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Zusammenfassung

Ein bekanntes Resultat für einen Zahlkörper K ist die Klassenzahlformel. Sie
stellt einen analytischen Term – das Residuum der Dedekindschen Zetafunktion
ζK(s) bei s = 1 – in Relation zu verschiedenen algebraischen Invarianten, darunter
die absolute Diskriminante, den Regulator und die Klassenzahl von K. Eine wei-
tere Formulierung der Klassenzahlformel verwendet den führenden Koeffizienten
der Laurentreihenentwicklung von ζK(s) bei s = 0. Zusätzlich hängen beide For-
mulierungen durch die Funktionalgleichung von ζK(s) zusammen, welche ζK(1−s)
und ζK(s) in Relation setzt.1

Dieser Zusammenhang wird in verschiedenen Vermutungen verallgemeinert und
verfeinert. Eine dieser Vermutungen ist die äquivariante Tamagawazahlvermu-
tung von Burns und Flach [BF01]. Galoiserweiterungen L|K von Zahlkörpern,
mit denen wir uns in dieser Arbeit im Besonderen beschäftigen, bilden einen
Spezialfall dieser sehr allgemeinen Vermutung, und zwar den Spezialfall des so
genannten Tate-Motivs. Flach gibt in [Fla04] einen Überblick über diese Ta-
magawazahlvermutungen und verwandte Resultate, für den wichtigen Spezial-
fall von Zahlkörpererweiterungen existieren jedoch auch explizite Formulierungen
[BlB03, BrB07].

Im Fall einer Galoiserweiterung L|K von Zahlkörpern betrachten wir die voll-
ständige Artinsche L-Reihe ΛL|K(χ, s) zu einem Charakter χ der Galoisgruppe
G = Gal(L|K) und die äquivariante Artinsche L-Reihe ΛL|K(s) =

(
ΛL|K(χ, s)

)
χ
,

welche alle Charaktere vereint. Die äquivariante Tamagawazahlvermutung bei
s = 0 stellt eine Verbindung zwischen dem führenden Koeffizienten ζ∗L|K(0) der
Laurentreihenentwicklung von ΛL|K(s) bei s = 0 und algebraischen Invarianten
der Erweiterung L|K her. Diese Invarianten werden unter anderem von Tates
kanonischer Klasse abgeleitet, welche Tate in [Tat66] definiert.

In der äquivarianten Tamagawazahlvermutung bei s = 1 wird gleichermaßen ei-
ne Relation zwischen dem führenden Koeffizienten ζ∗L|K(1) der Reihenentwicklung
von ΛL|K(s) bei s = 1 und algebraischen Invarianten, die auf der globalen Fun-
damentalklasse der Kohomologiegruppe Ĥ2(G,CL) basieren, vermutet. Hierbei
bezeichnet CL die Idelklassengruppe von L.

Diese beiden oben genannten Fälle der äquivarianten Tamagawazahlvermutung
sind voneinander unabhängig und werden im Folgenden mit ETNC(L|K, 0) und
ETNC(L|K, 1) bezeichnet.2

1Siehe etwa [Neu92, Kap. VII, § 5, p. 488 und Satz (5.11)].
2Die Bezeichnung stammt vom englischen Begriff Equivariant Tamagawa Number Conjecture.
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Aus der Funktionalgleichung der Artinschen L-Reihe, die ΛL|K(1 − s) und
ΛL|K(s) assoziiert, ergibt sich ein Zusammenhang der beiden führenden Koef-
fizienten ζ∗L|K(0) und ζ∗L|K(1). Ebenso steht Tates kanonische Klasse per Defi-
nition über lokale Fundamentalklassen mit der globalen Fundamentalklasse in
Beziehung. Diese beiden Abhängigkeiten geben Anlass zu einer Kompatibilitäts-
vermutung ETNCloc(L|K, 1). Sie prognostiziert einen Zusammenhang zwischen
Epsilonfaktoren, die in der Funktionalgleichung von ΛL|K(s) auftauchen, und lo-
kalen Fundamentalklassen und wird auch Epsilonkonstantenvermutung genannt.
Diese Kompatibilitätsvermutung gilt genau dann, wenn die beiden Vermutungen
ETNC(L|K, 0) und ETNC(L|K, 1) zueinander äquivalent sind [BrB07, Thm. 5.2].

Zusammenfassend ergibt sich das folgende Diagramm, in dem waagerechte Pfei-
le bekannte Zusammenhänge und senkrechte Pfeile vermutete Beziehungen kenn-
zeichnen:

ζ∗L|K(0) ζ∗L|K(1)

Tates kano- Globale Funda-
nische Klasse mentalklasse

Funktional-

gleichung

lokale Funda-

mentalklassen

ETNCloc(L|K, 1) ETNC(L|K, 1)ETNC(L|K, 0)

Breuning studiert in [Bre04b] den lokalen Charakter von ETNCloc(L|K, 1) im
Detail und formuliert eine lokale Epsilonkonstantenvermutung ETNCloc(E|F, 1)
für lokale Erweiterungen E|F über Qp. Außerdem zeigt er, dass die Gültigkeit
der lokalen Vermutung für alle nicht-archimedischen Komplettierungen Lw|Kv

die globale Vermutung ETNCloc(L|K, 1) impliziert.
Die äquivarianten Tamagawazahlvermutungen sind bereits für einige Fälle be-

wiesen. So ist beispielsweise bekannt, dass ETNC(L|K, 0) und ETNC(L|K, 1) für
alle Erweiterungen gelten, in denen L abelsch über Q ist [BG03]. Weiterhin sind
ETNCloc(L|K, 1) für abelsche Erweiterungen L|Q und beide Epsilonkonstanten-
vermutungen für zahm verzweigte Erweiterungen gültig [BlB03, Bre04b, BF06].
Darüber hinaus implizieren die äquivarianten Tamagawazahlvermutungen Chin-
burgs Vermutungen aus [Chi85], und nach Burns [Bur01] ist ETNC(L|K, 0) äqui-
valent zur gelifteten Wurzelzahlvermutung von Gruenberg, Ritter und Weiss
[GRW99].

Einige dieser Vermutungen wurden bereits algorithmisch untersucht. Ein Al-
gorithmus zum Beweis der lokalen Epsilonkonstantenvermutung wird von Bley
und Breuning in [BlBr08] vorgestellt. Dieser wurde bisher jedoch nicht imple-
mentiert, da für einige Teilprobleme – unter anderem für die Berechnung lokaler
Fundamentalklassen – noch kein effizienter Algorithmus bekannt ist. Unter Ver-
wendung eines lokal-global Prinzips, kann dieser Algorithmus auch zum Beweis
der globalen Epsilonkonstantenvermutung herangezogen werden.
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Die äquivariante Tamagawazahlvermutung bei s = 0 wird von Janssen in
[Jan10] studiert. Sie verwendet eine Konstruktion von Chinburg [Chi89], um
Tates kanonische Klasse zu berechnen, und entwickelt einen Algorithmus, wel-
cher ETNC(L|K, 0) numerisch verifizieren kann. In einigen Fällen kann der Al-
gorithmus sogar so modifiziert werden, dass er einen Beweis liefert. Allerdings
ist Chinburgs Konstruktion nur in Erweiterungen L|K anwendbar, in denen eine
Stelle von K existiert, die in L unzerlegt ist. Diese Voraussetzung ist eine sehr
starke Einschränkung an die Erweiterung L|K.

Um die äquivarianten Tamagawazahlvermutungen algorithmisch zu untersu-
chen, ist es also von zentraler Bedeutung effiziente Methoden zur Berechnung der
drei Fundamentalklassen zu kennen. Nach einer Einführung verschiedener für die
gesamte Arbeit wichtiger Begriffe und Notationen (Kapitel 1), beschäftigen wir
uns im ersten Teil der vorliegenden Arbeit im wesentlichen mit der Herleitung sol-
cher Algorithmen (Kapitel 2 bis 4). Anschließend verwenden wir diese im zweiten
Teil für rechnerische Untersuchungen der Tamagawazahlvermutungen (Kapitel 5
und 6).

In Kapitel 2 beschäftigen wir uns mit der Kohomologiegruppe Ĥ2(G,E×) einer
lokalen Galoiserweiterung E|F über Qp mit Gruppe G. Wir geben einen endlich
erzeugten Modul Ef an, der einen kohomologischen Isomorphismus Ĥ2(G,E×) '
Ĥ2
(
G,Ef

)
liefert. Dadurch können wir die Methoden von Holt [Hol06] verwenden,

um die Gruppe Ĥ2(G,Ef ) explizit zu berechnen (siehe Abschnitt 2.3).
Für eine unverzweigte Galoiserweiterung E|F kann die lokale Fundamental-

klasse in dieser Gruppe direkt angegeben werden. Bei allgemeinen Erweiterungen
werden wir die explizite Berechnung von Ĥ2(G,Ef ) nutzen und direkt aus der
Definition der lokalen Fundamentalklasse eine Konstruktion herleiten. Dies führt
zu Algorithmus 2.5, welcher jedoch für Erweiterungen vom Grad [E : Qp] > 10
nicht sehr effizient ist.

In Abschnitt 2.2.2 wird ein leistungsfähigerer Algorithmus für die Berechnung
lokaler Fundamentalklassen beschrieben, der auf der Theorie von Serre [Ser79,
Kap. XI, § 2] basiert. Insbesondere verzichtet dieser Ansatz vollständig auf die
Berechnung von Kohomologiegruppen. Stattdessen wird die lokale Fundamental-
klasse in Proposition 2.14 als Kozykel konstruiert. Der darauf basierende Algo-
rithmus ist für die gesamte Arbeit bedeutend.

Als erste Anwendung ermöglicht dieser neue Algorithmus Berechnungen in der
relativen Brauergruppe Br(L|K) einer galloisschen Zahlkörpererweiterung L|K.
Sie wird über den Isomorphismus Br(L|K) ' Ĥ2

(
Gal(L|K), L×

)
durch Kozykel

mit Werten in L× und lokal über

Br(L|K) '
⊕
v

Ĥ2
(
Gal(Lw|Kv), L

×
w

)
'
⊕
v

1

[Lw : Kv]
Z/Z

durch Invarianten (rationale Zahlen) beschrieben, wobei v alle Stellen von K
durchläuft. Durch die Kenntnis der lokalen Fundamentalklassen können wir diese
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lokalen Invarianten explizit berechnen (Algorithmus 2.23) und ebenso einen globa-
len Kozykel aus lokalen Bedingungen konstruieren (Algorithmus 2.27). In beiden
Fällen ist dabei die Einschränkung auf eine endliche Stellenmenge von K die
größte Herausforderung.

In Kapitel 3 wenden wir uns der Kohomologiegruppe Ĥ2(G,CL) für eine Galois-
erweiterung L|K von Zahlkörpern mit Gruppe G zu. Für algorithmische Frage-
stellungen sind wir zunächst wieder daran interessiert, einen endlich erzeugten
Modul Cf

L zu konstruieren, der einen Isomorphismus Ĥ2
(
G,Cf

L

)
' Ĥ2(G,CL)

liefert. Chinburg beweist in [Chi85] die Existenz eines solchen Moduls, und wir
werden in Proposition 3.3 die Konstruktivität seines Beweises zeigen.

Unter Verwendung der Methoden von Holt können wir dann wieder die Ko-
homologiegruppe Ĥ2

(
G,Cf

L

)
berechnen. Basierend auf der Konstruktion lokaler

Fundamentalklassen entwickeln wir anschließend einen Algorithmus, der die glo-
bale Fundamentalklasse in Ĥ2

(
G,Cf

L

)
berechnet. Dieser Algorithmus ist der erste

Algorithmus seiner Art, aber aus Komplexitätsgründen ist er in der Praxis nur
für kleine Erweiterungen (vom Grad kleiner als 20 über Q) anwendbar.

Die Kompatibilität der lokalen und globalen Klassenkörpertheorie spiegelt sich
in Tates kanonischer Klasse wieder. In Kapitel 4 wiederholen wir Tates Definition
aus [Tat66], welche unter anderem semi-lokale Fundamentalklassen verwendet.

Von den Algorithmen für lokale und globale Fundamentalklassen leiten wir
dann Algorithmen zur Berechnung der semi-lokalen Fundamentalklasse (Algo-
rithmus 4.6) und für Tates kanonische Klasse (Algorithmus 4.12) ab. Anschlie-
ßend zeigen wir in Abschnitt 4.5, dass diese Berechnung die Konstruktion von
Chinburg aus [Chi89] verallgemeinert.

Als Hauptresultat der ersten drei Kapitel können wir somit explizite Algorithmen
zur Berechnung lokaler Fundamentalklassen, globaler Fundamentalklassen und für
Tates kanonische Klasse herleiten.

Im zweiten Teil der vorliegenden Arbeit wenden wir diese Algorithmen für
Fundamentalklassen auf Tamagawazahlvermutungen an.

In Kapitel 5 wiederholen wir die Formulierungen der globalen und lokalen Epsi-
lonkonstantenvermutung von [BlB03] und [Bre04b]. Breunings lokal-global Prin-
zip (siehe Satz 5.6) zeigt, dass die globale Vermutung ETNCloc(L|K, 1) durch
einen algorithmischen Beweis der lokalen Vermutung ETNCloc(E|F, 1) für end-
lich viele lokale Erweiterungen E|F bewiesen werden kann.

Diese endlich vielen lokalen Erweiterungen müssen zunächst durch globale Er-
weiterungen dargestellt werden. Dazu konstruieren wir Galoiserweiterungen L|K
von Zahlkörpern mit Stellen w|v, so dass gilt: Lw ' E und Kv ' F . Dabei
muss v eine unzerlegte Stelle sein, d.h. w ist die einzige Stelle über v und die



Zusammenfassung ix

Körpergrade [L : K] und [E : F ] sind gleich. Da keine algorithmische Herange-
hensweise bekannt ist, welche den Grad von K über Q klein hält, geben wir in
Abschnitt 5.3.1 verschiedene Heuristiken an und setzen diese im Anschluss bei
lokalen Erweiterungen bis zum Grad 15 ein.

In Abschnitt 5.4 geben wir den Algorithmus von Bley und Breuning [BlBr08]
zum Beweis von ETNCloc(E|F, 1) wieder. Unter Verwendung der Berechnung
lokaler Fundamentalklassen mit den Methoden aus Kapitel 2 kann dieser Algo-
rithmus vollständig implementiert werden. Letztlich können wir folgendes rech-
nergestütztes Resultat (Satz 5.16 und Korollar 5.20) beweisen:

Die globale Epsilonkonstantenvermutung ETNCloc(L|K, 1) gilt für alle Galoiser-
weiterungen bei denen L in einer Galoiserweiterung M |Q vom Grad ≤ 15 einge-
bettet werden kann.

Zuletzt beschäftigen wir uns in Kapitel 6 mit der äquivarianten Tamagawazahl-
vermutung bei s = 1. Die Formulierung aus [BrB07, § 3] für Galoiserweiterungen
L|K von Zahlkörpern basiert auf einen Komplex ES welcher aus der globalen
Fundamentalklasse in Ĥ2(Gal(L|K), CL) konstruiert wird. Für algorithmische
Fragestellungen ist wiederum das Hauptproblem, dass der Komplex ES nicht
aus endlich erzeugten Moduln besteht. Allerdings erlaubt die Konstruktion des
endlich erzeugten Moduls Cf

L bei der Berechnung globaler Fundamentalklassen
aus Kapitel 3 die Definition eines verwandten Komplexes Ef

S , der aus endlich
erzeugten Moduln besteht. Ein wesentliches Resultat beweisen wir im Anschluss
in Satz 6.10:

Der Komplex Ef
S ist quasi-isomorph zu ES und kann ebenfalls zur Beschreibung

der Vermutung verwendet werden.

Der Komplex Ef
S und die Methoden zur Berechnung globaler Fundamentalklas-

sen aus Kapitel 3 werden anschließend verwendet, um einen Algorithmus für die
numerische Verifikation von ETNC(L|Q, 1) zu beschreiben. Abschließend zeigen
wir in Satz 6.15, dass dieser Algorithmus einen Beweis der äquivarianten Tama-
gawazahlvermutung liefert, sofern alle Charaktere von G rational oder abelsch
sind.
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Introduction

A well know result for a number field K is the class number formula. It relates
an analytic term — the residue at s = 1 of the Dedekind zeta-function associated
to K — to various algebraic terms, for example the absolute discriminant, the
regulator and the class number of K. There also exists a similar formulation using
the leading term of the ζK(s) at s = 0, and both formulations are connected by
the functional equation of ζK(s) which relates the values ζK(1− s) and ζK(s).3

In the past, various conjectures have been established which can be considered
as generalization of these facts. One of these generalization is the equivariant
Tamagawa number conjecture of Burns and Flach [BF01]. Galois extensions L|K
of number fields, which are considered in this thesis, make up a special case in
this conjecture, namely the case for the so-called Tate motive. For a summary
of these conjectures and related results we refer to [Fla04], but for the important
case of number field extensions there are also explicit reformulations of these
conjectures [BlB03, BrB07].

In the case of a Galois extension L|K of number fields we consider the com-
pleted Artin L-function ΛL|K(χ, s) associated to the characters χ of the Galois
group G=Gal(L|K) and the equivariant Artin L-function ΛL|K(s)=

(
ΛL|K(χ, s)

)
χ

which combines the functions for all characters. The equivariant Tamagawa num-
ber conjecture at s = 0 relates the leading term ζL|K ∗ (0) in the Laurent series
expansion at s = 0 of the function ΛL|K(s) to algebraic terms associated to L and
K. These algebraic invariants are constructed from Tate’s canonical class which
is defined by Tate in [Tat66].

Similarly, the equivariant Tamagawa number conjecture at s = 1 relates the
leading term ζ∗L|K(1) of the series expansion at s = 1 to algebraic invariants
which are based on the global fundamental class of the Tate cohomology group
Ĥ2(G,CL), where CL denotes the idèle class group of L.

Those two independet cases of the equivariant Tamagawa number conjecture
are denoted by ETNC(L|K, 0) and ETNC(L|K, 1) respectively.

The two leading terms ζ∗L|K(0) and ζ∗L|K(1) are connected by a functional equa-
tion which relates ΛL|K(s) and ΛL|K(1 − s). Moreover, by definition of Tate’s
canonical class, this class is related to the global fundamental class through local
fundamental classes. From these relations one therefore obtains a compatibility
conjecture ETNCloc(L|K, 1). It predicts a relation between epsilon factors from
the functional equation and local fundamental classes and is therefore also called

3For example see [Neu92, Chp. VII, § 5, p. 488 and Thm. (5.11)].
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epsilon constant conjecture. By [BrB07, Thm. 5.2] the compatibility conjecture
is valid if and only if ETNC(L|K, 0) and ETNC(L|K, 1) are equivalent.

To summarize, we have the following diagram in which horizontal arrows in-
dicate known relations and vertical arrows are relations predicted by the conjec-
tures:

ζ∗L|K(0) ζ∗L|K(1)

Tate’s cano- Global funda-
nical class mental class

functional

equation

local fundamental

classes

ETNCloc(L|K, 1) ETNC(L|K, 1)ETNC(L|K, 0)

In [Bre04b] Breuning studies the local nature of ETNCloc(L|K, 1) in more de-
tail and establishes a local epsilon constant conjecture ETNCloc(E|F, 1) for local
number fields E|F . He also shows that the validity of ETNCloc(Lw|Kv, 1) for all
non-archimedian completions Lw|Kv implies the validity of ETNCloc(L|K, 1).

The equivariant Tamagawa number conjectures have already been proved for
some cases. For example, ETNC(L|K, 0) and ETNC(L|K, 1) are true for exten-
sions in which L is abelian over Q [BG03], ETNCloc(L|K, 1) holds for abelian
extensions L|Q [BlB03, BF06], and for tamely ramified extensions the local and
global epsilon constant conjecture are valid by [BlB03] and [Bre04b]. Further-
more, the equivariant Tamagawa number conjectures are known to imply Chin-
burg’s conjectures [Chi85], and in [Bur01] Burns proved that ETNC(L|K, 0) is
equivalent to the lifted root number conjecture of Gruenberg, Ritter and Weiss
[GRW99].

Some of the conjectures were already studied algorithmically. An algorithm
to prove the local epsilon constant conjecture is presented by Bley and Breuning
in [BlBr08] but it is not yet implemented because there are some problems for
which no efficient solution was known at that time. One of these problems is
the computation of local fundamental classes. Using a local-global principle and
some theoretical results for the global case, this algorithm can also be used to
prove the global epsilon constant conjecture.

The equivariant Tamagawa number conjecture at s = 0 is considered algorith-
mically by Janssen [Jan10]. She uses a construction of Tate’s canonical class from
Chinburg [Chi89] and presents an algorithm which gives numerical evidence for
ETNC(L|K, 0) and also gives a proof for special cases. However, Chinburg’s con-
struction of Tate’s canonical class is only applicable for extensions L|K in which
there is a place of K which is undecomposed in L. This is a strong condition on
L|K and it would be pleasing to find a construction which is applicable in the
general case.
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Outline

To consider equivariant Tamagawa number conjectures algorithmically, it is essen-
tial to have methods for the computation of fundamental classes. In the first part
of this thesis we will develop different methods for the computation of fundamen-
tal classes (Chapters 2 to 4). These algorithms will then be applied to Tamagawa
number conjectures (Chapters 5 and 6). But first we will give an introduction to
several topics which will be needed throughout this thesis (Chapter 1).

In Chapter 2 we consider the Tate cohomology group Ĥ2(G,E×) of a local
Galois extension E|F of number fields with group G. We specify a finitely gener-
ated module Ef for which one has an isomorphism Ĥ2(G,E×) ' Ĥ2

(
G,Ef

)
in

cohomology. Using methods described by Holt in [Hol06] we can then explicitly
compute the group Ĥ2(G,Ef ), see Algorithm 2.3.

For an unramified extension E|F one can directly specify the local fundamental
class in this group. For arbitrary extensions, the explicit computation of cohomo-
logy groups also allows the construction of the local fundamental class by using
its definition. This leads to Algorithm 2.5 which is, however, not very efficient
for extensions E|F in which [E : Qp] > 10.

In Section 2.2.2 we develop an efficient algorithm for the computation of the lo-
cal fundamental class in Ĥ2(G,Ef ), based on the theory of Serre [Ser79, Chp. XI,
§ 2]. Most importantly, this approach avoids the computation of cohomology
groups. Instead, the local fundamental class is directly constructed as a cocycle
in Proposition 2.14. This provides a new algorithm which is relevant throughout
this thesis.

As a first application it allows computations in the relative Brauer group
Br(L|K) for Galois extensions L|K of number fields. It is described by global
cocycles Br(L|K) ' Ĥ2

(
Gal(L|K), L×

)
or through

Br(L|K) '
⊕
v

Ĥ2
(
Gal(Lw|Kv), L

×
w

)
'
⊕
v

1

[Lw : Kv]
Z/Z

by local invariants (rational numbers), where v ranges over all places of K and w
is a place of L above v. The elements in Br(L|K) can therefore be characterized
by invariants at every place v. In Section 2.3 we show how to compute these
invariants (Algorithm 2.23) and how to construct a global cocycle which satisfies
local conditions (Algorithm 2.27). The main effort in both cases is the restriction
to a finite set of places of K.

In Chapter 3 we deal with the cohomology group Ĥ2(G,CL) for a Galois exten-
sion L|K of number fields with group G. For algorithmic considerations, we are
again interested in the construction of a finitely generated module Cf

L for which
there is an isomorphism Ĥ2

(
G,Cf

L

)
' Ĥ2(G,CL). Chinburg proves the existence
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of such a module [Chi85] and an important step is to make his proof constructive,
see Proposition 3.3.

Using the methods described in [Hol06] one can then compute the cohomology
group Ĥ2

(
G,Cf

L

)
. Based on the construction of the local fundamental class we de-

velop Algorithm 3.13 which computes the global fundamental class in Ĥ2
(
G,Cf

L

)
.

This is the first algorithm to compute the global fundamental class, but for com-
plexity reasons it is only applicable to small extensions (of degree less than 20
over Q) in practice.

The compatibility of local and global class field theory is expressed in Tate’s
canonical class which is considered in Chapter 4. We recall its definition from
[Tat66] which also involves the semi-local fundamental class.

From the algorithms for local and global fundamental classes we deduce al-
gorithms which compute the semi-local fundamental class (Algorithm 4.6) and
Tate’s canonical class (Algorithm 4.12) for arbitrary Galois extensions L|K of
number fields. As a last result, we show in Section 4.5 that this computation
of Tate’s canonical class generalizes the construction described by Chinburg in
[Chi89].

As a result of those three chapters, we develop explicit algorithms to compute the
local fundamental class, the global fundamental class and Tate’s canonical class.

In the second part of this thesis, these algorithms for fundamental classes will
be applied to Tamagawa number conjectures.

In Chapter 5 we recall the formulations of the global and local epsilon con-
stant conjecture for number fields from [BlB03] and [Bre04b]. Using Breun-
ing’s local-global principle (see Theorem 5.6) one can show that the conjecture
ETNCloc(L|K, 1) is true if ETNCloc(E|F, 1) is true for finitely many local number
field extensions Lw|Kv, and this can be done computationally.

In a first step, we have to represent those local extensions E|F globally. We
need to construct a Galois extension L|K of number fields with places w|v such
that Lw ' E and Kv ' F . Moreover, this place v must be undecomposed in L.
In other words w must be the only place of L which lies above v and the degrees
[L : K] and [E : F ] must be equal. We were not able to give an algorithm for
such a Since no construction is known which keeps the degree of K small, we will
describe several heuristics in Section 5.3.1 and apply them to extensions E|Qp

up to degree 15.
Using the construction of local fundamental classes from Chapter 2 it is possi-

ble to implement the algorithm for the proof of ETNCloc(E|F, 1) from [BlBr08].
In Section 5.4 we recall the description of this algorithm. Then we can computa-
tionally prove the following result, see Theorem 5.16 and Corollary 5.20:
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The global epsilon constant conjecture ETNCloc(L|K, 1) is true for all Galois
extensions in which L can be embedded into a Galois extension M |Q which is of
degree at most 15.

Finally, Chapter 6 deals with the equivariant Tamagawa number conjecture at
s = 1. We recall the formulation from [BrB07, § 3] for Galois extensions L|K
of number fields which is based on a complex ES constructed from the global
fundamental class in Ĥ2(Gal(L|K), CL).

To consider this conjecture algorithmically, the main challenge is again the
fact that ES consists of modules which are not finitely generated. But the con-
struction of the finitely generated module Cf

L used in the computation of global
fundamental classes, allows the definition of a complex Ef

S consisting of finitely
generated modules. As a main result we prove in Theorem 6.10:

The complexes ES and Ef
S are quasi-isomorphic and we can also use the latter

complex in the description of the conjecture.

The complex Ef
S and Algorithm 3.13 for the construction of the global funda-

mental class are then used in Section 6.4 to describe an algorithm which numeri-
cally verifies ETNC(L|Q, 1). As a last result we prove in Theorem 6.15 that this
algorithm can actually prove of the equivariant Tamagawa number conjecture at
s = 1 for a single extension L|Q in the case where every character of G is rational
or abelian.





1 Preliminaries

1.1 Tate Cohomology

Let G be a finite group and A a G-module. Then Ĥq(G,A) will denote the Tate
cohomology groups as defined in [NSW00, Chp. I, § 2] or [Neu69, Chp. I, § 2].

More precisely, in terminology of [NSW00] the group Cq(G,A) of q-cochains,
the group Zq(G,A) = ker(∂q+1) of q-cocycles, and the group Bq(G,A) = im(∂q)
of q-coboundaries are defined using the cohomological complete standard res-
olution of A with differentials ∂q. The q-th cohomology groups Ĥq(G,A) :=
Zq(G,A)/Bq(G,A) are then called modified cohomology groups (or Tate cohomo-
logy groups). For computational issues we will always use the inhomogeneous
representation, where C0(G,A) = A and Cq(G,A) is the group of all functions
y : Gq → A for q ≥ 1.1

Explicitly, the most important cohomology groups for our purposes are those
in degrees −1 to 2:

Ĥ0(G,A) := AG/NGA and Ĥ−1(G,A) := NG
A/ IGA

where NGA = {NG a =
∑

σ∈G σa | a ∈ A} is the norm group, NG
A = {a ∈

A | NG a = 0} is the group of elements with trivial norm and IGA = 〈σa − a |
a ∈ A, σ ∈ G〉. In degree 1, we obtain the 1-cocycles as 1-cochains x with
x(στ) = σx(τ) + x(σ) for σ, τ ∈ G and the 1-coboundaries are maps x(σ) =
(∂1a)(σ) := σa− a for σ ∈ G and with a ∈ A. Finally, the 2-cocycles satisfy the
relation

x(στ, ρ) + x(σ, τ) = σx(τ, ρ) + x(σ, τρ) (1.1)
for σ, τ, ρ ∈ G and 2-coboundaries are maps x(σ, τ) = (∂2y)(σ, τ) := σy(τ) −
y(στ) + y(σ) with arbitrary 1-cochain y ∈ C1(G,A).

Remark 1.1. Note that the equations above assume that G acts from the left
on A, i.e. σ(τa) = (στ)a. If G acts from the right, we will use the exponent
notation to avoid confusion and one has the relation (aτ )σ = aτσ. The relation
(1.1) for 2-cocycles then becomes (written multiplicatively)

x(ρ, τσ)x(τ, σ) = x(ρ, τ)σx(ρτ, σ). (1.2)

This will be important when it comes to implementing algorithms into the com-
puter algebra system Magma [BCP97] because it prefers right-actions: for ex-
ample the action by the automorphism group of a number field is computed as a
right-action.

1In [NSW00] these inhomogeneous groups are denoted by the script letters C , Z and B.
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Remark 1.2 (Normalized cocycles). A cochain f ∈ Cn(G,A), n≥1, is called
normalized if f(σ1, . . . , σn) = 1 whenever one of the σi is 1. Every class in
Ĥn(G,A) can be represented by a (not necessarily unique) normalized cocycle,
cf. [NSW00, Chp. I, § 2, Ex. 5].

For example, let g be a 2-cocycle and let A be a division ring. Consider the
constant 1-cochain λ : G → L×, σ → g(1, 1)−1. Then one can easily check that
f = ∂2(λ)g is the normalized cocycle in the class of g in Ĥ2(G,A), cf. [Ker07,
§ 8.1].

For a subgroup H of G, we denote the restriction map by resGH : Ĥn(G,A) →
Ĥn(H,A) and (if H is normal) the inflation map by infGG/H : Ĥn(G/H,AH) →
Ĥn(G,A).

Since we will focus on the computation of fundamental classes in Chapters 2
to 4 we will summarize some results from local and global class field theory in
the following sections. See [NSW00, Chp. VII, § 1 and Chp. VIII, § 1] for details.

1.1.1 Cohomology of local fields
For a Galois extension L|K of local non-archimedian number fields with group
G the cohomology group H2(L|K) := Ĥ2(G,L×) has an important role. Below
we follow the construction of a canonical invariant map for local fields with non-
archimedian valuation. It is based on the following invariant map for unramified
extensions.

Theorem 1.3. For every unramified Galois extension L|K with group G there is
a canonical isomorphism invL|K : H2(L|K) → 1

[L:K]
Z/Z induced by the valuation

of L and the evaluation of characters at the Frobenius automorphism ϕ of L|K.

Proof. [NSW00, Chp. VII, § 1]. �

Explicitly, the local invariant map is given by

invL|K : Ĥ2(G,L×)
vL−→ Ĥ2(G,Z)

'−→ Ĥ1(G,Q/Z)
'−→ 1

[L : K]
Z/Z (1.3)

where the left-hand map is an isomorphism since the unit group UL = ker(vL) is
cohomologically trivial, the middle isomorphism is the inverse of the connecting
homomorphism obtained from the short exact sequence 0 → Z→ Q→ Q/Z→ 0
(where Q is cohomologically trivial), and the latter isomorphism sends a character
χ to the image of the Frobenius automorphism χ(ϕ).

Similarly, one obtains an invariant map

inv eK|K : H2(K̃|K)
'−→ Q/Z
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for the maximal unramified extension K̃ of K using the valuation of K̃ with co-
homological trivial kernel U eK . The invariant maps for different Galois extensions
L and N of K with L ⊆ N commute with the injective inflation map inf

N |K
L|K :

H2(L|K) → H2(N |K) and the restriction map res
N |L
N |K : H2(N |K) → H2(N |L).

If the number fields in these maps are known from the context, we will also write
inf or res.

The following lemma extends this canonical invariant map to the maximal
separable extension K̄ of K.

Lemma 1.4. H2(K̄|K) ' H2(K̃|K).

Proof. [NSW00, Thm. (7.1.3)]. �

This result is obtained by identifying the cohomology groups H2(L|K) and
H2(L′|K) for two extensions of the same degree. If Kn denotes the unramified
extension of K of degree n, one has isomorphisms

H2(K̄|K) ' lim−→
L

H2(L|K) ' lim−→
n∈N

H2(Kn|K) ' H2(K̃|K)

where L runs through all finite Galois extensions of K. In each of the direct
limits, two elements are identified, if their inflation to the cohomology of their
composite field is equal. Two different cohomology groupsH2(L|K) andH2(L′|K)
can both be considered as subgroups of H2((LL′)|K). One therefore often writes
H2(K̄|K) '

⋃
LH

2(L|K) and H2(K̃|K) '
⋃
n∈NH

2(Kn|K). Especially, if L is
an arbitrary Galois extension of K and L′|K is the unramified extension of the
same degree, then the inflation of H2(L|K) and H2(L′|K) are the same subgroups
in H2((LL′)|K).

Combining the previous results one then obtains a unique local invariant map

invK : H2(K̄|K)
'−→ Q/Z.

Its restriction to the cohomology of finite Galois extensions L|K provides an
invariant map invL|K : H2(L|K)

'−→ 1
[L:K]

Z/Z which is compatible with inflation
and restriction.

Theorem 1.5. The cohomology groups H2(L|K) satisfy the conditions of a class
formation2 with respect to the invariant maps invL|K, i.e.

(a) H1(L|K) = 1 for every normal extension L|K.

2In general, class formations can be defined for profinite groups G acting on an discrete module
A, cf. [NSW00, Def. (3.1.8)]. But here we will omit these details and state the properties
explicitly for the cohomology of local and global fields. These explicit properties can also
be found in [Neu69].
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(b) The invariant maps invL|K satisfy:

(i) invL|K = invN |K ◦ inf
N |K
L|K for extensions N |L|K with N |K and L|K

normal,

(ii) invN |L ◦ res
N |L
N |K = [L : K] invN |K for extensions N |L|K with N |K

normal.

Proof. [NSW00, (7.1.4) and (7.1.5)]. �

The compatibility of the invariant map with inflation and restriction, as in prop-
erty (b), can also be summarized in the following commutative diagram:

H2(L|K) H2(N |K) H2(N |L)

1
[L:K]

Z/Z 1
[N :K]

Z/Z 1
[N :L]

Z/Z

inf res

⊆ [L : K]

invL|K invN|K invN|L (1.4)

By means of the invariant map one can then identify a canonical generator of
H2(L|K).

Definition 1.6 (Fundamental class). The unique generator uL|K ∈ H2(L|K),
which is the preimage of 1

[L:K]
+Z by the canonical local invariant map invL|K, is

called local fundamental class.

We finish this section by specifying explicit representations of the local funda-
mental class for unramified and archimedian extensions.

Remark 1.7. (a) Let L|K be an unramified extension of degree n and π an uni-
formizing element of K. The Galois group Gal(L|K) is generated by the Frobe-
nius automorphism ϕ and the local fundamental class is defined by Theorem 1.3.
Consider the cocycle

c(ϕi, ϕj) =

{
1 if i+ j < n

π if i+ j ≥ n
(1.5)

from [Rei03, Chp. 7, (30.1)] and apply the isomorphism (1.3). Its image in
Ĥ2(G,Z) is the cocycle x ∈ C2(G,Z) for which x(ϕi, ϕj) is zero for i+ j < n and
one for i+ j ≥ n.

Embedded in C2(G,Q) the cocycle x is a coboundary since it is the image
of the 1-cocycle y ∈ C1(G,Q) defined by y(ϕi) = i

n
: For i + j < n one has

(∂1y)(ϕ
i, ϕj) = ϕi(y(ϕj))−y(ϕi+j)+y(ϕi) = j−(i+j)+i

n
= 0. And for n ≤ i+j < 2n

one has y(ϕi+j) = i+j−n
n

and thus (∂1y)(ϕ
i, ϕj) = 1. Hence (∂1y) = x and the

image of c in C1(G,Q/Z) is the projection x̄ of x via C1(G,Q) � C1(G,Q/Z).
The last isomorphism in (1.3) sends the cocycle x̄ ∈ C1(G,Q/Z) to the value

at ϕ, which is 1
n

+ Z. Therefore invL|K(c) = 1
n

+ Z and the cocycle c represents
the local fundamental class of L|K.
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(b) For a Galois extension of local fields with archimedian valuation, there is
actually just one non-trivial extension to consider: the ramified extension L = C
over K = R . In this case G and Ĥ2(G,L×) = Ĥ2(G,C×) are both cyclic groups
of order two. So there is just one generator in the local cohomology group, and we
define this generator to be the local fundamental class for archimedian local fields.
The normalized cocycles c(σ, τ) in this group are uniquely defined by c(σ, σ) for
σ 6= 1 and the cocycle relation (1.1) directly implies c(σ, σ) ∈ R.

A normalized 2-coboundary c ∈ Ĥ2(G,L×) is the image of a normalized 1-
cochain a ∈ C1(G,C×), which implies c(σ, σ) = σ(a(σ))a(σ) = |a(σ)|2 > 0.
Therefore, the cocycle

c(σ, τ) =

{
1 for σ = 1 or τ = 1

−1 for σ 6= 1 and τ 6= 1

in C2(G,L×) cannot be a coboundary and, hence, it represents the local funda-
mental class in Ĥ2(G,L×).

1.1.2 Cohomology of global fields
Whereas the multiplicative group has an important role in local class field theory,
the counterpart for global class field theory is the idèle class group CL.

For global fields L, we consider the completions Lv and their group of integral
units ULv := O×

Lv
. For infinite places v, we define ULv := L×v . For every place v

we denote the decomposition group by Gv.

Definition 1.8 (Idèle class group). Let L be a global field. The idèle group
IL of L is defined as the restricted product IL =

∏′
v L

×
v , where v runs through

all places of L. The product is restricted w.r.t. the unit groups ULv , i.e. every
element x = (xv) ∈ IL has only finitely many components xv /∈ ULv .

The units L× of L are diagonally embedded into IL. This diagonal embedding
will be denoted by ∆ and one defines the idèle class group by CL = IL/∆(L×).

The diagonal embedding ∆ is sometimes also applied implicitly and one writes
CL = IL/L

×. We summarize some properties of idèle groups and idèle class
groups.

Lemma 1.9. Let L|K be a Galois extension of global fields with group G.

(a) The groups IL and CL are G-modules with G action induced by the canonical
Gv action on L×v .

(b) IK = IGL and CK = CG
L .

(c) Ĥ i(G, IL) '
⊕

v Ĥ
i(Gv, L

×
v ).

Proof. [NSW00, Chp. VIII, § 1]. �
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As in the local case, one can construct a canonical invariant map on the co-
homology group H2(L|K) := Ĥ2(G,CL), called global invariant map. For the
cohomology group of the idèle group this is directly given by local invariant
maps.

Definition 1.10 (Idèlic invariant map). Using Lemma 1.9 we obtain a canon-
ical homomorphism inv : Ĥ2(G, IL) → 1

[L:K]
Z/Z defined by the sum of the local

invariant maps invw : Ĥ i(Gw, L
×
w) → 1

[Lw:Kv ]
Z/Z. We refer to this map as the

idèlic invariant map.

Although the idèlic invariant map is not an isomorphism and, hence, does not
satisfy the conditions of a class formation, it is still compatible with inflation and
restriction as in diagram (1.4), cf. [NSW00, Prop. (8.1.10)].

Since Ĥ2(G, IL) → Ĥ2(G,CL) is not surjective in general (e.g. see [NSW00,
Chp. VIII, § 1, p. 378]), the idèlic invariant map does not directly provide a
well-defined global invariant map. Therefore, we first restrict to cyclic extensions
which can be seen as analogue of the unramified extensions in the local case.

Lemma 1.11. For cyclic extensions L|K with group G the idèlic invariant map
and the map Ĥ2(G, IL) → Ĥ2(G,CL) are both surjective.

This can be proved using Chebotarev’s density theorem:

Theorem 1.12 (Chebotarev’s density theorem). Let L|K be a Galois ex-
tension of number fields with group G. For every σ ∈ G denote its conjugacy
class by G · σ = {τστ−1 | τ ∈ G}. Then the set of places v of K, which are
unramified in L and for which σ is the Frobenius automorphism ϕw for some
place w|v, has density #(G·σ)

#G
.

Proof. [Neu92, Chp. VII, Thm. (13.4)]. �

Corollary 1.13. In every cyclic extension L|K there are infinitely many unram-
ified places, which are undecomposed.

Proof. Let the Galois group G of L|K be generated by τ . A place v of K which
is unramified and undecomposed must have full inertia degree f = #G. Hence,
places v with w|v and ϕw = τ are unramified and undecomposed. By Cheb-
otarev’s density theorem these places occur with density 1/#G.

This is also true for other generators τ of G and the total density of unramified
undecomposed places is k/#G, where k is the number of integers 1 ≤ i ≤ #G
for which (i,#G) = 1. �

Using this consequence of Chebotarev’s density theorem, we can given a simple
proof of the surjectivity of the idèlic invariant map.
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Proof of Lemma 1.11. By Corollary 1.13 there exists a place v of K which is
undecomposed in L, i.e. there is exactly one place w in L above v and the decom-
position group Gw is equal to G. Hence, one can find an element in Ĥ2(Gw, L

×
w) =

H2(Lw|Kv), which is the preimage of 1
[L:K]

+ Z, and by Lemma 1.9(c) this also
yields a preimage in Ĥ2(G, IL). In conclusion, the idèlic invariant map is surjec-
tive.

The latter assertion follows from Ĥ3(G,L×) = Ĥ1(G,L×) = 1 for the cyclic
group G. For more details see [NSW00, Prop. (8.1.15)]. �

Hence, for cyclic extensions we have the following diagram

Ĥ2(G, IL) 1
|G|Z/Z

Ĥ2(G,CL)

and by [NSW00, Prop. (8.1.15)] and its proof both of the above surjective maps
have kernel Ĥ2(G,L×). Therefore, the idèlic invariant map gives a well-defined
invariant map invL|K on Ĥ2(G,CL).

This can be generalized to arbitrary extensions by considering the union of
cyclic extensions.

Lemma 1.14. For the cohomology groups of the idèle group and the idèle class
group there are isomorphisms

Ĥ2(Gal(K̄|K), IK̄) '
⋃
L|K

cyclic

Ĥ2(Gal(L|K), IL)

and H2(K̄|K) '
⋃
L|K

cyclic

H2(L|K).

Proof. [NSW00, Prop. (8.1.9) and proof of Prop. (8.1.20)]. �

As in the local case, this result is obtained by identifying cohomology groups
from extensions of the same degree. In particular, if L|K is an arbitrary Galois
extension and L′|K is a cyclic extension of the same degree, then the inflations
of H2(L|K) and H2(L′|K) are the same subgroup in H2((LL′)|K).

The previous results then define a canonical global invariant map

invK : H2(K̄|K)
'−→ Q/Z

and its restriction to the cohomology of finite Galois extensions L|K again pro-
vides an invariant map invL|K : H2(L|K)

'−→ 1
[L:K]

Z/Z. The cohomology groups
H2(L|K) then satisfy the conditions of a class formations with respect to invL|K ,
cf. [NSW00, Thm. (8.1.22)].
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Definition 1.15 (Global fundamental class). The unique generator uL|K ∈
H2(L|K), which is the preimage of 1

[L:K]
+ Z by the canonical global invariant

map invL|K, is called global fundamental class.

1.2 Brauer groups
In preparation for Chapter 2 an overview of Brauer groups and important prop-
erties is given in the following section. A detailed survey of the theory of algebras
and Brauer groups can be found in [Rei03].

The Brauer group is used to study central simple algebras A over a field K,
i.e. finite-dimensional K-algebras with center Z(A) = K which have only trivial
two-sided ideals. They are used to classify division algebras over a field.

Proposition 1.16. Let A be a central simple K-algebra. Then

(i) A 'Mn(D), with n ∈ N unique and D is a skew field with center K which
is unique up to isomorphism, and

(ii) there exists a finite Galois extensions L|K such that AL := A ⊗K L '
Mn(L).

Proof. The first statement is a consequence of Wedderburn’s theorem [Rei03,
Chp. I, Thm. (7.4)] and the second is proved in [Rei03, Chp. VII, Cor. (28.11)].�

Definition 1.17. A Galois extension L|K as in the previous lemma is called
splitting field for A. Two algebras A and B are called similar, denoted by A ∼ B,
if A⊗K Mr(K) ' B ⊗K Ms(K) for r, s ∈ N.

Definition 1.18 (Brauer group). The Brauer group Br(K) of K is the group
of similarity classes [A] of central simple K-algebras A with multiplication

[A][B] := [A⊗K B].

By [Rei03, Chp. I, Thm. (7.6)] the tensor product A ⊗K B is again central and
simple and the multiplication in Br(K) is well-defined.

Definition 1.19 (Relative Brauer group). For an extension L|K, the kernel
Br(L|K) of the restriction homomorphism

Br(K) → Br(L)

[A] 7→ [A⊗K L]

is called relative Brauer group.
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Every algebra A ∈ Br(K) has a splitting field L. One therefore obtains the
identity Br(K) =

⋃
L Br(L|K) where L runs through all finite Galois extensions

of K.
For every Galois extension L|K with group G, the relative Brauer group

Br(L|K) can be described cohomologically.

Proposition 1.20. The map Ĥ2(G,L×) → Br(L|K), sending a normalized two-
cocycle γ ∈ Ĥ2(G,L×) to the algebra A =

⊕
σ∈G Leσ with multiplication(∑

σ

xσeσ

)(∑
τ

yτeτ

)
=
∑
σ,τ

xσσyτγ(σ, τ)eστ ,

is an isomorphism of groups.

Proof. [NSW00, Prop. (6.3.3) and (6.3.4)]. �

Combining the identifications for Brauer groups and cohomology groups one
also has a cohomological description for the Brauer group:

Br(K) =
⋃
L

Br(L|K) '
⋃
L

H2(L|K) ' H2(K̄|K).

Now consider a local field K. For the Brauer group one then obtains a canonical
isomorphism Br(K) ' Q/Z through the local invariant map, called the Hasse
invariant map. The image of an algebra A under this isomorphism is called the
Hasse invariant of A.3

1.3 Homological algebra
The following sections will give a short overview over some homological construc-
tions used in this thesis. Most of these definitions and facts can be found in
[HS71, Mac75] or [Wei94]. For more details and proofs we refer to those books.

1.3.1 Extensions
Let R be a ring (with one), let A and B be R-modules and fix an injective
resolution

0 −→ B
d−1−→ I0

d0−→ I1
d1−→ · · ·

of B, where Ik, 0 ≤ k is a family of injective modules. For a fixed integer n,
denote Jn := coker(dn−2) and the corresponding projection by pn : In−1 → Jn
such that

0 −→ B
d−1−→ I0

d0−→ · · · dn−2−−−→ In−1
pn−→ Jn −→ 0 (1.6)

is an exact sequence of length n+ 2.
3Originally, the Hasse invariant was defined independently and then proved to coincide

with the invariant obtained from local class field theory, c.f. [Ker07, Thm. (13.10) and
Rem. (13.12)].
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Definition 1.21 (Ext-group). The map pn induces a map p∗n :HomG(A, In−1)→
HomG(A, Jn) and we define the group of n-extensions by

ExtnR(A,B) = HomR(A, Jn)/ im(p∗n)

for n ∈ N and we set Ext0
R(A,B) = HomR(A,B).

One can prove that this definition does not depend on the choice of the injective
resolution and one can equivalently define ExtnR(A,B) by HomR(Qn, B)/ ker(i∗n)

using a projective resolution · · · d2−→ P1
d1−→ P0

d0−→ A −→ 0 with kernel Qn :=
ker(dn−1) and in : Qn ↪→ Pn−1, cf. [HS71, Prop. 8.1].

The group ExtnR(A,B) can also be described using the following operation on
n-extensions of A with B.

Definition 1.22 (Baer sum). For two n-extensions e1 and e2 given by

0 → B → Ei
1 → · · · → Ei

n → A→ 0

for i = 1, 2 with n ≥ 2, the sum e1 + e2 is defined to be the extension

0 → B → P → E1
2 ⊕ E2

2 → · · · → E1
n−1 ⊕ E2

n−1 → Q→ A→ 0

where P is the pushout of B → E1
1 with B → E2

1 and Q is the pullback of E1
n → A

with E2
n → A. If n = 1, the sum is defined by

0 → B → Q/〈(b,−b), b ∈ B〉 → A→ 0.

Example 1.23. Consider the case n = 2 and let E1, E2, F1 and F2 be R-modules
with extensions

e : 0 −→ B
ι1−→ E1 −→ E2

π1−→ A −→ 0,

and f : 0 −→ B
ι2−→ F1 −→ F2

π2−→ A −→ 0.

Denote the pushout of ι1 and ι2 by P and the pullback of π1 and π2 by Q. They
can explicitly be written as

P =
E1 ⊕ F1

〈(ι1(b),−ι2(b)), b ∈ B〉
and Q =

{
(x, y) ∈ E2 ⊕ F2 | π1(x) = π2(y)

}
⊆ E2 ⊕ F2

Then the sum e+ f is the extension

0 −→ B −→ P −→ Q −→ A −→ 0

where the map P → Q is canonically given by the map E1 ⊕ F1 → E2 ⊕ F2. By
the exactness of the extensions e and f , the map P → Q is well defined and the
sum e+ f is again an exact sequence.
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The operation on 1-extensions is due to Baer, and therefore called Baer sum.
Its generalization was later introduced by Yoneda and defines the following group
structure on n-extensions.

Definition 1.24 (Yoneda group). The group YextnR(A,B) of Yoneda exten-
sions is the set of equivalence classes of n-extensions of A with B generated by
the symmetric-transitive closure of the relation induced by commutative diagrams
of the form

0 B E1 · · · En A 0

0 B E ′
1 · · · E ′

n A 0

(1.7)

The addition in this group is given by the Baer sum and the identity is the class
of 0 → B

id−→ B
0−→ 0

0−→ · · · 0−→ 0
0−→ A

id−→ A→ 0 for n ≥ 2, and the class
of the split extension 0 → B → B ⊕ A→ A→ 0 for n = 1. Finally, the inverse
of a class E is given by the pushout sequence of E with − idB.

A verification of the group axioms and other details can be found in [Mac75,
Chp. III, §§ 2 and 5].

Remark 1.25. Considering the pushout with−idB more explicitly, the inverse of
the extensions

[
0 → E0

e0−→ E1
e1−→ · · · en−1−−−→ En

en−→ En+1 → 0
]
∈ YextnR(En+1, E0)

is given by
[
0 → E0

−e0−→ E1
e1−→ · · · en−1−−−→ En

en−→ En+1 → 0
]
. Since every diagram

Ei−1 Ei Ei+1

Ei−1 Ei Ei+1

−ei−1 ei

ei−1 −ei

− idEi

is commutative, every extension
[
0 → E0 −→ · · · −ei−−−→ · · · −→ En+1 → 0

]
, where

just one of the maps ei is negated, represents the inverse in YextnR(En+1, E0).

We will often use the following identifications.

Proposition 1.26. For R-modules A, Ai, B and Bi there are isomorphisms

ExtnR
(⊕

i

Ai, B
)
'
∏
i

ExtnR(Ai, B), (1.8)

ExtnR
(
A,
∏
i

Bi

)
'
∏
i

ExtnR(A,Bi), (1.9)

and ExtiR(A,B) ' YextiR(A,B). (1.10)

Proof. [HS71, Chp. III, Lem. 4.1 and Chp. IV, Thm. 9.1]. �
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If the group ExtnR
(
−, B

)
is represented using the fixed extension (1.6), then

the isomorphism (1.8) is given by Hom(
⊕

iAi, Jn) '
∏

i Hom (Ai, Jn), i.e. by
restricting the homomorphism to Ai for all i. Similarly, the isomorphism (1.9) is
given by canonical projections if ExtnR

(
A,−

)
is represented by a fixed projective

resolution of A.
Given a homomorphism φ ∈ Hom(A, Jn) representing an element in ExtnR(A,B)

one gets the corresponding n-extension in YextnR(A,B) by forming the pullback
diagram of p : In−1 � Jn with φ:

0 B I0 · · · In−2 Q A 0

0 B I0 · · · In−2 In−1 Jn 0
p

φ (1.11)

Combining (1.8) and (1.10) there is also an isomorphism

YextnR
(⊕

i

Ai, B
)
'
∏
i

YextnR (Ai, B)

and similarly for the second variable using (1.9) and (1.10). We will make this
isomorphism explicit using the following notation from [Mac75]:

For an extension e ∈ YextnR(A,B) and a homomorphism φ ∈ Hom(C,A), we
write eφ ∈ YextnR(C,B) for the pullback sequence of e with φ. Note that, if ψ ∈
Hom(D,C) is another homomorphism, then (eφ)ψ = e(φ◦ψ) by the fundamental
property of a pullback. Similarly we write φe ∈ YextnR(A,C) for the pushout of
e with φ ∈ Hom(B,C) and ψ(φe) = (ψ ◦ φ)e holds for ψ ∈ Hom(C,D).

Lemma 1.27. (a) The maps

YextnR(A1 ⊕ A2, B) ' YextnR(A1, B)⊕ YextnR(A2, B) (1.12)
e 7→ (eι1, eι2)

e1π1 + e2π2 7→ (e1, e2)

with canonical embeddings ιi : Ai ↪→ A1⊕A2 and projections πi : A1⊕A2 �
Ai are isomorphisms which are compatible with (1.10) and (1.8).

(b) Similarly the maps

YextnR(A,B1 ⊕B2) ' YextnR(A,B1)⊕ YextnR(A,B2)

e 7→ (π1e, π2e)

ι1e1 + ι2e2 7→ (e1, e2)

with embeddings ιi : Bi ↪→ B1 ⊕ B2 and projections πi : B1 ⊕ B2 � Bi are
isomorphisms which are compatible with (1.9) and (1.10).
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Proof. (a) We first show that the map

Φ : YextnR(A1 ⊕ A2, B) → YextnR(A1, B)⊕ YextnR(A2, B)

is compatible with (1.10) and (1.8) and then complete the proof by showing that
the maps defined in (1.12) are inverse to each other, i.e. Φ ◦ Φ−1 = id.

Let Cn denote the complex (1.6) used to describe the groups ExtnR(−, B). Let
e ∈ YextnR(A1 ⊕ A2, B) be any n-extension and let φ ∈ Hom(A1 ⊕ A2, Jn) be a
representative of the image of e via (1.10), i.e. e = Cnφ. Following (1.8) and
(1.10), the components of the image Φ(e) are Cn(φ|Ai

) for i = 1, 2, which each
satisfy Cn(φ|Ai

) = Cn(φ ◦ ιi) = (Cnφ)ιi = eιi using the fundamental property of
the pullback. This proves the first part.

Let (e1, e2) be a tuple of extensions ei ∈ YextnG(Ai, B). The first component of
the image (Φ ◦ Φ−1)(e1, e2) = ((e1π1 + e2π2)ιi)i=1,2 is

(e1π1 + e2π2)ι1 = e1π1ι1 + e2π2ι1 = e1 idA1 +e2(π2ι1)

where π2ι1 is the zero map from A1 to A2. Hence, e2(π2ι1) = e20 is the trivial
extension class in YextnG(A1, B) and (e1π1 + e2π2)ι1 = e1 idA1 = e1. A similar
computation for the second component shows that (e1π1 + e2π2)ι2 = e2 and
therefore Φ ◦ Φ−1 = id.

Part (b) is proved by the dual computations. �

1.3.2 Extensions and cohomology
For a ring R and a finite group G we now consider R[G]-modules.

Proposition 1.28. Let A and B be R[G]-modules for some finite group G. If
A is finitely generated and free as a Z-module, there is also a cohomological
description:

ExtiR[G](A,B) ' Ĥ i(G,HomR[G](A,B)). (1.13)

Proof. [Bro94, Chp. III, Prop. (2.2)]. �

For the rest of this section let A and C be R[G]-modules and let A be finitely
generated and free as a Z-module. Using Propositions 1.26 and 1.28 there are
isomorphisms

YextnG(A,C) ' ExtnG(A,C) ' Ĥn(G,Hom(A,C)). (1.14)

If ExtnG(A,C) is described using an injective resolution of C, the corresponding
Yoneda extension in YextnG(A,C) can be constructed by the pullback sequence.
Similarly, for a projective resolution of A one uses the pushout construction. But
the other direction of this isomorphism and the construction of a corresponding
cocycle in Ĥn(G,Hom(A,C)) is not as explicit in general.
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However, the most interesting case for this thesis is A = Z and n = 2. In this
special case, we represent Ext2

G(Z,−) by a fixed projective resolution of Z. The
following explicit constructions can be found in the literature:

Ext2
G(Z, C)

Ĥ2(G,C) Yext2
G(Z, C)

φ1φ3

φ2

φ−1
2

(1.15)

Again φ1 is the map given by pushout. The other constructions, which are based
on the splitting module of a cocycle from [NSW00, Chp. III, § 1], are obtained as
follows.

Let γ ∈ Ĥ2(G,C) be represented by the cocycle c ∈ Z2(G,C). Then the
module C(γ) is defined as a Z-module by

C(γ) = C ⊕
⊕
σ 6=1

Zbσ

where σ ∈ G. The G-action on the free generators bσ is then defined by σbτ =
bστ − bσ + c(σ, τ) and setting b1 = c(1, 1) ∈ C. This satisfies the properties of a
G-action and is called splitting module since Ĥ2(G,C) → Ĥ2(G,C(γ)) maps γ
to zero (see [NSW00, Chp. III, § 1, p. 115ff]).

Every exact sequence 0 → C → B0 → B1 → Z → 0 gives rise to two short
exact sequences 0 → W → B1 → Z → 0 and 0 → C → B0 → W → 0 with
W = ker(B1 → Z) = im(B0 → B1). Below we will use corresponding connecting
homomorphisms δ1 : Ĥ0(G,Z) → Ĥ1(G,W ) and δ2 : Ĥ1(G,W ) → Ĥ2(G,C).

Proposition 1.29. The isomorphism φ2 is given by:

Yext2
G(Z, C) ' Ĥ2(G,C)

[0 → C → B0 → B1 → Z→ 0] 7→ δ2(δ1(1 + |G|Z))

[0 → C
⊆−→ C(γ)

h−→ Z[G]
aug−−−→ Z→ 0] 7→γ

with h(c) = 0 for c ∈ C and h(bσ) = σ − 1.

Proof. This is based on [NSW00, Chp. III, § 1]. A complete proof is given in
[Jan10, Thm. 1.3.7]. �

If G is generated by g1, . . . , gr, we consider the projective resolution

Z[G]r
g−→ Z[G]

aug−−−→ Z −→ 0 (1.16)

of Z where g maps (ai) ∈ Z[G]r to
∑r

i=1 ai(gi − 1). For the computation of the
isomorphism φ3, we then define Q = ker(g), let ι : Q ↪→ Z[G]r, and use the
representation Ext2

G(Z, C) = HomG(Q,C)/ι∗ Hom(Z[G]r, C).
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Corollary 1.30. The isomorphism φ3 is given by restricting the homomorphism

fγ : Z[G]r → C(γ)

(ai)i=1...r 7→
∑r

i=1 aibgi

to Q.

Proof. It is easy to check that fγ maps elements of Q to C and that the diagram

0 Q Z[G]r Z[G] Z 0

0 C C(γ) Z[G] Z 0

⊆ g aug

⊆ h aug

fγ fγ

is commutative. In other words, the homomorphism fγ ∈ HomG(Q,C) represents
the cocycle class γ in Ext2

G(Z, C) via isomorphism φ3. For more details see [Jan10,
Thm. 1.3.7]. �

This definition of φ3 satisfies φ1 ◦φ3 = φ−1
2 by construction and makes diagram

(1.15) commute.

1.3.3 Complexes
Let A• denote a complex

· · · −→ Ai−1 ∂i−1

−→ Ai
∂i

−→ Ai+1 −→ · · ·

of G-modules Ai with differentials ∂i : Ai → Ai+1 satisfying ∂i+1 ◦ ∂i = 0. It
is called bounded if only finitely many Ai are non-zero. The cohomology of this
complex is denoted byH i(A•) = ker ∂i/ im ∂i−1 and it is called exact ifH i(A•) = 0
for all i. If A• is trivial outside degrees i and i+ 1, it always represents an exact
sequence

0 −→ H i(A•) −→ Ai −→ Ai+1 −→ H i+1(A•) −→ 0.

and therefore an element in Yext2
G

(
H i+1(A•), H i(A•)

)
.

Definition 1.31 (Chain map). A map of complexes (or chain map) φ : A• →
B• between two complexes A• and B• with differentials αi and βi, respectively, is
a family of homomorphisms φi : Ai → Bi with φi+1 ◦ αi = βi ◦ φi for all i.

By a projective resolution · · · → P •
1 → P •

0 of a complex A•, we indicate com-
patible projective resolutions · · · → P j

1 → P j
0 of each of the modules Aj such that

all diagrams

P j
i P j

i−1

P j+1
i P j+1

i−1

and
P j

0 Aj

P j+1
0 Aj+1

are commutative.
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For short exact sequences one can construct such a projective resolution using
the following lemma, called Horseshoe lemma. It provides a projective resolution
which is exact in every degree.

Lemma 1.32 (Horseshoe). Let 0 → A → B → C → 0 be a short exact se-
quence of G-modules and let P •

A and P •
C be projective resolutions of A and C

respectively. Then the sequence P •
B given by P i

B = P i
A ⊕ P i

C is a projective reso-
lution of B and there exist maps of complexes P •

A → P •
B → P •

C which is an exact
sequences in every degree.

Proof. [Wei94, Lem. 2.2.8]. �

Explicitly, the maps P i
A → P i

B → P i
C in every degree are given by the lifting

property of projective modules. For the maps P i
A → P i

B one considers the sur-
jective maps P 0

B � B and P i
B � im(P i

B → P i−1
B ) and one can lift the composite

homomorphisms P 0
A → A → B and P i

A → P i−1
A → im(P i

B → P i−1
B ) as in the

following diagrams:

P 0
A

P 0
B B

P i
A

P i
B im(P i

B → P i−1
B )

In particular, these maps can be constructed if the projective modules are actually
free modules.

Remark 1.33. A consequence of the Horseshoe lemma is the existence of pro-
jective resolutions of a complex A•.

If we denote the differentials of A• by αi, then we have short exact sequences
0 → ker(αi) → Ai → im(αi) → 0. Let P •

i and Q•
i be projective resolutions of

ker(αi) and im(αi). Then the Horseshoe lemma constructs projective resolutions
R•
i of Ai with maps of complexes P •

i → R•
i → Q•

i . By [Wei94, Thm. 2.2.6] the
inclusion im(αi) ⊆ ker(αi+1) also induces chain maps Q•

i → P •
i+1.

In conclusion, one obtains chain maps Rj
i → Qj

i → P j
i+1 → Rj

i+1 and since all
the maps in this construction will commute, the double complex R is a projective
resolution of A•.

A map of complexes φ : A• → B• directly induces maps H i(A•) → H i(B•)
on the cohomology groups: these are well-defined by the commutativity of the
differentials and φi.

Definition 1.34 (Quasi-isomorphism). A map of complexes φ : A• → B•

is called quasi-isomorphism if the induced homomorphisms on the cohomology
φi : H i(A•) → H i(B•) are isomorphisms.

A complex A• is called perfect if it is quasi-isomorphic to a bounded complex
P • which consists of finitely-generated projective modules.
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Note that by [Mil80, Chp. VI, Lem. 8.17] every quasi-isomorphism P • → A•,
where P • is a bounded complex of finitely-generated projective modules, also
provides a quasi-isomorphism A• → P • and vice-versa.

As an important example, every bounded complex A• of cohomologically trivial
G-modules Ai with finitely generated cohomology groups H i(A•) is known to be
perfect. This follows from the explicit constructions by Lang [Lan02, Chp. XXI,
Prop. 1.1 and 1.2]. To recall Lang’s proof we first introduce mapping cones.

Definition 1.35 (Mapping cone). Let φ : A• → B• be a chain map and denote
the differentials of A• and B• by αi and βi, respectively. The mapping cone of φ
is the complex C• with Ci = Bi ⊕ Ai+1 and differentials

γi : Bi ⊕ Ai+1 → Bi+1 ⊕ Ai+2

(b, a) 7→ (βi(b) + φi+1(a),−αi+1(a)) .

It is denoted by cone(φ).

Keeping the notation of the definition, there always is a canonical mapB• → C•

given by the inclusion Bi ⊆ Ci = Bi⊕Ai+1. Moreover, the projections Ci � Ai+1

induce a chain map between C• and the shifted complex which is given by modules
Ai+1 and differentials −∂i+1 in degree i, i.e. everything is shifted by one to the
left. This results in a sequence of complexes

A• → B• → C• → A•[1] (1.17)
or equivalently

C•[−1] → A• → B• → C•

called distinguished triangle. These sequences could be extended infinitely and
give rise to a long exact sequence in cohomology.

Corollary 1.36. For a chain map φ : A• → B• with mapping cone C• = cone(φ)
there is a long exact sequence

· · · → H i(A•) → H i(B•) → H i(C•) → H i+1(A•) → · · · .

If a map of complexes is injective (or surjective), i.e. all its maps are injective
(or surjective), then its mapping cone has an easy structure.

Lemma 1.37. Let φ : A• → B• be a mapping of complexes. If φ is surjective
(injective), there exists a canonical quasi-isomorphism: ker(φ)[1]

'−→ cone(φ) (or
cone(φ)

'−→ coker(φ) respectively).

Proof. Denote the differentials of A• and B• by αi and βi, respectively. Further-
more, denote the cone by C• = cone(φ) which consists of modules Ci = Bi⊕Ai+1

and differentials

γi : Bi ⊕ Ai+1 → Bi+1 ⊕ Ai+2

(b, a) 7→
(
βi(b) + φi+1(a),−αi+1(a)

)
.
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(i) Let φ be surjective and let K• be the kernel of φ with modules Ki = ker(φi :
Ai � Bi) and differentials κi = αi|Ki . Then there is a canonical injective map
ψ : K•[1] ↪→ C• which is given by ψi(x) = (0, x) ∈ Bi ⊕ Ai+1 for x ∈ Ki+1 ⊆
Ai+1. The cokernel of ψ is the complex D• with modules Di = Bi ⊕ Bi+1 and
differentials δi(x, y) = (βi(x) + y,−βi+1(y)) which arise from γi by projection
onto the cokernel. Then we have constructed the following commutative diagram
with exact columns:

K•[1] : Ki Ki+1 Ki+2

C• : Bi−1 ⊕ Ai Bi ⊕ Ai+1 Bi+1 ⊕ Ai+2

D• : Bi−1 ⊕Bi Bi ⊕Bi+1 Bi+1 ⊕Bi+2

−κi−1 −κi −κi+1 −κi+2

γi−2 γi−1 γi γi+1

δi−2 δi−1 δi δi+1

ψ ψi−1 ψi ψi+1

The maps δ have kernels and images

ker(δi) =
{
(x, y) ∈ Bi ⊕Bi+1 | βi+1(y) = 0 ∧ βi(x) + y = 0

}
im(δi−1) =

{
(βi−1(x) + y,−βi(y)) | x ∈ Bi−1, y ∈ Bi

}
.

Since (x, y) = (x,−βi(x)) = δi−1(0, x) holds for elements (x, y) ∈ ker(δi), the
complex D• has trivial cohomology groups H i(D•) = 0. Hence, the cohomology
groups of K•[1] and C• are isomorphic.

(ii) For the second statement we let K• denote the cokernel of φ. Consider the
canonical projection ψ : C• � K• defined by ψi(b, a) = b + φi(A

i) ∈ Bi/φi(A
i).

Now D• denotes the kernel of ψ where the differentials δi are the restrictions of
γi and we get the commutative diagram:

D• : Ai−1 ⊕ Ai Ai ⊕ Ai+1 Ai+1 ⊕ Ai+2

C• : Bi−1 ⊕ Ai Bi ⊕ Ai+1 Bi+1 ⊕ Ai+2

K• : Bi−1/φ(Ai−1) Bi/φ(Ai) Bi+1/φ(Ai+1)

δi−2 δi−1 δi δi+1

γi−2 γi−1 γi γi+1

βi−2 βi−1 βi βi+1

ψ ψi−1 ψi ψi+1

The maps δ have kernels and images

ker(δi) =
{
(x, y) ∈ Ai ⊕ Ai+1 | αi+1(y) = 0 ∧ αi(x) + y = 0

}
im(δi−1) =

{
(αi−1(x) + y,−αi(y)) | x ∈ Ai−1, y ∈ Ai

}
.

Here (x, y) = (x,−αi(x)) = δi−1(0, x) holds for elements (x, y) ∈ ker(δi). This
shows H i(D•) = 0 and, hence, H i(C•) ' H i(K•). �

As an important result which will be essential in the conjectures of Chapters
5 and 6 we prove the following result for bounded complexes.
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Proposition 1.38. A bounded complex A• of cohomologically trivial G-modules
Ai with finitely generated cohomology groups H i(A•) is perfect.

Proof. We recall the constructive proof from [Lan02, Chp. XXI, Prop. 1.1 and 1.2].
Let A• be a complex with differentials αi for which Ai = 0 for i /∈ {1, . . . , n}.

Then we construct a complex P • of finitely generated, projective modules and a
chain map φ : P • → A• by descending induction. Let P i = 0, φi = 0 for all i > n.
Then the conditions

fk : Zk(P •)
φk−→ Hk(A•) is surjective

and Hj(P •) ' Hj(A•) holds for all j ≥ k + 1
(1.18)

is satisfied for k ≥ n+ 1.

Induction step in degree i: Assume that (1.18) holds for k = i+1 and consider
Bi+1 := ker(fi+1) ⊆ P i+1 for which φi+1(B

i+1) ⊆ im(αi).
LetRi andQi be finitely generated, projective modules with ρi : Ri � Bi+1 and

q̄i : Qi � H i(A•). Then one can again construct corresponding maps ri : Ri → Ai

and qi : Qi → Zi(A) as in the following diagrams:

Ri

Ai im(αi)

φi+1 ◦ ρi

∃ri
Qi

Zi(A•) H i(A•)

q̄i

∃qi

Note that in degree i = n one has Bn+1 = 0 and one can choose Rn = 0. Set
P i := Qi⊕Ri, φi(q, r) := qi(q)+ri(r) and let P i → P i+1 be the map (q, r) 7→ ρi(r).
By construction the conditions (1.18) now hold for k = i.

Final step: By induction one has (1.18) for k = 1. We consider B1 := ker(f1) ⊆
P 1, set P 0 := B1 and P i := 0 for all i < 0. Then φ is a quasi-isomorphism.

To finish the proof we have to show that B1 is projective. The cone C• :=
cone(φ) is a complex which is trivial outside degrees −1, . . . , n and for which
C−1 = P 0 = B1, C0 = P 1, Cn = An and Ci = Ai ⊕ P i+1. It is actually an exact
sequence

0 −→ C−1 γ−1

−→ C0 γ0

−→ C1 γ1

−→ · · · γn−2

−−−→ Cn−1 γn−1

−−−→ Cn γn

−→ 0

of length n+2 since φ is a quasi isomorphism and it induces short exact sequences
of the form 0 → ker(γi−1) → Ci−1 → ker(γi) → 0 for 1 ≤ i ≤ n. By construction
of P i all the modules Ci and ker(γn) = Cn are cohomologically trivial. Therefore,
in each of these short exact sequences the cohomological triviality of the right and
middle module will imply that the left-hand module is cohomologically trivial.

In conclusion, B1 is cohomologically trivial and since it is Z-free, it will also
be projective. �
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1.4 K-theory
The conjectures we address in Chapters 5 and 6 are formulated as equations in
relative K-groups for group rings. We will recall their definition from [Swa68]
and the most important results. More details can be found in [CR87, Chp. 5]
and [Bre04a, Chp. 2].

For a ring A we write K0(A) for the Grothendieck group of finitely generated
projective A-modules. This is the free abelian group generated by isomorphism
classes (P ) for every finitely generated projective A-module P with relations
(P )− (P ′)− (P ′′) for every short exact sequence 0 → P ′ → P → P ′′ → 0.

The Whitehead group K1(A) is defined to be the abelianization of the infinite
general linear group Gl(A):

K1(A) := Gl(A)
/
[Gl(A),Gl(A)].

By Whitehead’s lemma the commutator [Gl(A),Gl(A)] is generated by elementary
matrices E(A) ⊂ Gl(A), cf. [CR87, (40.24)]. One can also describe the elements
of K1(A) by isomorphism classes of pairs (P, f) where f is an automorphism of
a projective A-module P . These pairs also satisfy certain relations (see [CR87,
§ 40A] or [Bre04a, § 2.1.2]) and each of them is represented by a pair (An, f) ∈
K1(A) for some n ∈ N and an automorphism f .

Finally, we consider the relative K-group K0(A, φ) for a ring homomorphism
φ : A → B. Its objects are triples [P, f,Q] with finitely generated projective
A-modules P and Q and an isomorphism f : B ⊗A P → B ⊗A Q of B-modules.
For the relations we again refer to [Swa68, p. 215], [CR87, (40.19)] or [Bre04a,
§ 2.1.3].

The K-groups defined above fit into an exact sequence (see [Swa68, Thm. 15.5]
or [CR87, (40.20)]), which we recall in the setting of group rings. Let R be a
ring, E an extension of Quot(R) and G a group. Then the relative K-group
K0(R[G], φ) corresponding to the homomorphism φ : R[G] → E[G] induced by
R ⊆ E is also denoted by K0(R[G], E) and there is an exact sequence

K1(R[G]) → K1(E[G])
∂1

G,E−−−→ K0(R[G], E)
∂0

G,E−−−→ K0(R[G]) → K0(E[G]). (1.19)

The maps Ki(R[G]) → Ki(E[G]) for i = 0, 1 are induced by the operator
E[G]⊗R[G]− and the other maps are given by ∂1

G,E((E[G]n, f)) = [R[G]n, f, R[G]n]
and ∂0

G,E([P, f,Q]) = [P ]− [Q].
Let H be a subgroup of G. Then every R[H]-module P gives rise to an R[G]-

module R[G]⊗R[H] P . The induced induction maps on the associated K-groups
will be denoted by indGH .

Before we continue, we fix the following notations and recall some well-known
facts from representation theory [CR81]. For a finite group G we write χ for a
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character with values in C associated to a representation ρ : G→ Gln(C). The set
of irreducible C-characters will be denoted by IrrC(G) and the complex conjugate
to χ by χ̄.

By Wedderburn’s theorem the center of the group ring C[G] will decompose
into

Z(C[G]) '
⊕

χ∈IrrC(G)

C.

For a subfield F ⊆ C the image of Z(F [G]) in Z(C[G]) consists of tuples (aχ)χ
for which aσ◦χ = σ(aχ) for all σ ∈ Aut(C|F ), e.g. see [Ble10, Lem. 2.8]. We
are therefore especially interested in characters χ ∈ IrrC(G) modulo relations
χ = σ ◦ ψ for σ ∈ Aut(C|F ) and denote these characters by IrrF (G).

1.4.1 Reduced norms and boundary homomorphisms
For every central simple K-algebra A there exists a reduced norm map nrA|K on
A into its center K as in [CR81, § 7D]. This also carries over to the group K1(A)
where the reduced norm map, denoted by nr, is injective by [CR87, (45.3)] (see
also [BF01, Prop. 2.2]).

For semi-simple K-algebras A one has to consider the Wedderburn decom-
position A '

⊕r
i=1Ai which induces decompositions Z(A) '

⊕r
i=1 Z(Ai) and

K1(A) '
⊕r

i=1K1(Ai), cf. [CR87, (38.29)]. This gives a well-defined reduced
norm map

nr : K1(A) → Z(A)× '
r⊕
i=1

K×
i

with Ki := Z(Ai).
We continue to consider the group ring case E[G] for an extension E|Q which

includes the m-th roots of unity with m = exp(G) denoting the exponent of
G. Then IrrE(G) = IrrC(G) and since E[G] is a semi-simple algebra, we have a
reduced norm map

nr : K1(E[G]) → Z(E[G])× '
⊕

χ∈IrrE(G)

E×

which is still injective.
Let ρ : G→ Glχ(1)(E) denote a representation associated to χ and Tχ its linear

continuation to E[G]. An element λ ∈ K1(E[G]) is represented by a matrix
A = (aij) ∈ Gln(E[G]) for some n ∈ N and its reduced norm is given by

nr(λ) =
(
detχ(A)

)
χ∈IrrE(G)

=
(
det
(
(Tχ(aij))ij

))
χ∈IrrE(G)

where (Tχ(aij))ij is a matrix of size nχ(1)× nχ(1). Note that these reduced
norms can explicitly be computed as described in [BW09, § 3.3].



28 1 Preliminaries

The injective reduced norm map provides a map ∂̂1
R[G],E = ∂1

R[G],E ◦ nr−1 from
im(nr) to K0(R[G], E) called boundary homomorphism.

The two cases we are interested in are the following. For R = Zp and E an
extension ofQp the norm map is an isomorphism by [CR87, (45.3)] and we directly
obtain a map ∂̂1

G,E := ∂̂1
Zp[G],E = ∂1

Zp[G],E ◦ nr−1 from Z(E[G])× to K0(Zp[G], E).

Z(E[G])×

K1(E[G]) K0(Zp[G], E)

b∂1
G,E

nr'

∂1

For R = Z and F and extension of Q the norm map is not surjective but the
decomposition

K0(Z[G],Q) '
∐
p

K0(Zp[G],Qp), (1.20)

and the weak approximation theorem still allow us to define a map ∂̂1
G,F from

Z(F [G])× to K0(Z[G], F ) by ∂̂1
G,F (x) := ∂̂1

Z[G],F (λx) −
∑

p ∂̂
1
Zp[G],Qp

(λ) where the
summation ranges over all primes and λ ∈ Z(Q[G])× ⊆ Z(Qp[G])× must be chosen
such that λx ∈ im(nr). One can show that this definition does not depend on
the choice of λ and provides a well-defined map from Z(F [G]) to K0(Z[G], F ), cf.
[BF01, § 4.2]:

Z(F [G])×

K1(F [G]) K0(Z[G], F )

b∂1
G,F

nr

∂1

Altogether, we have well-defined maps

∂1
G,E : Z(E[G])× → K0(Zp[G], E) for E/Qp,

and ∂̂1
G,F : Z(F [G])× → K0(Z[G], F ) for F/Q

called extended boundary homomorphisms. In particular, the latter map will be
used for F = R.

Remark 1.39. In the local case the map ∂1 : K1(E[G]) � K0(Zp[G], E) is sur-
jective by [CR87][(39.10)] (see also [Bre04a, Lem. 2.5]). The extended boundary
homomorphism ∂̂1

G,E : Z(E[G])× → K0(Zp[G], E) is therefore also surjective. Con-
sider an element in K0(Zp[G], E) given by a triple [A, θ,B] with projective Zp[G]-
modules A,B and an isomorphism θ : AE

'−→ BE with AE = E[G] ⊗Zp[G] A and
BE = E[G]⊗Zp[G] B. Then one can explicitly construct a preimage in Z(E[G])×

as follows, cf. [BW09, § 4].
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Projective modules over local rings are free. We therefore let a1, . . . , an and
b1, . . . , bn be Zp[G]-bases of A and B. Then the map θ is represented by a matrix
T ∈ Gln(E[G]) corresponding to bases 1⊗ a1, . . . , 1⊗ an and 1⊗ b1, . . . , 1⊗ bn of
AE and BE.

The matrix T ∈ Gln(E[G]) represents an element in K1(E[G]) for which
∂1(T ) = [A, θ,B]. The norm nr(T ) therefore represents the element [A, θ,B]
in Z(E[G])×.

1.4.2 Euler characteristics
Given a perfect complex Q of R[G] modules, one can define corresponding ele-
ments in K0(R[G], E) which are called Euler characteristics of Q. These elements
can also be defined in more general settings, but we will restrict to the case of
group rings. For such a complex Q, let QE denote the complex of E[G]-modules
which is obtained from Q by applying the operator (−)E := E[G] ⊗R[G] −. An
isomorphism t : H+(QE)

'−→ H−(QE) between the sum of cohomology groups in
even and odd degree is called a trivialization.4

Let P be a bounded complex of finitely generated projective R[G]-modules.
Applying the operator (−)E to the short exact sequences

0 → Bi(P ) → Zi(P ) → H i(P ) → 0

and 0 → Zi(P ) → P i → Bi+1(P ) → 0

maintains exactness and one obtains isomorphisms Zi(PE) ' Bi(PE) ⊕ H i(PE)
and P i

E ' Zi(PE) ⊕ Bi+1(PE) by choosing splittings. The trivialization t then
induces an isomorphism t∗ : P+

E

'−→ P−
E as follows:

t∗ : P+
E =

⊕
i even

P i
E '

⊕
i even

(
Zi(PE)⊕Bi+1(PE)

)
'
⊕
i even

H i(PE)⊕
⊕
i

Bi(PE)

t→
⊕
i odd

H i(PE)⊕
⊕
i

Bi(PE) '
⊕
i odd

(
Zi(PE)⊕Bi+1(PE)

)
'
⊕
i odd

P i
E

= P−
E .

Burns then introduced the following definition (see [Bur04, § 2]5) which uses the
inverse of t∗.

Definition 1.40 (Euler characteristic). For a bounded complex P of finitely
generated projective R[G]-modules and a trivialization t : H+(PE) → H−(PE) the
refined Euler characteristic is defined by

χ̄R[G],E(P, t) =
[
P−, (t∗)

−1, P+
]
∈ K0(R[G], E).

4Sometimes trivializations are also defined to go from odd to even degree.
5In that paper the refined Euler characteristic is denoted by χR[G](P, t) with t being a trivial-

ization from odd to even degree.
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Burns proved that this element in K0(R[G], E) is well-defined. Note that by the
relations in K0(R[G], E) it is equal to −

[
P+, t∗, P

−].
The definition can also be extended to perfect complexes: if Q is a perfect com-

plex of R[G] modules with trivialization t and π : P → Q is a quasi-isomorphism
with P being a bounded complex of finitely generated projective R[G] modules,
then π : H i(P ) ' H i(Q) induces a trivialization on P , denoted by π−1tπ, and
one can set

χ̄G(Q, t) := χ̄G(P, π−1tπ) ∈ K0(R[G], E).

By Burns [Bur04, Lem. 2.3] this element is again well-defined and the refined
Euler characteristic is invariant under quasi-isomorphism.

Note, that Burns used trivializations from odd to even degree in his original
definition. His refined Euler characteristic χR[G] from [Bur04] therefore satisfies
χR[G](Q, t

−1) = χ̄R[G],E(Q, t). This should not lead to confusion because in any
case it is clear how a trivialization t induces an isomorphism Q−

E

'−→ Q+
E. We will

always use trivializations from even to odd degree as in the more recent definition
of the refined Euler characteristic which we introduce in the following.

Burns and Breuning defined a canonical Euler characteristics χR[G],E in a more
general setting and could first prove under which conditions triangles A→ B →
C → A[1] as in (1.17) with compatible trivializations tA, tB and tC satisfy the
additivity criterion

χR[G],E(B, tB) = χR[G],E(A, tA) + χR[G],E(C, tC),

cf. [BrB05, Cor. 6.6]. For K-groups of group rings their refined Euler character-
istic satisfies the following relation.

Proposition 1.41. The two definitions of Euler characteristics satisfy

χR[G],E(Q, t) = −χ̄R[G],E(Q, t) + ∂1
G((B−(QE),− id)) ∈ K0(R[G], E) (1.21)

with B−(QE) :=
⊕

i odd B
i(QE).

Proof. [BrB05, Thm. 6.2]. �

Since we do not need the details of the construction of this canonical Euler char-
acteristic, we will simply take this relation as the definition for χR[G],E(Q, t). This
Euler characteristic has the advantage of interacting conveniently with shifted
complexes. Also the latter term in the above equation can be proved to vanish
in some cases.

Proposition 1.42. (a) χR[G],E(Q[1], t−1) = −χR[G],E(Q, t),

(b) ∂1
G((B+(QE),− id)) = 0 if Q is acyclic outside degrees 1 and 2.

Proof. [BrB05, Prop. 5.6, Lem. 6.3 and Rem. 6.4]. �
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For the two Euler characteristics one can then deduce the following identities.

Corollary 1.43. One has the following relations for a perfect complex Q and a
trivialization t : H+(QE) → H−(QE):

(a) χR[G],E(Q, t) = χR[G],E(Q[2], t) and χ̄R[G],E(Q, t) = χ̄R[G],E(Q[2], t)

(b) If QE is acyclic outside two consecutive degrees i and i+ 1, then

(i) χR[G],E(Q, t) = −χ̄R[G],E(Q, t) if 2|(i+ 1),

(ii) χR[G],E(Q, t) = χ̄R[G],E(Q[−1], t−1) if 2|i.

Proof. Part (a) follows from the definition of χ̄. For part (b) one can do the fol-
lowing computations: χR[G],E(Q, t) = χR[G],E(Q[i−1], t) = −χ̄R[G],E(Q[i−1], t) =
−χ̄R[G],E(Q, t) for odd integers i and χR[G],E(Q, t) = −χR[G],E(Q[i − 1], t−1) =
χ̄R[G],E(Q[i− 1], t−1) = χ̄R[G],E(Q[−1], t−1) for even integers i. �

In the cases we consider in this thesis, the complex Q will be a bounded complex
of finitely generated, cohomologically trivial modules. Then one can construct a
perfect complex P quasi-isomorphic to Q using [Lan02, XXI, Prop. 1.1 and 1.2]
as in Proposition 1.38.

In recent papers (e.g. [BrB07]) the more natural definition by χR[G],E is pre-
ferred. But the older definition of Burns is still of interest because it can be
explicitly computed by definition.

In our applications, we will often consider a complex Q as in the following
examples. As for the extended boundary homomorphism one may think of the
two important cases: R = Z, Q ⊆ E ⊆ R or R = Zp, Qp ⊆ E ⊆ Cp.

Example 1.44. Consider a complex Q =
[
A

f→ B
]

of finitely generated, co-
homologically trivial R[G] modules which is trivial outside degrees {0, 1} and a
trivialization t : H0(Q)⊗E[G]

'−→ H1(Q)⊗E[G] for which we want to compute
the Euler characteristic χ̄R[G],E(Q, t) ∈ K0(R[G], E).

(a) First assume that both, A and B, are projective R[G]-modules. Then we
have to consider the exact sequence

0 H0(Q) A B H1(Q) 0

W

f

in which W := ker(B → coker(f)) and the Euler characteristic is

χ̄R[G],E(Q, t) =
[
B, θ, A

]
∈ K0(R[G], E).

where θ = (t∗)
−1 is the isomorphism BE ' WE⊕H1(Q)E

t−1

−→ WE⊕H0(Q)E ' AE.
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(b) If B is projective and A is cohomologically trivial, we first need to construct
a complex of projective modules which is quasi-isomorphic to Q. To this end,
let 0 → K → F → A → 0 be a two-term projective resolution of A with a free
R[G]-module F . For example, if A is generated by r elements, one can choose
F = R[G]r. The kernel K will then be cohomologically trivial and Z-torsion-free,
and thus projective by [Bro94, Chp. VI, Thm. (8.10)].

Then the complex P =
[
K → F → B

]
with K placed in degree −1 is a

complex of finitely generated projective modules where the right-hand map is the
composite F � A→ B. This projective resolution gives a chain map π : P → Q
as in the following diagram

P : K F B

Q : 0 A B

π

The map π is a quasi-isomorphism by

H−1(P ) = ker(K → F ) = 0 = H−1(Q),

H0(P ) = ker(F → B)/K = ker(A→ B) = H0(Q),

and H1(P ) = coker(F → B) = coker(A→ B) = H1(Q).

From the definition of the Euler characteristic we then obtain

χ̄R[G],E(Q, t) = χ̄R[G],E(P, π−1tπ) =
[
K ⊕B, θ, F

]
∈ K0(R[G], E).

The isomorphism θ can be computed very explicitly (see also [BlB03, Eq. (20)]
or [BlBr08]) from the trivialization t using the following diagram

K K

0 X F B H1(P ) 0

0 H0(Q) A B H1(Q) 0

W

f

in which again W := ker(B → coker(f)). By choosing appropriate splittings
of the maps BE � H1(Q)E, AE � WE and FE � AE, one has isomorphisms
ρ1 : BE

'−→ WE ⊕H1(Q)E, ρ2 : AE
'−→ WE ⊕H0(Q)E, and ρ3 : FE

'−→ KE ⊕ AE
and θ is given by

θ : (K ⊕B)E
id,ρ1−−−→ KE ⊕WE ⊕H1(Q)E

id,id,t−1

−−−→ KE ⊕WE ⊕H0(Q)E

id,ρ−1
2−−−→ KE ⊕ AE

id,ρ−1
3−−−→ FE.

(1.22)
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(c) In a very special case of the latter example, the module A is finite and
B = 0. Then H1(Q) = W and H0(Q)E are trivial and the trivial map t = 0
is a trivialization (it is actually the only trivialization). Considering (1.22) one
observes that the induced map t∗ is actually the identity map KE → FE given
by K ⊆ F . So the Euler characteristic is:

χ̄R[G],E(Q, 0) =
[
K, id, F

]
∈ K0(R[G], E).

(d) As a last example, we consider the shifted complex Q[−1] =
[
A

−f−→ B
]

where A is placed in degree 1. For the computation of the Euler characteristic
χ̄R[G],E(Q[−1], t−1) one can proceed as in (b) by switching even and odd degree.

However, one has to account for the signs in the maps that are introduced by
the shifting process. In general, all the splittings obtained from 0 → Zi(Q) →
Qi → Bi+1(Q) → 0 in the computation of t∗ will change by a sign (see [Bur04,
Thm. 2.1(3) and p. 46]).

In this example this just affects the splitting of AE � WE and therefore the
isomorphism ρ2 : AE

'−→ WE ⊕ H0(Q)E changes by a sign. Let θ̄ denote the
isomorphism (1.22) which incorporates this sign change in ρ2. Then the refined
Euler characteristic of Q[−1] is

χ̄R[G],E(Q[−1], t−1) =
[
F, θ̄−1, K ⊕B

]
= −

[
K ⊕B, θ̄, F

]
∈ K0(R[G], E).

Note that the complex Q−1 =
[
A

−f−→ B
]

with A in degree 0 is the inverse of Q
considered as 2-extensions in Yext2

G(H1(Q), H0(Q)), see Remark 1.25. Since the
complexes Q−1 and Q[−1] differ from each other only in the fact that even and
odd degrees are interchanged, their Euler characteristic differs by a sign:

χ̄R[G],E(Q[−1], t−1) = −χ̄R[G],E(Q−1, t).

Since Q[−1] is acyclic outside degrees 1 and 2, this implies

χR[G],E(Q, t) = −χR[G],E(Q[−1], t−1) = χ̄R[G],E(Q[−1], t−1) = −
[
K ⊕ Z[G], θ̄, F

]
.

by Corollary 1.43 and therefore we have the following simple relation:

χR[G],E(Q, t) = −χ̄R[G],E(Q−1, t).

1.5 L-functions
The conjectures we will address in Chapters 5 and 6 relate algebraic invariants to
analytic values from L-functions. In the following section we recall the analytic
results needed in this thesis. An overview of these facts can be found in [BrB07,
§ 2.3], for more details and background information we refer to [Bre04a, Frö83,
Mar77] and [Neu92].
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Let L|K be a Galois extension of number fields with Group G and places v, w
of K and L such that w|v. Then we consider the following local L-functions from
[Frö83, Chp. I, § 5].

Definition 1.45 (Local Artin L-function). Let w be a finite place of L and
χ a character of Gw corresponding to the Galois-representation ρ : Gw → Gl(Vχ).
Then the group Gw acts on Gl(Vχ) via ρ and one defines the local Artin L-function
by

LLw|Kv(χ, s) = det
(
1− ϕw NKv |Qp p−sKv

∣∣ V IP
χ

)−1
.

Hereby, pKv is the prime ideal of Kv, ϕw denotes a lift of the Frobenius auto-
morphism in Gw/Iw, and the characteristic polynomial of ρ(ϕw) ∈ Gl(V

IP
χ ) is

evaluated at NKv |Q p−sKv
.

For infinite places w we set n = dimC(V ), n+ = dimC(V Gw) and n− = n− n+

and define

LLw|Kv(χ, s) =

{(
π−s/2Γ(s/2)

)n+(
π−(s+1)/2Γ((s+ 1)/2)

)n− for Kv = R,(
2(2π)−sΓ(s)

)n for Kv = C.

We let χ̄ denote the complex conjugate of χ, W (χ) the Artin root number and
f(χ) the conductor of χ as defined by Fröhlich in [Frö83, Chp. I, § 5] and recall
his definition of the ε-function from and the related Galois Gauss sum from (see
also [Mar77, Chp. II, § 4]).

Definition 1.46 (ε-function, Galois Gauss sum). For every character χ of
Gw we define the ε-function

εLw|Kv(χ, s) =

{
WQp(i

Qp

Kv
χ̄)
(
NKv |Qp(dKv)

χ(1) NKv |Qp(f(χ))
) 1

2
−s for Kv|Qp,

WR(iRKv
χ̄) for Kv|R

and the local Galois Gauss sum is given by

τLw|Kv(χ) = WKv(χ̄)
√

NKv |Qp f(χ) ∈ C

where dKv denotes the absolute discriminant of Kv.

Note that by the relations on root numbers and Artin conductors, the value of the
ε-function εLw|Qp(χ, 0) coincides with the Galois Gauss sum τLw|Qp(χ), cf. [Bre04a,
§ 3.4.4].

To define corresponding global functions we consider the localizations Lw|Kv

for all places w. We let S denote all places of K, Sf all the finite places of K,
and for every v ∈ S we fix a place w of L with w|v. Moreover, every character χ
of G can be restricted to the decomposition group Gw of some place w to give a
local character χw of Gw.



1.5 L-functions 35

Definition 1.47. For a Galois extension L|K of global fields we define the com-
pleted Artin L-function, the global ε-function, and the global Galois Gauss sum
by

ΛL|K(χ, s) =
∏
v∈S

LLw|Kv(χw, s),

εL|K(χ, s) =
∏
v∈S

εLw|Kv(χw, s),

and τL|K(χ) =
∏
v∈Sf

τLw|Kv(χ).

Proposition 1.48. The global Artin L-function is a meromorphic function de-
fined on all s ∈ C and satisfies the functional equation

ΛL|K(χ̄, s) = εL|K(χ, s) ΛL|K(χ, 1− s).

For a finite set of places S of K we also consider the S-truncated Artin L-function
of a character χ

LL|K,S(χ, s) =
∏
v/∈S

LLw|Kv(χ, s).

Its leading term in the Laurent-series expansion at s = s0 will be denoted by
L∗L|K,S(χ, s0).

Combining those series and functions for all χ ∈ IrrC(G) defines equivariant
functions6

ΛL|K(s) = (ΛL|K(χ, s))χ∈IrrC(G),

εL|K(s) = (εL|K(χ, s))χ∈IrrC(G),

and ζL|K,S(s) = (LL|K,S(χ, s))χ∈IrrC(G).

(1.23)

By definition these functions have values in Z(C[G])× which by the Wedderburn
decomposition is canonically isomorphic to

∏
χ∈Irr(G)C×. Finally, the leading

term in the Laurent-series expansion of ζL|K,S(s) at s = s0 will be denoted by

ζ∗L|K,S(s0) = (L∗L|K,S(χ, s0))χ∈IrrC(G).

Note that the values εL|K(0) and ζ∗L|K,S(1) we will consider in Chapters 5 and 6
are actually values in Z(R[G])×, cf. [Bre04a, Lem. 3.12] and [BrB07, Lem. 2.7].

6Note that there exist different definitions in the literature, in particular for the equivariant
functions. The definitions presented here coincides with those given in [BrB07] which is
also our main reference for the equivariant Tamagawa number conjectures considered in
Chapters 5 and 6.
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2 Brauer groups

The Brauer group Br(K) of a (local or global) number field K is an ascending
union of relative Brauer groups:

Br(K) '
⋃
L

Br(L|K) '
⋃
L

Ĥ2(Gal(L|K), L×),

where L runs through Galois extensions of K, see Section 1.2. We are therefore
especially interested in the computation of cohomology groups Ĥ2(Gal(L|K), L×)
for Galois extensions L|K of number fields.

In the first part of this chapter, we will consider finite Galois extension L|K of
local fields over Qp, for which we also want to compute the local fundamental class
in Ĥ2(Gal(L|K), L×). In this thesis, the computation of this special generator
is especially motivated by the epsilon constant conjecture which is discussed in
Chapter 5.

But local fundamental classes are also of independent interest. As a first appli-
cation, their computation will also make computations in relative Brauer groups
for number fields possible. Furthermore, according to the Shafarevic-Weil theo-
rem [AT68, Chp. XV, Thm. 6] local fundamental classes can be used to compute
Galois groups of local fields [Gre10].

2.1 Computing local Brauer groups

Let L|K be a finite Galois extension of local fields over Qp with group G. In
the following section we will consider the computation of the finite cyclic group
Ĥ2(G,L×).

To compute the cohomology group Ĥq(G,M) for a finite group G, a finitely
generated G-module M and small q, one can directly use the definition. For
q = 0,−1 they are defined as in Section 1.1 and for q ≥ 1 one considers the
standard resolution of M

C0(G,M)
∂1−→ C1(G,M)

∂2−→ C2(G,M)
∂3−→ C3(G,M) −→ · · ·

where Cq(G,M) are the cochain groups, i.e. C0(G,M) = M and Cq(G,M), q ≥ 1,
are the maps Gq →M . With the present restrictions on G and M one can write
Cq(G,M) as (finitely-generated) Z-module and explicitly represent the Z-linear
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maps ∂q by matrices. In this case the computation of Ĥq(G,M) = ker ∂q+1/ im ∂q
is pure linear algebra.1

However, for q ≥ 2 the matrices for which kernels have to be computed can
become very large (depending on the representation of G and M). For q = 2 one
therefore describes Ĥq(G,M) by extension classes ofM byG. A detailed overview
of existing algorithms and details on the implementation in the computer algebra
system Magma [BCP97] is given in [Hol06]. For algorithms on abelian groups
and basic algorithms in number theory we refer to [Coh93].

In order to work with cohomology groups computationally, we therefore always
need a finitely generated module M . In the case of local Brauer groups the
module L× is not finitely generated. Hence, we first need to find a finitely-
generated module M for which Ĥ2(G,M) ' Ĥ2(G,L×) holds. Such a module
can be constructed as follows, cf. [Ble03, BlBr08].

Lemma 2.1. There exists a finitely generated module M such that Ĥ2(G,M) '
Ĥ2(G,L×). It is given by M := L×/ exp(L ) for a suitable full projective sublat-
tice L of OL, where L can be constructed computationally.

Proof. We briefly recall the construction of L from [Ble03, § 3.1]:
Suppose θ ∈ OL is a normal basis element for the extensions L|K, i.e.

{σθ | σ ∈ G} is a basis of L|K. Such an element can be computed using an algo-
rithm by Girstmair [Gir99]. However, one discovers that “almost every” element
in OL is a normal basis element, and one can assume that vL(θ) > e(L|Qp)/(p−1),
e(L|Qp) denoting the ramification index of L|Qp. Then L := Z[G]θ is a full pro-
jective sublattice of OL on which the exponential function is injective.

Since L is a full lattice, the quotient M := L×/ exp(L ) is finitely generated
and it inherits the G-structure from L×. The module exp(L ) will again be pro-
jective and therefore cohomologically trivial. Hence, the long exact cohomology
sequence associated to

0 −→ exp(L ) −→ L× −→ L×/ exp(L ) −→ 0

implies Ĥ2(G,L×) ' Ĥ2(G,M). �

Remark 2.2. Note that in general one can represent elements in the local field
L only up to a finite precision. In order to do exact computations, for example
concerning the Galois action on Lf := L×/ exp(L ), we will therefore consider
completions of global Galois extensions of number fields.

1This is obviously also true in other cases, e.g. for K[G]-modules M which are finitely-
generated over Z and where K is a field extension of Q.
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Let E/F be a global Galois extension of number fields with group Γ and P

a prime ideal in E dividing a prime ideal p of F . Then EP/Fp is a local Galois
extension, whose Galois group is the decomposition group ΓP of P:

E P EP = L

F p Fp = K

Γ G = ΓP

In this case the normal basis element θ, the lattice L , the k-units U (k)
L and

the quotient L/U (k)
L ' E×

P/U
(k)
EP

' πZ ×
(
O×
EP
/U

(k)
EP

)
' πZ ×

(
OE/P

k
)× can be

computed globally, cf. [BlBr08, § 4.2.3]. If k is chosen such that Pk ⊆ L , then the
module Lf = L×/ exp(L ) is the cokernel of exp(L ) → E×

P/U
(k)
EP

and it suffices
to compute the values of the exponential function up to a certain precision, cf.
[Ble03, Rem. 3.6].

From now on, Lf will always denote a finitely generated module for which
there is an isomorphism in cohomology Ĥ2(G,Lf ) ' Ĥ2(G,L×). As explained
above, the cohomology of Lf := L×/ exp(L ) can be computed by applying lin-
ear algebra methods to the standard resolution of Lf . In Magma, the command
CohomologyGroup computes Ĥ2(G,Lf ) as an abstract group, together with maps
from and to Z2(G,Lf ). Hence, for cocycles G × G → L× one can then algorith-
mically decide whether they are coboundaries (mapped to zero in Ĥ2(G,Lf )) or
whether they differ by a coboundary (mapped to the same element of Ĥ2(G,Lf )).

Algorithm 2.3 (Local Brauer group).
Input: A finite Galois extension L|K of local fields over Qp with Galois group G.

Output: The group Ĥ2(G,Lf ) ' Ĥ2(G,L×) and maps to and from Z2(G,Lf ).

1 Compute a normal basis element θ with vL(θ) > e(L/Qp)/(p− 1) and define
L = Z[G]θ.

2 Compute the module Lf := L×/ exp(L ).

3 Compute the cohomology group Ĥ2(G,Lf ) using Magma, as described in
[Hol06].

Remark 2.4. If Pk ⊆ L ⊆ P` for the prime ideal P of L, then ` ≤ k and there
are surjective maps L×/U (k)

L � L×/ exp(L ) � L×/U
(`)
L . On the cocycle groups

this gives homomorphisms

Z2
(
G,L×/U

(k)
L

)
→ Z2

(
G,L×/ exp(L )

)
→ Z2

(
G,L×/U

(`)
L

)
.
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Therefore, every cochain in x ∈ C2(G,L×) satisfying the cocycle condition2

x(στ, ρ) + x(σ, τ) = σx(τ, ρ) + x(σ, τρ)

modulo U (k) defines a unique element in Ĥ2(G,Lf ). Similarly an element in
Z2(G,Lf ) determines a cochain in C2(G,L×) up to a precision m ≥ `. Those
cochains in C2

(
G,L×/U

(m)
L

)
, m ∈ N will be called cocycles of precision m.

Furthermore, the isomorphism Ĥ2(G,L×)
'−→ Ĥ2(G,Lf ) is induced by the

homomorphism L× � Lf = L×/ exp(L ) which factors through L× � L×/U
(k)
L

since U
(k)
L ⊆ exp(L ). On the cohomology groups this induces the following

homomorphisms:

Ĥ2(G,L×) Ĥ2(G,Lf )

Z2(G,L×) Z2(G,Lf )

Z2
(
G,L×/U

(k)
L

)

'

Therefore, every element in Ĥ2(G,Lf ) is represented by a cocycle of precision k

in Z2
(
G,L×/U

(k)
L

)
, i.e.

Z2
(
G,L×/U

(k)
L

)
� Ĥ2(G,Lf ).

The algorithm above (or a similar variant) has already been implemented in
Magma by Fieker, but is not yet available in the official version. Some algorithms
in this thesis, for example those discussed in Section 2.3, are based on an own
implementation3 which computes the cohomology group for extensions of small
degree (i.e. ≤ 20) within a few minutes.

2.2 Local fundamental classes
Now that we can compare cocycles and decide whether they are coboundaries etc.
we are interested in computing their invariant, i.e. the image of a cocycle under
the invariant map

inv : Ĥ2(G,L×) −→ 1

[L : K]
Z/Z.

In other words, if Lf denotes the finitely generated module L×/ exp(L ) from
Lemma 2.1, we want to find the local fundamental class uL|K ∈ Ĥ2(G,Lf ) '
Ĥ2(G,L×) whose image is inv(uL|K) = 1

[L:K]
+Z. By the construction of Lf there

2See equation (1.1).
3Command LocalBrauerGroup, see documentation in Appendix B.1 on page 172.
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exists an integer k ∈ N such that Pk ⊆ L and a cocycle of precision k determines
an element in Ĥ2(G,Lf ) uniquely.

In the case where L|K is an unramified extension, the invariant map is a canon-
ical map which can be computed very explicitly. Then the Galois group of L|K is
cyclic and generated by the Frobenius automorphism ϕ. If q is the cardinality of
the residue class field OK/PK of K, then the Frobenius automorphism satisfies
ϕ(x) ≡ xq mod PL for elements x ∈ OL. Let π be any uniformizing element of
K. Then by Remark 1.7 the cocycle

c(ϕi, ϕj) =

{
1 if i+ j < [L : K]

π if i+ j ≥ [L : K]
(2.1)

is a representative for the local fundamental class.

Below we discuss two methods for the computation of the local fundamental
class in the general case:

(a) Direct method: Use the definition of local fundamental classes for general ex-
tensions L|K directly (see Definition 1.6): LetN be an unramified extension
of same degree and use the inflation maps to identify Ĥ2(Gal(N |K), N×)
and Ĥ2(Gal(L|K), L×) in Ĥ2(Gal(LN |K), (LN)×).

(b) Serre’s approach: A new algorithm based on theory in [Ser79, Chp. XI, § 2].

The first method will not be very efficient, but it is included because it can
be considered to be the standard method. There are also a few other methods,
which we will now discuss briefly.

For example one can construct the local fundamental class by computing with
algebras. If L|K is an arbitrary local Galois extension and N |K the unramified
extension of the same degree, then one has isomorphisms Br(L|K) ' H2(L|K) '
H2(N |K) ' Br(N |K). Therefore, every K-algebra A ∈ Br(L|K) is equivalent
to an algebra B ∈ Br(N |K) and vice versa. The identification of A and B
can be made explicit and this provides a method for the construction of the
local fundamental class. This was studied in detail in [Rot05] and has been
implemented in Pari/Gp [Par08]. However, it turns out to be inefficient even
for extensions of degree smaller than 10 over Qp.

Tamely ramified extensions L|K have a Galois group G with cyclic inertia
subgroup H and a maximal unramified subextension LH |K whose Galois group
G/H is generated by the Frobenius automorphism ϕ. In this case G is always
generated by two elements and one can construct the local fundamental class as
described by Chinburg in [Chi85, § 6]. This approach has been implemented by
Janssen [Jan10, § 3.1] and is actually the most efficient algorithm for this special
case.
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2.2.1 Direct method

As in Definition 1.6 we want to compute the local fundamental class of an ex-
tension L|K using the fundamental class of an unramified extension N |K of the
same degree [N : K] = [L : K]. If we denote the maximal unramified extension
in L|K by E, i.e. E = L ∩N , we have the following situation:

LN

L

N

E

K

G
H

Γ

Let us further denote the Galois groups involved by G = Gal(L|K), H =
Gal(N |K) and Γ = Gal(LN |K).

Then the local fundamental class of L is defined to be the fundamental class of
N by identifying their cohomology groups as subgroups of Ĥ2(Γ, (LN)×) using
inflation maps:

Ĥ2(H,N×)

Ĥ2(G,L×) Ĥ2(Γ, (LN)×)inf

inf

For the construction of the local fundamental class, we consider the module
Lf constructed in the previous section. Let L be the module from Lemma 2.1
such that Lf := L×/ exp(L ) is cohomologically isomorphic to L× and let k be
the smallest integer such that Pk ⊆ L . Then by Remark 2.4 there is a surjective
homomorphism Z2

(
G,L×/U

(k)
L

)
� Ĥ2(G,Lf ) and every element in Ĥ2(G,Lf ) is

represented by a cocycle of precision k. It is therefore sufficient to compute the
image of the local fundamental class in Ĥ2

(
G,L×/U

(k)
L

)
.

In [BlBr08, § 2.4] the authors show that the local fundamental class can be
computed up to given precision n by considering the commutative diagram

Ĥ2(H,N×)

Ĥ2(G,L×) Ĥ2(Γ, (LN)×)

Ĥ2
(
G,L×/U

(n)
L

)
Ĥ2
(
Γ, (LN)×/U

(n)
LN

)
inf

inf

inf
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in which the bottom inflation map, induced by L× ⊆ (LN)×, is injective by
[BlBr08, Lem. 2.5].

As the modules L×/U (n)
L and (LN)×/U

(n)
LN are finitely generated, we can com-

pute their cohomology groups. The local fundamental class uN |K of the unrami-
fied extension N |K is represented by the cocycle of the form (2.1) and we can com-
pute its inflation inf(uN |K) ∈ Z2(Γ, (LN)×) and its image in Ĥ2

(
Γ, (LN)×/U

(n)
LN

)
.

For each generator of the group Ĥ2
(
G,L×/U

(n)
L

)
we can also compute its inflation

in Ĥ2
(
Γ, (LN)×/U

(n)
LN

)
. One of these generators must coincide with the image of

inf(uN |K) and it represents the local fundamental class in Ĥ2
(
G,L×/U

(n)
L

)
.

Therefore, the definition of a local fundamental class for arbitrary extensions
L|K can directly be turned into an algorithm.

Algorithm 2.5 (Local fundamental class: direct method).
Input: A finite Galois extension L|K over Qp with group G and a precision n ∈ N.

Output: The local fundamental class uL|K ∈ Z2
(
G,L×/U

(n)
L

)
up to the finite

precision n.

1 Let N be the unramified extension of K of degree [L : K] and c a cocycle
representing the local fundamental class uN |K as in (2.1).

2 Compute the cohomology group Ĥ2
(
G,L×/U

(n)
L

)
and the group of boundaries

B2
(
Γ, (LN)×/U

(n)
LN

)
using [Hol06].

3 Compute the inflation inf
LN |K
N |K (c) ∈ Z2(Γ, (LN)×) � Ĥ2

(
Γ, (LN)×/U

(n)
L

)
.

4 Find a generator g ∈ Ĥ2
(
G,L×/U

(n)
L

)
such that its inflation inf

LN |K
L|K (g) ∈

C2
(
Γ, (LN)×/U

(n)
LN

)
satisfies inf

LN |K
N |K (c)− inf

LN |K
L|K (g) ∈ B2

(
Γ, (LN)×/U

(n)
LN

)
.

Return: A representative of g in Z2
(
G,L×/U

(n)
L

)
.

Notice that for the comparison in Ĥ2
(
Γ, (LN)×/U

(n)
LN

)
in step 4 it is actually suf-

ficient to compute the boundaries B2
(
Γ, (LN)×/U

(n)
LN

)
. Considering the computa-

tion time this makes a huge difference to the computation of Ĥ2
(
Γ, (LN)×/U

(n)
LN

)
.

This direct method, however, turns out to be ineffective even for number fields
of small degree. In the following example we compare the computation times of
the implementation4 of Algorithm 2.5 in Magma for some number fields.

4Command LocalFundamentalClassDirect, see documentation in Appendix B.1 on page 172.
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Example 2.6. We compare the computation time5 of the local fundamental class
using the direct method in four extensions Li|Qp. For each extension one has to
consider the unramified extensionNi of degree [Li : Qp] overQp and the composite
field LiNi.

We consider the following fields (with polynomials from the database [KM01]):

1. The totally ramified extension L1|Q3 with group S3 generated by x6 + 3 ∈
Z[x],

2. the totally ramified extension L2|Q2 with group D4 generated by x8+38x4+
1 ∈ Z[x],

3. the extension L3|Q5 with group D5 generated by x10−10x8 +30x7 +90x6−
162x5 + 125x4 + 90x3 − 80x2 − 120x + 144 ∈ Z[x] which has ramification
index 5, and

4. the extension L4|Q3 generated by x12 − 6x11 − 30x10 + 190x9 + 171x8 −
1740x7+124x6+6420x5−2409x4−9630x3+3330x2+5214x−659 ∈ Z[x] with
ramification index 3 and whose Galois group is the generalized quaternion
group Q12 of order 12.

In those examples, the Magma implementation of Algorithm 2.5 performed for
the precisions n = 10 and n = 20 as shown in the following table:

timings [min]
extension group deg(Li) deg(LiNi) n = 10 n = 20

L1|Q3 S3 6 36 0.5 1.5

L2|Q2 D4 8 64 12 30

L3|Q5 D5 10 50 180 490

L4|Q3 Q12 12 36 60 160

Table 2.1: Computation times for local fundamental classes using the direct
method.

In all the examples most of the time is spent on the computation of the n-units
U

(n)
LiNi

and their Galois-action, taking more than 90 percent of the time. To be able
to compare these timings, the four fields Li were constructed as an extension of
Qp which was known up to a precision of 50. However, one still has to be careful
with the comparisons since the performance of computations in local fields also

5All computations were performed with Magma version 2.15-9 on a dual core AMD Opteron
machine with 1.8 GHz and 16 GB memory.
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depends on the field itself (i.e. its discriminant) and on the size of the prime p
(which determines the size of the residue class field).

In any case, to double the precision of the local fundamental class, the duration
was multiplied by a factor of about 2.5 in all the examples, which seems to be
polynomial in n. But one also notices that the algorithm depends more on the
degree of Li and becomes inefficient for extensions of degree larger than 10.

2.2.2 Serre’s approach
Serre describes in [Ser79, Chp. XI, § 2] and especially Exercise 2 from Chapter
XIII § 5 how one can theoretically find the local fundamental class of an extension
L|K. Chinburg used these results to describe a construction for tamely ramified
extensions [Chi85, § 6] which has recently been implemented in Magma [Jan10].

Below we use the same theory to deduce a new algorithm for the general case.
As in the direct method we will again work in the composite field LN . The main
advantage will be the avoidance of the computation of any cohomology group in
the construction of a cocycle representing the local fundamental class. But before
we address the algorithm itself we have to introduce more theory.

Let E be the maximal unramified subextension of L|K and d := [E : K].
Denote the maximal unramified extension of K by K̃ and the Frobenius auto-
morphism of K̃|K by ϕ, such that its Galois group is Gal(K̃|K) = 〈ϕ〉 and
Gal(K̃/E) = 〈ϕd〉.

The maximal unramified extension of L is L̃ = LK̃ and the Galois group of
L̃|K is given by Gal(L̃|K) = {(τ, σ) ∈ Gal(K̃|K)×G

∣∣σ|E = τ |E}. Furthermore,
we consider the tensor product Lnr := K̃ ⊗K L for which we have the following
representation:

Lemma 2.7. (i) The map

Lnr = K̃ ⊗K L→
d−1∏
i=0

L̃

a⊗ b 7→
(
ab, ϕ(a)b, . . . , ϕd−1(a)b

)
is an isomorphism.

(ii) The Galois action of G :=〈ϕ〉×G on elements y=(y0, y1, . . . , yd−1)∈
∏d−1

i=0 L̃
induced by this isomorphism is given (for σ ∈ G) by

(ϕ× 1)(y) =
(
y1, y2, . . . , yd−1, ϕ

d(y0)
)
,

(ϕj × σ)(y) =
(
σ̂(y0), σ̂(y1), . . . , σ̂(yd−1)

)
,

if σ̂ ∈ Gal(L̃|K) satisfies σ̂|L = σ and σ̂| eK = ϕj,

and (1× σ)(y) =
(
ϕ−j × 1)(σ̂(y0), σ̂(y1), . . . , σ̂(yd−1)

)
.
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Proof. (i) Let x ∈ Lnr be an element which maps to zero. Then x is an element
of a finite extension, i.e. if x =

∑m
i=0 ai ⊗ bi then all the elements ai generate a

finite extension K0|E in K̃, such that x ∈ L0
nr := K0 ⊗ L. Denote L0 = LK0,

then we have to show that L0
nr =

∏d−1
i=0 L0.

Denote the degrees of the extensions by d = [E : K],m = [L : E] and n = [K0 :
E] = [L0 : L]. Choose bases {α1, . . . , αd}, {β1, . . . , βm} and {γ1, . . . , γn} of E|K,
L|E and K0|E, respectively. Then x ∈ L0

nr is given by x =
∑

i,j,k,l λijklαiγj⊗αlβk,
with λijkl ∈ K and 1 ≤ i, l ≤ d, 1 ≤ j ≤ n, 1 ≤ k ≤ m. The assumption that x is
mapped to zero is equivalent to∑

i,j,k,l

λijklσ(αiγj)αlβk = 0 ∀σ ∈ {ϕi | 0 ≤ i ≤ d− 1}

⇔
∑
i

(∑
l

λijklαl

)
σ(αi) = 0 ∀σ, j, k

⇔
∑
l

λijklαl = 0 ∀i, j, k

since σ(γj)βk form a basis of L0|E and det(σ(αi)) 6= 0. The latter equation then
implies that all λijkl = 0 and this proves the injectivity.

As L0
nr and

∏d−1
i=0 L0 have the same (finite) dimension over K, the K-linear

map L0
nr →

∏d−1
i=0 L0 must also be surjective. This proves the statement since

every element in Lnr lies in a finite subextension.

(ii) We prove the G-action for primitive tensors. This immediately implies the
general case (finite sum of primitives) since Galois automorphisms are homomor-
phisms.

Let y = (yi)i=0..d−1 be represented by a primitive tensor a⊗ b which is mapped
to (ϕi(a)b)i=0..d−1 with a ∈ K̃ and b ∈ L. Then

(ϕ× 1)y = ϕ(a)⊗ b 7→
(
ϕi+1(a)b

)
i=0..d−1

=
(
ϕ(a)b, . . . , ϕd−1(a)b, ϕd(ab)

)
=
(
y1, . . . , yd−1, ϕ

d(y0)
)

since ϕd(b) = b for all b ∈ L.
If σ̂ ∈ Gal(L̃|K) satisfies σ̂|L = σ and σ̂| eK = ϕj, then the action of (ϕj × σ) is

given by:

(ϕj × σ)y = ϕj(a)⊗ σ(b) 7→
(
ϕi+j(a)σ(b)

)
i=0..d−1

=
(
σ̂(ϕi(a)b)

)
i=0..d−1

=
(
σ̂(y0), σ̂(y1), . . . , σ̂(yd−1)

)
.

The action of (1×σ) is directly given by the other two cases by choosing some
σ̂ with σ̂|L = σ and determining j ∈ N such that σ̂| eK = ϕj. �
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Remark 2.8. (1) According to this lemma, Lnr is obtained by inducing the
module L̃ from Gal(L̃|K) to G, and we also write Lnr = indG

Gal(eL|K)
L̃.

(2) In the action of (1 × σ) ∈ G one can choose σ̂ to be any automorphism
extending σ. There always exists a unique automorphism σ̂ ∈ Gal(L̃|K) such
that σ̂|L = σ and

(
σ̂| eK)−1

= ϕj with j ∈ {0, . . . , d − 1}. If E is the maximal
unramified of K in L and σ|E = ϕi, 1 ≤ i ≤ d, then j is given by j = d − i.
If σ̂ is always chosen to be this unique automorphism, the Galois action can be
defined by:

(1× σ)(y) = (ϕj × 1)
(
σ̂(y0), σ̂(y1), . . . , σ̂(yd−1)

)
=
(
σ̂(yj), . . . , σ̂(yd−1), ϕ

d(σ̂(y0)), . . . , ϕ
d(σ̂(yj−1))

)
.

(2.2)

This choice has the advantage that (ϕ×1) is applied as few as possible to compute
the Galois action. From now on, we will always assume that σ̂ is chosen this way.

Let L̂ be the completion of the maximal unramified extension L̃ of L. Then
the residue class field of L̂ is algebraically closed.

Lemma 2.9. For every c ∈ UbL there exists x ∈ L̂
×

such that xϕd−1 = c.

Proof. This is [Neu92, Chp. V, Lem. 2.1] or [Ser79, Chp. XIII, Prop. 15] applied
to the totally ramified extension L/E with ϕd generating Gal(K̃/E). Since this
will be an essential part of the algorithm, we sketch the constructive proof of
[Neu92].

Denote the residue class field of L̂ by κ, the cardinality of the residue class field
of E by q. Since κ is algebraically closed, one finds a solution to xϕd ≡ xq ≡ xc in
κ and lifting this solution one can write c = xϕ

d−1
1 a1 with x1 ∈ UbL and a1 ∈ U (1)bL .

Similarly, one finds x2 ∈ U
(1)bL and a2 ∈ U

(2)bL such that a1 = xϕ
d−1

2 a2. Proceeding
this way one has

c = (x1x2 · · ·xn)ϕ
d−1an, x1 ∈ UbL, xi ∈ U (i−1)bL , an ∈ U (n)bL (2.3)

and passing to the limit solves the equation in L̂
×
. �

A solution of type (2.3) will be called a solution of precision n.

Remark 2.10. (1) The constructive proof can directly be turned into an algo-
rithm. First, consider the equations xϕd

= xc and xϕ
d
ai+1 = xai as polynomial

equations over the residue class field of OL. If the factorization of the equation
does not offer a linear factor (which means that the equation cannot be solved in
L), generate an appropriate unramified extension L′ of L and solve the equation
there. From then on, consider the equations as polynomial equations over the
residue class field of OL′ and continue with the construction of the solution.
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Each step will increase the precision of the solution by at least one and might
introduce a new finite extension. So we have an algorithm, which finds a solution
of precision k in a finite extension L′|L with L′ ⊆ L̂ for any given k ∈ N.

However, this can produce very large extensions L′ and will even be inefficient
for a small number of steps.

(2) In special cases, one can prove that solutions of arbitrary large (but still
finite) precision can be constructed in a fixed extension F of L. For example
consider the following case:

Let F be a finite unramified extension of L. Then the Galois group H :=
Gal(F |L) is generated by the Frobenius automorphism ϕd. Since F |L is un-
ramified, the group Ĥ−1(H,UF ) = NH

UF/IHUF is trivial. In other words, the
equation xϕ

d−1 = c has a solution x ∈ UF for every element c ∈ UF having norm
NF |L(c) = 1, i.e. c ∈ NH

UF .
Hence, given such an element c of norm one, we can find a solution x ∈ UF of

arbitrary large precision using the construction described above. This fact will
also be used for the computation of the local fundamental class, see Lemma 2.17.

Example 2.11. Let L be the extension of Q3 generated by the polynomial f =
x6 + 6x2 + 6 ∈ Z[x]. It is a Galois extension with group S3 and it is totally
ramified since f is an Eisenstein polynomial.

Let π be a root of f in L, σ ∈ S3 some element of the Galois group and define
c = σ(π)

π
. Then c has valuation 0 and we can solve uϕ−1 = c up to precision

n using the constructive proof of Lemma 2.9 where ϕ denotes the Frobenius
automorphism of L̃|L.

This construction has been implemented6 in Magma and the element u will
be found in some unramified extension of L. These extensions quickly become
very large, even in such a small extension. If σ ∈ S3 is of order 3, a solution
of precision 5 needs an unramified extension of degree 9 over L. And to find a
solution of precision 20, one already has to consider an extension of degree 81
and its computation takes about 20 seconds. The main downside of this is that
all computations which are based on this solution will now have to work with an
extension which is much larger than the one we started with.

On the other hand, consider the unramified extension F of degree 3 over L,
which can be defined by g = x3 +2x+1 ∈ Z[x]. If −c is a root of this polynomial
in OF , then the element c will have norm 1 over L. Using the same algorithm, we
can then find solutions of the equation uϕ−1 = c up to arbitrary large precision.
Also the computation time is a lot shorter: a solution of precision 500 is found
within a second.

If we use Lemma 2.9 to construct solutions of the form uϕ−1 = c, it is therefore
very important to make a good choice for c whenever this is possible.

6Command FrobeniusEquation, see documentation in Appendix B.1 on page 173.
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The kind of equations considered in Lemma 2.9 can also be generalized to Lnr.
Let L̂nr be the completion of Lnr and w : L̂nr → Z the sum of the valuations.

Lemma 2.12. For every c ∈ L̂
×
nr with w(c) = 0 there exists x ∈ L̂

×
nr such that

xϕ−1 = c.

Proof. If c = (c0, . . . cd−1) ∈
∏d−1

i=0 L̂
×

and w(c) = 0, then
∏d−1

i=0 ci ∈ L̂
×

has
valuation 0 and there exists y ∈ L̂

×
for which yϕd−1 =

∏
ci by Lemma 2.9. Then

the element x = (y, yc0, yc0c1, . . . , yc0 · · · cd−2) satisfies

xϕ−1 =
(yc0, yc0c1, . . . , yc0 · · · cd−2, ϕ

d(y))

(y, yc0, yc0c1, . . . , yc0 · · · cd−2)
= (c0, c1, . . . , cd−1) = c

since ϕd(y) = y
∏d−1

i=0 ci. Hence, x solves the equation xϕ−1 = c. �

We can now prove the following lemma (cf. [Ser79, XIII § 5, Ex. 2(a)]).

Lemma 2.13. (a) ker(w) = {yϕ−1 | y ∈ L̂
×
nr},

(b) ker(ϕ− 1) = L×, L× being diagonally embedded in L×nr, and

(c) L̂
×
nr is a cohomologically trivial G-module.

Proof. (a) This follows from w(yϕ) = w(y) for any y ∈ L̂
×
nr and the previous

lemma.
(b) By Lemma 2.7, every element y ∈ ker(ϕ − 1) is represented by a tuple

(y0, . . . , yd−1) ∈
∏

d L̃ which satisfies

1 = yϕ−1 =

(
y1

y0

,
y2

y1

, . . . ,
yd−1

yd−2

,
ϕd(y0)

yd−1

)
.

Therefore y0 = y1 = . . . = yd−1 = ϕd(y0) ∈ L̃× and this implies y0 ∈ L× because
ϕd generates Gal(L̃|L). Since L is diagonally embedded into

∏
d L̃ we obtain

y ∈ L×. Hence, ker(ϕ− 1) is exactly L×.
(c) As mentioned before, the module L̂

×
nr =

∏d−1
i=0 L̂

×
is an induced module

by Lemma 2.7. Shapiro’s lemma [NSW00, Prop. (1.6.3)] implies Ĥq(G, L̂nr) =

Ĥq(Gal(L|E), L̂) and this is zero by [Ser79, Chp. XIII, § 5, Prop. 14]. For sub-
groups H of G, the module L×nr decomposes into a direct sum of H-modules and
each of these modules has cohomology isomorphic to Ĥq(Gal(L|E)∩H, L̂) which
is again trivial. �

We denote V := ker(w) and from the above lemma we get the exact sequences

0 −→ V −→ L̂
×
nr

w−−−→ Z −→ 0 (2.4)

and 0 −→ L× −→ L̂
×
nr

ϕ−1−−−→ V −→ 0. (2.5)
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By the cohomological triviality of L̂
×
nr, the connecting homomorphisms from

their long exact cohomology sequences provides isomorphisms δ1 : Ĥ0(G,Z)
'−→

Ĥ1(G, V ), δ2 : Ĥ1(G, V )
'−→ Ĥ2(G,L×) and we consider the composition

ΦL|K : Ĥ0(G,Z)
'−→ Ĥ2(G,L×). (2.6)

Its inverse Φ−1
L|K directly defines an isomorphism

invL|K : Ĥ2(G,L×) ' Ĥ0(G,Z)
· 1
[L:K]−−−→ 1

[L:K]
Z/Z

which satisfies the properties of an invariant map.

Proposition 2.14. (a) The elements uL|K := ΦL|K(1 + [L : K]Z) are funda-
mental classes for the class formation with respect to the isomorphism inv,
i.e. invL|K(uL|K) = 1

[L:K]
+ Z.

(b) The element uL|K is the inverse of the local fundamental class uL|K.

Proof. This is [Ser79, Chp. XIII, § 5, Ex. 2(c) and (d)].
We will prove part (a) by verifying the axioms of a class formation w.r.t. inv.

Then two elements uL|K and uL′|K with [L′ : K] = [L : K] have the same invariant
invL|K(ūL|K) = invL′|K(ūL′|K) and it is sufficient to prove (b) for unramified
extensions.

For (a) we have to show

(i) invL|K = invN |K ◦ inf
N |K
L|K for normal extensions N |L|K with K ⊂ L and

K ⊂ N normal.

(ii) invN |L ◦ res
N |L
N |K = [L : K] invN |K for K ⊆ L ⊆ N and K ⊆ N normal.

In (ii) we set Γ := Gal(N |K), H := Gal(N |L) and res
N |L
N |K denotes the restriction

Ĥq (Γ, N×) → Ĥq (H,N×). In (i) we also denote G := Gal(L|K) = Γ/H and
inf

N |K
L|K is the injective inflation map

Ĥq
(
G,L×

)
= Ĥq

(
G, (N×)H

) inf
N|K
L|K−−−→ Ĥq

(
Γ, N×)

which embeds Ĥ2(G,L×) into Ĥ2(Γ, N×).
We first prove (i). Let K ⊆ L ⊆ N be extensions, K ⊆ L and K ⊆ N both

normal. For K ⊆ L we use the same notation as before, i.e. [L : K] = n, E is the
maximal unramified subextension of L|K which has degree [E : K] = d, L̃ = LK̃

and Lnr = K̃ ⊗K L =
∏

d L̃.
Moreover, we define m = [N : L] and let e and f be the ramification index and

inertia degree of N |L respectively, i.e. m = ef . Let F be the maximal unramified
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subextensions of N |K of degree d′ = [F : K] = df and define Nnr = K̃ ⊗K N =∏
d′ Ñ . The situation can be presented in the following diagram

Ñ
N

L̃

L
K̃

F
E

K

e

f

d

f

(2.7)

where vertical and diagonal lines represent totally ramified and unramified exten-
sions, respectively.

The module Lnr is canonically embedded in Nnr by the embedding of L in N .
For the products of the fields L̃ and Ñ the embedding becomes:

ι : Lnr =
d−1∏
i=0

L̃ ↪→ Nnr =
d′−1∏
i=0

Ñ

(y0, . . . , yd−1) 7→
(
y0, . . . , yd−1, ϕ

d(y0), . . . , ϕ
d(yd−1),

, ϕd(f−1)(y0), . . . , ϕ
d(f−1)(yd−1)

)
.

Let vL and vN be valuations such that vL(πL) = vN(πN) = 1 and vN(πL) = e.
These valuations can uniquely be extended to L̃ and Ñ respectively. Let wL and
wN be the sum of these valuations on L̂nr and N̂nr. Then the following diagram
commutes:

Lnr Nnr

Z Z

ι

·ef
wL wN (2.8)

The multiplication by ef in the lower map occurs since d′ = df and vL(x) =

evN(x) for all x ∈ L̃. Hence V := ker(wL) ⊆ ker(wN) =: V ′ and more specifically
V = (V ′)1×H .

Now we have to show the commutativity of the diagram

Ĥ2(G,L×) Ĥ0(G,Z) 1
[L:K]

Z/Z

Ĥ2(Γ, N×) Ĥ0(Γ,Z) 1
[N :K]

Z/Z

' · 1
[L:K]

' · 1
[N :K]

inf
N|K
L|K inf

N|K
L|K ⊆ (2.9)

where the upper row represents invL|K and the lower one represents invN |K . By
[NSW00, (1.5.2)] the inflation map commutes with connecting homomorphisms.
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This makes the left-hand square commutative. The commutativity of the right-
hand square follows from the fact that the inflation map in degree zero is multi-
plication by [N : L].

To prove (ii) consider the diagram

H2(N |K) H0(Γ,Z) 1
[N :K]

Z/Z

H2(N |L) H0(H,Z) 1
[N :L]

Z/Z

' · 1
[N :K]

' · 1
[N :L]

res
N|L
N|K res

N|L
N|K ·[L : K] (2.10)

where the rows represent the maps invN |K and invN |L again. The left-hand square
is again commutative by [NSW00, Prop. (1.5.2)]. The middle vertical arrow is
the restriction map in degree zero which is defined by

res
N |L
N |K : Ĥ0(Γ,Z) −→ Ĥ0(H,Z)

x+ [N : K]Z 7−→ x+ [N : L]Z.

This clearly makes the right square commute.
Altogether we verified that the cohomology groups satisfy the conditions of a

class formation with respect to the invariant map inv.

(b) Before we consider unramified extensions L|K, we show how the image
ΦL|K(1+ [L : K]Z) is obtained by the connecting homomorphisms δ1 and δ2 from
(2.4) and (2.5) in the general case. For δ1 we consider the commutative diagram

L̂
×
nr Z

0 C0(G, V ) C0(G, L̂
×
nr) C0(G,Z) 0

0 C1(G, V ) C1(G, L̂
×
nr) C1(G,Z) 0

w

w∗

∂1

(2.11)

from the long exact cohomology sequence of (2.4), where w∗ is the map on the
group of cochains induced by w. If π is any uniformizing element of L̂

×
, the

element a = (1, . . . , 1, π) ∈ L̂
×
nr = C0(G, L̂

×
nr) is a preimage of 1 via w. Applying

∂1 yields α ∈ C1(G, L̂
×
nr), which is defined by7

α(σ) :=
σ(a)

a
=


(
1, . . . , 1, σ̂(π)

π

)
, if σ̂| eK = 1(

1, . . . , 1, σ̂(π), 1, . . . , 1,
1

π︸ ︷︷ ︸
j components

)
, if σ̂| eK = ϕ−j, 1 ≤ j ≤ d− 1

7The equations in this proof use the unique extension σ̂ of σ given in Remark 2.8. The Galois
action of (1× σ) is then directly given by (2.2).
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The commutativity of the diagram then implies α ∈ C1(G, V ).
For connecting homomorphism δ2 we consider the commutative diagram

0 C1(G,L×) C1(G, L̂
×
nr) C1(G, V ) 0

0 C2(G,L×) C2(G, L̂
×
nr) C2(G, V ) 0

ϕ− 1

∂2 (2.12)

which arises from the cohomology sequence of (2.5). To find a preimage of α via
ϕ−1, we need elements in L̂

×
nr which are mapped to σ(a)

a
by ϕ−1. By Lemma 2.12

these preimages are given by

β(σ) :=


(uσ, . . . , uσ) if σ̂| eK = 1

(uσ, . . . , uσ, uσσ̂(π), . . . , uσσ̂(π)︸ ︷︷ ︸
j components

) if σ̂| eK = ϕ−j, 1 ≤ j ≤ d− 1 (2.13)

where uσ solves uϕd−1
σ = σ̂(π)

π
. The commutativity of the diagram again implies

that the cocycle

γ(σ, τ) := (∂2β)(σ, τ) =
σ(β(τ))β(σ)

β(στ)
(2.14)

has values in L× and we obtain ūL|K = ΦL|K(1 + [L : K]Z) = γ ∈ Ĥ2(G,L×).
The element ūL|K is independent of the choices in the construction above be-

cause the connecting homomorphisms themselves are independent of these choices.

Now let L|K be an unramified extension of degree n with Galois group G
generated by the Frobenius automorphism ϕ. In this case the maximal unramified
extensions of L and K are equal and the action of (1 × ϕ) ∈ Gal(L̃|K) × G on
Lnr defined in Lemma 2.7 is given by

(1× ϕ)(y0, . . . , yn) = (ϕ−1 × 1)
(
ϕ(y0), . . . , ϕ(yn)

)
=
(
yn, ϕ(y0), . . . , ϕ(yn−1)

)
.

(2.15)

Recall that by the explicit description of the local fundamental class in Re-
mark 1.7, the inverse of uL|K is given by the cocycle

c(ϕi, ϕj) =

{
1 if i+ j < n
1
π

if i+ j ≥ n.
(2.16)

We will now make a direct computation of ΦL|K(1+ [L : K]Z) using the construc-
tions above.

Choose a uniformizing element π of K, which is also a uniformizing element of
L. Then σ̂(π)

π
= 1 for all σ̂ ∈ Gal(L̃|K) and every uσ ∈ L× solves uϕn−1

σ = σ̂(π)
π

.
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In the following we choose uσ = 1
π

for σ 6= 1 and uσ = 1 otherwise. With
these choices, the cochain β from (2.13) is given by β(ϕi) = ( 1

π
, . . . , 1

π
, 1, . . . , 1),

0 ≤ i < n, where the first i components are non-trivial.
Consider elements ϕi, ϕj ∈ G with i+j < n. By (2.15) the action of ϕi = (1×ϕi)

on tuples in K is given by shifting i times to the right. Hence, we have the
following images of β:

β(ϕi+j) =
( 1

π
, . . . ,

1

π︸ ︷︷ ︸
i+j

, 1, . . . , 1
)
, ϕi(β(ϕj)) =

(
1, . . . , 1︸ ︷︷ ︸

i

,
1

π
, . . . ,

1

π︸ ︷︷ ︸
j

, 1, . . . , 1
)
.

We therefore have ūL|K(ϕi, ϕj) = ϕi(β(ϕj))β(ϕi)
/
β(ϕi+j) = (1, . . . , 1) = 1 ∈ L×.

If i+ j ≥ n, we can write i+ j = n+k for some 0 ≤ k < n and the two equations
change to

β(ϕi+j) =
( 1

π
, . . . ,

1

π︸ ︷︷ ︸
k

, 1, . . . , 1
)
, ϕi(β(ϕj)) =

( 1

π
, . . . ,

1

π︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
n−j

,
1

π
, . . . ,

1

π︸ ︷︷ ︸
n−i

,
)
.

In this case we compute ūL|K(ϕi, ϕj) = ( 1
π
, . . . , 1

π
) = 1

π
∈ L×.

The cocycle ūL|K = ΦL|K(1 + [L : K]Z) therefore coincides with (2.16) and
represents the inverse of the local fundamental class. �

Corollary 2.15. The exact sequence

0 −→ L×
⊆−→ L̂×nr

ϕ−1−−−→ L̂×nr
w−→ Z −→ 0

represents the inverse of the local fundamental class in Yext2
G(Z, L×).

Proof. This follows from the above proposition if one considers the explicit de-
scription of the isomorphism Yext2

G(Z, L×) ' Ĥ2(G,L×). By Proposition 1.29
the image of an extension in Ĥ2(G,L×) is given by applying the corresponding
connecting homomorphisms to 1 + |G|Z, as we did in the above proof. �

Remark 2.16. The construction in the proof can be directly turned into an
algorithm. The main problem of this algorithm will be to find solutions uσ of the
equations xϕd−1 = σ̂(π)

π
using Lemma 2.9.

As mentioned in Remark 2.10 the construction of such a solution can generate
very large extensions of L which cannot be handled computationally. However,
if we choose the uniformizing element π in a finite extension F |L such that σ̂(π)

π

has norm one, then a solution uσ can be found in F up to an arbitrary large
precision.

Lemma 2.17. Let F be the unramified extension of L of degree e = [L : E].
Then there exists a uniformizing element π ∈ F such that xϕd−1 = σ̂(π)

π
has a

solution in F for each σ̂ ∈ Gal(F |K).
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Proof. Denote H = Gal(F |L) and let πK and πL be uniformizing elements
of K and L, respectively. Since F |L is unramified, the group Ĥ0(H,UF ) =
UL/NF |L(UF ) is trivial. Hence, the unit u = πKπ

−e
L ∈ UL is a norm of an element

v ∈ UF : NF |L(v) = u. Then π = vπL is another uniformizing element of F and
its norm is NF |L(π) = uπeL = πK . The group H is normal in Gal(F |K) and σ̂
acts trivially on K. Therefore

NF |L

(
σ̂(π)

π

)
=

1

πK

e∏
i=1

ϕdi
(
σ̂(π)

)
=

1

πK
σ̂
( e∏
i=1

ϕdi(π)
)

= 1.

Hence, σ̂(π)
π
∈ NH

UF and since Ĥ−1(H,UF ) = NH
UF/IHUF = 1 for the unramified

extension F |L, there exists x ∈ UF with xϕ
d−1 = σ̂(π)

π
. �

By choosing this special uniformizing element, we can solve the equations
xϕ

d−1 = σ̂(π)
π

up to an arbitrary large precision very effectively. As a result,
the construction in the proof of Proposition 2.14 can be turned into an efficient
algorithm. The most time consuming step in this algorithm will be to solve the
norm equation NF |L(v) = u in the proof above.

Algorithm 2.18 (Local fundamental class: Serre’s approach).
Input: A finite Galois extension L|K over Qp with group G and a precision k ∈ N.

Output: The local fundamental class uL|K ∈ Z2
(
G,L×/U

(k)
L

)
up to the finite

precision k.

1 Let πK and πL be uniformizing elements of K and L, E the maximal unrami-
fied subextension of L|K, e = [L : E] the ramification degree and d the inertia
degree. Let F be the unramified extension of L of degree e and Lnr =

∏
d F .

2 Solve the norm equation NF |L(v) = u with u = πKπ
−e
L ∈ UL and v ∈ UF (e.g.

using algorithms from [Pau06]) and define π = vπL.

3 For each σ ∈ G compute uσ ∈ F such that uϕd−1
σ = σ̂(π)

π
mod U

(k+2)
F .

4 Define β ∈ C1(G,L×nr) and γ ∈ C2(G,L×) by (2.13) and (2.14).

Return: γ−1.

Proof of the correctness. The direct computation in the proof of Proposition 2.14
shows that the cocycle γ from (2.14) represents the inverse of the local fundamen-
tal class.

If we compute the elements uσ modulo U (k+2)
F , we also know the images of β to

the same precision. To compute γ−1 we divide by σ(β(τ)) and β(σ) and each of
these divisions can reduce the precision by one. The other operations involved in
∂2 (addition, multiplication and application of σ) do not reduce the precision (if
F and all automorphisms σ are known to a precision higher than k + 2). Hence,
we know the images of γ modulo U (k)

F . �
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Example 2.19. The algorithm above has been implemented8 in Magma. We
consider the same extensions for which we computed the local fundamental classes
with the direct method in Example 2.6. As mentioned before, the running time
does not depend on the precision n up to which we compute the local fundamental
class. The most time-consuming step is the solution of the norm equation in
step 2. Afterwards the solutions uσ can be computed up to an arbitrary large
precision (which is just bounded by the precision up to which the local field itself
was computed).

The performance of the Magma implementation of Algorithm 2.18 up to pre-
cision 20 is shown in the following table, which includes the timings from Exam-
ple 2.6:

timings [min]
extension group deg(Li) deg(LiNi) Alg. 2.5 Alg. 2.18

L1|Q3 S3 6 36 1.5 0.02

L2|Q2 D4 8 64 30 1.6

L3|Q5 D5 10 50 490 15

L4|Q3 Q12 12 36 160 19

Table 2.2: Computation times for local fundamental classes using Serre’s ap-
proach.

As with Algorithm 2.5 one again notices that the computation time rises quickly
with the degree of L. But the computation times of this new method are just a
fraction of those using the direct method.

Remark 2.20. Combining the efficient computation of the local fundamental
class with Algorithm 2.3, we can efficiently compute the invariant of a cocycle: If
Ĥ2(G,L×) is computed using the module Lf = L×/ exp(L ) for a suitable lattice
L , we will need an integer k such that Pk ⊆ L as in Remark 2.4. Then the
local fundamental class up to precision k computed by Algorithm 2.18 defines a
unique element in uL|K ∈ Ĥ2(G,Lf ).

Given a cocycle γ of precision m ≥ k, one can compute its invariant j
|G| by

solving γ = ujL|K in Ĥ2(G,Lf ).

The efficient nature of Algorithm 2.18 (in comparison to other existing algo-
rithms) makes a whole series of other algorithms possible. In the following sec-
tions and chapters this algorithm will be fundamental for computations in Brauer

8Command LocalFundamentalClassSerre, see documentation in Appendix B.1 on page 173.
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groups of number fields, for global fundamental classes, for Tate’s canonical class,
and finally for the verification of epsilon constant conjectures.

Additionally, this algorithm can be used to compute Tate’s canonical class
following a construction of Chinburg from [Chi89]. Chinburg’s construction is
based on local fundamental classes and it has been implemented for tamely ram-
ified extensions by Janssen [Jan10]. Algorithm 2.18 provides a generalization to
arbitrary extensions.

Finally, Greve applied Algorithm 2.18 in [Gre10] to construct Galois groups
of local number field extensions based on the Shafarevic-Weil theorem [AT68,
Chp. XV, Thm. 6].

2.3 Global Brauer groups
As a first application of the algorithms for local Brauer groups and local funda-
mental classes, we present algorithms for the computation in the global Brauer
group. Since Br(K) =

⋃
L Br(L|K), we restrict to computations in relative

Brauer groups Br(L|K) for Galois extensions L|K.
Using the isomorphism Br(L|K) ' Ĥ2(G,L×) a first approach would be to

find a finitely generated module M which is cohomologically isomorphic to L×.
For such a module M , the cohomology group Ĥ2(G,M) would also be finitely
generated. Since G is finite and |G|Ĥ2(G,M) = 0, this would imply that the
group Ĥ2(G,M) is finite.

For global fields K and finite extensions L|K, however, the relative Brauer
group Br(L|K) is known to be infinite [FS82]. We therefore cannot use this
approach. Instead we will apply the algorithms for local Brauer groups and local
fundamental classes from the previous sections.

Let K be a number field. The Brauer group Br(K) and the local Brauer groups
Br(Kv) are related by the exact sequence

0 −→ Br(K) −→
⊕
v

Br(Kv)
invK−−−→ Q/Z −→ 0 (2.17)

where v runs through all places of K and invK =
∑

v invKv is the sum of all local
invariant maps (e.g. see [NSW00, Thm. (8.1.17)]). From this one easily deduces
an exact sequence for relative Brauer groups.

Corollary 2.21. Let L|K be a Galois extensions of number fields. Then there
is an exact sequence

0 −→ Br(L|K) −→
⊕
v

Br(Lw|Kv)
invK−−−→ 1

[L : K]
Z/Z

where v ranges over all places of K and w is a place of L dividing v.
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Proof. The sequences (2.17) for L and K are connected by the restriction maps
resL|K : Br(K) → Br(L) and resLw|Kv : Br(Kv) → Br(Lw) whose kernels are the
relative Brauer groups. This results in an exact commutative diagram

0 0 0

0 Br(L|K)
⊕

v Br(Lw|Kv)
1

[L:K]
Z/Z

0 Br(K)
⊕

v Br(Kv) Q/Z 0

0 Br(L)
⊕

w Br(Lw) Q/Z 0

0

invK

invK

invL

resL|K ⊕ resLw|Kv ·[L : K]

(2.18)

whose first row is the requested sequence. �

Using this representation of the relative Brauer group Br(L|K) ⊂
⊕

v Br(Kw|Kv),
every element in this group is given by finitely many non-zero components which
are elements of the local Brauer group Br(Lw|Kv) ' Ĥ2(Gw, L

×
w) and whose

invariants sum up to zero.
Hence, the algorithms from the previous sections can be used to compute in

the global relative Brauer group. The two problems we want to solve are:

1. Identify cocycles: Given a global cocycle in Z2(G,L×), compute the invari-
ants at each place v of K. This allows us to identify cocycles and to decide
whether a cocycle is a coboundary.

2. Construct cocycles: Given invariants at finitely many places v which sum
up to zero, compute a global cocycle respecting these local conditions.

We will address these problems in the following sections.

2.3.1 Identify cocycles
We will identify cocycles using Corollary 2.21 by computing invariants for every
place w of L of the local cocycles obtained by the homomorphisms

Ĥ2(G,L×) → Ĥ2(Gw, L
×
w)

α 7→ αw.

These are given by the embedding L× ⊂ L×w and by restricting to Gw ⊆ G. Since
there are infinitely many places in L, we first need to restrict to a finite subset.

Lemma 2.22. Let w be an unramified place of L and γ ∈ Z2(G,L×) a global co-
cycle for which the valuation w(γ(σ, τ)) is trivial for each pair σ, τ ∈ G. Then the
local cocycle γw obtained as the image of Ĥ2(G,L×) → Ĥ2(Gw, L

×
w) has invariant

invw(γw) = 0 + Z.
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Proof. The local invariant map invw for the unramified place w is defined (see
Theorem 1.3) as the following composition of isomorphisms:

Ĥ2(Gw, L
×
w)

w−→ Ĥ2(Gw,Z)
'−→ Ĥ1(Gw,Q/Z)

'−→ 1

[Lw : Kv]
Z/Z.

Here w(γw) is trivial in Ĥ2(Gw,Z) since w(γw)(σ, τ) = w(γw(σ, τ)) = 0 by as-
sumption and hence invw(γw) = 0 + Z. �

So any global cocycle γ can only have non-trivial invariants at ramified places,
at infinite places and at places which occur in the factorization of the principal
ideals (γ(σ, τ)) for every pair σ, τ ∈ G. These are just finitely many places and
the process of localization at these places gives an algorithm to identify global
cocycles as a sequence of tuples (v, xv) where v is a place of K and xv ∈ 1

|Gw|Z/Z
with w|v.

For a set of places S of L, we write S(G) for a subset of representatives of the
G-orbits in L.

Algorithm 2.23 (Identify global cocycle).
Input: A cocycle γ ∈ Z2(G,L×) for a Galois extensions L|K of number fields

with group G.
Output: A sequence of tuples (v, xv) for a set of places v of K such that xv ∈ Q/Z

is the local invariant of the localization γw with w|v.

1 Let S be the G-invariant set of places of L which includes the places that
ramify in L|K, the infinite places of L and those places that occur in the
factorization of λOL for any λ = γ(σ, τ), σ, τ ∈ G.

2 For each w ∈ S(G) and a corresponding place v of K with w|v compute
γw ∈ Ĥ2(G,L×w) and xv := invw(γw) using Algorithms 2.3 and 2.18.

Return: The sequence of tuples (v, xv) for w ∈ S(G) and w|v.

The performance of this algorithm will depend on the size of the field L (i.e.
its degree over Q and its discriminant) because this affects the factorizations of
λOL in step 1. But also the size of the localizations Lw|Kv will be important
since this determines the difficulty of the norm equations which have to be solve
in Algorithm 2.18.

Remark 2.24. This algorithm has been implemented9 in Magma for K = Q.
The main issue for K 6= Q is the fact that we need to write Lw as extension of
Kv for places w|v of L and K, respectively. In Magma each of those comple-
tions can be computed independently, but one does not get Lw as extension of
Kv. Once this problem is solved, it is easy to generalize the implementation of
Algorithm 2.23 to arbitrary extensions L|K.

Note that this also applies for Algorithm 2.27 below.
9Command GlobalCocycleInvariants, see documentation in Appendix B.1 on page 173.
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2.3.2 Construct cocycles

For the construction of cocycles we again have the problem of L not being finitely
generated over Z. To work with the finitely generated S-units US := {a ∈ L |
v(a) = 0 ∀v /∈ S} for a suitable finite set S of places of L and the homomorphism

κ : Ĥ2(G,US) −→ Ĥ2(G,L×)

instead, we also need to restrict to a finite set of places S in this case.
We denote the S-ideal class group by ClS(L), which is defined to be the quotient

of the ideal class group ClL modulo the subgroup generated by prime ideals
corresponding to places in S.

Lemma 2.25. Let α ∈ Z2(G,L×) be a cocycle and consider a G-stable set S of
places in L which

(i) contains the ramified places and the infinite places of L,

(ii) satisfies invw(αw) = 0 + Z ∈ 1
|Gw|Z/Z for all w /∈ S,

(iii) and is such that ClS(L) = 0.

Then there exists β ∈ Z2(G,US) such that κ(β) = α.

Proof. Let T be the set of places w for which w ∈ S or w(α(σ, τ)) 6= 0 for some
σ, τ ∈ G. Then α has values in UT , and the proof is finished if T = S holds.

Otherwise, let v ∈ T \ S, i.e. v is a place which is unramified in L|K (by
condition (i)) and invv(αv) = 0 + Z (by condition (ii)). By condition (iii) the
prime ideal Pv corresponding to the place v can be written as Pv = av(πv) for
some prime ideal av which has support in S and a principal ideal (πv). Then the
generator πv has valuations v(πv) = 1 and w(πv) = 0 for all w /∈ S ∪ {v}.

As v is unramified, there is an isomorphism

Ĥ2(Gv, L
×
v ) ' Ĥ2(Gv,Z)

induced by the valuation of v. We will therefore consider the valuations of the
cocycle α. But before we deal with the general case, we consider the special case
Gv = G.

Special case: Gv = G. By condition (ii) the cocycle αv is trivial in Ĥ2(G,L×v ) '
Ĥ2(G,Z), i.e. it is a coboundary: αv = ∂2(a) for some a ∈ C1(G,L×v ). Define
b ∈ C1(G,L×) by b(σ) = π

v(α(σ))
v for all σ ∈ G. Then for all σ ∈ G we have

valuations

v(b(σ)) = v(a(σ)) and w(b(σ)) = 0 for w /∈ S ∪ {v}.
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We therefore consider the cocycle α′ = α∂2(b)
−1 which is equal to α in Ĥ2(G,L×).

For all σ, τ ∈ G it satisfies

v(α′(σ, τ)) = 0 and w(α′(σ, τ)) = w(α(σ, τ)) for w /∈ S ∪ {v}.

We conclude that α′ only has non-trivial valuations for places w ∈ T ′ := T \ {v}.
In other words, the cocycle α′ has values in UT ′ with T ′  T and continuing
as above will construct a cocycle β with values in US which is equal to α in
Ĥ2(G,L×).

General case. In this case we have to consider all conjugate places of v. We
therefore denote the fixed place in T \ S by v0 and each conjugate of v0 by v. If
we fix a system R of representatives of G/Gv0 , these conjugates are vσ0 for σ ∈ R:

L v0 v= vσ0

K u

G

Since S is a G-stable set, each of these conjugates v satisfies v /∈ S. As before,
the prime ideals Pv corresponding to each place v can be written as Pv = av(πv)
with prime ideals av having support in S and elements πv satisfying v(πv) = 1
and w(πv) = 0 for all w /∈ S ∪ {v}.

If A is a Gv0-module, then the induced module indGGv0
A can be identified with⊕

τ∈R τA with G-action (σx)τ ′ = σ′xτ if στ = τ ′σ′ for σ′ ∈ Gv0 and x ∈
⊕

τ∈R τA.
We now consider the homomorphism ψ : Ĥ2(G,L×) → Ĥ2

(
G, indGGv0

Z
)

from
the following diagram

Ĥ2(G,L×) Ĥ2
(
G, indGGv0

L×v0
)

Ĥ2
(
G, indGGv0

Z
)

Ĥ2(Gv0 , L
×
v0

) Ĥ2(Gv0 ,Z)

'
(v)v|u

'
v0

' ' (2.19)

where the upper left horizontal map is given by the diagonal embedding L× ↪→
indGGv0

L×v0 '
∏

v|u L
×
v and the right-hand square is commutative with vertical

isomorphisms given by Shapiro’s lemma and horizontal isomorphisms induced
by valuations. Hence, the image ψ(α) of α in Ĥ2

(
G, indGGv0

Z
)

with indGGv0
Z =⊕

σ∈R σZ is given by taking valuations at each place vσ0 , σ ∈ R.
By condition (ii), v0 /∈ S implies that αv0 is trivial in Ĥ2(Gv0 , L

×
v0

). Hence, the
image of α will be trivial in any of the cohomology groups in the right-hand square
of (2.19). Therefore, ψ(α) is a coboundary in Ĥ2

(
G, indGGv0

Z
)
, i.e. ψ(α) = ∂2(a)

for some a ∈ C1
(
G, indGGv0

Z
)
.
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We denote the component of a(σ) ∈ indGGv0
Z =

⊕
τ∈R τZ at τ ∈ R by aτ (σ) ∈ Z

and consider the cochain b ∈ C1(G,L×) given by

b(σ) =
∏
τ∈R

(πvτ
0
)aτ (σ).

By the choice of πv for each v|u, this cochain satisfies ψ(∂2(b)) = ∂2(a) because
it has the same valuations as α for each v|u. Moreover, w(∂2(b)) = 0 for all
w /∈ S ∪ {vτ0 | τ ∈ R}.

Hence, the cocycle α′ := α∂2(b)
−1 has the following valuations for each pair

σ, τ ∈ G:

v(α′(σ, τ)) = 0 for all v|u
and w(α′(σ, τ)) = w(α(σ, τ)) for all w /∈ S ∪ {vτ0 | τ ∈ R}

and it is equal to α in Ĥ2(G,L×).
In conclusion, the cocycle α′ only has non-trivial valuations for places w ∈

T ′ := T \ {vτ0 | τ ∈ R}. Proceeding as above with T ′  T will generate the
required cocycle β with values in US. �

Assume, that we have given local invariants {qu ∈ Q, u ∈ S ′} at a finite set
of places S ′ of K such that

∑
u qu ∈ Z and [Lv : Ku]qu ∈ Z for v|u. Then there

exists a cocycle in Z2(G,L×) with these invariants. We then consider a finite,
Galois-invariant set of places S in L which

(i) includes places that ramify in L|K and all the infinite places of L,

(ii) is such that ClS(L) = 0, and

(iii) contains the places {v | v|u and u ∈ S ′} which lie above any place u ∈ S ′.

Since such a set S satisfies the conditions of the above lemma, one can construct
a cocycle in Z2(G,US) having these invariants and by US ⊂ L× this defines the
cocycle in Z2(G,L×). Since US is finitely generated, the conditions on the cocycle
can be formulated by linear equations as follows.

For a set S of places, we denote the subset of finite places by Sf ⊆ S and the
subset of infinite places by S∞.

Proposition 2.26. Let {qu, u ∈ S ′} be a set of local invariants qu ∈ Q for a
finite set of places S ′ of K such that

∑
u qu ∈ Z and [Lv : Ku]qu ∈ Z for a place v

of L above u. Let S be a finite set of places in L satisfying the conditions (i)–(iii)
above. Then one can find a cocycle γ ∈ Z2(G,US) having these local invariants
by solving a system of linear equations.
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Proof. The S-units are finitely generated. Denote its Z-generators by εi, such
that US =

∏s
i=1〈εi〉, and let λi be the order of εi with λi = 0 if εi is a free

generator.
Then a generic cochain γ ∈ C2(G,US) representing a cocycle is given by |G|2s

variables:

γ(σ, τ) =
s∏
i=1

ε
xσ,τ,i

i , xσ,τ,i ∈ Z. (2.20)

If the G-action on US is given by σ(εi) =
∏s

j=1 ε
ασ,i,j

j with integers ασ,i,j, one can
rewrite the cocycle condition on γ for all σ, τ, ρ ∈ G as follows:

γ(στ, ρ)γ(σ, τ) = σ(γ(τ, ρ))γ(σ, τρ) (2.21)

⇔
s∏
i=1

ε
xστ,ρ,i

i

s∏
i=1

ε
xσ,τ,i

i =
s∏
i=1

ε
Ps

j=1 ασ,j,ixτ,ρ,j

i

s∏
i=1

ε
xσ,τρ,i

i

⇔ xστ,ρ,i + xσ,τ,i ≡
s∑
j=1

ασ,j,ixτ,ρ,j + xσ,τρ,i mod λiZ, ∀i = 1 . . . s.

(2.22)

For each w ∈ Sf (G) let Lfw =
∏rw

i=1〈mw,i〉 be the module Lfw = L×w/ exp(Lw)

from Lemma 2.1 for which Ĥ2(Gw, L
×
w) ' Ĥ2(Gw, L

f
w) and let φw be the map

L → L×w � Lfw. Denote the order of mw,i by νw,i ∈ Z, with νw,i = 0 if mw,i

is a free generator. If γw ∈ Ĥ2(Gw, L
f
w) is a local cocycle having the prescribed

invariant qu with w|u, then it is required that

φw(γ(σ, τ)) = γw(σ, τ)bw(σ, τ) (2.23)

holds in Lfw for σ, τ ∈ Gw where bw is a coboundary in Ĥ2(Gw, L
f
w). The 2-

coboundary bw is defined using a 1-cochain aw ∈ C1(Gw, L
f
w) by bw(σ, τ) =

σ(aw(τ))aw(σ)aw(στ)−1. This 1-cochain in turn is generically given by integers
yw,σ,i ∈ Z: aw(σ) =

∏rw
i=1m

yw,σ,i

w,i .
Fix w and let the G-action on Lfw be given by σ(mw,i) =

∏rw
j=1m

βσ,i,j

w,j with
integers βσ,i,j, and let φw(εk) =

∏rw
i=1m

ek,i

w,i with ek,i ∈ Z.
If for fixed σ, τ ∈ Gw we have γw(σ, τ) =

∏r
i=1m

ci
w,i, then we can rewrite the

condition (2.23) as follows:

φw(γ(σ, τ)) = γw(σ, τ)σ(aw(τ))aw(σ)aw(στ)−1

⇔
rw∏
i=1

m
Ps

k=1 ek,ixσ,τ,k

w,i =
rw∏
i=1

m
ci+

Prw
j=1 βσ,j,iyw,τ,j+yw,σ,i−yw,στ,i

w,i

⇔
s∑

k=1

ek,ixσ,τ,k ≡ ci +
rw∑
j=1

βσ,j,iyw,τ,j + yw,σ,i − yw,στ,i mod νw,iZ
∀i = 1 . . . r (2.24)
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The condition at infinite places w ∈ S∞ with Gw = 〈gw〉 6= 1 can be described
as follows (compare Section 1.1.1 on page 11). If γ is a normalized cocycle, i.e.
γ(1, σ) = γ(σ, 1) = 1, then γw has values in R and it represents the local funda-
mental class if and only if γw(gw, gw) < 0. If ιw is the embedding corresponding to
w and if J = {j ∈ {1, . . . , s} | ιw(εj) ∈ R, ιw(εj) < 0} then we add the condition

∑
i∈J

xgw,gw,i ≡

{
0 mod 2Z
1 mod 2Z

(2.25)

to the linear system of equations, depending on whether we want trivial (qu ∈ Z)
or non-trivial (qu /∈ Z) invariant at w with w|u.

The generic cocycle γ and the 1-cochains aw give a total minimum number
of |G|2s +

∑
w∈Sf

|Gw| rw variables. Any congruence for infinite places and any
congruence of the form (2.22) or (2.24) with λi 6= 0 or νw,i 6= 0, respectively,
is turned into a linear equation by adding an additional variable to the system
of equations. The number of (not necessarily independent) equations will be
|G|3s+

∑
w∈Sf

|Gw|2rw+ |SC|+(2|G|−1) which arise from the cocycle conditions,
the local conditions at w ∈ Sf , the conditions at complex places w ∈ SC ⊆ S∞
and the condition of a normalized cocycle, respectively.

By Lemma 2.25 there exists a solution of the constructed system of linear
equations and using the solution of the variables xσ,τ,i in (2.20) one gets a cocycle
with values in US and prescribed local invariants. �

Algorithm 2.27 (Construct global cocycle).
Input: A finite Galois extensions L|K of number fields with group G and local

invariants qv ∈ 1
|Gw|Z for a finite set S ′ of places v of K (with w dividing v)

which satisfy
∑

v qv ∈ Z.

Output: A global cocycle γ ∈ Z2(G,US) for a finite set of places S of L satisfying
conditions (i)–(iii) whose localizations have invariant qv at v ∈ S ′ and 0 at
v /∈ S ′.

1 Follow the proof of Proposition 2.26 to construct a system of linear equations,
i.e. turn the equivalences (2.22), (2.24) and (2.25) into linear equations by
introducing new variables and add equations for normalized cocycles.

2 Solve this system of equations, pick a solution and define the cochain γ by
equation (2.20).

Return: The cocycle γ.

This algorithm has been implemented10 in Magma for K = Q. For arbitrary
extension it would be necessary to compute completions Lw|Kv of an extension
L|K. This is, however, not yet possible in Magma, see Remark 2.24.
10Command GlobalCocycle, see documentation in Appendix B.1 on page 173.
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Example 2.28. Let L be the splitting field of x3 + 9 ∈ Z[x] over Q. It is
a Galois extension with group G = S3. The prime 3 is undecomposed in L
and 5 decomposes into three prime ideals. Therefore, there exists a cocycle in
γ ∈ Z2(G,L×) which has invariants 1

2
at the primes 3 and 5 and trivial invariant

everywhere else.
Since 3 is the only prime which ramifies in L and L has class number 1, we

can consider a set of primes S of L whose finite places w ∈ Sf are those above
3 and 5. The linear system of equations from Proposition 2.26 considered in the
algorithm above then becomes a system with 1748 equations in 608 variables. A
solution of this system is found easily and in total Algorithm 2.27 takes about 3
seconds to construct the cocycle γ.

The invariants of γ can be verified using algorithm Algorithm 2.23. It will take
just a second since all the local cohomology groups needed are already computed.

Since both primes, p = 3 and p = 5, are undecomposed in the subextension
Q(ζ3)|Q of L|Q, the cocycle γ can also be represented as the inflation of a cocycle
β ∈ Ĥ2

(
Gal(Q(ζ3|Q),Q(ζ3)

×). With Algorithm 2.23 one can easily verify that

β(σ, τ) =

{
15 σ 6= 1, τ 6= 1

1 else

is a cocycle with the required invariants and that inf
L|Q
Q(ζ3)|Q β = γ.

In this example the construction of the cocycle was very simple (in terms of
computation time). Actually, one discovers that more conditions on the cocycle
will not affect the computation time by a lot for both algorithms. In other
words, Magma’s implementation of the factorization of prime ideals (step 1 of
Algorithm 2.23) and the computation of kernels of integer matrices (step 2 of
Algorithm 2.27) both perform well enough.

For extensions of higher degree (degree ≥ 10 over Q) one will also observe that
the computation of the local cohomology groups needed in both algorithms will
be the main issue. Then the norm equations from Algorithm 2.18 become very
difficult and these will dominate the computation time.
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Given a Galois extension of number fields L|K with Galois group G, we denote
the idèle class group by CL as in Section 1.1.2. We will use the algorithms for
local fundamental classes to describe an algorithm for the computation of the
global fundamental class in Ĥ2(G,CL). It is the unique element whose invariant
through the isomorphism

invL|K : Ĥ2(G,CL)
'−→ 1

[L : K]
Z/Z

is 1/[L : K] + Z (see Definition 1.15). The main ideas behind this method are
the following:

1. Chinburg shows in [Chi85, § 2] how a finitely generated module M can be
generated such that Ĥ2(G,M) ' Ĥ2(G,CL).

2. Given a finitely generated module M , one can compute with Ĥ2(G,M)
using linear algebra, as described in [Hol06].

3. Using the idèlic invariant map one can find the global fundamental class for
cyclic extensions. In the general case one has to work with the composite
with a cyclic extension of the same degree and work with the inflation on
cohomology groups.

Compared to the computation of the local fundamental class this can be regarded
as the direct method for the global fundamental class.

The computation of the cohomology group Ĥ2(G,M) for finitely generated
modules M has been discussed in Section 2.1. In this chapter we first address the
finite approximation of the idèle class group introduced by Chinburg and turn it
into an algorithm. This will then allow us to describe an algorithm to compute
the global fundamental class.

3.1 Finite approximation of the idèle class group
We continue to use the notations from [NSW00, Chp. VIII, § 3] where IL denotes
the idèle group

∏′
v L

×
v as defined in Definition 1.8 and the product is restricted

with respect to the unit groups ULv which are ULv = O×
Lv

for finite places and
ULv = L×v for infinite places. For a finite set S of places of L we define the S-idèle
class group by CS(L) = IL/L

×U where U =
∏

v∈S{1} ×
∏

v/∈S ULv ⊆ IL.



70 3 Global fundamental classes

If S contains all the infinite places and all places that ramify in L|K, every place
v /∈ S is unramified and has cohomologically trivial unit group O×

Lv
. Therefore,

UL,S is cohomologically trivial and there is an isomorphism in cohomology

Ĥ i(G,CL) ' Ĥ i(G,CS(L)) (3.1)

(see [NSW00, Prop. (8.3.1)]).
For the computation of the cohomology of CL we have the problem that CL

itself or the S-idèle class group CS(L) are not finitely generated. Moreover, they
are defined by IL which is a product over infinitely many primes. As a first
step, we will therefore replace IL by the S-idèle group1 IL,S :=

∏
v∈S L

×
v for

a finite set S of places in L and factor by the units of the ring of S-integers
OL,S := {a ∈ L | v(a) ≥ 0 ∀v /∈ S}. These S-units O×

L,S will also be denoted by
UL,S or by US if L is known from the context.

In analogy to the idèle class group one then defines the group CL,S = IL,S/UL,S
which is defined by a product over the finitely many primes in S. It is related to
the S-idèle class group by the exact sequence (cf. [NSW00, Chp. VIII, (8.3.4)])

0 −→ CL,S −→ CS(L) −→ ClS(L) −→ 0 (3.2)

where ClS(L) denotes the S-ideal class group, which is the quotient of the ideal
class group ClL of L by the classes of prime ideals corresponding to places in S.

In order to work with CL,S instead of CS(L), we therefore need S to be suffi-
ciently large such that ClS(L) = 0. Such a finite set of places (corresponding to
prime ideals) exists because the ideal class group is finite and every ideal class is
represented by an ideal which factors into finitely many prime ideals. Actually,
we also need the S-class group to be trivial for all subfields F in L|K in order to
represent elements in CF ⊆ CL by the same set of places. This is a very strong
condition on S and its verification can take quite a long time. The set of places
u in a subfield F ⊆ L for which there is a place v ∈ S dividing u will again be
denoted by S.

To have isomorphism (3.1), we will also require S to contain all ramified and
infinite places. In total we have the following conditions on S:

(S1) it is Galois-invariant, i.e. if v ∈ S, also vσ ∈ S for σ ∈ G,

(S2) it contains the places that ramify in L|K,

(S3) it contains the infinite places of L, and

(S4) it is sufficiently large such that ClS(F ) = 0 for all K ⊆ F ⊆ L.

By the arguments from above we have the following isomorphism in cohomology.
1Note that the S-idèle group is often also defined to be

∏
v∈S L×v ×

∏
v/∈S O

×
Lv

. In our appli-
cations, with S omitting only unramified places, the two definitions will be cohomologically
isomorphic. Since we are only interested in the cohomology, we can choose either of them
and we will keep the notation of [NSW00].
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Lemma 3.1. Let S be a set of places satisfying conditions (S1)–(S4). Then there
is an isomorphism

Ĥ i(G,CL) ' Ĥ i(G,CL,S).

Proof. [NSW00, Prop. (8.3.4) and (8.3.6)]. �

In the definition of CL = IL/L
× we factor by L× which is known to satisfy

Ĥ1(H,L×) = 0 for all subgroups H ⊆ G by Hilbert’s Theorem 90. To replace CL
by CL,S = IL,S/UL,S in the following we will similarly require the first cohomology
groups of UL,S to be trivial. But this already follows from the conditions on S.

Lemma 3.2. If S is a finite set of places satisfying conditions (S1)–(S4) and
H ⊆ G is a subgroup, then Ĥ1(H,UL,S) = 0.

Proof. We recall the proof from [Tat84, Chp. II, Thm. 6.8] which particularly
motivates condition (S4).

The S-units UL,S fit into an exact sequence

0 → UL,S → L× → JL,S → 0

with JL,S denoting the ideals which are coprime to S and where the right-hand
map is surjective since ClS(L) = 0. The cohomology sequence for a subgroup
H ⊆ G with F = LH provides

0 → UF,S → F× → JHL,S → Ĥ1(H,UL,S) → 0.

Since S contains the ramified primes, one has JHL,S = JF,S and F× → JF,S is
surjective if and only if ClS(F ) = 0. The condition (S4) on S therefore implies
Ĥ1(H,UL,S) = 0. �

For the finite places v ∈ Sf the group IL,S contains L×v which we made finitely
generated by taking the quotient with exp(Lv) for a full projective lattice Lv ⊆
OLv upon which the exponential map is defined, see Section 2.1. To get a similar
result for the infinite places v ∈ S∞, we follow [Chi85, § 2] to construct finitely
generated modules Wv which are cohomologically isomorphic to L×v .

Proposition 3.3 (Chinburg). Let v ∈ S∞ be a infinite place of L and ιv the
corresponding embedding L ↪→ Lv. Then there exists a finitely generated Gv-
submodule W of L×v such that

(i) ιv(UL,S) ⊆ W and W/ιv(UL,S) is torsion-free,

(ii) the inclusion W ↪→ L×v induces an isomorphism in Gv-cohomology, and

(iii) if W ′ is another module for which (i) and (ii) hold, there is a Gv-homomor-
phism f : W → W ′ for which f |ιv(UL,S) = id and f induces an isomorphism
in cohomology.
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We recall the proof of Chinburg from [Chi85, Lem. 2.1] but, in contrast to his
proof, we also discuss the algorithmic details of the construction. In the following,
we will sometimes omit the embedding ιv and embed UL,S into Lv implicitly.

Proof. Let u denote the place of K below v. Consider the case Gv = 1. Then
Ku = Lv = R or Ku = Lv = C and Ĥ i(Gv, L

×
v ) = 0 for all i. Hence, properties

(ii) and (iii) are trivially satisfied for W = ιv(UL,S).
In the other case Gv = {1, σv}, Ku = R and Lv = C. The action by σv on x ∈ C

is the complex conjugation, which we will also denote by x. The cohomology
groups of L×v = C× are Ĥ0(Gv, L

×
v ) = R×/R>0 ' Z/2Z and Ĥ−1(Gv, L

×
v ) = 0 by

Hilbert’s Theorem 90.
Let Utor be the torsion subgroup of the S-units U = UL,S which is given the

roots of unity µL in L. Then define U0 = U/Utor and construct Wv by the
following steps:

1. There exists a non-trivial extension (Z;Utor) of Z with Utor (as Z[Gv]-
modules).

2. There is an isomorphism of Z[Gv]-modules U0 ' Za ⊕ Z[Gv]
b for suitable

integers a and b.

3. One can construct an isomorphism ψ : (Z;Utor) ⊕ Za−1 ⊕ Z[Gv]
b ' U and

the generators u2, . . . , ua of the Za−1-part in U satisfy ιv(ui) ∈ R and can
be chosen such that ιv(ψ(ui)) > 0 in R.

4. For 2 ≤ i ≤ a, we choose λi ∈ C with NGvλi = ui algebraically independent
such that

∏a
i=2 λ

ai+biσv
i =

∏
i λ

ai
i λi

bi ∈ ιv(U) if and only if ai = bi for all i.

5. Finally, the module W := (Z;Utor)⊕
⊕a

i=2 Z[Gv]λi⊕Z[Gv]
b has cohomology

Ĥ i(G,W ) ' Ĥ i(G, (Z;Utor)) and satisfies the conditions of the proposition.

Step 1: The first cohomology group of Utor is

Ĥ1(Gv, Utor) = Ĥ−1(Gv, Utor) = NGv
Utor/ IGv Utor = Utor/U

2
tor ' Z/2Z.

Hence, up to isomorphism there is exactly one non-trivial extension (Z;Utor) of
Z with Utor:

0 −→ Utor −→ (Z;Utor) −→ Z −→ 0. (3.3)

Explicitly, it is given by choosing θ ∈ Utor \U2
tor and defining (Z;Utor) = Utor⊕Z

(as direct sum of groups) where σv acts naturally on the subgroup Utor ⊆ (Z;Utor)
and σv(0, 1) = (θ, 1). On the other hand, if θ ∈ U2

tor = IGv Utor with θ = σvη/η,
η ∈ Utor, one can easily see that (σvη, 1) is a Gv-invariant lift of 1 ∈ Z, i.e.
1 7→ (σvη, 1) is a Gv-section and (Z;Utor) is isomorphic to Utor ⊕ Z (direct sum
as Gv-modules).



3.1 Finite approximation of the idèle class group 73

Furthermore, if M = Utor ⊕ Z is another extension with Gv-action σv(0, 1) =
(θ′, 1), θ′ ∈ Utor \ U2

tor, then there exists η ∈ U2
tor satisfying σvη/η = θ′/θ since

θ′/θ ∈ U2
tor = IGv Utor and Utor/U

2
tor ' Z/2Z. Hence, there is a Gv-module

isomorphism M → (Z;Utor) given by the identity on Utor and (0, 1) 7→ (η, 1).
For the rest of the proof, we fix an element θ ∈ Utor \ U2

tor representing the
action on g1 := (0, 1) in (Z;Utor).

Step 2: Recall that by Lemma 3.2 the conditions on S imply Ĥ−1(Gv, U) = 0.
The quotient U0 = U/Utor gives an exact sequence

0 = Ĥ−1(Gv, U) → Ĥ−1(Gv, U0) → Ĥ0(Gv, Utor) → Ĥ0(Gv, U)

of cohomology groups where Ĥ0(Gv, Utor) = UGv
tor /(1 + σv)Utor ' Z/2Z and

Ĥ−1(Gv, U0) = 1 since −1 ∈ UGv
tor ⊆ UGv is not in (1+σv)U . From Ĥ−1(Gv, U0) =

1 6= Ĥ−1(Gv,Z−) we know that there is no Z− part in U0. So by Corollary 3.5
proved below there is a Z[Gv]-decomposition U0 = Za ⊕ Z[Gv]

b with appropriate
a, b ∈ Z. The integers a, b and a corresponding basis x̄1, . . . , x̄a, ȳ1, . . . , ȳb can be
computed by the constructive proof of [CR62, Thm. (74.3)], see Remark 3.6.

Step 3: Applying Lemma 1.27 to the isomorphism U0 ' Za⊕Z[Gv]
b we get an

isomorphism

Yext1
Gv

(U0, Utor) '
a⊕
i=1

Yext1
Gv

(Z, Utor)⊕
b⊕
i=1

Yext1
Gv

(Z[Gv], Utor).

Through this isomorphism the module (Z, Utor) ⊕ Za−1 ⊕ Z[Gv]
b is an extension

of U0 with Utor corresponding to the tuple consisting of the non-trivial exten-
sion (3.3) in Yext1

Gv
(Z, Utor), a − 1 trivial extensions in Yext1

Gv
(Z, Utor) and b

trivial extensions in Yext1
Gv

(Z[Gv], Utor). It is therefore a non-trivial extension
of U0 with Utor. The module U is also a non-trivial extension because oth-
erwise Ĥ−1(Gv, U) = Ĥ−1(Gv, Utor) ⊕ Ĥ−1(Gv, U0) which is a contradiction to
Ĥ−1(Gv, U) = 0 6= Ĥ−1(Gv, Utor). Then the isomorphism ψ : (Z;Utor) ⊕ Za−1 ⊕
Z[Gv]

b ' U can be constructed as follows.
Since U is a non-trivial extension of U0 with Utor, at least one of the generators

x̄i of the Za part in U0 does not have a Gv-invariant lift. Otherwise, by the
arguments used in step 1 the module U would be a trivial extension of U0 with
Utor. Denote the lifts of x̄i, ȳi to U by xi, yi. By reordering the basis of U0, we can
assume that for some appropriate integer c ≥ 1 the first c generators x̄1, . . . , x̄c
do not have a Gv-invariant lift and that xc+1, . . . xa are elements of UGv .

Each generator xi, 1 ≤ i ≤ c, corresponds to a non-trivial extension of Z with
Utor (via Lemma 1.27), where the Gv-action σvxi = θixi is given by an element
θi ∈ Utor \ U2

tor (see step 1). Since Utor/U
2
tor ' Z/2Z, the quotients θ/θi are

elements in U2
tor = IGv Utor and one can find ηi ∈ Utor satisfying ησv−1

i = θ/θi.
Here, θ ∈ Utor is the fixed element from the construction of (Z;Utor) in step 1.
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In (Z;Utor) ⊕ Za−1 ⊕ Z[Gv]
b denote the Z[Gv]-generators of the Za−1 part by

g2, . . . ga, those of the Z[Gv]
b part by h1, . . . , hb and let (Z;Utor) = Utor⊕Z be the

module constructed in step 1 with g1 = (0, 1). Then define the homomorphism
ψ : (Z;Utor)⊕ Za−1 ⊕ Z[Gv]

b → U by

ψ(u) = u for u ∈ Utor,

ψ(hi) = yi,

and ψ(gi) =


x1η1 for i = 1,
xi

x1
· ηi

η1
for 2 ≤ i ≤ c,

xi for c+ 1 ≤ i ≤ a.

(3.4)

This is a Gv-module homomorphism since

σvψ(g1) = σv(x1η1) = θ1x1
θη1

θ1

= θx1η1 = ψ(θg1) = ψ(σvg1),

and σvψ(gi) =
σv(xiηi)

σv(x1η1)
=
θxiηi
θx1η1

= ψ(gi) = ψ(σvgi) for 2 ≤ i ≤ a.

The homomorphism ψ induces a Gv-homomorphism φ on U0 given by φ(x̄1) = x̄1,
φ(x̄i) = x̄i − x̄1, and φ(ȳ1) = ȳ1. The map φ obviously is an isomorphism and by
the snake lemma ψ must then also be an isomorphism. This can be combined in
the following commutative diagram:

0 Utor (Z;Utor)⊕ Za−1 ⊕ Z[Gv]
b U0 0

0 Utor U U0 0

' ψ ' φ (3.5)

For 2 ≤ i ≤ a the images ψ(gi) are Gv invariant and therefore ιv(ψ(gi)) ∈ R. If
one changes the image ψ(gi) for some 2 ≤ i ≤ a such that ψ(gi) = −(xi/x1 ·ηi/η1)
(or ψ(gi) = −xi if i > c), then ψ is still an isomorphism and does not affect the
commutativity since −1 ∈ Utor. Hence, we can define ψ in such a way that the
elements ui := ψ(gi), 2 ≤ i ≤ a have a positive embedding ιv(ui) > 0 in R.

Step 4: Since Ĥ0(Gv, L
×
v ) = Ĥ0(Gv,C) = R×/R>0 there exist elements λi ∈ C

satisfying NGv(λi) = ιv(ui). Multiplying these elements λi by suitable (transcen-
dental) elements on the unit circle, they become algebraically independent2 and∏a

i=2 λ
ai+biσv
i ∈ ιv(U) implies ai = bi for i = 2, . . . , a. Note that for our purposes

it is enough to know the existence of these elements λi. In our applications,
we can work with abstract generators λi for which we define the Gv-action by
σvλi = uiλ

−1
i .

2By Baker’s methods on linear forms in logarithms, elements α2, . . . , αa ∈ C are already
algebraically independent if log(αi) and 1 are linearly independent over Q.
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Step 5: We finally define W = (Z;Utor)⊕
⊕a

i=2 Z[Gv]λi⊕Z[Gv]
b which can be

seen as subset of C by λi ∈ C× and by the composite ιv ◦ ψ.

Verification of (i) and (ii): As an abelian group W = ιv(U)⊕
⊕a

i=2 Zλi ⊂ C×
which can be identified as a submodule of C in the obvious way. It contains ιv(U)
and W/ιv(U) '

⊕a−1
i=1 Zλi is torsion-free. By construction of W the cohomology

groups of W are Ĥ i(Gv,W ) = Ĥ i(Gv, (Z;Utor)), so we need to prove that the
cohomology of (Z;Utor) and L×v = C× are isomorphic.

We therefore consider the cyclic cohomology diagram corresponding to (3.3)

Ĥ0(Gv, Utor) Ĥ0(Gv, (Z;Utor))
=Z/2Z

Ĥ−1(Gv,Z) Ĥ0(Gv,Z)
=0 =Z/2Z

Ĥ−1(Gv, (Z;Utor)) Ĥ−1(Gv, Utor)
=Z/2Z

f1

f2

f3

f4

in which the cohomology of Utor is known by previous computations. By defi-
nition of the connecting homomorphism, f3 maps 1 to gσv−1

1 = θ ∈ Utor = NGv
Utor

which is not in IGv Utor by definition of (Z;Utor) in step 3. Hence, the image f3(1)
is nonzero in Ĥ−1(Gv, Utor) ' NGv

Utor/ IGv Utor ' Z/2Z and f3 is an isomorphism.
As a consequence, f2 = f4 = 0 and f1 is also an isomorphism. This implies
Ĥ−1(Gv, (Z;Utor)) = 0 and Ĥ0(Gv, (Z;Utor)) = Z/2Z.

Altogether, this gives isomorphisms

Ĥ−1(Gv,W ) ' Ĥ−1(Gv, (Z;Utor)) ' 0 ' Ĥ−1(Gv, L
×
v )

and Ĥ0(Gv,W ) ' Ĥ0(Gv, (Z;Utor)) ' Ĥ0(Gv, Utor) ' Ĥ0(Gv, L
×
v ),

(3.6)

the latter being induced by Utor ⊆ (Z;Utor) ⊆ W and Utor ⊆ L×v . Hence, Wv has
the same cohomology as L×v . �

We quote the following theorem of Diederichsen and Reiner and derive a corol-
lary which will complete the proof.

Theorem 3.4. For a cyclic group G = 〈σ〉 of prime order p every finitely gen-
erated, torsion-free Z[G]-module M splits into a direct sum M 'M0 ⊕ · · · ⊕Mn

of indecomposable modules. These modules Mi are either

(i) Z with trivial G-action,

(ii) an OK-ideal a of K = Q(θ) with θ being a primitive p-th root of unity and
G-action σa = θa for a ∈ a,

(iii) or a module (a, a0) := a ⊕ Zλ (direct sum as Z-modules), with a as in (ii)
and σλ = a0 + λ for a fixed element a0 ∈ a \ (θ − 1)a, i.e. (a, a0) is a
non-split extension of Z with a.
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Moreover, the isomorphism class of M is determined by the numbers of modules
of the three types that occur and the ideal classes of the ideals a.

Proof. [CR62, Thm. (74.3)] or [CR81, Thm. (34.31)]. �

The constructive proof of [CR62, Thm. (74.3)] also shows how Z[G]-generators
of the decomposition can be computed. For the cyclic group of order two one
therefore has the following decomposition.

Corollary 3.5. Let G = 〈σ〉 be a group of order 2. Any finitely generated, tor-
sion free Z[G]-module M decomposes into

M ' Za ⊕ (Z−)b ⊕ Z[G]c. (3.7)

Here, the G action on Z is trivial and Z− denotes the module Z with σ acting as
multiplication by −1.

Proof. In the special case p = 2 of Theorem 3.4, the parameters of the decom-
position become: θ = −1, K = Q, OK = Z. The class number of Q is 1, so we
can assume that every ideal a is equal to Z. All modules of type (ii) are then
isomorphic to Z−. In (iii), a0 /∈ 2Z and since (a, a0) ' (a, ca0) for 2 - c (see
[CR62, Lem. (74.2)]), we can assume a0 = 1 and (a, a0) = (Z, 1) = Z− +Zλ with
G-action σλ = 1 + λ. Since

Z− + Zλ→ Z[G]

x+ yλ 7→ x(1− σ) + yσ

is an isomorphism of G-modules, the modules of type (iii) are isomorphic to Z[G].
Altogether, we get the isomorphism (3.7). �

Remark 3.6. In general the computation of a Z[G]-basis of a free Z[G]-module
M is a sophisticated task. The constructive proof of [CR62, Thm. (74.3)] is
restricted to cyclic groups G of prime order p, which is a strong condition on the
group G. In order to see that those generators can indeed be constructed, we
recall the proof for a cyclic group G = {1, σ} of order 2.

The kernel K = ker(1 + σ) is a free submodule of M and there exists a Z-
module X such that M = K ⊕X as Z-modules. The module (σ− 1)M ⊆ K is a
Z-module of the same rank n ∈ N ∪ {0} and by the elementary divisor theorem
there exists a basis b1, . . . , bn of K = ker(1 + σ) and integers e1, . . . , en such that

K = Zb1 ⊕ · · · ⊕ Zbn,
(σ − 1)M = Ze1b1 ⊕ · · · ⊕ Zenbn.

Such a basis can be computed using the Smith normal form as for example in
[Coh93, Alg. 2.4.14]. By (σ − 1)K ⊆ (σ − 1)M ⊆ K one obtains Z2bi ⊆ Zeibi ⊆
Zbi and discovers that ei ∈ {1, 2}.
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Let r be an integer such that e1 = · · · = er = 1 and er+1 = · · · = en = 2. Then
the quotient Q = (σ − 1)M/(σ − 1)K is Q ' (Z/2Z)r and the images b∗1, . . . , b∗r
of b1, . . . , br generate Q.

Consider the surjective homomorphism φ : X → Q, x 7→ (σ − 1)x+ (σ − 1)M
and let x′1, . . . , x′k be a Z-basis of X. Then k ≥ r and φ is given by a matrix
A = (aij) ∈ Matk×r(Z/2Z) such that φ(x′i) =

∑r
j=1 aijb

∗
j . By diagonalizing A over

Z/2Z one finds a matrix Ū ∈ Glk(Z/2Z) and a corresponding lift U ∈ Glk(Z)
such that the basis xi =

∑k
j=1 uijx

′
j satisfies φ(xi) = cib

∗
i for 1 ≤ i ≤ r and

φ(xj) = 0 for r < j ≤ n for suitable ci ∈ Z \ 2Z.
Let λi ∈ K such that (σ− 1)xi = cibi+(σ− 1)λi for 1 ≤ i ≤ r and (σ− 1)xj =

(σ − 1)λj for r < j ≤ n. Then the elements yi := xi − λi satisfy σyi = cibi + yi
for 1 ≤ i ≤ r and σyj = yj for r < j ≤ n.

One therefore obtains

M = (Zb1 ⊕ Zy1)⊕ · · · ⊕ (Zbr ⊕ Zyr)
⊕ Zbr+1 ⊕ · · · ⊕ Zbn ⊕ Zyr+1 ⊕ · · · ⊕ Zyk

with Z[G]-module isomorphisms Zbj ' Z−, Zyj ' Z+ for j > r and

Z[G] ' Zbi ⊕ Zyi
1 7→ −yi − (c′i + 1)bi

where ci = 2c′i + 1. This completes the construction of a Z[G]-basis of M which
provides an isomorphism of the form (3.7).

The constructive aspects of Proposition 3.3 can now be turned into the follow-
ing algorithm. For ramified infinite places v ∈ S∞ whose decomposition group
Gv = {1, σv} is cyclic of order two, we write the action of σv on x ∈ Lv = C as
conjugation x and ιv for the embedding L ↪→ Lv = C.

For algorithms on abelian groups and basic algorithms in number theory we
refer to [Coh93].

Algorithm 3.7 (Construction of modules W ).
Input: A finite Galois extension L|K of number fields with groupG and an infinite

place v of L.
Output: A finitely generated Z[G]-module Wv satisfying the conditions (i)–(iii)

of Proposition 3.3.

1 Compute the S-units U = UL,S using [Coh00, Alg. 7.4.6], its torsion subgroup
Utor and define U0 = U/Utor.

2 If Gv = 1, define Wv = ιv(UL,S) and terminate.

3 Choose θ ∈ Utor \ U2
tor and define (Z;Utor) = Utor ⊕ Z with Gv-action (0, 1) =

(θ, 1).
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4 Compute a, b ∈ Z such that U0 ' Za ⊕ Z[G]b and a corresponding basis
x̄1, . . . , x̄a, ȳ1, . . . , ȳb using the proof of [CR62, Thm. (74.3)] as described in
Remark 3.6. Denote lifts of the basis of U0 by xi and yi, respectively, and
choose the basis of U0 such that xc+1, . . . , xa ∈ UGv and x̄1, . . . x̄c do not have
Gv-invariant lifts (for some c ∈ N).

5 For 1 ≤ i ≤ c, let the Gv-action on xi ∈ U be given by σv(xi) = θixi with
appropriate θi ∈ Utor. Compute elements ηi ∈ Utor such that ησv−1

i = θ/θi
with θ as chosen in step 3.

6 Define the isomorphism ψ : (Z;Utor) ⊕ Za−1 ⊕ Z[G]b → U as in (3.4). For
i = 2, . . . , a the signs should be chosen such that the images ui := ψ(gi) have
a positive embedding ιv(ui) > 0 in R.

7 Compute algebraically independent elements λi ∈ C which satisfy λiλ̄i = ui
such that

∏a
i=2 λ

ai+biσ
i ∈ U implies ai = bi for i = 2, . . . , a.

Return: The module Wv := (Z;Utor) ⊕
⊕a

i=2 Z[G]λi ⊕ Z[G]b which is embedded
in C via ψ and λi ∈ C.

If an explicit embedding into C is not needed, one can also consider abstract
generators λi upon which the σv-action is defined by σv(λi)λi = ui. This will
actually be the case in all our applications.

For any place v we can now construct a finitely generated module Lfv which is
cohomologically isomorphic to L×v . For finite places v it is given by the module
Lfv := L×v / exp(Lv) constructed in Lemma 2.1 using a full projective sublattice
Lv of OLv . For infinite places v it is given by the module Lfv := Wv ⊂ C×
constructed by Algorithm 3.7.

We continue to construct a finitely generated approximation to the idèle class
group by fixing a set of G-representatives S(G) in S and corresponding modules
Lfv . Then we define

IfL,S :=
⊕
v∈S(G)

indGGv
Lfv and Cf

L,S := IfL,S/UL,S (3.8)

which are finitely generated modules.

Proposition 3.8. There are isomorphisms

Ĥ2
(
G, IfL,S

)
' Ĥ2(G, IL,S) and Ĥ2

(
G,Cf

L,S

)
' Ĥ2(G,CL).

Proof. [Chi85, Prop. 2.1]. �

Explicitly, the isomorphisms are induced by the projections L×v � L×v / exp(Lv) =
Lfv for finite places v and injections Lfv = Wv ↪→ L×v for infinite places v. Each
of those maps induce isomorphisms Ĥ2(Gv, L

×
v ) ' Ĥ2(Gv, L

f
v) and therefore IfL,S

and IL,S are cohomologically isomorphic.
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The analog isomorphism for Cf
L,S and CL is then obtained by applying the five

lemma to the long cohomology sequences arising from the diagram

0 UL,S IfL,S Cf
L,S 0

0 UL,S IqL,S Cq
L,S 0

0 UL,S IL,S CL,S 0

(3.9)

where IqL,S :=
⊕

v∈Sf (G) indGGv
Lfv ⊕

⊕
v∈S∞(G) indGGv

L×v and Cq
L,S := IqL,S/UL,S.

These isomorphisms allow the computation of the cohomology of the idèle class
group using the finite approximations (3.8).

Algorithm 3.9 (Idèle class group).
Input: A finite Galois extension L|K of number fields with Galois group G.

Output: A finitely generated Z[G]-module Cf
L,S which is cohomologically isomor-

phic to CL.

1 Let S be a set of places of L satisfying conditions (S1)–(S4).

2 For every finite place v ∈ Sf (G) compute a finitely generated module Lfv as
in Lemma 2.1.

3 For every infinite place v ∈ S∞(G) compute the module Lfv = Wv using
Algorithm 3.7.

4 Compute induced modules indGGv
Lfv and the groups IfL,S and Cf

L,S as in (3.8).

Note that the verification of the conditions on S in step 1 can be very difficult.
For the condition (S4), which requires the S-idèle class group ClS(L) to be trivial,
one has to compute the class group ClL of L and this is known to be a sophis-
ticated task. In the computation one uses the Minkowski bound which gives a
bound on the norm of the ideals which will generate ClL. If one assumes the
generalized Riemann hypothesis, one can replace this bound by the Bach bound
which is much smaller.3 This results in a significant speedup which will also be
used in our implementation.

Since Cf
L,S is a finitely generated module, one can compute its cohomology

group Ĥ2
(
G,Cf

L,S

)
' Ĥ2(G,CL) using [Hol06]. The construction of Cf

L,S and its
cohomology has been implemented as part of Algorithm 3.13 which constructs
the global fundamental class in Ĥ2

(
G,Cf

L,S

)
.

3See also the documentation of the command ClassGroup in the documentation [BCFS10] of
Magma.
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3.2 Computing global fundamental classes

After the computation of Ĥ2(G,CL) using the finite approximation Cf
L,S in the

last section, we want to find the global fundamental class in this group.
In analogy to the direct method for local fundamental classes4, we construct

the global fundamental class for a general Galois extension L|K of number fields
by considering a cyclic extension L′|K of the same degree.

3.2.1 Cyclic case
Let L′|K be a cyclic Galois extension of number fields with Galois group G′.
Then the idèlic invariant map on the idèle group

inv : Ĥ2(G′, IL′) −�
1

[L′ : K]
Z/Z

from Definition 1.10 is surjective by Lemma 1.11 (see also [Neu69, Chp. III, (5.6)]).
So there exists a cocycle in Z2(G′, IL′) representing the global fundamental class
of L′|K. This element can be constructed from a single place u0 of K which is
undecomposed in L′, i.e. there is just one place v′0 in L′ dividing u0.

Let us first assume, that we have such a place u0. Then the decomposition
group G′

v′0
is equal to G. We may therefore apply Algorithm 2.18 to compute the

local fundamental class u′ of the extension L′v′0
|Ku0 as a cocycle in Z2

(
G′, L′v′0

)
.

Then the element (. . . , 1, u′, 1, . . .) ∈ Ĥ2(G′, IL′) ⊆
∏′

u Ĥ
2
(
Gal(L′v′/Ku), L

′×
v′

)
has

invariant 1/[L′ : K] and thus represents the global fundamental class of L′|K.
If S ′ is a finite set of places satisfying (S1)–(S4), we set S = S ′ ∪ {v′0} and use

the finite product IL′,S in which the images of the cocycle u′ can explicitly be
represented up to a finite precision.

Obviously, this computation of the global fundamental class does not depend
on G′ being cyclic, but on the existence of an undecomposed place u0. It can
therefore also be applied to general extensions L|K for which an undecomposed
prime is known. However, for cyclic extensions the existence of undecomposed
primes is an immediate consequence of Chebotarev’s density theorem, see Corol-
lary 1.13.

If the extension is non-cyclic, there can still be an undecomposed prime. But
this prime then must be among the (finitely many) ramified primes, which is a
very strong condition on the number field.

4Compare Section 2.2.1.
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3.2.2 General case
Let L|K be a finite Galois extension of number fields with group G and L′|K an
extension of the same degree with cyclic Galois group G′. Denote their composite
field by N = LL′ and the Galois groups by Γ = Gal(N |K), H = Gal(N |L) and
H ′ = Gal(N |L′):

N

L

L′

K

G

H

H′

G′

Γ

Denote the places of K,L, L′ and N by u, v, v′ and w, respectively. Again, let
S be a set of places of N satisfying (S1)–(S4). As in the cyclic case, let u0 be a
place of K which does not decompose in L′ and assume that S contains all places
of N dividing u0.

As in the direct method for the local fundamental class one can then compute
all the cohomology groups involved and find the global fundamental class of L|K
by inflating the global fundamental class for the cyclic extension L′|K. However,
in order to avoid computations in the complex numbers, we have to make sure
that the inflation maps can operate on Cf

L,S and Cf
L′,S directly, i.e. on the modules

Wv as abstract groups without using embeddings Wv ↪→ C.
Below we therefore construct Cf

L,S and Cf
L′,S as subgroups of Cf

N,S which are
fixed by H and H ′.

As in the previous section, for each Γ-representative w of the places in S, let
N f
w be a finitely generated module which is cohomologically isomorphic to N×

w .
That is N f

w = Nw/ exp(Lw) for finite places w and N f
w = Ww ⊂ C× for infinite

places w. Then define
IfN,S :=

⊕
w∈S(Γ)

indΓ
Γw
N f
w. (3.10)

As before we write Cf
N,S = IfN,S/UN,S and we have Ĥ2

(
Γ, Cf

N,S

)
' Ĥ2(Γ, CN). To

get a corresponding representation for Cf
L,S and Cf

L′,S such that we can easily com-
pute inflations Ĥ2

(
G,Cf

L,S

)
↪→ Ĥ2

(
Γ, Cf

N,S

)
and Ĥ2

(
G′, Cf

L′,S

)
↪→ Ĥ2

(
Γ, Cf

N,S

)
we have to compute Cf

L,S and Cf
L′,S using submodules of Lw and Ww as described

in the following proposition.

Proposition 3.10. (i) The fixed group
(
IfN,S

)H is given by

IfL,S =
⊕
u∈Sf

indGGv
L×v
/

exp(Lv)⊕
⊕
u∈S∞

indGGv
WHw
w
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where for each place u we fix v such that w|v|u and Lv := Lw ∩ OLv .

(ii) The module Lv satisfies the properties of Lemma 2.1: it is a projective mod-
ule and L×v

/
exp(Lv) is finitely generated and cohomologically isomorphic

to L×v .

(iii) The module Wv := WHw
w satisfies the properties from Proposition 3.3.

Note that these statements also hold for L′ by using the subgroup H ′ of Γ. The
proof of the first part is based on the following lemma for Z[G] modules.

Lemma 3.11. Let Γ be a group, Γw ⊆ Γ a subgroup, H ⊆ Γ a normal subgroup,
and let M be a Γw-module. Denote G = Γ/H, Hw = H ∩ Γw, Gv = Γw/Hw.
Then (

Z[Γ]⊗Z[Γw] M
)H ' Z[G]⊗Z[Gv ] M

Hw

or equivalently
(
IndΓ

Γw
M
)H ' IndGGv

MHw are isomorphisms as Z[G]-modules.

Proof. As in [NSW00, Chp. I, § 6], we can write the elements of induced modules
as homomorphisms. By rewriting the condition to be fixed by H we can prove
directly:(

Z[Γ]⊗Z[Γw] M
)H

=
(
IndΓ

Γw
M
)H

= {f : Γ →M | σf(x) = f(σx) ∀σ ∈ Γw, x ∈ Γ}H

with Γ-action (σf)(x) = f(xσ) for σ ∈ Γ

= {f : Γ/H →M | σf(xH) = f(σxH) ∀σ ∈ Γw, x ∈ Γ}
since elements fixed by H have only one value per coset

= {f : Γ/H →MHw | σf(xH) = f(σxH) ∀σ ∈ Γw, x ∈ Γ}
as τf(xH) = f(τxH) = f(xH) ∀τ ∈ Γw ∩H = Hw

= {f : Γ/H →MHw | σHwf(xH) = f(σHwxH) ∀σ ∈ Γw/Hw, x ∈ Γ}
because the values of f are fixed under Hw

= {f : G→MHw | τf(y) = f(τy) ∀τ ∈ Gv, y ∈ G}
= IndGGv

MHw = Z[G]⊕Z[Gv ] M
Hw . �

Proof of Proposition 3.10. (i) This is Lemma 3.11 since G = Γ/H, L×v = (N×
w )Hw ,

and Lv = L Hw
w .

(ii) Let Lw = Z[Γw]θ be a full projective module as in Lemma 2.1 used in
the computation of N f

w. Since Lw is projective (and hence cohomologically triv-
ial), one has L Hw

w = NHw(Lw) = NHw(Z[Γw]θ). This latter group is equal to
Z[Gv] NHw(θ) because for every σ ∈ Γw the right coset Hwσ is equal to the left
coset σHw and the left cosets are represented by elements in Gv.
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Therefore, the module Lv := Lw∩OLv = L Hw
w = Z[Gv] NHw(θ) is a projective

Z[Gv]-module. Since θ satisfies vN(θ) > e(Nw|Qp)

p−1
by construction (see the proof

of Lemma 2.1), the element NHw(θ) also satisfies the condition

vL(NHw(θ)) =
1

e(Nw|Lv)
vN(NHw(θ)) ≥ vN(θ) >

e(Nw|Qp)

p− 1
≥ e(Lv|Qp)

p− 1
.

of Lemma 2.1. Hence, the v-adic exponential function will be injective on Lv

and Ĥ2(Gv, L
×
v ) ' Ĥ2(Gv, L

×
v / exp(Lv)).

(iii) By definition Ww ⊆ N×
w satisfies the properties for N . So UN,S ⊆ Ww,

Ww/UN,S is torsion-free, and the inclusion Ww ↪→ N×
w induces an isomorphism

in Γw-cohomology. For L we know UL,S ⊆ WHw
w and its quotient is still torsion-

free. The construction of Ww shows that Ĥ1(Hw,Ww) = 0, see (3.6). Therefore
L×v /Wv ' (N×

w /Ww)Hw and the fact that N×
w /Ww is cohomologically trivial (as

Γw-module) implies that L×v /Wv is cohomologically trivial as Gw-module with
Gw ' Γw/Hw, c.f. [NSW00, Prop. (1.7.2)]. Hence, the injection Wv ↪→ L×v
induces an isomorphism in cohomology. �

Remark 3.12. The computation of the modules Lv and Wv as in the above
proposition provides well-defined embeddings

L×v / exp(Lv) =
(
N×
w / exp(Lw)

)Hw
↪→ N×

w / exp(Lw)

given by L×v ⊆ N×
w and Wv ↪→ Ww. This also induces a well-defined embedding

of the finitely-generated modules IfL,S ↪→ IfN,S.
For Cf

L,S = (IfN,S)
H/UL,S one can therefore explicitly compute the inflation

map
Ĥ2
(
G,Cf

L,S

)
↪→ Ĥ2

(
Γ, Cf

N,S

)
.

It is given by sending a cocycle γ ∈ Z2(G, IfL,S) to the element in Ĥ2
(
Γ, Cf

N,S

)
represented by σ, τ 7→ γ(σH, τH) ∈ IfL,S ⊆ IfN,S.

Similarly, this also works for the subfield L′ of N . To sum up, we can explicitly
compute inflations on the cohomology groups if we use the lattices above.

The computation of the global fundamental class is then described in the fol-
lowing diagram:

Ĥ2(G′, IL′,S) Ĥ2
(
G′, IfL′,S

)
Ĥ2
(
G′, Cf

L′,S

)
Ĥ2
(
Γ, Cf

N,S

)
Ĥ2
(
G,Cf

L,S

)
'

(3.11)

As described in the cyclic case above, the local fundamental class for L′v′0|Ku0

computed by Algorithm 2.18 gives a representation of the global fundamental
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class uL′|K in C2
(
G′, IL′,S

)
up to a finite precision. We can find its projection

in Ĥ2
(
G′, Cf

L′,S

)
and inflate it to Ĥ2

(
Γ, Cf

N,S

)
. Then we compute Ĥ2

(
G,Cf

L,S

)
,

choose a generator and inflate it to Ĥ2
(
Γ, Cf

N,S

)
as well. A comparison with the

image of uL′|K then gives uL|K in Ĥ2
(
G,Cf

L,S

)
.

Algorithm 3.13 (Global fundamental class).
Input: A finite Galois extension L|K of number fields with group G.
Output: The global fundamental class uL|K as an element of an abstract group

Ĥ2(G,Cf
L,S).

1 Consider a cyclic extension L′|K of degree [L′ : K] = [L : K] and a prime u0

of K such that there is only one prime v′0 in L′ dividing u0.

2 Let N denote the composite LL′ with Galois group Γ = Gal(N |K) and S a
set of places satisfying the conditions (S1)–(S4).

3 For every w ∈ Sf (Γ) compute a module Lw ⊆ ONw as in Lemma 2.1.

4 For every w ∈ S∞(Γ) compute a module Ww using Algorithm 3.7.

5 Compute IfN,S, Cf
N,S by (3.8) and fixed modules IfL,S = (IfN,S)

H , Cf
L,S =

(Cf
N,S)

H .

6 Compute the cohomology group Ĥ2
(
G,Cf

L,S

)
and the boundaries B2

(
Γ, Cf

N,S

)
using [Hol06].

7 Let k ∈ N such that Pk
v′0
⊆ Lv′0

= Lw∩OL′v0
. Compute the local fundamental

class of L′v′0|Ku0 of precision k using Algorithm 2.18. It represents the global

fundamental class uL′|K in Z2(G′, IL′,S). Compute its inflation inf
N |K
L|K (uL′|K) ∈

C2(Γ, Cf
N,S).

8 Find a generator g of the group Ĥ2
(
G,Cf

L,S

)
such that its inflation inf

N |K
L|K (g) ∈

C2
(
Γ, Cf

N,S

)
satisfies inf

N |K
L′|K(uL′|K)− inf

N |K
L|K (g) ∈ B2

(
Γ, Cf

N,S

)
.

Return: The group Ĥ2
(
G,Cf

L,S

)
and its canonical generator g.

As in the direct method for local fundamental classes (see Algorithm 2.5), it
is sufficient to compute the boundaries B2

(
Γ, Cf

N,S

)
for the comparison in step 8.

The group Z2
(
Γ, Cf

N,S

)
and their quotient Ĥ2

(
Γ, Cf

N,S

)
are not needed. Again

this makes a huge difference (in computation time) to the complete computation
of Ĥ2

(
Γ, Cf

N,S

)
.

This algorithm has been implemented for totally real fields L. In this case, the
modules Wv can be chosen to be UL,S for every infinite place v ∈ S∞(G). The
modules IfN,S and Cf

N,S in the algorithm quickly get very large and will dominate
the computation time of the algorithm.
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Example 3.14. Let L be the splitting field of f = x3 − 4x+ 1 over Q, which is
a Galois extension with group S3. Then f has discriminant 229 and Q(

√
229) is

a subfield of L. A suitable cyclic number field L′ can be found as a subfield of
Q(ζ229). Let L′ be the field generated by g = x6 − x5 − 95x4 + 530x3 − 925x2 +
367x + 187. It is a cyclic number field in which the prime 229 is undecomposed,
and N = LL′ has degree 18 over Q.

A set S of places in L lying above the places {3, 7, 11, 229,∞} of Q satisfies
conditions (S1)–(S4). As the field N is totally real, the module Wv we have to
consider for one infinite place v of N can be chosen to be Wv = UN,S. The S-
units already have 36 generators and, therefore, the induced module indΓ

1Wv is
generated by 36 · 18 = 648 elements (containing a free part of rank 630). The
part of IfN,S given by the finite places only has 21 generators.

In total, the module IfN,S has 669 generators with a free part of rank 648 and
its torsion subgroup (containing three copies of Z/228Z) has about 3 trillion
elements.

The Magma implementation5 of the above algorithm takes about 22 minutes
to compute the global fundamental class of L. Most of the time (10 minutes) is
spent on the computation of IfN,S. The verification of the conditions on S and
the computation of the cohomology of Cf

N,S each take another 5 minutes. Hence,
these three parts already make more than 90% of the computation time.

The performance of Algorithm 3.13 is not very satisfactory and it would be
interesting to find an approach similar to Serre’s in the computation of local
fundamental classes. As in the direct method for local fundamental classes, the
main issue in the example above is the computation of the module IfN,S whose
biggest part is that at the infinite places. In the general case, the modules Wv

for complex places v will even be more complicated. As a consequence, it is a
main task to find a better approach to the construction of Cf

L,S (or even another
module which is cohomologically isomorphic to CL) in order to get an efficient
algorithm for the computation of global fundamental classes.

Therefore, Algorithm 3.7 has not been implemented yet and Algorithm 3.13 is
restricted to totally real fields N .

5Command GFCCompositum, see documentation in Appendix B.2 on page 175.





4 Tate’s canonical class

Tate’s canonical class is an element which expresses the compatibility of local
and global class field theory. For a fixed Galois extension L|K of number fields,
we will define an element which will incorporate information from the global
fundamental class uL|K and all local fundamental classes uLv |Kp , where v runs
through a finite, Galois invariant set S of places in L and p is the place of K
below v. This combination of local fundamental classes will be called the semi-
local fundamental class.

In this chapter we will first introduce this semi-local class and show how it
can be computed. Afterwards, we define Tate’s canonical class and also show its
algorithmic construction. The main references for the definition of these classes is
[Tat66] and the algorithmic construction is based on results presented in [Chi85]
and [Chi89].

Let L|K be a fixed Galois extension of number fields with group G and let S be
a finite set of places in L satisfying conditions (S1)–(S4) from before (see page 70):
i.e. S is a Galois invariant set of places including all ramified and infinite places
and it contains enough places such that the S-ideal class group ClS(F ) is trivial
for all K ⊆ F ⊆ L. Remember that these conditions were necessary to describe
the cohomology of CL using CL,S.

We continue using the notation from the last chapters and let p denote places
of K and v and w places of L:

L v v, w ∈ S

K p

G

For a subgroup H of G we denote a (fixed) subset of representatives of the H-
orbits in S by S(H).1 If v is a place in S with decomposition group Gv we will
fix the set S(Gv) in such a way that v ∈ S(Gv). Note that any choice of S(Gv)
corresponds to a system Rv of representatives of G/Gv, i.e. σ ∈ G is in R if and
only if vσ ∈ S(Gv). Then v ∈ S(Gv) implies 1 ∈ R and in the following we will
always assume that the representatives are chosen this way.

1The set S(v) of [Chi89] is then denoted by S(Gv).
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4.1 The semi-local fundamental class
The local fundamental classes uLv |Kp ∈ Ĥ2(Gv, L

×
v ) ' Ext2

Gv
(Z, L×v ) will be com-

bined as 2-extension where the left-most and right-most modules are finite prod-
ucts over v ∈ S of the modules Z and L×v , respectively.

More precisely, we define the group Y =
⊕

v∈S(G) Yv using Yv := indGGv
Z and

construct an extension in Ext2
G(Y, IL,S) where IL,S =

∏
v∈S L

×
v denotes the S-idèle

group as before.
We can always think of elements in Yv to be represented by a tuple of elements

in Z, i.e. Yv = indGGv
Z =

⊕
σ∈Rv

σZ. By our fixed choice of representatives S(Gv)
and Rv, we can therefore identify Z with the subgroup 1 · Z ⊆ Yv.

Since the module Y is finitely generated and Z-free, there is an isomorphism

ExtrG(Y, IL,S) ' Ĥr(G,Hom(Y, IL,S))

between the extension group and the cohomology group (see Proposition 1.28 or
[Bro94, Chp. III, Prop. (2.2)]). We therefore consider the following cohomological
identifications from [Tat66] and [Chi89, Chp. III, § 2].

Proposition 4.1.

(a) Ĥr(G,Hom(Y,M)) '
∏

v∈S(G) Ĥ
r(Gv,M) for any G-module M and r ∈ Z.

(b) Ĥr(H, IL,S) '
∏

v∈S(H) Ĥ
r(H ∩Gv, L

×
v ) for any subgroup H ⊆ G.

Proof. (a) The decomposition Hom(Y,M) =
∏

v∈S(G) Hom(Yv,M) in Proposi-
tion 1.26 and Shapiro’s lemma for Hom(Yv,M) = indGGv

Hom(Z,M) imply the
isomorphisms

Ĥr(G,Hom(Y,M)) '
∏

v∈S(G)

Ĥr(G,Hom(Yv,M)) '
∏

v∈S(G)

Ĥr(Gv,Hom(Z,M)).

They are canonically given by restricting the images of a cocycle (which are
homomorphisms in Hom(Y,M)) to Yv ⊆ Y and then to 1 · Z ⊆ Yv. Composing
the above isomorphism with Ĥr(Gv,Hom(Z,M)) ' Ĥr(Gv,M) finishes the proof
of (a).

(b) For IL,S =
⊕

v∈S(G) IL,v with IL,v := indGGv
L×v , the same arguments yield

Ĥr(G, IL,S) '
∏

v∈S(G)

Ĥr(G, IL,v) '
∏

v∈S(G)

Ĥr(Gv, L
×
v ).

This isomorphism just depends on L and the set S, which was a set of places in L,
and it is independent ofK = LG. By considering a subgroupH ⊆ G, we implicitly
consider L as an extensions of LH and the isomorphism becomes Ĥr(H, IL,S) '∏

v∈S(H) Ĥ
r(Hv, L

×
v ). Since the decomposition group is Hv = Gv∩H, this finishes

the proof of (b). �
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By the first isomorphism we can then define the semi-local fundamental class
as in [Tat66, Eq. (8)].

Definition 4.2 (Semi-local fundamental class). The unique element α2 ∈
Ĥ2(G,Hom(Y, IL,S)) '

∏
v∈S(G) Ĥ

2(Gv, IL,S) which is given by the local funda-
mental classes uLv |Kp ∈ Ĥ2(Gv, L

×
v ) → Ĥ2(Gv, IL,S) using L×v ⊆ IL,S is called

semi-local fundamental class.

This notion is well-defined with respect to the choice of the G-representatives
S(G) of G, cf. [Tat66, Eq. (8’)]. If vσ, σ ∈ G, is a place conjugated to v, then
the completions at these places are also conjugated within the induced module
IL,v by Lvσ = (Lv)

σ. So restricting the induction of the local fundamental class
uLv |Kp to Gvσ and projecting the images to L×vσ will yield the local fundamental
class of Lvσ |Kp. For unramified extensions Lv|Kp, in which the invariant map
is given through valuations, this follows from v(x) = vσ(xσ) for x ∈ Lv. The
general case then results from the fact that the fundamental classes satisfy the
axioms of a class formation.

Corollary 4.3. Using M = IL,S in isomorphism (a) and H = Gw in isomor-
phism (b), Proposition 4.1 implies

Ĥr(G,Hom(Y, IL,S))
'−→

∏
v∈S(G)

∏
w∈S(Gv)

Ĥr(Gv ∩Gw, L
×
w)

β 7−→
(
(πw ◦ ι∗v)β

)
v∈S(G),w∈S(Gv)

where ιv denotes the embedding 1 ·Z ⊆ Yv ⊆ Y =
⊕

v∈S(G) Yv and πw : IL,S � L×w
is the canonical projection.

To be precise, one has cochains (πw ◦ ι∗v)β ∈ Cr
(
G,Hom(Z, L×w)

)
. The restric-

tion to Gv ∩ Gw and the evaluation at 1 ∈ Z provides the corresponding image
in Ĥr(Gv ∩Gw, L

×
w) by the proof of Proposition 4.1.

Remark 4.4. We use the isomorphism of Corollary 4.3 in degree r = 2 to char-
acterize the semi-local fundamental class α2 by invariants. Let inv(Gv ∩ Gw, w)

denote the invariant map Ĥ2(Gv ∩ Gw, L
×
w)

'−→ 1
|Gv∩Gw|Z/Z then Definition 4.2

implies

inv(Gv ∩Gw, w)
(
(πw ◦ ι∗v)α2

)
=

{
1

|Gv | if w = v,

0 otherwise

because each local fundamental class uLv |Kp ∈ Ĥ2(Gv, L
×
v ) → Ĥ2(Gv, IL,S) has

values in IL,S '
∏

v∈S L
×
v which are trivial at all places w 6= v.
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4.2 Computing semi-local fundamental classes
The semi-local fundamental class can be viewed as an element in one of the
isomorphic groups

Ĥ2(G,Hom(Y, IL,S)) ' Yext2
G(Y, IL,S) ' Ext2

G(Y, IL,S).

As introduced in the last chapter, we replace IL,S by the finitely generated and
cohomologically isomorphic module IfL,S for computational purposes. It was de-
fined by

IfL,S =
∏

v∈Sf (G)

indGGv
L×v / expv(Lv)×

∏
v∈S∞(G)

indGGv
Wv

with appropriate lattices Lv from Lemma 2.1 and modules Wv from Proposi-
tion 3.3. In our applications we are interested in the semi-local fundamental
class as an element of Ext2

G

(
Y, IfL,S

)
and in the following we will show how it can

be constructed.

From Definition 4.2 the semi-local fundamental class as a cocycle can be com-
puted from the local fundamental classes by making the isomorphism∏

v∈S(G)

Ĥ2
(
Gv, I

f
L,S

) '−→ Ĥ2
(
G,Hom(Y, IfL,S)

)
explicit. If we consider the proof of Proposition 4.1 again, this isomorphism
is given by inducing each class from Ĥ2

(
Gv, I

f
L,S

)
' Ĥ2

(
Gv,Hom(Z, IfL,S)

)
to

Ĥ2
(
G,Hom(Yv, I

f
L,S)
)

and combining those to a cocycle in Ĥ2
(
G,Hom(Y, IfL,S)

)
.

Since the construction of the semi-local fundamental class in Ext2
G

(
Y, IfL,S

)
is

partly based on the construction as a cocycle, we summarize it in the following
algorithm.

Algorithm 4.5 (Semi-local fundamental class as cocycle).
Input: A finite Galois extension L|K of number fields with group G and a finite

set of places S satisfying conditions (S1)–(S4) on page 70.

Output: A cocycle in Z2
(
G,Hom(Y, IfL,S)

)
representing the semi-local fundamen-

tal class.

1 Compute the finitely generated modules Lfv and IfL,S as in Algorithm 3.9.

2 For every finite place v ∈ S(G) compute a cocycle representing the local
fundamental class in Z2

(
Gv, L

f
v

)
using Algorithm 2.18.

3 For infinite places v ∈ S(G) which are ramified (i.e. Gv = {1, σv}), the cocycle
given by c(1, 1) = c(σv, 1) = c(1, σv) = 1 and c(σv, σv) = −1 represents the
local fundamental class in Z2

(
Gv, L

f
v

)
, see Remark 1.7. The non-ramified

infinite places have trivial decomposition group Gv and in this case every
cocycle represents the fundamental class.
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4 Compute their images in Z2
(
Gv, I

f
L,S

)
' Z2

(
Gv,Hom(Z, IfL,S)

)
and the in-

duced cocycle in Z2
(
G,Hom(Yv, I

f
L,S)
)
.

5 Combine these cocycles to get an element in α2 ∈ Z2
(
G,Hom(Y, IfL,S)

)
.

Return: The cocycle α2.

To construct the semi-local fundamental class as extension from the cocycle we
would have to apply the isomorphisms

Ĥ2
(
G,Hom(Y, IfL,S)

) '−→ Yext2
G

(
Y, IfL,S

) '−→ Ext2
G

(
Y, IfL,S

)
.

But the explicit description of the first isomorphism using the splitting module
from [NSW00, Chp. III, § 1] (compare Proposition 1.29) is only applicable to
extensions with Z in the first variable. Moreover, the second isomorphism is ob-
tained by choosing a projective resolution of Y and solving a system of linear
equations which, in this case, quickly becomes very large. Only the isomorphism
Ext2

G

(
Y, IfL,S

) '−→ Yext2
G

(
Y, IfL,S

)
is known to be given by constructing the push-

out sequence (see Proposition 1.26).
Instead, we can use the isomorphisms

Ĥ2
(
Gv, I

f
L,S

)
' Yext2

Gv

(
Z, IfL,S

)
' Ext2

Gv

(
Z, IfL,S

)
(4.1)

between the local cohomology groups and their corresponding extension groups.
They can be performed explicitly as described in Section 1.3.2. Moreover, the
isomorphism ∏

v∈S(G)

Ext2
Gv

(
Z, IfL,S

) '−→ Ext2
G

(
Y, IfL,S

)
(4.2)

is again given by induction and summation over all v ∈ S(G) (see Proposi-
tion 1.26). To perform this isomorphism explicitly we fix the following projective
resolutions.

For every v ∈ S(G) we consider the resolution

Z[Gv]
rv −→ Z[Gv]

aug−−−→ Z −→ 0

where rv ∈ Z is the number of generators g1, . . . , grv of Gv and Z[Gv]
rv → Z[Gv]

is given by mapping the i-th component ai ∈ Z[Gv] to ai(gi − 1). By inducing
these modules to G and summing over all v ∈ S(G) we get a projective resolution
of YS. If Σv denotes the kernel of Z[Gv]

rv → Z[Gv], we therefore have extensions

0 −→ Σv
ιv−→ Z[Gv]

rv −→ Z[Gv] −→ Z −→ 0

and

0
⊕

v indGGv
Σv

⊕
v indGGv

Z[G]rv
⊕

v indGGv
Z[G]

⊕
v indGGv

Z 0

Σ2 G0 G1 YS

ι
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which can be used to describe the following extension groups:

Ext2
Gv

(
Z, IfL,S

)
= HomGv

(
Σv, I

f
L,S

)/
ι∗v HomGv

(
Z[Gv]

rv , IfL,S
)

and Ext2
G

(
Y, IfL,S

)
= HomG

(
Σ2, I

f
L,S

)/
ι∗ HomG

(
G0, IfL,S

)
.

Then the isomorphism (4.2) is explicitly induced by∏
v∈S(G)

HomGv

(
Σv, I

f
L,S

)
−→ HomG

(
Σ2, I

f
L,S

)
using induction and summation.

Combining isomorphisms (4.1) and (4.2) we can therefore construct the semi-
local fundamental class as extension in Ext2

G

(
Y, IfL,S

)
. This is summarized in the

following algorithm.

Algorithm 4.6 (Semi-local fundamental class as extension).
Input: A finite Galois extension L|K of number fields with group G and a finite

set of places S satisfying conditions (S1)–(S4) on page 70.

Output: The semi-local fundamental class in Ext2
G

(
Y, IfL,S

)
, represented by an

element in HomG

(
Σ2, I

f
L,S

)
.

1 For every v ∈ S let Lfv be a finitely generated module which is cohomolog-
ically isomorphic to L×v . Then compute local fundamental classes uLv |Kp ∈
Ĥ2
(
Gv, L

f
v

)
as in steps 1–3 of Algorithm 4.5 and their image in Ĥ2

(
Gv, I

f
L,S

)
.

2 Apply Corollary 1.30 to construct maps fv ∈ HomGv

(
Σv, I

f
L,S

)
which corre-

spond to the local fundamental classes by the isomorphism Ĥ2
(
Gv, I

f
L,S

)
'

Ext2
Gv

(
Z, IfL,S

)
.

3 Induce the homomorphisms fv from HomGv

(
Σv, I

f
L,S

)
to HomG

(
indGGv

Σv, I
f
L,S

)
and take a sum over all v ∈ S(G) to get an element

⊕
v indGGv

fv in the
group HomG

(
Σ2, I

f
L,S

)
which represents the semi-local fundamental class in

Ext2
G

(
Y, IfL,S

)
.

Return:
⊕

v indGGv
fv ∈ HomG

(
Σ2, I

f
L,S

)
.

Remark 4.7. If Ext2
G

(
Y, IfL,S

)
is represented by another resolution, we can still

compute a representative of the semi-local fundamental class with the above
algorithm. Let

0 −→ Σ̄2 −→ Ḡ0 −→ Ḡ1 −→ Y −→ 0
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be an exact sequence with Ḡ0 and Ḡ1 projective such that Ext2
G

(
Y, IfL,S

)
'

HomG

(
Σ̄2, I

f
L,S

)/
ι∗ HomG

(
Ḡ0, IfL,S

)
. Then by [Wei94, Thm. 2.2.6] there exists

a commutative diagram

0 Σ̄2 Ḡ0 Ḡ1 Y 0

0 Σ2 G0 G1 Y 0

whose vertical maps are constructed by lifting the maps Ḡ1 → Y and Ḡ0 →
Ḡ1 → im(G0 → G1) as in the following diagrams:

Ḡ1

G1 Y

Ḡ0

G0 im(G0 → G1)

In particular, these lifts can easily be computed if Ḡ0 and Ḡ1 are free G-
modules, which will be the case in our applications. Then every homomorphism
HomG

(
Σ2, I

f
L,S

)
can be lifted to HomG

(
Σ̄2, I

f
L,S

)
and we can compute a repre-

sentative of the semi-local fundamental class in HomG

(
Σ̄2, I

f
L,S

)
.

Recall that one can construct the semi-local fundamental class as Yoneda ex-
tension in Yext2

G

(
Y, IfL,S

)
from the above algorithm by computing the pushout

sequence. In conclusion, there are explicit algorithms to compute the semi-local
fundamental class as cocycle, as extension or as Yoneda extension. In the con-
struction of Tate’s canonical class below, we will use the semi-local fundamental
class as an element of Ext2

G

(
Y, IfL,S

)
.

4.3 Definition of Tate’s canonical class

We continue to consider Y =
⊕

v∈S(G) indGGv
Z and define X to be the kernel of

the augmentation map aug : Y → Z. We study the two sequences of G-modules

(X) 0 −→ X −→ Y
aug−−−→ Z −→ 0

and
(U) 0 −→ UL,S −→ IL,S −→ CL,S −→ 0.

Remember that by the conditions (S1)–(S4) on S, the S-idèle class group CL,S is
cohomologically isomorphic to the idèle class group CL by Lemma 3.1.

We define Hom((X), (U)) as the group of maps of complexes between (X) and
(U), i.e. compatible homomorphisms f1, f2, f3 which form a commutative diagram
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0 X Y Z 0

0 UL,S IL,S CL,S 0

f3 f2 f1 (4.3)

Note that in such a commutative diagram f1 and f2 determine the homomor-
phism f3 uniquely; and similarly f2 and f3 determine f1. For (f3, f2, f1) =
f ∈ Hom((X), (U)) we also denote the projections fi by πi(f). The group
Hom((X), (U)) is a G-module by the action σ(f3, f2, f1) = (σf3, σf2, σf1) where
σfi is defined by (σfi)(x) = σfi(σ

−1x). The triple (σf3, σf2, σf1) will again form
a commutative diagram since each of the horizontal homomorphisms in (4.3)
commute with the G-action.

Theorem 4.8 (Tate). There is a unique class α ∈ Ĥ2
(
G,Hom((X), (U))

)
whose

projections α1 ∈ Ĥ2
(
G,Hom(Z, CL,S)

)
and α2 ∈ Ĥ2

(
G,Hom(Y, IL,S)

)
are the

global and semi-local fundamental class.

Proof. [Tat66, p. 716]. �

Definition 4.9 (Tate’s canonical class). The projection α3 = π3(α) of the
unique class α ∈ Ĥ2

(
G,Hom((X), (U))

)
onto the group Ĥ2

(
G,Hom(X,UL,S)

)
is

called Tate’s canonical class.

Remark 4.10. One important property of Tate’s canonical class as extension in
Ext2

G(X,UL,S) ' Ĥ2(G,Hom(X,UL,S)) is that its pushout along UL,S → IL,S in
Ext2

G(XS, IL,S) is the same class as the pullback of the semi-local fundamental
class along XS → YS in Ext2

G(XS, IL,S). This follows directly from the definition
of Hom((X), (U)).

4.4 Computing Tate’s canonical class
For the computation of Tate’s canonical class we consider the complex

(U f ) 0 −→ UL,S −→ IfL,S −→ Cf
L,S −→ 0

with finitely generated modules IfL,S and Cf
L,S from Section 3.1 and S-units UL,S.

These modules are finitely generated and cohomologically isomorphic to the S-
idèle group IL,S =

∏
v∈S L

×
v and the idèle class group CL, respectively, and there-

fore the complex (U f ) is finitely generated cohomologically isomorphic (in every
degree) to (U).

In the following we will construct Tate’s canonical class as an extension in
Ext2

G(X,UL,S). Again, we will describe this extension group by a projective res-
olution of X. Since we will construct Tate’s class from the semi-local and global



4.4 Computing Tate’s canonical class 95

fundamental class represented as extensions, we also need projective resolutions
of Y and Z. For computational purposes, we require those three projective res-
olutions to be compatible, i.e. we need a projective resolution (of degree two) of
the complex (X).

Such a resolution of (X) can be constructed using the Horseshoe lemma, see
Lemma 1.32. Explicitly, if P •

X and P •
Z are projective resolutions of X and Z, then

the sequence P •
Y given by P i

Y = P i
X ⊕P i

Z is a projective resolution of Y and there
exist chain maps P •

X → P •
Y → P •

Z which induce short exact sequences in every
degree. In our case we can actually choose P •

X and P •
Z to be free resolutions and

these chain maps can be constructed easily.
We can therefore construct a commutative exact diagram

0 Σ3 F 0 F 1 X 0

0 Σ2 G0 G1 Y 0

0 Σ1 H0 H1 Z 0

ι3

ι2

ι1

(4.4)

with G-modules Σi, F
i, Gi and H i. If we denote the vertical complexes by (Σ),

(P 0), (P 1) and (X), respectively, we have an exact sequence

0 −→ (Σ) −→ (P 0) −→ (P 1) −→ (X) −→ 0

of complexes.

We continue the construction of Tate’s canonical class by using the following
representations

Ext2
G(X,UL,S) = HomG(Σ3, UL,S)

/
ι∗3 HomG(F 0, UL,S)

Ext2
G

(
Y, IfL,S

)
= HomG

(
Σ2, I

f
L,S

)/
ι∗2 HomG

(
G0, IfL,S

)
(4.5)

and Ext2
G

(
Z, Cf

L,S

)
= HomG

(
Σ1, C

f
L,S

)/
ι∗1 HomG

(
H0, Cf

L,S

)
.

Moreover, we get the identification

Ext2
G

(
(X), (U f )

)
= HomG

(
(Σ), (U f )

)/
ι∗ HomG

(
(P 0), (U f )

)
. (4.6)

Hence, the canonical class (α) ∈ Ĥ2
(
G,Hom((X), (U f ))

)
' Ext2

(
(X), (U f )

)
is represented by an tuple (ϕ3, ϕ2, ϕ1) ∈ Hom

(
(Σ), (U f )

)
of homomorphisms

forming an exact diagram

0 Σ3 Σ2 Σ1 0

0 UL,S IfL,S Cf
L,S 0

g

h

ϕ3 ϕ2 ϕ1 (4.7)
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and where ϕ1 and ϕ2 represent the global and semi-local fundamental class re-
spectively.

Now let H i be such that the bottom row of (4.4) is our standard projective
resolution of Z as in (1.16):

Z[G]r −→ Z[G] −→ Z −→ 0

with G being generated by r elements. Then we can use Algorithm 3.13 and
Corollary 1.30 to compute a representative ϕ1 ∈ HomG

(
Σ1, C

f
L,S

)
of the global

fundamental class. A representative ϕ2 ∈ HomG

(
Σ2, I

f
L,S

)
of the semi-local fun-

damental class can be found by combining Algorithm 4.6 (which uses another
projective resolution of Y ) with [Wei94, Thm. 2.2.6] as discussed in Remark 4.7.

The maps ϕ1 and ϕ2, however, do not necessarily make the right-hand square
of (4.7) commute. But by the uniqueness of the canonical class α in Theorem 4.8
there must exist homomorphisms λ ∈ HomG

(
G0, IfL,S

)
and µ ∈ HomG

(
H0, Cf

L,S

)
such that h ◦ (ϕ2 + λ ◦ ι2) = (ϕ1 + µ ◦ ι1) ◦ g holds. The following lemma shows
that such a map λ still exists if require µ = 0.

Lemma 4.11. If h ◦ (ϕ2 + λ ◦ ι2) = (ϕ1 + µ ◦ ι1) ◦ g for λ ∈ HomG

(
G0, IfL,S

)
and µ ∈ HomG

(
H0, Cf

L,S

)
, then there exists λ′ ∈ HomG

(
G0, IfL,S

)
such that

h ◦ (ϕ2 + λ′ ◦ ι2) = ϕ1 ◦ g.

Proof. Consider the following diagram

Σ2 G0

IfL,S

Σ2 H0

Cf
L,S

g g0
λ

µ

ι2

ι1
h

ϕ2

ϕ1

in which both squares commute (but not necessarily the triangles). Then ι1 ◦g =
g0 ◦ ι2 holds and since G0 is projective there exists λ′′ ∈ HomG

(
G0, IfL,S

)
such

that h◦λ′′ = µ◦g0 ∈ HomG

(
G0, Cf

L,S

)
. Let λ′ = λ−λ′′ ∈ HomG

(
G0, Cf

L,S

)
, then

h ◦ (ϕ2 + λ′ ◦ ι2) = h ◦ (ϕ2 + λ ◦ ι2)− h ◦ λ′′ ◦ ι2 = (ϕ1 + µ ◦ ι1) ◦ g − µ ◦ g0 ◦ ι2
= (ϕ1 + µ ◦ ι1) ◦ g − µ ◦ ι1 ◦ g = ϕ1 ◦ g

which completes the proof. �

From the algorithms constructing the global and semi-local fundamental class
we can therefore find homomorphisms ϕ1 and ϕ2 which make diagram (4.7) com-
mute. The restriction of ϕ2 to Σ3 will then always be a homomorphism in
HomG(Σ3, UL,S) which represents Tate’s canonical class.

The construction of Tate’s canonical class which we developed above is sum-
marized in the following algorithm.
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Algorithm 4.12 (Tate’s canonical class as extension).
Input: A finite Galois extension L|K of number fields with group G and a finite

set of places S satisfying conditions (S1)–(S4) on page 70.

Output: Tate’s canonical class in Ext2
G(X,UL,S), represented by an element in

HomG(Σ3, UL,S).

1 Construct diagram (4.4) and represent extension groups as in (4.5).

2 Compute a representative ϕ1 ∈ HomG

(
Σ1, C

f
L,S

)
of the global fundamental

class using Algorithm 3.13 combined with Corollary 1.30.

3 Compute a representative ϕ2 ∈ HomG

(
Σ2, I

f
L,S

)
of the semi-local fundamental

class using Algorithm 4.6 combined with Remark 4.7.

4 Use linear algebra to construct λ ∈ HomG

(
G0, IfL,S

)
such that ϕ′2 = ϕ2 +λ◦ ι2

satisfies h ◦ ϕ′2 = ϕ1 ◦ g.
5 Then the restriction ϕ1 of ϕ′2 to Σ3 is an element in HomG(Σ3, UL,S).

Return: ϕ1 ∈ HomG(Σ3, UL,S).

Remark 4.13. Let (ϕ3, ϕ2, ϕ1) ∈ Hom
(
(Σ), (U f )

)
be a tuple of homomorphisms

representing the canonical class in Ĥ2
(
G,Hom((X), (U f ))

)
. By definition of

Hom
(
(Σ), (U f )

)
these homomorphisms make diagram (4.7) commute. By simul-

taneously constructing pushout sequences using the rows of diagram (4.4) and
the homomorphisms ϕi one can then construct a commutative diagram

0 UL,S F̄ 0 F 1 X 0

0 IfL,S Ḡ0 G1 Y 0

0 Cf
L,S H̄0 H1 Z 0

(4.8)

in which the rows represent Tate’s canonical class, the semi-local fundamental
class and the global fundamental class as Yoneda extensions.

This is exactly the diagram from Chinburg [Chi85, Chp. III, (3.1)]. Using
the algorithms presented in the preceding chapters, this diagram can now be
constructed explicitly.
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4.5 Special case: undecomposed prime
In Section 3.2.1 we have seen that the computation of the global fundamental
class is much simpler if there exists an undecomposed prime. Due to the relations
among the canonical classes, it is not amazing that this also applies for the
construction of Tate’s canonical class. Chinburg studied this case in detail in
[Chi89] and characterized the image of Tate’s canonical class in Ext2

G(X, IL,S)
using local invariants as follows.

Let L|K be a finite Galois extension of number fields with group G and S a set
of places satisfying (S1)–(S4). Furthermore, assume that v0 ∈ S is undecomposed
in L|K and p0 is the place of K below v0:

L v0 Lv0

K p0 Kp0

G Gv0 = G

The G-orbit of v0 in S just contains v0. Therefore, the set S ′ = S \ {v0} is
also G-stable and from every set S(G) of G-representatives in S one gets a set
S(G) \ {v0} of G-representatives in S ′. Furthermore, there is an isomorphism

φ :
⊕

v∈S′(G)

Yv
'−→ X ⊆ Y =

⊕
v∈S(G)

Yv (4.9)

of G-modules which sends (yv)v∈S′(G) to (yv)v∈S(G) with yv0 = −
∑

v∈S′(G) aug(yv).
To avoid confusion, we further write YS = Y =

⊕
v∈S(G) Yv and YS′ =

⊕
v∈S′(G) Yv.

By Proposition 4.1 the above isomorphism implies

ExtrG(X,M) '
∏

v∈S′(G)

ExtrG(Yv,M) '
∏

v∈S′(G)

Ĥr(Gv,M) (4.10)

for any G-module M . In particular, for r = 2 and M = IL,S we obtain

Ext2
G(X, IL,S) '

∏
v∈S′(G)

Ĥ2(Gv, IL,S) '
∏

v∈S′(G)

∏
w∈S(Gv)

Ĥ2(Gw ∩Gv, L
×
w). (4.11)

Note that v just runs through S ′(G) due to the isomorphism φ, but w still runs
through S(G) since we consider IL,S (and not IL,S′). Also remember that this
isomorphism is explicitly described by

Ĥ2
(
G,Hom(X, IL,S)

)
'

∏
v∈S′(G)

∏
w∈S(Gv)

Ĥ2(Gw ∩Gv, L
×
w)

β 7→
(
(πw ◦ ι∗v)β

)
v∈S′(G),w∈S(Gv)
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with embeddings ιv : Yv ↪→ X via φ and projections πw : IL,S � L×w as in
Corollary 4.3.

Then the image β ∈ Ĥ2
(
G,Hom(X, IL,S)

)
of the semi-local fundamental class

α2 ∈ Ĥ2
(
G,Hom(YS, IL,S)

)
through the homomorphism

Ĥ2
(
G,Hom(YS, IL,S)

)
→ Ĥ2

(
G,Hom(X, IL,S)

)
can be characterized using local invariants as follows. Recall that this homomor-
phism is simply given by the pullback along X → YS and denote the invariant
map on Ĥ2(Gw ∩Gv, L

×
w) by inv(Gv ∩Gw, w).

Proposition 4.14. Let φ : YS′
'−→ X be the isomorphism (4.9) above. Then

the image β ∈ Ĥ2
(
G,Hom(X, IL,S)

)
of the semi-local fundamental class α2 is

characterized by

inv(Gv ∩Gw, w)
(
(πw ◦ ι∗v)β

)
=


1

|Gv | if w = v,

− 1
|Gv | if w = v0, and

0 otherwise.
(4.12)

These invariants are exactly those stated by Chinburg in [Chi89, Chp. III, § 2,
p. 24], for which we can now give a complete proof.

Proof. Consider the following homomorphisms

Ĥ2
(
G,Hom(YS, IL,S)

)
'

∏
v∈S(G)

∏
w∈S(Gv)

Ĥ2(Gw ∩Gv, L
×
w)

Ĥ2
(
G,Hom(X, IL,S)

)
Ĥ2
(
G,Hom(YS′ , IL,S)

)
'

∏
v∈S′(G)

∏
w∈S(Gv)

Ĥ2(Gw ∩Gv, L
×
w)

φ'

in which the upper vertical map is given by the pullback along X → YS and the
lower vertical map is induced by the isomorphism φ. The horizontal isomorphisms
are those from Proposition 4.1 which were given in its proof as follows: if γ is a
cocycle in Ĥ2

(
G,Hom(YS, IL,S)

)
, then its image at v ∈ S(G), w ∈ S(Gv) is the

cocycle
σ, τ 7−→ πw

(
γ(σ, τ)(1v)

)
where σ, τ ∈ Gv ∩ Gw, πw denotes the projection IL,S � L×w and 1v denotes the
element 1 ∈ 1 · Z ⊆ Yv ⊆ YS. The bottom isomorphism is analog, with v being a
place of S ′(G).

Let α2 denote the semi-local fundamental class. It has invariant 1
|Gv | for v = w

and 0 otherwise as described in Remark 4.4. Its image β ∈ Ĥ2
(
G,Hom(YS′ , IL,S)

)
is the cocycle obtained by composition with φ : YS′ → X and j : X ↪→ YS:

β(σ, τ) = α2(σ, τ) ◦ j ◦ φ ∈ Hom(YS′ , IL,S) for all σ, τ ∈ G.
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To compute its invariant at v ∈ S ′(G), w ∈ S(Gv) we have to consider the cocycle

σ, τ 7−→ πw
(
β(σ, τ)(1v)

)
σ, τ ∈ Gv ∩Gw

and by φ(1v) = 1v − 1v0 this is

σ, τ 7−→ πw
(
α2(σ, τ)(1v)

)
− πw

(
α2(σ, τ)(1v0)

)
.

By the definition of the semi-local fundamental class α2 the left-hand term van-
ishes if w 6= v and the right-hand term similarly if w 6= v0. For w = v the cocycle
β therefore has the same invariant as α2 and for w = v0 we get the inverse of
the local fundamental class in Ĥ2(Gv0 , L

×
v0

) restricted to Gv ∩ Gv0 = Gv. This
restriction is actually the inflation map which maps the local fundamental class
of Lv0|Kp0 to the one of Lv0|LGv

v0
. Hence, the invariant at w = v0 is − 1

|Gv | . This
proves that β has the invariants (4.12). �

By the above proposition, the pullback of the semi-local fundamental class in
Ext2

G(X, IL,S) can be characterized using local invariants. From Remark 4.10
we know that this element coincides with the pushout of Tate’s canonical class
through the homomorphism

Ext2
G(X,UL,S) −→ Ext2

G(X, IL,S). (4.13)

Applying (4.10) for r = 1 and M = CL,S, there is an isomorphism

Ext1
G(X,CL,S) '

∏
v∈S′(G)

Ĥ1(Gv, CL,S)

and this group is trivial since the first cohomology group of the idèle class group is
always trivial. Therefore, the homomorphism (4.13) is injective and the invariants
from Proposition 4.14 also characterize Tate’s canonical class. In this case it is
therefore possible to construct the corresponding Tate sequence in Ext2

G(X,UL,S)
without computing the global fundamental class.

This construction of Tate’s canonical class using Chinburg’s conditions has
been turned into an algorithm by Janssen in [Jan10]. There the conditions (4.12)
are explicitly reformulated as linear equations. Although this approach is very
explicit, these equations contain interactions between different places in S and
they become very complicated.

In comparison to the general construction, the injectivity of (4.13) implies the
following for diagram (4.7):

0 Σ3 Σ2 Σ1 0

0 UL,S IfL,S Cf
L,S 0

ϕ3 ϕ2 ϕ1
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Whenever the right-hand square commutes with ϕ2 representing the semi-local
fundamental class (without conditions on ϕ1), its restriction to Σ3 will represent
Tate’s canonical class. Hence, the general construction will also be independent
of the global fundamental class.

Note that the characterization by invariants depends critically on the descrip-
tion of X using isomorphism (4.9). In the general case such a representation will
therefore not be possible and the construction of Tate’s class will depend on the
global fundamental class as in Algorithm 4.12.





Tamagawa Number

Conjectures





Overview

In the following chapters, we will consider the equivariant Tamagawa number
conjectures for Galois extensions of number fields as formulated in [BlB03, Bre04b,
BrB07, BF01]. The three fundamental classes, which were studied in detail in
the previous chapters, will play an important role in those conjectures.

The equivariant Tamagawa number conjectures for number fields are known to
generalize the conjectures of Chinburg formulated in [Chi85]. In the following an
overview of Chinburg’s conjectures and their refinements is given.

Let L|K be a fixed Galois extension of number fields with group G. In the
previous chapters we obtained an exact commutative diagram of finitely generated
Z[G]-modules representing relations between the three fundamental classes (see
Remark 4.13):

0 UL,S A3 B3 X 0

0 IfL,S A2 B2 Y 0

0 Cf
L,S A1 B1 Z 0

For projective modules A one has a rank map rank(A) = rankQ[G](A⊗Z[G] Q[G])
and it can be extended to cohomologically trivial modules using Schanuel’s lemma.
This provides integers ri = rank(Ai)− rank(Bi) and in [Chi85] Chinburg defined
the elements Ωi(L|K) = (Ai) − (Bi) − ri(Z[G]) ∈ K0(Z[G]), one for each of the
rows in the diagram.2 From the exactness of the middle two columns one directly
obtains the relation

Ω2(L|K) = Ω1(L|K) + Ω3(L|K)

in K0(Z[G]), cf. [Chi85, Eq. (3.2)]. Chinburg then formulated the following con-
jectures [Chi85, Question 3.2, Question 3.1, and Conj. 3.1]:

Ω1-conjecture: Ω1(L|K) = 0,

Ω2-conjecture: Ω2(L|K) = W (L|K),

Ω3-conjecture: Ω3(L|K) = W (L|K).
2If 0 → K → P → A → 0 is a projective resolution of a cohomologically trivial Z[G]-module

A, then A is represented by (P )− (K) in K0(Z[G]).
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Here, W (L|K) denotes the root number class associated to Artin root numbers
W (χ) as it is defined by Fröhlich in [Frö78], see also [Chi84, § 7] or [Chi89, Chp. I].

Chinburg’s conjectures are known to generalize other conjectures. The sec-
ond conjecture can be regarded as a generalization of Fröhlich’s conjecture from
[Frö83], which was proved by Taylor in [Tay81], to wildly ramified number field
extensions. The other two conjectures refine the class number formula.

Chinburg also proved that the elements are in fact in the class group Cl(Z[G])
which can be identified with the kernel ker

(
K0(Z[G]) → K0(R[G])

)
= im(∂0

G,R).
It is therefore convenient to lift these conjectures, i.e. to formulate refined con-
jectures in the relative K-group K0(Z[G],R) which imply Chinburg’s conjectures
through the map ∂0

G,R. This is done by the equivariant Tamagawa number con-
jectures.

The Tamagawa number conjectures relate leading coefficients ζ∗L|K,S(s) of the
equivariant Artin L-function ΛL|K(s) as defined in Section 1.5 to algebraic terms
corresponding to the extension L|K. An overview of these conjectures for number
fields is given in [BrB07, §§ 3–5] and a more general survey is provided in [Fla04].
The following summary should give a rough impression of what these conjecture
look like.

Leading term at s = 0: This conjecture relates the value ζ∗L|K,S(0) to an Euler char-
acteristic constructed from Tate’s canonical class (the upper row in the above dia-
gram) and a canonical isomorphism betweenXR and R[G]⊗Z[G]UL,S obtained from
the regulator map RegS : R[G]⊗Z[G] UL,S

'−→ R[G]⊗Z[G] X, u 7→ (log |u|w)w∈S.
This construction results in an element in the relative K-group K0(Z[G],R)

which is often denoted by TΩ(L|K, 0). The map ∂0
G,R maps TΩ(L|K, 0) to

Ω3(L|K)−W (L|K) and it is conjectured that TΩ(L|K, 0) is zero in K0(Z[G],R),
cf. [BrB07, Prop. 4.4 and Conj. 4.1].

An algorithm to verify this conjecture was discussed in detail by Janssen in
[Jan10], and in special cases her algorithm also gives a proof.

Leading term at s = 1: Similarly, the value ζ∗L|K,S(1) is conjecturally related to
an Euler characteristic from the global fundamental class (the bottom row in the
above diagram) and a canonical isomorphism obtained from the embedding maps
L→ Lw for all infinite places w of L.

The construction results in an element TΩ(L|K, 1) ∈ K0(Z[G],R) which is
mapped to Ω1(L|K) by ∂0

G,R and it is also conjectured that this element is zero,
cf. [BrB07, Prop. 3.6 and Conj. 3.3]. This conjecture will be studied in Chapter 6.

Compatibility conjecture: The leading terms ζ∗L|K,S(0) and ζ∗L|K,S(1) of Artin L-
function used in the conjectures above are related by the functional equation,
see Proposition 1.48 in Section 1.5. Moreover, the global fundamental class and
Tate’s canonical class are related by local fundamental classes (see Chapter 4).
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Together this gives rise to a compatibility of the two conjectures, also called
epsilon constant conjecture. It relates the values of the epsilon functions εL|K(s)
at s = 0 to an equivariant discriminant and a sum of Euler characteristics which
are obtained from local fundamental classes with a trivialization induced by val-
uations on L.

This construction leads to an element TΩloc(L|K, 1) ∈ K0(Z[G],R) which is
mapped to Ω2(L|K)−W (L|K) by ∂0

G,R, cf. [BrB07, Rem. 5.5]. It is also conjec-
tured that the element TΩloc(L|K, 1) vanishes inK0(Z[G],R) and it can be proved
that TΩloc(L|K, 1) = 0 implies the equivalence of the other two conjectures, cf.
[BrB07, Conj. 5.3 and Thm. 5.8],

The relation to local fundamental classes reveals the local structure of this
conjecture and it is in fact a consequence of a corresponding conjecture for local
fields which was introduced by Breuning [Bre04b]. The epsilon constant conjec-
tures will be studied algorithmically in the following chapter.





5 Epsilon constant conjectures

In the following we consider the statements of the global and local epsilon constant
conjectures for number fields from [BlB03] and [Bre04b]. These conjectures are
formulated as equations in relative K-groups for group rings.

Let L|K be a fixed Galois extension of number fields with group G. As usual,
we denote a finite, Galois-invariant set of places in L by S. The places of L will
be denoted by w, and those of K by v:

L w ∈ S

K v

G

Given such a set of places S, we also consider a fixed subset S(G) of represen-
tatives of the G-orbits in S, i.e. for all places w1, . . . , wn in S dividing the same
place v of K we choose a fixed place w above v.

5.1 Statement of the conjectures

5.1.1 The global epsilon constant conjecture
The global epsilon constant conjecture is formulated in the relative K-group
K0(Z[G],R). For a Galois extension L|K of number fields it describes a relation
between epsilon factors arising in the functional equation of the Artin L-function
and algebraic invariants related to L|K. We recall its formulation as it was given
in [BlB03]. Also remember that we introduced the following K-theoretic diagram
in Section 1.4:

Z(R[G])×

K1(R[G]) K0(Z[G],R) K0(Z[G])

b∂1
G,R

nr

∂1 ∂0

(5.1)

The analytic term of this conjecture is based on the equivariant epsilon function
εL|K(s) as defined in Section 1.5. Its value at s = 0 is an element in Z(R[G])× by
[Bre04a, Lem. 3.12] and it is called the equivariant global epsilon constant. The
extended boundary homomorphism ∂̂1

G,R gives a corresponding element EL|K :=

∂̂1
G,R(εL|K(0)) in the relative K-group K0(Z[G],R) which is also called equivariant

global epsilon constant.
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Let S be a finite, Galois-invariant set of places of L, including all infinite places
and all places which ramify in L|K. For each w ∈ S(G) with w|p, we choose a
full projective Zp[Gw]-sublattice Lw of OLw upon which the p-adic exponential
map is well-defined and injective. For each place w /∈ S we set Lw = OLw and
we define L ⊆ OL by its p-adic completions

Lp =
∏
v|p

Lw ⊗Zp[Gw] Zp[G] ⊆ Lp := L⊗Q Qp,

where w is the fixed place above v. Let Σ(L) denote all embeddings of L into C.
Then we define the G-equivariant discriminant by

δL|K(L ) = [L , πL, HL] ∈ K0(Z[G],R)

where HL =
∏

σ∈Σ(L) Z and πL is induced by

ρL : L⊗Q C→ HL ⊗Z C
l ⊗ z 7→ (σ(l)z)σ∈Σ(L)

as in [BlB03, § 3.2].
We continue to use the notation from Chapter 2, in particular, the finitely

generated module Lfw := L×w/ expw(Lw) which is cohomologically isomorphic to
L×w . Using the splitting module construction from [NSW00, Chp. III, § 1, p. 115]
as in Proposition 1.29 the local fundamental class γ ∈ Ĥ2(Gw, L

f
w) is represented

by an extension
0 → Lfw → Lfw(γ) → Z[G] → Z→ 0 (5.2)

in Yext2
Gw

(Z, Lfw) ' Ĥ2(Gw, L
f
w). Then the perfect complex Pw :=

[
Lfw(γ)→Z[G]

]
with Lfw(γ) in degree 0 also represents the local fundamental class and has coho-
mology Lfw in degree 0 and Z in degree 1.

In Section 1.4 we defined an Euler characteristic χ̄Gw(Q, t) ∈ K0(Z[Gw],R) for
any perfect complex Q and a trivialization t : H+(Q) → H−(Q) from cohomology
in even to odd degree. Here, the valuation w : Lw → Q induces a trivialization w :
L×w/ exp(Lw)⊗Q ' Q of Pw and we denote the Euler characteristic χ̄Gw(Pw, w)
by Ew(Lw). For the construction of a triple representing Ew(Lw) in K0(Z[Gw],Q)
see Section 1.4.2.

Furthermore, let mw ∈ Z(Q[Gw])× be the element defined in [BlB03, § 4.1]
which is also called the correction term. It is defined as follows. For a subgroup
H ⊆ G and x ∈ Z(Q[H]) we let ∗x ∈ Z(Q[H])× denote the invertible element
which on the Wedderburn decomposition Z(Q[H]) =

∏r
i=1 Fi for suitable exten-

sions Fi|Q is given by x = (xi)i=1...r 7→ (∗xi) with ∗xi = 1 if xi = 0 and ∗xi = xi
otherwise. Let ϕw denote a lift of the Frobenius automorphism in Gw/Iw, then
the correction term is defined by

mw =
∗(|Gw/Iw|eGw) · ∗((1− ϕwNv−1)eIw)

∗((1− ϕ−1
w )eIw)

∈ Z(Q[Gw])×. (5.3)
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Finally, we define elements

RΩloc(L|K, 1) := δL|K(L ) +
∑

w∈S(G)

indGGw

(
∂̂1
Gw,Qp

(mw)− Ew(Lw)
)

and TΩloc(L|K, 1) := ∂̂1
G,R
(
εL|K(0)

)
−RΩloc(L|K, 1)

in K0(Z[G],R). One can show that TΩloc(L|K, 1) is independent of the choices
of S or L (cf. [BlB03, Rem. 4.2]) and we state the conjecture as follows.

Conjecture 5.1 (Global epsilon constant conjecture). For every finite
Galois extension L|K of number fields the element TΩloc(L|K, 1) ∈ K0(Z[G],R)
is zero. We denote this conjecture by EPS(L|K).

Remark 5.2. In [BrB07, § 5], the formulation of this conjecture uses the Euler
characteristic χG and a complex which corresponds to the local fundamental class
by representing Ext2

G using injective resolutions. In contrast, the formulation of
[BlB03] (used here) applies Burns’ original Euler characteristic χ̄G to the sequence
(5.2) which corresponds to the local fundamental class if Ext2

G is represented by a
projective resolution of Z. However, the difference between these representations
of the extension group and the relation between the two different Euler charac-
teristics which was discussed in Example 1.44(d) imply that the two definitions
of TΩloc(L|K, 1) coincide. For a detailed discussion see [BrB07, Rem. 5.4].

5.1.2 The local epsilon constant conjecture
We will now describe a related conjecture for Galois extensions Lw|Kv of local
number fields over Qp with group Gw, which was introduced by Breuning in
[Bre04b]. Consider the following situation:

L w Lw

K v Kv

G Gw

The equivariant global epsilon function of L|K can be written as a product of
equivariant local epsilon functions related to its completions Lw|Kv as in Defini-
tion 1.47 and (1.23). Their value at zero is called the equivariant local epsilon
constant and the local conjecture describes it in terms of algebraic invariants
associated to the extension Lw|Kv. Here we refer to [Bre04a, Bre04b] for details.

Let Cp denote the completion of an algebraic closure of Qp. In analogy to (5.1)
we introduced the following diagram in Section 1.4:

Z(Cp[Gw])×

K1(Cp[Gw]) K0(Zp[Gw],Cp) 0,

b∂1
Gw,Cp

nr'

∂1 ∂0

(5.4)
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where the surjectivity of the map ∂1 follows from [CR87, (39.10)] (see also [Bre04a,
Lem. 2.5]). The extended boundary homomorphism ∂̂1

Gw,Cp
will therefore also be

surjective.
For every character χ of Gw = Gal(Lw|Kv) one has an induced character i

Qp

Kv
χ

of Aut(Cp|Qp). The local Galois Gauss sum from [Mar77, Chp. II, § 4] of this
induced character was denoted by τLw|Kv(χ) ∈ C in Section 1.5 and we set

τLw|Kv :=
(
τLw|Kv(χ)

)
χ∈IrrC(Gw)

∈ Z(C[Gw])×.

The choice of an embedding ι : C→ Cp induces a map Z(C[Gw])×→Z(Cp[Gw])×

and we obtain the equivariant local epsilon constant

TLw|Kv := ∂̂1
Gw,Cp

(ι(τLw|Kv)) ∈ K0(Zp[Gw],Cp).

As in the global case one chooses a full projective Zp[Gw]-sublattice Lw of OLw

upon which the exponential function is well-defined. Similarly one defines the
equivariant local discriminant in K0(Zp[Gw],Cp) by

δLw|Kv(Lw) = [Lw, ρLw , HLw ], (5.5)

where HLw =
⊕

σ∈Σ(Lw) Zp and ρLw is the isomorphism

ρLw : Lw ⊗Zp Cp → HLw ⊗Zp Cp
l ⊗ z 7→ (σ(l)z)σ∈Σ(Lw).

Hereby Σ(Lw) denotes the set of embeddings Lw ↪→ Cp. By the surjectivity of
the homomorphism ∂1 the equivariant local discriminant is represented by an
element dLw|Kv ∈ Cp[Gw]× ⊆ K1(Cp[Gw]). This element will be used later and an
explicit formula is given in (5.8).

We write Ew(Lw)p for the projection of the Euler characteristic Ew(Lw) onto
K0(Zp[Gw],Qp) by the decomposition

K0(Z[G],Q) '
∐
p

K0(Zp[G],Qp). (5.6)

The difference Ew(Lw)p − δLw|Kv(Lw), which is denoted by CLw|Kv in [Bre04b],
is independent of Lw by [Bre04b, Prop. 2.6] and is called the cohomological term
of Lw|Kv.

To state the local conjecture we also need the unramified term ULw|Kv ∈
K0(Zp[Gw],Cp). It is a unique element which is mapped to zero by the scalar
extension map K0(Zp[Gw],Qp) → K0(Ot

p[Gw],Cp) where Ot
p is the ring of inte-

gers of the maximal tamely ramified extension of Qp in Cp. The proof of the
existence in [Bre04b, Prop. 2.12] includes an explicit formula for a representative
uLw|Kv ∈ Cp[Gw]× ⊆ K1(Cp[Gw]) with ∂1(uLw|Kv) = ULw|Kv , which we will recall
in (5.9).
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We can now state the followgin conjecture for local extensions.

Conjecture 5.3 (Local epsilon constant conjecture). For every Galois ex-
tension Lw|Kv of local fields over Qp the element

RLw|Kv := TLw|Kv + CLw|Kv + ULw|Kv − ∂̂1
Gw,Cp

(mw)

is zero in K0(Zp[Gw],Cp). We denote this conjecture by EPSloc(Lw|Kv).

5.2 Basic properties and state of research
The global epsilon constant conjecture EPS(L|K) is known to be valid modulo the
torsion subgroup K0(Z[G],Q)tor, and the local conjecture modulo the subgroup
K0(Zp[Gw],Qp).

Proposition 5.4. (a) The element TΩloc(L|K, 1) is an element of the torsion
subgroup K0(Z[G],Q)tor of K0(Z[G],Q) ⊆ K0(Z[G],R).

(b) RLw|Kv is an element of the subgroup K0(Zp[Gw],Qp) ⊆ K0(Zp[Gw],Cp).

Proof. [BlB03, Prop. 3.4] shows that TΩloc(L|K, 1) ∈ K0(Z[G],Q) and [BlB03,
Cor. 6.3] implies TΩloc(L|K, 1) ∈ K0(Z[G],Q)tor. For part (b) see [Bre04b,
Prop. 3.4]. �

We can therefore write TΩloc(L|K, 1)p for the projection onto K0(Zp[G],Qp)
via the decomposition (5.6) of K0(Z[G],Q) and the corresponding conjectural
equality TΩloc(L|K, 1)p = 0 in K0(Zp[G],Qp) will be denoted by EPSp(L|K).
For this p-part of the global conjecture we get the following relation.

Corollary 5.5. The global conjecture EPS(L|K) is valid if and only if its p-part
EPSp(L|K) is valid for all primes p.

The local conjecture can then be regarded as a refinement of the p-part of the
global conjecture.

Theorem 5.6 (Local-global principle). One has the equality

TΩloc(L|K, 1)p =
∑
v|p

iGGw
(RLw|Kv)

in K0(Zp[G],Qp) and one can deduce:

(a) EPSloc(M |N) for all M |N |Qp ⇒ EPSp(L|K) for all L|K|Q,

(b) if p 6= 2: EPSp(L|K) for all L|K|Q ⇒ EPSloc(M |N) for all M |N |Qp, and

(c) for fixed L|K|Q and p: EPSloc(Lw|Kv) for all w|v|p ⇒ EPSp(L|K).

Proof. [Bre04b, Thm. 4.1 and Thm. 4.3]. �
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So for odd primes, there is an equivalence between the local conjecture and
the p-part of the global conjecture. Another important property that both (local
and global) conjectures satisfy, is the so called functorial property.

Proposition 5.7 (Functorial property). For a Galois extension L|K of num-
ber fields with intermediate field F |K and a local Galois extension M |N over Qp

with intermediate field E|K one has:

(a) EPS(L|K) ⇒ EPS(L|F ) and EPS(L|K) ⇒ EPS(F |K) if F |K is Galois.

(b) EPSloc(M |N) ⇒ EPSloc(M |E) and EPSloc(M |N) ⇒ EPSloc(E|K) if E|K
is Galois.

Proof. [BlB03, Thm. 6.1] and [Bre04b, Prop. 4.25]. �

Proposition 5.8. The global epsilon constant conjecture implies Chinburg’s Ω(2)-
conjecture from [Chi85, Question 3.1].

Proof. [BlB03, Rem. 4.2(iv)]. �

Furthermore, there are the following results. The global epsilon constant con-
jecture is known to be valid

(A) for tamely ramified extensions [BlB03],

(B) for abelian extensions of Q [BlB03, BF06], and

(C) for some (infinite families of) dihedral, quaternion and S3–extensions by
[BlB03, Bre04b, Sna03].

Using the local-global principle those results also carry over to the local conjec-
ture and actually some were proved using local results. By [Bre04b] the local
conjecture is known to be valid

(D) for tamely ramified extensions,

(E) for abelian extensions M |Qp with p 6= 2, and

(F) for S3–extensions of Q3.

It is well-known that for fixed p and n there are just finitely many Galois
extensions M |Qp with degree [M : Qp] = n. From the theoretical results above
we can deduce the following implications from the local conjecture for Galois
extensions M |Qp with p ≤ n (all extensions below are assumed to be Galois):

EPSloc(M |Qp) ∀[M : Qp] ≤ n, p ≤ n

⇒ EPSloc(M |Qp) ∀[M : Qp] ≤ n, ∀p (result (D) for tame extensions)
⇒ EPSp(L|Q) ∀[L : Q] ≤ n, ∀p (by Theorem 5.6)
⇒ EPS(L|Q) ∀[L : Q] ≤ n (by Corollary 5.5)
⇒ EPS(F |K) ∀F ⊆ L, [L : Q] ≤ n (by Proposition 5.7)
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In other words, the local epsilon constant conjecture for a finite set of local
extensions of degree ≤ n implies the global epsilon constant conjecture for all
Galois extensions F |K where F ⊆ L and L|Q is a Galois extension of degree
at most n (see also [Bre04a, Thm. 5.7]). From an algorithm proving the local
conjecture for a fixed Galois extension M |Qp it will therefore automatically be
possible to give a computational proof of the global conjecture up to a finite
degree n.

Such an algorithm for EPSloc(M |Qp), with M |Qp Galois, is described by Bley
and Breuning in [BlBr08]. But it has not been implemented because there were
a few steps for which (at the time the paper was written) no practical solution
was known. One of these problem was the computation of local fundamental
classes for which we gave an efficient algorithm in Section 2.2.2. The issues of
computations in algebraic K-groups are studied in detail in [BW09] and its main
result will be discussed below in Proposition 5.13. Finally, a remaining problem
is the fact that this approach needs the extension M |Qp to be represented by a
global Galois extension of number fields in order to do exact computations.

To sum up, an algorithm to prove the global epsilon constant conjecture using
the implications above is given by the following steps.

1. For a finite integer n, compute all local Galois extensions of Qp up to degree
n, with p ≤ n.

2. Find global Galois extensions of number fields representing all these local
extensions.

3. Apply the algorithm by Bley and Breuning [BlBr08] to prove the local
epsilon constant conjecture of these extensions.

Step 1: Up to degree 11, the database by Jones and Roberts [JR] contains polyno-
mials for all local extensions of Qp and more generally, one can use an algorithm
by Pauli and Roblot [PR01] to compute all extensions of Qp of a given degree.

The latter algorithm performs well enough up to degree 15. However, we were
not able to compute all local extensions of degree 16 of Q2. The implementation
in Pari/Gp terminated after a few days with an out of memory error1, and
Magma did not compute a result within 50 days. We therefore have to restrict to
extensions of degree n ≤ 15 and will only consider primes p ≤ 15 since extensions
of Qp, p > 15, will be tamely ramified. A complete list of the Galois groups which
occur up to this degree is given in Table A.1 on page 160.

Step 2: In the following section we will define what we mean by those global
representations and will discuss how to find them.

Step 3: In Section 5.4 we will recall the algorithm of Bley and Breuning and give
algorithmic results that were found using the global representations from step 2.

1using more than 10 GB of memory
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5.3 Global representations of local Galois
extensions

We say that a number field K with prime ideal p, denoted as a pair (K, p), is
a global representation for a local field M over Qp if M ' Kp. An extension
(L,P)|(K, p) is an extension L|K of number fields with a prime ideal P dividing
p and [L : K] = [LP : Kp], i.e. p is undecomposed in L. A global representation
for a local extension M |N is an extension (L,P)|(K, p) with (L,P) and (K, p)
representing M and N , respectively:

L P M ' LP

K p N ' Kp

Lemma 5.9. Every Galois extension M |N of p-adic fields has a global represen-
tation (L,P)|(K, p) with L|K Galois.

Proof. [BlBr08, Lem. 2.1 and 2.2]. �

From now on, a global representation will always refer to such a representation
where L|K is Galois. In order to do exact computations we will need such a global
representation. The proof of the existence in this theorem involves the Galois
closure of a number field, but for computational reasons we need a representation
which has small degree over Q, or even better with K = Q.

In the following, we will restrict ourselves to the case M |Qp using the functo-
rial properties of the conjectures. For this case, Henniart shows in [Hen01] the
following result.

Theorem 5.10. For M |Qp there exist a global representation (L,P)|(K, p) which
is Galois and where K = Q if p 6= 2 and K is quadratic over Q if p = 2.

Unfortunately, it is not clear how to find these small representations algorithmi-
cally, cf. [BlBr08, Rem. 2.4]. For the construction of a global Galois extension
L|K, with K = Q or K = Q(

√
d), representing fixed local Galois extension M |Qp

we will therefore use the following heuristics and discuss their performance for
extensions up to degree 15.

5.3.1 Heuristics
Search database of Klüners and Malle

The database of Klüners and Malle [KM01] contains polynomials generating Ga-
lois extensions of Q for all subgroups G of permutation groups Sn up to degree
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n = 15. In particular, the database contains polynomials for all Galois groups of
order n ≤ 15. Among those one will often find a polynomial generating a global
representation (K, p) for M , if [M : Qp] ≤ 15.

Generic polynomials

In this context we consider polynomials f ∈ K(t1, . . . , tn)[x] with arbitrary inde-
terminates ti over a field K. It is said to be generic for a group G, if the splitting
field L of f is a Galois extension of K(t1, . . . , tn) with group G and, moreover, all
extensions of K(t1, . . . , tn) with group G are given by a polynomial f of this form.
For specializations of values t1, . . . tn ∈ Q (possibly with certain restrictions) and
K = Q one will get a Galois extension of Q with this group G and randomly
testing different values will also return a global representation for M .

The book [JLY02] by Jensen et. al. contains generic polynomials (or methods
to construct them) for a lot of groups. In particular, it contains polynomials for
all non-abelian groups of order ≤ 15, except for the generalized quaternion group
Q12 of order 12. However, there do not exist generic polynomials for all groups.
The smallest group for which the non-existence is proved is the cyclic group of
order eight [JLY02, § 2.6].

Class field theory

As a last heuristic, we will use class field theory to construct abelian extensions
with prescribed ramification.2 For a field extensions K of Q, there is a one-to-
one correspondence between abelian extensions L|K and subgroups of the idèle
class group CK and each of those extensions L|K has Galois group Gal(L|K) '
CK/NL|K CL, cf. [Neu92, Chp. VI, § 6].

For a modulus m =
∏

pnp — where p runs through all (finite and infinite)
places and np ∈ N ∪ {0} and np ∈ {0, 1} for p|∞ — one studies in particular
the ray class field Km|K. It is the extension corresponding to the subgroup(∏

p U
(np)
p

)
K×/K× ⊆ CK where U

(0)
p = O×

Kp
and U

(np)
p = 1 + pn for finite p,

U
(0)
p = R× and U

(1)
p = R>0 for real p, and U

(np)
p = C× for complex p. This

abelian extension of K can be constructed using algorithms described by Cohen
in [Coh00, Chp. 4]. A discussion of algorithms implemented in Magma is given
by Fieker in [Fie06].

Given an extension L|K one defines the conductor f to be the greatest common
divisor of all moduli m for which L ⊆ Km. For this conductor one can prove that
p|f if and only if p is ramified in L|K and, moreover, p2|f if and only if p is wildly
ramified in L|K, cf. [Fie06, § 2.4, p. 44].

One can therefore possibly find abelian extensions of K with prescribed rami-
fication at certain places by choosing an appropriate modulus, constructing the
corresponding ray class field, and computing suitable subfields of the requested
degree.

2Thanks to Jürgen Klüners for suggesting the application of this method.
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5.3.2 Results up to degree 15
In the algorithm of Bley and Breuning we will have to consider the local situation

M

Nf

Qp

G

where M |Qp is a Galois extension with group G and Nf is the unramified ex-
tension of Qp of degree f = exp(Gab), where f denotes the exponent of the
abelianization Gab of G. Since the local conjecture is known to be valid for
tamely ramified extensions and abelian extensions of Qp, p 6= 2, we will discuss
the performance of the heuristic methods in the following cases:

(a) wildly ramified extensions M of Qp with non-abelian Galois group G,

(b) wildly ramified extensions M of Q2, with abelian Galois group G, and

(c) unramified extensions of Qp of degree f = exp(Gab) in each of the two
situations above.

In all of these cases we restrict to extensions of degree ≤ 15 since for degree 16 we
cannot compute all extensions of Q2. The hypothesis of wild ramification implies
that we only have to consider primes p = 2, 3, 5 and 7. The primes 11 and 13
are not considered because they can only occur (up to degree ≤ 15) in abelian
extensions of degree 11 and 13, which are not considered in the cases above.

The theory does not guarantee the existence of global representations with base
field Q in the case p = 2. But after all, the heuristics also worked in most of
those cases.

Case a

First consider extensions with non-abelian Galois group. For almost all those non-
abelian wildly-ramified local extensions we found polynomials of the appropriate
degree in the database [KM01] generating a global representation. Table 5.1
on page 120 gives an overview of all the global representations that were found
using this database. For each group (using the standard notation as introduced
in Appendix A.1) it contains the number of extensions over Qp (as listed in
the database [JR] or computed by [PR01]) and whether they were represented
globally by a polynomial in the database of Klüners and Malle.

In fact, there were just three D4–extensions of Q2 and three D7–extensions of
Q7 not being represented by any polynomial (of degree 8 or 14 respectively) in
this database.

By [JLY02, Cor. 2.2.8] every D4–extension of Q is the splitting field of a polyno-
mial f(x) = x4− 2stx2 + s2t(t− 1) ∈ Q[x] with suitable s, t ∈ Q. Experimenting
with small integers s and t and computing the splitting field of f quickly provides
global representations for all D4–extensions of Q2.
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Finally, we used class field theory to construct global Galois representations for
the three non-isomorphic D7–extensions of Q7: by taking quadratic extensions
K of Q which are undecomposed at p = 7 and computing all C7–extensions of K
which are subfields of Km, m = 49OK , one finds D7–extensions where p = 7 is
ramified with ramification index 7 or 14 and where p does not decompose. Exper-
imenting with different fields K as above one finds global Galois representations
for all three D7–extensions of Q7.

This completes the construction of global representations for all non-abelian
wildly ramified local extensions of Qp, p = 2, 3, 5, 7, up to degree 15.3

Case b

Using the database [KM01] we can again find polynomials for almost all exten-
sions in question. However, there were also quite a few extensions (of degree 8
and 12) for which the above heuristics did not work (see Table 5.2 on page 120).
However, by Henniart’s result (see Theorem 5.10 or [Hen01]) we only know that
such a representation exists over some field K where K is quadratic over Q.

One can therefore search the database [KM01] for polynomials whose splitting
field is of degree 16 (or 24) and where the prime p = 2 decomposes into two prime
ideals. Then the completion at any prime above 2 will be an extension of degree
8 (or 12 respectively) of Q2.

Using this method, we could find polynomials representing the last C2×C4 ex-
tension and 3 more C8–extensions. But there are still 13 C8 and 4 C12–extensions
for which we did not find a global representation.

However, to obtain a global result up to degree 15 (see Corollary 5.18), one can
use the theoretic results for abelian extensions. Then it is sufficient to consider
abelian extensions over Qp of degree ≤ 7. Indeed, if L|Q is non-abelian of degree
≤ 15 and its completion LP|Qp has abelian Galois group, then [LP : Qp] ≤ 7
since the local Galois group is a proper subgroup of the global Galois group.

Case c

For each of the pairs (L|Q, p) with Galois group G constructed in cases (a) and
(b), Algorithm 5.12 also needs a extension N of Q which is unramified and unde-
composed at p and is of degree f = exp(Gab).

Most of these unramified extensions can be constructed as a subfield of a cy-
clotomic field Q(ζn) generated by an n-th root of unity ζn. The decomposition
of primes in a cyclotomic field is well-known and can easily be computed, see
[Neu92, Chp. I, Thm. (10.3)].

For non-abelian extensions of degree ≤ 15 the maximum degree of N can easily
be determined to be f = 4. Polynomials generating these unramified extensions
are given in Table 5.3 on page 121. For the abelian extensions of Q2 we also have

3Appendix A.1 gives a complete list which also contains all abelian Galois groups.
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n p group #ext. in [KM01] n p group #ext. in [KM01]

6 2 S3 1 X 12 2 D6 3 X

3 S3 6 X Q12 4 X

8 2 D4 18 15 12 3 A4 0

Q8 6 X D6 6 X

10 2 D5 0 Q12 2 X

5 D5 3 X 14 2 D7 0

12 2 A4 1 X 7 D7 3 0

Table 5.1: Non-abelian local Galois extensions of Qp of degree n ≤ 15 with
possible wild ramification.

n group #ext. in [KM01] n group #ext. in [KM01]

2 C2 7 X 8 C3
2 1 X

4 C4 12 X 10 C10 7 X

V4 7 X 12 C12 12 8

6 C6 7 X C3 × V4 11 X

8 C8 24 8 14 C14 7 X

C2 × C4 18 17

Table 5.2: Abelian local Galois extensions of Q2 of degree n ≤ 15 with pos-
sible wild ramification.
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degree polynomial unramified primes

2 x2 + 1 2, 3, 7

x2 + x+ 1 5

3 x3 − 7x2 + 14x− 7 2, 3, 5

x3 − 6x2 + 9x− 3 7

4 x4 + x3 + x2 + x+ 1 2, 3, 7

x4 + 13x2 + 13 5

Table 5.3: Unramified extensions of Qp, p = 2, 3, 5, 7, up to degree 4.

degree polynomial

5 x5 − x4 − 4x3 + 3x2 + 3x− 1

6 x6 − x5 − 7x4 + 2x3 + 7x2 − 2x− 1

7 x7 − x6 − 12x5 + 7x4 + 28x3 − 14x2 − 9x− 1

8 splitting field of x8 − 3x5 − x4 + 3x3 + 1

9 x9 − x8 − 8x7 + 7x6 + 21x5 − 15x4 − 20x3 + 10x2 + 5x− 1

10 x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

11 x11+x10−10x9−9x8+36x7+28x6−56x5−35x4+35x3+15x2−6x−1

12 x12 − x11 − 12x10 + 11x9 + 54x8 − 43x7 − 113x6 + 71x5 + 110x4 −
46x3 − 40x2 + 8x+ 1

12 x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

13 x13−x12−24x11 +19x10 +190x9−116x8−601x7 +246x6 +738x5−
215x4 − 291x3 + 68x2 + 10x− 1

14 x14− x13− 13x12 + 12x11 + 66x10− 55x9− 165x8 + 120x7 + 210x6−
126x5 − 126x4 + 56x3 + 28x2 − 7x− 1

15 x15−x14−22x13+17x12+166x11−102x10−533x9+270x8+729x7−
352x6 − 393x5 + 173x4 + 80x3 − 27x2 − 6x+ 1

Table 5.4: Unramified extensions of Q2 up to degree 14.
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to consider unramified extensions of higher degree. For f 6= 8 these can again
be constructed as subfields of cyclotomic extensions and extensions of relatively
small discriminant can be found be searching [KM01] (see Table 5.4).

Only f = 8 turns out to be a special case: By Wang’s counterexample to
Grunwald’s original statement of his theorem there is no global representation
L|Q for the unramified C8–extension of Q2. But such a representation exists over
some field K where K is quadratic over Q.

We can therefore search the database [KM01] for polynomials whose splitting
field is of degree 16 and where the prime p = 2 decomposes into two prime ideals
which each have cyclic decomposition group. Then the completion at any prime
above 2 will be an unramified extension of degree 8 of Q2. For example the
splitting field of the polynomial x8− 3x5− x4 + 3x3 + 1 satisfies these conditions.
In comparison to the other global representation we found heuristically, it is the
only case (up to degree 15) in which the base field K of the global representation
is not equal to Q.

This completes the construction of unramified extensions needed in all situa-
tions. But in some cases one can also be more specific and construct extensions
N such that the composite field LN has small degree over Q.

Let L be a Galois extension ofQ with groupG and P a prime ideal of L dividing
p and let GP be the decomposition group of P. Then consider the inertia subfield
of L at P, i.e. the fixed field of the inertia subgroup

IP = {σ ∈ GP | σx ≡ x mod P, ∀x ∈ OL}.
The inertia subfield LIP is the maximal subfield of L|Q such that p is unramified.

In some cases one can directly consider N = LIP , and in other cases one can
construct unramified extensions N of LIP with appropriate degree over Q. For
example if LIP has degree 2 over Q and we search for an unramified extensions
N of degree f = 4, then we can use the following embedding result.

Proposition 5.11. A quadratic extension K(
√
a)|K can be embedded into a C4–

extension if and only if a is the sum of two squares in K. The C4–extensions of
K containing K(

√
a) are

(a) K(
√
r(a+ x

√
a) if a = x2 + y2 for x, y ∈ K and

(b) K(
√
r(α+ β

√
a) if a = α2 − aβ2 for α, β ∈ K

with parameter r ∈ K×.

Proof. [JLY02, Thm. 2.2.5]. �

To sum up, using the heuristic methods described above we were able to com-
pute global representations for all non-abelian wildly ramified local extensions of
Qp, p = 2, 3, 5, 7, of degree ≤ 15 and for all abelian extensions of Q2 of degree
≤ 6. These polynomials were used to prove the local epsilon constant conjecture
and can be found in Appendix A.2.
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5.4 Description of the algorithm
The following algorithm to prove the local epsilon constant conjecture for a fixed
number field extension was described by Bley and Breuning in [BlBr08]. We will
recall the algorithm and discuss some details on the implementation. Afterwards
we will present some results which were obtained by computational proofs. But
first we give a brief overview of the algorithm.

For the rest of this section, fix the Galois extensions L|K and N |K and a prime
p of K as in the input of the algorithm. For simplicity, the unique prime ideal
above p in the fields L, N , or any subextension of L|K will also be denoted by p.
If it is necessary to avoid confusion, we will write pK , pL and pN . Furthermore,
we will identify the ideals pL|pK with places w|v of L and K, respectively, such
that Lw = Lp and Kv = Kp.

Algorithm 5.12 (Proof of the local epsilon constant conjecture).
Input: An extension (L,P)|(K, p) with Kp = Qp in which L|K is Galois with

group G and a Galois extension N |K of degree exp(Gab) in which p is unde-
composed and unramified.

Output: True if EPSloc(LP|Qp) was successfully checked.

(Construction of the coefficient field)

1 Compute all characters χ of G and use Brauer induction to find an inte-
ger t such that the Galois Gauss sums can be computed in Q(ζm, ζpt), m =
exp(Gab).

2 Construct the composite field E of L,N and Q(ζm, ζpt) and fix a complex
embedding ι : E ↪→ C and a prime ideal Q of E above p.

(Computation of cohomological term)

3 Compute a suitable lattice L ⊆ OLP
as in Lemma 2.1 and k such that

(POLP
)k ⊆ L , denote LfP := L×P/ exp(L ).

4 Compute an element in Yext2
G(Z, LfP) representing the local fundamental class

using Algorithm 2.18 and Proposition 1.29.

5 Compute the Euler characteristic Ew(L ) ∈ K0(Z[G],Q) as in Example 1.44.

(Computation of the terms in
∏

χE
×)

6 Compute the correction term mLP|Qp = mw∈ Z(Q[G])×⊆ Z(E[G])×'
∏

χE
×

defined in (5.3).

7 Compute the element dLP|Qp ∈ L[G]× ⊆ E[G]× from (5.8), which represents
the equivariant discriminant δLP|Qp(L ) ∈ K0(Z[G], EQ) defined in (5.5).

8 Compute the element uLP|Qp ∈ N [G]× ⊆ E[G]× using (5.9), which represents
the unramified term ULP|Qp ∈ K0(Z[G], EQ).
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9 Use the canonical homomorphism E[G]× → K1(E[G]), the reduced norm
map nr : K1(E[G]) → Z(E[G]) and Wedderburn decomposition of Z(E[G]) to
represent these three terms in

∏
χE

×.

10 Compute the equivariant epsilon constant τLP|Qp ∈
∏

χQ(ζpt , ζm)× ⊆
∏

χE
×

via Galois Gauss sums.

(Computations in relative K-groups)

11 Read Ew(L ) and the tuples from above as elements in K0(Zp[G], EQ).

12 Compute the sum RLP|Qp ∈ K0(Zp[G], EQ) of the resulting elements.

Return: True if RLP|Qp is zero, and false otherwise.

We will discuss each part for the algorithm separately.

Constructing the coefficient field

As explained in [BlBr08, § 4.2.2] we need to construct a global field E, in which
all the computations take place.

For the computation of the unramified term, we will need a cyclic extensions
N |K which is unramified and undecomposed at p.

Another extension involved is Q(ζm, ζpt), where m is the exponent of Gab and
t is computed as in [BlBr08, Rem. 2.7]: By representation theory the field Q(ζm)
contains the values of all characters of G. The root of unity ζpt is used to represent
Galois Gauss sums and the integer t is determined as follows.

For each character χ of G one computes subgroups H, linear characters φ of
H, and coefficients c(H,φ) ∈ Z such that χ− χ(1)1G =

∑
(H,φ) c(H,φ)indGH(φ− 1H).

Such a relation exists by Brauer’s induction theorem, cf. [BlBr08, § 2.5]. If f(φ)
denotes the Artin conductor of φ and e the ramification index of (LH)p|Qp, then
t must satisfy t ≥ vp(f(φ))/e for all pairs (H,φ) and all χ. Below, this choice of
t allows us to compute the epsilon constants as elements of Q(ζm, ζpt), see also
[BlBr08, Rem. 2.7].

The composite field of the three fields L,N and Q(ζm, ζpt) is denoted by E,
giving the following situation:

E

Q(ζm, ζpt) L N

Q

(5.7)

We then fix a complex embedding ι : E ↪→ C. Since E contains the roots of unity
ζm, the center Z(E[G]) decomposes into Z(E[G]) =

∏
χ∈IrrC(G)E.
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The fixed embedding ι is essential because some of the elements in the conjec-
ture depend on the particular choice of the embedding: for example, the defini-
tion of the standard additive character below, see also [BlBr08, § 2.5]. So once
we compute an algebraic element representing this value, we have to maintain its
embedding into C. Since we still try to avoid computations in such a big field E,
this implies the following: whenever we do calculations in a subfield F ⊆ E, we
have to choose embeddings ι1 : F ↪→ C and ι2 : F ↪→ E such that the diagram

E C

F

ι

ι2 ι1

is commutative, i.e. ι1 = ι|F .
We also fix a prime ideal Q of E above p and an embedding E ↪→ EQ such

that E ↪→ EQ ↪→ Cp and E
ι
↪→ C ↪→ Cp commute. Then all the invariants

appearing in the conjecture lie in the subgroup K0(Zp[G], EQ) of K0(Zp[G],Cp)
and by Remark 1.39 they can therefore be represented by tuples in Z(EQ[G]) '∏

χ∈Irr(G)E
×
Q. In fact, we will see that all these elements are also represented by

elements in
∏

χ∈Irr(G)E
× and can be computed globally.

Computation of cohomological term

By Lemma 2.1, the lattice L = Z[G]θ ⊆ OL is computed using a normal basis
element θ (see also [BlBr08, § 4.2.3]). The integer k for which pk ⊆ L can then
be found experimentally by global computations.

We compute a cocycle γ ∈ Z2(G,L×w/U
(k)
Lw

) representing the local fundamental
class up to precision k using Algorithm 2.18 and its projection in Ĥ2(G,Lfw) '
Ĥ2(G,L×w). By Proposition 1.29 we can construct the corresponding complex
Pw =

[
Lfw(γ) → Z[G]

]
using the splitting module Lfw(γ) from [NSW00, Chp. III,

§ 1, p. 115]. Then the Euler characteristic Ew(Lw) = χ̄G(Pw, v
−1
Lw

) ∈ K0(Z[G],Q)
can be computed using the explicit construction from [BlBr08, § 4.2.4] as de-
scribed in Example 1.44(b).

Computation of the terms in
∏

χE
×

The correction term mw is directly defined as tuple in
∏

χE
× by (5.3). For the

equivariant discriminant and the unramified term we have the following formulas
from [BlBr08, §§ 4.2.5 and 4.2.7]:

dLw|Qp =
∑
σ∈G

σ(θ)σ−1 ∈ L[G]× ⊆ E[G]×, (5.8)

uLw|Qp =
s−1∑
i=0

ϕip(ξ)σ
−i ∈ N [G]× ⊆ E[G]×. (5.9)
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Hereby, ϕp denotes the Frobenius automorphism of N |K with respect to p,
ξ ∈ ON is an integral normal basis element for Np|Kp, and σ is a lift of the
local norm residue symbol (p, Fp|Kp) ∈ Gal(Fp|Kp) ' Gal(F |K) where F is the
maximal abelian subextension in L|K. An algorithm to compute local norm
residue symbols is described in [AK00, Alg. 3.1].

These group ring elements provide elements in K1(Cp[G]) through the ho-
momorphism E[G]× → K1(Cp[G]) by E[G] ⊆ EQ[G] ⊆ Cp[G]. The element
uLw|Qp ∈ N [G] represents the unramified term by definition ([Bre04b, Prop. 2.12])
and dLw|Qp ∈ L[G] represents the equivariant discriminant through the surjective
homomorphism ∂1 : K1(Cp[G]) → K0(Zp[G],Cp[G]) by [BlBr08, § 4.2.5].

Using the reduced norm map nr : K1(E[G]) ↪→ Z(E[G])× one obtains elements
in Z(E[G])× and by the Wedderburn decomposition Z(E[G])× '

∏
χE

× the equiv-
ariant discriminant and the unramified term are finally represented by tuples in∏

χ∈Irr(G)E
× ⊂

∏
χ∈Irr(G)E

×
Q.

The equivariant epsilon constant τLp|Qp is computed in
∏

χE
× by local Galois

Gauss sums as follows, cf. [BlBr08, § 2.5].
For each χ, we already computed subgroups H of G, linear characters φ of H,

and coefficients c(H,φ) ∈ Z such that χ − χ(1)1G =
∑

(H,φ) c(H,φ)indGH(φ− 1H) by
Brauer induction. Then the Galois Gauss sum of χ can be computed by Galois
Gauss sums of abelian extensions Lker(φ)|LH :

τ(Lp|Qp, χ) =
∏

(H,φ)

τ
(
(Lker(φ))p|(LH)p, φ

)c(H,φ) ∈ Q(ζm, ζpt) ⊆ E×.

For localizations of the abelian extension M = Lker(φ) over N = LH , Galois Gauss
sums are given by the formula

τ(Mp|Np, φ) =
∑
x

φ
((x

c
,Mp|Np

))
ψNp

(x
c

)
∈ Q(ζm, ζpt) ⊆ E×

where x runs through a system of representatives of O×
Np
/U

(s)
Np

' (ON/p
s)×, s

is the valuation vp(f(φ)) of the Artin conductor f(φ) of φ, c ∈ N generates the
ideal f(φ)DNp , DNp denotes the different of the extension Np|Qp, and ψNp is the
standard additive character of Np.

The above formulas allow the construction of the equivariant epsilon constant
as tuple τLp|Qp =

(
τ(Lp|Qp, χ)

)
χ
∈
∏

χE
×. For details see [BlBr08, § 2.5].

Computations in relative K-groups

In the following we have to combine the computations from the previous steps to
find RLp|Qp and show that its sum represents zero in K0(Zp[G], EQ). In [BW09]
Bley and Wilson describe the relative K-group as an abstract group. Using their
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methods it will be clear how to read elements of the form ∂̂1
Gw,Qp

(x) for x ∈
∏

χE
×

and triples [A, θ,B] in the group K0(Zp[G], EQ).
We recall the description from [BW09] for group rings and — since their al-

gorithms are not yet implemented in full generality — we will discuss a simple
modification for extensions F of Q which are totally split at a given prime p.

First we introduce some more notation: Let K be a number field and G a
finite group. The Wedderburn decomposition of K[G] gives a decomposition of
its center C := Z(K[G]) into character fields Ki such that C =

⊕r
i=1Ki. Each

character field Ki corresponds to an irreducible character χi ∈ IrrK(G) and Ki is
the field K(χi) which is obtained from K by adjoining the values of χi.

Choose a maximal OK-order M of K[G] containing OK [G] and a two-sided
ideal f of M which is included in OK [G] (e.g. f = |G|M) and define g := OC ∩ f.
Then the decomposition of C similarly splits M into

⊕r
i=1Mi and the ideals f

and g into ideals fi of Mi and gi of OKi
. For a prime p in OK , we further write

Cp for the localization Cp = Kp⊗Q C =
⊕r

i=1Kp⊗Q Ki =
⊕r

i=1

⊕
P|p(Ki)P, and

ai,p for the part of an ideal ai of OKi
above p.

The reduced norm map induces a homomorphism µp : K1(OKp [G]/fp) →⊕r
i=1(OKi

/gi,p)
× whose cokernel is used in the description of the relative K-group

K0(OKp [G], Kp).
Then the main result of Bley and Wilson is the following.

Proposition 5.13. There are isomorphisms

K0(OKp [G], Kp)
n̄−→ C×

p / nr(OKp [G]×)
ϕ̄−→ I(Cp)× coker(µp),

n̄ being a natural isomorphism and ϕ̄ being induced by

ϕ : C×
p =

r⊕
i=1

(Ki)p −→ I(Cp)×
r⊕
i=1

(OKi
/gi,p)

×

(ν1, . . . , νr) 7−→
((∏

P PvP(νi)
)
i
, (µ̄1, . . . , µ̄r)

)
,

(5.10)

where µi := νi
∏

P π
−vP(νi)
i,P and πi,P ∈ OKi

are uniformizing elements having
valuation 1 at P and which are congruent to 1 modulo gP′ for all other primes
P′ above p in Ki|K.

Proof. [BW09, Prop. 2.7]. �

Bley and Wilson describe an algorithm to compute the group I(Cp)×coker(µp)
From the definition of ϕ, it is clear how a tuple ν = (νi)i of elements with
values νi ∈ Ki represents an element in this group. Furthermore, for every
triple [A, θ,B] ∈ K0(OK [G], K) with projective OK [G]-modules A and B and
θ : AK

'−→ BK , one can compute a representative of [Ap, θp, Bp] in this group
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as follows. As discussed in Remark 1.39 every element [Ap, θp, Bp] is represented
by an element in K1(Kp[G]) by choosing OKp [G]-bases of Ap and Bp and com-
puting a matrix in Gln(Kp[G]) which represents the isomorphism θp with respect
to this basis. From the reduced norm map nr : K1(Kp[G])

'−→ Z(Kp[G]) one
then obtains a representative in C×

p and applying ϕ̄ finally provides the element
in I(Cp) × coker(µp) which corresponds to [Ap, θp, Bp]. For details we refer to
[BW09, § 4].

In theory, this solves the remaining problems for Algorithm 5.12. But in prac-
tice, this has only been implemented in Magma for K = Q and p = pZ. In our
case, however, we have to work with the decomposition field F ⊆ E of Q. This
field F is a global extension of Q which is totally split at p. Then for any prime
q|p we obviously have Fq = Qp and K0(Zp[G], Fq) ' K0(Zp[G],Qp). If F satisfies
certain conditions, this isomorphism of relative K-groups is canonically given by
isomorphisms on the ideal part I(Cp) and the cokernel part coker(µp).

Proposition 5.14. Let F |Q be a number field which is totally split at p and for
which F ∩Ki = K = Q for all i. Let q be a fixed prime ideal of F above p. Then
the following holds:

(i) The center C ′ = Z(F [G]) splits into character fields Fi = FKi.

(ii) For every ideal P of Ki there is exactly one prime ideal Q in Fi lying above
P and q.

(iii) There are canonical isomorphisms

I(Cp) ' I(C ′
q) and

r⊕
i=1

(OKi
/gi,p)

× '
r⊕
i=1

(OFi
/hi,q)

×

where h := OC′ ∩ f.

Proof. (i) The character fields Ki arise from K = Q by adjoining the values of
a specific character in IrrQ(G). Since F and Ki are disjoint over Q, one has the
same irreducible characters over F : IrrQ(G) = IrrF (G). The character fields Fi
then arise by adjoining the same character values and Fi = FKi.

(ii) If Q′ is any prime ideal in Fi above p and P′ = Q′ ∩Ki, q′ = Q′ ∩ F , then
the automorphisms τ and σ for which τ(P′) = P and σ(q′) = q define an element
ρ = σ × τ in the Galois group of Fi|Q and Q = ρ(Q′) is a prime ideal which lies
above both P and q. The uniqueness of Q follows from degree arguments.

(iii) Let P be a prime ideal of Ki and Q the prime ideal of Fi which lies above
q and P. Then the valuation vQ of Fi extends the valuation vP of Ki and if we
identify each pair (P,Q), we get an isomorphism

I(Cp) =
r∏
i=1

∏
P|p

PZ '
r∏
i=1

∏
Q|q

QZ = I(C ′
q).
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Since P ⊂ Ki is totally split in Fi we have isomorphisms OKi
/P ' OFi

/Q.
Moreover, the q-part of h is given by the part of gOC′ lying above q. The inclusions
OKi

⊆ OFi
therefore induce isomorphisms (OKi

/gi,p)
× ' (OFi

/hi,q)
×. �

Remarks 5.15. 1. As mentioned before, the algorithms from [BW09] to compute
K0(Zp[G], Fq) are just implemented for F = Q. The extension to F |Q described
above will work if F is totally split at p and F ∩ Q(χ) = Q for all characters χ.
The first condition is always true since we want to work with the decomposition
field F ⊆ E of Q, and the latter condition is valid in all cases we consider in the
computational results below.

2. The computation of the prime ideal Q in E is a though job when the degree
of E gets large. In the last part of Algorithm 5.12 we will therefore proceed as
follows.

Let I := τLw|QpuLw|Qp/(mwdLw|Qp) ∈
∏

χE
× be the element combining all the

invariants except the cohomological term. Then RLw|Kv = ∂̂1
Gw,EQ

(I) +Ew(Lw)p.
Since RLw|Kv and Ew(Lw)p are both elements of K0(Zp[G],Qp), the element
∂̂1
Gw,EQ

(I) is also in K0(Zp[G],Qp). Hence, I ∈ Z(Qp[G])× and each compo-
nent Iχ ∈ Qp(ζm), m = exp(G). Since each component Iχ is determined by a
global element in E, we have Iχ ∈ F ′ := Qp(ζm) ∩ E. Here, the intersection is
taken in the fixed completion of the algebraic closure Cp of EQ. We therefore
obtain I ∈ Z(F ′[G])× '

∏
χ(F

′)× and if F = EGQ denotes the decomposition
field of Q, then F ′ = F (ζm).

As mentioned above, we want to omit the computation of Q. So instead of
working with E, we would like to work with a small subfield of E. The field
F ′ = F (ζm) would be a good choice but this still involves the computation of the
decomposition field of Q and hence also the computation of Q itself.

Instead we continue as follows: for every χ we compute the minimal polynomial
mχ of Iχ. Then we compute the composite field F ′ of the splitting fields of the
polynomials mχ with Q(ζm). Although the computation of the splitting fields is
also a difficult task, we note that these fields will always be subfields of E and
where this approach could take hours, the computation of Q did not succeed in
several days.

In the end, F ′ is the composite field such that Iχ, ζm ∈ F ′. Compute the ideal q′

of F ′ above p, denote the decomposition field of q′ by F , and compute q = OF ∩q′.
Then it follows from above that Iχ ∈ F (ζm) and I = τLw|QpuLw|Qp/(mwdLw|Qp) ∈∏

χ F (ζm)×.
Note that all computations were independent of the choice of the prime ideal

Q above p because all invariants were actually computed globally. The proof of
the conjecture will therefore also be independent of the choice of q′.
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5.5 Computational results

Algorithm 5.12 has been implemented in Magma [BCP97], see Appendix B.4,
and has been tested for various extensions up to degree 20. The computation
time especially depends on the degree of the composite field E.

The most complicated number field for which we proved the local epsilon con-
stant conjecture was an extension of degree 10 of Q5 with Galois group D5. The
composite field E then had degree 200 over Q. The computation of the epsilon
constants, which needs an embeddings E ↪→ C, already took about 7 hours, but
the most time-consuming part (about 6.5 days) of Algorithm 5.12 was the compu-
tation of minimal polynomials and their splitting field mentioned in Remark 5.15.
The field F ′ then just had degree 4 over Q making the remaining computations
very fast. The total time needed to prove the local conjecture in this case was
about 7 days.

Using the global representations obtained in Section 5.3 we can prove the fol-
lowing algorithmic result.

Theorem 5.16. The local epsilon constant conjecture is valid for all wildly ram-
ified, non-abelian Galois extensions M |Qp with degree [M : Qp] ≤ 15 and for all
abelian extensions M |Q2 with [M : Qp] ≤ 6.

Proof. Since the local conjecture is valid for abelian extensions of Qp, p 6= 2,
the only primes to consider are p = 2, 3, 5, 7. All local extensions for these
primes of degree ≤ 15 that are either non-abelian, or abelian with p = 2 have
been considered in Section 5.3.2 and global representations have been found by
using the heuristics described in Section 5.3.1. Also global representations for the
corresponding unramified extensions — which are of degree at most 6 — could
be found using the database [KM01].

For each of those extensions we then continued with Algorithm 5.12 to prove the
local epsilon constant conjecture computationally.4 This completes the proof. �

Corollary 5.17. The local epsilon constant conjecture is valid for all Galois ex-
tensions

(a) M |Qp, p 6= 2 of degree [M : Qp] ≤ 15,

(b) M |Q2 non-abelian and of degree [M : Qp] ≤ 15,

(c) M |Q2 of degree [M : Qp] ≤ 7.

4A list of polynomials generating the global representations and a few details on each compu-
tational proof is given in Appendix A.2.
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Proof. The cases not considered in the theorem above are extensions of Qp, p 6= 2
which are either tamely ramified or have abelian Galois group, and extensions of
Q2 which are tamely ramified. These cases have already been proved before (see
page 114). Note that for degree 7 there is just one extension of Q2 which is also
tamely ramified. �

Combining Algorithm 5.12 with the local-global principle (Theorem 5.6) the
functorial properties (Proposition 5.7) and known results for tame extensions and
abelian extensions, we obtain an algorithm to prove the global epsilon constant
conjecture for number field extensions L|Q up to a finite degree as described on
page 114. Then the above results for the local epsilon constant conjecture imply
the following result for global fields.

Corollary 5.18. The global epsilon constant conjecture is valid for all Galois
extensions L of Q with degree [L : Q] ≤ 15.

Proof. If L|Q is abelian, the global conjecture is already known to be valid. For
the non-abelian case, we recall that by Theorem 5.6 conjecture EPS(L|Q) is valid
if EPSloc(Lw|Qp) is valid for all primes p and places w|p. If L|Q is non-abelian of
degree ≤ 15, the local extension Lw|Qp is either non-abelian of degree at most 15
or abelian of degree at most 7. Therefore the result follows from Corollary 5.17.�

The projection onto the class group also proves Chinburg’s conjecture.

Corollary 5.19. Chinburg’s Ω(2)-conjecture from [Chi85, Question 3.1] is valid
for all Galois extensions L of Q with degree [L : Q] ≤ 15.

Moreover, the functorial properties for global epsilon constant conjectures state
that the conjecture for L|K implies the conjecture for E|F in a tower L|E|F |K
of number field extensions in which L|K and E|F are Galois. This proves the
following result.

Corollary 5.20. The global epsilon constant conjecture and Chinburg’s Ω(2)-
conjecture are valid for Galois extensions E|F of number fields for which E is
contained in a Galois extension L|Q with [L : Q] ≤ 15.





6 The equivariant Tamagawa number
conjecture at s = 1

The equivariant Tamagawa number conjecture for a Galois extension L|K of
number fields with group G relates the leading term of the equivariant Artin
L-function to algebraic invariants of the extension L|K. There are two instances
of this conjecture, denoted by ETNC(L|K, 0) and ETNC(L|K, 1), which consider
the leading coefficient at s = 0 and s = 1, respectively.

The conjecture at s = 0 relates the leading term ζ∗L|K,S(0) for a finite set of
places S to an invariant which is constructed from a Tate sequence for L|K. An
algorithm which verifies this conjecture up to the precision of the computation
and which also gives a proof in special cases was discussed by Janssen in [Jan10].

The conjecture at s = 1 relates the value ζ∗L|K,S(1) for a finite set of places S
to invariants based on the global fundamental class uL|K ∈ Ĥ2(G,CL). Although
the validity of ETNC(L|K, 0) and the compatibility conjecture ETNCloc(L|K, 1)
discussed in the previous chapter imply the conjecture ETNC(L|K, 1), the lat-
ter conjecture is still of interest because the algorithm in [Jan10] was just im-
plemented using the construction of Tate’s canonical class in the special case
described in Section 4.5, which assumes the existence of a place of K which is
undecomposed in L. For the general case one can construct the Tate sequence
using Algorithm 4.12. But that algorithm depends on the construction of the
global fundamental class, and it makes therefore sense to consider ETNC(L|K, 1)
directly.

In this chapter, we recall the statement of the equivariant Tamagawa number
conjecture at s = 1 for number fields as it is given in [BrB07, § 3] and develop an
algorithm which verifies ETNC(L|K, 1) numerically.

Let L|K be a fixed Galois extension of number fields with group G. As usual,
we denote a finite, Galois-invariant set of places in L by S. The places of K below
the places of S will again be denoted by S, but we avoid confusion by denoting
places in L by w and those in K by v:

L w

K v

G

Again, for every place v we will choose a fixed place w ∈ S dividing v. In other
words, we fix a set S(G) of representatives of the G-orbits in S.
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6.1 Statement of the conjecture
The analytic part of the conjecture will be given by the leading term ζ∗L|K,S(1)

of the equivariant S-truncated Artin L-function ζL|K,S(s) in the Laurent series
expansion at s = 1. See Section 1.5 for a definition of ζL|K,S(s). To define the
algebraic part, we again have to make some choices and have to introduce more
notation.

Let S be a finite set of places of L containing the infinite places, all places which
ramify in L|K and let S be such that the S-ideal class group ClS(L) is trivial. For
each w ∈ S(G) and w|v we choose a full projective sublattice Lw ⊆ OLw upon
which the exponential map is defined and, as for epsilon constant conjectures, we
define the lattice L ⊆ OL by its p-adic completions

Lp =
∏
v|p

Lw ⊗Zp[Gw] Zp[G] ⊆ Lp := L⊗Q Qp,

where w is the fixed place above v.
Furthermore, we consider the G-modules LS =

∏
v∈S Lv =

∏
w∈S(G) indGGw

Lw

and LS =
∏

w∈S(G) indGGw
Lw =

∏
w∈S(G) Lw⊗Zp[Gw] Zp[G] where Lw = Lw for all

infinite places w. The diagonal embedding of L into LS will be denoted by ∆S,
and expS : LS → L×S is the (p-adic, real or complex) exponential map on each
component.1

We will also consider restrictions to finite or infinite places: we set Lf =∏
v∈Sf

Lv, Lf =
∏

v∈Sf
Lv, L∞ =

∏
v∈S∞ Lv, and use the maps ∆∞ : L → L∞

and exp∞ : L∞ → L×∞.
As in Chapter 3 the S-idèle class group will be denoted by CS(L). It was

defined as the quotient of the idèle group IL by UL,S =
∏

v∈S{1} ×
∏

v/∈S O
×
Lv
⊆

IL. Let ES =
[
A → B

]
be a complex representing the global fundamental

class in Yext2
G(Z, CS(L)) ' Ĥ2(G,CS(L)) with A and B cohomologically trivial

Z[G]-modules. It is a complex which is trivial outside degrees 0 and 1 and has
cohomology groups H0(ES) = CS(L) and H1(ES) = Z.

Moreover, consider the complex
[
LS

0→ L
]

with LS in degree 0 and a chain
map α :

[
LS

0→ L
]
→ ES given by LS

expS−−−→ L×S → CS(L) ⊆ A in degree 0 and
a lift tr′ of trL|Q : L → Z in degree 1 via the surjection B � Z. These maps can
be summarized in the following commutative diagram:

0 LS LS L L 0

0 CS(L) A B Z 0

id 0 id

⊆
expS tr′ trL|Q (6.1)

Then the algebraic part of the conjecture will depend on the cone ES(L ) of α.
1Note that the units L×S where denoted by IL,S in Chapters 3 and 4.
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It is the complex ES(L ) =
[
LS

exp−−−→ A⊕L −→ B
]

with LS in degree −1 and
where the differential in degree zero is the sum of the maps A→ B and tr′.

To describe the cohomology of ES(L ) = cone(α), we introduce the following
notations: consider the map

tr∞ : L∞ → R
(lw)w∈S∞ 7→

∑
w∈S∞ trLw|R(lw)

and denote the kernels of the trace maps by L0
∞ := ker(tr∞) and L0 := ker(trL|Q).

Then one has an exact commutative diagram of R[G]-modules

0 L0 ⊗Q R L⊗Q R R 0

0 L0
∞ L∞ R 0

⊆ trL|Q ⊗QR

⊆ tr∞

µL µ′L

where µL is the restriction of the canonical isomorphism

µ′L : L⊗Q R→ L∞

l ⊗ x 7→ (σw(l)x)w∈S∞

given by embeddings σw : L→ Lw for all infinite places w.

Remark 6.1. Let r1 and r2 denote the number of real and pairs of complex
embeddings. Then we can also identify L∞ with{

(xi) ∈ Rr1 × C2r2 | xr1+j = xr1+r2+j, 1 ≤ j ≤ r2
}
⊆ Cr1+2r2 .

We also denote the corresponding real embeddings by σ1, . . . , σr1 and the complex
pairs by σr1+j, σr1+j = σr1+r2+j for 1 ≤ j ≤ r2.

Finally, for any subset X ⊆ L×∞ we let log∞(X) = {x ∈ L∞ |exp∞(x) ∈ X} de-
note the full preimage of X in L∞ through exp∞. And for U⊆O×

L it is defined by

log∞(U) = {x ∈ L∞ | exp∞(x) ∈ ∆∞(U)} ⊆ L∞

which is equal to log∞(∆∞(U)).

Remark 6.2. The subgroup of totally positive units in O×
L , denoted by O+

L , has
finite Z-index in O×

L . Let U be a full lattice in O+
L . Then the homomorphism

exp∞ : log∞(U) → ∆∞(U) is surjective (on every component) and we obtain an
exact sequence

0 −→ Γ1 −→ log∞(U)
exp∞−−−→ ∆∞(U) −→ 0

which is also given in [Tat84, Chp. I, § 8]. The kernel Γ1 corresponds to the kernel
of the exponential function for complex places in L∞:

Γ1 =
∏

w∈S(R)

0×
∏

w∈S(C)

2πiZ ⊂ L∞.



136 6 The equivariant Tamagawa number conjecture at s = 1

Using the identification of the remark above, the elements of (xσ) ∈ Γ1 are zero
at real places, and for complex embeddings σ one has xσ = xσ̄ ∈ 2πiZ.

By Dirichlet’s unit theorem, the group U has rank r + s − 1 and therefore
log∞(U) has rank r + 2s − 1. If U = 〈ε1, . . . , εt〉Z, then the group log∞(U) is a
lattice in L∞ which is generated by the elements(

log σk(εj)
)
k=1...n

1 ≤ j ≤ t,(
2πi(δjk − δ(j+r2)k)

)
k=1...n

r1 + 1 ≤ j ≤ r1 + r2

with δjk = 1 for j = k and δij = 0 otherwise.

Lemma 6.3. The set log∞(O×
L ) ⊆ L∞ is a full lattice in L0

∞.

Proof. Let r1 denote the number of real embeddings of L, r2 the number of pairs
of complex embeddings, and let τ run through r1 + r2 embeddings L ↪→ C by
choosing one of each complex pair. By the proof of Dirichlet’s unit theorem
[Neu92, Chp. I, § 5] there is a commutative diagram

L×
∏

τ R

Q× R

l ◦∆∞

x 7→ log |x|

NL|Q Tr

in which Tr is the map which adds all components, and l denotes the map (xτ )τ 7→
(λτ log |xτ |)τ with λτ = 1 for real and λτ = 2 for complex embeddings τ . The
commutativity shows that log∞(O×

L ) ⊆ L0
∞.

Then the remark above and the fact that O+
L has finite index in O×

L imply that
log∞(O×

L ) is a lattice of rank r1 + 2r2 − 1 and therefore a full lattice in L0
∞. �

Recall that for a perfect complex P and a trivialization t : H+(P )R → H−(P )R,
the Euler characteristic in K0(Z[G],R) introduced in Section 1.4.2 was denoted
by χG(P, t).

Proposition 6.4. The complex ES(L ) has the following properties:

(a) It is a perfect complex of Z[G]-modules.

(b) The complex ES(L )⊗Q is acyclic outside degrees −1 and 0 and has coho-
mology H−1(ES(L ))⊗Q ' log∞(O×

L )⊗Q and H0(ES(L ))⊗Q ' L0.

(c) The canonical isomorphism log∞(O×
L ) ⊗ R ' L0

∞ induces a trivialization
µL of ES(L ) and the Euler characteristic χG(ES(L ), µL) depends only on
L|K and S.

Proof. [BrB07, Lem. 3.1]. �
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The explicit construction of the cohomology groups and the canonical trivializa-
tion obtained from the proof will be considered in detail in Section 6.2 below. For
now we use the Euler characteristic to define the element

TΩ(L|K, 1) := ∂̂1
G

(
ζ∗L|K,S(1)

)
+ χG(ES(L ), µL) ∈ K0(Z[G],R).

which can be proved to depend only upon the extension L|K, cf. [BrB07, Prop. 3.4].

Conjecture 6.5. For any Galois extension L|K of number fields the element
TΩ(L|K, 1) is zero in K0(Z[G],R).

We will denote this conjecture by ETNC(L|K, 1). It implies conjectures of
Stark and Chinburg as follows.

Proposition 6.6. (a) TΩ(L|K, 1) ∈ K0(Z[G],Q) if and only if the Stark con-
jecture at s = 1 from [Tat84, Chp. I, Conj. 8.2] is valid for L|K.

(b) TΩ(L|K, 1) ∈ ker
(
∂0
G : K0(Z[G],R) → K0(Z[G])

)
if and only if Chinburg’s

Ω1-conjecture stated in [Chi85, Question 3.2] is valid for L|K (see also
[CCFT91, § 4.2, Conj. 3]).

Proof. [BrB07, Prop. 3.6]. �

The fact that TΩ(L|K, 1) lies in the subgroup K0(Z[G],Q) of K0(Z[G],R) can
be regarded as an independent conjecture, called the rationality conjecture. By
the above proposition the rationality conjecture is equivalent to Stark’s conjecture.
As in Proposition 5.7 we have the following functorial properties:

Proposition 6.7. For a Galois extension L|K of number fields with intermediate
field F |K:

(i) ETNC(L|K, 1) ⇒ ETNC(L|F, 1), and

(ii) ETNC(L|K, 1) ⇒ ETNC(F |K, 1) if F |K is Galois.

Proof. [BrB07, Prop. 3.5]. �

We now want to consider this conjecture computationally. However, we cannot
construct the complex ES(L ) itself since it does not consist of finitely generated
modules. Being a perfect complex, we know that ES(L ) is quasi-isomorphic
to a bounded complex P of finitely generated, projective modules. There are
constructive methods (e.g. see Proposition 1.38) to find such a complex, but it
is not clear how to apply them explicitly since the modules in ES(L ) are not
finitely generated.

In the following sections we use the finite approximation of the idèle class
group from Section 3.1 to compute such a complex P and this will also provide
an explicit construction of the Euler characteristic χG(ES(L ), µL).
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6.2 Cohomology of ES(L )

We investigate the proof of Proposition 6.4 from [BrB07, Lem. 3.1] to compute
the cohomology of ES(L ) explicitly. The cohomology groups of the distinguished
triangle

[
LS

0−→ L
]
→ ES → ES(L ) give rise to a long exact sequence of

cohomology groups

0 −→ H−1(ES(L )) −→ LS
expS−−−→ CS(L) −→

H0(ES(L )) −→ L
trL|Q−−−→ Z −→ H1(ES(L )) −→ 0.

(6.2)

from which one can compute the cohomology.
Therefore H1(ES(L )) = Z/ trL|Q(L ), H−1(ES(L )) = ker(LS → CS(L)), and

in degree zero there is a short exact sequence

0 −→ coker
(
LS → CS(L)

)
−→ H0(ES(L )) −→ ker(trL|Q) −→ 0.

Since the kernel and cokernel of the trace map can be computed explicitly, it
remains to investigate the kernel and cokernel of the map LS → CS(L) which is
the composite of expS : LS → L×S and L×S � CS(L).

Lemma 6.8. If we set U :=
{
ε ∈ O×

L | σw(ε) ∈ expw(Lw) ∀w ∈ S
}

, then the
kernel of LS → CS(L) is isomorphic to

log∞(U) = {x = (xw) ∈ L∞ | exp∞(x) ∈ ∆∞(U)}

and its cokernel is the finite module L×S / expS(LS) ·∆S(UL,S).

Proof. (i) The kernel of expS(LS) → CS(L) consists of elements in expS(LS)
which are also in the kernel ∆S(UL,S) of L×S � CS(L). Therefore:

ker
(
expS(LS) → CS(L)

)
= ∆S(UL,S) ∩ expS(LS)

= {∆S(ε) | ε ∈ UL,S s.th. σw(ε) ∈ expw(Lw) ∀w ∈ S}

In the latter set, w(ε) = 0 for all w ∈ Sf since σw(ε) ∈ expw(Lw). This implies
ε ∈ O×

L and hence ker
(
expS(LS) → CS(L)

)
⊆ ∆S(U). Since every element in

∆S(O×
L ) is zero in CS(L), one has ker

(
expS(LS) → CS(L)

)
= ∆S(U). Then the

kernel of the composite map is {x ∈ LS | expS(x) ∈ ∆S(U)}. The projection to
log∞(U) provides a map

ψ : {x ∈ LS | expS(x) ∈ ∆S(U)} → {x ∈ L∞ | exp∞(x) ∈ ∆∞(U)} = log∞(U)(
(xw)w|∞, (yw)w-∞

)
7→
(
(xw)w|∞

)
.

Since the exponential function expw for finite w ∈ Sf is injective on Lw, the
map ψ is an isomorphism: If xw = 0 for all w|∞, then there exists ε ∈ U with
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1 = expw(xw) = σw(ε) for w|∞. Hence, ε = 1 and exp(yw) = σw(ε) = 1 which
implies yw = 0 for all w - ∞. This proves injectivity of ψ. If (xw) ∈ log∞(U)
is given with expw(xw) = σw(ε) for ε ∈ U , then by definition of U there exist
yw ∈ Lw with σw(ε) = expw(yw) for all w - ∞. Therefore, (xw) has a preimage
and ψ is surjective. In summary, the projection ψ is an isomorphism and the
kernel of L → CS(L) is isomorphic to log∞(U).

(ii) By the conditions on S, Lemma 3.1 implies that there is an isomorphism
CS(L) ' CL,S = L×S /∆(UL,S). Hence, the cokernel of L → CS(L) is isomorphic
to L×S / expS(LS) ·∆S(UL,S). The quotient L×S / expS(LS) is

L×S / expS(LS) =
∏
w∈Sf

L×w/ expw(Lw)×
∏

w∈S(R)

R×/R>0 ×
∏

w∈S(C)

C×/C×.

and therefore the projection onto L×S / expS(LS) ·∆S(UL,S) will be finite. �

6.3 Finite approximation of ES(L )

The explicit construction of the Euler characteristic from Section 1.4.2 cannot be
applied to the complex ES(L ) directly since it does not consist of finitely gen-
erated modules. Therefore, we construct a complex Ef

S(L ) of finitely generated
modules which will be quasi-isomorphic to ES(L ). The construction of Ef

S(L )
is based on the construction of the global fundamental class from Chapter 3.

Recall that we used an approximation of Chinburg [Chi85] to the S-idèle class
group CS(L) in the computation of the global fundamental class. It was obtained
as follows.

In a first step we considered the module CL,S which was isomorphic to CS(L) if
S satisfied the conditions (S1)–(S4) from page 70. Then we defined the following
modules in Section 3.1 using the finitely generated modules Ww ⊆ L×w for infinite
places w ∈ S∞(G), and lattices expw(Lw) ⊆ O×

Lw
for finite places w ∈ Sf (G):

IqL,S =
∏

w∈Sf (G)

indGGw
L×w/ expw(Lw)×

∏
w∈S∞(G)

indGGw
L×w , Cq

L,S = IqL,S/UL,S,

IfL,S =
∏

w∈Sf (G)

indGGw
L×w/ expw(Lw)×

∏
w∈S∞(G)

indGGw
Ww, Cf

L,S = IfL,S/UL,S.

The modules IfL,S and Cf
L,S were both constructed to be finitely generated and

we obtained the diagram

IL,S IqL,S IfL,S

CL,S Cq
L,S Cf

L,S

(6.3)

in which the horizontal arrows induce isomorphisms in cohomology, see (3.9).
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From the isomorphism Ĥ2(G,M) ' Ext2
G(Z,M) for any G-module M , we

then have isomorphisms Ext2
G(Z, CL,S) ' Ext2

G(Z, Cq
L,S) ' Ext2

G(Z, Cf
L,S) and

similarly for the Yoneda groups. Assume that the complexes ES =
[
A → Z[G]

]
and Ef

S =
[
Af → Z[G]

]
with cohomologically trivial Z[G]-modules Af and A rep-

resent the global fundamental class in Yext2
G(Z, CL,S) and Yext2

G(Z, Cf
L,S). The

isomorphisms with Yext2
G(Z, Cq

L,S) are applied by constructing the pushout se-
quences with CL,S � Cq

L,S and Cf
L,S ↪→ Cq

L,S. One then obtains commutative
diagrams

0 CL,S A Z[G] Z 0

0 Cq
L,S Aq Z[G] Z 0

(6.4)

and
0 Cf

L,S Af Z[G] Z 0

0 Cq
L,S Ãq Z[G] Z 0

(6.5)

in which the complexes Eq
S =

[
Aq → Z[G]

]
and Ẽq

S =
[
Ãq → Z[G]

]
both repre-

sent the global fundamental class in Yext2
G(Z, Cq

L,S) ' Ext2
G(Z, Cq

L,S). In other
words, the complexes Eq

S and Ẽq
S are quasi-isomorphic and the quasi-isomorphism

induces identity maps H0(Eq
S) = Cq

L,S = H0(Ẽq
S) and H1(Eq

S) = Z = H1(Ẽq
S) on

the cohomology groups.
Remember that only the complex Ef

S , which represents the global fundamental
class in Ext2

G(Z, Cf
L,S), can be computed since the others do not consist of finitely

generated modules. The complex Ef
S can be constructed using the cocycle from

Algorithm 3.13 and applying Proposition 1.29. To approximate the complex
ES(L ) using the complex Ef

S we will consider the modules

W∞ =
∏

w∈S∞(G)

indGGw
Ww ⊆ L×∞ ⊆ IfL,S

and log∞(W∞) = {x ∈ L∞ | exp∞(x) ∈ W∞} ⊆ L∞.

By definition of W∞, the module log∞(W∞) is also an induced module: we
have log∞(W∞) =

⊕
w∈S(G) indGGw

logw(Ww) where logw(Ww) denotes the module
{x ∈ Lw | expw(x) ∈ Ww ⊆ L×w}. We can then prove the following.

Lemma 6.9. Each module logw(Ww) ⊆ Lw is cohomologically trivial as Gw-
module and therefore log∞(W∞) is cohomologically trivial as G-module.

Proof. If w ∈ S∞ is a place with trivial decomposition group Gw = 1, then
every Gw-module is cohomologically trivial. Consider a complex place w with
decomposition group Gw 6= 1. Since each module Ww contains the S-units
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UL,S by construction2 — and in particular the element 1 ∈ UL,S — the module
logw(Ww) will contain the kernel of the exponential map, resulting in a commu-
tative diagram:

2πiZ logw(Ww) Ww

2πiZ C C×

C/ logw(Ww) C×/Ww

exp

'

By construction of Ww, the quotient C×/Ww is a cohomologically trivial Gw-
module and as the bottom row is an isomorphism, this also holds for C/ logw(Ww).
Since C is cohomologically trivial as well (considered as additive module), this
implies the cohomological triviality of logw(Ww). Using the induced description
of the module log∞(W∞), Shapiro’s lemma finally implies that log∞(W∞) is co-
homologically trivial. �

We now construct complexes in a similar way as we obtained ES(L ). In
particular, we will again use the lift of the trace map tr′ : L → Z[G]. We then
consider the chain map αq :

[
L∞

0→ L
]
→ Eq

S with L∞
exp∞−−−→ L×∞ → Cq

L,S ⊆ Aq

in degree 0 and tr′ in degree 1. The cone of αq is the complex

Eq
S(L ) =

[
L∞

exp∞−−−→ Aq ⊕L −→ Z[G]
]

with L∞ in degree −1. The differential in degree 0 is the sum of the maps
Aq → Z[G] and tr′. For the complex Ẽq

S one obtains a quasi-isomorphic complex

Ẽq
S(L ) =

[
L∞

exp∞−−−→ Ãq ⊕L −→ Z[G]
]

using the same construction and the quasi-isomorphism will again induce the
identity map on the cohomology.

Similarly, there is a map of complexes αf :
[
log∞(W∞)

0→ L
]
→ Ef

S given by
log∞(W∞)

exp∞−−−→ W∞ → Cf
L,S ⊆ Af in degree 0 and tr′ in degree 1. The cone

Ef
S(L ) of αf is the complex

Ef
S(L ) =

[
log∞(W∞)

exp∞−−−→ Af ⊕L −→ Z[G]
]

where log∞(W∞) is placed in degree −1 and the differential in degree 0 is the
sum of Af → Z[G] and tr′.

Note that the complexes Eq
S(L ), Ẽq

S(L ) and Ef
S(L ) consist of cohomologically

trivial modules. By Proposition 1.38 they are actually perfect complexes if their
cohomology groups are finitely generated, which is part of the following proof.

2See Proposition 3.3 for the construction of Ww.
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Theorem 6.10. The complex Ef
S(L ) is a perfect complex which is quasi-isomor-

phic to ES(L ). Therefore µL induces a trivialization µfL of Ef
S(L ) and

χG(ES(L ), µL) = χG(Ef
S(L ), µfL).

Proof. As in the proof of [BrB07, Prop. 3.6] we first consider the commutative
diagram

Lf exp(Lf )

ES(L ) : LS A⊕L Z[G]

Eq
S(L ) : L∞ Aq ⊕L Z[G]

exp

(6.6)

in which exp(Lf ) is the kernel of A→ Aq by diagram (6.4). The upper complex
is acyclic since the exponential function is injective for every finite place. Thus,
the map ES(L ) → Eq

S(L ) is a quasi-isomorphism which induces a trivialization
µqL of Eq

S(L ). Then the following holds for the Euler characteristics:

χG(ES(L ), µL) = χG(Eq
S(L ), µqL).

The quasi-isomorphism of Eq
S(L ) and Ẽq

S(L ) similarly induces a trivialization
µ̃qL of Ẽq

S(L ) for which χG(Eq
S(L ), µqL) = χG(Ẽq

S(L ), µ̃qL).
To describe the Euler characteristic in terms of Ef

S(L ), consider the commu-
tative diagram

Ef
S(L ) : log∞(W∞) Af ⊕L Z[G]

Ẽq
S(L ) : L∞ Ãq ⊕L Z[G]

L∞/ log∞(W∞) L×∞/W∞

exp∞

exp∞

exp∞

(6.7)

in which L×∞/W∞ is the cokernel of Af → Ãq by diagram (6.5) and the complex in
the bottom row is quasi-isomorphic to the cone of the injective map of complexes
Ef
S(L ) → Eq

S(L ) by Lemma 1.37.
The map exp∞ : L∞/ log∞(W∞) → L×∞/W∞ is injective because we factored

modulo the preimage log∞(W∞) of W∞. Its cokernel is trivial since

L×∞/ exp∞(L∞) =
( ∏
w∈S(R)

R×/R>0 ×
∏

w∈S(C)

1
)

and W∞ contains −1 ∈ UL,S ⊆ Ww ⊂ W∞ at every real place w. Hence, the
complex is acyclic and Ef

S(L ) → Eq
S(L ) is again a quasi-isomorphism. It induces

a trivialization µfL of Ef
S(L ) and one obtains

χG(Ẽq
S(L ), µL) = χG(Ef

S(L ), µfL)

which completes the proof. �



6.3 Finite approximation of ES(L ) 143

Note that all quasi-isomorphisms in the above proof induce identity maps on the
cohomology groups by the projections in (6.6), the inclusions in (6.7), and the
identification of Eq

S and Ẽq
S in Ext2

G(Z, Cq
L,S). Therefore the trivialization µfL can

be identified with µL and we will further consider µL as trivialization of Ef
S(L ).

We finish this section by an explicit description of the computation of the Euler
characteristic χG(Ef

S(L ), µL) ∈ K0(Z[G],R). The complex Ef
S(L )R is acyclic

outside degrees −1 and 0 and by Corollary 1.43 this implies χG(Ef
S(L ), µL) =

−χ̄G(Ef
S(L ), µL). If P is a complex of finitely generated projective modules,

which is quasi-isomorphic to Ef
S(L ) through a chain map π : P → Ef

S(L ),
then this is χG(Ef

S(L ), µL) = χG(P, π−1µLπ) =
[
P+, θ, P−] where θ denotes the

isomorphism of P+
R and P−

R induced by µL as in Section 1.4.2.
From the construction by Proposition 1.38 one obtains such a complex P and

a quasi-isomorphism π : P → ES(L ) as in the following diagram:

P : P−2 P−1 P 0 P 1

Ef
S(L ) : log∞(W∞) Af ⊕L Z[G]

p−2 p−1 p0

f−1 f0

π

If we consider the proof of Proposition 1.38 in more detail, we also see that p−2

is injective and that we can choose P 1 = Z[G]. Moreover, the quasi-isomorphism
π induces Z[G]-isomorphisms πi : H i(P )

'−→ H i(ES(L )).
Therefore, the Euler characteristic χG(Ef

S(L ), µL) = χG(P, π−1µLπ) is a triple[
P−2 ⊕ P 0, θ, P−1 ⊕ Z[G]

]
and the isomorphism θ is induced by µL as follows.

From the complex P we have short exact sequences

0 → ker(pi) → P i → im(pi) → 0,

and 0 → im(pi) → ker(pi+1) → H i+1(P ) → 0

in every degree. All these short exact sequences remain exact after tensoring with
R[G] over Z[G] and choosing R[G]-splittings gives isomorphisms

ρi : P i
R

'−→ ker(pi)R ⊕ im(pi)R,

ρ′i+1 : ker(pi+1)R
'−→ im(pi)R ⊕H i+1(P )R.

By H1(P )R = 0 one has im(p0)R ' P 1
R and the isomorphism θ is given by

(P−2 ⊕ P 0)R
ρ−2,ρ0−−−−−→ im(p−2)R ⊕ ker(p0)R ⊕ im(p0)R
ρ′0−−−−−→ im(p−2)R ⊕ im(p−1)R ⊕H0(P )R ⊕ im(p0)R

π−1
1 µLπ0−−−−−→ im(p−1)R ⊕ im(p−2)R ⊕H−1(P )R ⊕ im(p0)R

(ρ′−1)−1

−−−−−→ im(p−1)R ⊕ ker(p−1)R ⊕ im(p0)R
(ρ−1)−1

−−−−−→ P−1
R ⊕ P 1

R.

(6.8)
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Note that all the maps ρi and ρ′i are also isomorphisms if one only tensors with Q
instead of R. Since the modules (P−2 ⊕ P 0)Q and (P−1 ⊕ P 1)R are Q[G]-free, all
isomorphisms in (6.8), except the one induced by µL, can therefore be represented
by Q[G]-matrices.

6.4 Description of the algorithm
Using the theoretical preparations from above we can present an algorithm which
gives numerical evidence for ETNC(L|Q, 1). The algebraic term of the conjec-
ture is the Euler characteristic χG(ES(L ), µL) which can be computed using
Theorem 6.10 and the construction above.

The analytic term of TΩ(L|K, 1) depends on the leading term ζ∗L|Q,S(1) ∈
Z(R[G])×. The Artin L-function and the leading coefficient of the S-truncated
Artin L-function can be computed in Magma using algorithms by Dokchitser
[Dok04]. Using his algorithm and the fact that the order of the Artin L-function
is known (e.g. see [Tat84, Chp. I, § 8]), one can compute ζ∗L|Q,S(1) ∈ Z(R[G])× as
a tuple of (real or complex) values.

In the algorithm below, we will compute a representative of the Euler charac-
teristic χG(Ef

S(L ), µL) in Z(R[G])× and its product with ζ∗L|Q,S(1) up to compu-
tation precision. Then we check the rationality conjecture numerically by veri-
fying that the product in Z(R[G])× ⊆

∏
χ∈IrrC(G)C approximates an element in

Z(Q[G])× '
∏

χ∈IrrQ(G)Q(χ) ⊆
∏

χ∈IrrC(G)C. Using this approximation we will
then continue to verify ETNC(L|Q, 1) numerically.

Before we discuss each step in more detail, we give an overview of the algorithm.

Algorithm 6.11 (Numerical evidence for ETNC(L|Q, 1)).
Input: A Galois extension L|Q of number fields with group G and a complex

precision r.
Output: True if ETNC(L|Q, 1) could be verified up to precision r, and False

otherwise.

(Initialization)

1 Compute a set of places S satisfying conditions (S1)–(S4) from page 70.

(Analytic Part)

2 Compute the S-truncated Artin L-function for L|Q and the leading term
ζ∗L|Q,S(1) using algorithms of Dokchitser [Dok04].

(Algebraic Part)

3 Compute the inverse of the global fundamental class γ−1 ∈ Ĥ2(G,Cf
L,S) with

Algorithm 3.13. This involves the construction of finitely generated modules
W∞ ⊆ L∞ and Cf

L,S using Algorithms 3.7 and 3.9. The local lattices Lv ⊆ OLv

for finite places v give rise to a global lattice L using [Ble03, § 3.1].
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4 Compute a complex representing the cocycle γ−1 using the construction from
Section 1.3.2 with splitting module Af = Cf

L,S(γ
−1).

5 Construct all modules and maps of Ef
S(L ) explicitly and use Proposition 1.38

as above to construct a complex P of finitely-generated, projective Z[G]-
modules and a quasi-isomorphism π : P → Ef

S(L ). Let θ : (P−2 ⊕ P 0)R →
(P−1 ⊕ P 1)R denote the isomorphism (6.8).

(Comparison)

6 Compute a Q[G]-basis B of (P−2 ⊕ P 0)Q ' Q[G]d and (P−1 ⊕ P 1)Q ' Q[G]d

and let H be the finite set of primes p, including p | |G| and those for which
B is not a Zp[G]-basis of (P−2 ⊕ P 0)Zp or (P−1 ⊕ P 1)Zp .

For primes p /∈ H:

7 Compute the matrix A ∈ Gld(R[G]) representing θ with respect to this basis.

8 Compute an approximation ξ ∈ Z(Q[G])× of the product ζ∗L|Q,S(1) nr(A) as
tuple (ξ1, . . . , ξr) ∈

∏r
i=1Q(χi).

9 Check whether the ideals of the prime ideal decomposition of ξiOQ(χi) have
support in H.

For every other prime p ∈ H:

10 Compute a Zp[G]-basis of (P−2⊕P 0)Zp and (P−1⊕P 1)Zp using [BW09, § 4.2].

11 Compute the matrix A ∈ Gld(R[G]) representing θ with respect to this basis.

12 Compute an approximation ξp ∈ Z(Q[G])× ⊆ Z(Qp[G])× of ζ∗L|Q,S(1) nr(A).

13 Compute K0(Z[G],Qp) using the algorithms from [BW09] and check whether
∂̂1
G,Qp

(ξp) is zero.

Return: True, if all comparisons were correct and False otherwise.

Remarks 6.12. Algebraic part: The lattice used in the construction of Cf
L,S

should be the same lattice which also occurs in the construction of Ef
S(L ). In the

description of the above algorithm we use [Ble03, § 3.1] to construct the global
lattice L ⊆ OL from local lattices Lv ⊆ OLv established in the computation
of the global fundamental class. In this case, however, it might be easier to
construct an appropriate global lattice and compute its localizations afterwards.
In any case, we have to make sure to use the same lattice in both parts of our
algorithm.

The extension class constructed using the splitting module Af = Cf
L,S(γ) rep-

resents the global fundamental class in Yext2
G(Z, Cf

L,S) by means of a projective
resolution of Z. The conjecture, however, is formulated by representing extension
groups using injective resolutions of the second variable. Following Remark 5.4
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in [BrB07] we therefore have to consider the inverse of the global fundamental
class in our construction.

Finally, the computation of the Euler characteristic χG(ES(L ), µL) is explained
in detail in Section 6.3.

Comparison: If M is a finitely generated Z[G]-module and B = {b1, . . . , bn} is
a Q[G]-basis of M ⊗Z[G] Q[G] with bi ∈ M , then 〈b1, . . . , bn〉Z[G] has finite index
k in M , and k becomes a unit in Zp[G] if p - k. Hence, B is also a basis for
M ⊗Z[G]Zp[G] if p - k. Applying this fact to the modules P−2⊕P 0 and P−1⊕P 1,
we can therefore compute the finite set H in step 6.

For the primes p ∈ H we compute a Zp[G]-basis of the modules (P−2 ⊕ P 0)Zp

and (P−1 ⊕ P 1)Zp separately. The algorithm of [BW09, § 4.2] actually computes
these bases by considering the localizations Z(p) instead of Zp. By Z(p) ⊂ Q ⊂
R these bases will then also provide corresponding bases of (P−2 ⊕ P 0)R and
(P−1 ⊕ P 1)R.

In both cases we can therefore compute a matrix A ∈ Gld(R[G]) which repre-
sents θ with respect to these bases and were d ∈ N is appropriate.

If we apply the proof of [Jan10, Thm. 3.3.2] to the case ETNC(L|K, 1), we
know that the rationality TΩ(L|K, 1) ∈ K0(Z[G],Q) holds if and only if η =
ζ∗L|Q,S(1) nr(A) ∈ Z(Q[G])× holds. By assuming the rationality conjecture, one
can therefore compute an approximation ξ ∈ Z(Q[G])× to η ∈ Z(C[G])×.

This is done by representing η by a tuple (ηχ) ∈
∏

χ∈IrrC(G)C through the Wed-
derburn decomposition. Since values at conjugate characters must be conjugated,
the polynomials

∏
ψ=σ◦χ(X − ηψ) ∈ C[X] must actually have coefficients in Q for

all χ ∈ IrrQ(G). We can therefore approximate each of the coefficients with ra-
tional numbers, and we can then compute the roots in Q(χ) exactly. Together
these roots provide a tuple ξ = (ξχ) ∈

∏
χ∈IrrC(G)Q(χ) which approximates η.

By the decomposition of K0(Z[G],Q) into p-parts K0(Zp[G],Qp), we know that
ξ represents zero if and only if it is zero in every group K0(Zp[G],Qp). For primes
not dividing |G| the torsion subgroup ofK0(Zp[G],Qp) is trivial. To represent zero
in the relative K-group, ξ must therefore be a p-adic unit. This can be checked
by computing the support of the factorization of ξOL, compare Proposition 5.13.

For the other (finitely many) primes, ξ represents zero in K0(Zp[G],Qp) if it is
an element in nr(Zp[G]×). This can be checked using algorithms from [BW09].

In special cases the algorithm above can also be used to give a proof of the
equivariant Tamagawa number conjecture at s = 1. By the rationality conjecture
one expects that

ζ∗L|K,S(1) nr(A) ∈ Z(Q[G])× '
∏

χ∈IrrQ(G)

Q(χ)×.

Therefore, the transcendental parts of ζ∗L|K,S(1) and nr(A) have to cancel and the
main issue is to compute the algebraic part exactly.
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Remark 6.13. Let M1 and M2 be free Q[G]-modules and φ : M1 → M2 and
isomorphism of Q[G]-modules. If a1, . . . , an and b1, . . . , bn are Q[G]-bases and
if A ∈ Gln(Q[G]) represents φ with respect to these bases, then the reduced
norm nr(A) = (detχ(A))χ∈IrrC(G) is an element in Z(Q[G])×, i.e. each component
satisfies detχ(A) ∈ Q(χ)× and nr(A) is Galois invariant by nr(A)σ◦χ = σ(nr(A)χ)
for σ ∈ Aut(Q(χ)|Q).

Now consider the modules M1,R = R[G]⊗Q[G]M1 and M2,R = R[G]⊗Q[G]M2 and
the isomorphism induced by φ. The bases ai and bi of M1 and M2 induce bases
ai ⊗ 1 and bi ⊗ 1 of M1,R and M2,R, respectively. Then the matrix representing
the isomorphism φ : M1,R → M2,R with respect to these bases will again be the
same matrix A ∈ Gln(Q[G]) ⊂ Gln(R[G]).

We apply this fact to the isomorphism θ : (P−2 ⊕ P 0)R → (P−1 ⊕ P 1)R from
(6.8) which can be divided into three parts:

θ1 : (P−2 ⊕ P 0)Q →M1,Q

θ2 : M1,R →M2,R

θ3 : M2,Q → (P−1 ⊕ P 1)Q,

with M1 = im(p−2)⊕ im(p−1)⊕H0(P )⊕ im(p0),

M2 = im(p−1)⊕ im(p−2)⊕H−1(P )⊕ im(p0).

As discussed in Section 6.3 the isomorphisms θ1 and θ3 were induced by splittings
and were therefore already defined over Q. Hence, the reduced norm of Q[G]-
matrices representing θ1 and θ3 will be in Z(Q[G])× for any Q[G]-basis. Indeed,
all these modules are Q[G]-free by a lemma of Swan (see [CR81, Thm. (32.11)])
since they are Z[G]-projective.

As a result, the most significant part in θ = θ3,R ◦ θ2 ◦ θ1,R is given by θ2.
More precisely, let B1, B2, B3 and B4 denote Q[G]-bases of the four modules
(P−2⊕P 0)Q,M1,Q,M2,Q and (P−1⊕P 1)Q, let A be the matrix representing θ with
respect to the induced bases B1,R and B4,R and A1 the matrix representing θ2 with
respect to B2,R and B3,R. Then nr(A) = λ nr(A1) for some factor λ ∈ Z(Q[G])×

which arises from the Q[G]-isomorphisms θ1 and θ3.

To get a proof of the equivariant Tamagawa number conjecture with Algo-
rithm 6.11 it is therefore crucial to control the transcendental elements in the
reduced norm of the isomorphism θ2 : M1,R

'−→ M2,R with respect to Q[G]-bases
of M1,Q and M2,Q. This isomorphism was induced by

µL : H0
(
Ef
S(L )

)
R

'−→ H−1
(
Ef
S(L )

)
R.

The investigation in the proof of Theorem 6.15 will use this fact in order to restrict
the analysis of θ to µL, whose determinant will change by a factor in Z(Q[G])×.
But first we prove the following identities.
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Lemma 6.14. For a subgroup H of G, let eH = 1
|H|
∑

h∈H h and F = LH . Then
there are identifications

(a) eHL
0 = F 0, and

(b) eH
(
log∞(O×

L )⊗Z Q
)
' log∞(O×

F )⊗Z Q.

Proof. (a) Consider an element x ∈ eHL
0. It is fixed by any group element

h ∈ H and therefore x ∈ (L0)H ⊆ F . For its trace we compute 0 = trL|Q(x) =∑
σ∈G σ(x) = [L : F ]

∑
τ∈G/H τ(x) = [L : F ] trF |Q(x) where τ runs through a set

of representatives of G/H. This implies x ∈ F 0 and, hence, eHL0 ⊆ F 0. On the
other hand, every x ∈ F 0 satisfies x = eHx ∈ eHL0.

(b) For primitive elements x ∈ eH(log∞(O×
L )⊗Z Q) one has x = eH(x′ ⊗ q) for

x′ ∈ log∞(O×
L ) and q ∈ Q. Therefore, x =

(∑
τ∈H τ(x

′)
)
⊗ q

|H| ∈ log∞(O×
L )H ⊗Q

and for the latter module we use the identification

log∞(O×
L )H = {x ∈ L∞ | exp∞(x) ∈ ∆∞(O×

L ) and h(x) = x ∀h ∈ H}
' {x ∈ F∞ ⊆ L∞ | exp∞(x) ∈ ∆∞(O×

L )}

where F∞ = F ⊗Q R. Since x ∈ F∞ implies exp∞(x) ∈ F∞ and ∆∞(O×
L )∩ F∞ =

∆∞(O×
L ∩ F ) = ∆∞(O×

F ), one obtains
(
log∞(O×

L )
)H

= log∞(O×
F ) which proves

eH(log∞(O×
L )⊗Z Q) ⊆ log∞(O×

F )⊗Z Q.
On the other hand, one has log∞(O×

F ) ⊆ log∞(O×
L ) and every primitive element

x ∈ log∞(O×
F ) ⊗Z Q with x = x′ ⊗ q for x′ log∞(O×

F ) and q ∈ Q satisfies x =
x′ ⊗ q =

(∑
τ∈H τ(x

′)
)
⊗ q

|H| ∈ eH(log∞(O×
L )⊗Z Q). �

Since we consider the modules after tensoring with Q, part (b) also holds for
every submodule of O×

L of finite index. We will apply this result for the module
O+
L of totally positive units in O×

L , which was already used in Remark 6.2.

Theorem 6.15. If all characters χ ∈ IrrC(G) are rational or abelian, then one
can compute the product

ζ∗L|Q,S(1) nr(A) ∈ Z(Q[G])×

in Algorithm 6.11 exactly.

Proof. (i) Let χ be a character with rational values χ(σ) ∈ Q for all σ ∈ G. By
Artin’s inductions theorem the character χ satisfies the equation

mχ =
∑
H⊆G

nH indGH1H (6.9)

for integers m and nH , where H runs through subgroups of G. In the following,
we assume that m = 1. For m > 1 see Remarks 6.16 below.
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As in Algorithm 6.11 the matrix A represents the isomorphism

θ : (P−2 ⊕ P 0)R
'−→ (P−1 ⊕ P 1)R

and by Section 1.4.1 the reduced norm nr(θ) is given by determinants detχ(A).
By the conditions on χ one then has

detχ(A) =
∏
H⊆G

detindG
H1H

(A)nH

and L∗L|Q,S(χ, 1) =
∏
H⊆G

ζ∗F,S(1)
nH

(6.10)

where F = LH , ζF,S(s) denotes the S-truncated Dedekind ζ-function of F |Q and
ζ∗F,S(1) its leading term at s = 1.

To compute the product of the leading coefficient of ζL|K,S(s) and the reduced
norm of A we therefore have to consider products

detindG
H1H

(A)ζ∗F,S(1).

If (P−2 ⊕ P 0)R and (P−1 ⊕ P 1)R are R[G]-modules of rank d, the matrix A

induces an isomorphism C[G]d ' C[G]⊗R[G] R[G]d
A−→ C[G]⊗R[G] R[G]d ' C[G]d

which in turn induces

φ : (eHC[G])d
'−→ (eHC[G])d.

As in the proof of [Jan10, Thm. 3.3.5] one has detindG
H1H

(A) = detC(φ). Following
Remark 6.13 we therefore only need to consider the C-determinant of

µL : eH(L0 ⊗Q C)
'−→ eH(log∞(O×

L )⊗Z C)

by choosing Q-bases of the modules eH(L0) and eH(log∞(O×
L )⊗ZQ). The reduced

norm of φ with respect to any pair of Q-bases will only differ by a factor λχ ∈
Q(χ)× which is actually rational by the conditions on χ.

By Lemma 6.14 we can use identifications F 0 = eH(L0) and log∞(O×
F )⊗ZQ =

eH(log∞(O×
L )⊗Z Q) and consider the commutative diagram

eH(L0 ⊗Q Q) eH(log∞(O×
L )⊗Z Q)

F 0 log∞(O×
F )⊗Z Q

'
µL

'
µF

' '

in which each isomorphism is defined over Q. The C-determinant of the isomor-
phism µL : eH(L0 ⊗Q C)

'−→ eH(log∞(O×
L ) ⊗Z C) will therefore be a rational

multiple of the determinant from µF : F 0 ⊗ C '−→ log∞(O×
F )⊗Z C.
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As in Remark 6.2 we now consider the subgroup of totally positive units O+
F in

O×
F which is a subgroup of finite index, so that log∞(O+

F )⊗ZQ ' log∞(O×
F )⊗ZQ.

Note that this restriction might introduce another factor in Q(χ) = Q.
As a result, we only have to compute the determinant of µF exactly, which we

now consider in two steps

F 0 ⊗Q C
µF−→ F 0

∞ ⊗R C
id−→ F 0

∞ ⊗R C
B1 B2 B3

(6.11)

with respect to bases B1, B2 and B3.
We denote n = [F : K] = r1 + 2r2 where r1 and r2 are the number of real and

pairs of complex embeddings of F . Let y2, . . . , yn be any Q-basis of F 0 and set
B1 = {y2 ⊗ 1, . . . , yn ⊗ 1}.

Similar to the representation of F∞ in Remark 6.1, we identify F∞ ⊗R C with∏
r1
C×

∏
r2
C×

∏
r2
C where the components at r1 +j and r1 +r2 +j correspond

to a pair of complex embeddings. In other words, the embeddings σi : F ↪→ C are
ordered such that σ1, . . . , σr1 are real embeddings, and σr1+j, σr1+j = σr1+r2+j are
pairs of complex embeddings for j = 1, . . . , r2. Then the isomorphism is explicitly
given by

F∞ ⊗R C '
∏
r1

C×
∏
r2

C×
∏
r2

C

x⊗ z 7→
(
σ1(x)z, . . . , σr1+r2(x)z, σr1+1(x)z, . . . , σr1+r2(x)z

)
.

Note that if ι is a fixed embedding, every other embedding is of the form ι ◦ σ
for σ ∈ Gal(F |Q). The element in Gal(F |Q) corresponding to the embedding σi
will also be denoted by σi.

Let b1, . . . , bn denote the standard basis of
∏

r1
C ×

∏
2r2
C. Then the set

B2 = {b2 − b1, . . . , bn − b1} is a basis of L0
∞ ⊗R C.

Finally, we consider fundamental units ε1, . . . , εt of O+
F with t = r1 + r2 − 1.

Then the elements

fk :=
n∑
i=1

log(σiεk)bi k = 1, . . . , t

ft+j := 2πibr1+j − 2πibr1+r2+j j = 1, . . . , r2

provide a Z-basis of the lattice log(O+
F ) by Remark 6.2. Since this is a full lattice,

these elements form a Q-basis of log(O×
F )⊗ZQ and B3 = {fi⊗ 1, 1 ≤ i < n} is a

basis of L0
∞ ⊗ C.

Note again that by Remark 6.13 these choices of bases B1 and B3 allow the
computation of the determinant of detχ(A) up to a rational factor.

Next we compute the matrices representing µF with respect to these bases.
The equations

µL(yk) =
n∑
i=1

σi(yk)bi =
n∑
i=2

σi(yk)(bi − b1)
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using trF |Q(yk) =
∑n

i=1 σi(yk) = 0 show that the first isomorphism of (6.11) is
represented by the matrix A1 =

(
σi(yk)

)
2≤i,k≤n. Its determinant is closely related

to the discriminant dF of F : The elements y1 = 1, y2, . . . , yn provide a basis of
F and if T ∈ Gln(Q) denotes a base change between this basis and an integral
basis of OF , then the discriminant d(1, y2, . . . , yn) is

d(1, y2, . . . , yn) = det
((
σi(yk)

)
1≤i,k≤n

)2

= det(T )2dF .

By adding every column to the first column and using the relations trF |Q(yk) =∑n
i=1 σi(yk) = 0 for y2, . . . , yn we obtain

det
((
σi(yk)

)
1≤i,k≤n

)
= det



1 · · · 1

σ1(y2) · · · σn(y2)

... . . . ...

σ1(yn) · · · σn(yn)


= det



n 1 · · · 1

0 σ2(y2) · · · σn(y2)

...
... . . . ...

0 σ2(yn) · · · σn(yn)


= n det

((
σi(yk)

)
2≤i,k≤n

)
= n det(A1).

Since the discriminant dF is negative if and only if r2 is odd, we have det(A1) =
±ir2 1

n
det(T )

√
|dF |.

The second isomorphism of (6.11) is a base change from B2 to B3. Using the
equality

∑n
i=1 log(σiεk) = 0 from [Neu92, Chp. I, § 7] we have

fk :=
n∑
i=2

log(σiεk)(bi − b1), k = 1, . . . , t,

and ft+j := 2πi(br1+j − b1)− 2πi(br1+r2+j − b1), j = 1, . . . , r2.

The base change from B3 to B2 is therefore represented by the matrix

log(σ2ε1) · · · log(σr1+1ε1) · · · · · · log(σr1+r2+1ε1) · · · log(σnε1)

...
...

...
...

log(σ2εt) · · · log(σr1+1εt) · · · · · · log(σr1+r2+1εt) · · · log(σnεt)

2πi −2πi

0
. . . . . .

2πi −2πi


.

Since the embeddings σr1+r2+j and σr1+j are conjugated for 1 ≤ j ≤ r2, the
entries log(σr1+r2+jεk) and log(σr1+jεk) are equal. Adding the (r1 + r2 + j)-th
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column to the (r1 + j)-th column for all j = 1, . . . , r2 and eliminating the upper
right entries provides a matrix

(
δi log(σiεk)

)
i,k

−2πi

. . .

−2πi


with δi = 1 for real and δi = 2 for complex places σi. By [Neu92, Chp. I,
Thm. (7.5)] this latter matrix has determinant ±RF (2πi)r2 where RF denotes the
regulator of F if ε1, . . . , εt was a system of fundamental units for O×

F . Since we
considered O+

F , we obtain the multiple ±RF (2πi)r2 [O+
F : O×

F ].
In isomorphism (6.11) we need the inverse of this base change, and combining

the two steps we get the determinant

detC(φ) = λχ
√
|dF |R−1

F (2π)−r2

for some rational factor λχ ∈ Q(χ) = Q.
On the other hand, the residue ζ∗F (1) = ress=1 ζF (s) is

ζ∗F (1) =
2r1(2π)r2

|µF ||dF |1/2
hFRF

by [Neu92, Chp. VII, § 5, p. 488], where hF is the class number of F and µF
denotes the set of roots of unity in F . Since ζ∗F,S(1) is a rational multiple of ζ∗F (1),
the products detindG

H1H
(A)ζ∗F,S(1) used in the computation of the determinant

detχ(A) will be a rational numbers.

(ii) Now let χ be an abelian character. Then χ is a homomorphism and we
assume that χ is not the trivial character, which is already handled by the first
case. Set H = ker(χ), so that χ is actually a character of F = LH . If f denotes
the conductor of χ, then F can be embedded in Q(ζf ):

L
Q(ζf )

F

Q

H

Ḡ

Γ1

Γ

We set Γ = Gal(Q(ζf )|Q), Γ1 = Gal(Q(ζf )|F ) and Ḡ = Gal(F |Q) ' G/H.
We can now also consider χ as a character of Γ ' (Z/fZ)× by inflation, and

moreover as a Dirichlet character of Z/fZ:

χ(a) =

{
χ(a+ Γ1) if a ∈ (Z/fZ)× ' Γ,

0 otherwise.
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For an abelian character χ, the Artin L-series of χ coincides with the Dirichlet
L-series of χ and its leading term at s = 1 is given by the following equations

L∗F |Q(χ, 1) =


πi
τ(χ)

f

f∑
a=1

χ̄(a)a for χ(−1) = −1,

−τ(χ)

f

f∑
a=1

χ̄(a) log |1− ζaf | for χ(−1) = 1

(6.12)

with Galois Gauss sum τ(χ) =
∑f

a=1 χ̄(a)ζaf , cf. [Was97, Thm. 4.9]. Again, the
values of L∗F |Q,S(χ, 1) just differ from L∗F |Q(χ, 1) by some factor in Q(χ).

For the algebraic part of the conjecture, we again consider the isomorphism

µL : eχ(L
0 ⊗Q C)

'−→ eχ(log∞(O×
L )⊗Z C).

The idempotent eχ of the G-character χ can be written as eχ̄eH where eχ̄ is the
corresponding idempotent of χ as G/H-character.

We therefore let eχ denote the idempotent of χ as character of Ḡ from now on,
and we consider the C-determinant of the isomorphism

µF : eχ(F
0 ⊗Q C)

'−→ eχ(log∞(O×
F )⊗Z C) (6.13)

with respect to bases induced by Q(χ)-bases of the modules eχ(F 0⊗QQ(χ)) and
eχ(log∞(O×

F )⊗ZQ(χ)). Here, we are again just interested in the determinant up
to a factor inQ(χ). Note that by eχC[G] ' C ' Q(χ)⊗Q(χ)C and F∞⊗RC ' C[G]
these modules have Q(χ)-rank one.

We use the standard basis b1, . . . , bn of F∞⊗RC introduced before and use the
fact that every basis element bi = bσ corresponds to an embedding ι◦σ for σ ∈ Ḡ.
In the group ring C[G] one has eχσ = χ(σ)eχ and using F∞ ⊗R C ' C[G] one
similarly obtains eχbσ = χ(σ)eχb1.

A Q(χ)-basis of eχF 0
∞ ⊗R C is eχb1. Set θ = trQ(ζf )|F (ζf ) ∈ F , then eχθ is a

Q(χ)-basis of eχF 0 ⊗Q Q(χ) and

µF (eχθ) = eχ
∑
σ∈Ḡ

ι(σθ)bσ =
∑
σ∈Ḡ

ι(σθ)χ(σ)eχb1 = τ(χ̄)eχb1.

Therefore, the C-determinant of (6.13) with respect to these bases is a Qχ-
multiple of the Gauss sum τ(χ̄).

As in the case of rational characters we still have to make a base change to a
basis of eχ(F 0

∞⊗QC) which is induced by a Q(χ)-basis of eχ(log∞(O×
F )⊗ZQ(χ)).

And if we consider a sublattice U in O×
F of finite index and a Q(χ)-basis of

log∞(U)⊗Z Q(χ), the determinant is just changed by a factor in Q(χ).
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First case: χ(−1) = −1. Consider the basis f1, . . . , fn−1 of log∞(O+
F ) intro-

duced in case (i) and let τ ∈ Ḡ denote the complex conjugate with F+ = F τ .
Since χ(τ) = χ(−1) = −1 and τε = ε for the fundamental units ε ∈ O+

F one
computes

eχfk =
1

|Ḡ|
∑
σ∈Ḡ

χ(σ)σ−1fk =
1

|Ḡ|
∑

σ∈Ḡ/〈τ〉

(
χ(σ)σ−1fk + χ(στ)τ−1σ−1fk

)
= 0 for k = 1, . . . , t

and eχft+j = eχ(2πibr1+j − 2πibr1+r2+j)

= 4πiχ(σr1+j)eχb1 for j = 1, . . . , r2.

One notices again that the Q(χ)-rank is one, and a basis for log∞(O+
F )⊗Z Q(χ)

is eχft+1. The above computations also show that the base change from eχb1
to eχft+1 has determinant (4πiχ(σr1+1))

−1 with σr1+1 denoting a fixed complex
embedding.

Second case: χ(−1) = 1. In analogy to the above case, one verifies eχft+j = 0
for j = 1, . . . , r2. This also includes the case where F is totally real and r2 = 0.

By [CNT87, Chp. 1, § 3] the element ε = NQ(ζf )|F (1−ζf ) is a fundamental unit
of O+

F and we choose the basis

eχ
∑
σ∈Ḡ

log(σε)bσ =
∑
σ∈Ḡ

log(σε)χ(σ)eχb1

of log∞(O+
F )⊗Z Q(χ). The determinant of the base change will therefore be the

inverse of ∑
σ∈Ḡ

χ(σ) log
(
NQ(ζf )|F (1− ζf )

σ
)

=
∑
σ∈Ḡ

χ(σ)
∑
τ∈Γ1

log |1− ζστf |

=
∑
σ∈Γ

χ(σ) log |1− ζσf | =
f∑
a=1

χ(a) log |1− ζaf |

in this case.

In conclusion one has

detχ(A) =


λχτ(χ̄)

(
4πiχ(σr1+1)

)−1 for χ(−1) = −1

λχτ(χ̄)
( f∑
a=1

χ(a) log |1− ζaf |
)−1

for χ(−1) = 1

for some factor λχ ∈ Q(χ). The relations of Gauss sums from [Was97, Lem. 4.7
and 4.8] show that τ(χ)τ(χ̄) = τ(χ)τ(χ)χ(−1) = χ(−1)|τ(χ)|2 = χ(−1)f . Then
a comparison with (6.12) show that every product L∗F |Q,S(χ, 1)detχ(A) has values
in Q(χ) and can therefore be computed exactly.

As a result, the product ζ∗L|K,S(1) nr(A) can be computed exactly in Z(Q[G])× =∏
χ∈IrrQ(G)Q(χ)×. �
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Remarks 6.16. 1. For an implementation, the result above is actually not accu-
rate enough because one will need the factor λχ ∈ Q(χ) explicitly. To compute
this factor one will have to analyze every index that is introduced by the choice
of the bases in the proof.

2. If m > 1 in the equation (6.9) obtained from Artin’s induction theorem,
then we would get(

detχ(A)L∗L|Q,S(χ, 1)
)m

=
∏
H⊆G

detindG
H1H

(A)nHζ∗F,S(1)
nH

instead of (6.10) in the proof above. Then we can just compute the m-th power
ξm of the value ξ = detχ(A)L∗L|Q,S(χ, 1) exactly. By considering an appropriate
number field extension, we could compute all the m-th roots of ξm exactly and
use numerical approximations as in Algorithm 6.11 to find the right one among
them.
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Appendix A

Computational results for the epsilon
constant conjecture

A.1 Local Galois groups up to degree 15
In Section 5.3.2 we applied several heuristics to find global representations of
local Galois extensions L|Qp up to degree 15 with primes p ≤ 15. Table A.1 gives
an overview of all Galois groups which occur up to this degree and how many
of them are represented by polynomials in the database of Klüners and Malle
[KM01].

This result was obtained by computing all local extensions of degree n ≤ 15 of
Qp with p|n using Pauli’s implementation in Magma of the algorithm described
in [PR01] and searching the database [KM01] for appropriate polynomials. The
computation of all those extensions can be very time-consuming, especially for
extensions L|Q2 of degree 8 and extensions L|Q3 of degree 9. We therefore also
use the database [JR] which list all local extensions of Qp up to degree n ≤ 11
for p|n.

In the table we use the following common notations:

• An is the alternating group of order n!/2,

• Cn is the cyclic group of order n,

• Dn is the dihedral group of order 2n,

• Qn is the generalized quaternion group of order n,

• Sn is the symmetric group of order n!, and

• V4 is the Klein four-group C2 × C2.
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n p group #ext. in [KM01] n p group #ext. in [KM01]

2 2 C2 7 X 10 5 D5 3 X

3 3 C3 4 X 11 11 C11 12 1

4 2 C4 12 X 12 2 C12 12 8

V4 7 X C3 × V4 11 X

5 5 C5 6 X A4 1 X

6 2 C6 7 X D6 3 X

S3 1 X Q12 4 X

3 C6 12 X 3 C12 8 4

S3 6 X C3 × V4 4 2

7 7 C7 8 2 A4 0

8 2 C8 24 8 D6 6 X

C2 × C4 18 17 Q12 2 X

C3
2 1 X 13 13 C13 14 1

D4 18 15 14 2 C14 7 X

Q8 6 X D7 0

9 3 C9 12 9 7 C14 24 3

C2
3 1 X D7 3 0

10 2 C10 7 X 15 3 C15 4 X

D5 0 5 C15 6 2

10 5 C10 18 6

Table A.1: Local Galois extensions over Qp of degree n ≤ 15 with primes p
dividing n.



A.2 Computations in the proof of Theorem 5.16 161

A.2 Computations in the proof of Theorem 5.16
The following pages present an overview of the computations for the proof of the
local epsilon constant conjecture for

• abelian wildly ramified extensions over Q2 of degree ≤ 6, and

• non-abelian wildly ramified extensions of degree ≤ 15

as in Theorem 5.16.
The tables below give a complete list of all non-isomorphic extensions which

occur in those cases. These extensions can be computed as presented by Pauli and
Roblot in [PR01]. Their algorithm was implemented in Magma1 and Pari/Gp2.
Up to degree 11 one can also find polynomial generating these extensions in the
database of local fields by Jones and Roberts [JR]. This gives a total list of 52
non-abelian extensions and 37 abelian extensions of Q2.

For each such extensions M of Qp we list the following information:

(a) The non-abelian Galois group G of M/Qp and the prime p dividing |G|.

(b) A polynomial from the database of local fields [JR] generating the extension
M locally (only possible up to degree 11).

(c) A polynomial generating a global representation of M/Qp. These polyno-
mials were mostly found using the database of Klüners and Malle [KM01],
as discussed in Section 5.3.2.

(d) The ramification index of p in M .

(e) A polynomial generating the cyclic extension N in which the unramified
term is computed (also discussed in Section 5.3.2).

(f) The degree of the composite field E, in which all computations take place.

(g) The time needed to verify the local conjecture for M/Qp.

More details on every single computation can be found in the log-files on the
enclosed CD. All computations were performed with Magma version 2.15-9 on a
dual core AMD Opteron machine with 1.8 GHz and 16 GB memory. The hardest
case is one of the D5-extensions which took about 7 days.

1command: AllExtensions
2command: padicfields
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Appendix B

Magma Packages

The following sections give an overview of algorithms that were implemented in
Magma. The four packages we describe below are:

Brauer groups: A package for computations in local and global Brauer groups
as well as algorithms for local fundamental classes.

Global fundamental class: This package contains the algorithms for global fun-
damental classes described in Chapter 3.

Global representations: This combines the heuristic methods for the construc-
tion of global representations described in Section 5.3.1.

Local epsilon constant conjecture: This package is the most comprehensive of
these four. It includes all the algorithms and methods described in Chap-
ter 5 for the computational proof of the local epsilon constant conjecture.

B.1 Brauer groups
Filename: brauer.m
This package contains methods to compute in local and global Brauer groups as
well as algorithms for the local fundamental class.

Basic usage and examples

Let L|Q be a finite extensions and P a prime ideal of p above L. Then we can
compute the local Brauer group Ĥ2(G,L×P) by:

> rec := LocalBrauerGroup(L,3);

It returns a record, which contains all the important structures which are com-
puted by Algorithm 2.3.

To compute the local fundamental class in this group one can either use the com-
mand LocalFundamentalClassDirect (which will also compute the cohomology
group itself) or the command LocalFundamentalClassSerre. Both functions
take the completion LP and a precision of computation as input:
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> LP, iota := Completion(L, P : Precision := 300);
> c := LocalFundamentalClassSerre(LP, pAdicField(LP), 30);

For the computation in the global Brauer group Ĥ2(G,L×) we can use the
command GlobalCocycle to construct element by through local conditions

> L := SplittingField(x^3+9);
> c := GlobalCocycle(L, [ <2, 1/2>, <3, 1/2> ]);

The global cocycle is computed as a representative C2(G,UL,S) with appropriate
set of places S. In other words c is a map G × G → UL,S. Given such a global
cocycle, one can identify the invariants using GlobalCocycleInvariants:

> GlobalCocycleInvariants(L,c);

Documentation

For local Brauer groups the following structure is defined:

locBrGrp := recformat<
L : FldNum, P : RngOrdIdl, p : RngIntElt,
M : GrpAb, actM : Map, qM : Map,
theta : RngOrdElt,
C : ModCoho, f1 : Map,
lfc : ModTupRngElt

>;

It includes the following information as in Algorithm 2.3: the number field L with
prime ideal P dividing the prime p, the module M from Lemma 2.1 defined by
an element θ ∈ L with corresponding Galois action and homomorphism L→M ,
a cohomology module C as computed by CohomologyModule with corresponding
map f1 to and from M , and the local fundamental class as element of C.

LocalBrauerGroup(L::FldNum, p::RngIntElt) -> Rec
LocalBrauerGroup(L::FldNum, P::RngOrdIdl) -> Rec

Optional parameters: autMap:=0, lfc:=false
Computes the local cohomology group Ĥ2(GP, L

×
P) for an ideal P dividing p as

record of type locBrGrp using Algorithm 2.3. Optionally one can pass the Galois
action on L as map G → Aut(L|K) and if lfc is true, a representative of the
local fundamental class is computed using Algorithm 2.18.

LocalFundamentalClassDirect(L::FldPad, n::RngIntElt) -> Map

Compute a cocycle representing the local fundamental class of L|Qp up to the
given precision using the direct method, see Algorithm 2.5.
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LocalFundamentalClassSerre(L::FldPad, K::FldPad, steps::RngIntElt)
-> Map

LocalFundamentalClassSerre(L::RngPad, K::RngPad, steps::RngIntElt)
-> Map

Optional parameters: psi:=0
Compute the cocycle representing the local fundamental class of L|K up to the
given precision using Serre’s approach, see Algorithm 2.18. Optionally, one can
pass the map ψ : G→ Aut(L|K) representing the Galois action on L.

GlobalCocycleInvariants(L::FldNum, gamma::Map) -> SeqEnum

Compute the invariants of the cocycle γ ∈ Ĥ2(G,L×) for a global Galois extension
L|K of number fields with group G, see Algorithm 2.23.

GlobalCocycle(L::FldNum, locCond::SeqEnum) -> Map

Computes a global cocycle in Ĥ2(G,L×) respecting the given local conditions.
These must be given as sequence of tuples 〈p, ip〉 with ip in 1/|GP|Z where P is
an ideal of L dividing p and

∑
ip = 0 + Z.

FrobeniusEquation(c::RngPadElt, precision::RngIntElt)
-> RngPadElt, Map

FrobeniusEquation(c::RngPadElt, precision::RngIntElt, OK::RngPad)
-> RngPadElt, Map

FrobeniusEquation(C::SeqEnum, precision::RngIntElt)
-> SeqEnum, Map

FrobeniusEquation(C::SeqEnum, precision::RngIntElt, OK::RngPad)
-> SeqEnum, Map

Solves the equation xϕ−1 = c, c in O×
E , up to the given precision, where ϕ is

the Frobenius automorphism of OK , see Remark 2.10. The solution x and the
automorphism ϕ are returned. If a sequence C of elements is given, a sequence
of solutions is returned. If OK is not given, OK = OE is used. Otherwise, OE

must be an extension of OK . Note, that whenever the norm of c over OK is not
1, this can generate huge extensions of OE.
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B.2 Global fundamental class

Filename: gfc.m

This package contains methods to compute the global fundamental class.

Basic usage and examples

There exist two commands for the computation of global fundamental classes
which correspond to the cyclic case in Section 3.2.1 and the general case in Sec-
tion 3.2.2.

The cyclic case is not restricted to cyclic extensions but can also be applied
to other extensions L|Q in which there exists a prime p which is undecomposed
in L. The following example computes the global fundamental class for a Galois
extension L|Q with group C6.

> L := NumberField(x^6 - 12*x^4 + 36*x^2 - 24);
> time C, f1, gfc := gfcUndecomposed(L, 3);

The command computes a cohomology structure C, a map f1 which reads cocycles
in this structure and vice versa, and the canonical generator in Ĥ2(G,CL).

For arbitrary extensions L|Q, in which such an undecomposed place does not
exist, we need to specify a cyclic extension N |Q of the same degree. For com-
putational reasons it is essential that the composite field LN has small degree
over Q. In the following example we consider an extension L|Q with group S3.
It has a subfield Q(

√
229) which can be embedded into a cyclic extension N |Q of

degree 6 with N ⊂ Q(ζ229). The composite field will then have degree 18 over Q.

> L := SplittingField(x^3 - 4*x + 1);
> L1 := NumberField(x^6 - 4580*x^5 + 517540*x^4 - 17136986*x^3
> + 164417420*x^2 - 53936828*x + 229);
> time gfcCompositum(L, L1);

Documentation

gfcUndecomposed(L::FldNum, p0::RngIntElt) -> ModCoho, Map,
ModTupRngElt

Optional parameters: psiL:=0
Computes the global fundamental class for a (totally real) number field L in
which the prime p0 is undecomposed, see Section 3.2.1. Optionally one can pass
the Galois action on L as map G→ Aut(L|Q).
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gfcCompositum(L::FldNum, L1::FldNum) -> ModCoho, Map, ModTupRngElt

Given an arbitrary (totally real) Galois extension L|Q and a cyclic extension
L1|Q of the same degree, this method computes then global fundamental class of
L|Q as in Algorithm 3.13.

trivialSClassNumberPrimes(L::FldNum) -> SeqEnum

Optional parameters: primes:=[]
Compute a sequence of primes such that the S-class number of all subfields of L
is trivial. Optionally specify a set of primes which will be included in S.

inducedModule(M::GrpAb, phi::Map, G::Grp) -> GrpAb, Map, SeqEnum,
SeqEnum, SeqEnum

Given a (left) H-module M as abelian group with H-action by ϕ : H → Aut(M)
and H a subgroup of G. Compute the induced module N as a direct sum and re-
turn N , the G-action on N , a left representation system R of G/H, and sequences
of embeddings M → N and projections N →M according to R.

B.3 Global representations
Filename: globalrep.m
This package contains heuristic methods to compute global representations of
local Galois extensions.

Basic usage and examples

The most important command in this package is GlobalRepresentations. It can
be used to find global representations for local Galois extensions. For example
the command
> GlobalRepresentations( SymmetricGroup(3), 3 );
finds global representations for S3 extensions of Q3. This is done by computing
all extensions of degree 6 of Q3 using the command AllExtensions, sending an
internet request to the database of Klüners and Malle to get a list of polynomials
generating S3 extensions, and selecting appropriate polynomials for the local
extensions. The internet request is implemented using the Unix wget command
and will therefore not work if this command is not available on your system.
In this case, a list of candidate polynomials can be passed using the optional
parameter candlist.

Using the same command, one can also find global representations for multiple
Galois groups and primes. And as a last option, one can find global representa-
tions for a list of local extensions for which the Galois group is known.
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The result presented in Appendix A.1, is found using the following commands

> list := [ < SmallGroup(n,i), p > :
> i in [1..NumberOfSmallGroups(n)],
> p in [x[1] : x in Factorization(n)],
> n in [2..15] ];
> GlobalRepresentations( list );

However, the computation of all local extensions over Q2 and Q3 of degree 8 and
9, respectively, will take a long time.

One can therefore also use the database by Jones and Roberts [JR]. On their
website the authors provide files, which contain all those local extensions and
corresponding Galois information. After defining a few polynomial rings, one can
load these files and compute global representations. As an example, this is done
for the degree 8 extensions of Q2 by the following commands with a computation
time of about a minute:

> Zy<y> := PolynomialRing(Integers());
> Zt<t> := PolynomialRing(Integers());
> Zx<x> := PolynomialRing(Integers());
> load "JR/Q2deg8a.m";
> GlobalRepresentationsJR( pols, 2 );

The two databases can also be accessed directly using kluenersMallePols or
jonesRobertsPols.

Finally, a few formulas of [JLY02] were implemented. With the commands
genericC4Pol and genericD4pol one can construct polynomials generating C4-
and D4-extensions. And embeddingC2C4 embeds a given C2 extension into a
C4-extension, if possible.

Documentation

GlobalRepresentations(G::Grp, p::RngIntElt) -> .
GlobalRepresentations(list::SeqEnum) -> .

Optional parameters: JR:=false, candlist:=[]
Given a Galois group G and a prime p or a list of tuples 〈G, p〉. For each tu-
ple compute all local extensions of degree #G of Qp, and search for global rep-
resentations using the database by Klüners/Malle. Also shows corresponding
polynomials from the database by Jones/Roberts if JR is set to true.
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GlobalRepresentations(ext::SeqEnum, G::Grp) -> SeqEnum

Optional parameters: JR:=false, candlist:=[]
Given a list of local extensions which have Galois group G. Search for global
representations using the database by Klüners/Malle. Also shows corresponding
polynomials from the database by Jones/Roberts if JR is set to true.

GlobalRepresentationsJR(pols::List, p::RngIntElt) -> .
GlobalRepresentationsJR(pols::List, n::RngIntElt, p::RngIntElt) ->.

Given a list of polynomials in format of the database by Jones/Roberts, repre-
senting extensions of degree n of Qp. For each Galois group of this degree, select
corresponding polynomials from the list and search for global representations
using the database by Klüners/Malle.

allExtensionsForGroup(G::., p::RngIntElt) -> SeqEnum

Optional parameters: precision:=100, ext:=[]
Compute all extensions of Qp using AllExtensions and select those which have
the given Galois group. If a list ext of extensions is given, this list is being
searched for suitable extensions.

kluenersMallePols(d::RngIntElt, t::RngIntElt) -> SeqEnum

Get all polynomials of degree d with Galois group identifier 〈d, t〉 from the
database by Klüners/Malle. Note that the identifier of Magma does not always
agree with the identifier of Klüners/Malle. Depends on an internet connection
and the Unix wget command.

kluenersMallePolsG(G::Grp) -> SeqEnum

Get all polynomials with Galois group G from the database by Klüners/Malle.
Depends on an internet connection and the Unix wget command.

jonesRobertsPols(n::RngIntElt, p::RngIntElt) -> SeqEnum

Get polynomials generating all extensions of degree n of Qp from the database by
Jones/Roberts. Depends on an internet connection and the Unix wget command.

genericC4Pol(s::FldRatElt, t::FldRatElt) -> RngUPolElt
genericC4Pol(s::FldNumElt, t::FldNumElt) -> RngUPolElt

Returns the generic C4-Polynomial for s and t from [JLY02, Cor. 2.2.6]. The
given polynomial generates a C4-extension if s 6= 0 and 1 + t2 is not a square.
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genericD4Polynomial(a::., b::. ) -> RngUPolElt

If b and b(a2− 4b) are both not square, the polynomial f = bX4 + aX2 +1 which
generates a D4 extension is returned. Otherwise an error occurs. See [JLY02,
Cor. 2.2.4].

randomD4Polynomial(K::., bound::RngIntElt) -> RngUPolElt

Optional parameters: maxTries:=5
Computes a random polynomial generating a D4 extension over K.

embeddingC2C4(K::FldNum) -> BoolElt, RngUPolElt

Optional parameters: p:=0
Computes a generating polynomial for a C4-Extension L|Q which includes
K|Q, [K : Q] = 2. If p is specified, L will be unramified and undecomposed
at p. L can either be created as absolute field over Q or relative over K. See
[JLY02, Thm. 2.2.5].

B.4 Local epsilon constant conjecture

Filenames: epsconj.m, characters.m, artin.m
This package contains algorithms to prove the local epsilon constant conjecture
computationally as in Algorithm 5.12, see Chapter 5. Some algorithms are orga-
nized in separate files since they might be of independent interest.

Basic usage and examples

The functions for the Local Epsilon Constant Conjecture all start with the prefix
LEC. The main function is LECverify which applies Algorithm 5.12. It requires
a global field which is undecomposed at a given prime.

> L := NumberField(x^6+3);
> LECverify(L,3);

The verification of the conjecture works on a special record-format (LECrec) which
holds all necessary information. To experiment with specific values of the conjec-
ture (e.g. the equivariant discriminant dL|K), one can proceed as follows:

> lec := LECcreateRec(L, 3);
> LECverify(~lec);
> lec‘dLK;
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LECverify will call the following functions:

• LECpreparations: computes the composite field E,

• LECcomputeValues: computes all values for the conjecture,

• LECimagesK0Rel: read these values in the same relative K-group,

• LECcheck: check the conjecture.

Some parts of the algorithm are further split: one can compute each part of
the conjecture separately (commands LECdiscriminant, LECcorrectionTerm,
LECunramifiedTerm, LECcohomologicalTerm, and LECepsilonConstant) by ei-
ther passing an LEC-record or all necessary parameters.

The values in the LEC-format that already exist will be used by LECverify, as
far as it makes sense. The algorithm will then omit the computation of those
values. This allows to reuse values which are already computed.

In the following example, we discover that the epsilon constants are actually
rational numbers. We can then replace the field Q(ζm, ζpt) used to compute the
epsilon constants by the field Q(ζm) and the rest of the conjecture is proved by
using a smaller composite field E.

> L := NumberField(x^6 + 3*x^5 - 18*x^4 + 9*x^3 + 24*x^2 - 15*x - 5);
> lec := LECcreateRec(L,3);
> LECepsilonConstant(~lec);
> assert &and( [x in Rationals() : x in lec‘tLK] );
> lec‘tLK := [* Rationals()!t : t in lec‘tLK*];
> lec‘Qmpt := CyclotomicField( Exponent(lec‘G) );
> LECverify(~lec);

This approach was also used in the last example listed in Table A.4, see also the
footnote on page 169.

Documentation

LECverify(L::FldNum, p::RngIntElt, N::FldNum) -> BoolElt
LECverify(L::FldNum, p::RngIntElt) -> BoolElt

Verify the local epsilon constant conjecture for L|Q at p. N must be an extension
of degree [Lab : Q] such that p is unramified in N . The prime p must not
decompose in L or N . If not given, N is found heuristically as a subfield of a
cyclotomic field (for p 6= 2).

LECverify(setting::Rec) -> BoolElt
LECverify(~setting::Rec)

Verify the local epsilon constant conjecture for the given setting, as created for
example by LECcreateRec. No further checks are made on the given parameters.
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LECcreateRec(L::FldNum, p::RngIntElt) -> Rec

Creates an LEC-record for the number field L and prime p and computes the
automorphism group of L|Q.

LECpreparations(~setting::Rec)

Preparation for the verification of the local epsilon constant conjecture. Com-
putes: a lattice L , the completion of L at P, the composite field E, and the
relative group K-group.

LECcomputeValues(~setting::Rec)

Optional parameters: forceAllComputations:=false
Compute the five terms going into the local epsilon constant conjecture: the equiv-
ariant discriminant, the correction term, the unramified term, the cohomological
term, and the equivariant epsilon constant.

LECimagesK0Rel(~setting)

Read all the values of the Epsilon Constant Conjecture, as computed by
LECcomputeValues, in the same relative K-group.

LECcheck(setting) -> BoolElt
LECcheck(~setting)

Verify the local epsilon constant conjecture for the given setting, where the re-
duced norms are already computed.

Methods to compute the values of the conjecture independently

LECdiscriminant(psi::Map, theta::RngOrdElt) -> AlgGrpElt
LECdiscriminant(setting::Rec) -> AlgGrpElt
LECdiscriminant(~setting::Rec)

Compute the equivariant discriminant of a lattice as described in (5.8), see also
[BlBr08, § 4.2.5].

LECcorrectionTerm(setting::Rec) -> .
LECcorrectionTerm(~setting::Rec)
LECcorrectionTerm(QG::AlgGrp, psi::Map, P::RngOrdIdl) -> AlgGrpElt

Compute the correction term as defined by (5.3).
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LECunramifiedTerm(psi::Map, p::RngIntElt, N::FldNum) -> AlgGrpElt
LECunramifiedTerm(setting::Rec) -> AlgGrpElt
LECunramifiedTerm(~setting::Rec)

Compute the unramified term in N [G] for an extension L|Q, a prime p, ψ :
Gal(L|Q) → Aut(L), and N an unramified extension with [N : Q] = [Lab : Q],
see (5.9) and also [BlBr08, § 4.2.7].

LECcohomologicalTerm(setting::Rec) -> Rec
LECcohomologicalTerm(~setting::Rec)

Compute the cohomological term for the local epsilon constant conjecture as
described in Section 5.4 on page 125, see also [BlBr08, § 4.2.4].

It depends on several attributes in the LEC-record, as computed by
LECcreateRec and LECpreparations. The algorithm first computes a cocycle for
the local fundamental class and then continues by computing the splitting mod-
ule C(γ), its projective resolution, and finally the Q[G]-isomorphism between
K +Q[G] and Q[G]r.

LEClattice(P::RngOrdIdl, pi::RngOrdElt, psi::Map) -> FldNumElt,
RngIntElt

LEClattice(~setting)

Given a prime ideal P of L with uniformizing element π and automorphism map
ψ : G → Aut(L). Compute a generator θ of a suitable lattice and an integer m
such that the lattice includes Pm.

For the LEC-record, a few suitable lattices are computed and the (computation-
ally) best one is chosen for further computations.

LECcomputeLPmulModX(setting::Rec) -> ModTupRng, SeqEnum, Map

Compute the module Lf = L×P/X,X = exp(L ) from Lemma 2.1 for the given
setting as well as a sequence of matrices representing the G-action and a map
L×P � Lf .

LECepsilonConstant(L::FldNum, p::RngIntElt) -> List
LECepsilonConstant(setting::Rec) -> List
LECepsilonConstant(~setting::Rec)

Compute epsilon constants as described in in Section 5.4 on page 126, see also
[BlBr08, § 2.5]. It depends on several attributes in the LEC-record, as computed
by LECpreparations or LECprepareEps.



182 Appendix B Magma Packages

LECprepareEps(~setting::Rec)

Compute Brauer inductions of all irreducible characters and the required precision
t for the Galois Gauss sums, see [BlBr08, Rem. 2.7].

Functions for norm residue symbols

localNormResidueSymbol(x::FldNumElt, N::FldNum, M::FldNum, PM::.)
-> GrpElt, FldAb

localNormResidueSymbol(x::FldNumElt, Na::FldAb, PM::.) -> GrpElt

Let N |M be a global abelian extension, x ∈ M× and PM an ideal of M such
that there is just one prime ideal PN in N above PM . Compute the local norm
residue symbol (x,NPN

/MPM
) in Gal(N |M). The extension N |M can also be

given as abelian field.

localNormResidueSymbolAsGlobalIdeal(alpha::FldNumElt, F::SeqEnum,
PK::RngOrdIdl) -> RngOrdIdl

localNormResidueSymbolAsGlobalIdeal(alpha::FldRatElt, F::SeqEnum,
PK::RngInt) -> RngOrdIdl

Given the factorization F of the Artin conductor of an abelian extension N |M ,
an element α in M and an ideal PM of M such that there is just one prime ideal
PN of N above PM . Compute an ideal a of M such that the global Artin symbol
(a, N |M) is equal to the local norm residue symbol (α,NPN

/MPM
).

globalArtinSymbol(a::RngOrdFracIdl, psi::Map) -> GrpElt
globalArtinSymbol(a::RngInt, psi::Map) -> GrpElt

For an abelian extension N |M , an ideal a in M and ψ : Gal(N |M) → Aut(L).
Compute the Artin symbol (a, N |M) ∈ Gal(N |M).

Functions for characters

brauerInductionDeg0(chi::AlgChtrElt) -> SeqEnum

Given a character χ of G, compute the Brauer Induction of χ − χ(1)1G, i.e.
compute triples (H,ϕ, c), where H is a subgroup of G, ϕ is a linear character of
H, and cH,ϕ is an integer, such that

χ− χ(1)1G =
∑
H,ϕ

cH,ϕindGH(ϕ− 1H).
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conductor(chi::AlgChtrElt, P::RngOrdIdl) -> RngIntElt
conductor(chi::AlgChtrElt, RamGroups::SeqEnum) -> RngIntElt

For a character χ of G compute the conductor

n(χ) =
∞∑
i=0

#Gi

#G0

codim(V Gi
χ ),

where Gi denotes the i-th ramification group of P. Either the prime P or a list
of the non-trivial ramification groups is needed.

det(chi::AlgChtrElt, lambda::AlgGrpElt) -> AlgMatElt

Given λ ∈ Q[G], compute detχ(λ) using Brauer induction and determinants of
linear characters.

det(chi::AlgChtrElt) -> AlgChtrElt

Compute the character ψ given by the linear representation ψ(g) = detχ(g).

det(chi::AlgChtrElt, psi::Map, p::RngIntElt, x::FldRatElt) ->
FldCycElt

Given an extension L|Q, a character χ ∈ Irr(G) and x ∈ Q, compute detχ(x)
using Brauer induction. If N |M is the abelian extension for χ, then detχ(x) =
detχ((x,N |M)). For the definition see [Bre04a, Prop. 3.6(4)].

galoisActionOnCharacters(G::Grp, psiG::Map, Irr::SeqEnum) -> Map

Given a group G, ψ : G→ Aut(L) and the irreducible characters of G. Compute
the Galois action G× Irr(G) → Irr(G).
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