions can be found in the literature:

Ext%(Z,C)

¢3 #1
. (1.15)

(G,0) = Yextg(Z.C)

$2
Again ¢; is the map given by pushout. The other constructions, which are based
on the splitting module of a cocycle from [NSWO00, Chp. 111, § 1], are obtained as
follows.

Let v € H2(G,C) be represented by the cocycle ¢ € Z%(G,C). Then the
module C(7) is defined as a Z-module by

C(y) =C o @z,
o#1
where 0 € G. The G-action on the free generators b, is then defined by ob, =
bor — by + (o, 7) and setting by = ¢(1,1) € C. This satisfies the properties of a
G-action and is called splitting module since H2(G,C) — H?(G,C(7)) maps
to zero (see [NSWO00, Chp. III, §1, p. 115ff]).

Every exact sequence 0 — C — B° — B! — 7Z — 0 gives rise to two short
exact sequences 0 — W — B! - Z — 0and 0 - C — B — W — 0 with
W =ker(B' — Z) = im(B° — B'). Below we will use corresponding connecting
homomorphisms &, : H*(G,Z) — H'(G,W) and 6, : H'(G,W) — H*(G, ().
Proposition 1.29. The isomorphism ¢y is given by:

YextZ(Z,C) ~ H*(G,C)
0—C— B — B'—=Z— 0]~ §(6(1+]|G|Z))
0—C=Cly) 526 5 Z— 0 iy
with h(c) =0 for c € C and h(b,) = o — 1.

Proof. This is based on [NSW00, Chp. III, §1]. A complete proof is given in

[Jan10, Thm. 1.3.7]. O
If G is generated by ¢y, ..., g,, we consider the projective resolution
ZG" L 7]G) =72 — 0 (1.16)

of Z where g maps (a;) € Z[G]" to Y_._, ai(g; — 1). For the computation of the
isomorphism ¢3, we then define Q = ker(g), let ¢ : @ — Z[G]", and use the
representation Ext%(Z, C') = Homg(Q, C)/v* Hom(Z[G]", C).
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Corollary 1.30. The isomorphism ¢3 is given by restricting the homomorphism
Ly ZIGT — C()
(@i)imt.r = 252y aiby,

to Q.
Proof. 1t is easy to check that f, maps elements of () to C' and that the diagram
0 Q —=-7Z|G] —£— 7|G] 2 7 0
CO T
0 C —5— C(y) —— 7Z[G] - 7 0

is commutative. In other words, the homomorphism f, € Homg(Q, C') represents
the cocycle class 7y in Extg (Z, C) via isomorphism ¢3. For more details see [Jan10),
Thm. 1.3.7]. O

This definition of ¢ satisfies ¢, 0 ¢3 = ¢, by construction and makes diagram
(1.15) commute.

1.3.3 Complexes

Let A* denote a complex
YT S AT SN

of G-modules A* with differentials 0° : A® — A" satisfying 0"t o 0° = 0. It
is called bounded if only finitely many A’ are non-zero. The cohomology of this
complex is denoted by H*(A*) = ker 0’/ im 9"~! and it is called ezact if H'(A*) =0
for all ¢. If A* is trivial outside degrees ¢ and @ + 1, it always represents an exact
sequence

0 —s Hz(Ao) N Az _ Ai+1 N Hz‘+1(A.) —0.
and therefore an element in Yexty, (H*(A*), H'(A*)).

Definition 1.31 (Chain map). A map of complexes (or chain map) ¢ : A* —
B* between two complexes A* and B* with differentials o and (3, respectively, is
a family of homomorphisms ¢; : A* — B® with ¢;41 0 a® = 3o ¢; for all i.

By a projective resolution --- — P — F§ of a complex A*, we indicate com-
patible projective resolutions - - - — P} — PJ of each of the modules A’ such that
all diagrams

P — Pl B
I
P — Py BT — A

are commutative.
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For short exact sequences one can construct such a projective resolution using
the following lemma, called Horseshoe lemma. It provides a projective resolution
which is exact in every degree.

Lemma 1.32 (Horseshoe). Let 0 — A — B — C — 0 be a short ezxact se-
quence of G-modules and let Py and P be projective resolutions of A and C
respectively. Then the sequence Py, given by P = Py & Pl is a projective reso-
lution of B and there exist maps of complexes Py — Pp — Pg which is an exact
sequences in every degree.

Proof. [Wei94, Lem. 2.2.8]. O

Explicitly, the maps P} — P§ — P\ in every degree are given by the lifting
property of projective modules. For the maps Py — Pj one considers the sur-
jective maps P§ — B and Pj — im(Pj — Pg ') and one can lift the composite
homomorphisms P{ — A — B and P} — Py' — im(P5 — Pj ') as in the
following diagrams:

P} - Py
Py = B P, s im(P}, — P

In particular, these maps can be constructed if the projective modules are actually
free modules.

Remark 1.33. A consequence of the Horseshoe lemma is the existence of pro-
jective resolutions of a complex A*.

If we denote the differentials of A* by af, then we have short exact sequences
0 — ker(a’) — A" — im(a’) — 0. Let P* and Q; be projective resolutions of
ker(a’) and im(a'). Then the Horseshoe lemma constructs projective resolutions
R; of A" with maps of complexes Pf — R — Q. By [Wei94, Thm. 2.2.6] the
inclusion im(a’) C ker(a’*1) also induces chain maps Q; — P;, ;.

In conclusion, one obtains chain maps Rg — Qf — Pfﬂ — Rg 41 and since all
the maps in this construction will commute, the double complex R is a projective
resolution of A°.

A map of complexes ¢ : A* — B* directly induces maps H'(A*) — H'(B*)
on the cohomology groups: these are well-defined by the commutativity of the
differentials and ¢;.

Definition 1.34 (Quasi-isomorphism). A map of complezes ¢ : A* — B*
18 called quasi-isomorphism if the induced homomorphisms on the cohomology
¢; : H'(A*) — H'(B*) are isomorphisms.

A complex A* is called perfect if it is quasi-isomorphic to a bounded complex
P which consists of finitely-generated projective modules.
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Note that by [Mil80, Chp. VI, Lem. 8.17] every quasi-isomorphism P* — A
where P* is a bounded complex of finitely-generated projective modules, also
provides a quasi-isomorphism A®* — P* and vice-versa.

As an important example, every bounded complex A* of cohomologically trivial
G-modules A® with finitely generated cohomology groups H'(A*®) is known to be
perfect. This follows from the explicit constructions by Lang [Lan02, Chp. XXI,
Prop. 1.1 and 1.2]. To recall Lang’s proof we first introduce mapping cones.

Definition 1.35 (Mapping cone). Let ¢ : A* — B* be a chain map and denote
the differentials of A* and B* by o and 3¢, respectively. The mapping cone of ¢
is the complex C* with C* = B ® A™ and differentials
it Bi @ AL S Bt @ A2
(b,a) = (Bi(b) + dit1(a), —airi(a)).
It is denoted by cone(¢).

Keeping the notation of the definition, there always is a canonical map B* — C'*
given by the inclusion B* C C* = B'@ A1, Moreover, the projections C* — A1
induce a chain map between C'* and the shifted complex which is given by modules
A1 and differentials —0*! in degree i, i.e. everything is shifted by one to the
left. This results in a sequence of complexes

A* — B* — C* — A*[1] (1.17)
or equivalently

C*[-1]— A" —- B —C*
called distinguished triangle. These sequences could be extended infinitely and
give rise to a long exact sequence in cohomology.

Corollary 1.36. For a chain map ¢ : A* — B* with mapping cone C* = cone(¢)
there is a long exact sequence

- — H'(A*) - H'(B*) — H'(C*) — H'""'(A*) — -+ .
If a map of complexes is injective (or surjective), i.e. all its maps are injective

(or surjective), then its mapping cone has an easy structure.

Lemma 1.37. Let ¢ : A* — B*® be a mapping of complexes. If ¢ is surjective
(injective), there ezists a canonical quasi-isomorphism: ker(¢)[1] — cone(¢) (or
cone(¢p) — coker(¢) respectively).

Proof. Denote the differentials of A* and B* by o’ and ¢, respectively. Further-
more, denote the cone by C* = cone(¢) which consists of modules C* = B*@ A"
and differentials

,_yi . Bz @Ai-i-l _ Bi+1 @AH-Q
(b,a) = (B'(b) + Gipa(a), —a"(a)) .
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(i) Let ¢ be surjective and let K* be the kernel of ¢ with modules K* = ker(¢; :
A" — BY) and differentials k' = a'|g:. Then there is a canonical injective map
Y : K*[1] — C* which is given by 1;(z) = (0,z) € B ® A for x € K" C
A1 The cokernel of v is the complex D* with modules D’ = B* @ B! and
differentials 6*(z,y) = (8%(z) + y, —3""'(y)) which arise from ~* by projection
onto the cokernel. Then we have constructed the following commutative diagram
with exact columns:

K*[1] : K g o i et
[TZ) it jwz = [%‘ [%4—1
C' . Bz 1 o) Az Bz P Az+1 Bz+1 P Az+2

l l

De - 6 Bz 1 o Bz 6 Bz o) Bz+1 Bz+1 fa Bz+2 oitt
The maps ¢ have kernels and images

ker(6') = {(z,y) € B @ B [ g4 (y) =0 A f'(z) +y =0}
im(6" 1) = {(67"(x) +y, -0 (y) |r € B,y e B'}.

Since (z,y) = (z,—F(z)) = 6"71(0,2) holds for elements (z,y) € ker(d*), the
complex D* has trivial cohomology groups H'(D*) = 0. Hence, the cohomology
groups of K*[1] and C* are isomorphic.

(ii) For the second statement we let K* denote the cokernel of ¢. Consider the
canonical projection ¢ : C* — K* defined by v;(b,a) = b + ¢;(A?) € B'/¢;(A").
Now D* denotes the kernel of ¥ where the differentials §* are the restrictions of
~* and we get the commutative diagram:

6t Al @ Al Al At 5t A+l @ Ait2 oitt

s jﬁh o £¢i £¢z+1 L

D
[v
Cr. . Bz 1 @14@ Bz ®Az+1 Bz+1 o) Az+2

J.i_i

Ke: P BUUG(ATT) B Big(AY) o B g(AT) S

The maps 0 have kernels and images
ker(6') = {(z,y) e A @ AT | o (y) =0 A o'(z) +y =0}
im(0) = {(a"(z) +y, —a'(y)) [z € ATy e A}

Here (z,y) = (x, —ai(x)) = §71(0,2) holds for elements (z,y) € ker(6%). This
shows H'(D*) = 0 and, hence, H(C*) ~ H'(K*). O

As an important result which will be essential in the conjectures of Chapters
5 and 6 we prove the following result for bounded complexes.
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Proposition 1.38. A bounded complex A* of cohomologically trivial G-modules
A" with finitely generated cohomology groups H'(A*) is perfect.

Proof. We recall the constructive proof from [Lan02, Chp. XXI, Prop. 1.1 and 1.2].

Let A* be a complex with differentials o for which A* =0 for ¢ ¢ {1,...,n}.
Then we construct a complex P* of finitely generated, projective modules and a
chain map ¢ : P* — A* by descending induction. Let P* = 0, ¢; = 0 for all i > n.
Then the conditions

fu s ZM(P?) RN H*(A®) is surjective

| , (1.18)
and H’(P*) ~ H’(A*) holds for all j > k+1

is satisfied for kK > n + 1.

Induction step in degree i: Assume that (1.18) holds for £ =i+ 1 and consider
B = ker(f;;1) € P! for which ¢;,1(B"™) C im(a?).

Let R* and Q' be finitely generated, projective modules with p; : R® — B! and
3 : Q" — H'(A*). Then one can again construct corresponding maps r; : R* — A’
and ¢; : Q; — Z'(A) as in the following diagrams:

El?”i,// RZ Elqi/// QZ
/// l¢i+10pi K,// llji
Al im(oy) Zi(A®) — Hi(A*)

Note that in degree i = n one has B"™* = 0 and one can choose R™ = 0. Set
P'i= Q&R 6,(¢,7) == qs(q)+ri(r) and let P' — P*1 be the map (q,7) — pi(r).
By construction the conditions (1.18) now hold for k& = i.

Final step: By induction one has (1.18) for k = 1. We consider B! := ker(f;) C
P! set P’ := B and P := 0 for all i < 0. Then ¢ is a quasi-isomorphism.

To finish the proof we have to show that B! is projective. The cone C* :=
cone(¢) is a complex which is trivial outside degrees —1,...,n and for which
C1=P =B (C'=Pl, C"= A" and C* = A' @ P! 1t is actually an exact
sequence

—1 0 1 n—2 n—1 n
0 C—l v CO v Cl vy R On—l v Cm ol 0

of length n+2 since ¢ is a quasi isomorphism and it induces short exact sequences
of the form 0 — ker(y"~!) — C"~! — ker(y") — 0 for 1 <4 < n. By construction
of P* all the modules C* and ker(y™) = C™ are cohomologically trivial. Therefore,
in each of these short exact sequences the cohomological triviality of the right and
middle module will imply that the left-hand module is cohomologically trivial.
In conclusion, B! is cohomologically trivial and since it is Z-free, it will also
be projective. 0
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1.4 K-theory

The conjectures we address in Chapters 5 and 6 are formulated as equations in
relative K-groups for group rings. We will recall their definition from [Swa68]
and the most important results. More details can be found in [CR87, Chp. 5]
and [Bre04a, Chp. 2].

For a ring A we write Ky(A) for the Grothendieck group of finitely generated
projective A-modules. This is the free abelian group generated by isomorphism
classes (P) for every finitely generated projective A-module P with relations
(P) — (P") — (P") for every short exact sequence 0 — P’ — P — P” — 0.

The Whitehead group K,(A) is defined to be the abelianization of the infinite
general linear group Gl(A):

K1(A) = GI(A)/[GI(A), GI(A)].

By Whitehead’s lemma the commutator [G1(A), G1(A)] is generated by elementary
matrices F(A) C Gl(A), cf. [CR87, (40.24)]. One can also describe the elements
of K;(A) by isomorphism classes of pairs (P, f) where f is an automorphism of
a projective A-module P. These pairs also satisfy certain relations (see [CR87,
§40A] or [BreO4a, §2.1.2]) and each of them is represented by a pair (A", f) €
K (A) for some n € N and an automorphism f.

Finally, we consider the relative K-group Ky(A, ¢) for a ring homomorphism
¢ : A — B. Its objects are triples [P, f, Q)] with finitely generated projective
A-modules P and ) and an isomorphism f: B®4 P — B ®4 ) of B-modules.
For the relations we again refer to [Swa68, p. 215], [CR87, (40.19)] or [Bre04a,
§2.1.3].

The K-groups defined above fit into an exact sequence (see [Swa68, Thm. 15.5]
or [CR87, (40.20)]), which we recall in the setting of group rings. Let R be a
ring, £ an extension of Quot(R) and G a group. Then the relative K-group
Ky(R[G], ¢) corresponding to the homomorphism ¢ : R[G] — E[G] induced by
R C E is also denoted by Ky(R[G], E) and there is an exact sequence

K\(RIG)) — Ky(E[G]) 225 Ko(R[G], B) 25 Ky(RIG)) — Ko(E[G]). (1.19)

The maps K;(R[G]) — K;(E[G]) for i = 0,1 are induced by the operator
E[G)®gje— and the other maps are given by 05 5 ((E[G]", f)) = [R[G]", f, R[G]"]
and 0%, (P, Q) = [P] - [Q).

Let H be a subgroup of G. Then every R[H|-module P gives rise to an R[G]-
module R[G] ®pg) P. The induced induction maps on the associated K-groups
will be denoted by ind,.

Before we continue, we fix the following notations and recall some well-known
facts from representation theory [CR81]. For a finite group G we write x for a



1.4 K-theory 27

character with values in C associated to a representation p : G — GI,,(C). The set
of irreducible C-characters will be denoted by Irrc(G) and the complex conjugate
to x by x.

By Wedderburn’s theorem the center of the group ring C[G] will decompose

into
ZCcle)~ f c

x€Elrre (G)

For a subfield F' C C the image of Z(F[G]) in Z(C[G]) consists of tuples (ay)y
for which a0, = o(ay) for all o € Aut(C|F), e.g. see [Blel0, Lem. 2.8]. We
are therefore especially interested in characters x € Irre(G) modulo relations
X = o 01 for 0 € Aut(C|F) and denote these characters by Irrp(G).

1.4.1 Reduced norms and boundary homomorphisms

For every central simple K-algebra A there exists a reduced norm map nr 4 x on
A into its center K as in [CR81, § 7D]. This also carries over to the group K;(A)
where the reduced norm map, denoted by nr, is injective by [CR87, (45.3)] (see
also [BF01, Prop. 2.2]).

For semi-simple K-algebras A one has to consider the Wedderburn decom-
position A ~ @@)_, A; which induces decompositions Z(A) ~ @;_, Z(A;) and
Ki(A) ~ @;_, Ki(4;), cf. [CR87, (38.29)]. This gives a well-defined reduced

norm map

nr: K (A) — Z(A)* ~ @Kf
i=1

with K; := Z(A;).

We continue to consider the group ring case E[G] for an extension E|Q which
includes the m-th roots of unity with m = exp(G) denoting the exponent of
G. Then Irrg(G) = Irre(G) and since E[G] is a semi-simple algebra, we have a
reduced norm map

nr: Ky(E[G]) - Z(E[G)* ~ € E~

X€lrrg(G)

which is still injective.

Let p: G — Glq)(E) denote a representation associated to x and T its linear
continuation to E[G]. An element A € K;(E[G]) is represented by a matrix
A = (a;) € Gl,(E[G]) for some n € N and its reduced norm is given by

nr(A) = (dety (4)), ) = (det(Tilaig))))

x€lrrg(G)

where (T)(ai;))i; is a matrix of size nx(1) x nx(1). Note that these reduced
norms can explicitly be computed as described in [BW09, §3.3].



28 1 Preliminaries

The injective reduced norm map provides a map 5}2[0]’ n= G}Z[G]’ ponr ! from
im(nr) to Ko(R[G], E) called boundary homomorphism.

The two cases we are interested in are the following. For R = Z, and E an
extension of Q, the norm map is an isomorphism by [CR87, (45.3)] and we directly
obtain a map 5%:13 = 52[(}],13 = 0z 1cq.p o0 from Z(E[G])* to Ko(Z,[G], E).

Z(EG)*

< 1
~9G.m
~ |nr S

~
~

~

K\(E[G]) 2= Ko(Z,[G), E)

For R = 7Z and F and extension of QQ the norm map is not surjective but the
decomposition

Ko(Z[G),Q) = [ | Ko(Z,[G], Q). (1.20)

and the weak approximation theorem still allow us to define a map 51GF from
Z(F[G])* to Ko(Z[G], F) by 04 p(x) = O p(AT) = 32,07 1610,(A) where the
summation ranges over all primes and A € Z(Q[G])* C Z(Q,[G])* must be chosen
such that Az € im(nr). One can show that this definition does not depend on
the choice of A and provides a well-defined map from Z(F[G]) to K¢(Z|G], F'), cf.
[BF01, §4.2]:

K\(F[G]) 2= Ko(Z[G), F)
Altogether, we have well-defined maps

Ob.p  Z(E[G))* — Ko(Z,[G], E) for E/Q,,
and 9% 1 Z(F[G))* — Ko(Z[G],F) for F/Q

called extended boundary homomorphisms. In particular, the latter map will be
used for F' = R.

Remark 1.39. In the local case the map 9' : K,(E[G]) - Ky(Z,|G], E) is sur-
jective by [CR87][(39.10)] (see also [BreO4a, Lem. 2.5]). The extended boundary
homomorphism gé g L(E[G])* — Ko(Z,|G], E) is therefore also surjective. Con-
sider an element in Ky(Z,[G], E) given by a triple [A, §, B] with projective Z,[G]-
modules A, B and an isomorphism 0 : Ay — B with Ag = E[G] ®z,c) A and
Bp = E|G] ®z,(6) B. Then one can explicitly construct a preimage in Z(E[G])*
as follows, cf. [BW09, §4].
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Projective modules over local rings are free. We therefore let aq,...,a, and
bi,...,b, be Z,[G]-bases of A and B. Then the map 6 is represented by a matrix
T € Gl,(FE[G]) corresponding to bases 1 ® ay,...,1®a, and 1®by,...,1®b, of
AE and BE

The matrix T € Gl,(F[G]) represents an element in K;(F[G]) for which
ONT) = [A,0,B]. The norm nr(T) therefore represents the element [A, 6, B]
in Z(E[G])*.

1.4.2 Euler characteristics

Given a perfect complex ) of R[G] modules, one can define corresponding ele-
ments in Ko(R[G], E) which are called Euler characteristics of (). These elements
can also be defined in more general settings, but we will restrict to the case of
group rings. For such a complex @, let Qg denote the complex of E[G]-modules
which is obtained from @ by applying the operator (—)g := E[G] ®gg) — An
isomorphism ¢ : H*(Qg) — H~(Qg) between the sum of cohomology groups in
even and odd degree is called a trivialization.*

Let P be a bounded complex of finitely generated projective R[G]|-modules.
Applying the operator (—)g to the short exact sequences

0 — BY(P) — Z(P) — H'(P) —0
and 0— Z'(P)— P — B"YP)—0
maintains exactness and one obtains isomorphisms Z¢(Pg) ~ B(Pg) ® H'(Pg)

and P}, ~ Z'(Pg) ® B (Pg) by choosing splittings. The trivialization ¢ then
induces an isomorphism £, : PE = Py as follows:

t.: Pi =@ P~ @ (2'(Ps) ® B (Pr)) @ H'(Pg) @Q}Bz (Pg)

= P H(Pp) @@B“ (Pp) ~ €D (Z'(Pp) ® B (Pg)) ~ P Py,
i odd i odd i odd
— P;.

Burns then introduced the following definition (see [Bur04, §2]°) which uses the
inverse of t,.

Definition 1.40 (Euler characteristic). For a bounded complex P of finitely
generated projective R|G|-modules and a trivialization t : H" (Pg) — H~(Pg) the
refined Euler characteristic is defined by

XR[G],E(Pa t) = [P_a (t*)_17P+:| € KO(R[G]7E)

4Sometimes trivializations are also defined to go from odd to even degree.
5In that paper the refined Euler characteristic is denoted by x r[c) (P, t) with t being a trivial-
ization from odd to even degree.
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Burns proved that this element in Ky(R[G], E) is well-defined. Note that by the
relations in Ko(R[G], E) it is equal to —[P*, ¢., P7].

The definition can also be extended to perfect complexes: if () is a perfect com-
plex of R[G] modules with trivialization ¢ and 7 : P — @ is a quasi-isomorphism
with P being a bounded complex of finitely generated projective R[G]| modules,
then 7 : H'(P) ~ H*(Q) induces a trivialization on P, denoted by 7 'tm, and
one can set

)_(G(Q, t) = Xg(P, 7T_1t7T) € K()(R[G], E)

By Burns [Bur04, Lem. 2.3] this element is again well-defined and the refined
Euler characteristic is invariant under quasi-isomorphism.

Note, that Burns used trivializations from odd to even degree in his original
definition. His refined Euler characteristic xgjg from [Bur04] therefore satisfies
Xre(Q,t7) = Xra,e(@.t). This should not lead to confusion because in any
case it is clear how a trivialization ¢ induces an isomorphism @) = Q5. We will
always use trivializations from even to odd degree as in the more recent definition
of the refined Euler characteristic which we introduce in the following.

Burns and Breuning defined a canonical Euler characteristics x g(g),z in a more
general setting and could first prove under which conditions triangles A — B —
C — A[l] as in (1.17) with compatible trivializations ¢4, tp and tc satisfy the
additivity criterion

xricLe(B,tg) = Xria.e(A, ta) + Xric.E(C, tc),

cf. [BrB05, Cor. 6.6]. For K-groups of group rings their refined Euler character-
istic satisfies the following relation.

Proposition 1.41. The two definitions of Fuler characteristics satisfy
Xric),E(@: 1) = —Xria,e(Q, ) + 05((B~(Qr), —id)) € Ko(R[G], E)  (1.21)

with B~(Qr) = @, o1 B'(Qr).

Proof. [BrB05, Thm. 6.2]. O

Since we do not need the details of the construction of this canonical Euler char-
acteristic, we will simply take this relation as the definition for xgjg),£(Q,t). This
Euler characteristic has the advantage of interacting conveniently with shifted
complexes. Also the latter term in the above equation can be proved to vanish
in some cases.

Proposition 1.42.  (a) xpic,e(Q[1],t7") = —Xnrie,p(Q, 1),
(b) OL((BT(QE),—1id)) = 0 if Q is acyclic outside degrees 1 and 2.
Proof. [BrB05, Prop. 5.6, Lem. 6.3 and Rem. 6.4]. O
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For the two Euler characteristics one can then deduce the following identities.

Corollary 1.43. One has the following relations for a perfect complexr Q) and a
trivialization t : HY(Qg) — H (Qg):

(a) XriaE(Q:1) = Xrie),£(Q[2],t) and Xric),e(Q,t) = Xric,6(Q[2],1)
(b) If Qg is acyclic outside two consecutive degrees i and i + 1, then
(i) Xric,E(Q,1) = —Xrie,p(Q:1) if 2[(i + 1),
(i) Xrice(Q,t) = Xriae(Q[—1],t7") if 2i.

Proof. Part (a) follows from the definition of Y. For part (b) one can do the fol-
lowing computations: Xrc£(Q,t) = Xr(a,e(Qi —1],1) = —Xria6(Qi —1],t) =
—Xrie),e(Q,t) for odd integers i and xgia)p(Q,t) = —Xriqe(Q —1],t7") =
Xra,e(Qli — 1],t71) = Xrie,e(Q[—1],¢71) for even integers i. O

In the cases we consider in this thesis, the complex ) will be a bounded complex
of finitely generated, cohomologically trivial modules. Then one can construct a
perfect complex P quasi-isomorphic to @ using [Lan02, XXI, Prop. 1.1 and 1.2]
as in Proposition 1.38.

In recent papers (e.g. [BrB07]) the more natural definition by gz is pre-
ferred. But the older definition of Burns is still of interest because it can be
explicitly computed by definition.

In our applications, we will often consider a complex () as in the following
examples. As for the extended boundary homomorphism one may think of the
two important cases: R=72, QCECRor R=7, Q,C ECC,.

Example 1.44. Consider a complex () = [A EN B] of finitely generated, co-
homologically trivial R[G] modules which is trivial outside degrees {0,1} and a
trivialization ¢ : H(Q) ® E[G] — H'(Q) ® E[G] for which we want to compute
the Euler characteristic Xgja),£(Q,t) € Ko(R[G], E).

(a) First assume that both, A and B, are projective R[G]-modules. Then we
have to consider the exact sequence

0— HQ) — A—— B— H'(Q) —0

NS
W

in which W := ker(B — coker(f)) and the Euler characteristic is

Xriale(@, 1) = [B,@,A} € Ko(R[G], E).

where § = (t,)! is the isomorphism By ~ Wp®H'(Q)g LA WerdHY(Q)p ~ Ag.
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(b) If B is projective and A is cohomologically trivial, we first need to construct
a complex of projective modules which is quasi-isomorphic to ). To this end,
let 0 = K — FF — A — 0 be a two-term projective resolution of A with a free
R[G]-module F. For example, if A is generated by r elements, one can choose
F = R|G]". The kernel K will then be cohomologically trivial and Z-torsion-free,
and thus projective by [Bro94, Chp. VI, Thm. (8.10)].

Then the complex P = [K — - B} with K placed in degree —1 is a
complex of finitely generated projective modules where the right-hand map is the
composite F' — A — B. This projective resolution gives a chain map 7 : P — @
as in the following diagram

P K—F—20B

A

Q: 0— A—B
The map 7 is a quasi-isomorphism by

H'(P)=ker(K — F)=0=H'Q),
H°(P) =ker(F — B)/K =ker(A — B) = H*(Q),
and H'(P) = coker(F — B) = coker(A — B) = H'(Q).

From the definition of the Euler characteristic we then obtain
Xric,2(@,t) = Xria,p(P, 7~ 'tr) = [K ® B0, F| € Ko(R[G], E).

The isomorphism 6 can be computed very explicitly (see also [BIB03, Eq. (20)]
or [BIBr08]) from the trivialization ¢ using the following diagram

K—K
[

0 X F B— H'(P) —0
L
0— H(Q) — A B— HY(Q)—0
NS
w

in which again W := ker(B — coker(f)). By choosing appropriate splittings
of the maps B - HY(Q)g, Ag - Wg and Fr — Ag, one has isomorphisms
p1:Bg — Wy ® HY(Q)p, p2: Ap — Wp @ H°(Q)p, and p3 : Fp — Kp® Ag
and 0 is given by

id,id,t =1

0:(K@®B)p - KpoWp o H(Q)p 2% Ky o Wr o HQ)p

id,p; " id,p3 "

(1.22)
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(c) In a very special case of the latter example, the module A is finite and
B = 0. Then HY(Q) = W and H°(Q)g are trivial and the trivial map ¢ = 0
is a trivialization (it is actually the only trivialization). Considering (1.22) one
observes that the induced map t, is actually the identity map Kg — Fg given
by K C F. So the Euler characteristic is:

Yria£(Q,0) = [K,id, F| € Ko(R[G], E).

(d) As a last example, we consider the shifted complex Q[—1] = [A = B
where A is placed in degree 1. For the computation of the Euler characteristic
Xria),e(Q[—1],t7") one can proceed as in (b) by switching even and odd degree.

However, one has to account for the signs in the maps that are introduced by
the shifting process. In general, all the splittings obtained from 0 — Z¢(Q) —
Q' — B"(Q) — 0 in the computation of ¢, will change by a sign (see [Bur(4,
Thm. 2.1(3) and p. 46]).

In this example this just affects the splitting of Ap — Wpg and therefore the
isomorphism ps : Ap — Wg & H°(Q)g changes by a sign. Let # denote the
isomorphism (1.22) which incorporates this sign change in p;. Then the refined
Euler characteristic of Q[—1] is

Yrie Q1,7 =[F,07" K& B] = —[K @ B,0,F| € Ko(R[G], E).

Note that the complex Q! = [A -, B] with A in degree 0 is the inverse of ()
considered as 2-extensions in Yexty,(H(Q), H°(Q)), see Remark 1.25. Since the
complexes Q! and Q[—1] differ from each other only in the fact that even and
odd degrees are interchanged, their Euler characteristic differs by a sign:

Xric,e(Q[=1],t7") = —Xriae(Q 7 1).
Since Q[—1] is acyclic outside degrees 1 and 2, this implies
Xra5(Q 1) = —Xria2(Q[-1],t7") = Xra s(Q-1],t") = -[K ® Z[G],0, F].

by Corollary 1.43 and therefore we have the following simple relation:

Xr6),E(Q, 1) = —Xric,e(Q ", ).

1.5 L-functions

The conjectures we will address in Chapters 5 and 6 relate algebraic invariants to
analytic values from L-functions. In the following section we recall the analytic
results needed in this thesis. An overview of these facts can be found in [BrB07,
§2.3], for more details and background information we refer to [BreO4a, Fro83,
Mar77] and [Neu92].
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Let L|K be a Galois extension of number fields with Group G and places v, w
of K and L such that w|v. Then we consider the following local L-functions from
[Fr683, Chp. I, §5].

Definition 1.45 (Local Artin L-function). Let w be a finite place of L and
X a character of G, corresponding to the Galois-representation p : G,, — GL(V}).
Then the group G, acts on G1(V,,) via p and one defines the local Artin L-function

by

Lp, i, (x. 8) = det (1 — 0, N g, 07 | V) 7
Hereby, pg, is the prime ideal of K,, ¢, denotes a lift of the Frobenius auto-
morphism in Gy /I,, and the characteristic polynomial of p(e,) € GL(Vi*) is
evaluated al Nk 1o Pg’ -
For infinite places w we set n = dime(V), n* = dime(VE) and n™ =n —n*
and define

(v AT (s/2)" (VR (s £ 1)/2)" for K =,

LLw\Kv (X? 5) = {(2(271_)—51-‘<8))" fOT K, = C.

We let y denote the complex conjugate of x, W(x) the Artin root number and
f(x) the conductor of x as defined by Frohlich in [Fro83, Chp. I, § 5] and recall
his definition of the e-function from and the related Galois Gauss sum from (see

also [Mar77, Chp. I, §4]).

Definition 1.46 (e-function, Galois Gauss sum). For every character x of
G we define the e-function

eruii. (X, 8) = W@p@%@(NKvIQp(dKU)X(l) NKU|Qp(f(X)))%_S for K,|Q,,
i (6 Wa(i ) for K,[R

and the local Galois Gauss sum s given by

Lk, (X) = Wk, (X)1/Nk, g, f(x) € C
where dg, denotes the absolute discriminant of K,.

Note that by the relations on root numbers and Artin conductors, the value of the

e-function e7,,|g, (X, 0) coincides with the Galois Gauss sum 77,,|g, (X), cf. [Bre04a,
§3.4.4].

To define corresponding global functions we consider the localizations L.,|K,
for all places w. We let S denote all places of K, S all the finite places of K,
and for every v € S we fix a place w of L with w|v. Moreover, every character y
of GG can be restricted to the decomposition group G,, of some place w to give a
local character x,, of G,,.
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Definition 1.47. For a Galois extension LI K of global fields we define the com-
pleted Artin L-function, the global e-function, and the global Galois Gauss sum

by

AL\K XS HLL | Ky X'LU: 7

veES

gL\K XS Hng|Kv Xw, 8
vES

and () = [ i, (0
UESf

Proposition 1.48. The global Artin L-function is a meromorphic function de-
fined on all s € C and satisfies the functional equation

Apr(X,s) = e (X, 8) Apix(x. 1 = 5).

For a finite set of places S of K we also consider the S-truncated Artin L-function
of a character x

Liks(x, s HLqu( X, S
vgS

Its leading term in the Laurent-series expansion at s = sy will be denoted by
L2|K7S(X7 SO)‘

Combining those series and functions for all x € Irrc(G) defines equivariant

functions®

AL‘K(S) = (AL|K(X7 S))xelrrc(G)y
erik(8) = (enix (X, 8))xetrre (@) (1.23)
and CL‘K,S(S) = (LL|K,S(X> S))XEIrrC(G)'

By definition these functions have values in Z(C[G])* which by the Wedderburn
decomposition is canonically isomorphic to erhr(c) C*. Finally, the leading
term in the Laurent-series expansion of (y k.s(s) at s = 5o will be denoted by

CZ|K,S(30) = (LE\K,S(Xv S0))xelme(G)-

Note that the values rx(0) and (jx 5(1) we will consider in Chapters 5 and 6
are actually values in Z(R[G])*, cf. [Bre04a, Lem. 3.12] and [BrB07, Lem. 2.7].

5Note that there exist different definitions in the literature, in particular for the equivariant
functions. The definitions presented here coincides with those given in [BrB07] which is
also our main reference for the equivariant Tamagawa number conjectures considered in
Chapters 5 and 6.
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2 Brauer groups

The Brauer group Br(K) of a (local or global) number field K is an ascending
union of relative Brauer groups:

Br(K) ~ | JBr(L|K) ~ |  H*(Gal(L|K), L*),

where L runs through Galois extensions of K, see Section 1.2. We are therefore
especially interested in the computation of cohomology groups H 2(Gal(L|K), L)
for Galois extensions L|K of number fields.

In the first part of this chapter, we will consider finite Galois extension L|K of
local fields over Q,, for which we also want to compute the local fundamental class
in H%(Gal(L|K),L*). In this thesis, the computation of this special generator
is especially motivated by the epsilon constant conjecture which is discussed in
Chapter 5.

But local fundamental classes are also of independent interest. As a first appli-
cation, their computation will also make computations in relative Brauer groups
for number fields possible. Furthermore, according to the Shafarevic-Weil theo-
rem [AT68, Chp. XV, Thm. 6] local fundamental classes can be used to compute
Galois groups of local fields [Grel0].

2.1 Computing local Brauer groups

Let L|K be a finite Galois extension of local fields over Q, with group G. In
the following section we will consider the computation of the finite cyclic group
H?*(G,L).

To compute the cohomology group H?(G, M) for a finite group G, a finitely
generated G-module M and small ¢, one can directly use the definition. For
qg = 0,—1 they are defined as in Section 1.1 and for ¢ > 1 one considers the
standard resolution of M

(G, M) -2 NG, M) -2 (G, M) -2 3G, M) — -
where C(G, M) are the cochain groups, i.e. C°(G, M) = M and C4(G, M), q > 1,

are the maps G9 — M. With the present restrictions on G and M one can write
C1(G, M) as (finitely-generated) Z-module and explicitly represent the Z-linear
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maps @, by matrices. In this case the computation of H4(G, M) = ker ,.1/im
is pure linear algebra.’

However, for ¢ > 2 the matrices for which kernels have to be computed can
become very large (depending on the representation of G and M). For ¢ = 2 one
therefore describes H9(G, M) by extension classes of M by G. A detailed overview
of existing algorithms and details on the implementation in the computer algebra
system MAGMA [BCP97] is given in [Hol06]. For algorithms on abelian groups
and basic algorithms in number theory we refer to [Coh93].

In order to work with cohomology groups computationally, we therefore always
need a finitely generated module M. In the case of local Brauer groups the
module L* is not finitely generated. Hence, we first need to find a finitely-
generated module M for which H%(G, M) ~ H?(G,L*) holds. Such a module
can be constructed as follows, cf. [Ble03, BIBr08g].

Lemma 2.1. There exists a finitely generated module M such that I:IZ(G, M) ~
H?(G,L*). It is given by M := L*/ exp(.Z) for a suitable full projective sublat-
tice £ of O, where £ can be constructed computationally.

Proof. We briefly recall the construction of .Z from [Ble03, § 3.1]:

Suppose 6 € O is a normal basis element for the extensions L|K, i.e.
{c6 | 0 € G} is a basis of L|K. Such an element can be computed using an algo-
rithm by Girstmair [Gir99]. However, one discovers that “almost every” element
in Oy, is a normal basis element, and one can assume that v (0) > e(L|Q,)/(p—1),
e(L|Q,) denoting the ramification index of L|Q,. Then .Z := Z[G]6 is a full pro-
jective sublattice of Op on which the exponential function is injective.

Since .Z is a full lattice, the quotient M := L*/exp(.%) is finitely generated
and it inherits the G-structure from L*. The module exp(.Z’) will again be pro-
jective and therefore cohomologically trivial. Hence, the long exact cohomology
sequence associated to

0 —exp(¥) — L — L*/exp(¥) — 0

implies H2(G, L*) ~ H*(G, M). O

Remark 2.2. Note that in general one can represent elements in the local field
L only up to a finite precision. In order to do exact computations, for example
concerning the Galois action on L7 := L*/exp(.£), we will therefore consider
completions of global Galois extensions of number fields.

!This is obviously also true in other cases, e.g. for K[G]-modules M which are finitely-
generated over Z and where K is a field extension of Q.
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Let E/F be a global Galois extension of number fields with group I' and B
a prime ideal in £ dividing a prime ideal p of F'. Then Eg/F), is a local Galois
extension, whose Galois group is the decomposition group I'y of ‘B:

F< >Grm

F  p F,=K

In this case the normal basis element 6, the lattice &, the k-units U ék) and
the quotient L/U" ~ E%/Ug;? ~ 7l x ((’)gm/Ug;?) ~ 7% x (Op/P*)” can be
computed globally, cf. [BIBr08, § 4.2.3]. If k is chosen such that 3* C .#, then the
module L/ = L*/exp(.Z) is the cokernel of exp(.¥) — Eg/U ](52 and it suffices

to compute the values of the exponential function up to a certain precision, cf.
[Ble03, Rem. 3.6].

From now on, L/ will always denote a finitely generated module for which
there is an isomorphism in cohomology H?(G, L) ~ H?*(G,L*). As explained
above, the cohomology of L/ := L*/exp(.#) can be computed by applying lin-
ear algebra methods to the standard resolution of Lf. In MAGMA, the command
CohomologyGroup computes H 2(G, L') as an abstract group, together with maps
from and to Z%(G,L’). Hence, for cocycles G x G — L* one can then algorith-
mically decide whether they are coboundaries (mapped to zero in H*(G, L)) or
whether they differ by a coboundary (mapped to the same element of H2(G, L')).

Algorithm 2.3 (Local Brauer group).
Input: A finite Galois extension L|K of local fields over Q, with Galois group G.

Output: The group H2(G, L') ~ H*(G, L*) and maps to and from Z%(G, L').

1 Compute a normal basis element § with v.,(6) > e(L/Q,)/(p — 1) and define
Z =7|G1.

2 Compute the module L' := L*/ exp(.Z).

3 Compute the cohomology group H 2(G, L) using MAGMA, as described in
[Hol06].

Remark 2.4. If ¥ C ¥ C P for the prime ideal P of L, then ¢ < k and there
are surjective maps LX/Uék) — L* [ exp(ZL) — LX/UISK). On the cocycle groups
this gives homomorphisms

Z2(G, L* JUR) = Z2(G, ¥ exp(L)) — 22(G, L JU).
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Therefore, every cochain in x € C*(G, L*) satisfying the cocycle condition?
#(om, ) + (0, 7) = 0(r, p) + 2(0,77)

modulo U®) defines a unique element in H2(G, Lf). Similarly an element in
Z2(G, L7) determines a cochain in C?(G, LX) up to a precision m > ¢. Those
cochains in C? (G, LX/Uém)), m € N will be called cocycles of precision m.

Furthermore, the isomorphism H2(G,L*) = H?(G,L') is induced by the
homomorphism L* — L/ = L*/exp(¥) which factors through L* — L*/U é’“
since U ék) C exp(Z). On the cohomology groups this induces the following
homomorphisms:

H?(G, L*) = H?(G, LY)
f
Z(G, L) Z(G, LY)

Z*(G, L~ UM

Therefore, every element in H 2(G, L') is represented by a cocycle of precision k

in Z2(G, L* /UM, ie.
722G, LUy - HY(G, LY).

The algorithm above (or a similar variant) has already been implemented in
MAaGMA by Fieker, but is not yet available in the official version. Some algorithms
in this thesis, for example those discussed in Section 2.3, are based on an own
implementation® which computes the cohomology group for extensions of small
degree (i.e. < 20) within a few minutes.

2.2 Local fundamental classes

Now that we can compare cocycles and decide whether they are coboundaries etc.
we are interested in computing their invariant, i.e. the image of a cocycle under
the invariant map

inv : H*(G, L") —

1
7] 7.
[L: K] /
In other words, if L/ denotes the finitely generated module L*/ exp(Z) from
Lemma 2.1, we want to find the local fundamental class upx € H*(G, L) ~

ﬁZ(G, L*) whose image is inv(urx) = ﬁ + 7. By the construction of L' there

2See equation (1.1).
3Command LocalBrauerGroup, see documentation in Appendix B.1 on page 172.
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exists an integer & € N such that * C % and a cocycle of precision k determines
an element in H?(G, L) uniquely.

In the case where L|K is an unramified extension, the invariant map is a canon-
ical map which can be computed very explicitly. Then the Galois group of L| K is
cyclic and generated by the Frobenius automorphism . If q is the cardinality of
the residue class field Ok /Py of K, then the Frobenius automorphism satisfies
o(x) = 27 mod Py, for elements z € Op. Let m be any uniformizing element of
K. Then by Remark 1.7 the cocycle

1 ifi+j<[L:K]

7w ifi+j>[L:K] 21)

(¢’ ¢) = {

is a representative for the local fundamental class.

Below we discuss two methods for the computation of the local fundamental
class in the general case:

(a) Direct method: Use the definition of local fundamental classes for general ex-
tensions L| K directly (see Definition 1.6): Let N be an unramified extension
of same degree and use the inflation maps to identify H?(Gal(N|K), N*)
and H?(Gal(L|K), L*) in H?(Gal(LN|K), (LN)*).

(b) Serre’s approach: A new algorithm based on theory in [Ser79, Chp. XI, §2].

The first method will not be very efficient, but it is included because it can
be considered to be the standard method. There are also a few other methods,
which we will now discuss briefly.

For example one can construct the local fundamental class by computing with
algebras. If L|K is an arbitrary local Galois extension and N|K the unramified
extension of the same degree, then one has isomorphisms Br(L|K) ~ H?(L|K) ~
H?(N|K) ~ Br(N|K). Therefore, every K-algebra A € Br(L|K) is equivalent
to an algebra B € Br(N|K) and vice versa. The identification of A and B
can be made explicit and this provides a method for the construction of the
local fundamental class. This was studied in detail in [Rot05] and has been
implemented in PARI/GP [Par08]. However, it turns out to be inefficient even
for extensions of degree smaller than 10 over Q,.

Tamely ramified extensions L|K have a Galois group G with cyclic inertia
subgroup H and a maximal unramified subextension L |K whose Galois group
G/H is generated by the Frobenius automorphism ¢. In this case G is always
generated by two elements and one can construct the local fundamental class as
described by Chinburg in [Chi85, §6]. This approach has been implemented by
Janssen [Jan10, §3.1] and is actually the most efficient algorithm for this special
case.
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2.2.1 Direct method

As in Definition 1.6 we want to compute the local fundamental class of an ex-
tension L|K using the fundamental class of an unramified extension N|K of the
same degree [N : K] = [L : K|. If we denote the maximal unramified extension
in L|K by E, ie. E= LN N, we have the following situation:

LN
L |
Ny e
G E —
|
K
Let us further denote the Galois groups involved by G = Gal(L|K), H =
Gal(N|K) and I' = Gal(LN|K).
Then the local fundamental class of L is defined to be the fundamental class of

N by identifying their cohomology groups as subgroups of H 2(T', (LN)*) using
inflation maps:

H2(H,N%)

innf

H2(G,L*) —2— AT, (LN))

For the construction of the local fundamental class, we consider the module
L7 constructed in the previous section. Let .Z be the module from Lemma 2.1
such that L/ := L*/exp(£) is cohomologically isomorphic to L* and let k be
the smallest integer such that ¥ C %, Then by Remark 2.4 there is a surjective
homomorphism Z?(G, LX/UgC)) — H?(G, L7) and every element in H*(G, LY) is
represented by a cocycle of precision k. It is therefore sufficient to compute the
image of the local fundamental class in H? (G, L* /U g{))

In [BIBr08, §2.4] the authors show that the local fundamental class can be
computed up to given precision n by considering the commutative diagram

H2(H,N%)
innf
H2(G, L*) —— BT, (LN)*)

| |

H2(G, L* JUM) 2 B2(T, (LN)*/UY)
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in which the bottom inflation map, induced by L* C (LN)*, is injective by
[BIBr08, Lem. 2.5].

As the modules L* /U én) and (LN)*/U é’}@ are finitely generated, we can com-
pute their cohomology groups. The local fundamental class uy|x of the unrami-
fied extension N|K is represented by the cocycle of the form (2.1) and we can com-

pute its inflation inf(uyx) € Z2(T', (LN)*) and its image in A2 (T, (LN)X/UEL\),).
For each generator of the group H? (G ,L* U é")) we can also compute its inflation
in H? (T, (LN)* /U f}@) One of these generators must coincide with the image of

inf(unx) and it represents the local fundamental class in H?(G, L* /U }Jn))

Therefore, the definition of a local fundamental class for arbitrary extensions
L|K can directly be turned into an algorithm.

Algorithm 2.5 (Local fundamental class: direct method).
Input: A finite Galois extension L|K over Q, with group G and a precision n € N.

Output: The local fundamental class uyx € Z2(G,L*/U én)) up to the finite
precision n.

1 Let N be the unramified extension of K of degree [L : K] and ¢ a cocycle
representing the local fundamental class uyx as in (2.1).

2 Compute the cohomology group H? (G,L*JU é")) and the group of boundaries
B2(T, (LN)* /U using [Hol06].

3 Compute the inflation inffV]‘VILK(C) e Z%(I,(LN)*) — H? (T, (LN)X/Uén)).

4 Find a generator g € H? (G,LX/U?)) such that its inflation infﬁVK‘K(g) €

C3(T, (LN)X/Ug]L\),) satisfies infﬁ[}lf((c) - infﬁ}f('K(g) € B(T, (LN)X/U&L\)[).

Return: A representative of g in Z2(G, LX/Uén)).

Notice that for the comparison in H? (T, (LN)* /U EL\),) in step 4 it is actually suf-
ficient to compute the boundaries B*(T', (LN)* /U S}@) Considering the computa-

tion time this makes a huge difference to the computation of H? (T, (LN)* /U E’\),)

This direct method, however, turns out to be ineffective even for number fields
of small degree. In the following example we compare the computation times of
the implementation? of Algorithm 2.5 in MAGMA for some number fields.

4Command LocalFundamentalClassDirect, see documentation in Appendix B.1 on page 172.
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Example 2.6. We compare the computation time® of the local fundamental class
using the direct method in four extensions L;|Q,. For each extension one has to
consider the unramified extension N; of degree [L; : Q,] over Q, and the composite

We consider the following fields (with polynomials from the database [KMO1]):

1. The totally ramified extension L;|Qs with group S; generated by 2% + 3 €
Zlz],

2. the totally ramified extension Ly|Q, with group D, generated by 28+ 38z* +
1 € Zx],

3. the extension L3|Qs with group Ds generated by x'® — 1028 + 3027 +902° —
1622° + 1252* + 9023 — 802? — 120z + 144 € Z[z] which has ramification
index 5, and

4. the extension L,4|Qs generated by x'? — 6zt — 3020 + 19029 + 17128 —
174027 +1242°+64202° — 240924 — 963023 + 333022 + 52142 — 659 € Z[x] with
ramification index 3 and whose Galois group is the generalized quaternion
group 1o of order 12.

In those examples, the MAGMA implementation of Algorithm 2.5 performed for

the precisions n = 10 and n = 20 as shown in the following table:

timings [min]

extension group deg(L;) deg(L;N;) n=10 n =20

L1]Qs Ss 6 36 0.5 1.5
Ls|Qq Dy, 8 64 12 30
Ls| Qs Ds 10 50 180 490
LyQs  Quo 12 36 60 160

Table 2.1: Computation times for local fundamental classes using the direct
method.

In all the examples most of the time is spent on the computation of the n-units
U én])\, and their Galois-action, taking more than 90 percent of the time. To be able
to compare these timings, the four fields L; were constructed as an extension of
Q, which was known up to a precision of 50. However, one still has to be careful
with the comparisons since the performance of computations in local fields also

5 All computations were performed with MAGMA version 2.15-9 on a dual core AMD Opteron
machine with 1.8 GHz and 16 GB memory.
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depends on the field itself (i.e. its discriminant) and on the size of the prime p
(which determines the size of the residue class field).

In any case, to double the precision of the local fundamental class, the duration
was multiplied by a factor of about 2.5 in all the examples, which seems to be
polynomial in n. But one also notices that the algorithm depends more on the
degree of L; and becomes inefficient for extensions of degree larger than 10.

2.2.2 Serre’s approach

Serre describes in [Ser79, Chp. XI, §2] and especially Exercise 2 from Chapter
XIIT § 5 how one can theoretically find the local fundamental class of an extension
L|K. Chinburg used these results to describe a construction for tamely ramified
extensions [Chi85, § 6] which has recently been implemented in MAGMA [Jan10].

Below we use the same theory to deduce a new algorithm for the general case.
As in the direct method we will again work in the composite field LN. The main
advantage will be the avoidance of the computation of any cohomology group in
the construction of a cocycle representing the local fundamental class. But before
we address the algorithm itself we have to introduce more theory.

Let £ be the maximal unramified subextension of L|K and d := [E : K].
Denote the maximal unramified extension of K by K and the Frobenius auto-

morphism of [?_\K by ¢, such that its Galois group is Gal(l? |K) = (¢) and
Gal( K /E) = (). o

__The maximal unramified extension of L is L = LK and the Galois group of
L|K is given by Gal(L|K) = {(7,0) € Gal(K|K) x G| 0| = 7|g}. Furthermore,
we consider the tensor product L, := K® x L for which we have the following
representation:

Lemma 2.7. (i) The map
Ly=KoxL—]]L
=0
a @b (ab,p(a)b, ..., 0" (a)d)

s an isomorphism.

(i) The Galois action of G ::@x G on elements y= (Yo, Y1, - - - Yd—1) EH?:_OlE
induced by this isomorphism is given (for o € G) by

(e x D)) = (y1,¥2:- - -, Ya—1, ¥ (W),
(¢’ xo)(y) = (6(10),0(11),---,6(ya1)),
if & € Gal(L|K) satisfies 6|, = 0 and 6|z = ¢’
and (1 x0)(y) = (go’j x 1)(6(yo),0(vn),- - - ,&(yd,l)).
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Proof. (i) Let € L, be an element which maps to zero. Then z is an element
of a finite extension, i.e. if z = Zgo a; ® b; then all the elements a; generate a

finite extension Ky|E in }?, such that z € L2 := Ky ® L. Denote Ly = LK),
then we have to show that L% = [[’=, Lo.

Denote the degrees of the extensions by d = [E': K|,m = [L : E] and n = [Kj :
E] = [Lo : L]. Choose bases {aq,...,aq},{B1,...,OBm} and {71,..., 7} of E|K,
L|E and K,|E, respectively. Then z € LY is given by = = Zid’k,l ik @ 0q By,
with A\jjiw € K and 1 <,0 <d,1 <j<n,1 <k < m. The assumption that x is
mapped to zero is equivalent to

Z Nijo(qiyj)auBy =0 Vo e {¢'|0<i<d—1}

i7j7k7l

54 Z (Z )\ijklal) 0’((1/@') =0 VO’,j,k
% l

& Z Aijricq =0 Vi, j, k
]

since o(7;)Bk form a basis of Lo|E and det(o(a;)) # 0. The latter equation then
implies that all A\;j;; = 0 and this proves the injectivity.

As L? and Hf:_ol Loy have the same (finite) dimension over K, the K-linear
map L° — Hf:_ol Ly must also be surjective. This proves the statement since
every element in L, lies in a finite subextension.

(ii) We prove the G-action for primitive tensors. This immediately implies the
general case (finite sum of primitives) since Galois automorphisms are homomor-
phisms.

Let ¥ = (y;)i=0.a—1 be represented by a primitive tensor a ® b which is mapped
to (¢'(a)b),_y 4, with a € K and b € L. Then

(e x Dy =pla)@b— (¢ (a)p)_, ., = (e(a)b, ..., (a)b, % (ab))
= (yh cees Yd—1, @d(yo))

since p?(b) = b for all b € L.
If 6 € Gal(L|K) satisfies 6|, = o and 6|z = ¢’, then the action of (¢/ x o) is
given by:
(" x o)y =¢'(a) @ a(b) = (¥ (a)o(D),_y 4, = (6(£'(@)D)) g 4y
= 5-(y0)7 &(y1)7 B aé-(yd—l))-

The action of (1 X o) is directly given by the other two cases by choosing some
o with |, = ¢ and determining j € N such that 7|z = ¢7. O
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Remark 2.8. (1) According to this lemma, L,, is obtained by inducing the

g
module L from Gal(L|K) to G, and we also write Ly, = ind/, | L|K)L

(2) In the action of (1 x ) € G one can choose & to be any automorphism
extending 0. There always exists a unique automorphism ¢ € Gal(L|K) such
that 6|, = o and (&|f5)71 = ¢’ with j € {0,...,d — 1}. If E is the maximal
unramified of K in L and o|g = ¢', 1 < i < d, then j is given by j = d — 1.
If 6 is always chosen to be this unique automorphism, the Galois action can be
defined by:

(Ix0)(y) = (¢ x 1)(0(w0), 6(m), -6 (ya- 1))
= (6(y)), - 6(Wa1), " (6(W0)), - - -, (6 (yj-1)))-

This choice has the advantage that (¢ x 1) is applied as few as possible to compute
the Galois action. From now on, we will always assume that & is chosen this way.

(2.2)

Let L be the completion of the maximal unramified extension L of L. Then
the residue class field of L is algebraically closed.

Lemma 2.9. For every c € Ug there exists x € L such that ¢~ = c.

Proof. This is [Neu92, Chp. V, Lem. 2.1] or [Ser79, Chp. XIII, Prop. 15] applied
to the totally ramified extension L/E with % generating Gal(K /E). Since this
will be an essential part of the algorithm, we sketch the constructive proof of
[Neu92].

Denote the residue class field of L by x, the cardinality of the residue class field
of F by ¢. Since k is algebraically closed, one finds a solution to 29 =27 = zcin
r and lifting this solution one can write ¢ = xfd_lal with z; € Uy and a; € Ug)
Similarly, one finds x, € Ug) and ay € Uéz) such that a; = x?d_lag. Proceeding
this way one has

c=(x129 -+ -xn)“’d_lan, r1 €Uz, x; € Ug_l), a, € Ué") (2.3)

and passing to the limit solves the equation in " O

A solution of type (2.3) will be called a solution of precision n.

Remark 2.10. (1) The constructive proof can directly be turned into an algo-
rithm. First, consider the equations 2" = zc and x“"daiﬂ = xa; as polynomial
equations over the residue class field of Oy. If the factorization of the equation
does not offer a linear factor (which means that the equation cannot be solved in
L), generate an appropriate unramified extension L’ of L and solve the equation
there. From then on, consider the equations as polynomial equations over the
residue class field of O, and continue with the construction of the solution.
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Each step will increase the precision of the solution by at least one and might
introduce a new finite extension. So we have an algorithm, which finds a solution
of precision k in a finite extension L’|L with L' C L for any given k € N.

However, this can produce very large extensions L' and will even be inefficient
for a small number of steps.

(2) In special cases, one can prove that solutions of arbitrary large (but still
finite) precision can be constructed in a fixed extension F' of L. For example
consider the following case:

Let F' be a finite unramified extension of L. Then the Galois group H :=
Gal(F|L) is generated by the Frobenius automorphism . Since F|L is un-
ramified, the group H '(H,Up) = x,Ur/IyUp is trivial. In other words, the
equation z#"~! = ¢ has a solution z € Uy for every element ¢ € Uy having norm
NF\L(C) = 1, ie.ce NHUF-

Hence, given such an element ¢ of norm one, we can find a solution x € Ug of
arbitrary large precision using the construction described above. This fact will
also be used for the computation of the local fundamental class, see Lemma 2.17.

Example 2.11. Let L be the extension of Q3 generated by the polynomial f =
2% + 62% + 6 € Z[z]. Tt is a Galois extension with group S3 and it is totally
ramified since f is an Eisenstein polynomial.

Let 7 be a root of f in L, 0 € S3 some element of the Galois group and define
c = @ Then ¢ has valuation 0 and we can solve u¥~! = ¢ up to precision
n using the constructive proof of Lemma 2.9 where ¢ denotes the Frobenius
automorphism of L|L.

This construction has been implemented® in MAGMA and the element u will
be found in some unramified extension of L. These extensions quickly become
very large, even in such a small extension. If ¢ € S5 is of order 3, a solution
of precision 5 needs an unramified extension of degree 9 over L. And to find a
solution of precision 20, one already has to consider an extension of degree 81
and its computation takes about 20 seconds. The main downside of this is that
all computations which are based on this solution will now have to work with an
extension which is much larger than the one we started with.

On the other hand, consider the unramified extension F' of degree 3 over L,
which can be defined by g = 2® +2x+1 € Z[x]. If —c is a root of this polynomial
in Op, then the element ¢ will have norm 1 over L. Using the same algorithm, we
can then find solutions of the equation u?~! = ¢ up to arbitrary large precision.
Also the computation time is a lot shorter: a solution of precision 500 is found
within a second.

If we use Lemma 2.9 to construct solutions of the form u¥~! = ¢, it is therefore
very important to make a good choice for ¢ whenever this is possible.

6Command FrobeniusEquation, see documentation in Appendix B.1 on page 173.
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The kind of equations considered in Lemma 2.9 can also be generalized to L.
Let Lm be the completion of L, and w : Lm — Z the sum of the valuations.

Lemma 2.12. For every c € L

o With w(c) = 0 there exists x € Ln such that
1 =c.

r

Proof. If ¢ = (co,...c4-1) € Hffol L and w(c) = 0, then [[) ¢ € L” has
valuation 0 and there exists y € L” for which y‘Pd =[] ¢ by Lemma 2.9. Then

the element = = (y, yco, ycoci, - .., Yco « - - Cq—o) satisfies
d
€0, YCoCLy - - -, YCo * * * Ca—2,
x@—lz(y 0, YCoC1 YCo d2(p(y))z(Co,Cl,...,Cd_l):c
(Y, yco, ycocr, - - -, Yco -+ Ca2)
since ¢?(y) =y H?:_()l ¢;. Hence, z solves the equation ¥~ = c. O

We can now prove the following lemma (cf. [Ser79, XIII § 5, Ex. 2(a)]).
Lemma 2.13. (a) ker(w) = {y*~' |y € L},

(b) ker(p — 1) = L*, L™ being diagonally embedded in L),, and

(c) E:T 15 a cohomologically trivial G-module.

Proof. (a) This follows from w(y?) = w(y) for any y € ZAL:T
lemma.

(b) By Lemma 2.7, every element y € ker(¢ — 1) is represented by a tuple
(Y0, - - -, Ya—1) € [, L which satisfies

| =yl = (@ Y2 Y1 @ (yo)>
y073/1’ ’yd72’ Yd—1

and the previous

Therefore Yo=1y1 = ... =ya1 = 9*(yo) € L and this implies yo € L* because
©? generates Gal(L!L) Since L is diagonally embedded into [] dL we obtain
y € L*. Hence, ker(¢ — 1) is exactly L*.

(c) As mentioned before, the module Z,Xw = Hf:_ol L™ is an induced module
by Lemma 2.7. Shapiro’s lemma [NSW00, Prop. (1.6.3)] implies H9(G, Ly, ) =
H%(Gal(L|E), L) and this is zero by [Ser79, Chp. XIII, §5, Prop. 14]. For sub-
groups H of GG, the module L, decomposes into a direct sum of H-modules and
cach of these modules has cohomology isomorphic to H4(Gal(L|E) N H, L) which
is again trivial. O

We denote V' := ker(w) and from the above lemma we get the exact sequences
0—V —1L —“57-—0 (2.4)
and 0— LX — L Ly 0. (2.5)
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By the cohomological triviality of L, the connecting homomorphisms from

nry

their long exact cohomology sequences provides isomorphisms 97 : H G, 7Z) =
HY(G,V), 6, : HY(G,V) = H?*(G, L*) and we consider the composition

O HY(G,Z) = H*(G,L”). (2.6)

Its inverse Q)leK directly defines an isomorphism

vy - HA(G, L) ~ H°(G. 2) 5 2/2

which satisfies the properties of an invariant map.

Proposition 2.14. (a) The elements Uk = Prx(1 + [L : K|Z) are funda-
mental classes for the class formation with respect to the isomorphism inv,

1.€. inVL|K(EL|K> = ﬁ -+ 7.
(b) The element tr i is the inverse of the local fundamental class urk.

Proof. This is [Ser79, Chp. XIII, §5, Ex. 2(c) and (d)].

We will prove part (a) by verifying the axioms of a class formation w.r.t. inv.

Then two elements %k and gk with [L' : K| = [L : K] have the same invariant
invy k(trx) = invpx (k) and it is sufficient to prove (b) for unramified
extensions.

For (a) we have to show

(i) invyx = vk © infﬁ'ff for normal extensions N|L|K with K C L and
K C N normal.

(ii) invy o resmK [L: K]invy, for K C L C N and K C N normal.

In (ii) we set I' := Gal(N|K), H := Gal(N|L) and res%lf{ denotes the restriction
H1 (F N*) — H?(H,N*). In (i) we also denote G := Gal(L|K) = I'/H and
inf? I K is the injective inflation map

NIK

1nfL|K

o1 (G,L*) = H (G, (N*)") ¢ (T,N>)
which embeds H%(G, L*) into H2(I', N*).

We first prove (i). Let K C L C N be extensions, K C L and K C N both
normal. For K C L we use the same notation as before, i.e. [L : K] =n, E is the
maximal unramified subextension of L|K which has degree [E : K] =d, L=LK
and LW—K®KL—Hd

Moreover, we define m = [N : L] and let e and f be the ramification index and
inertia degree of N|L respectively, i.e. m = ef. Let F' be the maximal unramified
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subextensions of N|K of degree d' = [F': K] = df and define N,, = K @ N =
[I; N. The situation can be presented in the following diagram

N/N
e L
. | (2.7)
K
;F
i E—

where vertical and diagonal lines represent totally ramified and unramified exten-
sions, respectively.

The module Ly, is canonically embedded in NN, by the embedding of L in N.
For the products of the fields L and N the embedding becomes:

d—1 1
L:Lm:HE — Nm:HN
i=0 i=0

(Yos - -+ Ya_1) (yo,---,yd_l,sod(yo),m,sod(yd-l),

LU (), ,sod(f’”(ydfl))

Let vy and vy be valuations such that vy (7)) = vn(mn) = 1 and vy (7)) = e.
These valuations can uniquely be extended to L and N respectively. Let wy, and
wy be the sum of these valuations on L, and N,,. Then the following diagram

commutes:
lWL lwzv (2.8)

The multiplication by ef in the lower map occurs since d = df and vp(z) =

evy(z) for all x € L. Hence V := ker(wy) C ker(wy) =: V' and more specifically
V = (V’)lXH.
Now we have to show the commutativity of the diagram

H*(G, L) —=—— H°(G,7) —E5 . _L_7/7

[L:K]
linfglgg linfg,;; JC (2.9)
H*(T,N*) —=— H(T,2) " 17/7

where the upper row represents HL‘ x and the lower one represents ENI k- By
INSWO00, (1.5.2)] the inflation map commutes with connecting homomorphisms.
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This makes the left-hand square commutative. The commutativity of the right-
hand square follows from the fact that the inflation map in degree zero is multi-
plication by [N : L].

To prove (ii) consider the diagram

1

H*(N|K) —=— H(,z) —“5 L7)7
lres%lé lresxlé . l[L 1 K] (2]_0)
H*(N|L) —=—— H°(H,Z) —~— xZ/Z

where the rows represent the maps EM x and HNI 1, again. The left-hand square
is again commutative by [NSW00, Prop. (1.5.2)]. The middle vertical arrow is
the restriction map in degree zero which is defined by

res%}é: H'T,Z) — H°(H,Z)

r+[N:K|Z+—— x+[N:L|Z.
This clearly makes the right square commute.

Altogether we verified that the cohomology groups satisfy the conditions of a
class formation with respect to the invariant map inv.

(b) Before we consider unramified extensions L|K, we show how the image
O k(14 [L : K]Z) is obtained by the connecting homomorphisms 0y and dy from
(2.4) and (2.5) in the general case. For d; we consider the commutative diagram

(2.11)

from the long exact cohomology sequence of (2.4), where w* is the map on the
group of cochains induced by w. If 7 is any uniformizing element of EX, the
element a = (1,...,1,7) € f:r = CY(@G, f;) is a preimage of 1 via w. Applying
0, vields a € CY(G, L), which is defined by”

(11%”)) if 6]~ =1
a(g);:L‘l): . 1 . g .
a (1,...,1,0(#),1,...,1,;), ifolz=¢7,1<j<d-1
—_———

jJ components

"The equations in this proof use the unique extension & of ¢ given in Remark 2.8. The Galois
action of (1 x o) is then directly given by (2.2).
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The commutativity of the diagram then implies a € C*(G, V).
For connecting homomorphism ds we consider the commutative diagram

0— CYG,L*) —— CYG, L) 2= CYG, V) — 0

l Pz J (2.12)

0— C%G,L*) —— C*(G, L) —— C*G,V) — 0

which arises from the cohomology sequence of (2.5). To find a preimage of « via

@ —1, we need elements in E:T which are mapped to @ by ¢ —1. By Lemma 2.12
these preimages are given by

(Ugy -+ Ug) if 6z =
B(o) = (U, U, U6 (T), .. u6(m)) if6lz=0771<j<d—1 (2.13)
7 com;),onents
where u, solves ufd_l = @ The commutativity of the diagram again implies
that the cocycle
a(B(7))B(o)
V(o,7) = (028)(0,7) = W (2.14)

has values in L* and we obtain tyx = ®px(1+ [L: K|Z) =~ € H*(G, L).
The element px is independent of the choices in the construction above be-
cause the connecting homomorphisms themselves are independent of these choices.

Now let L|K be an unramified extension of degree n with Galois group G
generated by the Frobenius automorphism ¢. In this case the maximal unramified
extensions of L and K are equal and the action of (1 x ¢) € Gal(L|K) x G on
Ly, defined in Lemma 2.7 is given by

(1 X Q) (Yo - 4n) = (¢ x 1) (2W0) - ¢(yn))

= (Y- 2W0): - -+ P (Yn-1))- (2.15)

Recall that by the explicit description of the local fundamental class in Re-
mark 1.7, the inverse of upx is given by the cocycle

1 ifi+j<n

2.16
L ifi+j>n. (2.16)

(¢’ ¢) = {

We will now make a direct computation of ® k(14 [L : K]Z) using the construc-
tions above.

Choose a uniformizing element 7 of K, which is also a uniformizing element of
L. Then @ — 1 for all 6 € Gal(L|K) and every u, € L* solves u?"~* = @
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In the following we choose u, = % for o # 1 and u, = 1 otherwise. With
these choices, the cochain 3 from (2.13) is given by §(¢’) = (%, o %, L...,1),
0 <i < n, where the first ¢ components are non-trivial.

Consider elements ¢', p? € G with i+j < n. By (2.15) the action of ¢* = (1x¢")
on tuples in K is given by shifting ¢ times to the right. Hence, we have the
following images of 3:

» 1 1 o 1 1
ﬂ(%@z—w):<;a...,;71,-~-71>7 (101<ﬁ(()0])):(L"'ala;a"‘?;?l’ ’1>
\—‘\,‘—/ 7 M
1+ J

We therefore have @i (9%, ¢7) = ¢ (6(¢)B(¢") /B(¢") = (1,...,1) =1 € L*,
Ifi+7 > n, we can write i + 7 = n+ k for some 0 < k < n and the two equations
change to

L 1 1 , , 1 1 1
/6((101+J):<_7"'7_717'-'71>? @l(ﬁ((pj)):( 7"'7_717"'717_7"'7_7)'
a 7r 0 a 7r
T/ T/ nej N——~—
In this case we compute (@', ¢7) = (£,..., %) =+ € L*.
The cocycle tpx = Prx(1 + [L : K]Z) therefore coincides with (2.16) and
represents the inverse of the local fundamental class. O

Corollary 2.15. The exact sequence
c 7 -1 w
0 — L =L, — L —7Z—0
represents the inverse of the local fundamental class in Yextl(Z, L).

Proof. This follows from the above proposition if one considers the explicit de-
scription of the isomorphism Yext%(Z, L*) ~ H?*(G,L*). By Proposition 1.29
the image of an extension in H 2(G, L*) is given by applying the corresponding
connecting homomorphisms to 1 + |G|Z, as we did in the above proof. U

Remark 2.16. The construction in the proof can be directly turned into an
algorithm. The main problem of this algorithm will be to find solutions u, of the
equations 79"t = @ using Lemma 2.9.

As mentioned in Remark 2.10 the construction of such a solution can generate
very large extensions of L which cannot be handled computationally. However,
if we choose the uniformizing element 7 in a finite extension F'|L such that @
has norm one, then a solution u, can be found in F' up to an arbitrary large

precision.

Lemma 2.17. Let F be the unramified extension of L of degree e = [L : EJ.

Then there exists a uniformizing element m € F such that 291 = 20 e g

solution in F' for each ¢ € Gal(F|K). i
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Proof. Denote H = Gal(F|L) and let mx and 7, be uniformizing elements
of K and L, respectively. Since F|L is unramified, the group fIO(H, Ur) =
UL/ Npr(Up) is trivial. Hence, the unit v = mx7,“ € Uy is a norm of an element
v € Up: Npj(v) = u. Then ™ = vrp, is another uniformizing element of F' and
its norm is Npp(7) = unf = 7. The group H is normal in Gal(F|K) and &
acts trivially on K. Therefore

&(m) 1 5wl U (17 a
N _— = — 7’( > = —_— ( v > - 1
FL( - ) WKEQO o(m) 7TK(f ESO (m)
Hence, @ € n, Ur and since ﬁ‘l(H, Ur) = n,Ur/IgUp = 1 for the unramified

extension F'|L, there exists x € Up with g1 = @ U

By choosing this special uniformizing element, we can solve the equations
o'l = %ﬂ) up to an arbitrary large precision very effectively. As a result,
the construction in the proof of Proposition 2.14 can be turned into an efficient
algorithm. The most time consuming step in this algorithm will be to solve the

norm equation Nz (v) = u in the proof above.

Algorithm 2.18 (Local fundamental class: Serre’s approach).
Input: A finite Galois extension L|K over Q, with group G and a precision k € N.

Output: The local fundamental class upx € 22 (G,LX/USC)) up to the finite
precision k.

1 Let mg and 77, be uniformizing elements of K and L, F the maximal unrami-
fied subextension of L| K, e = [L : E] the ramification degree and d the inertia
degree. Let F' be the unramified extension of L of degree e and L,, =[], F.

2 Solve the norm equation Npj.(v) = u with u = g7 © € U and v € Up (e.g.
using algorithms from [Pau06]) and define 7 = vy,

3 For each 0 € G compute u, € F such that ug"~! = @ mod Ul(mk+2).
4 Define g € CYG, LY,) and v € C*(G, L*) by (2.13) and (2.14).

Return: 1.

Proof of the correctness. The direct computation in the proof of Proposition 2.14
shows that the cocycle v from (2.14) represents the inverse of the local fundamen-
tal class.

If we compute the elements u, modulo U }HQ), we also know the images of 3 to
the same precision. To compute 7~ we divide by o(8(7)) and 3(¢) and each of
these divisions can reduce the precision by one. The other operations involved in
0, (addition, multiplication and application of ) do not reduce the precision (if
F and all automorphisms ¢ are known to a precision higher than k + 2). Hence,

we know the images of v modulo U I(Jk). 0
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Example 2.19. The algorithm above has been implemented® in MAGMA. We
consider the same extensions for which we computed the local fundamental classes
with the direct method in Example 2.6. As mentioned before, the running time
does not depend on the precision n up to which we compute the local fundamental
class. The most time-consuming step is the solution of the norm equation in
step 2. Afterwards the solutions u, can be computed up to an arbitrary large
precision (which is just bounded by the precision up to which the local field itself
was computed).

The performance of the MAGMA implementation of Algorithm 2.18 up to pre-
cision 20 is shown in the following table, which includes the timings from Exam-
ple 2.6:

timings [min]
extension group deg(L;) deg(L;N;) Alg. 2.5 Alg. 2.18

L1]Qs S, 6 36 1.5 0.02
Ls|Qy D, 8 64 30 1.6
Ls3|Qs Ds 10 50 490 15
L4|Qs Q12 12 36 160 19

Table 2.2: Computation times for local fundamental classes using Serre’s ap-
proach.

As with Algorithm 2.5 one again notices that the computation time rises quickly
with the degree of L. But the computation times of this new method are just a
fraction of those using the direct method.

Remark 2.20. Combining the efficient computation of the local fundamental
class with Algorithm 2.3, we can efficiently compute the invariant of a cocycle: If
H2(G, L*) is computed using the module L/ = L* / exp(.%£) for a suitable lattice
%, we will need an integer k such that ¥ C £ as in Remark 2.4. Then the
local fundamental class up to precision £ computed by Algorithm 2.18 defines a
unique element in upx € H*(G, LY).

j

Given a cocycle v of precision m > k, one can compute its invariant Tl by

solving v = uji‘K in H2(G, L).

The efficient nature of Algorithm 2.18 (in comparison to other existing algo-
rithms) makes a whole series of other algorithms possible. In the following sec-
tions and chapters this algorithm will be fundamental for computations in Brauer

8Command LocalFundamentalClassSerre, see documentation in Appendix B.1 on page 173.
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groups of number fields, for global fundamental classes, for Tate’s canonical class,
and finally for the verification of epsilon constant conjectures.

Additionally, this algorithm can be used to compute Tate’s canonical class
following a construction of Chinburg from [Chi89]. Chinburg’s construction is
based on local fundamental classes and it has been implemented for tamely ram-
ified extensions by Janssen [Jan10]. Algorithm 2.18 provides a generalization to
arbitrary extensions.

Finally, Greve applied Algorithm 2.18 in [Grel0] to construct Galois groups
of local number field extensions based on the Shafarevic-Weil theorem [ATG68,

Chp. XV, Thm. 6].

2.3 Global Brauer groups

As a first application of the algorithms for local Brauer groups and local funda-
mental classes, we present algorithms for the computation in the global Brauer
group. Since Br(K) = |J; Br(L|K), we restrict to computations in relative
Brauer groups Br(L|K) for Galois extensions L|K.

Using the isomorphism Br(L|K) ~ H2(G,L*) a first approach would be to
find a finitely generated module M which is cohomologically isomorphic to L*.
For such a module M, the cohomology group H2(G, M) would also be finitely
generated. Since G is finite and |G|H?(G, M) = 0, this would imply that the
group H%(G, M) is finite.

For global fields K and finite extensions L|K, however, the relative Brauer
group Br(L|K) is known to be infinite [FS82]. We therefore cannot use this
approach. Instead we will apply the algorithms for local Brauer groups and local
fundamental classes from the previous sections.

Let K be a number field. The Brauer group Br(K) and the local Brauer groups
Br(K,) are related by the exact sequence

0 — Br(K) — @ Br(K,) —* Q/Z — 0 (2.17)

where v runs through all places of K and invg = ), invg, is the sum of all local
invariant maps (e.g. see [NSW00, Thm. (8.1.17)]). From this one easily deduces
an exact sequence for relative Brauer groups.

Corollary 2.21. Let L|K be a Galois extensions of number fields. Then there
s an exact sequence

invg 1
0 — Br(L|K) — P Br(Ly|K,) — mZ/Z

where v ranges over all places of K and w is a place of L dividing v.
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Proof. The sequences (2.17) for L and K are connected by the restriction maps
resg k : Br(K) — Br(L) and resp, |k, : Br(K,) — Br(L,) whose kernels are the

relative Brauer groups. This results in an exact commutative diagram

0 0 0
l | _ l
0— Br(lj\K) — P, Br(fw\Kv) S, ﬁZ/Z
0 — Br(K) @, Br(K,) —25— Q/Z — 0 (2.18)
lmSMK l@resLva I[L K]
0 — Br(L) @D, Br(L,) —2— Q/Z — 0
l
0
whose first row is the requested sequence. 0

Using this representation of the relative Brauer group Br(L|K) C @, Br(K,|K,),
every element in this group is given by finitely many non-zero components which
are elements of the local Brauer group Br(L,|K,) ~ H?(G,, LX) and whose
invariants sum up to zero.

Hence, the algorithms from the previous sections can be used to compute in
the global relative Brauer group. The two problems we want to solve are:

1. Identify cocycles: Given a global cocycle in Z?(G, L*), compute the invari-
ants at each place v of K. This allows us to identify cocycles and to decide
whether a cocycle is a coboundary.

2. Construct cocycles: Given invariants at finitely many places v which sum
up to zero, compute a global cocycle respecting these local conditions.

We will address these problems in the following sections.

2.3.1 Identify cocycles

We will identify cocycles using Corollary 2.21 by computing invariants for every
place w of L of the local cocycles obtained by the homomorphisms

H*(G,L*) — H*(Gy, L)
a = Q.

These are given by the embedding L* C L and by restricting to G,, € G. Since
there are infinitely many places in L, we first need to restrict to a finite subset.

Lemma 2.22. Let w be an unramified place of L and v € Z*(G, L*) a global co-
cycle for which the valuation w(vy(o,T)) is trivial for each pair o, 7 € G. Then the
local cocycle v, obtained as the image of F[Q(G, L*) — 1':[2(Gw, LX) has invariant
inv,,(vy) =0+ Z.
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Proof. The local invariant map inv,, for the unramified place w is defined (see
Theorem 1.3) as the following composition of isomorphisms:

H*(G,, L) 5 H* (G, Z) = HY(G,,Q/Z) =

Here w(7,) is trivial in H%(G,,,Z) since w(v,)(0,7) = w(vu(0,7)) = 0 by as-
sumption and hence inv,(v,) = 0+ Z. O

So any global cocycle v can only have non-trivial invariants at ramified places,
at infinite places and at places which occur in the factorization of the principal
ideals (y(o, 7)) for every pair 0,7 € GG. These are just finitely many places and
the process of localization at these places gives an algorithm to identify global
cocycles as a sequence of tuples (v, z,) where v is a place of K and z, € ﬁZ/ Z
with w|v.

For a set of places S of L, we write S(G) for a subset of representatives of the
G-orbits in L.

Algorithm 2.23 (Identify global cocycle).
Input: A cocycle v € Z*(G, L) for a Galois extensions L|K of number fields
with group G.

Output: A sequence of tuples (v, z,) for a set of places v of K such that z, € Q/Z
is the local invariant of the localization v, with w|v.

1 Let S be the G-invariant set of places of L which includes the places that
ramify in L|K, the infinite places of L and those places that occur in the
factorization of AQy, for any A\ = y(o,7),0,7 € G.

2 For each w € S(G) and a corresponding place v of K with w|v compute
Y € H*(G, L) and x, := inv,(7,) using Algorithms 2.3 and 2.18.

Return: The sequence of tuples (v, x,) for w € S(G) and w|v.

The performance of this algorithm will depend on the size of the field L (i.e.
its degree over Q and its discriminant) because this affects the factorizations of
MOy in step 1. But also the size of the localizations L,|K, will be important
since this determines the difficulty of the norm equations which have to be solve
in Algorithm 2.18.

Remark 2.24. This algorithm has been implemented® in MAGMA for K = Q.
The main issue for K # Q is the fact that we need to write L,, as extension of
K, for places w|v of L and K, respectively. In MAGMA each of those comple-
tions can be computed independently, but one does not get L,, as extension of
K,. Once this problem is solved, it is easy to generalize the implementation of
Algorithm 2.23 to arbitrary extensions L|K.

Note that this also applies for Algorithm 2.27 below.

9Command GlobalCocycleInvariants, see documentation in Appendix B.1 on page 173.
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2.3.2 Construct cocycles

For the construction of cocycles we again have the problem of L not being finitely
generated over Z. To work with the finitely generated S-units Ug := {a € L |
v(a) = 0Vv ¢ S} for a suitable finite set S of places of L and the homomorphism

k: H(G,Ug) — H*(G, L*)

instead, we also need to restrict to a finite set of places S in this case.

We denote the S-ideal class group by Clg(L), which is defined to be the quotient
of the ideal class group Cl;, modulo the subgroup generated by prime ideals
corresponding to places in S.

Lemma 2.25. Let o € Z*(G,L*) be a cocycle and consider a G-stable set S of
places in L which

(i) contains the ramified places and the infinite places of L,
(i1) satisfies inv,(a,) =0+ 7Z € ﬁZ/Z for allw ¢ S,
(iii) and is such that Clg(L) = 0.

Then there exists 3 € Z*(G,Us) such that k(8) = a.

Proof. Let T be the set of places w for which w € S or w(a(o, 7)) # 0 for some
0,7 € G. Then « has values in Ur, and the proof is finished if 7" = S holds.

Otherwise, let v € T\ S, i.e. v is a place which is unramified in L|K (by
condition (i)) and inv,(a,) = 0 + Z (by condition (ii)). By condition (iii) the
prime ideal 3, corresponding to the place v can be written as B, = a,(m,) for
some prime ideal a, which has support in S and a principal ideal (m,). Then the
generator m, has valuations v(m,) =1 and w(m,) = 0 for all w ¢ S U {v}.

As v is unramified, there is an isomorphism

H*(G,, LX) ~ H*(G,,Z)

induced by the valuation of v. We will therefore consider the valuations of the
cocycle a. But before we deal with the general case, we consider the special case

G, =0G.

Special case: G, = G. By condition (i) the cocycle a, is trivial in H2(G, L)) ~
H2(G,Z), ie. it is a coboundary: a, = dy(a) for some a € CY(G, LX). Define
b € CHG,L*) by b(o) = 7o) for all ¢ € G. Then for all 0 € G we have
valuations

v(b(o)) =v(a(o)) and w(b(o)) =0 for w ¢ SU{v}.
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We therefore consider the cocycle o/ = ady(h) ! which is equal to « in H2(G, L*).
For all o, 7 € GG it satisfies

v(d(0,7)) =0 and w(d/(0,7)) =w(a(o,7)) for w ¢ S U {v}.

We conclude that o only has non-trivial valuations for places w € T" := T\ {v}.
In other words, the cocycle o has values in Up with 7" & T and continuing

as above will construct a cocycle § with values in Ug which is equal to « in
H?*(G, L®).

General case. In this case we have to consider all conjugate places of v. We
therefore denote the fixed place in T\ S by vy and each conjugate of vy by v. If
we fix a system R of representatives of G/G,,, these conjugates are vJ for o € R:

Since S is a G-stable set, each of these conjugates v satisfies v ¢ S. As before,
the prime ideals 3, corresponding to each place v can be written as 3, = a,(m,)
with prime ideals a, having support in S and elements =, satisfying v(m,) = 1
and w(m,) =0 for all w ¢ S U {v}.

If Ais a Gy,-module, then the induced module indgvoA can be identified with
P, . TA with G-action (o), = o'z, if o = 7’0" for o’ € G, and x € P, TA.

We now consider the homomorphism ¢ : H2(G, L*) — H? (G, inngOZ) from
the following diagram

HY(G, L*) —— H*(G,indg, L) —5— H*(G,indg, Z)

J: J: (2.19)

H*(Gly, L) H*(G,, Z)

0

where the upper left horizontal map is given by the diagonal embedding L* —
indeO Ly, ~ I, Ly and the right-hand square is commutative with vertical
isomorphisms given by Shapiro’s lemma and horizontal isomorphisms induced
by valuations. Hence, the image () of o in H? (G, indgvO Z) with indngZ =
@,cr 0Z is given by taking valuations at each place v, o € R.

By condition (i), vy ¢ S implies that a,, is trivial in H2(G,,, Ly ). Hence, the
image of a will be trivial in any of the cohomology groups in the right-hand square
of (2.19). Therefore, ¢(a) is a coboundary in H2 (G, indgvoZ), e () = 0y(a)
for some a € C'(G, indgvoZ).
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We denote the component of a(o) € indgvoZ =@, cp7ZatT € Rbya,(0) € Z
and consider the cochain b € C'(G, L*) given by

b(o) = [T (mg) .

TER

By the choice of 7, for each v|u, this cochain satisfies 1)(09(b)) = 02(a) because
it has the same valuations as « for each v|u. Moreover, w(dx (b)) = 0 for all
w¢ SU{v] | T e R}

Hence, the cocycle o := ady(b)~! has the following valuations for each pair
o, 7€ G:

v(a/(o,7)) = 0 for all v|u
and w(d/(0,7)) = w(a(o,7)) for all w ¢ SU{v] | T € R}

and it is equal to o in H(G, L*).

In conclusion, the cocycle o only has non-trivial valuations for places w €
T .= T\ {vf | 7 € R}. Proceeding as above with 77 ¢ T will generate the
required cocycle g with values in Ug. 0

Assume, that we have given local invariants {q, € Q,u € S’} at a finite set
of places S" of K such that ) ¢, € Z and [L, : K,]q, € Z for v|u. Then there
exists a cocycle in Z%(G, L*) with these invariants. We then consider a finite,
Galois-invariant set of places S in L which

(i) includes places that ramify in L|K and all the infinite places of L,
(ii) is such that Clg(L) = 0, and
(iii) contains the places {v | v|u and u € S’} which lie above any place u € '

Since such a set S satisfies the conditions of the above lemma, one can construct
a cocycle in Z%(G, Ug) having these invariants and by Ug C L* this defines the
cocycle in Z%(G, L*). Since Ug is finitely generated, the conditions on the cocycle
can be formulated by linear equations as follows.

For a set S of places, we denote the subset of finite places by Sy C .S and the
subset of infinite places by S..

Proposition 2.26. Let {q,,u € S’} be a set of local invariants q, € Q for a
finite set of places S' of K such that )", q, € Z and [L, : K,]q, € Z for a place v
of L above u. Let S be a finite set of places in L satisfying the conditions (i)—(iii)
above. Then one can find a cocycle v € Z*(G,Us) having these local invariants
by solving a system of linear equations.
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Proof. The S-units are finitely generated. Denote its Z-generators by &;, such
that Us = [[;_;(¢i), and let \; be the order of &; with \; = 0 if ; is a free
generator.

Then a generic cochain v € C%(G, Ug) representing a cocycle is given by |G|*s
variables:

=[[s"" #oricZ (2.20)

If the G-action on Uy is given by o(e;) = [[}_, e;™" with integers o ;, one can
rewrite the cocycle condition on v for all o, 7, p E G as follows:

(o7, p)y(o,7) = ( (T, 2))v(0, 7p) (2.21)
H chsz IO'TZ_H Z] laajlep]H xO'TpZ
=4 Tor,p,i + Tori = Z Qg ilr,p,j -+ Lo, rp,i mod )\1Z, Vi=1...s.
j=1
(2.22)

For each w € Sp(G) let LI = [, (my,;) be the module Lf = LX/exp(Z,)
from Lemma 2.1 for which H2(Gy, LX) ~ H*(G., L{) and let ¢,, be the map
L — LY —» L{U. Denote the order of my,; by v,; € Z, with v,,; = 0 if my;
is a free generator. If ~,, € H 2(Gy, L) is a local cocycle having the prescribed
invariant ¢, with w|u, then it is required that

Guw(7(0, 7)) = (0, T)bw(0, 7) (2.23)

holds in LI for o,7 € G, where b, is a coboundary in I:I2(Gw,L,fU). The 2-
coboundary b, is defined using a 1-cochain a, € CY(G,, L) by by(o,7) =
0(ay(7))ay(0)a, (o)™t This 1-cochain in turn is generically given by integers
Yw,oi € Z: GW(U) = H:Zl m%ﬁzm

Fix w and let the G-action on L! be given by o(m,;) = H;wlmﬁ"” with
integers [, j, and let ¢, (ex) = [, mzf”; with ey € Z.

If for fixed 0,7 € G,, we have v, (o,7) = [[_, mq:
condition (2.23) as follows:

$u(1(0,7)) = (0, 7)o (aw(7))aw () aw(or)

Tw
<:> | | mZk 1€k, i%To,mk __ | |mcl+zgil Ba,j,iy’w,T,j"'yw,o,'i_yw,a‘r,i

w,i
i=1

wi» then we can rewrite the

= Z €k,ilork =cq + Z 6U,j,iyw,7,j + Yw,oi — Yw,oryi mod Vw,iZ
k=1 =1 Vi=1...r(2.24)
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The condition at infinite places w € Sy, with G, = (g,,) # 1 can be described
as follows (compare Section 1.1.1 on page 11). If v is a normalized cocycle, i.e.
v(1,0) = v(0,1) = 1, then =, has values in R and it represents the local funda-
mental class if and only if v, (gw, gu) < 0. If ¢,, is the embedding corresponding to
wandif J={j€{1,...,s} | tw(ej) € R, 1y(ej) < 0} then we add the condition

0 mod 27Z
ngwvgw:i = { (225)

, 1 mod 2Z
ieJ

to the linear system of equations, depending on whether we want trivial (g, € Z)
or non-trivial (g, ¢ Z) invariant at w with w|u.

The generic cocycle v and the 1-cochains a, give a total minimum number
of [G’s + ¢ s |G| 7w variables. Any congruence for infinite places and any
congruence of the form (2.22) or (2.24) with A\; # 0 or v,; # 0, respectively,
is turned into a linear equation by adding an additional variable to the system
of equations. The number of (not necessarily independent) equations will be
|G|?s + 2 wes, |Gwl?rw +|Sc| + (2|G| — 1) which arise from the cocycle conditions,
the local conditions at w € Sy, the conditions at complex places w € S¢ C S
and the condition of a normalized cocycle, respectively.

By Lemma 2.25 there exists a solution of the constructed system of linear
equations and using the solution of the variables z, ,; in (2.20) one gets a cocycle
with values in Ug and prescribed local invariants. [l

Algorithm 2.27 (Construct global cocycle).

Input: A finite Galois extensions L|K of number fields with group G and local
invariants ¢, € ﬁZ for a finite set S” of places v of K (with w dividing v)
which satisty > ¢, € Z.

Output: A global cocycle v € Z?(G, Ug) for a finite set of places S of L satisfying
conditions (i)—(iii) whose localizations have invariant ¢, at v € S’ and 0 at

vé¢ s

1 Follow the proof of Proposition 2.26 to construct a system of linear equations,
i.e. turn the equivalences (2.22), (2.24) and (2.25) into linear equations by
introducing new variables and add equations for normalized cocycles.

2 Solve this system of equations, pick a solution and define the cochain v by
equation (2.20).
Return: The cocycle 7.

This algorithm has been implemented!® in MAGMA for K = Q. For arbitrary
extension it would be necessary to compute completions L, |K, of an extension
L|K. This is, however, not yet possible in MAGMA, see Remark 2.24.

10Command GlobalCocycle, see documentation in Appendix B.1 on page 173.
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Example 2.28. Let L be the splitting field of 2 + 9 € Z[z] over Q. Tt is
a Galois extension with group G = S3. The prime 3 is undecomposed in L
and 5 decomposes into three prime ideals. Therefore, there exists a cocycle in
v € Z*(G, L*) which has invariants % at the primes 3 and 5 and trivial invariant
everywhere else.

Since 3 is the only prime which ramifies in L and L has class number 1, we
can consider a set of primes S of L whose finite places w € Sy are those above
3 and 5. The linear system of equations from Proposition 2.26 considered in the
algorithm above then becomes a system with 1748 equations in 608 variables. A
solution of this system is found easily and in total Algorithm 2.27 takes about 3
seconds to construct the cocycle .

The invariants of 7 can be verified using algorithm Algorithm 2.23. It will take
just a second since all the local cohomology groups needed are already computed.

Since both primes, p = 3 and p = 5, are undecomposed in the subextension
Q(¢3)|Q of L|Q, the cocycle vy can also be represented as the inflation of a cocycle
3 € H*(Gal(Q(G]Q), Q(¢s)*). With Algorithm 2.23 one can easily verify that

8o, 1) = {15 oA 1,741

1 else

is a cocycle with the required invariants and that inf&%)l(@ 6=7.

In this example the construction of the cocycle was very simple (in terms of
computation time). Actually, one discovers that more conditions on the cocycle
will not affect the computation time by a lot for both algorithms. In other
words, MAGMA’s implementation of the factorization of prime ideals (step 1 of
Algorithm 2.23) and the computation of kernels of integer matrices (step 2 of
Algorithm 2.27) both perform well enough.

For extensions of higher degree (degree > 10 over Q) one will also observe that
the computation of the local cohomology groups needed in both algorithms will
be the main issue. Then the norm equations from Algorithm 2.18 become very
difficult and these will dominate the computation time.






3 Global fundamental classes

Given a Galois extension of number fields L|K with Galois group G, we denote
the idele class group by C7 as in Section 1.1.2. We will use the algorithms for
local fundamental classes to describe an algorithm for the computation of the
global fundamental class in H?(G, Cy). It is the unique element whose invariant
through the isomorphism

1

inVL|K : FIZ(G, CL) i> [L - K]

7)7

is 1/[L : K|+ Z (see Definition 1.15). The main ideas behind this method are
the following:

1. Chinburg shows in [Chi85, §2] how a finitely generated module M can be
generated such that H*(G, M) ~ H*(G,C}).

2. Given a finitely generated module M, one can compute with H 2(G, M)
using linear algebra, as described in [Hol06].

3. Using the idelic invariant map one can find the global fundamental class for
cyclic extensions. In the general case one has to work with the composite
with a cyclic extension of the same degree and work with the inflation on
cohomology groups.

Compared to the computation of the local fundamental class this can be regarded
as the direct method for the global fundamental class.

The computation of the cohomology group H 2(G, M) for finitely generated
modules M has been discussed in Section 2.1. In this chapter we first address the
finite approximation of the idele class group introduced by Chinburg and turn it
into an algorithm. This will then allow us to describe an algorithm to compute
the global fundamental class.

3.1 Finite approximation of the idele class group

We continue to use the notations from [NSW00, Chp. VIII, § 3] where I, denotes
the idele group [], L as defined in Definition 1.8 and the product is restricted
with respect to the unit groups U, which are Uy, = Of for finite places and
UL, = L for infinite places. For a finite set .S of places of L we define the S-idéle
class group by Cs(L) = I,/L*U where U = [] {1} X [[ 05 UL, C I1.
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If S contains all the infinite places and all places that ramify in L|K, every place
v ¢ S is unramified and has cohomologically trivial unit group Oj . Therefore,
UL s is cohomologically trivial and there is an isomorphism in cohomology

H(G,Cp) ~ H(G,Cs(L)) (3.1)

(see [NSW00, Prop. (8.3.1)]).

For the computation of the cohomology of C}, we have the problem that C7,
itself or the S-idele class group Cs(L) are not finitely generated. Moreover, they
are defined by I; which is a product over infinitely many primes. As a first
step, we will therefore replace I, by the S-idéle group' I s = [Ieq Ly for
a finite set S of places in L and factor by the units of the ring of S-integers
Ops:={a€ L]|v(a) >0Vv ¢S} These S-units Of ¢ will also be denoted by
Ur,s or by Ug it L is known from the context.

In analogy to the idele class group one then defines the group Cr g = I, 5/UL s
which is defined by a product over the finitely many primes in S. It is related to
the S-idele class group by the exact sequence (cf. [NSWO00, Chp. VIII, (8.3.4)])

0— OL,S — Os(L) — Cls(L) — 0 (32)

where Clg(L) denotes the S-ideal class group, which is the quotient of the ideal
class group Cly, of L by the classes of prime ideals corresponding to places in S.

In order to work with C}, g instead of C's(L), we therefore need S to be sufhi-
ciently large such that Clg(L) = 0. Such a finite set of places (corresponding to
prime ideals) exists because the ideal class group is finite and every ideal class is
represented by an ideal which factors into finitely many prime ideals. Actually,
we also need the S-class group to be trivial for all subfields F in L|K in order to
represent elements in Cr C C, by the same set of places. This is a very strong
condition on S and its verification can take quite a long time. The set of places
uw in a subfield F' C L for which there is a place v € S dividing v will again be
denoted by S.

To have isomorphism (3.1), we will also require S to contain all ramified and
infinite places. In total we have the following conditions on S:

(S1) it is Galois-invariant, i.e. if v € S, also v7 € S for 0 € G,

(S2) it contains the places that ramify in L|K,

(S3) it contains the infinite places of L, and

(S4) it is sufficiently large such that Clg(F) =0 for all K C F C L.

By the arguments from above we have the following isomorphism in cohomology.

'Note that the S-idele group is often also defined to be [T, g L) X IToes OF .. In our appli-
cations, with S omitting only unramified places, the two definitions will be cohomologically
isomorphic. Since we are only interested in the cohomology, we can choose either of them

and we will keep the notation of [NSWO00].
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Lemma 3.1. Let S be a set of places satisfying conditions (S1)-(S4). Then there
s an isomorphism

H{(G,CL) ~ H(G,Cps).
Proof. [NSW00, Prop. (8.3.4) and (8.3.6)]. O

In the definition of Cy = I, /L* we factor by L* which is known to satisfy
H L(H, L*) = 0 for all subgroups H C G by Hilbert’s Theorem 90. To replace Cf,
by Cp s = I s/UL.s in the following we will similarly require the first cohomology
groups of Uy, ¢ to be trivial. But this already follows from the conditions on S.

Lemma 3.2. If S is a finite set of places satisfying conditions (S1)-(54) and
H C G is a subgroup, then H'(H,Up ) = 0.

Proof. We recall the proof from [Tat84, Chp. II, Thm. 6.8] which particularly
motivates condition (S4).
The S-units Uy, g fit into an exact sequence

0—>UL7S—>LX—>JL7S—>O

with Jp ¢ denoting the ideals which are coprime to S and where the right-hand
map is surjective since Clg(L) = 0. The cohomology sequence for a subgroup
H C G with F = L provides

0—Upsg — F* — Jf{s — f[l(H,ULS) — 0.

Since S contains the ramified primes, one has Jg g = Jrpg and F* — Jpg is
surjective if and only if Cls(F) = 0. The condition (S4) on S therefore implies
H'(H,ULg) =0. O

For the finite places v € Sy the group I, g contains L, which we made finitely
generated by taking the quotient with exp(.%,) for a full projective lattice .Z, C
Oy, upon which the exponential map is defined, see Section 2.1. To get a similar
result for the infinite places v € S, we follow [Chi85, §2] to construct finitely
generated modules W, which are cohomologically isomorphic to L.

Proposition 3.3 (Chinburg). Let v € Sy, be a infinite place of L and v, the
corresponding embedding L — L,. Then there exists a finitely generated G,-
submodule W of L) such that

(i) t,(Ups) CW and W/i,(UyLs) is torsion-free,
(i1) the inclusion W — L) induces an isomorphism in G,-cohomology, and

(iii) if W' is another module for which (i) and (ii) hold, there is a G,-homomor-
phism [ W — W' for which f|,,w, ¢y = id and f induces an isomorphism
i cohomology.

Ur,s
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We recall the proof of Chinburg from [Chi85, Lem. 2.1] but, in contrast to his
proof, we also discuss the algorithmic details of the construction. In the following,
we will sometimes omit the embedding ¢, and embed Uj g into L, implicitly.

Proof. Let u denote the place of K below v. Consider the case G, = 1. Then
K,=L,=Ror K, = L, = C and H(G,, LX) = 0 for all i. Hence, properties
(ii) and (iii) are trivially satisfied for W = ¢,(UL s).

In the other case G, = {1,0,}, K, = Rand L, = C. The action by ¢, on z € C
is the complex conjugation, which we will also denote by Z. The cohomology
groups of LX = C* are H(Gy, LX) = R*/Rey ~ Z/2Z and H (G, LX) =0 by
Hilbert’s Theorem 90.

Let Uior be the torsion subgroup of the S-units U = Uy ¢ which is given the
roots of unity py in L. Then define Uy = U/U, and construct W, by the
following steps:

1. There exists a non-trivial extension (Z;U,) of Z with U, (as Z[G,]-
modules).

2. There is an isomorphism of Z[G,]-modules Uy ~ Z* @ Z[G,]® for suitable
integers a and b.

3. One can construct an isomorphism v : (Z; Uyo,) ® 24! @ Z[G,)* ~ U and
the generators us, ..., u, of the Z* '-part in U satisfy ¢,(u;) € R and can
be chosen such that ¢,(¢)(u;)) > 0 in R.

4. For 2 <1 < a, we choose \; € C with Ng, \; = u; algebraically independent
such that [, A% = TT. )\?"Xl-bi € 1,(U) if and only if a; = b; for all i.

5. Finally, the module W := (Z; Uyor) 8D, Z[G,| i ® Z|G,]® has cohomology
H{(G,W) ~ H{(G, (Z;Uy,)) and satisfies the conditions of the proposition.

Step 1: The first cohomology group of Uy, is
ﬁl(Gv, Utor) = ﬁil(Gva Utor) = Ng, Utor/ IGU Utor = Utor/U'?or = Z/2Z

Hence, up to isomorphism there is exactly one non-trivial extension (Z; Ui,) of
7 with Uy,
0 — Uior — (Z;Usoy) — Z — 0. (3.3)

Explicitly, it is given by choosing 6 € Uy, \ U2, and defining (Z; Uio;) = Usor D Z
(as direct sum of groups) where o, acts naturally on the subgroup Uyo; C (Z; Usor)
and 0,(0,1) = (A,1). On the other hand, if § € U2, = Ig, Ui,y with 0 = o,n/n,
n € Uor, one can easily see that (o,n,1) is a G,-invariant lift of 1 € Z, i.e.
1 — (o,n,1) is a Gy-section and (Z; Uy, ) is isomorphic to Use, @ Z (direct sum

as G,-modules).
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Furthermore, if M = Uy, @ Z is another extension with G-action 0,(0,1) =
(0/,1), 0 € Uy, \ U2, then there exists n € U2 satisfying o,n/n = 0'/6 since
0/0 € UL, = lg, Uior and U /U2, ~ Z/27. Hence, there is a G,-module
isomorphism M — (Z; Uo,) given by the identity on Uy, and (0,1) — (1, 1).

For the rest of the proof, we fix an element 6 € Uy, \ U2, representing the

action on g; := (0,1) in (Z; Uor).

Step 2: Recall that by Lemma 3.2 the conditions on S imply }AI*I(GU, U)=0.
The quotient Uy = U /Uy, gives an exact sequence

0=HYG,,U) — HYG,,Uy) — H(G,, Uyx) — H*(G,,U)

of cohomology groups where HY(Gy,User) = US2 /(1 4 0,)Uior ~ Z/27 and
T-1(G,,Uy) = 1 since —1 € USr C US is not in (140,)U. From H (G, Uy) =
1 +# ﬁ_l(Gv,Z_) we know that there is no Z~ part in Uy. So by Corollary 3.5
proved below there is a Z[G,]-decomposition Uy = Z @ Z[G,]° with appropriate
a,b € Z. The integers a,b and a corresponding basis Z1,..., %4, U1, --,Yp can be

computed by the constructive proof of [CR62, Thm. (74.3)], see Remark 3.6.

Step 3: Applying Lemma 1.27 to the isomorphism Uy ~ Z* & Z[G,)* we get an
isomorphism

a b
Yextg, (Us, Uror) ~ @D Yextg, (Z, User) © @D Yextgy, (Z[G,], Uier).

i=1 i=1

Through this isomorphism the module (Z, U.,) ® Z*~! & Z[G,]" is an extension
of Uy with U, corresponding to the tuple consisting of the non-trivial exten-
sion (3.3) in Yext (Z,Usor), a — 1 trivial extensions in Yexty, (Z, Uyy,) and b
trivial extensions in Yext, (Z[G,], Uior). It is therefore a non-trivial extension
of Uy with Uy,. The module U is also a non-trivial extension because oth-
erwise HY(G,,U) = H Gy, Uiox) ® H (G, Uy) which is a contradiction to
| G, U) =0 # ﬁ_l(Gv, Uior). Then the isomorphism ¢ : (Z; Uyyy) B 207! &
Z|G,)’ = U can be constructed as follows.

Since U is a non-trivial extension of Uy with Uy,,, at least one of the generators
Z; of the Z* part in Uy does not have a G-invariant lift. Otherwise, by the
arguments used in step 1 the module U would be a trivial extension of U, with
Uior- Denote the lifts of z;, y; to U by x;, y;. By reordering the basis of Uy, we can
assume that for some appropriate integer ¢ > 1 the first ¢ generators z1,...,Z.
do not have a G,-invariant lift and that z.,1, ...z, are elements of U%",

Each generator z;, 1 < i < ¢, corresponds to a non-trivial extension of Z with
Uior (via Lemma 1.27), where the G,-action avmi = 0;x; is given by an element
0; € Uior \ U2, (see step 1). Since Uio, /U2, =~ Z/27Z, the quotients 6/6; are
elements in U2, = Ig, Uy and one can find 7; € Uy, satisfying n7°~ b= = 0/0;.

tor

Here, 0 € Uy, is the fixed element from the construction of (Z; Uy, ) in step 1.
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In (Z; Uer) ® 2271 @ Z[G,)" denote the Z[G,]-generators of the Z2~1 part by
ga, - - - ga, those of the Z[G,]° part by hy, ..., hy and let (Z; Uyy) = Usor @ Z be the
module constructed in step 1 with g; = (0,1). Then define the homomorphism
V1 (2 Uer) ® 27 @ Z[G, )P — U by

Y(u) =u for u € Uy,

Y(hi) = yi,
xym  fori=1, (3.4)
and  ¥(g;) = j—l% for 2 <i <eg,
T forc+1<i<aq.

This is a G,-module homomorphism since

Uu¢(91) = UU<$1771) = 91x100_7711 = Oxim = ¢(991> = w(%gl)’

ou(zimi)  Oxmy

d ) — —
and - ou(g:) ou(z1m)  Oxym

= (gi) = Y(ovg) for2<i<a.

The homomorphism 1 induces a G\,-homomorphism ¢ on Uy given by ¢(Z;) = 7y,
o(z;) = T; — T1, and ¢(71) = 1. The map ¢ obviously is an isomorphism and by
the snake lemma ¢ must then also be an isomorphism. This can be combined in
the following commutative diagram:

0— Utor - (Z, Utor) ¥ Za_l S¥) Z[Gv]b — UO — 0

:Jw :}b (3.5)
0 — Uy U Uy — 0

For 2 < i < a the images 1 (g;) are G, invariant and therefore ¢,(1(g;)) € R. If
one changes the image ¢ (g;) for some 2 < i < a such that ¢(g;) = —(x;/x1-m;/m)
(or ¥(g;) = —x; if i > ¢), then ® is still an isomorphism and does not affect the
commutativity since —1 € U,,. Hence, we can define v in such a way that the
elements u; := 1(g;), 2 < i < a have a positive embedding ¢,(u;) > 0 in R.

Step 4: Since H*(G,, L) = H*(G,,C) = R* /R, there exist elements \; € C
satisfying Ng, (\;) = t,(u;). Multiplying these elements A; by suitable (transcen-
dental) elements on the unit circle, they become algebraically independent® and
[T, A7 € 4, (U) implies a; = b; for i = 2, ..., a. Note that for our purposes
it is enough to know the existence of these elements );. In our applications,
we can work with abstract generators \; for which we define the G,-action by

0'1,)\1' = UJZ)\;l

2By Baker’s methods on linear forms in logarithms, elements ao,...,a, € C are already
algebraically independent if log(a;) and 1 are linearly independent over Q.
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Step 5: We finally define W = (Z; Uyor) ® @, Z|Gy]\i ® Z|G,)® which can be
seen as subset of C by A\; € C* and by the composite ¢, 0 1.

Verification of (i) and (ii): As an abelian group W = 1,(U) & @;_, Z\; C C*
which can be identified as a submodule of C in the obvious way. It contains ¢, (U)
and W/1,(U) ~ @, Z), is torsion-free. By construction of W the cohomology
groups of W are H(G,, W) = H (G, (Z; Uy)), so we need to prove that the
cohomology of (Z; Ui,) and L = C* are isomorphic.

We therefore consider the cyclic cohomology diagram corresponding to (3.3)

HY(Gy, Uey) 2= HY(G,, (Z; Upor))

/ =Z/2Z \{
HYG,,Z) H°(G,,Z)
=0 =7,/2Z
H_1<Gv7 (Z7 Utor)) H_l(Gm Utor)
fa =7/2Z

in which the cohomology of Uy, is known by previous computations. By defi-
nition of the connecting homomorphism, f3 maps 1 to g‘f”_l =0 € Uior = Ng, Utor
which is not in I, Usor by definition of (Z; Uyor) in step 3. Hence, the image f3(1)
is nonzero in H™Y(Gy, Uior) = ng, Usor/ I, Usor ™ Z/27Z and f3 is an isomorphism.
As a consequence, fp = fy = 0 and f; is also an isomorphism. This implies

HYG,,(Z;Uiy)) = 0 and HY(G,, (Z; Uior)) = Z)27Z.

Altogether, this gives isomorphisms

H Y Gy, W) = H Gy, (Z;Uiey)) ~ 0=~ H (G, LY) (36)
and H°(G,, W) ~ H(Gy, (Z;Uiy)) ~ HY (G, Uper) ~ H*(G,,, L), ’

the latter being induced by U, C (Z; Usor) € W and U, € LS. Hence, W, has
the same cohomology as L. 0

We quote the following theorem of Diederichsen and Reiner and derive a corol-
lary which will complete the proof.

Theorem 3.4. For a cyclic group G = (o) of prime order p every finitely gen-
erated, torsion-free Z|G|-module M splits into a direct sum M ~ My & --- @& M,
of indecomposable modules. These modules M; are either

(i) Z with trivial G-action,

(i1) an Ok-ideal a of K = Q(0) with 6 being a primitive p-th root of unity and
G-action oca = fa for a € a,

(iii) or a module (a,ag) := a @ Z\ (direct sum as Z-modules), with a as in (ii)
and o\ = ag + X for a fived element ag € a\ (0 — 1)a, i.e. (a,a9) is a
non-split extension of Z with a.
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Moreover, the isomorphism class of M is determined by the numbers of modules
of the three types that occur and the ideal classes of the ideals a.

Proof. [CR62, Thm. (74.3)] or [CR81, Thm. (34.31)]. O

The constructive proof of [CR62, Thm. (74.3)] also shows how Z[G]-generators
of the decomposition can be computed. For the cyclic group of order two one
therefore has the following decomposition.

Corollary 3.5. Let G = (o) be a group of order 2. Any finitely generated, tor-
sion free Z[G]-module M decomposes into

M~7°® (Z7)° © Z|G]" (3.7)

Here, the G action on Z is trivial and Z~ denotes the module Z with o acting as
multiplication by —1.

Proof. In the special case p = 2 of Theorem 3.4, the parameters of the decom-
position become: # = —1, K = Q, Og = Z. The class number of QQ is 1, so we
can assume that every ideal a is equal to Z. All modules of type (ii) are then
isomorphic to Z~. In (iii), ag ¢ 2Z and since (a,a9) ~ (a,cag) for 2 t ¢ (see
[CR62, Lem. (74.2)]), we can assume ag = 1 and (a,a9) = (Z,1) = Z~ + Z\ with
G-action oA =1+ \. Since

L~ +ZX — Z|G|
r4+yr—z(l—0)+yo

is an isomorphism of G-modules, the modules of type (iii) are isomorphic to Z[G].
Altogether, we get the isomorphism (3.7). O

Remark 3.6. In general the computation of a Z[G]-basis of a free Z[G|-module
M is a sophisticated task. The constructive proof of [CR62, Thm. (74.3)] is
restricted to cyclic groups G of prime order p, which is a strong condition on the
group G. In order to see that those generators can indeed be constructed, we
recall the proof for a cyclic group G = {1,0} of order 2.

The kernel K = ker(1 + o) is a free submodule of M and there exists a Z-
module X such that M = K @ X as Z-modules. The module (0 —1)M C K is a
Z-module of the same rank n € NU {0} and by the elementary divisor theorem
there exists a basis by, ...,b, of K = ker(1+ o) and integers ey, ..., e, such that

K=7Zb&---®7Zb,,
(0 —1)M = Ze1by @ - - - @ Zeyb,.
Such a basis can be computed using the Smith normal form as for example in

[Coh93, Alg. 2.4.14]. By (6 — 1)K C (¢ —1)M C K one obtains Z2b; C Ze;b; C
Zb; and discovers that e; € {1, 2}.
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Let r be an integer such that e; =---=e¢,=1and ¢, ; =--- =€, = 2. Then
the quotient @ = (0 — 1)M /(0 — 1)K is Q ~ (Z/27Z)" and the images b}, ..., b}
of by, ..., b, generate Q.

Consider the surjective homomorphism ¢ : X — Q, v — (6 — )z + (0 — 1)M
and let ..., 2, be a Z-basis of X. Then k& > r and ¢ is given by a matrix
A = (aij) € Matyx,(Z/27Z) such that ¢(z}) = > 7_, a;;b;. By diagonalizing A over
Z/27 one finds a matrix U € Glx(Z/2Z) and a corresponding lift U € Gl;(Z)
such that the basis z; = 2521 ugah satisfies ¢(r;) = ¢;b; for 1 < i < r and
¢(x;) = 0 for r < j < n for suitable ¢; € Z \ 2Z.

Let \; € K such that (o0 —1)z; = ¢;b;+ (0 — 1)\ for 1 <i <rand (0 —1)z; =
(0 — 1)\, for r < j < n. Then the elements y; := x; — \; satisty oy; = ¢;b; + y;
for 1 <i<randoy; =y, forr<j<n.

One therefore obtains

B Lbyyy @ - B Ly ® Lijpsr @ - - - ® Ly,

with Z[G]-module isomorphisms Zb; ~ Z~, Zy; ~ Z* for j > r and

L= —y; — (¢, + )b

where ¢; = 2¢; 4+ 1. This completes the construction of a Z[G]-basis of M which
provides an isomorphism of the form (3.7).

The constructive aspects of Proposition 3.3 can now be turned into the follow-
ing algorithm. For ramified infinite places v € S,, whose decomposition group
G, = {1,0,} is cyclic of order two, we write the action of o, on z € L, = C as
conjugation = and ¢, for the embedding L — L, = C.

For algorithms on abelian groups and basic algorithms in number theory we
refer to [Coh93].

Algorithm 3.7 (Construction of modules W).

Input: A finite Galois extension L| K of number fields with group G and an infinite
place v of L.

Output: A finitely generated Z[G]-module W, satisfying the conditions (i)—(iii)
of Proposition 3.3.

1 Compute the S-units U = Uy, g using [Coh00, Alg. 7.4.6], its torsion subgroup
Uior and define Uy = U/Uyq,.

2 If G, =1, define W, = ¢,(UL s) and terminate.

3 Choose 0 € Uy, \ U2, and define (Z; Uor) = Usor © Z with G,-action (0,1) =
6,1).
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4 Compute a,b € Z such that Uy ~ Z* @ Z|G]* and a corresponding basis
T1,...,Za,Y1,---,Yp using the proof of [CR62, Thm. (74.3)] as described in
Remark 3.6. Denote lifts of the basis of Uy by x; and y;, respectively, and
choose the basis of Uy such that z.,1,...,7, € U and Z1, ... 7. do not have
G-invariant lifts (for some ¢ € N).

5 For 1 < i < ¢, let the G,-action on x; € U be given by o,(z;) = 0;z; with
appropriate 0; € Uy,. Compute elements 1; € U, such that n) oo — 6/6;
with 6 as chosen in step 3.

6 Define the isomorphism ¢ : (Z;Us,) @ 271 & Z[G]* — U as in (3.4). For
i =2,...,a the signs should be chosen such that the images u; := 1 (g;) have
a positive embedding ¢,(u;) > 0 in R.

7 Compute algebraically independent elements \; € C which satisfy \;\; = u;
such that [[%, A% € U implies a; = b; for i = 2,... ,a.

=2 "%

Return: The module W, := (Z; Usor) ® D), Z[G)\; & Z|G]* which is embedded
in C via ¢ and \; € C.

If an explicit embedding into C is not needed, one can also consider abstract
generators \; upon which the o,-action is defined by o,(\)A\; = u;. This will
actually be the case in all our applications.

For any place v we can now construct a finitely generated module L/ which is
cohomologically isomorphic to L;. For finite places v it is given by the module
L == LX/exp(%,) constructed in Lemma 2.1 using a full projective sublattice
%, of Op,. For infinite places v it is given by the module L{ =W, c C*
constructed by Algorithm 3.7.

We continue to construct a finitely generated approximation to the idele class
group by fixing a set of G-representatives S(G) in S and corresponding modules
L{. Then we define

o=@ ind§ L] and Cfg:=1I]¢/UpLs (3.8)
veS(G)

which are finitely generated modules.

Proposition 3.8. There are isomorphisms
(G, I g) ~ H*(G,Is) and H*(G,Cig) ~ H*(G,Cy).
Proof. [Chi85, Prop. 2.1]. O

Explicitly, the isomorphisms are induced by the projections L) — L)/ exp(.%,) =
L/ for finite places v and injections L{ = W, < L for infinite places v. Each
of those maps induce isomorphisms H?(G,, L) ~ H?(G,, L!) and therefore I £ g
and [, g are cohomologically isomorphic.
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The analog isomorphism for C’{} ¢ and C7, is then obtained by applying the five
lemma to the long cohomology sequences arising from the diagram

0 ULs I cf 0

H [ [

H T T

0 UL7S ]L7S CL,S 0

where If s := @5, nde, L ® @es.. () inde, Ly and Cf g := I} /Ups.
These isomorphisms allow the computation of the cohomology of the idele class
group using the finite approximations (3.8).

Algorithm 3.9 (Idéle class group).
Input: A finite Galois extension L|K of number fields with Galois group G.

Output: A finitely generated Z[G]-module Cﬁ ¢ which is cohomologically isomor-
phic to C7.

1 Let S be a set of places of L satisfying conditions (S1)—(S4).

2 For every finite place v € S;(G) compute a finitely generated module L/ as
in Lemma 2.1.

3 For every infinite place v € Sy (G) compute the module L{ = W, using
Algorithm 3.7.

4 Compute induced modules indgv L} and the groups 1 £ g and C’f}s as in (3.8).

Note that the verification of the conditions on S in step 1 can be very difficult.
For the condition (S4), which requires the S-ideéle class group Clg(L) to be trivial,
one has to compute the class group Cl; of L and this is known to be a sophis-
ticated task. In the computation one uses the Minkowski bound which gives a
bound on the norm of the ideals which will generate Cl;. If one assumes the
generalized Riemann hypothesis, one can replace this bound by the Bach bound
which is much smaller.® This results in a significant speedup which will also be
used in our implementation.

Since Cﬁs is a finitely generated module, one can compute its cohomology
group H?(G, Ci,s) ~ H*(G,C}) using [Hol06]. The construction of Ci,s and its
cohomology has been implemented as part of Algorithm 3.13 which constructs
the global fundamental class in H> (G, Ci,s)-

3See also the documentation of the command ClassGroup in the documentation [BCFS10] of
MAGMA.
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3.2 Computing global fundamental classes

After the computation of H 2(G, Cp) using the finite approximation Cf,s in the
last section, we want to find the global fundamental class in this group.

In analogy to the direct method for local fundamental classes?, we construct
the global fundamental class for a general Galois extension L|K of number fields
by considering a cyclic extension L'|K of the same degree.

3.2.1 Cyclic case

Let L'|K be a cyclic Galois extension of number fields with Galois group G'.
Then the idelic invariant map on the idele group

inv : H*(G' 1) — Z]Z

1
L' : K]
from Definition 1.10 is surjective by Lemma 1.11 (see also [Neu69, Chp. I1I, (5.6)]).
So there exists a cocycle in Z?(G’, I1/) representing the global fundamental class
of L’'| K. This element can be constructed from a single place uy of K which is
undecomposed in L', i.e. there is just one place vj in L’ dividing wuy.

Let us first assume, that we have such a place ug. Then the decomposition
group G, : is equal to G. We may therefore apply Algorithm 2.18 to compute the

local fundamental class u' of the extension L 6\Kuo as a cocycle in Z? (G’ L 6)'

Then the element (..., 1,4/, 1,...) € H*(G', I1/) C [, ]:IQ(Gal(L;//Ku), L)) has
invariant 1/[L’ : K] and thus represents the global fundamental class of L'| K.

If S is a finite set of places satisfying (S1)—(S4), we set S = 5" U {v}} and use
the finite product I;/ ¢ in which the images of the cocycle u' can explicitly be
represented up to a finite precision.

Obviously, this computation of the global fundamental class does not depend
on G’ being cyclic, but on the existence of an undecomposed place ug. It can
therefore also be applied to general extensions L|K for which an undecomposed
prime is known. However, for cyclic extensions the existence of undecomposed
primes is an immediate consequence of Chebotarev’s density theorem, see Corol-
lary 1.13.

If the extension is non-cyclic, there can still be an undecomposed prime. But
this prime then must be among the (finitely many) ramified primes, which is a
very strong condition on the number field.

4Compare Section 2.2.1.
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3.2.2 General case

Let L|K be a finite Galois extension of number fields with group G' and L'|K an
extension of the same degree with cyclic Galois group G’. Denote their composite
field by N = LL’ and the Galois groups by I' = Gal(N|K), H = Gal(N|L) and
H' = Gal(N|L'):

Denote the places of K, L, L’ and N by u,v,v" and w, respectively. Again, let
S be a set of places of N satisfying (S1)—(S4). As in the cyclic case, let uy be a
place of K which does not decompose in L' and assume that S contains all places
of N dividing uy.

As in the direct method for the local fundamental class one can then compute
all the cohomology groups involved and find the global fundamental class of L|K
by inflating the global fundamental class for the cyclic extension L'|K. However,
in order to avoid computations in the complex numbers, we have to make sure
that the inflation maps can operate on Cz,s and C’f,ys directly, i.e. on the modules
W, as abstract groups without using embeddings W, — C.

Below we therefore construct Cf’s and CY, g as subgroups of C}:,’S which are
fixed by H and H'. 7

As in the previous section, for each I'-representative w of the places in S, let
N/ be a finitely generated module which is cohomologically isomorphic to N.X.
That is N} = N,/ exp(%Z,) for finite places w and N} = W,, C C* for infinite
places w. Then define

Hg:= @ indp NJ. (3.10)

wes(T)
As before we write C’]{LS = []{,75/UN73 and we have H> (T, C]J:LS) ~ H2(T',Cy). To
get a corresponding representation for C’ﬁ g and c! 1 g such that we can easily com-
pute inflations ]:IQ(G, Cg,s) — I:IZ(F,C’]J:,’S) and H2 (G’,C’{,ﬁ) — H? (F, C']]\C,VS)
we have to compute Cﬁ ¢ and Cﬁ,y ¢ using submodules of .Z,, and W,, as described

in the following proposition.

Proposition 3.10. (i) The fized group (IZ{,’S)H is given by

Il s = @ indg L/ exp(£) & €D indg Wi

uESf UES o
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where for each place u we fix v such that wl|v|u and £, .= £, NOp,.

(ii) The module £, satisfies the properties of Lemma 2.1: it is a projective mod-
ule and Lj/exp(oiﬂv) 1s finitely generated and cohomologically isomorphic
to L.

(iii) The module W, := Wi satisfies the properties from Proposition 3.3.

Note that these statements also hold for L’ by using the subgroup H’ of I". The
proof of the first part is based on the following lemma for Z[G] modules.

Lemma 3.11. Let I' be a group, I'y, C ' a subgroup, H C ' a normal subgroup,
and let M be a T',-module. Denote G = T'/H, H, = HN Ty, G, = I'y/H,.
Then

(Z[F] ®Z[Fw] M)H ~ Z[G] ®Z[Gv] MHw

or equivalently (IndlrﬂwM)H ~ Indgv MHv are isomorphisms as Z|G]-modules.

Proof. As in [NSWO00, Chp. I, § 6], we can write the elements of induced modules
as homomorphisms. By rewriting the condition to be fixed by H we can prove
directly:

(Z[T] @z, M) = (Indh. M)

= {f:T - M|of(z)= flox) Vo €T,z € T}
with [-action (of)(x) = f(xzo) for o € T
={f:T/H - M |of(xH) = f(cxH) Vo € ',z €'}
since elements fixed by H have only one value per coset
= {f:T/H — M" |of(xH) = f(oxH) VYo €T,z € T}
as Tf(zH) = f(raeH) = f(eH)Vr €', H = H,
={f:T/H — M" |ocH,f(zH) = f(cHyxH) Vo € Ty/H,,v €T}
because the values of f are fixed under H,
={f:G—M" [ 1f(y) = f(ry) V1 € G,,y € G}
= Indg, M™* = Z[G] 7,0 M. O

Proof of Proposition 3.10. (i) This is Lemma 3.11 since G = T'/H, LX = (N )
and %, = LHv.

(i) Let &£, = Z[I',]0 be a full projective module as in Lemma 2.1 used in
the computation of N;. Since .%,, is projective (and hence cohomologically triv-
ial), one has £ = Ny (%,) = Ny, (Z[[',]0). This latter group is equal to
Z|G,|Np, (6) because for every o € I, the right coset H,o is equal to the left
coset 0 H,, and the left cosets are represented by elements in G,,.
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Therefore, the module .%, := %, N O, = L7 = 7Z|G,] Ny, (0) is a projective

Z|G,)-module. Since 0 satisfies vy (0) > % by construction (see the proof

of Lemma 2.1), the element Ny, () also satisfies the condition
1 e(Ny|Qp) _ e(L,|Qp)
vr.(Ng, (0)) e(Nw\LU)UN( m,(0)) > vn(0) > =1 = p—1

of Lemma 2.1. Hence, the v-adic exponential function will be injective on %,
and H2(G,, LX) ~ H2(G,, LX ] exp(%,)).

(iii) By definition W,, € N satisfies the properties for N. So Uys C W,
Wy /Un,s is torsion-free, and the inclusion W,, < N induces an isomorphism
in I',,-cohomology. For L we know Uy ¢ C WHv and its quotient is still torsion-
free. The construction of W,, shows that H'(H,, W,) = 0, see (3.6). Therefore
LX /W, ~ (NX /W) and the fact that NX/W,, is cohomologically trivial (as
I',-module) implies that L) /W, is cohomologically trivial as G,-module with
Gy ~ I'y/H,, cf. [NSWO00, Prop. (1.7.2)]. Hence, the injection W, — LJX
induces an isomorphism in cohomology. U

Remark 3.12. The computation of the modules %, and W, as in the above
proposition provides well-defined embeddings

Ly [ exp(Z) = (N / exp(Z)) ™ — Nii/ exp(Z,)

given by L} C N5 and W, — W,. This also induces a well-defined embedding
of the finitely-generated modules Il s = Iy f

For O}j,s = (I, n.s)7/ULs one can therefore explicitly compute the inflation
map A A
H?(G, Cf,s) — H*(T, 01{7,3)‘
It is given by sending a cocycle v € ZZ(G,IgS) to the element in 2 (T, C'}\C,’S)
represented by o, 7 — (o H,TH) € I}is C [}:,,S

Similarly, this also works for the subfield L’ of N. To sum up, we can explicitly
compute inflations on the cohomology groups if we use the lattices above.

The computation of the global fundamental class is then described in the fol-
lowing diagram:

HX(G' Iys) = H(G' 1], 5) — H?*(G',C}, ) — H*(T,C%.5)

] (3.11)
H*(G,C1 )

As described in the cyclic case above, the local fundamental class for L, |Ku
computed by Algorithm 2.18 gives a representation of the global fundamental
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class upx in C? (G’,Iug) up to a finite precision. We can find its projection
in H> (&, Cgf,s) and inflate it to H> (F,C};’S). Then we compute H? (G, C£,5)>
choose a generator and inflate it to H? (F , CJ{L s) as well. A comparison with the
image of ur/x then gives urx in H? (G, Cﬁs).

Algorithm 3.13 (Global fundamental class).
Input: A finite Galois extension L|K of number fields with group G.

Output: The global fundamental class uyx as an element of an abstract group

oG, ).

1 Consider a cyclic extension L'|K of degree [L': K| = [L : K] and a prime u
of K such that there is only one prime v}, in L’ dividing uy.

2 Let N denote the composite LL' with Galois group I' = Gal(N|K) and S a
set of places satisfying the conditions (S1)—(S4).

3 For every w € S¢(I') compute a module .Z,, C Oy, as in Lemma 2.1.

4 For every w € S(I') compute a module W, using Algorithm 3.7.

5 Compute I{ 4, Chg by (3.8) and fixed modules I{ ¢ = (I g)", Cfg =
(CLa)".

6 Compute the cohomology group H? (G, Cg,s) and the boundaries B2 (F, C’]{LS)
using [Hol06].

7 Let k € N such that ’Bﬁé - .,Z,(/) = Z,NOp, .- Compute the local fundamental
class of L;(,)|Ku0 of precision k using Algorithm 2.18. It represents the global
fundamental class up/ |, in Z?(G’, I, g). Compute its inflation infg‘lfg(um;() S
C(T, Cf 5).

8 Find a generator g of the group H? (G, C’f,s) such that its inflation infgllf(((g) S
C? (F, C’]{LS) satisfies inf]LV,||I[<((uL/|K) — infgl';({(g) € B? (F, szv,s)-

Return: The group H? (G, C’£ S) and its canonical generator g.

As in the direct method for local fundamental classes (see Algorithm 2.5), it
is sufficient to compute the boundaries B2 (F, C}\c,’ s) for the comparison in step 8.
The group Z*(T, C]{,,S) and their quotient H2 (F,C’J{,’S) are not needed. Again
this makes a huge difference (in computation time) to the complete computation
of I*(T,C ).

This algorithm has been implemented for totally real fields L. In this case, the
modules W, can be chosen to be Uy g for every infinite place v € Sy (G). The
modules 1 }:, g and C}\CL ¢ in the algorithm quickly get very large and will dominate
the computation time of the algorithm.
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Example 3.14. Let L be the splitting field of f = 2® — 42 4+ 1 over Q, which is
a Galois extension with group S3. Then f has discriminant 229 and Q(+/229) is
a subfield of L. A suitable cyclic number field L' can be found as a subfield of
Q(Caz9). Let L be the field generated by g = 25 — 2° — 952% + 53023 — 92522 +
367z + 187. It is a cyclic number field in which the prime 229 is undecomposed,
and N = LI’ has degree 18 over Q.

A set S of places in L lying above the places {3,7,11,229, 00} of Q satisfies
conditions (S1)—(S4). As the field N is totally real, the module W, we have to
consider for one infinite place v of IV can be chosen to be W, = Uyxg. The S-
units already have 36 generators and, therefore, the induced module ind} W, is
generated by 36 - 18 = 648 elements (containing a free part of rank 630). The
part of 1 J{, ¢ given by the finite places only has 21 generators.

In total, the module 1 zj;,s has 669 generators with a free part of rank 648 and
its torsion subgroup (containing three copies of Z/2287) has about 3 trillion
elements.

The MAGMA implementation® of the above algorithm takes about 22 minutes
to compute the global fundamental class of L. Most of the time (10 minutes) is
spent on the computation of [ ]J\C,’S. The verification of the conditions on S and

the computation of the cohomology of C]fm ¢ each take another 5 minutes. Hence,
these three parts already make more than 90% of the computation time.

The performance of Algorithm 3.13 is not very satisfactory and it would be
interesting to find an approach similar to Serre’s in the computation of local
fundamental classes. As in the direct method for local fundamental classes, the
main issue in the example above is the computation of the module [ ]’i, g whose
biggest part is that at the infinite places. In the general case, the modules W,
for complex places v will even be more complicated. As a consequence, it is a
main task to find a better approach to the construction of Cf’ ¢ (or even another
module which is cohomologically isomorphic to Cp) in order to get an efficient
algorithm for the computation of global fundamental classes.

Therefore, Algorithm 3.7 has not been implemented yet and Algorithm 3.13 is
restricted to totally real fields N.

®Command GFCCompositum, see documentation in Appendix B.2 on page 175.






4 Tate’s canonical class

Tate’s canonical class is an element which expresses the compatibility of local
and global class field theory. For a fixed Galois extension L|K of number fields,
we will define an element which will incorporate information from the global
fundamental class upx and all local fundamental classes wup,|x,, where v runs
through a finite, Galois invariant set S of places in L and p is the place of K
below v. This combination of local fundamental classes will be called the semi-
local fundamental class.

In this chapter we will first introduce this semi-local class and show how it
can be computed. Afterwards, we define Tate’s canonical class and also show its
algorithmic construction. The main references for the definition of these classes is
[Tat66] and the algorithmic construction is based on results presented in [Chi85]
and [Chi89].

Let L|K be a fixed Galois extension of number fields with group G and let S be
a finite set of places in L satisfying conditions (S1)—(S4) from before (see page 70):
i.e. S is a Galois invariant set of places including all ramified and infinite places
and it contains enough places such that the S-ideal class group Clg(F) is trivial
for all K C F' C L. Remember that these conditions were necessary to describe
the cohomology of (', using Cp, g.

We continue using the notation from the last chapters and let p denote places
of K and v and w places of L:

For a subgroup H of G we denote a (fixed) subset of representatives of the H-
orbits in S by S(H).! If v is a place in S with decomposition group G, we will
fix the set S(G,) in such a way that v € S(G,). Note that any choice of S(G,)
corresponds to a system R, of representatives of G/G,, i.e. 0 € G is in R if and
only if v € S(G,). Then v € S(G,) implies 1 € R and in the following we will
always assume that the representatives are chosen this way.

!The set S(v) of [Chi89] is then denoted by S(G,).
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4.1 The semi-local fundamental class

The local fundamental classes ur, |k, € H2(G,, LX) ~ Extg, (Z, L)) will be com-
bined as 2-extension where the left-most and right-most modules are finite prod-
ucts over v € S of the modules Z and L, respectively.

More precisely, we define the group ¥ = € Y using Y, : inngZ and

L denotes the S-idele

veS(G
construct an extension in ExtZ (Y, Iy, g) where I}, g = H
group as before.

We can always think of elements in Y, to be represented by a tuple of elements
inZ,ie Y, =inds Z =@, r, Z. By our fixed choice of representatives S(G)
and R, we can therefore identify Z with the subgroup 1-Z CY,,.

Since the module Y is finitely generated and Z-free, there is an isomorphism

veS

Extl, (Y, I,g) ~ H' (G, Hom(Y, I, 5))

between the extension group and the cohomology group (see Proposition 1.28 or
[Bro94, Chp. III, Prop. (2.2)]). We therefore consider the following cohomological
identifications from [Tat66] and [Chi89, Chp. III, §2].

Proposition 4.1.
(a) H'(G,Hom(Y, M)) ~ [oesca) H'(G,, M) for any G-module M and r € Z.

(b) H (H,I.g) ~ [loesim H"(HNG,, L) for any subgroup H C G.

Proof. (a) The decomposition Hom(Y, M) = [] g Hom(Y,, M) in Proposi-
tion 1.26 and Shapiro’s lemma for Hom(Y,, M) = ind& Hom(Z, M) imply the
isomorphisms

H'(G,Hom(Y,M)) ~ [] H'(G.Hom(Y,,M))~ [][ H'(G,,Hom(Z, M)).
veS(G) veS(G)

They are canonically given by restricting the images of a cocycle (which are
homomorphisms in Hom(Y, M)) to ¥, C Y and then to 1-Z C Y,. Composing
the above isomorphism with H"(G,,, Hom(Z, M)) ~ H"(G,,, M) finishes the proof
of (a).

(b) For I, ¢ = @veS(G) Iy, with Iy, = indgv L, the same arguments yield

H' (G I.s)~ [[ #(G 1)~ [] H(G..L).

veS(Q) v€S(G)

This isomorphism just depends on L and the set S, which was a set of places in L,
and it is independent of K = L¢. By considering a subgroup H C G, we 1mph(:1t1y
consider L as an extensions of L and the isomorphism becomes H” (H,Ipg) ~

HveS(H) Hr (H,, L)). Since the decomposition group is H, = G, N H, this finishes
the proof of (b). O
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By the first isomorphism we can then define the semi-local fundamental class
as in [Tat66, Eq. (8)].

Definition 4.2 (Semi-local fundamental class). The unique element ay €
H*(G,Hom(Y, I15)) =~ [l,es) H*(Go, I1,s) which is given by the local funda-
mental classes up, |k, € H2%(G,, LX) — H*(G,,Ig) using LY C I g is called
semi-local fundamental class.

This notion is well-defined with respect to the choice of the G-representatives
S(G) of G, cf. [Tat66, Eq. (8")]. If v7, o € G, is a place conjugated to v, then
the completions at these places are also conjugated within the induced module
Iy, by Ly = (L,)?. So restricting the induction of the local fundamental class
ur,|k, to Gy and projecting the images to L, will yield the local fundamental
class of L,-|K,. For unramified extensions L,|K,, in which the invariant map
is given through valuations, this follows from v(z) = v?(x?) for x € L,. The
general case then results from the fact that the fundamental classes satisfy the
axioms of a class formation.

Corollary 4.3. Using M = I, s in isomorphism (a) and H = G,, in isomor-
phism (b), Proposition 4.1 implies

H' (G, Hom(Y, I5)) — [] 1] H'(GonGu, L)
v€S(G) weS(Gy)
fo— <(7TwOLv)ﬁ>UES(G),wGS(GU)

where 1, denotes the embedding1-Z CY, CY = @ng(G) Y, andmy, : I,s — L,
15 the canonical projection.

To be precise, one has cochains (7, 0 %) € C"(G, Hom(Z, L)). The restric-
tion to G, N G, and the evaluation at 1 € Z provides the corresponding image
in H" (G, N Gy, L)) by the proof of Proposition 4.1.

Remark 4.4. We use the isomorphism of Corollary 4.3 in degree r = 2 to char-
acterize the semi-local fundamental class o by invariants. Let inv(G, N G, w)
fiencl)'te the invariant map H?(G, N Gy, L)) — MZ/Z then Definition 4.2
implies

A ifw=
Inv(Gy N G, w) (T 0 1)) an) = {GU if w=nw,

0 otherwise

because each local fundamental class ur, |k, € H*(G,, LX) — H?*(G,,1ILs) has

values in I g ~ [[,cq L which are trivial at all places w # v.
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4.2 Computing semi-local fundamental classes

The semi-local fundamental class can be viewed as an element in one of the
isomorphic groups

H*(G,Hom(Y, I 5)) ~ Yext% (Y, I s) ~ Ext%(Y, I 5).

As introduced in the last chapter, we replace I, g by the finitely generated and

cohomologically isomorphic module £ ¢ for computational purposes. It was de-
fined by

o= [] nd L)/ exp,(Z)x ] indG W,
veSF(G) VESeo (G)

with appropriate lattices ., from Lemma 2.1 and modules W, from Proposi-
tion 3.3. In our applications we are interested in the semi-local fundamental
class as an element of Extg, (Y, I g ) and in the following we will show how it can
be constructed.

From Definition 4.2 the semi-local fundamental class as a cocycle can be com-
puted from the local fundamental classes by making the isomorphism

[I #(Go 1) = H2(G, Hom(Y, I ))
veS(G)

explicit. If we consider the proof of Proposition 4.1 again, this isomorphism
is given by inducing each class from H2 (vali,s) ~ H? (Gv,Hom(Z,]is)) to
H? (G,Hom(Y,, [z,s)) and combining those to a cocycle in H? (G,Hom(Y, [is)).

Since the construction of the semi-local fundamental class in Ext (Y, ] gs) is

partly based on the construction as a cocycle, we summarize it in the following
algorithm.

Algorithm 4.5 (Semi-local fundamental class as cocycle).
Input: A finite Galois extension L|K of number fields with group G and a finite
set of places S satisfying conditions (S1)—(S4) on page 70.

Output: A cocycle in Z? (G ,Hom(Y, I £ s)) representing the semi-local fundamen-
tal class.

1 Compute the finitely generated modules L! and I £ g as in Algorithm 3.9.

2 For every finite place v € S(G) compute a cocycle representing the local
fundamental class in Z? (Gv, L! ) using Algorithm 2.18.

3 For infinite places v € S(G) which are ramified (i.e. G, = {1, 0,}), the cocycle
given by ¢(1,1) = ¢(o,,1) = ¢(1,0,) = 1 and ¢(o,,0,) = —1 represents the
local fundamental class in Z2?(G,, L), see Remark 1.7. The non-ramified
infinite places have trivial decomposition group G, and in this case every
cocycle represents the fundamental class.
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4 Compute their images in Z2 (Gv,ffys) ~ 7*(G,,Hom(Z, [}:S)) and the in-
duced cocycle in Z?(G, Hom(Y,, Iis)).

5 Combine these cocycles to get an element in oy € Z2 (G, Hom(Y, f S))

Return: The cocycle as.

To construct the semi-local fundamental class as extension from the cocycle we
would have to apply the isomorphisms

H*(G, Hom(Y, I] §)) —> Yext?, (Y. 1] ) — Ext (Y, I] 5).

But the explicit description of the first isomorphism using the splitting module
from [NSWO00, Chp. III, §1] (compare Proposition 1.29) is only applicable to
extensions with Z in the first variable. Moreover, the second isomorphism is ob-
tained by choosing a projective resolution of ¥ and solving a system of linear
equations which, in this case, quickly becomes very large. Only the isomorphism
Ext2, (Y, 1 gs) = Yext?, (Y, 1 gs) is known to be given by constructing the push-
out sequence (see Proposition 1.26).
Instead, we can use the isomorphisms

H?(Gy, If §) ~ Yextg, (Z,1] ) ~ Extg, (Z,11 ) (4.1)

between the local cohomology groups and their corresponding extension groups.
They can be performed explicitly as described in Section 1.3.2. Moreover, the
isomorphism

[T Ext?, (z.1f ) = Exti (Y, 1] g) (4.2)

veS(G)
is again given by induction and summation over all v € S(G) (see Proposi-
tion 1.26). To perform this isomorphism explicitly we fix the following projective
resolutions.
For every v € S(G) we consider the resolution

aug

Z|G,|"” — Z|G)| —Z — 0

where 7, € Z is the number of generators g1, ..., g, of G, and Z[G,]"™ — Z|G,]
is given by mapping the i-th component a; € Z[G,] to a;(¢; — 1). By inducing
these modules to G and summing over all v € S(G) we get a projective resolution
of Y. If ¥, denotes the kernel of Z|G,|™ — Z|G,], we therefore have extensions

0— X%, - Z[G,)"” — Z[G,)) — Z — 0

0 — @, indg %, = @, ind& Z[G]™ — @, indS Z[G] — @, ind% Z — 0
| | |
IR GO Gl Ys
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which can be used to describe the following extension groups:

Extz (Z, I{} ) = Homg, (Z,, If’s) /u; Homg, (Z]G,]™, [{7 s)
and Extg(Y,I] 5) = Homg (52,11 §) /v Home (G°, 11 §).

Then the isomorphism (4.2) is explicitly induced by

[] Home, (.. I] 5) — Homg (2,1} g)
veS(G)

using induction and summation.

Combining isomorphisms (4.1) and (4.2) we can therefore construct the semi-
local fundamental class as extension in Extg, (Y, ] i ). This is summarized in the
following algorithm.

Algorithm 4.6 (Semi-local fundamental class as extension).
Input: A finite Galois extension L|K of number fields with group G and a finite
set of places S satisfying conditions (S1)—(S4) on page 70.

Output: The semi-local fundamental class in ExtZ, (Y, I {75), represented by an
element in Homg (22, 1—{,5)-

1 For every v € S let L be a finitely generated module which is cohomolog-
ically isomorphic to L;. Then compute local fundamental classes ur, |k, €

H? (GU, L{) as in steps 1-3 of Algorithm 4.5 and their image in H? (Gv, Ig,s)-

2 Apply Corollary 1.30 to construct maps f, € Homg, (EU, 1 {S) which corre-
spond to the local fundamental classes by the isomorphism 2 (GU, I gs) ~
Extg, (Z,11 ).

3 Induce the homomorphisms f, from Homg, (Zv, 1 f S) to Homg (indgv Y, g S)
and take a sum over all v € S(G) to get an element @, indS f, in the
group Homg (22, 1 { S) which represents the semi-local fundamental class in
Extg (Y, 1] o).

Return: @, indgv fo € Homg (Z% ]}:,S)'

Remark 4.7. If Ext?, (Y, I g S) is represented by another resolution, we can still
compute a representative of the semi-local fundamental class with the above
algorithm. Let

0— —>G" —G'—Y —0
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be an exact sequence with G° and G' projective such that ExtZ (Y, 1 is) ~

Homg (ig,[ﬁs)/a* Homg (C_T'O,Iis). Then by [Wei94, Thm. 2.2.6] there exists
a commutative diagram

0—33—G —G —Y—0

N

0— % — G —G —Y—0

whose vertical maps are constructed by lifting the maps G' - Y and G° —
G' — im(G° — G') as in the following diagrams:

es . GY
G Y GO s im (GO — GY)

In particular, these lifts can easily be computed if G and G' are free G-
modules, which will be the case in our applications. Then every homomorphism
Homg (22, If’s) can be lifted to Homg (22, Iﬁs) and we can compute a repre-

sentative of the semi-local fundamental class in Homg (22, 1 £ S).

Recall that one can construct the semi-local fundamental class as Yoneda ex-
tension in YextZ, (Y, 1 £ S) from the above algorithm by computing the pushout
sequence. In conclusion, there are explicit algorithms to compute the semi-local
fundamental class as cocycle, as extension or as Yoneda extension. In the con-
struction of Tate’s canonical class below, we will use the semi-local fundamental
class as an element of ExtZ (Y, I gs)

4.3 Definition of Tate’s canonical class

We continue to consider Y = P, cq(q) inngZ and define X to be the kernel of
the augmentation map aug : Y — Z. We study the two sequences of G-modules

X) 0—X—Y 270

and
(U) 0 —Ups —Ips — Crs —0.

Remember that by the conditions (S1)-(S4) on S, the S-idele class group Cp, g is
cohomologically isomorphic to the idele class group C by Lemma 3.1.

We define Hom((X), (U)) as the group of maps of complexes between (X') and
(U), i.e. compatible homomorphisms fi, fo, f3 which form a commutative diagram
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0 X Y V/ 0

| £5 | £ | A (4.3)
0—ULs Ins Crs 0

Note that in such a commutative diagram f; and f, determine the homomor-
phism f3 uniquely; and similarly fo and f3 determine fi. For (fs, fo, fi) =
f € Hom((X),(U)) we also denote the projections f; by m;(f). The group
Hom((X), (U)) is a G-module by the action o(fs, fa, f1) = (0 f3,0 f2,0 f1) where
o f; is defined by (o f;)(x) = o fi(c 7 x). The triple (o f3,0 f2,0f1) will again form
a commutative diagram since each of the horizontal homomorphisms in (4.3)
commute with the G-action.

Theorem 4.8 (Tate). There is a unique class o € H? (G,Hom((X), (U))) whose
projections oy € I{IQ(G,Hom(Z, CL,S)) and oy € I:Iz(G,Hom(Y, ]L,S)) are the
global and semi-local fundamental class.

Proof. [Tat66, p. 716]. O

Definition 4.9 (Tate’s canonical class). The projection az = m3(a) of the
unique class a € H*(G,Hom((X), (U))) onto the group H*(G,Hom(X,Uys)) is
called Tate’s canonical class.

Remark 4.10. One important property of Tate’s canonical class as extension in
Ext(X,ULs) ~ H*(G,Hom(X, UL )) is that its pushout along Uy ¢ — I g in
Ext% (X, I1.5) is the same class as the pullback of the semi-local fundamental
class along Xg — Ys in ExtQG(X s,1r.s). This follows directly from the definition
of Hom((X), (U)).

4.4 Computing Tate’s canonical class
For the computation of Tate’s canonical class we consider the complex
(Uf) O—>UL75—>I£7S—>C'£S—>0

with finitely generated modules I f g and Cf’s from Section 3.1 and S-units Uy g.
These modules are finitely generated and cohomologically isomorphic to the S-
idele group I s = [],cq L and the idele class group Cy, respectively, and there-
fore the complex (U7) is finitely generated cohomologically isomorphic (in every
degree) to (U).

In the following we will construct Tate’s canonical class as an extension in
Exté(X ,UL.s). Again, we will describe this extension group by a projective res-
olution of X. Since we will construct Tate’s class from the semi-local and global
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fundamental class represented as extensions, we also need projective resolutions
of Y and Z. For computational purposes, we require those three projective res-
olutions to be compatible, i.e. we need a projective resolution (of degree two) of
the complex (X).

Such a resolution of (X) can be constructed using the Horseshoe lemma, see
Lemma 1.32. Explicitly, if Py and P are projective resolutions of X and Z, then
the sequence Py given by Pi. = P4 @ P% is a projective resolution of Y and there
exist chain maps Py — Py — P, which induce short exact sequences in every
degree. In our case we can actually choose P% and P; to be free resolutions and
these chain maps can be constructed easily.

We can therefore construct a commutative exact diagram

0 Y, — FO F1 X 0
[ | [

0 Yy —2— G° G! Y 0 (4.4)
| l l |

0 Y, —— HO H! A 0

with G-modules ¥;, F*, G* and H*. If we denote the vertical complexes by (X),
(PY), (P') and (X), respectively, we have an exact sequence

0— (B) — (P°) — (P') — (X) — 0
of complexes.

We continue the construction of Tate’s canonical class by using the following
representations

Extg,(X,UL,s) = Home (35, Uy s) /vy Homg (F°, Uy 5)
Extg (Y, 1] g) = Homg (X2, If 5) /13 Home (G°, I 4) (4.5)
and Extg(Z,CY ) = Homg (51, Cf )/} Home (H®, CF 4).

Moreover, we get the identification

Ext; ((X), (U7)) = Homg ((2), (U7)) /¢* Homg (( Uhy). (4.6)

Hence, the canonical class (o) € ﬁ2(G Hom((X), (UY))) ~ Extz((X) (uh)
is represented by an tuple (g3, ¢2,¢1) € Hom ((X), (U/)) of homomorphisms
forming an exact diagram

0 Y3 Yo —2— 3 0

yf% ypz l% (47)
0 ULs Il ¢ -t Cf g 0
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and where ¢; and o represent the global and semi-local fundamental class re-
spectively.

Now let H® be such that the bottom row of (4.4) is our standard projective
resolution of Z as in (1.16):

Z|G]" — Z|G] — Z — 0
with G being generated by r elements. Then we can use Algorithm 3.13 and

Corollary 1.30 to compute a representative ¢, € Homg (El, C{,s) of the global

fundamental class. A representative py € Homg (22, 1 £ S) of the semi-local fun-
damental class can be found by combining Algorithm 4.6 (which uses another
projective resolution of Y) with [Wei94, Thm. 2.2.6] as discussed in Remark 4.7.

The maps ¢; and @9, however, do not necessarily make the right-hand square
of (4.7) commute. But by the uniqueness of the canonical class o in Theorem 4.8
there must exist homomorphisms A € Homg (G, ]g,s) and p € Homg (H°, C}:,s)
such that h o (ps + Ao ty) = (¢1 + poty) o g holds. The following lemma shows
that such a map A still exists if require p = 0.

Lemma 4.11. If ho (pa + Ao w) = (o1 + p o) og for X € Homg (G, Iis)
and p € Homg (H°,Clg), then there exists N € Homg (G° I] ) such that
ho(pa+Now)=¢pi0g.

Proof. Consider the following diagram

P2 Pt
Y
Ii,sk Jg lgo

lh P1 22 Ll» ’HO
P

Cls™
in which both squares commute (but not necessarily the triangles). Then ¢y 0g =
go © L5 holds and since GV is projective there exists \" € Homg (GO, 1 £S) such

that ho\” = pogy € Homg (GO, C£,5)~ Let N = A=)\’ € Homg (GO, C’és), then

ho(pa+XNowy)=ho(py+Aowy)—hoX o= (p1+powu)og—pogyot
=(p1+pou)og—ponog=pog
which completes the proof. 0]

From the algorithms constructing the global and semi-local fundamental class
we can therefore find homomorphisms ¢, and 2 which make diagram (4.7) com-
mute. The restriction of ¢s to Y3 will then always be a homomorphism in
Home (35, Up,s) which represents Tate’s canonical class.

The construction of Tate’s canonical class which we developed above is sum-
marized in the following algorithm.
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Algorithm 4.12 (Tate’s canonical class as extension).
Input: A finite Galois extension L|K of number fields with group G and a finite
set of places S satisfying conditions (S1)-(S4) on page 70.

Output: Tate’s canonical class in Extz(X,Ups), represented by an element in
Homg<23, UL,S)'
1 Construct diagram (4.4) and represent extension groups as in (4.5).

2 Compute a representative ¢; € Homg (21, C’és) of the global fundamental
class using Algorithm 3.13 combined with Corollary 1.30.

3 Compute a representative ¢ € Homg (22, 1 }j S) of the semi-local fundamental
class using Algorithm 4.6 combined with Remark 4.7.

4 Use linear algebra to construct A € Homg (GO, Iz,s) such that ¢}, = s+ Aoy
satisfies h o ¢}, = ;0 g.

5 Then the restriction ¢; of ¢} to X3 is an element in Homg(X3, UL g).

Return: ¢1 € Homg (X3, UL 5).

Remark 4.13. Let (3, s, 1) € Hom ((2), (U7)) be a tuple of homomorphisms
representing the canonical class in H? (G,Hom((X), (U7))). By definition of
Hom ((X), (U7)) these homomorphisms make diagram (4.7) commute. By simul-
taneously constructing pushout sequences using the rows of diagram (4.4) and
the homomorphisms ¢; one can then construct a commutative diagram

0 Urs FO F? X 0
[ N |

0 I GO G Y 0 (4.8)
oL L

0 Cf O H' y/ 0

in which the rows represent Tate’s canonical class, the semi-local fundamental
class and the global fundamental class as Yoneda extensions.

This is exactly the diagram from Chinburg [Chi85, Chp. III, (3.1)]. Using
the algorithms presented in the preceding chapters, this diagram can now be
constructed explicitly.
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4.5 Special case: undecomposed prime

In Section 3.2.1 we have seen that the computation of the global fundamental
class is much simpler if there exists an undecomposed prime. Due to the relations
among the canonical classes, it is not amazing that this also applies for the
construction of Tate’s canonical class. Chinburg studied this case in detail in
[Chi89] and characterized the image of Tate’s canonical class in Ext% (X, I1.5)
using local invariants as follows.

Let L| K be a finite Galois extension of number fields with group G and S a set
of places satisfying (S1)—(S4). Furthermore, assume that vy € S is undecomposed
in L|K and py is the place of K below vy:

L Vo Lvo
] e

K Po K, Po

The G-orbit of vy in S just contains vg. Therefore, the set S" = S\ {vo} is
also G-stable and from every set S(G) of G-representatives in S one gets a set
S(G) \ {vo} of G-representatives in S’. Furthermore, there is an isomorphism

¢ @Y—J{CY_@Y (4.9)

veS'(G) veS(G

of G-modules which sends (yu)ves/ () t0 (Yo)ves(c) With yuy = = 3 c5(@) a8 (Yo)-
To avoid confusion, we further write Ys =Y = @UE S(G Yv and Yg = @UE $(G) Y,.
By Proposition 4.1 the above isomorphism implies

Exty,(X, M)~ [ Exte(Ye,M)~ [[ H(G., M) (4.10)
veS' (@) veS'(G)
for any G-module M. In particular, for r = 2 and M = I ¢ we obtain
Extg(X Is)~ [] H*(Golus)~ [] [] E(GunG.,Lj). (4.11)

veS!(G) vES!(G) wES(Gy)

Note that v just runs through S’(G) due to the isomorphism ¢, but w still runs
through S(G) since we consider I, ¢ (and not I ¢). Also remember that this
isomorphism is explicitly described by

H* (G Hom(X,I1s))~ [ I H*GunG., L)

vES!(G) wES(Gy)

— T O Ly
6 (( )6) vES(G),weS(Gy)
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with embeddings ¢, : Y, — X via ¢ and projections m, : I g — L} as in
Corollary 4.3. )
Then the image 3 € H? (G, Hom(X, ]L,S)) of the semi-local fundamental class

oy € H? (G,Hom(Ys, I15)) through the homomorphism
H?(G,Hom(Ys, I 5)) — H*(G,Hom(X, I, 5))

can be characterized using local invariants as follows. Recall that this homomor-
phism is simply given by the pullback along X — Yy and denote the invariant
map on H?(G, NG,, L) by inv(G, N Gy, w).

Proposition 4.14. Let ¢ : Y — X be the isomorphism (4.9) above. Then
the image 3 € H? (G,Hom(X, IL’S)) of the semi-local fundamental class oy is
characterized by

Iévl if w=w,
inv(G, N Gy, w) (T 0 5)B) =< — \G}v\ if w =1y, and (4.12)
0 otherwise.

These invariants are exactly those stated by Chinburg in [Chi89, Chp. III, §2,
p. 24], for which we can now give a complete proof.

Proof. Consider the following homomorphisms

f]Q(G, Hom(Ys,I15)) =~ H H H*(GyN Gy, LY)
vES(G) weS(Gy)
H*(G, Hom(X, I1,5))
:lqﬁ
HQ(G,Hom(YS/,ILS)) ~ H H ﬁQ(Gw NGy, L))
vES'(G) weS(Gy)
in which the upper vertical map is given by the pullback along X — Yg and the
lower vertical map is induced by the isomorphism ¢. The horizontal isomorphisms
are those from Proposition 4.1 which were given in its proof as follows: if v is a
cocycle in H? (G,Hom(Ys, I15)), then its image at v € S(G), w € S(G,) is the
cocycle
0,7 — 1y, (7(0,7)(1,))
where o, 7 € G, N G, T, denotes the projection I, ¢ — L7 and 1, denotes the
element 1 € 1-Z C Y, C Ys. The bottom isomorphism is analog, with v being a
place of S'(G).
1

Let ap denote the semi-local fundamental class. It has invariant oA forv=w

and 0 otherwise as described in Remark 4.4. Its image 3 € H? (G, Hom(Yg, [L,S))
is the cocycle obtained by composition with ¢ : Yo — X and j: X — Yy

B(o,7) = as(o,7)ojo¢ € Hom(Yg, I g) forallo,7€G.
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To compute its invariant at v € S'(G), w € S(G,) we have to consider the cocycle
o, T — ﬂw(ﬁ(a, T)(1U>) 0,7 € G, NGy
and by ¢(1,) =1, — 1,, this is

0,7 — my(aa(0,7)(1,)) — T (a2(o, 7)(Ly,)).

By the definition of the semi-local fundamental class as the left-hand term van-
ishes if w # v and the right-hand term similarly if w # vy. For w = v the cocycle
[ therefore has the same invariant as as and for w = vy we get the inverse of
the local fundamental class in H2(G,,, Ly ) restricted to G, NGy, = G,. This
restriction is actually the inflation map which maps the local fundamental class
of Ly,| Ky, to the one of L, |LS». Hence, the invariant at w = vy is —ﬁ. This
proves that 3 has the invariants (4.12). O

By the above proposition, the pullback of the semi-local fundamental class in
ExtZ (X, I s) can be characterized using local invariants. From Remark 4.10
we know that this element coincides with the pushout of Tate’s canonical class
through the homomorphism

Exty(X,Ups) — Ext3 (X, I15). (4.13)
Applying (4.10) for r = 1 and M = C g, there is an isomorphism

Exte (X, Cps) =~ H HI(GU,CL,S)
veS'(G)

and this group is trivial since the first cohomology group of the idele class group is
always trivial. Therefore, the homomorphism (4.13) is injective and the invariants
from Proposition 4.14 also characterize Tate’s canonical class. In this case it is
therefore possible to construct the corresponding Tate sequence in ExtQG(X ,ULs)
without computing the global fundamental class.

This construction of Tate’s canonical class using Chinburg’s conditions has
been turned into an algorithm by Janssen in [Jan10]. There the conditions (4.12)
are explicitly reformulated as linear equations. Although this approach is very
explicit, these equations contain interactions between different places in S and
they become very complicated.

In comparison to the general construction, the injectivity of (4.13) implies the
following for diagram (4.7):

0 Y3 Yo 2 0

[es [#2 |1

O ” UL7S [£,S Cz,s 0
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Whenever the right-hand square commutes with ¢y representing the semi-local
fundamental class (without conditions on (1), its restriction to 33 will represent
Tate’s canonical class. Hence, the general construction will also be independent
of the global fundamental class.

Note that the characterization by invariants depends critically on the descrip-
tion of X using isomorphism (4.9). In the general case such a representation will
therefore not be possible and the construction of Tate’s class will depend on the
global fundamental class as in Algorithm 4.12.
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Overview

In the following chapters, we will consider the equivariant Tamagawa number
conjectures for Galois extensions of number fields as formulated in [BIB03, Bre04b,
BrB07, BFO1]. The three fundamental classes, which were studied in detail in
the previous chapters, will play an important role in those conjectures.

The equivariant Tamagawa number conjectures for number fields are known to
generalize the conjectures of Chinburg formulated in [Chi85]. In the following an
overview of Chinburg’s conjectures and their refinements is given.

Let L|K be a fixed Galois extension of number fields with group G. In the
previous chapters we obtained an exact commutative diagram of finitely generated

Z|G]-modules representing relations between the three fundamental classes (see
Remark 4.13):

00— UL7S Ag B3

| [

X
J

0 11 Ay B, T 0
v/

| [

04’0{75 Al Bl

For projective modules A one has a rank map rank(A) = rankgje (A ®zic Q[G))
and it can be extended to cohomologically trivial modules using Schanuel’s lemma.
This provides integers r; = rank(A4;) — rank(B;) and in [Chi85] Chinburg defined
the elements Q,;(L|K) = (4;) — (B;) — 1:(Z][G]) € Ko(Z|G]), one for each of the
rows in the diagram.? From the exactness of the middle two columns one directly
obtains the relation

Qo(L|K) = U (LK) + Q3(L|K)

in Ko(Z[G]), cf. [Chi85, Eq. (3.2)]. Chinburg then formulated the following con-
jectures [Chi85, Question 3.2, Question 3.1, and Conj. 3.1]:

Q4 -conjecture: Qy (LK) =0,
Qy-congecture: Qo(L|K) = W(L|K),
Qs-conjecture: Q3(LIK) = W(L|K).

2If 0 - K — P — A — 0 is a projective resolution of a cohomologically trivial Z[G]-module
A, then A is represented by (P) — (K) in Ko(Z[G]).
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Here, W(L|K) denotes the root number class associated to Artin root numbers
W (x) as it is defined by Frohlich in [Fro78], see also [Chi84, § 7] or [Chi89, Chp. I].

Chinburg’s conjectures are known to generalize other conjectures. The sec-
ond conjecture can be regarded as a generalization of Frohlich’s conjecture from
[Fr683], which was proved by Taylor in [Tay81], to wildly ramified number field
extensions. The other two conjectures refine the class number formula.

Chinburg also proved that the elements are in fact in the class group CI(Z[G])
which can be identified with the kernel ker (Ky(Z[G]) — Ko(R[G])) = im (9 ).
It is therefore convenient to [lift these conjectures, i.e. to formulate refined con-
jectures in the relative K-group Ko(Z[G], R) which imply Chinburg’s conjectures
through the map 8&R. This is done by the equivariant Tamagawa number con-
jectures.

The Tamagawa number conjectures relate leading coefficients Ca K. 5(s) of the
equivariant Artin L-function Ay (s) as defined in Section 1.5 to algebraic terms
corresponding to the extension L|K. An overview of these conjectures for number
fields is given in [BrB07, §§3-5] and a more general survey is provided in [Fla04].
The following summary should give a rough impression of what these conjecture
look like.

Leading term at s = 0: This conjecture relates the value C2|K7S(O) to an Euler char-
acteristic constructed from Tate’s canonical class (the upper row in the above dia-
gram) and a canonical isomorphism between Xg and R[G]®z(UL,s obtained from
the regulator map Regg : R[G] @701 Ur.s — R[G] ®@ziq) X, u — (10g |t]y)wes-

This construction results in an element in the relative K-group Ky(Z[G],R)
which is often denoted by TQ(L|K,0). The map 0gp maps TQ(L|K,0) to
Q3(L|K)—W(L|K) and it is conjectured that TQ(L|K,0) is zero in K¢(Z|G],R),
cf. [BrB07, Prop. 4.4 and Conj. 4.1].

An algorithm to verify this conjecture was discussed in detail by Janssen in
[Jan10], and in special cases her algorithm also gives a proof.

Leading term at s = 1: Similarly, the value (j, k.s(1) is conjecturally related to
an Euler characteristic from the global fundamental class (the bottom row in the
above diagram) and a canonical isomorphism obtained from the embedding maps
L — L, for all infinite places w of L.

The construction results in an element TQ(L|K,1) € Ky(Z|G],R) which is
mapped to Q;(L|K) by 8&R and it is also conjectured that this element is zero,
cf. [BrB07, Prop. 3.6 and Conj. 3.3]. This conjecture will be studied in Chapter 6.

Compatibility conjecture: The leading terms CE|K7S(O) and §Z|K7S(1) of Artin L-
function used in the conjectures above are related by the functional equation,
see Proposition 1.48 in Section 1.5. Moreover, the global fundamental class and
Tate’s canonical class are related by local fundamental classes (see Chapter 4).
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Together this gives rise to a compatibility of the two conjectures, also called
epsilon constant conjecture. 1t relates the values of the epsilon functions ey x (s)
at s = 0 to an equivariant discriminant and a sum of Euler characteristics which
are obtained from local fundamental classes with a trivialization induced by val-
uations on L.

This construction leads to an element TQ°¢(L|K,1) € Ky(Z[G],R) which is
mapped to Qy(L|K) — W(L|K) by g, cf. [BrB07, Rem. 5.5]. It is also conjec-
tured that the element TQ°°(L| K, 1) vanishes in K,(Z[G], R) and it can be proved
that TQ°(L|K,1) = 0 implies the equivalence of the other two conjectures, cf.
[BrB07, Conj. 5.3 and Thm. 5.8],

The relation to local fundamental classes reveals the local structure of this
conjecture and it is in fact a consequence of a corresponding conjecture for local
fields which was introduced by Breuning [Bre04b]. The epsilon constant conjec-
tures will be studied algorithmically in the following chapter.






5 Epsilon constant conjectures

In the following we consider the statements of the global and local epsilon constant
conjectures for number fields from [BIB03] and [Bre04b]. These conjectures are
formulated as equations in relative K-groups for group rings.

Let L|K be a fixed Galois extension of number fields with group G. As usual,
we denote a finite, Galois-invariant set of places in L by S. The places of L will
be denoted by w, and those of K by v:

Given such a set of places S, we also consider a fixed subset S(G) of represen-
tatives of the G-orbits in 5, i.e. for all places wy,...,w, in S dividing the same
place v of K we choose a fixed place w above v.

5.1 Statement of the conjectures

5.1.1 The global epsilon constant conjecture

The global epsilon constant conjecture is formulated in the relative K-group
Ko(Z][G],R). For a Galois extension L|K of number fields it describes a relation
between epsilon factors arising in the functional equation of the Artin L-function
and algebraic invariants related to L|K. We recall its formulation as it was given
in [BIB03]. Also remember that we introduced the following K -theoretic diagram
in Section 1.4:

Z(R[G])

N -~

~.0
}H oE (5.1)

N

K (R[G)) 2= EO@[GLR) L Ko(Z[G))

The analytic term of this conjecture is based on the equivariant epsilon function
er/k(s) as defined in Section 1.5. Its value at s = 0 is an element in Z(R[G])* by
[Bre0O4a, Lem. 3.12] and it is called the equivariant global epsilon constant. The

extended boundary homomorphism 81G7R gives a corresponding element &7k =

~

d¢r(eLik(0)) in the relative K-group Ko(Z[G],R) which is also called equivariant
global epsilon constant.
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Let S be a finite, Galois-invariant set of places of L, including all infinite places
and all places which ramify in L|K. For each w € S(G) with w|p, we choose a
full projective Z,[G,]-sublattice .Z,, of O, upon which the p-adic exponential
map is well-defined and injective. For each place w ¢ S we set £, = O, and
we define . C Oy, by its p-adic completions

DZ;’ = ng ®Zp[Gw] ZP[G] g Lp = L ®Q QP?
vlp
where w is the fixed place above v. Let ¥(L) denote all embeddings of L into C.
Then we define the G-equivariant discriminant by

5L|K<$) = [g,ﬂ'L,HL] € KO(Z[G],R)
where H; = Haez(m Z, and 7y, is induced by

PL: L®QC—>HL®ZC
l® Z (U(Z)Z)UGZ(L)

as in [BIB03, §3.2].

We continue to use the notation from Chapter 2, in particular, the finitely
generated module Lf := LX/exp, (-Z,) which is cohomologically isomorphic to
L. Using the splitting module construction from [NSWO00, Chp. III, § 1, p. 115]
as in Proposition 1.29 the local fundamental class y € H 2(G, LY) is represented
by an extension

0— L - LI(y) - Z[G] - Z—0 (5.2)

in Yext?, (Z, L) ~ H*(G,,, L{,). Then the perfect complex P,, := [L1(v) —Z[G]]
with L{ (v) in degree 0 also represents the local fundamental class and has coho-
mology L/ in degree 0 and Z in degree 1.

In Section 1.4 we defined an Euler characteristic yq, (Q,t) € Ko(Z[G,],R) for
any perfect complex @ and a trivialization t : HY(Q) — H~(Q) from cohomology
in even to odd degree. Here, the valuation w : L,, — Q induces a trivialization w :
L/ exp(Z,) ® Q ~ Q of P, and we denote the Euler characteristic x¢,, (P, w)
by E,(-%,). For the construction of a triple representing E,,(-%,,) in Ko(Z[G,], Q)
see Section 1.4.2.

Furthermore, let m,, € Z(Q[G,])* be the element defined in [BIB03, §4.1]
which is also called the correction term. It is defined as follows. For a subgroup
H C G and = € Z(Q[H]) we let *z € Z(Q[H])* denote the invertible element
which on the Wedderburn decomposition Z(Q[H]) = [];_, F; for suitable exten-
sions F;|Q is given by = = (;)i=1. ,» — (*z;) with *z; = 1 if z; = 0 and *z; = x;
otherwise. Let ¢,, denote a lift of the Frobenius automorphism in G, /I, then
the correction term is defined by

_ (Gu/Tulea,) (1 = puNv"Her, )

w = *((1— ¢z Yer,) € Z(Q[Gu])™. (5.3)
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Finally, we define elements

RO®(LIK, 1) = 0yx (L) + Y ind§, (98, 0, (mw) — Eu( L))
weS(G)

and  TQ°(L|K, 1) := 95 g (e1(0)) — RQ°(L|K, 1)

in Ko(Z[G],R). One can show that TQ°(L|K, 1) is independent of the choices
of S or Z (cf. [BIB03, Rem. 4.2]) and we state the conjecture as follows.

Conjecture 5.1 (Global epsilon constant conjecture). For every finite

Galois extension L|K of number fields the element TQY(L|K,1) € Ko(Z|G],R)
is zero. We denote this conjecture by EPS(L|K).

Remark 5.2. In [BrB07, §5|, the formulation of this conjecture uses the Euler
characteristic yg and a complex which corresponds to the local fundamental class
by representing Ext?, using injective resolutions. In contrast, the formulation of
[BIBO3] (used here) applies Burns’ original Euler characteristic x¢ to the sequence
(5.2) which corresponds to the local fundamental class if Exty, is represented by a
projective resolution of Z. However, the difference between these representations
of the extension group and the relation between the two different Euler charac-
teristics which was discussed in Example 1.44(d) imply that the two definitions
of TQY¢(L|K, 1) coincide. For a detailed discussion see [BrB07, Rem. 5.4].

5.1.2 The local epsilon constant conjecture

We will now describe a related conjecture for Galois extensions L, |K, of local
number fields over Q, with group G,,, which was introduced by Breuning in
[Bre04b]. Consider the following situation:

L w Ly,

K v K,

The equivariant global epsilon function of L|K can be written as a product of
equivariant local epsilon functions related to its completions L, |K, as in Defini-
tion 1.47 and (1.23). Their value at zero is called the equivariant local epsilon
constant and the local conjecture describes it in terms of algebraic invariants
associated to the extension L, |K,. Here we refer to [Bre04a, Bre04b| for details.

Let C, denote the completion of an algebraic closure of Q,. In analogy to (5.1)
we introduced the following diagram in Section 1.4:

~ | nr AN (54)

~

K7(Cy[G)) 2 Ko(Z,]G.),C,) 250,
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where the surjectivity of the map 9' follows from [CR87, (39.10)] (see also [Bre04a,
Lem. 2.5]). The extended boundary homomorphism égw’cp will therefore also be
surjective.

For every character y of G,, = Gal(L,,|K,) one has an induced character 1% X
of Aut(C,|Q,). The local Galois Gauss sum from [Mar77, Chp. II, §4] of this

induced character was denoted by 77k, (x) € C in Section 1.5 and we set

TLU)‘KU = (TLw|K”<X>)X€IrI‘c(Gw) S Z(C[Gw]>><

The choice of an embedding ¢: C— C, induces a map Z(C[G,])*— Z(C,[Gy])*
and we obtain the equivariant local epsilon constant

Tpoii, = Ot o, (UTLuik,) € Ko(Zy[Gu), Cp).

As in the global case one chooses a full projective Z,[G,,]-sublattice .Z,, of O,
upon which the exponential function is well-defined. Similarly one defines the
equivariant local discriminant in Ko(Z,|G,],C,) by

5Lw\KU (gw) - [D%wa PLy>s HLw]? (55)

where Hy, = @aEE( Lw) Ly and py,, is the isomorphism

PLy, L@z, Cp — Hp, ®z,C,
(@2 (00)2)esin.

Hereby 3(L,,) denotes the set of embeddings L,, < C,. By the surjectivity of
the homomorphism &' the equivariant local discriminant is represented by an
element dy, |k, € C,[G]* C K1(C,[G,)). This element will be used later and an
explicit formula is given in (5.8).

We write E,(.Z,,), for the projection of the Euler characteristic £,(.Z,,) onto
Ky(Z,|Gy),Q,) by the decomposition

Koy(Z[G), Q) ~ [ [ Ko(Z,[G), Q). (5.6)

The difference E,(Z,)p — 01, |k, (-Zw), which is denoted by Cp, |k, in [Bre04b],
is independent of %, by [Bre04b, Prop. 2.6] and is called the cohomological term
of Ly|K,.

To state the local conjecture we also need the unramified term Uk, €
Ko(Z,|Gy],Cp). It is a unique element which is mapped to zero by the scalar
extension map Ko(Zy[Gw],Qp) — Ko(O}[Gu],Cp) where O} is the ring of inte-
gers of the maximal tamely ramified extension of QQ, in C,. The proof of the
existence in [Bre04b, Prop. 2.12] includes an explicit formula for a representative
ur, i, € CplGu)* C K1(CpGy)) with 0 (ur, k,) = Up, k., which we will recall
in (5.9).
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We can now state the followgin conjecture for local extensions.

Conjecture 5.3 (Local epsilon constant conjecture). For every Galois ex-
tension L, |K, of local fields over Q,, the element

Rr, i, == Tr, ik, + Cryx, + UL, x, — 51Gu,,<cp(mw)
is zero in Ko(Z,[Gy),C,). We denote this conjecture by EPS' (L, |K,).

5.2 Basic properties and state of research

The global epsilon constant conjecture EPS(L|K) is known to be valid modulo the
torsion subgroup Ko(Z[G], Q)ior, and the local conjecture modulo the subgroup

Ko(Zp[Gu], Qp)-

Proposition 5.4. (a) The element TQ°°(L|K,1) is an element of the torsion
subgroup Ko(Z[G), Q)ror of Ko(Z[G), Q) € Ko(Z[G], R).

(b) Rp, |k, is an element of the subgroup Ko(Zy(Gw), Qp) C Ko(Zy|Gw),Cp).

Proof. [BIB03, Prop. 3.4] shows that TQY(L|K,1) € Ky(Z[G],Q) and [BIB03,
Cor. 6.3] implies TQY(L|K,1) € Ky(Z[G],Q)ior- For part (b) see [Bre04b,

Prop. 3.4]. O

We can therefore write TQ°°(L|K, 1), for the projection onto Ky(Z,[G], Q,)
via the decomposition (5 6) of Ko(Z[G],Q) and the corresponding conjectural
equality TQ"°°(L|K,1), = 0 in Ky(Z,[G],Q,) will be denoted by EPS,(L|K).

For this p-part of the global conjecture we get the following relation.

Corollary 5.5. The global conjecture EPS(L|K) is valid if and only if its p-part
EPS,(L|K) is valid for all primes p.

The local conjecture can then be regarded as a refinement of the p-part of the
global conjecture.

Theorem 5.6 (Local-global principle). One has the equality
TQ(LIK, 1), = > 1%, (RL,x.)

v|p

in Ko(Z,|G],Q,) and one can deduce:
(a) EPS(M|N) for all M|N|Q, = EPS,(L|K) for all L|K|Q,

(b) if p # 2: EPS,(L|K) for all L|K|Q = EPS"“¢(M|N) for all M|N|Q,, and
(¢) for fizred L|K|Q and p: EPS"¢(L,|K,) for all wv|p = EPS,(L|K).
Proof. [Bre04b, Thm. 4.1 and Thm. 4.3]. O
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So for odd primes, there is an equivalence between the local conjecture and
the p-part of the global conjecture. Another important property that both (local
and global) conjectures satisfy, is the so called functorial property.

Proposition 5.7 (Functorial property). For a Galois extension L|K of num-
ber fields with intermediate field F|K and a local Galois extension M|N over Q,
with intermediate field E|K one has:

(a) EPS(L|K) = EPS(L|F) and EPS(L|K) = EPS(F|K) if F|K is Galois.
(b) EPS“(M|N) = EPS“(M|E) and EPS"°*(M|N) = EPS"(E|K) if E|K
1s Galois.

Proof. [BIB03, Thm. 6.1] and [Bre04b, Prop. 4.25]. O

Proposition 5.8. The global epsilon constant conjecture implies Chinburg’s Q(2)-
conjecture from [Chi85, Question 3.1].

Proof. [BIB03, Rem. 4.2(iv)]. O

Furthermore, there are the following results. The global epsilon constant con-
jecture is known to be valid

(A) for tamely ramified extensions [BIB03],
(B) for abelian extensions of Q [BIB03, BF06], and

(C) for some (infinite families of) dihedral, quaternion and Ss;-extensions by
[BIB03, Bre04b, Sna03].

Using the local-global principle those results also carry over to the local conjec-
ture and actually some were proved using local results. By [Bre04b] the local
conjecture is known to be valid

(D) for tamely ramified extensions,
(E) for abelian extensions M|Q, with p # 2, and

(F) for S;—extensions of Qs.

It is well-known that for fixed p and n there are just finitely many Galois
extensions M|Q, with degree [M : Q,] = n. From the theoretical results above
we can deduce the following implications from the local conjecture for Galois
extensions M|Q, with p <n (all extensions below are assumed to be Galois):

EPS*(M|Q,) VIM:Q,) <n,p<n

= EPS°(M|Q,) V[M :Q,] <n,Vp (result (D) for tame extensions)

= EPS,(L|Q) V[L:Q] <n,Vp (by Theorem 5.6)

= EPS(L|Q) VIL:Q]<n (by Corollary 5.5)

(

= EPS(F|K) VF C L, [L:Q]<n (by Proposition 5.7)
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In other words, the local epsilon constant conjecture for a finite set of local
extensions of degree < m implies the global epsilon constant conjecture for all
Galois extensions F|K where F' C L and L|Q is a Galois extension of degree
at most n (see also [Bre04a, Thm. 5.7]). From an algorithm proving the local
conjecture for a fixed Galois extension M|Q, it will therefore automatically be
possible to give a computational proof of the global conjecture up to a finite
degree n.

Such an algorithm for EPS"°(M|Q,), with M|Q, Galois, is described by Bley
and Breuning in [BIBr08|. But it has not been implemented because there were
a few steps for which (at the time the paper was written) no practical solution
was known. One of these problem was the computation of local fundamental
classes for which we gave an efficient algorithm in Section 2.2.2. The issues of
computations in algebraic K-groups are studied in detail in [BW09] and its main
result will be discussed below in Proposition 5.13. Finally, a remaining problem
is the fact that this approach needs the extension M|Q, to be represented by a
global Galois extension of number fields in order to do exact computations.

To sum up, an algorithm to prove the global epsilon constant conjecture using
the implications above is given by the following steps.

1. For a finite integer n, compute all local Galois extensions of @, up to degree
n, with p < n.

2. Find global Galois extensions of number fields representing all these local
extensions.

3. Apply the algorithm by Bley and Breuning [BIBr08| to prove the local
epsilon constant conjecture of these extensions.

Step 1: Up to degree 11, the database by Jones and Roberts [JR] contains polyno-
mials for all local extensions of @, and more generally, one can use an algorithm
by Pauli and Roblot [PRO1] to compute all extensions of Q, of a given degree.

The latter algorithm performs well enough up to degree 15. However, we were
not able to compute all local extensions of degree 16 of Q3. The implementation
in PARI/GP terminated after a few days with an out of memory error!, and
MAGMA did not compute a result within 50 days. We therefore have to restrict to
extensions of degree n < 15 and will only consider primes p < 15 since extensions
of Qp, p > 15, will be tamely ramified. A complete list of the Galois groups which
occur up to this degree is given in Table A.1 on page 160.

Step 2: In the following section we will define what we mean by those global
representations and will discuss how to find them.

Step 3: In Section 5.4 we will recall the algorithm of Bley and Breuning and give
algorithmic results that were found using the global representations from step 2.

Lusing more than 10 GB of memory
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5.3 Global representations of local Galois
extensions

We say that a number field K with prime ideal p, denoted as a pair (K,p), is
a global representation for a local field M over Q, if M ~ K,. An extension
(L,P)|(K,p) is an extension L|K of number fields with a prime ideal ‘B dividing
p and [L : K| = [Ly : K], i.e. p is undecomposed in L. A global representation
for a local extension M|N is an extension (L,B)|(K,p) with (L,B) and (K, p)
representing M and N, respectively:

Lemma 5.9. Every Galois extension M|N of p-adic fields has a global represen-
tation (L,P)|(K,p) with L|K Galois.

Proof. [BIBr08, Lem. 2.1 and 2.2]. O

From now on, a global representation will always refer to such a representation
where L| K is Galois. In order to do exact computations we will need such a global
representation. The proof of the existence in this theorem involves the Galois
closure of a number field, but for computational reasons we need a representation
which has small degree over QQ, or even better with K = Q.

In the following, we will restrict ourselves to the case M|Q, using the functo-
rial properties of the conjectures. For this case, Henniart shows in [Hen01] the
following result.

Theorem 5.10. For M|Q, there exist a global representation (L, B)|(K,p) which
1s Galois and where K = Q if p # 2 and K s quadratic over Q if p = 2.

Unfortunately, it is not clear how to find these small representations algorithmi-
cally, cf. [BIBr08, Rem. 2.4]. For the construction of a global Galois extension
LK, with K =Qor K = @(\/E), representing fixed local Galois extension M |Q,
we will therefore use the following heuristics and discuss their performance for
extensions up to degree 15.

5.3.1 Heuristics
Search database of Kliiners and Malle

The database of Kliiners and Malle [KMO1] contains polynomials generating Ga-
lois extensions of Q for all subgroups G of permutation groups S,, up to degree
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n = 15. In particular, the database contains polynomials for all Galois groups of
order n < 15. Among those one will often find a polynomial generating a global
representation (K, p) for M, if [M : Q,] < 15.

Generic polynomials

In this context we consider polynomials f € K (t1,...,t,)[x] with arbitrary inde-
terminates ¢; over a field K. It is said to be generic for a group G, if the splitting
field L of f is a Galois extension of K (t1,...,t,) with group G and, moreover, all
extensions of K (ty,...,t,) with group G are given by a polynomial f of this form.
For specializations of values t,...t, € Q (possibly with certain restrictions) and
K = Q one will get a Galois extension of Q with this group G and randomly
testing different values will also return a global representation for M.

The book [JLY02] by Jensen et. al. contains generic polynomials (or methods
to construct them) for a lot of groups. In particular, it contains polynomials for
all non-abelian groups of order < 15, except for the generalized quaternion group
(12 of order 12. However, there do not exist generic polynomials for all groups.
The smallest group for which the non-existence is proved is the cyclic group of
order eight [JLY02, §2.6].

Class field theory

As a last heuristic, we will use class field theory to construct abelian extensions
with prescribed ramification.? For a field extensions K of Q, there is a one-to-
one correspondence between abelian extensions L|K and subgroups of the idele
class group Cx and each of those extensions L|K has Galois group Gal(L|K) ~
Ck/ Nk Cr, cf. [Neu92, Chp. VI, §6].

For a modulus m = [[p™ — where p runs through all (finite and infinite)
places and n, € NU {0} and n, € {0,1} for pjJoo — one studies in particular
the ray class field K™|K. It is the extension corresponding to the subgroup
(I, U™ K* /K> C Cx where Uy = OF and Uy™ = 1+ p" for finite p,

U,SO) = R* and Uél) = R.q for real p, and Uén") = C* for complex p. This
abelian extension of K can be constructed using algorithms described by Cohen
in [Coh00, Chp. 4]. A discussion of algorithms implemented in MAGMA is given
by Fieker in [Fie06].

Given an extension L|K one defines the conductor f to be the greatest common
divisor of all moduli m for which L C K™. For this conductor one can prove that
p|f if and only if p is ramified in L|K and, moreover, p?|f if and only if p is wildly
ramified in L| K, cf. [Fie06, § 2.4, p. 44].

One can therefore possibly find abelian extensions of K with prescribed rami-
fication at certain places by choosing an appropriate modulus, constructing the
corresponding ray class field, and computing suitable subfields of the requested
degree.

2Thanks to Jiirgen Kliiners for suggesting the application of this method.
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5.3.2 Results up to degree 15

In the algorithm of Bley and Breuning we will have to consider the local situation

<M
G ‘ Nf
Q"

where M|Q, is a Galois extension with group G and Ny is the unramified ex-
tension of Q, of degree f = exp(G®"), where f denotes the exponent of the
abelianization G* of G. Since the local conjecture is known to be valid for
tamely ramified extensions and abelian extensions of Q,, p # 2, we will discuss
the performance of the heuristic methods in the following cases:

(a) wildly ramified extensions M of Q, with non-abelian Galois group G,
(b) wildly ramified extensions M of Qy, with abelian Galois group G, and

(c) unramified extensions of Q, of degree f = exp(G®") in each of the two
situations above.

In all of these cases we restrict to extensions of degree < 15 since for degree 16 we
cannot compute all extensions of Q;. The hypothesis of wild ramification implies
that we only have to consider primes p = 2,3,5 and 7. The primes 11 and 13
are not considered because they can only occur (up to degree < 15) in abelian
extensions of degree 11 and 13, which are not considered in the cases above.

The theory does not guarantee the existence of global representations with base
field Q in the case p = 2. But after all, the heuristics also worked in most of
those cases.

Case a

First consider extensions with non-abelian Galois group. For almost all those non-
abelian wildly-ramified local extensions we found polynomials of the appropriate
degree in the database [KMO1] generating a global representation. Table 5.1
on page 120 gives an overview of all the global representations that were found
using this database. For each group (using the standard notation as introduced
in Appendix A.1) it contains the number of extensions over Q, (as listed in
the database [JR] or computed by [PRO1]) and whether they were represented
globally by a polynomial in the database of Kliiners and Malle.

In fact, there were just three Dj—extensions of (Q; and three D;—extensions of
Q7 not being represented by any polynomial (of degree 8 or 14 respectively) in
this database.

By [JLY02, Cor. 2.2.8] every D,—extension of Q is the splitting field of a polyno-
mial f(z) = 2* — 2stz? + s*t(t — 1) € Q[z] with suitable s, ¢ € Q. Experimenting
with small integers s and ¢ and computing the splitting field of f quickly provides
global representations for all D,—extensions of Q.
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Finally, we used class field theory to construct global Galois representations for
the three non-isomorphic D;—extensions of QQ;: by taking quadratic extensions
K of Q which are undecomposed at p = 7 and computing all C7—extensions of K
which are subfields of K™, m = 490k, one finds D;—extensions where p = 7 is
ramified with ramification index 7 or 14 and where p does not decompose. Exper-
imenting with different fields K as above one finds global Galois representations
for all three D;—extensions of Q.

This completes the construction of global representations for all non-abelian
wildly ramified local extensions of Q,, p = 2,3,5,7, up to degree 15.3

Case b

Using the database [KMO01]| we can again find polynomials for almost all exten-
sions in question. However, there were also quite a few extensions (of degree 8
and 12) for which the above heuristics did not work (see Table 5.2 on page 120).
However, by Henniart’s result (see Theorem 5.10 or [Hen01]) we only know that
such a representation exists over some field K where K is quadratic over Q.

One can therefore search the database [KMO1] for polynomials whose splitting
field is of degree 16 (or 24) and where the prime p = 2 decomposes into two prime
ideals. Then the completion at any prime above 2 will be an extension of degree
8 (or 12 respectively) of Q.

Using this method, we could find polynomials representing the last C'y x Cy ex-
tension and 3 more Cy—extensions. But there are still 13 Cs and 4 Co—extensions
for which we did not find a global representation.

However, to obtain a global result up to degree 15 (see Corollary 5.18), one can
use the theoretic results for abelian extensions. Then it is sufficient to consider
abelian extensions over Q, of degree < 7. Indeed, if L|Q is non-abelian of degree
< 15 and its completion Ly|Q, has abelian Galois group, then [Ly @ Q,] < 7
since the local Galois group is a proper subgroup of the global Galois group.

Case ¢

For each of the pairs (L|Q, p) with Galois group G constructed in cases (a) and
(b), Algorithm 5.12 also needs a extension N of Q which is unramified and unde-
composed at p and is of degree f = exp(G?).

Most of these unramified extensions can be constructed as a subfield of a cy-
clotomic field Q(¢,,) generated by an n-th root of unity ¢,. The decomposition
of primes in a cyclotomic field is well-known and can easily be computed, see
[Neu92, Chp. I, Thm. (10.3)].

For non-abelian extensions of degree < 15 the maximum degree of N can easily
be determined to be f = 4. Polynomials generating these unramified extensions
are given in Table 5.3 on page 121. For the abelian extensions of Q; we also have

3Appendix A.1 gives a complete list which also contains all abelian Galois groups.
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n p group #ext. in [KMOI] n p group Fext. in [KMOI]
6 2 S5 1 v 12 2 Dg 3 v

3 S5 6 v Q12 4 v
8 2 Dy 18 15 12 3 Ay 0

Qs 6 v Dg 6 v

10 2 Ds 0 Q12 2 v

5 Ds 3 v 14 2 Dy
12 2 Ay 1 v 7 Dy 3 0

Table 5.1: Non-abelian local Galois extensions of @Q, of degree n < 15 with
possible wild ramification.

n  group  Fext. in [KMO1] n  group  #ext. in [KMO1]
2 Cs 7 v 8 Cs 1 v
4 Cy 12 v 10 Cho 7 v
Vi 7 v 12 Cio 12 8
6 Cs 7 v Cy3xV, 11 v
8 Cs 24 8 14 C4 7 v
Cy x Cy 18 17

Table 5.2: Abelian local Galois extensions of Qo of degree n < 15 with pos-
sible wild ramification.
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degree  polynomial unramified primes
2 241 2,3,7
> +r+1 5
3 23— Tr? + 140 — 7 2,3,5
3 — 627 + 9x — 3 7
4 341 2,3,7
xt+ 1322 + 13 5

Table 5.3: Unramified extensions of Q,, p = 2,3,5,7, up to degree 4.

degree polynomial

5
6

10
11
12

12
13

14

15

o —xt —4x® + 327 + 3x — 1

28 — % — Tt + 223 + 2% — 22— 1

x" — 2% —122° 4+ Ta* + 2823 — 142 — 92 — 1

splitting field of 2® — 32° — 2% + 323 + 1

¥ — a® — 827 + T8 + 2125 — 152 — 2023 4 1022 + 5x — 1

e R s o L o e S A S O e Sl S |

24210 —102° - 92843627 +2825 —562° — 352* +3523 + 1522 — 62— 1

212 — g — 12210 4 1129 + 54a8 — 4327 — 11325 + 7125 4+ 1102* —
462° — 4022 + 8z + 1

et a4 bt At et e e+ ]

13— 212 — 2421 + 19210 + 19022 — 11628 — 60127 + 2462 + 7382° —
21524 — 29123 4 6822 + 102 — 1

M — B 13212 + 1221 + 66210 — 5522 — 1652 + 12027 + 21026 —
12625 — 1262* + 562° + 2822 — Tx — 1

2l — ™ =221 4+ 1722 4+ 1662 — 102210 — 5332° + 27028 + 72927 —
35220 — 39325 4+ 1732* + 80x% — 2722 — 6 + 1

Table 5.4: Unramified extensions of Q; up to degree 14.
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to consider unramified extensions of higher degree. For f # 8 these can again
be constructed as subfields of cyclotomic extensions and extensions of relatively
small discriminant can be found be searching [KMO01] (see Table 5.4).

Only f = 8 turns out to be a special case: By Wang’s counterexample to
Grunwald’s original statement of his theorem there is no global representation
L|Q for the unramified Cg—extension of Q9. But such a representation exists over
some field K where K is quadratic over Q.

We can therefore search the database [KMO1] for polynomials whose splitting
field is of degree 16 and where the prime p = 2 decomposes into two prime ideals
which each have cyclic decomposition group. Then the completion at any prime
above 2 will be an unramified extension of degree 8 of Q. For example the
splitting field of the polynomial 2® — 32® — 2* + 32 + 1 satisfies these conditions.
In comparison to the other global representation we found heuristically, it is the
only case (up to degree 15) in which the base field K of the global representation
is not equal to Q.

This completes the construction of unramified extensions needed in all situa-
tions. But in some cases one can also be more specific and construct extensions
N such that the composite field LN has small degree over Q.

Let L be a Galois extension of Q with group G and ‘P a prime ideal of L dividing
p and let G be the decomposition group of B. Then consider the inertia subfield
of L at ‘B, i.e. the fixed field of the inertia subgroup

Ip={0€Gy|ox=xmodP, Ve € Or}.

The inertia subfield L™ is the maximal subfield of L|Q such that p is unramified.

In some cases one can directly consider N = L, and in other cases one can
construct unramified extensions N of L™ with appropriate degree over Q. For
example if L’* has degree 2 over Q and we search for an unramified extensions
N of degree f =4, then we can use the following embedding result.

Proposition 5.11. A quadratic extension K(y/a)|K can be embedded into a Cy—
extension if and only if a is the sum of two squares in K. The Cy—extensions of
K containing K (\/a) are

(a) K(\/r(a+ z\/a) if a =2* 4+ y* for z,y € K and
(b)) K(\/7(a+ By/a) if a=a?—afB? fora,f e K

with parameter r € K*.

Proof. [JLY02, Thm. 2.2.5]. O

To sum up, using the heuristic methods described above we were able to com-
pute global representations for all non-abelian wildly ramified local extensions of
Qp, p = 2,3,5,7, of degree < 15 and for all abelian extensions of Qs of degree
< 6. These polynomials were used to prove the local epsilon constant conjecture
and can be found in Appendix A.2.
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5.4 Description of the algorithm

The following algorithm to prove the local epsilon constant conjecture for a fixed
number field extension was described by Bley and Breuning in [BIBr08|. We will
recall the algorithm and discuss some details on the implementation. Afterwards
we will present some results which were obtained by computational proofs. But
first we give a brief overview of the algorithm.

For the rest of this section, fix the Galois extensions L|K and N|K and a prime
p of K as in the input of the algorithm. For simplicity, the unique prime ideal
above p in the fields L, N, or any subextension of L|K will also be denoted by p.
If it is necessary to avoid confusion, we will write pg, pr and py. Furthermore,
we will identify the ideals py|px with places w|v of L and K, respectively, such
that L, = L, and K, = K,.

Algorithm 5.12 (Proof of the local epsilon constant conjecture).

Input: An extension (L,P)|(K,p) with K, = Q, in which L|K is Galois with
group G and a Galois extension N|K of degree exp(G®") in which p is unde-
composed and unramified.

Output: True if EPS"(Lyp|Q,) was successfully checked.

(Construction of the coefficient field)

1 Compute all characters x of G and use Brauer induction to find an inte-
ger t such that the Galois Gauss sums can be computed in Q((m, (pt), m =
exp(G?P).

2 Construct the composite field £ of L, N and Q((n, (yt) and fix a complex
embedding ¢ : £ — C and a prime ideal Q of F above p.

(Computation of cohomological term)
3 Compute a suitable lattice 2 C Op, as in Lemma 2.1 and k such that
(PBOL,)" € &, denote Lf = Lg/ exp(2).

4 Compute an element in YextZ(Z, Lf(n) representing the local fundamental class
using Algorithm 2.18 and Proposition 1.29.

5 Compute the Euler characteristic E,,(.£) € Ko(Z[G],Q) as in Example 1.44.

(Computation of the terms in [] E*)

6 Compute the correction term mr, g, = my € Z(Q[G])* C Z(E[G])* ~ [], E*
defined in (5.3).

7 Compute the element dr, g, € LIG]* € E[G]* from (5.8), which represents
the equivariant discriminant dp,g,(-¢) € Ko(Z[G], Eq) defined in (5.5).
]

8 Compute the element ur, g, € N[G]* C E[G
the unramified term Up,q, € Ko(Z[G], Eq).

* using (5.9), which represents
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9 Use the canonical homomorphism F[G]* — K;(E[G]), the reduced norm
map nr : K, (F[G]) — Z(F|[G]) and Wedderburn decomposition of Z( E[G]) to
represent these three terms in [ E™.

10 Compute the equivariant epsilon constant 7r,q, € [T, Q(Gt, Cm)™ €[], E*
via Galois Gauss sums.

(Computations in relative K -groups)
11 Read E,(.Z) and the tuples from above as elements in Ky(Z,[G], Eq).
12 Compute the sum Ry, g, € Ko(Z,[G], Eq) of the resulting elements.

Return: True if Ry, g, is zero, and false otherwise.

We will discuss each part for the algorithm separately.

Constructing the coefficient field

As explained in [BIBr08, §4.2.2] we need to construct a global field F, in which
all the computations take place.

For the computation of the unramified term, we will need a cyclic extensions
N|K which is unramified and undecomposed at p.

Another extension involved is Q((y, ¢yt), where m is the exponent of G* and
t is computed as in [BIBr08, Rem. 2.7]: By representation theory the field Q((,,)
contains the values of all characters of G. The root of unity ¢, is used to represent
Galois Gauss sums and the integer ¢ is determined as follows.

For each character y of G one computes subgroups H, linear characters ¢ of
H, and coefficients c(p,4) € Z such that x — x(1)1le = >4 4 c(.6)Ind% (¢ — 1g).
Such a relation exists by Brauer’s induction theorem, cf. [BIBr08, §2.5]. If f(¢)
denotes the Artin conductor of ¢ and e the ramification index of (L¥),|Q,, then
t must satisfy ¢ > v,(f(¢))/e for all pairs (H, ¢) and all x. Below, this choice of
t allows us to compute the epsilon constants as elements of Q((n,(,t), see also
[BIBr08, Rem. 2.7].

The composite field of the three fields L, N and Q((,, () is denoted by E,
giving the following situation:

/\

Q(Gms Gpt) L (5.7)

\/

We then fix a complex embedding ¢ : £ <— C. Since E contains the roots of unity

Cm, the center Z(E[G]) decomposes into Z(E[G]) = [T cree) £
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The fixed embedding ¢ is essential because some of the elements in the conjec-
ture depend on the particular choice of the embedding: for example, the defini-
tion of the standard additive character below, see also [BIBr08, §2.5]. So once
we compute an algebraic element representing this value, we have to maintain its
embedding into C. Since we still try to avoid computations in such a big field F,
this implies the following: whenever we do calculations in a subfield F' C E, we
have to choose embeddings ¢, : ' — C and 15 : F' — FE such that the diagram

o] A

F

is commutative, i.e. t; = ¢|p.

We also fix a prime ideal Q of E above p and an embedding F — Fq such
that £ — Fq — C, and F <4 C o C, commute. Then all the invariants
appearing in the conjecture lie in the subgroup Ky(Z,[G], Eq) of Ko(Z,|G],C,)
and by Remark 1.39 they can therefore be represented by tuples in Z(Eq|G]) ~
erhr(G) E3. In fact, we will see that all these elements are also represented by
elements in erlrr(G) E* and can be computed globally.

Computation of cohomological term

By Lemma 2.1, the lattice £ = Z[G]0 C Oy, is computed using a normal basis
element 6 (see also [BIBr08, §4.2.3]). The integer k for which p* C % can then
be found experimentally by global computations.

We compute a cocycle v € Z*(G, LX /U é’f}) representing the local fundamental
class up to precision k using Algorithm 2.18 and its projection in H%(G, L{) ~
H 2(G,LX). By Proposition 1.29 we can construct the corresponding complex
P, = [L{(v) — Z|G]] using the splitting module L (v) from [NSW00, Chp. III,
§1, p. 115]. Then the Euler characteristic Ey(Z,) = Xa(Pu, vy ) € Ko(Z[G], Q)
can be computed using the explicit construction from [BIBr08, §4.2.4] as de-
scribed in Example 1.44(b).

Computation of the terms in [[ E*

The correction term m,, is directly defined as tuple in [T E* by (5.3). For the
equivariant discriminant and the unramified term we have the following formulas

from [BIBr08, §§4.2.5 and 4.2.7]:
dp,iq, = »_o(0)o" € LIG]* C E[G]*, (5.8)

oceG

uraia, = S A€~ € NIGI* € EIG)* (5.9)
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Hereby, ¢, denotes the Frobenius automorphism of N|K with respect to p,
¢ € Oy is an integral normal basis element for N,|K,, and o is a lift of the
local norm residue symbol (p, Fy|K,) € Gal(Fy|K,) ~ Gal(F|K) where F' is the
maximal abelian subextension in L|K. An algorithm to compute local norm
residue symbols is described in [AKO00, Alg. 3.1].

These group ring elements provide elements in K;(C,[G]) through the ho-
momorphism E[G]* — K;(C,[G]) by E[G] C Eq|G] C C,[G]. The element
ur, o, € N[G] represents the unramified term by definition ([Bre04b, Prop. 2.12])
and dr,, g, € L|G] represents the equivariant discriminant through the surjective
homomorphism 9' : K1(C,[G]) — Ko(Z,|G], C,|G]) by [BIBr08, §4.2.5].

Using the reduced norm map nr : K;(E[G]) — Z(E[G])* one obtains elements
in Z(E[G])* and by the Wedderburn decomposition Z(E[G])* ~ [, £ the equiv-
ariant discriminant and the unramified term are finally represented by tuples in
[t £ € e Ea-

The equivariant epsilon constant 7z,|g, is computed in Hx E* by local Galois
Gauss sums as follows, cf. [BIBr08, §2.5].

For each y, we already computed subgroups H of G, linear characters ¢ of H,
and coefficients c(r7,4) € Z such that x — x(1)1e = X2 g4 c(.g)ind$y (¢ — 1y) by
Brauer induction. Then the Galois Gauss sum of x can be computed by Galois
Gauss sums of abelian extensions L**(®)|LH:

T(Ly|Qp x) = [ 7((E* )l (L7, 6) " € Q(Gmy Gr) € B

(H,¢)

For localizations of the abelian extension M = L¥"(®) over N = L Galois Gauss
sums are given by the formula

(018 0) = 300 ( (5 2518%) ) o (7) € @G ) € B

where x runs through a system of representatives of OF /U J(\?p) ~ (On/p*)%, s
is the valuation vy(f(¢)) of the Artin conductor f(¢) of ¢, ¢ € N generates the
ideal f(¢)Du,, D, denotes the different of the extension Ny|Q,, and 1y, is the
standard additive character of Ny.

The above formulas allow the construction of the equivariant epsilon constant
as tuple 77,9, = (7(Lp|Qy, X))X € [[, E*. For details see [BIBr08, §2.5].

Computations in relative K-groups

In the following we have to combine the computations from the previous steps to
find Ry, g, and show that its sum represents zero in Ky(Z,[G], Eg). In [BW09]
Bley and Wilson describe the relative K-group as an abstract group. Using their
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methods it will be clear how to read elements of the form 5&1‘]@1) () forz € [T £~
and triples [A, 0, B] in the group Ky(Z,|G|, Eq).

We recall the description from [BWO09] for group rings and — since their al-
gorithms are not yet implemented in full generality — we will discuss a simple
modification for extensions F' of QQ which are totally split at a given prime p.

First we introduce some more notation: Let K be a number field and G a
finite group. The Wedderburn decomposition of K[G| gives a decomposition of
its center C' := Z(K|[G]) into character fields K; such that C' = @;_, K;. Each
character field K; corresponds to an irreducible character y; € Irrg(G) and K is
the field K'(x;) which is obtained from K by adjoining the values of ;.

Choose a maximal Og-order M of K|[G| containing Ok[G] and a two-sided
ideal f of M which is included in Ok|[G] (e.g. f = |G| M) and define g := Oc N .
Then the decomposition of C' similarly splits M into €;_, M, and the ideals §
and g into ideals f; of M; and g; of Ok,. For a prime p in O, we further write
Cy for the localization Cy = K, ®q C' = @, K, ®g Ki = @i, D, (Ki)sp, and
a; p for the part of an 1dea1 a; of Ok, above p.

The reduced norm map induces a homomorphism p, : Ki(Ok,[G]/f,) —
D,_,(Ok,/gip)* whose cokernel is used in the description of the relative K-group
Ko(Ox, [G], Ky).

Then the main result of Bley and Wilson is the following.

Proposition 5.13. There are isomorphisms
Ko(Ox, [G], Ky) == O/ nx(Op, [G]*) == I(Cy) x coker(uy),

n being a natural isomorphism and @ being induced by

T s

p: Cf = 26:? (Ki)py — I(Cy) x Ze:? (Ok./8ip)” (5.10)

(i) (T B, (i)

where p; = I/ZH T (v3) and mp € Ok, are uniformizing elements having
valuation 1 at P and whzch are congruent to 1 modulo gy for all other primes
B above p in K;|K.

Proof. [BW09, Prop. 2.7]. O

Bley and Wilson describe an algorithm to compute the group I(C)) x coker ()
From the definition of ¢, it is clear how a tuple v = (1;); of elements with
values v; € K, represents an element in this group. Furthermore, for every
triple [A,0, B] € Ky(Ok|G], K) with projective Og[G]-modules A and B and

0 : Ax — By, one can compute a representative of [Ay, 0, By in this group
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as follows. As discussed in Remark 1.39 every element [A,, 0, B,| is represented
by an element in K;(K,[G]) by choosing Ok, [G]-bases of A, and B, and com-
puting a matrix in Gl,,(K,[G]) which represents the isomorphism 6, with respect
to this basis. From the reduced norm map nr : K;(K,[G]) — Z(K,[G]) one
then obtains a representative in C\ and applying ¢ finally provides the element
in I(Cy) x coker(yu,) which corresponds to [Ay,0,, By|. For details we refer to
[BW09, §4].

In theory, this solves the remaining problems for Algorithm 5.12. But in prac-
tice, this has only been implemented in MAGMA for K = QQ and p = pZ. In our
case, however, we have to work with the decomposition field F' C E of . This
field F is a global extension of Q which is totally split at p. Then for any prime
q|p we obviously have Fy = Q, and Ko(Z,[G], Fy) ~ K¢(Z,|G],Q,). If F satisfies
certain conditions, this isomorphism of relative K-groups is canonically given by
isomorphisms on the ideal part I(Cy) and the cokernel part coker(y).

Proposition 5.14. Let F|Q be a number field which is totally split at p and for
which FNK; = K =Q for alli. Let q be a fized prime ideal of F' above p. Then
the following holds:

(i) The center C' = Z(F[G]) splits into character fields F; = FK;.

(ii) For every ideal B of K; there is exactly one prime ideal Q in F; lying above
B and q.

(iii) There are canonical isomorphisms

T

1(Gy) = 1(Cy) - and (P (Ox./9ip)" = D(Or /bi0)"

i=1

where b := Ocr N .

Proof. (i) The character fields K; arise from K = Q by adjoining the values of
a specific character in Irrg(G). Since F' and K; are disjoint over Q, one has the
same irreducible characters over F: Irrg(G) = Irrp(G). The character fields F;
then arise by adjoining the same character values and F; = F'K;.

(ii) If £’ is any prime ideal in F; above p and ' = Q' N K;, ¢ = Q' N F, then
the automorphisms 7 and ¢ for which 7(') = P and o(q’) = q define an element
p = o x 7 in the Galois group of F;|Q and Q = p(£’) is a prime ideal which lies
above both P and g. The uniqueness of Q follows from degree arguments.

(iii) Let B be a prime ideal of K; and Q the prime ideal of F; which lies above
q and ‘B. Then the valuation vy of F; extends the valuation vy of K; and if we
identify each pair (3, Q), we get an isomorphism

1(Cy) = [TTI%* ~ [T T2 = 1(c).

i=1 Plp i=1 Qlq
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Since P C K; is totally split in F; we have isomorphisms O, /P ~ O /Q.
Moreover, the g-part of h is given by the part of gO¢ lying above q. The inclusions
Ok, C Op, therefore induce isomorphisms (Ok, /@i p)* =~ (OF;/biq)~- O

Remarks 5.15. 1. As mentioned before, the algorithms from [BW09] to compute
Ko(Z,|G], F,) are just implemented for /' = Q. The extension to F'|Q described
above will work if F' is totally split at p and F N Q(x) = Q for all characters .
The first condition is always true since we want to work with the decomposition
field FF C E of £, and the latter condition is valid in all cases we consider in the
computational results below.

2. The computation of the prime ideal  in F is a though job when the degree
of E gets large. In the last part of Algorithm 5.12 we will therefore proceed as
follows.

Let T := 71, )0,UL,]0,/ (MuwdL,0,) € [], E* be the element combining all the

invariants except the cohomological term. Then Ry |k, = géw 5o (L) + Eu(Z)p-
Since Rp, |k, and E,(%Z,), are both elements of Ky(Z,G],Q,), the element

(%WEQ (Z) is also in Ky(Z,[|G],Q,). Hence, T € Z(Q,|G])* and each compo-
nent Z,, € Q,(Gn), m = exp(G). Since each component Z, is determined by a
global element in E, we have Z, € F' := Q,((y,) N E. Here, the intersection is
taken in the fixed completion of the algebraic closure C, of Eg. We therefore
obtain 7 € Z(F'[G])* ~ [] (F')* and if F' = E%a denotes the decomposition
field of Q, then F' = F((,).

As mentioned above, we want to omit the computation of £. So instead of
working with F, we would like to work with a small subfield of E. The field
F' = F((y) would be a good choice but this still involves the computation of the
decomposition field of £ and hence also the computation of £ itself.

Instead we continue as follows: for every x we compute the minimal polynomial
m,, of Z,. Then we compute the composite field F’ of the splitting fields of the
polynomials m, with Q((,,). Although the computation of the splitting fields is
also a difficult task, we note that these fields will always be subfields of E and
where this approach could take hours, the computation of £ did not succeed in
several days.

In the end, F” is the composite field such that 7, , ¢, € F’. Compute the ideal q’
of F" above p, denote the decomposition field of ¢’ by F', and compute g = OrNq’.
Then it follows from above that Z, € F((y,) and T = 77,10, %1.|0,/ (MwdL,|0,) €
1, F(Gn)*.

Note that all computations were independent of the choice of the prime ideal
£ above p because all invariants were actually computed globally. The proof of
the conjecture will therefore also be independent of the choice of ¢'.
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5.5 Computational results

Algorithm 5.12 has been implemented in MAGMA [BCP97], see Appendix B.4,
and has been tested for various extensions up to degree 20. The computation
time especially depends on the degree of the composite field F.

The most complicated number field for which we proved the local epsilon con-
stant conjecture was an extension of degree 10 of Q5 with Galois group D5. The
composite field £ then had degree 200 over Q. The computation of the epsilon
constants, which needs an embeddings £ — C, already took about 7 hours, but
the most time-consuming part (about 6.5 days) of Algorithm 5.12 was the compu-
tation of minimal polynomials and their splitting field mentioned in Remark 5.15.
The field F’ then just had degree 4 over Q making the remaining computations
very fast. The total time needed to prove the local conjecture in this case was
about 7 days.

Using the global representations obtained in Section 5.3 we can prove the fol-
lowing algorithmic result.

Theorem 5.16. The local epsilon constant conjecture is valid for all wildly ram-
ified, non-abelian Galois extensions M|Q, with degree [M : Q] < 15 and for all
abelian extensions M|Qq with [M : Q,] < 6.

Proof. Since the local conjecture is valid for abelian extensions of Q,, p # 2,
the only primes to consider are p = 2,3,5,7. All local extensions for these
primes of degree < 15 that are either non-abelian, or abelian with p = 2 have
been considered in Section 5.3.2 and global representations have been found by
using the heuristics described in Section 5.3.1. Also global representations for the
corresponding unramified extensions — which are of degree at most 6 — could
be found using the database [KMO1].

For each of those extensions we then continued with Algorithm 5.12 to prove the
local epsilon constant conjecture computationally.* This completes the proof. [

Corollary 5.17. The local epsilon constant conjecture is valid for all Galois ex-
tensions

(a) M|Q,, p# 2 of degree [M : Q,] < 15,
(b) M|Qq non-abelian and of degree [M : Q,] < 15,

(¢) M|Qy of degree [M : Q] < 7.

4A list of polynomials generating the global representations and a few details on each compu-
tational proof is given in Appendix A.2.
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Proof. The cases not considered in the theorem above are extensions of Q,, p # 2
which are either tamely ramified or have abelian Galois group, and extensions of
Q2 which are tamely ramified. These cases have already been proved before (see
page 114). Note that for degree 7 there is just one extension of Q which is also
tamely ramified. O

Combining Algorithm 5.12 with the local-global principle (Theorem 5.6) the
functorial properties (Proposition 5.7) and known results for tame extensions and
abelian extensions, we obtain an algorithm to prove the global epsilon constant
conjecture for number field extensions L|Q up to a finite degree as described on
page 114. Then the above results for the local epsilon constant conjecture imply
the following result for global fields.

Corollary 5.18. The global epsilon constant conjecture is valid for all Galois
extensions L of Q with degree [L : Q] < 15.

Proof. 1f L|Q is abelian, the global conjecture is already known to be valid. For
the non-abelian case, we recall that by Theorem 5.6 conjecture EPS(L|Q) is valid
if EPS'¢(L,,|Q,) is valid for all primes p and places w|p. If L|Q is non-abelian of
degree < 15, the local extension L,|Q, is either non-abelian of degree at most 15
or abelian of degree at most 7. Therefore the result follows from Corollary 5.17.0]

The projection onto the class group also proves Chinburg’s conjecture.

Corollary 5.19. Chinburg’s Q(2)-conjecture from [Chi85, Question 3.1] is valid
for all Galois extensions L of Q with degree [L : Q] < 15.

Moreover, the functorial properties for global epsilon constant conjectures state
that the conjecture for L|K implies the conjecture for E|F in a tower L|E|F|K
of number field extensions in which L|K and E|F are Galois. This proves the
following result.

Corollary 5.20. The global epsilon constant conjecture and Chinburg’s §2(2)-
conjecture are valid for Galois extensions E|F of number fields for which E is
contained in a Galois extension L|Q with [L : Q] < 15.






6 The equivariant Tamagawa number
conjecture at s =1

The equivariant Tamagawa number conjecture for a Galois extension L|K of
number fields with group G relates the leading term of the equivariant Artin
L-function to algebraic invariants of the extension L|K. There are two instances
of this conjecture, denoted by ETNC(L|K,0) and ETNC(L|K, 1), which consider
the leading coefficient at s = 0 and s = 1, respectively.

The conjecture at s = 0 relates the leading term CZ‘K,S(O) for a finite set of
places S to an invariant which is constructed from a Tate sequence for L|K. An
algorithm which verifies this conjecture up to the precision of the computation
and which also gives a proof in special cases was discussed by Janssen in [Jan10)].

The conjecture at s = 1 relates the value (; LK, 5(1) for a finite set of places S
to invariants based on the global fundamental class u LK € H2(G,Cy). Although
the validity of ETNC(L|K,0) and the compatibility conjecture ETNC"(L|K, 1)
discussed in the previous chapter imply the conjecture ETNC(L|K, 1), the lat-
ter conjecture is still of interest because the algorithm in [Jan10] was just im-
plemented using the construction of Tate’s canonical class in the special case
described in Section 4.5, which assumes the existence of a place of K which is
undecomposed in L. For the general case one can construct the Tate sequence
using Algorithm 4.12. But that algorithm depends on the construction of the
global fundamental class, and it makes therefore sense to consider ETNC(L|K, 1)
directly.

In this chapter, we recall the statement of the equivariant Tamagawa number
conjecture at s = 1 for number fields as it is given in [BrB07, § 3] and develop an
algorithm which verifies ETNC(L| K, 1) numerically.

Let L|K be a fixed Galois extension of number fields with group G. As usual,
we denote a finite, Galois-invariant set of places in L by S. The places of K below
the places of S will again be denoted by .S, but we avoid confusion by denoting
places in L by w and those in K by v:

K v

Again, for every place v we will choose a fixed place w € S dividing v. In other
words, we fix a set S(G) of representatives of the G-orbits in S.
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6.1 Statement of the conjecture

The analytic part of the conjecture will be given by the leading term Ca K7S(1)
of the equivariant S-truncated Artin L-function (7| s(s) in the Laurent series
expansion at s = 1. See Section 1.5 for a definition of (1 x s(s). To define the
algebraic part, we again have to make some choices and have to introduce more
notation.

Let S be a finite set of places of L containing the infinite places, all places which
ramify in L|K and let S be such that the S-ideal class group Clg(L) is trivial. For
each w € S(G) and w|v we choose a full projective sublattice .Z,, C Of,, upon
which the exponential map is defined and, as for epsilon constant conjectures, we
define the lattice .Z C Oy, by its p-adic completions

L= ng Oz, (G Zy|G] € Ly := L ®q Qp,
vlp
where w is the fixed place above v.

Furthermore, we consider the G-modules Lg = [[,cs Lo = [,es0) indg L,
and Zs = [Tyesc 096, Lo = [uwesa) Lo @2,6.] Zp|G] where Z,, = Ly, for all
infinite places w. The diagonal embedding of L into Lg will be denoted by Ag,
and expg : Zs — Lg is the (p-adic, real or complex) exponential map on each
component.

We will also consider restrictions to finite or infinite places: we set L; =
Hvesf L, % = Hvesf Zy, Loo = [],eq. Lv, and use the maps Ay @ L — Lo
and exp,, : Loo — L.

As in Chapter 3 the S-ideéle class group will be denoted by Cs(L). It was
defined as the quotient of the idele group Ir by Urs = [[,es{1} x [1,¢sOr, C

I;,. Let Eg = [A — B] be a complex representing the global fundamental
class in Yext%(Z,Cs(L)) ~ H?(G,Cs(L)) with A and B cohomologically trivial
Z|G]-modules. It is a complex which is trivial outside degrees 0 and 1 and has
cohomology groups H%(Es) = Cs(L) and H'(Eg) = Z.

Moreover, consider the complex [92”5 BN 3] with % in degree 0 and a chain
map « : [.,2’5 5 f] — Eg given by Fg —25, Ly — Cs(L) € A in degree 0 and
a lift t1” of try)g : £ — Z in degree 1 via the surjection B — Z. These maps can
be summarized in the following commutative diagram:

0 L4, g b, p @ 0
JQXPS l Jtr’ trrjq (6,1)
0—— Cs(L) —— A B Z 0

Then the algebraic part of the conjecture will depend on the cone Eg(.Z) of a.

INote that the units L§ where denoted by I, g in Chapters 3 and 4.
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exp

It is the complex Eg(%) = [£s — A® ¥ — B] with Zs in degree —1 and
where the differential in degree zero is the sum of the maps A — B and tr'.

To describe the cohomology of Eg(¥) = cone(a), we introduce the following
notations: consider the map

tro : L. — R
(lw)wesoo = Zwesw terIR(lw)

and denote the kernels of the trace maps by LY := ker(trs) and L° := ker(tryg).
Then one has an exact commutative diagram of R[G]-modules

trL\Q ®QR

0—— L'®gR —— L®gR R 0

t

0 L% Lo =~ SR 0

N

where pp is the restriction of the canonical isomorphism
pr: L®gR — Lo
L@z = (ow(l)2)wess
given by embeddings o, : L — L, for all infinite places w.

Remark 6.1. Let r; and r, denote the number of real and pairs of complex
embeddings. Then we can also identify L., with

{('Z'Z) € R™ x CQTQ ‘ Lri+j = Tritratys 1 < ] < 7”2} - CT1+2T2,

We also denote the corresponding real embeddings by o1, . .., 0,, and the complex
pairs by 0-7’1+j7 J’I‘1+j = UT1+T2+j for 1 S ,] S .

Finally, for any subset X C LX we let log, (X) = {z € Lo |exp,(z) € X} de-
note the full preimage of X in Lo, through exp,,. And for U CO; it is defined by

log o, (U) = {2 € Lo | expo(2) € Ax(U)} € Lo
which is equal to log. (A (U)).

Remark 6.2. The subgroup of totally positive units in O}, denoted by O7F, has
finite Z-index in OF. Let U be a full lattice in O}. Then the homomorphism
eXPy ¢ 10g. (U) — A (U) is surjective (on every component) and we obtain an
exact sequence

0— Iy — log (U) =22 A (U) — 0

which is also given in [Tat84, Chp. I, § 8]. The kernel I'; corresponds to the kernel
of the exponential function for complex places in L..:

r, = H 0 x H 2mi7 C La.

weS(R) weS(C)
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Using the identification of the remark above, the elements of (z,) € I'; are zero
at real places, and for complex embeddings ¢ one has T, = x5 € 27iZ.

By Dirichlet’s unit theorem, the group U has rank r + s — 1 and therefore
log(U) has rank r 4+ 2s — 1. If U = (e1,...,&¢)z, then the group log  (U) is a
lattice in L., which is generated by the elements

(log ak(gj))kzl...n 1<y <t
(27055 — OGaragk)) oy, T H1<J<Ti47T2

with 0, = 1 for j = k and J;; = 0 otherwise.
Lemma 6.3. The set log, (OF) C Lo is a full lattice in LY. .

Proof. Let r; denote the number of real embeddings of L, r, the number of pairs
of complex embeddings, and let 7 run through r; 4+ o embeddings L — C by
choosing one of each complex pair. By the proof of Dirichlet’s unit theorem
[Neu92, Chp. I, § 5] there is a commutative diagram

LX loAso HTR

poe o

QX z — log |z| R

in which Tr is the map which adds all components, and [ denotes the map (z,), +—
(A log |z,|); with A, = 1 for real and A, = 2 for complex embeddings 7. The
commutativity shows that log. (OF) C L%..

Then the remark above and the fact that Of has finite index in O} imply that
log..(O;) is a lattice of rank r; + 2r, — 1 and therefore a full lattice in L2. O

Recall that for a perfect complex P and a trivialization t : H*(P)g — H ™ (P)g,
the Euler characteristic in Ky(Z[G],R) introduced in Section 1.4.2 was denoted

by XG(Pa t)
Proposition 6.4. The complex Es(.Z) has the following properties:
(a) It is a perfect complex of Z|G]-modules.

(b) The complex Es(£) ® Q is acyclic outside degrees —1 and 0 and has coho-
mology H(Es(%£)) @ Q ~log, (0}) ® Q and H(Es(¥)) ® Q ~ L°.

(¢) The canonical isomorphism log. (OF) ® R ~ LY induces a trivialization
wr of Es(Z) and the Euler characteristic xg(Fs(£), pr) depends only on
L|IK and S.

Proof. [BrB07, Lem. 3.1]. O
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The explicit construction of the cohomology groups and the canonical trivializa-
tion obtained from the proof will be considered in detail in Section 6.2 below. For
now we use the Euler characteristic to define the element

TQ(LIK, 1) = 05(Cies(1) + xe(Es(2L), 1) € Ko(ZG),R).
which can be proved to depend only upon the extension L| K, cf.[BrB07, Prop. 3.4].

Conjecture 6.5. For any Galois extension L|K of number fields the element
TQ(L|K, 1) is zero in Ko(Z[G],R).

We will denote this conjecture by ETNC(L|K,1). It implies conjectures of
Stark and Chinburg as follows.

Proposition 6.6. (a) TQ(L|K,1) € Ko(Z[G],Q) if and only if the Stark con-
jecture at s = 1 from [Tat84, Chp. I, Conj. 8.2/ is valid for L|K.

(b) TQ(LIK, 1) € ker (9% : Ko(Z[G),R) — Ko(Z[G])) if and only if Chinburg’s
Qy-conjecture stated in [Chi85, Question 3.2] is valid for L|K (see also
[CCFTI91, §4.2, Conj. 3]).

Proof. [BrB07, Prop. 3.6]. O

The fact that TQ(L|K, 1) lies in the subgroup Ky(Z[G], Q) of Ko(Z|G],R) can
be regarded as an independent conjecture, called the rationality conjecture. By
the above proposition the rationality conjecture is equivalent to Stark’s conjecture.
As in Proposition 5.7 we have the following functorial properties:

Proposition 6.7. For a Galois extension L|K of number fields with intermediate
field F|K :

(i) ETNC(L|K, 1) = ETNC(L|F, 1), and
(ii) ETNC(L|K,1) = ETNC(F|K, 1) if F|K is Galois.
Proof. [BrB07, Prop. 3.5]. O

We now want to consider this conjecture computationally. However, we cannot
construct the complex Eg(.Z) itself since it does not consist of finitely generated
modules. Being a perfect complex, we know that Fg(.%¢) is quasi-isomorphic
to a bounded complex P of finitely generated, projective modules. There are
constructive methods (e.g. see Proposition 1.38) to find such a complex, but it
is not clear how to apply them explicitly since the modules in Eg(.%) are not
finitely generated.

In the following sections we use the finite approximation of the idele class
group from Section 3.1 to compute such a complex P and this will also provide
an explicit construction of the Euler characteristic xo(Es(-Z), pr)-
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6.2 Cohomology of E¢(.Z)

We investigate the proof of Proposition 6.4 from [BrB07, Lem. 3.1] to compute
the cohomology of Es(.%) explicitly. The cohomology groups of the distinguished

triangle [.,2”5 N .,2”] — Eg¢ — FEg(Z) give rise to a long exact sequence of
cohomology groups

0 — H YEg(L)) — Ly —25, Cy(L) — 6

tI‘LlQ

H'(Eg(L)) — £ —— 7Z — HY(Es(Z)) — 0.

from which one can compute the cohomology.
Therefore H (Eg(Z)) = Z/ trpo(-ZL), H Y(Es(ZL)) = ker(Zs — Cs(L)), and
in degree zero there is a short exact sequence

0 — coker (Ls — Cs(L)) — H°(Eg(Z)) — ker(trzg) — 0.

Since the kernel and cokernel of the trace map can be computed explicitly, it
remains to investigate the kernel and cokernel of the map s — Cs(L) which is
the composite of expg : Ls — LS and Ly — Cs(L).

Lemma 6.8. If we set U := {e € Of | 0u(c) € exp,(Z,) Yw € S}, then the
kernel of £s — Cs(L) is isomorphic to

logoo (U) = {x = (2w) € Loo | expoo(¥) € Axo(U)}
and its cokernel is the finite module L/ expg(Zs) - As(UL s).

Proof. (i) The kernel of expg(Zs) — Cs(L) consists of elements in expg(-Zs)
which are also in the kernel Ag(Uy s) of LG — Cg(L). Therefore:

ker (expg(Zs) — Cs(L)) = Ag(Ups) Nexpg(Ls)
= {Ag(e) | e € Uy g s.th. o,(¢) € exp, (L) Yw € S}
In the latter set, w(e) = 0 for all w € Sy since o,,(¢) € exp,(-Z,). This implies
e € OF and hence ker (expg(Zs) — Cs(L)) € Ag(U). Since every element in
Ag(OF) is zero in Cs(L), one has ker (expg(Zs) — Cs(L)) = Ag(U). Then the

kernel of the composite map is {x € Zs | expg(z) € Ag(U)}. The projection to
log.(U) provides a map

Y {r € Ls|expg(r) € As(U)} — {x € Loy | expoo(z) € A (U)} = log (U)
((xw)w\ooa (yw)w’fOO) = ((xw>w|oo)-

Since the exponential function exp,, for finite w € Sy is injective on .7, the
map 1 is an isomorphism: If z,, = 0 for all w|oo, then there exists ¢ € U with
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1 = exp,(zy) = oyw(e) for w|joo. Hence, ¢ = 1 and exp(y,) = 0,(¢) = 1 which
implies y,, = 0 for all w { co. This proves injectivity of ¢. If (z,) € log, (U)
is given with exp,, () = o0y(e) for € € U, then by definition of U there exist
Yw € L with oy,(e) = exp,, () for all w t co. Therefore, (z,,) has a preimage
and 1 is surjective. In summary, the projection v is an isomorphism and the
kernel of . — Cg(L) is isomorphic to log. (U).

(ii) By the conditions on S, Lemma 3.1 implies that there is an isomorphism
Cs(L) ~Crs = L5/A(ULs). Hence, the cokernel of .2 — Cg(L) is isomorphic
to LS/ expg(Zs) - Ag(Up,s). The quotient Lg/exps(,ﬁfg) is

Li/exps(Ls) = | Li/expu(Z) x [ B /Rsox [ C*/C*

weSy weS(R) weS(C)

and therefore the projection onto L§/expg(ZLs) - Ag(Up,s) will be finite. O

6.3 Finite approximation of Fs(.Z)

The explicit construction of the Euler characteristic from Section 1.4.2 cannot be
applied to the complex Eg(.Z) directly since it does not consist of finitely gen-
erated modules. Therefore, we construct a complex E! (L) of finitely generated
modules which will be quasi-isomorphic to Eg(.Z). The construction of Ef(Z)
is based on the construction of the global fundamental class from Chapter 3.

Recall that we used an approximation of Chinburg [Chi85] to the S-idele class
group Cs(L) in the computation of the global fundamental class. It was obtained
as follows.

In a first step we considered the module C}, g which was isomorphic to Cs(L) if
S satisfied the conditions (S1)—(S4) from page 70. Then we defined the following
modules in Section 3.1 using the finitely generated modules W,, C L) for infinite
places w € Sy (G), and lattices exp,,(Z,) € OF for finite places w € Sy(G):

]z,s = H indng;/expw(wa) X H indng:N Cz,s = ]Z,S/UL,&

weSs(G) WE S (G)
]{75 = H indG LY/ exp,, (L) X H indwaw, C’ﬁs = I£S/UL,S~
we Sy (@) WE S ()

The modules }:S and C’g}s were both constructed to be finitely generated and
we obtained the diagram

Is I > I o

| L l (6.3)

Crs — Clg—— Cig

in which the horizontal arrows induce isomorphisms in cohomology, see (3.9).
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From the isomorphism H?(G, M) ~ Ext%(Z, M) for any G-module M, we
then have isomorphisms Ext#(Z,Crs) ~ BExtg(Z,C1 4) ~ Extg(Z, C’f’s) and
similarly for the Yoneda groups. Assume that the complexes Eg = [A — Z[GH
and B = [A7 — Z[G]] with cohomologically trivial Z[G]-modules A’ and A rep-
resent the global fundamental class in Yext}(Z,CL s) and YextZ(Z, C’}is). The
isomorphisms with YextZ(Z, Cg,s) are applied by constructing the pushout se-

quences with Cpg — C? ¢ and Cf ¢ < C? ;. One then obtains commutative
diagrams

0— CL,S A Z[G] Z 0
| J H | (6.4)
0— CYq A4 Z|G] 7 0
and
0— Cf g Al Z[G) y/ 0
[ ! H H (6.5)
0—— Cf g Ad Z|G Z 0

in which the complexes E§ = [A7 — Z[G]z] and B = [Zq — Z[G]] both repre-
sent the global fundamental class in Yext$,(Z,Cf g) ~ Extg(Z,C} g). In other
words, the complexes E¢ and EY are quasi-isomorphic and the quasi-isomorphism
induces identity maps H°(E§) = Cf 4 = HO(E’g) and HY(EL) =7 = Hl(Eg) on
the cohomology groups.

Remember that only the complex Eg, which represents the global fundamental
class in Ext% (Z, C’i, ), can be computed since the others do not consist of finitely

generated modules. The complex Eé can be constructed using the cocycle from
Algorithm 3.13 and applying Proposition 1.29. To approximate the complex
Es(Z) using the complex EZ we will consider the modules

We= [] ndg Ww,CLlCIf
WESs (G)
and log, (W) ={x € Ly | expo(x) € W} C L.

By definition of W, the module log. (W) is also an induced module: we
have log(Weo) = @ yes(a) indgw log,, (W.,,) where log,, (W,,) denotes the module
{z € L, | exp,(x) € W,, C LX}. We can then prove the following.

Lemma 6.9. Fach module log, (W,) C L, is cohomologically trivial as G-
module and therefore log. (W) is cohomologically trivial as G-module.

Proof. If w € S, is a place with trivial decomposition group G,, = 1, then
every G,-module is cohomologically trivial. Consider a complex place w with
decomposition group G,, # 1. Since each module W, contains the S-units
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ULs by construction? — and in particular the element 1 € U g — the module
log,,(W,,) will contain the kernel of the exponential map, resulting in a commu-
tative diagram:

2mZ —— log,,(Wy,) —— W,

H [ [
C

2miZ < b C~

l i

C/log, (Wy) —— C* /W,

By construction of W,, the quotient C*/W,, is a cohomologically trivial G,,-
module and as the bottom row is an isomorphism, this also holds for C/ log,,(W,,).
Since C is cohomologically trivial as well (considered as additive module), this
implies the cohomological triviality of log, (W,,). Using the induced description
of the module log, (W), Shapiro’s lemma finally implies that log, (W) is co-
homologically trivial. O

We now construct complexes in a similar way as we obtained Fg(.Z). In
particular, we will again use the lift of the trace map tr' : £ — Z[G]. We then
consider the chain map « : [LOO 9, (Z} — El with Ly P, LY — 025 C A1
in degree 0 and t1r’ in degree 1. The cone of a, is the complex

EY(2) = [Lo 225 AV 6 % — Z[C]

with Lo in degree —1. The differential in degree 0 is the sum of the maps
A? — Z|G] and tr'. For the complex EY one obtains a quasi-isomorphic complex

EUL) = [Lo 2= A1 2 — Z[G)]

using the same construction and the quasi-isomorphism will again induce the

identity map on the cohomology.
Similarly, there is a map of complexes o : [log. (W) LR Z] — Eé given by
XPog

log,,(Wo) —= Wy, — Ci,s C A’ in degree 0 and tr’ in degree 1. The cone
EL(ZL) of a; is the complex

Bi(ZL) = [log,, (W) == AT @ % — Z[G]]

where log. (W) is placed in degree —1 and the differential in degree 0 is the
sum of A/ — Z[G] and tr'.

Note that the complexes EZ(.%), Eg (&) and EL(Z) consist of cohomologically
trivial modules. By Proposition 1.38 they are actually perfect complexes if their
cohomology groups are finitely generated, which is part of the following proof.

2See Proposition 3.3 for the construction of Wy,.
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Theorem 6.10. The complex Ef(.,f) is a perfect complea: which is quasi-isomor-
phic to Es(ZL). Therefore uy, induces a trivialization 11} of EL(Z) and

Xc(Es(Z), nr) = xc(BL(L), 1)

Proof. As in the proof of [BrB07, Prop. 3.6] we first consider the commutative
diagram
Ly == exp(Zy)

| [

l l l H
EYL) Lo —— A1® % —— 7[G]

in which exp(%}) is the kernel of A — A? by diagram (6.4). The upper complex
is acyclic since the exponential function is injective for every finite place. Thus,
the map Es(.Z) — Fi(¥) is a quasi-isomorphism which induces a trivialization
pi of EL(Z). Then the following holds for the Euler characteristics:

xa(Es(ZL), pr) = xa(EL(L), ui).

T he quasi-isomorphism of E§(.Z’) and E? §(-Z) similarly induces a trivialization
9 of E? (&) for which x¢(EL(ZL), i) = XG'(Eq (Z) as).
To describe the Euler characteristic in terms of E (L), consider the commu-
tative diagram

EL(Z): log,, (W) —2P= Al @ & —— Z[G]
| [ ! H
EYZ) - Lo —0= L A1g ¥ —— 7[G] (6.7)

l |

LOO/IOgoo<WOO) —Pee, Lgo/Woo

in which L2 /W, is the cokernel of A — A% by diagram (6.5) and the complex in
the bottom row is quasi-isomorphic to the cone of the injective map of complexes
EL(Z) — F4(Z) by Lemma 1.37.

The map exp,, : Loo/log(We) — LX /W is injective because we factored
modulo the preimage logoo(Woo) of W4 Its cokernel is trivial since

L% ) exp, (L ( H R*/Ryq % H 1)
weS(R weS(C)

and W, contains —1 6 U LS cw, C Woo at every real place w. Hence, the
complex is acychc and F jS — E{(£) is again a quasi-isomorphism. It induces
a trivialization i . of By( and one obtains

Xa(E4(L), 1) = xa(B5(L), 1)
which completes the proof. 0
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Note that all quasi-isomorphisms in the above proof induce identity maps on the
cohomology groups by the projections in (6.6), the inclusions in (6.7), and the
identification of E¢ and EY in Extg,(Z, Cf ). Therefore the trivialization (1} can

be identified with 1z, and we will further consider py, as trivialization of Ef(Z).

We finish this section by an explicit description of the computation of the Euler
characteristic xq(E4(ZL), u1) € Ko(Z[G],R). The complex EL(ZL)g is acyclic
outside degrees —1 and 0 and by Corollary 1.43 this implies XG(Eg(X ), 1) =
—)‘(G(Ef;(.i” ),ir). If P is a complex of finitely generated projective modules,
which is quasi-isomorphic to EL(.Z) through a chain map 7 : P — EL(Z),
then this is xo(EL(L), pr) = xa(P, 7 pupm) = [P*,0, P~] where § denotes the
isomorphism of Py and Py induced by uz, as in Section 1.4.2.

From the construction by Proposition 1.38 one obtains such a complex P and
a quasi-isomorphism 7 : P — Eg(.Z) as in the following diagram:

P . P,Q b—2 Pil pP—1 PO Po Pl
I R
El(Z): log, (Ws) — Al @ . %= 7]

If we consider the proof of Proposition 1.38 in more detail, we also see that p_»
is injective and that we can choose P! = Z[G]. Moreover, the quasi-isomorphism
7 induces Z[G]-isomorphisms 7; : H*(P) — H'(Es(%)).

Therefore, the Euler characteristic x¢(FL(2), ur) = xa(P, 7~ pupm) is a triple
[P2 @ P°,¢, P! @ Z|G]] and the isomorphism 6 is induced by s as follows.
From the complex P we have short exact sequences

0 — ker(p;)) — P' — im(p;) — 0,
and 0 — im(p;) — ker(pi1) — HH(P) — 0
in every degree. All these short exact sequences remain exact after tensoring with
R[G] over Z|G] and choosing R[G]-splittings gives isomorphisms
pi: Pp — ker(pi)g @ im(pi)e,
Pip1  ker(pis1)r — im(p;)r & H™(P)g.
By H'(P)r = 0 one has im(pg)g =~ Pi and the isomorphism 6 is given by

(P72 PO)r 222 im(p_s)r @ ker(po)r @ im(po)r

Po

p—2)
— L im(p_o)r @ im(p_1)r & HO(P)g & im(po)r
p-1)

—1
™ HLTO .
—_

im(p_1)r @ im(p_2)r & H ' (P)g & im(po)r (6.8)

()™, .
——— im(p_1)r @ ker(p_1)r ® im(po)r

1
(pfl) PIR—I @ P[é'
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Note that all the maps p; and p; are also isomorphisms if one only tensors with Q
instead of R. Since the modules (P72 @ P%)g and (P! & P!)g are Q[G]-free, all
isomorphisms in (6.8), except the one induced by py, can therefore be represented
by Q[G]-matrices.

6.4 Description of the algorithm

Using the theoretical preparations from above we can present an algorithm which
gives numerical evidence for ETNC(L|Q, 1). The algebraic term of the conjec-
ture is the Euler characteristic xg(Fs(-Z),ur) which can be computed using
Theorem 6.10 and the construction above.

The analytic term of T(L|K, 1) depends on the leading term (j g (1) €
Z(R[G])*. The Artin L-function and the leading coefficient of the S-truncated
Artin L-function can be computed in MAGMA using algorithms by Dokchitser
[Dok04]. Using his algorithm and the fact that the order of the Artin L-function
is known (e.g. see [Tat84, Chp. I, §8]), one can compute (j g 5(1) € Z(R[G])* as
a tuple of (real or complex) values.

In the algorithm below, we will compute a representative of the Euler charac-
teristic xo(EL(L), u) in Z(R[G])* and its product with (7jo.s(1) up to compu-
tation precision. Then we check the rationality conjecture numerically by veri-
fying that the product in Z(R[G])* C [], cjpy.() C approximates an element in
Z(QIG)* = [ienrg@ QX) € Tl et € Using this approximation we will
then continue to verify ETNC(L|Q, 1) numerically.

Before we discuss each step in more detail, we give an overview of the algorithm.

Algorithm 6.11 (Numerical evidence for ETNC(L|Q, 1)).
Input: A Galois extension L|Q of number fields with group G and a complex
precision 7.

Output: True if ETNC(L|Q, 1) could be verified up to precision r, and False
otherwise.

(Initialization)

1 Compute a set of places S satisfying conditions (S1)—(S4) from page 70.

(Analytic Part)

2 Compute the S-truncated Artin L-function for L|Q and the leading term
(7|o.s(1) using algorithms of Dokchitser [Dok04].

(Algebraic Part)

3 Compute the inverse of the global fundamental class v~ € H (@G, C{ﬁ s) with
Algorithm 3.13. This involves the construction of finitely generated modules
We € Lo and C};S using Algorithms 3.7 and 3.9. The local lattices .2, C Op,
for finite places v give rise to a global lattice .Z using [Ble03, §3.1].
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4 Compute a complex representing the cocycle y~! using the construction from
Section 1.3.2 with splitting module Af = CY ¢(v71).

5 Construct all modules and maps of Eé (Z) explicitly and use Proposition 1.38
as above to construct a complex P of finitely-generated, projective Z|[G|-
modules and a quasi-isomorphism 7 : P — EL(£). Let 6 : (P72 @® P%)p —
(P~1 @ P')r denote the isomorphism (6.8).

(Comparison)

6 Compute a Q[GJ-basis B of (P72 @ P%)g ~ Q[G]? and (P! & P')g ~ Q[G)?
and let H be the finite set of primes p, including p | |G| and those for which
B is not a Z,|G]-basis of (P72 @& P°)z, or (P~' & P')z,.
For primes p ¢ H:

7 Compute the matrix A € Gl;(R[G]) representing 6 with respect to this basis.

8 Compute an approximation { € Z(Q[G])* of the product (jq (1) nr(4) as
tuple (&1,..., &) € [Tim; Qxa)-

9 Check whether the ideals of the prime ideal decomposition of ;Ogq(y,) have
support in H.

For every other prime p € H:
10 Compute a Z,[G]-basis of (P~2& P")z, and (P~' & P')z, using [BW09, §4.2].
11 Compute the matrix A € Gl;(R[G]) representing 6 with respect to this basis.
12 Compute an approximation &, € Z(Q[G])* C Z(Q,[G])* of (f g (1) nr(A).
13 Compute Ky(Z[G],Q,) using the algorithms from [BW09] and check whether

5%;7(@17 (&) is zero.

Return: True, if all comparisons were correct and False otherwise.

Remarks 6.12. Algebraic part: The lattice used in the construction of Cz,s

should be the same lattice which also occurs in the construction of Eg (Z). In the
description of the above algorithm we use [Ble03, §3.1] to construct the global
lattice .2 C Oy from local lattices .Z, C Oy, established in the computation
of the global fundamental class. In this case, however, it might be easier to
construct an appropriate global lattice and compute its localizations afterwards.
In any case, we have to make sure to use the same lattice in both parts of our
algorithm.

The extension class constructed using the splitting module A = C’gs(y) rep-
resents the global fundamental class in YextZ(Z, C’gjs) by means of a projective
resolution of Z. The conjecture, however, is formulated by representing extension
groups using injective resolutions of the second variable. Following Remark 5.4



146 6 The equivariant Tamagawa number conjecture at s = 1

in [BrB07] we therefore have to consider the inverse of the global fundamental
class in our construction.

Finally, the computation of the Euler characteristic xg(Es(-%), 1) is explained
in detail in Section 6.3.

Comparison: If M is a finitely generated Z[G|-module and B = {by,...,b,} is
a Q[G]-basis of M @z Q[G] with b; € M, then (b, ..., by)zi has finite index
k in M, and k becomes a unit in Z,[G] if p { k. Hence, B is also a basis for
M Qg Z,) |G if p 1 k. Applying this fact to the modules P~?@ P° and P~' @ P',
we can therefore compute the finite set H in step 6.

For the primes p € H we compute a Z,[G]-basis of the modules (P~ & P")z,
and (P~!' @ P')z, separately. The algorithm of [BW09, §4.2] actually computes
these bases by considering the localizations Z,) instead of Z,. By Z,) C Q C
R these bases will then also provide corresponding bases of (P2 PO) and
(Pil &P Pl)R.

In both cases we can therefore compute a matrix A € Gl;(R[G]) which repre-
sents 6 with respect to these bases and were d € N is appropriate.

If we apply the proof of [Jan10, Thm. 3.3.2] to the case ETNC(L|K, 1), we
know that the rationality TQ(L|K,1) € Ky(Z[G],Q) holds if and only if n =
(ijos(D)nr(A) € Z(Q[G])* holds. By assuming the rationality conjecture, one
can therefore compute an approximation £ € Z(Q[G])* to n € Z(C[G])*.

This is done by representing n by a tuple (1y) € [] ¢y, (@) C through the Wed-
derburn decomposition. Since values at conjugate characters must be conjugated,
the polynomials [,,_,., (X —ny) € C[X] must actually have coefficients in Q for
all x € Irrg(G). We can therefore approximate each of the coefficients with ra-
tional numbers, and we can then compute the roots in Q(y) exactly. Together
these roots provide a tuple & = (&) € [], e (@) @(X) Which approximates 7).

By the decomposition of Ky(Z[G], Q) into p- parts Ko(Z,|G],Q,), we know that
¢ represents zero if and only if it is zero in every group KO( »|G|,Q,). For primes
not dividing |G| the torsion subgroup of Ky(Z,[G], Q,) is trivial. To represent zero
in the relative K-group, £ must therefore be a p-adic unit. This can be checked
by computing the support of the factorization of £Oy,, compare Proposition 5.13.

For the other (finitely many) primes, £ represents zero in K(Z,[G], Q,) if it is
an element in nr(Z,[G]*). This can be checked using algorithms from [BW09].

In special cases the algorithm above can also be used to give a proof of the
equivariant Tamagawa number conjecture at s = 1. By the rationality conjecture
one expects that

GrsDur(4) € Z@QAE) ~ [ @~

x€lrrg(G)

Therefore, the transcendental parts of (7 ;. 4(1) and nr(A) have to cancel and the
main issue is to compute the algebraic part exactly.
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Remark 6.13. Let M; and My be free Q[G]-modules and ¢ : M; — M, and
isomorphism of Q[G]-modules. If ay,...,a, and by,...,b, are Q[G]-bases and
if A € GL,(Q[G]) represents ¢ with respect to these bases, then the reduced
norm nr(A) = (dety (A4))yemre(c) is an element in Z(Q[G])*, i.e. each component
satisfies det, (A) € Q(x)* and nr(A) is Galois invariant by nr(A),., = o(nr(A4),)
for o € Aut(Q(x)|Q).

Now consider the modules M; g = R[G]®q|e M; and My r = R[G]®g(a) M2 and
the isomorphism induced by ¢. The bases a; and b; of M; and M, induce bases
a; ®1 and b; ® 1 of Mg and My g, respectively. Then the matrix representing
the isomorphism ¢ : M;r — M;r with respect to these bases will again be the
same matrix A € Gl,(Q[G]) C Gl,(R[G]).

We apply this fact to the isomorphism 6 : (P72 @ P%)g — (P~! @& P)g from
(6.8) which can be divided into three parts:

0,: (P20 PO)Q — Mo
0y : Ml,R - MQ,R
03 : Moo — (P! @ Pl)q,
with M, = im(p_s) @ im(p_1) & H°(P) @ im(po),
My = im(p_;) @ im(p_s) @ H*(P) @ im(py).

As discussed in Section 6.3 the isomorphisms 6, and 63 were induced by splittings
and were therefore already defined over Q. Hence, the reduced norm of Q|G]-
matrices representing ¢, and 03 will be in Z(Q[G])* for any Q|G|-basis. Indeed,
all these modules are Q[G]-free by a lemma of Swan (see [CR81, Thm. (32.11)])
since they are Z[G]-projective.

As a result, the most significant part in @ = 603 o 03 0 01 r is given by 0.
More precisely, let By, By, B and B, denote Q[G]-bases of the four modules
(P2@®P%q, My g, Mag and (P~ @ P')g, let A be the matrix representing 6 with
respect to the induced bases By g and By g and A; the matrix representing 6, with
respect to Bog and Bsg. Then nr(A4) = Anr(A;) for some factor A € Z(Q[G])*
which arises from the Q[G]-isomorphisms 6, and 0;.

To get a proof of the equivariant Tamagawa number conjecture with Algo-
rithm 6.11 it is therefore crucial to control the transcendental elements in the
reduced norm of the isomorphism 6y : My g — Mg with respect to Q[G]-bases
of M1 g and M. This isomorphism was induced by

pr HY(EL(L))y = H(ELL)),
The investigation in the proof of Theorem 6.15 will use this fact in order to restrict

the analysis of 6 to p17, whose determinant will change by a factor in Z(Q[G])*.
But first we prove the following identities.
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Lemma 6.14. For a subgroup H of G, let ey = ﬁ Yonexh and F = L". Then
there are identifications

(a) ey’ = F°, and
(b) en(log(Or) @z Q) = log, (OF) ®z Q.

Proof. (a) Consider an element z € egyL® Tt is fixed by any group element
h € H and therefore x € (L°)¥ C F. For its trace we compute 0 = tryg(z) =
dweco(@)=[L:F]} cqu7(x) =[L: F|trpg(z) where 7 runs through a set
of representatives of G/H. This implies z € F° and, hence, ey L° C F°. On the
other hand, every x € FU satisfies x = egx € ey L°.

(b) For primitive elements x € ey (log..(OF) @z @) one has r=ep(x’ ®q) for
2’ € log,,(OF) and ¢ € Q. Therefore, z = (Y _,;7(2')) ® i € log. (O HHEeQ
and for the latter module we use the identification

log (O ={x € Ly | expy(2) € Aso(OF) and h(x) = x Vh € H}
~{r € Fy C Ly | expo(2) € Ax(Of)}

where Fiy = F ®g R. Since x € F, implies exp,,(z) € F, and A (O] ) N Foo =
Ax(OF NF) = Ay(O5), one obtains (10goo((9,§))H = log..(OF) which proves
en(log,(0f) ®2 Q) € log(OF) €2 Q.

On the other hand, one has log. (Ox) C log. (OF) and every primitive element
z € log (Of) ®z Q with x = 2/ ® ¢ for 2'log, (OF) and ¢ € Q satisfies x =
¥ @q=(Lren (@) @ i € en(logo(0F) @z Q). [

Since we consider the modules after tensoring with @Q, part (b) also holds for
every submodule of OF of finite index. We will apply this result for the module
O} of totally positive units in O, which was already used in Remark 6.2.

Theorem 6.15. If all characters x € Irre(G) are rational or abelian, then one
can compute the product

Cz|@,s(1) nr(A) € Z(Q[G])*
in Algorithm 6.11 exactly.

Proof. (i) Let x be a character with rational values x(o) € Q for all o € G. By
Artin’s inductions theorem the character y satisfies the equation

my = Z ngind$ 1y (6.9)

HCG

for integers m and npy, where H runs through subgroups of GG. In the following,
we assume that m = 1. For m > 1 see Remarks 6.16 below.
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As in Algorithm 6.11 the matrix A represents the isomorphism
6: (P 2@ Py — (P ' Py

and by Section 1.4.1 the reduced norm nr(#) is given by determinants det, (A).
By the conditions on x one then has

det, (A) = H detindng(A)nH

HCG

and LL|QS X, 1 H CFS

HCG

(6.10)

where F = L# | (r5(s) denotes the S-truncated Dedekind ¢-function of F/|Q and
(rs(1) its leading term at s = 1.

To compute the product of the leading coefficient of (y, k.s(s) and the reduced
norm of A we therefore have to consider products

detindng (A)C;S(l)

If (P2® P%g and (P! @ P') are R[G]—modules of rank d, the matrix A
induces an isomorphism C[G|* ~ C[G] ®gjq R[G] R C[G] @rje) R[G]* ~ C[G]*

which in turn induces
¢ : (enC[G])* = (enCIG])".

As in the proof of [Jan10, Thm. 3.3.5] one has det;,q¢,, (A) = detc(¢). Following
Remark 6.13 we therefore only need to consider the C-determinant of

pr - en (LY ®g C) — ey (log,,(OF) ©7 C)

by choosing Q-bases of the modules ey (L%) and ey (log. (OF)®zQ). The reduced
norm of ¢ with respect to any pair of Q-bases will only differ by a factor A, €
Q(x)* which is actually rational by the conditions on Y.

By Lemma 6.14 we can use identifications F° = ey (L°) and log, (OF) ®z Q =
en(log. (OF) ®z Q) and consider the commutative diagram

en (L’ ®q Q) —— en(log,(Of) ®z Q)
J:

|=

FO

logoo( ;) Xz @

in which each isomorphism is defined over Q. The C-determinant of the isomor-
phism py, : eg(L° ®g C) — ey(log,.(OF) ®z C) will therefore be a rational
multiple of the determinant from pp : F® ® C = log, (O}) ®z C.
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As in Remark 6.2 we now consider the subgroup of totally positive units O} in
O} which is a subgroup of finite index, so that log. (0}) ®7zQ =~ log,.(OF) @7 Q.
Note that this restriction might introduce another factor in Q(y) = Q.

As a result, we only have to compute the determinant of pp exactly, which we
now consider in two steps

FO®C 25 F2 @ C -5 FO @ C

(6.11)
B By Bs

with respect to bases By, By and Bs.

We denote n = [F': K| = ry + 2ry where m and ry are the number of real and
pairs of complex embeddings of F. Let vs,...,y, be any Q-basis of F* and set
B ={p®1,...,y,®1}.

Similar to the representation of Fi, in Remark 6.1, we identify F,, ®r C with
Hrl Cx HT2 C x HT2 C where the components at r; + 7 and r; + 75+ j correspond
to a pair of complex embeddings. In other words, the embeddings o; : F' — C are
ordered such that oy, ..., 0, are real embeddings, and 0,4, 0, 4; = 0y 4r,t; are
pairs of complex embeddings for j = 1,...,ry. Then the isomorphism is explicitly
given by

FOO®RC:H(C><HC><HC

T ® 2z (01(x)z,. ., Oy (2) 2,00 11 (@) 2, o, Oy (T)2)

Note that if ¢ is a fixed embedding, every other embedding is of the form 1o o
for 0 € Gal(F'|Q). The element in Gal(#|Q) corresponding to the embedding o;
will also be denoted by o;.

Let by,...,b, denote the standard basis of ], C x [],,, C. Then the set
By ={by —by,...,b, — by} is a basis of L% ®p C.

Finally, we consider fundamental units e4,...,¢; of (9;5 with t = ri +1ry — 1.
Then the elements

fr=">_log(oiex)bi k=1,....t
i=1
ft+]' = 27Tibr1+j — 27Tib’r1+7”2+j j = 17 e ,7"2

provide a Z-basis of the lattice log(O}) by Remark 6.2. Since this is a full lattice,
these elements form a Q-basis of log(O5) ®zQ and B; = {fi® 1,1 <i<n}isa
basis of L% @ C.

Note again that by Remark 6.13 these choices of bases B; and Bj allow the
computation of the determinant of det, (A) up to a rational factor.

Next we compute the matrices representing pp with respect to these bases.

The equations
n n

po(ye) =Y oi(u)b = Y oilyn) (bi — by)

i=1 =2
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using trpig(yr) = Y iy 0i(yx) = 0 show that the first isomorphism of (6.11) is
represented by the matrix A, = (oi(yk))z <inen 1ts determinant is closely related
to the discriminant d of F: The elements 1 = 1,¥s,...,y, provide a basis of
F and if T € Gl,,(Q) denotes a base change between this basis and an integral
basis of O, then the discriminant d(1,ys,...,y,) is

2
ALy, ) = det (i) 2, ey ) = det(T)

By adding every column to the first column and using the relations trpg(yx) =
Yo oi(yk) =0 for ys, ..., y, we obtain

1 e 1 n 1 .. 1
det<(a'(yk>) ; > = det nbe) - oulte) = det 0 o2(y2) -+ on(y2)
01(Yn) -+ On(yn) 0 oa(yn) -+ on(yn)

= ndet((ai(yk))%i’ks”) =ndet(A).

Since the discriminant dp is negative if and only if ry is odd, we have det(A;) =

+i2 L det(T)+/|dp|.
The second isomorphism of (6.11) is a base change from B, to Bs. Using the
equality 1 log(o,ex) = 0 from [Neu92, Chp. I, § 7] we have

fr =" log(oier)(bi — by), k=1,...,t,
=2

and ft+j = 27Ti(br1+j — bl) — 27Ti(br1+r2+j — bl); j = 1, ..oy Tl

The base change from B3 to B, is therefore represented by the matrix

log(oge1) -+ log(oy4161) -+ -+ log(op 4ry181) -+ log(oner)
log(oae) -+ log(optae) -+ - 10g(0p 4ryr16r) -+ log(oney)
271 —27m
0
271 —27

Since the embeddings o0,,4,,+; and o, 4+; are conjugated for 1 < j < 7y, the
entries log(oy,+r,+56x) and log(o,, +;ex) are equal. Adding the (ry + 72 + j)-th
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column to the (r; + j)-th column for all j = 1,...,ry and eliminating the upper
right entries provides a matrix
((5Z log(aiek))ijk
—27i
—2mi

with §; = 1 for real and §; = 2 for complex places o;. By [Neu92, Chp. I,
Thm. (7.5)] this latter matrix has determinant £ Rp(27i)" where Rp denotes the
regulator of F if £q,...,&; was a system of fundamental units for Of. Since we
considered O}, we obtain the multiple +Rz(27i)"2[OF : OF].

In isomorphism (6.11) we need the inverse of this base change, and combining
the two steps we get the determinant

detc(¢) = A/ |dp| RiH (2m) 7"

for some rational factor A, € Q(x) = Q.
On the other hand, the residue (5(1) = ress—1 (p(s) is
. 2m1 (27)"
Cp(1) = WhFRF

by [Neu92, Chp. VII, §5, p. 488|, where hp is the class number of F' and up
denotes the set of roots of unity in F. Since (f. g(1) is a rational multiple of (j(1),
the products dety,q;, (A)(s(1) used in the computation of the determinant
det, (A) will be a rational numbers.

(ii) Now let x be an abelian character. Then x is a homomorphism and we
assume that y is not the trivial character, which is already handled by the first
case. Set H = ker(x), so that y is actually a character of F' = L. If f denotes
the conductor of x, then F' can be embedded in Q((y):

T Q(¢r)
H‘ I f
F/ r
G|

Q

We set I' = Gal(Q((y)|Q), Ty = Gal(Q(¢f)|F) and G = Gal(F|Q) ~ G/H.
We can now also consider y as a character of I' ~ (Z/fZ)* by inflation, and
moreover as a Dirichlet character of Z/ f7Z:

a+T ifae (Z/f2)* ~T,
0 otherwise.
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For an abelian character y, the Artin L-series of y coincides with the Dirichlet
L-series of x and its leading term at s = 1 is given by the following equations

f
7TiT<;<) Z)‘((a)a for x(—1) = —1,
Liglo1) = ol (6.12)
“T) S (@) tog [1— 2| for y(—1) = 1

f

1

a

with Galois Gauss sum 7(x) = 3./_, X(a)C§, cf. [Was97, Thm. 4.9]. Again, the
values of Ly g 5(x,1) just differ from L7, (x, 1) by some factor in Q(x).
For the algebraic part of the conjecture, we again consider the isomorphism

Hr - 6X(LO ®q C) o ex(logoo(OZ) ®z C).

The idempotent e, of the G-character x can be written as egey where ey is the
corresponding idempotent of y as G/ H-character.

We therefore let e, denote the idempotent of x as character of G from now on,
and we consider the C-determinant of the isomorphism

pr e (F° ©q C) — e, (log(0F) ©2 C) (6.13)

with respect to bases induced by Q(x)-bases of the modules e, (F° ®g Q(x)) and
ey (log..(OF) ®zQ(x)). Here, we are again just interested in the determinant up
to a factor in Q(x). Note that by e, C[G] ~ C ~ Q(x)®q(,)C and F,,@rC ~ C[G]
these modules have Q(y)-rank one.

We use the standard basis by, ..., b, of F, ®r C introduced before and use the
fact that every basis element b; = b, corresponds to an embedding to¢ for o € G.
In the group ring C[G] one has e,0 = x(0)e, and using F, ®r C ~ C[G] one
similarly obtains e, b, = x(0)e,bs.

A Q(x)-basis of e\ Fy, @r C is eyby. Set § = trg,)r((y) € F, then e,f is a
Q(x)-basis of e, F* ®g Q(x) and

pr(ed) = e 3 uot)b, = 3 1(00)x(0)exh = T(V)eyb.

ol oel

Therefore, the C-determinant of (6.13) with respect to these bases is a Q,-
multiple of the Gauss sum 7(Y).

As in the case of rational characters we still have to make a base change to a
basis of e, (F2 ®g C) which is induced by a Q(x)-basis of e, (log..(OF) ®z Q(x))-
And if we consider a sublattice U in O of finite index and a Q(x)-basis of
log..(U) ®z Q(x), the determinant is just changed by a factor in Q(x).
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First case: x(—1) = —1. Consider the basis fi,..., f,_1 of log, (OF) intro-
duced in case (i) and let 7 € G denote the complex conjugate with F*© = F7.

Since x(7) = x(—1) = —1 and 7e = ¢ for the fundamental units ¢ € O} one
computes
1 _ 1 _ 1
exfe = @ZX(U)U = @ Z (X(U)U U+ x(or)rle 1fk)
oe@ oG/ (T)
=0 fork=1,...,t
and exft+j = eX(QﬂibTH-j - 27TibT1+T2+j)
= Amix (0, 45)exb1 for j=1,...,7r9

One notices again that the Q(y)-rank is one, and a basis for log, (O}) ®z Q(x)
is e, fr+1. The above computations also show that the base change from e, b,
to e, fir1 has determinant (47ix(o,,11))"" with 0,41 denoting a fixed complex
embedding.

Second case: x(—1) = 1. In analogy to the above case, one verifies e, fi1; =0
for j =1,...,7r9. This also includes the case where F' is totally real and r, = 0.

By [CNT87, Chp. 1, § 3] the element ¢ = Ng¢,)r(1—(y) is a fundamental unit
of O} and we choose the basis

ey Z log(oe)b, = Z log(oe)x(0)ey by

ce ce

of log (0}) ®z Q(x). The determinant of the base change will therefore be the

inverse of
> x(0)log (N p(1—¢r)7) = > x(0) > log|1 —¢f|

O’GG O'EG 7€l
;
= x(0)log|1 =7 =) x(a)log|1 - ¢f|
oel a=1

in this case.

In conclusion one has

AT (X >(4mx<am+1>)‘1 for x(—1) = —1

et (A) = .
D) =g (3 ot~ ) for x(1) =1

for some factor A\, € Q(x). The relations of Gauss sums from [Was97, Lem. 4.7

and 4.8] show that 7(x)7(x) = 7(X)T(x)x(=1) = x(=D|7(x)]* = x(=1)f. Then
a comparison with (6.12) show that every product L} g 5(x, 1)dety(A) has values

in Q(x) and can therefore be computed exactly.
As aresult, the product (7, 5(1) nr(A4) can be computed exactly in Z(Q[G])* =
erIer(G) Q(X) . O
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Remarks 6.16. 1. For an implementation, the result above is actually not accu-
rate enough because one will need the factor A\, € Q(x) explicitly. To compute
this factor one will have to analyze every index that is introduced by the choice
of the bases in the proof.

2. If m > 1 in the equation (6.9) obtained from Artin’s induction theorem,
then we would get

(dety (A)LEgs(x, 1 H detiyagy,, (A)" Cpe(1)™
HCG

instead of (6.10) in the proof above. Then we can just compute the m-th power
™ of the value £ = detX(A)LzIQ s(x, 1) exactly. By considering an appropriate
number field extension, we could compute all the m-th roots of £ exactly and
use numerical approximations as in Algorithm 6.11 to find the right one among
them.
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Appendix A

Computational results for the epsilon
constant conjecture

A.1 Local Galois groups up to degree 15

In Section 5.3.2 we applied several heuristics to find global representations of
local Galois extensions L|Q, up to degree 15 with primes p < 15. Table A.1 gives
an overview of all Galois groups which occur up to this degree and how many
of them are represented by polynomials in the database of Kliiners and Malle
[KMO1].

This result was obtained by computing all local extensions of degree n < 15 of
Q, with p|n using Pauli’s implementation in MAGMA of the algorithm described
in [PRO1] and searching the database [KMO1] for appropriate polynomials. The
computation of all those extensions can be very time-consuming, especially for
extensions L|Q of degree 8 and extensions L|Qs of degree 9. We therefore also
use the database [JR]| which list all local extensions of Q, up to degree n < 11
for p|n.

In the table we use the following common notations:

e A, is the alternating group of order n!/2,
e (, is the cyclic group of order n,

e D, is the dihedral group of order 2n,

@, is the generalized quaternion group of order n,

Sy is the symmetric group of order n!, and

V4 is the Klein four-group Cy x Cj.
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n p group Fext. in [KMOI] n p group H#ext. in [KMOI]
2 2 Cs 7 v 10 5 Dy 3 v
3 3 Cs 4 v 1 11 Cni 12 1
4 2 Cy 12 v 12 2 Cio 12 8
Vi 7 v Cy3xV, 11 v
5 D Cs 6 v Ay 1 v
6 2 Cs 7 v Dy 3 v
Ss 1 v Q12 4 v
3 G 12 v 3 Ch 8 4
Ss 6 v Cs3xVy 4 2
T 7T Oy 8 2 Ay 0
8 2 Cs 24 8 Dy 6 v
Cox Cy 18 17 Q12 2 v
3 1 v 13 13 O 14 1
Dy 18 15 14 2 Cly 7 v
Qs 6 v Dy 0
9 3 Coy 12 9 7 Cly 24 3
2 1 v D; 3 0
10 2 Cy 7 v 15 3 Cis 4 v
D5 0 5 Cis 6 2
10 5  Cy 18 6

Table A.1: Local Galois extensions over Q,, of degree n < 15 with primes p
dividing n.
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A.2 Computations in the proof of Theorem 5.16

The following pages present an overview of the computations for the proof of the
local epsilon constant conjecture for

e abelian wildly ramified extensions over (Q; of degree < 6, and
e non-abelian wildly ramified extensions of degree < 15

as in Theorem 5.16.

The tables below give a complete list of all non-isomorphic extensions which
occur in those cases. These extensions can be computed as presented by Pauli and
Roblot in [PRO1]. Their algorithm was implemented in MAGMA® and PARI/GP?.
Up to degree 11 one can also find polynomial generating these extensions in the
database of local fields by Jones and Roberts [JR]. This gives a total list of 52
non-abelian extensions and 37 abelian extensions of Q5.

For each such extensions M of @, we list the following information:

(a) The non-abelian Galois group G of M/Q, and the prime p dividing |G|.

(b) A polynomial from the database of local fields [JR] generating the extension
M locally (only possible up to degree 11).

(c) A polynomial generating a global representation of M/Q,. These polyno-
mials were mostly found using the database of Kliiners and Malle [KMO01],
as discussed in Section 5.3.2.

(d) The ramification index of p in M.

(e) A polynomial generating the cyclic extension N in which the unramified
term is computed (also discussed in Section 5.3.2).

(f) The degree of the composite field E, in which all computations take place.
(g) The time needed to verify the local conjecture for M/Q,.

More details on every single computation can be found in the log-files on the
enclosed CD. All computations were performed with MAGMA version 2.15-9 on a
dual core AMD Opteron machine with 1.8 GHz and 16 GB memory. The hardest
case is one of the Dj-extensions which took about 7 days.

lcommand: AllExtensions
2command: padicfields
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Appendix B
Magma Packages

The following sections give an overview of algorithms that were implemented in
MAaGMA. The four packages we describe below are:

Brauer groups: A package for computations in local and global Brauer groups
as well as algorithms for local fundamental classes.

Global fundamental class: This package contains the algorithms for global fun-
damental classes described in Chapter 3.

Global representations: This combines the heuristic methods for the construc-
tion of global representations described in Section 5.3.1.

Local epsilon constant conjecture: This package is the most comprehensive of
these four. It includes all the algorithms and methods described in Chap-
ter 5 for the computational proof of the local epsilon constant conjecture.

B.1 Brauer groups

Filename: brauer.m

This package contains methods to compute in local and global Brauer groups as
well as algorithms for the local fundamental class.

Basic usage and examples

Let L|Q be a finite extensions and P a prime ideal of p above L. Then we can
compute the local Brauer group H*(G, Lg;) by:

> rec := LocalBrauerGroup(L,3);

It returns a record, which contains all the important structures which are com-
puted by Algorithm 2.3.

To compute the local fundamental class in this group one can either use the com-
mand LocalFundamentalClassDirect (which will also compute the cohomology
group itself) or the command LocalFundamentalClassSerre. Both functions
take the completion Ly and a precision of computation as input:
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> LP, iota := Completion(L, P : Precision := 300);
> ¢ := LocalFundamentalClassSerre(LP, pAdicField(LP), 30);

For the computation in the global Brauer group H 2(G, L*) we can use the
command GlobalCocycle to construct element by through local conditions

> L
> cCc

SplittingField(x"3+9);
GlobalCocycle(L, [ <2, 1/2>, <3, 1/2> 1);

The global cocycle is computed as a representative C?(G, U, ¢) with appropriate
set of places S. In other words c is a map G x G — U s. Given such a global
cocycle, one can identify the invariants using GlobalCocycleInvariants:

> GlobalCocycleInvariants(L,c);

Documentation

For local Brauer groups the following structure is defined:

locBrGrp := recformat<
L : FldNum, P : RngOrdIdl, p : RnglIntElt,
M : GrpAb, actM : Map, gM : Map,
theta : RngOrdElt,
C : ModCoho, f1 : Map,

1lfc : ModTupRngElt
>.

b

It includes the following information as in Algorithm 2.3: the number field L with
prime ideal ¥ dividing the prime p, the module M from Lemma 2.1 defined by
an element 6 € L with corresponding Galois action and homomorphism L — M,
a cohomology module C' as computed by CohomologyModule with corresponding
map f; to and from M, and the local fundamental class as element of C'.

LocalBrauerGroup(L: :F1dNum, p::RngIntElt) -> Rec
LocalBrauerGroup(L: :F1dNum, P::RngOrdIdl) -> Rec

Optional parameters: autMap:=0, lfc:=false

Computes the local cohomology group H p(ery Lg;) for an ideal B dividing p as
record of type LocBrGrp using Algorithm 2.3. Optionally one can pass the Galois
action on L as map G — Aut(L|K) and if 1fc is true, a representative of the
local fundamental class is computed using Algorithm 2.18.

LocalFundamentalClassDirect(L: :F1dPad, n::RngIntElt) -> Map

Compute a cocycle representing the local fundamental class of L|Q, up to the
given precision using the direct method, see Algorithm 2.5.
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LocalFundamentalClassSerre(L: :F1dPad, K::FldPad, steps::RngIntElt)
-> Map

LocalFundamentalClassSerre(L: :RngPad, K::RngPad, steps::RngIntElt)
-> Map

Optional parameters: psi:=0

Compute the cocycle representing the local fundamental class of L|K up to the
given precision using Serre’s approach, see Algorithm 2.18. Optionally, one can
pass the map ¥ : G — Aut(L|K) representing the Galois action on L.

GlobalCocycleInvariants(L: :F1dNum, gamma::Map) -> SeqEnum

Compute the invariants of the cocycle v € H 2(G, L*) for a global Galois extension
LK of number fields with group G, see Algorithm 2.23.

GlobalCocycle(L: :F1dNum, locCond::SeqEnum) -> Map

Computes a global cocycle in H 2(@, L*) respecting the given local conditions.
These must be given as sequence of tuples (p,i,) with i, in 1/|Gy|Z where B is
an ideal of L dividing p and )i, = 0+ Z.

FrobeniusEquation(c: :RngPadElt, precision::RngIntElt)
-> RngPadElt, Map

FrobeniusEquation(c: :RngPadElt, precision::RngIntElt, OK::RngPad)
-> RngPadElt, Map

FrobeniusEquation(C: :SeqEnum, precision::RngIntElt)
-> SeqEnum, Map

FrobeniusEquation(C::SeqEnum, precision::RngIntElt, OK::RngPad)
-> SeqEnum, Map

Solves the equation x#~' = ¢,¢ in OF, up to the given precision, where ¢ is
the Frobenius automorphism of Ok, see Remark 2.10. The solution x and the
automorphism ¢ are returned. If a sequence C' of elements is given, a sequence
of solutions is returned. If Ok is not given, O = O is used. Otherwise, Og
must be an extension of Og. Note, that whenever the norm of ¢ over O is not
1, this can generate huge extensions of Opg.
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B.2 Global fundamental class

Filename: gfc.m

This package contains methods to compute the global fundamental class.

Basic usage and examples

There exist two commands for the computation of global fundamental classes
which correspond to the cyclic case in Section 3.2.1 and the general case in Sec-
tion 3.2.2.

The cyclic case is not restricted to cyclic extensions but can also be applied
to other extensions L|Q in which there exists a prime p which is undecomposed
in L. The following example computes the global fundamental class for a Galois
extension L|Q with group Cg.

> L := NumberField(x"6 - 12*x"4 + 36%x"2 - 24);
> time C, f1, gfc := gfcUndecomposed(L, 3);

The command computes a cohomology structure C, a map £1 which reads cocycles
in this structure and vice versa, and the canonical generator in H 2(G,CL).

For arbitrary extensions L|Q, in which such an undecomposed place does not
exist, we need to specify a cyclic extension N|Q of the same degree. For com-
putational reasons it is essential that the composite field LN has small degree
over Q. In the following example we consider an extension L|Q with group Ss.
It has a subfield Q(1/229) which can be embedded into a cyclic extension N|Q of
degree 6 with N C Q((a29). The composite field will then have degree 18 over Q.

L := SplittingField(x"3 - 4x*x + 1);

L1 := NumberField(x"6 - 4580%x~5 + 517540%x"4 - 17136986%*x"3
+ 164417420%x"2 - 53936828*x + 229);

time gfcCompositum(L, L1);

vV V V V

Documentation

gfcUndecomposed(L: :F1dNum, pO::RngIntElt) -> ModCoho, Map,
ModTupRngElt

Optional parameters: psiL:=0

Computes the global fundamental class for a (totally real) number field L in
which the prime pg is undecomposed, see Section 3.2.1. Optionally one can pass
the Galois action on L as map G — Aut(L|Q).




B.3 Global representations 175

gfcCompositum(L: :F1dNum, L1::F1dNum) -> ModCoho, Map, ModTupRngElt

Given an arbitrary (totally real) Galois extension L|Q and a cyclic extension
L1|Q of the same degree, this method computes then global fundamental class of
L|Q as in Algorithm 3.13.

trivialSClassNumberPrimes(L: :F1dNum) -> SegEnum

Optional parameters: primes:=[]
Compute a sequence of primes such that the S-class number of all subfields of L
is trivial. Optionally specify a set of primes which will be included in S.

inducedModule (M: :GrpAb, phi::Map, G::Grp) -> GrpAb, Map, SeqEnum,
SeqEnum, SeqgEnum

Given a (left) H-module M as abelian group with H-action by ¢ : H — Aut(M)
and H a subgroup of G. Compute the induced module N as a direct sum and re-
turn NV, the G-action on N, a left representation system R of G/H, and sequences
of embeddings M — N and projections N — M according to R.

B.3 Global representations

Filename: globalrep.m

This package contains heuristic methods to compute global representations of
local Galois extensions.

Basic usage and examples

The most important command in this package is GlobalRepresentations. It can
be used to find global representations for local Galois extensions. For example
the command
> GlobalRepresentations( SymmetricGroup(3), 3 );
finds global representations for S; extensions of Q3. This is done by computing
all extensions of degree 6 of Q3 using the command Al1Extensions, sending an
internet request to the database of Kliiners and Malle to get a list of polynomials
generating S3 extensions, and selecting appropriate polynomials for the local
extensions. The internet request is implemented using the Unix wget command
and will therefore not work if this command is not available on your system.
In this case, a list of candidate polynomials can be passed using the optional
parameter candlist.

Using the same command, one can also find global representations for multiple
Galois groups and primes. And as a last option, one can find global representa-
tions for a list of local extensions for which the Galois group is known.
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The result presented in Appendix A.1, is found using the following commands

> list := [ < SmallGroup(n,i), p > :

> i in [1..Number0fSmallGroups(n)],

> p in [x[1] : x in Factorization(n)],
> n in [2..15] 1;

> GlobalRepresentations( list );

However, the computation of all local extensions over QQ; and Q3 of degree 8 and
9, respectively, will take a long time.

One can therefore also use the database by Jones and Roberts [JR]. On their
website the authors provide files, which contain all those local extensions and
corresponding Galois information. After defining a few polynomial rings, one can
load these files and compute global representations. As an example, this is done
for the degree 8 extensions of Q2 by the following commands with a computation
time of about a minute:

> Zy<y> :
Zt<t>

PolynomialRing(Integers());
> PolynomialRing(Integers());
> Zx<x> := PolynomialRing(Integers());
> load "JR/Q2deg8a.m";

> GlobalRepresentationsJR( pols, 2 );

The two databases can also be accessed directly using kluenersMallePols or
jonesRobertsPols.

Finally, a few formulas of [JLY02] were implemented. With the commands
genericC4Pol and genericD4pol one can construct polynomials generating Cly-
and Dj-extensions. And embeddingC2C4 embeds a given C extension into a
Cy-extension, if possible.

Documentation

GlobalRepresentations(G: :Grp, p::RngIntElt) -> .
GlobalRepresentations(list::SeqEnum) -> .

Optional parameters: JR:=false, candlist:=[]

Given a Galois group G and a prime p or a list of tuples (G,p). For each tu-
ple compute all local extensions of degree #G of Q,, and search for global rep-
resentations using the database by Kliiners/Malle. Also shows corresponding
polynomials from the database by Jones/Roberts if JR is set to true.
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GlobalRepresentations(ext::SeqEnum, G::Grp) -> SeqEnum

Optional parameters: JR:=false, candlist:=[]

Given a list of local extensions which have Galois group G. Search for global
representations using the database by Kliiners/Malle. Also shows corresponding
polynomials from the database by Jones/Roberts if JR is set to true.

GlobalRepresentationsJR(pols::List, p::RngIntElt) -> .
GlobalRepresentationsJR(pols::List, n::RngIntElt, p::RngIntElt) ->.

Given a list of polynomials in format of the database by Jones/Roberts, repre-
senting extensions of degree n of Q,. For each Galois group of this degree, select
corresponding polynomials from the list and search for global representations
using the database by Kliiners/Malle.

allExtensionsForGroup(G::., p::RngIntElt) -> SeqEnum

Optional parameters: precision:=100, ext:=[]

Compute all extensions of Q, using A11Extensions and select those which have
the given Galois group. If a list ext of extensions is given, this list is being
searched for suitable extensions.

kluenersMallePols(d: :RngIntElt, t::RngIntElt) -> SeqEnum

Get all polynomials of degree d with Galois group identifier (d,t) from the
database by Kliiners/Malle. Note that the identifier of MAGMA does not always
agree with the identifier of Kliiners/Malle. Depends on an internet connection
and the Unix wget command.

kluenersMallePolsG(G: :Grp) -> SeqEnum

Get all polynomials with Galois group G from the database by Kliiners/Malle.
Depends on an internet connection and the Unix wget command.

jonesRobertsPols(n::RngIntElt, p::RngIntElt) -> SeqEnum

Get polynomials generating all extensions of degree n of @, from the database by
Jones/Roberts. Depends on an internet connection and the Unix wget command.

genericC4Pol(s: :F1dRatElt, t::F1ldRatElt) -> RngUPolElt
genericC4Pol(s: :F1dNumElt, t::F1ldNumElt) -> RngUPolElt

Returns the generic Cy-Polynomial for s and ¢ from [JLY02, Cor. 2.2.6]. The
given polynomial generates a Cy-extension if s # 0 and 1 + 2 is not a square.
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genericD4Polynomial(a::., b::. ) -> RngUPolElt

If b and b(a® — 4b) are both not square, the polynomial f = bX*+aX?+ 1 which
generates a D, extension is returned. Otherwise an error occurs. See [JLY02,
Cor. 2.2.4].

randomD4Polynomial(K::., bound::RngIntElt) -> RngUPolElt

Optional parameters: maxTries:=5
Computes a random polynomial generating a D, extension over K.

embeddingC2C4 (K: :F1dNum) -> BoolElt, RngUPolElt

Optional parameters: p:=0

Computes a generating polynomial for a Cy-Extension L|Q which includes
K|Q,[K : Q] = 2. If p is specified, L will be unramified and undecomposed
at p. L can either be created as absolute field over Q or relative over K. See
[JLY02, Thm. 2.2.5].

B.4 Local epsilon constant conjecture

Filenames: epsconj.m, characters.m, artin.m

This package contains algorithms to prove the local epsilon constant conjecture
computationally as in Algorithm 5.12, see Chapter 5. Some algorithms are orga-
nized in separate files since they might be of independent interest.

Basic usage and examples

The functions for the Local Epsilon Constant Conjecture all start with the prefix
LEC. The main function is LECverify which applies Algorithm 5.12. It requires
a global field which is undecomposed at a given prime.

> L := NumberField(x"6+3);
> LECverify(L,3);

The verification of the conjecture works on a special record-format (LECrec) which
holds all necessary information. To experiment with specific values of the conjec-
ture (e.g. the equivariant discriminant dp k), one can proceed as follows:

> lec := LECcreateRec(L, 3);
> LECverify(~lec);
> lec‘dLK;
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LECverify will call the following functions:
e LECpreparations: computes the composite field F,
e LECcomputeValues: computes all values for the conjecture,
e LECimagesKORel: read these values in the same relative K-group,
e LECcheck: check the conjecture.

Some parts of the algorithm are further split: one can compute each part of
the conjecture separately (commands LECdiscriminant, LECcorrectionTerm,
LECunramifiedTerm, LECcohomologicalTerm, and LECepsilonConstant) by ei-
ther passing an LEC-record or all necessary parameters.

The values in the LEC-format that already exist will be used by LECverify, as
far as it makes sense. The algorithm will then omit the computation of those
values. This allows to reuse values which are already computed.

In the following example, we discover that the epsilon constants are actually
rational numbers. We can then replace the field Q((, () used to compute the
epsilon constants by the field Q((,,) and the rest of the conjecture is proved by
using a smaller composite field E.

> L := NumberField(x"6 + 3%x"5 — 18*%x"4 + 9%x~3 + 24%x"2 — 15%x - 5);
> lec := LECcreateRec(L,3);

LECepsilonConstant (“lec) ;

assert &and( [x in Rationals() : x in lec‘tLK] );

lec‘tLK := [* Rationals()!t : t in lec‘tLKx];

lec‘Qmpt := CyclotomicField( Exponent(lec‘G) );

LECverify(~lec);

This approach was also used in the last example listed in Table A.4, see also the
footnote on page 169.

V V V V V

Documentation

LECverify(L::F1dNum, p::RngIntElt, N::FldNum) -> BoolElt
LECverify(L::F1dNum, p::RngIntElt) -> BoolElt

Verify the local epsilon constant conjecture for L|Q at p. N must be an extension
of degree [L® : Q] such that p is unramified in N. The prime p must not
decompose in L or N. If not given, N is found heuristically as a subfield of a
cyclotomic field (for p # 2).

LECverify(setting: :Rec) -> BoolElt
LECverify(“setting: :Rec)

Verify the local epsilon constant conjecture for the given setting, as created for
example by LECcreateRec. No further checks are made on the given parameters.
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LECcreateRec(L: :F1dNum, p::RngIntElt) -> Rec

Creates an LEC-record for the number field L and prime p and computes the
automorphism group of L|Q.

LECpreparations(“setting: :Rec)

Preparation for the verification of the local epsilon constant conjecture. Com-
putes: a lattice .Z, the completion of L at B, the composite field E, and the
relative group K-group.

LECcomputeValues(“setting: :Rec)

Optional parameters: forceAllComputations:=false

Compute the five terms going into the local epsilon constant conjecture: the equiv-
ariant discriminant, the correction term, the unramified term, the cohomological
term, and the equivariant epsilon constant.

LECimagesKORel (“setting)

Read all the values of the Epsilon Constant Conjecture, as computed by
LECcomputeValues, in the same relative K-group.

LECcheck(setting) -> BoolElt
LECcheck(“setting)

Verify the local epsilon constant conjecture for the given setting, where the re-
duced norms are already computed.

Methods to compute the values of the conjecture independently

LECdiscriminant (psi: :Map, theta::RngOrdElt) -> AlgGrpElt
LECdiscriminant (setting::Rec) -> AlgGrpElt
LECdiscriminant (“setting: :Rec)

Compute the equivariant discriminant of a lattice as described in (5.8), see also
[BIBr08, §4.2.5].

LECcorrectionTerm(setting: :Rec) -> .
LECcorrectionTerm(~“setting: :Rec)
LECcorrectionTerm(QG: :AlgGrp, psi::Map, P::RngOrdIdl) -> AlgGrpElt

Compute the correction term as defined by (5.3).
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LECunramifiedTerm(psi::Map, p::RngIntElt, N::F1dNum) -> AlgGrpElt
LECunramifiedTerm(setting: :Rec) -> AlgGrpElt
LECunramifiedTerm(~setting: :Rec)

Compute the unramified term in N[G] for an extension L|Q, a prime p, ¢ :
Gal(L|Q) — Aut(L), and N an unramified extension with [N : Q] = [L% : Q],
see (5.9) and also [BIBr08, §4.2.7].

LECcohomologicalTerm(setting: :Rec) -> Rec
LECcohomologicalTerm(~setting: :Rec)

Compute the cohomological term for the local epsilon constant conjecture as
described in Section 5.4 on page 125, see also [BIBr08, §4.2.4].

It depends on several attributes in the LEC-record, as computed by
LECcreateRec and LECpreparations. The algorithm first computes a cocycle for
the local fundamental class and then continues by computing the splitting mod-

ule C(7), its projective resolution, and finally the Q[G]-isomorphism between
K + Q[G] and Q[G]".

LEClattice(P: :RngOrdIdl, pi::RngOrdElt, psi::Map) -> FldNumElt,
RngIntElt
LEClattice("setting)

Given a prime ideal 3 of L with uniformizing element = and automorphism map
¥ : G — Aut(L). Compute a generator § of a suitable lattice and an integer m
such that the lattice includes ™.

For the LEC-record, a few suitable lattices are computed and the (computation-
ally) best one is chosen for further computations.

LECcomputeLPmulModX (setting: :Rec) -> ModTupRng, SeqEnum, Map

Compute the module L/ = Ly/X, X = exp(.£) from Lemma 2.1 for the given
setting as well as a sequence of matrices representing the G-action and a map
L% — L.

LECepsilonConstant(L: :F1dNum, p::RngIntElt) -> List
LECepsilonConstant (setting: :Rec) -> List
LECepsilonConstant (“setting: :Rec)

Compute epsilon constants as described in in Section 5.4 on page 126, see also
[BIBr08, §2.5]. It depends on several attributes in the LEC-record, as computed
by LECpreparations or LECprepareEps.
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LECprepareEps (“setting: :Rec)

Compute Brauer inductions of all irreducible characters and the required precision
t for the Galois Gauss sums, see [BIBr08, Rem. 2.7].

Functions for norm residue symbols

localNormResidueSymbol (x: :F1dNumElt, N::F1dNum, M::F1dNum, PM::.)
-> GrpElt, FldAb
localNormResidueSymbol (x: :F1dNumElt, Na::F1dAb, PM::.) -> GrpElt

Let N|M be a global abelian extension, x € M* and B, an ideal of M such
that there is just one prime ideal By in N above P,,;. Compute the local norm
residue symbol (z, Ny, /Mg,,) in Gal(N|M). The extension N|M can also be
given as abelian field.

localNormResidueSymbolAsGlobalIdeal (alpha: :F1dNumElt, F::SeqEnum,
PK: :RngOrdIdl) -> RngOrdIdl

localNormResidueSymbolAsGlobalIdeal (alpha: :F1dRatElt, F::SeqEnum,
PK::RngInt) -> RngOrdIdl

Given the factorization F' of the Artin conductor of an abelian extension N|M,
an element o in M and an ideal P, of M such that there is just one prime ideal
Py of N above P,,. Compute an ideal a of M such that the global Artin symbol
(a, N|M) is equal to the local norm residue symbol (o, Ny, /Msp,, )-

globalArtinSymbol (a: :RngOrdFracIdl, psi::Map) -> GrpElt
globalArtinSymbol(a: :RngInt, psi::Map) -> GrpElt

For an abelian extension N|M, an ideal a in M and © : Gal(N|M) — Aut(L).
Compute the Artin symbol (a, N|M) € Gal(N|M).

Functions for characters

brauerInductionDegO(chi: :AlgChtrElt) -> SeqEnum

Given a character y of G, compute the Brauer Induction of x — x(1)1g, i.e.
compute triples (H, ¢, c¢), where H is a subgroup of G, ¢ is a linear character of
H, and cy, is an integer, such that

X = x(1lg =) cupind(p — 1a).
H,p
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conductor(chi::AlgChtrElt, P::RngOrdIdl) -> RngIntElt
conductor(chi::AlgChtrElt, RamGroups::SeqEnum) -> RnglIntElt

For a character y of G compute the conductor

— dim (V&
) = 3 5 oV

where G; denotes the i-th ramification group of 8. Either the prime B or a list
of the non-trivial ramification groups is needed.

det(chi::AlgChtrElt, lambda::AlgGrpElt) -> AlgMatElt

Given A € Q[G], compute det,(A) using Brauer induction and determinants of
linear characters.

det(chi::AlgChtrElt) -> AlgChtrElt

Compute the character ¢ given by the linear representation 1 (g) = det,(g).

det(chi::AlgChtrElt, psi::Map, p::RngIntElt, x::FldRatElt) ->
F1dCycElt

Given an extension L|Q, a character x € Irr(G) and = € Q, compute det, (z)
using Brauer induction. If N|M is the abelian extension for x, then det,(z) =
det, ((x, N|M)). For the definition see [Bre04a, Prop. 3.6(4)].

galoisActionOnCharacters(G: :Grp, psiG::Map, Irr::SeqEnum) -> Map

Given a group G, ¥ : G — Aut(L) and the irreducible characters of G. Compute
the Galois action G x Irr(G) — Irr(G).
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