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Abstract

Purpose – The purpose of this paper is to present a time-domain technique to compute the
electromagnetic wave field and to reconstruct the permittivity and electric conductivity profile of a
one-dimensional slab of finite length.

Design/methodology/approach – The forward scattering problem is solved by a Green’s function
formulation to generate synthetic data that are used as a testbed for the inversion scheme. The inverse
scattering problem is solved by reconstructing the unknown permittivity and electric conductivity
profile of the medium with the help of an invariant embedding method.

Findings – The Green’s operator maps the incident field on either side of the medium to the field at
an arbitrary observation point inside the slab and hence, the internal fields can be computed directly
without computing the wave field throughout the entire medium. The invariant embedding method
requires a finite time trace of reflection data and therefore it is suitable for reconstructing the material
parameters in real-time.

Practical implications – The implemented methods have been validated against synthetic and
measured time domain reflectometry data.

Originality/value – This paper fulfils an identified need to determine unknown one-dimensional
profiles and thus plays an important role in electromagnetics, non-destructive testing, and geophysics.

Keywords Waves, Electromagnetism, Non-destructive testing, Geophysics

Paper type Research paper

I. Introduction
Recently, 1-D profiling has become a point of high interest, for instance in geophysics
and non-destructive testing (NDT), not only due to the ease to solve the problems
analytically but also due to a high-accuracy level. It has great importance in the time
domain reflectometry such as moisture meter and material analysis (Connor and
Dowding, 1999; Schlaeger, 2002). The forward solver of such schemes works on a
known slab and determines the electromagnetic field. On the other hand, the inverse
solver takes the reflection data from the slab as an input and determines the properties
of the unknown slab. The known methods to solve the forward problem are for
instance:

. finite-difference time-domain method (Taflove and Hagness, 2000);

. finite integration technique (Weiland, 1977; Marklein, 2002);

. finite element method (Jin, 2002); and

. Green’s function approach (Krueger and Ochs Jr, 1989; Rahman and Marklein,
2005).
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The Green’s function approach has some advantages over the other methods. First, in
this method the wave equation needs not to be solved for each incident wave form.
Second, the wave field throughout the entire medium does not have to be computed.
For these advantages, this method has been implemented in the forward solver.

The inverse problem can be solved by:
. invariant embedding (Corones et al., 1983; Kristensson and Krueger, 1992); and
. downward continuation (Kristensson and Krueger, 1986).

The less amount of input data could be mentioned as main advantage of the layer
stripping method. Obviously, the reflection data should be processed before feeding
them into the inverse scheme.

II. Statement of the problem
The geometry of the problem is shown in Figure 1. An inhomogeneous slab occupies
the region 0 # z # L. The permittivity and conductivity profiles are functions of depth
z only.

A homogeneous, lossless medium is situated on either side of the slab. The electric
field strength E(z, t) within the slab can be expressed by:

›2

›z 2
Eðz; tÞ2

1

c 2ðzÞ

›2

›t 2
Eðz; tÞ2 bðzÞ

›

›t
Eðz; tÞ ¼ 0; ð1Þ

where:

c22ðzÞ ¼ 1ðzÞm0; bðzÞ ¼ sreðzÞm0: ð2Þ

Here, m0, se(z) and 1(z) represent the permeability of vacuum, electric conductivity and
permittivity, respectively. The phase velocity c(z) is assumed to be continuous at the
boundary, which means:

cðzÞ ¼ cð0þÞ; z # 0; cðzÞ ¼ cðL2Þ; z $ L: ð3Þ

III. Normalization of the wave equation
In order to facilitate, the numerical computations a conversion to travel time
coordinates is made. These coordinates are defined as:

Figure 1.
Geometry of the
inhomogeneous slab;
medium 1: 11, se0; slab:
1(z), se(z); medium 2:
12, se0

z0 L

Inhomogeneous

Homogeneous
e1, se0

Homogeneous
e2, se0

e (z)
se (z)
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l ¼

Z L

0

1

cðzÞ
dz; sðtÞ ¼

t

l
ð4Þ

x ¼ xðzÞ ¼

Z z

z0¼0

1

lcðz0Þ
dz0; uðx; sÞ ¼ Eðz; tÞ; ð5Þ

where x is the normalized distance and s is the normalized time. The slab occupies the
region 0 # x # 1 and a round trip time is described by 0 , s , 2 which is equivalent
to 2 l. In fact, l represents the time taken by the wave front to travel through the slab
once. So the wave equation will be transformed into:

›2

›x 2
uðx; sÞ2

›2

›s 2
uðx; sÞ þ AðxÞ

›

›x
uðx; sÞ þ BðxÞ

›

›s
uðx; sÞ ¼ 0 ; ð6Þ

where:

AðxÞ ¼ 2
d

dx
ln c½zðxÞ� ð7Þ

BðxÞ ¼ 2lb½zðxÞ� c2½zðxÞ�: ð8Þ

IV. Wave splitting
The wave travelling in the non-homogeneous slab can be splitted into left- and
right-going parts.

In Figure 2, u þ (x, s) is the right going wave and u 2 (x, s) is the left going wave. For
all time s, the initial and boundary conditions are:

uþðx; 0Þ ¼ u2ðx; 0Þ ¼ 0; 0 , x , 1 ð9Þ

uþð0; sÞ ¼ f ðsÞ; u2ð1; sÞ ¼ 0; s . 0: ð10Þ

An incident wave, impinged only from the left side, is denoted by f(s).

V. Forward solver: Green’s function approach
The Green’s function approach is applied to model the forward problem. We assume
that the incident wave, the length of the slab L, the relative permittivity 1r, and the
electric conductivity se profile are known. The goal is to determine the internal wave
field. A matrix operator [G](x) can be defined to map the incident waves u þ (0, s) and
u 2 (1, s) to internal fields u þ (x, s) and u 2 (x, s) as:

Figure 2.
Wave splitting; uþðx; sÞ:

right going wave and
u2ðx; sÞ: left going wave

u(x,s) = u+(x,s) + u–(x,s)

u– (x,s) u+ (x,s)

x0 1
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uþðx; sÞ

u2ðx; sÞ

( )
¼

¼½G�ðxÞ

G11ðxÞ G12ðxÞ

G21ðxÞ G22ðxÞ

" #
uþð0; sÞ

u2ð1; sÞ

( )
: ð11Þ

Considering an incident wave only from left side, we find:

uþðx; sÞ ¼ G11ðxÞ*f ðsÞ

u2ðx; sÞ ¼ G21ðxÞ*f ðsÞ

)
; as uþð0; sÞ ¼ f ðsÞ; ð12Þ

where “ *” denotes convolution. G11 and G21 are related to the forward and backward
travelling wave, respectively, when the incident wave is applied from the left side of
the slab. G12 and G22, are not considered here as they are only applicable for an incident
wave coming from the right side of the slab. Now by applying Duhamel’s integral:

uþðx; sÞ ¼ tþð0; xÞ f ðs2 xÞ

Z s2x

0

f ðs0ÞG11ðx; s2 s0Þds0
� �

ð13Þ

u2ðx; sÞ ¼
1

t2ð0; xÞ

Z s2x

0

f ðs0ÞG21ðx; s2 s0Þds0; ð14Þ

where:

t^ðx1; x2Þ ¼ exp ^
1

2

Z x2

x1

½Aðx0�7 Bðx0Þ�dx0
� �

: ð15Þ

VI. Equations of the Green’s Kernel
The fields uþðx; sÞ and u2ðx; sÞ satisfy the following equation:

›

›x

uþðx; sÞ

u2ðx; sÞ

( )
¼

aðxÞ bðxÞ

gðxÞ dðxÞ

" #
uþðx; sÞ

u2ðx; sÞ

( )
; ð16Þ

where a(x), b(x), g ðxÞ; and d(x) are the functions of A(x), B(x) and incorporate time
derivative ›/›s. From equations (11) and (16), it can be summarized that:

›

›x
½G�ðxÞ ¼

aðxÞ bðxÞ

gðxÞ dðxÞ

" #
G11ðxÞ G12ðxÞ

G21ðxÞ G22ðxÞ

" #
: ð17Þ

Again using equation (12), it can be shown that:

›

›x
½G11ðxÞf �ðsÞ ¼ aðxÞ½G11ðxÞf �ðsÞ þ bðxÞ½G21ðxÞf �ðsÞ: ð18Þ

Substituting [G11(x)f ](s) by the right side of equation (13), a simple expression of G11

can be obtained as follows:

›

›x
G11ðx; sÞ þ

›

›s
G11ðx; sÞ ¼

1

2
½AðxÞ þ BðxÞ�exp 2

Z x

0

Bðx0Þdx0
� �

G21ðx; sÞ: ð19Þ
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Similarly using equation (14), G21 can be defined as:

›

›x
G21ðx; sÞ þ

›

›s
G21ðx; sÞ ¼

1

2
½AðxÞ2 BðxÞ�exp

Z x

0

Bðx0Þdx0
� �

G11ðx; sÞ: ð20Þ

G11 is continuous everywhere except on s ¼ x (Figure 3). On this line the kernels can be
expressed as:

G11ðx; x
þÞ ¼ 2

1

8

Z x

0

½A 2ðx0Þ2 B2ðx0Þ�dx0 ð21Þ

G21ðx; x
þÞ ¼ 2

1

4
½AðxÞ2 BðxÞ�exp

Z x

0

Bðx0Þdx0
� �

: ð22Þ

Again on the line s ¼ 2 2 x:

G21ðx; ð2 2 xÞþÞ2 G21ðx; ð2 2 xÞ2Þ ¼
1

4
½Að1Þ2 Bð1Þ�exp

Z 1

0

Bðx0Þdx0
� �

: ð23Þ

The initial and boundary conditions can be defined as:

G11ðx; sÞ ¼ G21ðx; sÞ ¼ 0; s , x ð24Þ

G11ð0; sÞ ¼ G21ð1; sÞ ¼ 0; s . 0: ð25Þ

VII. Numerical implementation of the forward solver
The Green’s kernels explained by equations (19) and (20) can also be implemented
numerically. By fixing a constant D, the first equation can be integrated from (x 2 D,
s 2 D) to (x, s) along the characteristics s 2 x ¼ const. and the second one from (x, s)
to (x þ D, s 2 D) along the characteristics s þ x ¼ const. with approximating the
right-hand side by the trapezoidal rule. So the equations will become:

G11ðx;sÞ2G11ðx2D;s2DÞ ¼ aðxÞG21ðx;sÞþaðx2DÞG21ðx2D;s2DÞþOðD3Þ ð26Þ

Figure 3.
Conditions of the Green’s

kernel
0 1 x

G11 = 0

G11 = 0

s = x

s = 2 – x

G21 = 0

G21 = 0
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G21ðxþD;s2DÞ2G21ðx;sÞ ¼ bðxÞG11ðx;sÞþbðxþDÞG11ðxþD;s2DÞþOðD3Þ; ð27Þ

where:

aðxÞ ¼
1

4
D½AðxÞ þ BðxÞ�exp 2

Z x

x
0
¼0

Bðx
0

Þdx
0

� �
ð28Þ

bðxÞ ¼
1

4
D½AðxÞ2 BðxÞ�exp

Z x

x0¼0

Bðx0Þdx0
� �

: ð29Þ

Let us now introduce a grid of points as shown in Figure 4: ðxi; siþ2jÞ ¼ ðiD; ði þ 2jÞDÞ,
i ¼ 0, . . . , N; j ¼ 0,. . . Here N represents the total number of grid points. Considering
D ¼ 1/N, it can be stated that:

G i; j
11 ¼ G11ðiD; ði þ 2jÞDÞ; a i ¼ aðiDÞ ð30Þ

G i; j
21 ¼ G21ðiD; ði þ 2jÞDÞ; b i ¼ bðiDÞ: ð31Þ

Using these approximations, equations (26) and (27) can be rewritten as:

G i; j
11 ¼ d i G i21; j

11 þ a i21G i21; j
21 2 aib iþ1G iþ1; j21

11 þ a iG iþ1; j21
21

h i
ð32Þ

G i; j
21 ¼ d i 2b iG i21; j

11 2 a i21b iG i21; j
21 2 b iþ1G iþ1; j21

11 þ G iþ1; j21
21

h i
; ð33Þ

where:

d i ¼ ½1 þ a ib i�21 ¼ 1 þ
1

16
D2ðA 2ðiDÞ2 B 2ðiDÞÞ

� �21

ð34Þ

and i ¼ 1, 2 . . . , N 2 1; j ¼ 1, 2,. . . The initial condition represented by s ¼ x, i.e. j ¼ 0,
can be determined by equations (21) and (22). The boundary conditions are:

G 0; j
11 ¼ 0; GN ; j

21 ¼ 0; j ¼ 0; 1; 2; . . . ð35Þ

To incorporate the discontinuity of G21 on the line s ¼ 2 2 x, i.e. j ¼ N 2 i, G i;N2i
21

below the line can be computed by equation (31). Above this line, ðG i;N2i
21 Þþ can be

determined by:

G i;N2i
21

� �
¼ G i;N2i

21

� �2
þ

1

4
½Að1Þ2 Bð1Þ�exp

Z 1

0

BðxÞdx: ð36Þ

Figure 4.
Computational molecule
and variable
transformation

Computational molecule

i – 1, j i – 1, j + 1

i, j s = x j = 0

j = N – is = 2 – x
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This value is used in place of G i;N2i
21 determined by equation (33) while computing

G i;N2iþ1
11 and G i;N2iþ1

21 .

VIII. Software implementation of the forward solver
This scheme has already been tested to simulate sinusoidal, square, and multiple
Gaussian shaped 1r profiles. Considered electromagnetic pulses are: Dirac pulse,
Gaussian pulse, five pulses of a sinusoidal wave, raised cosine, and step function.
The results have been tested in both lossless and lossy condition. As an example we
consider the material profile of a floor model as shown in Figure 5, which has been
constructed by the Fraunhofer Institute for NDT (IZFP, Saarbrücken, Germany).The
left side of the test specimen is illuminated by a broadband raised cosine pulse with
two cycles and a carrier frequency of 1.68 GHz. The computed electromagnetic wave
field is shown in Figure 6.

A multiple Gaussian shaped slab model with incident Gaussian pulse has been
simulated as the second example (Figures 7 and 8).

IX. Inverse solver: invariant embedding method
The inverse problem is solved by the invariant embedding (also known as
layer–stripping) method (Rahman and Marklein, 2005), originally suggested in
(Kristensson and Krueger, 1992). This algorithm determines the unknown relative
permittivity profile 1r of the slab from the known values, like slab length L, incident

Figure 6.
Computed wave field: E:
total, E in: incident, and

E sc: scattered electric field
strength as well as B:
magnetic flux density
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8
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Notes: Parameter: L = 28.3 cm, Nz = Nx = 304, ∆ = 931 mm, ∆t = 5 ps

Figure 5.
Profiles of a floor model: 1r

(left) and se (right) profile

0 0.0566 0.1132 0.1698 0.2264 0.283

1
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3
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5

z  in m → z  in m →

Relative permittivity profile

ε r→ σ e→

0 0.0566 0.1132 0.1698 0.2264 0.283
0

0.01

0.02

0.03
Conductivity profile

Notes: Parameter: L = 28.3 cm, Nz = Nx = 304, ∆ = 931 mm, ∆t = 5 ps
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pulse, relative permittivity of the first medium 1ð1Þr , and computed or measured
reflection data. From the wave splitting phenomenon, it can be shown that:

Eðz; tÞ ¼ E þðz; tÞ þ E2ðz; tÞ: ð37Þ

The backward travelling wave E 2 (z, t) can be associated with reflection kernel R þ (z,
t) as follows:

E 2ðz; tÞ ¼ E þðz; tÞ*R
þðz; tÞ: ð38Þ

The reflection data obtained from measurement can be mentioned as E 2 (0, t) at the
first layer (Figure 9). To find the reflection kernel R þ (0, t) at this layer, we have to
perform a deconvolution. As a result:

Rþð0; tÞ ¼ decon{E2ð0; tÞ; f ðtÞ} as f ðtÞ ¼ E þð0; tÞ: ð39Þ

Figure 7.
Arbitrary smooth profile:
1r (left) and se (right)
profile
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3
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Relative permittivity profile
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0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

z in m →

Conductivity profile

σ e
→

Notes: Parameter: L = 10 cm, Nz = Nx = 256, ∆ = 3.9 mm, ∆t = 1.7 ps

Figure 8.
Computed wave field: E:
total, E in: incident, and
E sc: scattered electric field
strength as well as B:
magnetic flux density
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Figure 9.
Wave splitting and layer
approach
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As deconvolution is much easier to perform in frequency domain, the time domain
parameters f(t) and E – (0, t) will be transformed into frequency domain parameters
F(v) and E 2 (v) at first by using fast Fourier transform. Then in frequency domain it
can be written as:

E2ðvÞ ¼ RþðvÞFðvÞ ) RþðvÞ ¼
E2ðvÞ

FðvÞ
: ð40Þ

The obtained data should be filtered in order to avoid zeros which might occur at the
deconvolution step. A Hanning window is used in this scheme as a filter. At the end,
R þ (v) is converted into R þ (0, t) by inverse fast Fourier transform. Then the reflection
data from the first layer will be used to initiate the reconstruction process.

X. Reflection kernel and reconstruction basics
Equation (38) can be rewritten as:

E2ðz; tÞ ¼

Z t

21

Rþðz; t 2 t0ÞE þðz; t0Þdt0: ð41Þ

Solving this equation for R þ (z, t):

›

›z
Rþðz; tÞ2

2

cðzÞ

›

›t
Rþðz; tÞ ¼

c0ðzÞ

2cðzÞ

Z t

0

Rþðz; t 2 t0ÞRþðz; t0Þdt0 ð42Þ

Rþðz; 0Þ ¼
1

4
c0ðzÞ ð43Þ

RþðL; tÞ ¼ 0: ð44Þ

Before entering the reconstruction step, normalization will be performed according to
the principle explained in Section 3. So the reflection kernel R þ (z, t) will be
transformed into R þ (x, s) according to the relationship Rþðx; sÞ ¼ lRþðz; tÞ. Equations
(42)-(44) will become:

›

›x
Rþðx; sÞ2 2

›

›s
Rþðx; sÞ ¼ 2

AðxÞ

2

Z s

0

Rþðx; s2 s0ÞRþðx; s0Þds0 ð45Þ

Rþðx; 0Þ ¼ 2
1

4
AðxÞ ð46Þ

Rþð1; sÞ ¼ 0: ð47Þ

The next step is to determine the mapping parameter z(x) and the permittivity profile
1[z(x)]. From equation (7):

AðxÞ ¼ 2
d

dx
ln c½zðxÞ� ) ln c½zðxÞ� ¼ 2

Z x

0

Aðx0Þdx0 þ const:

) c½zðxÞ� ¼ k exp 2

Z x

0

Aðx0Þdx0
� �

:

ð48Þ
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The constant k represents c(0), the phase velocity of the first layer, i.e. at x ¼ 0. Now
from normalization principle:

xðzÞ ¼

Z z

0

1

l cðz0Þ
dz0 )

d

dz
xðzÞ ¼ 2

1

l cðzÞ
) cðzðxÞÞ ¼ 2

1

l

d

dx
zðxÞ: ð49Þ

From equations (48) and (49) it can be summed up that:

zðxÞ ¼ cð0Þl

Z x

0

exp 2

Z x0

0

Aðx00Þdx00

( )
dx0

" #
: ð50Þ

Replacing c(z) by 1=
ffiffiffiffiffiffiffiffiffiffiffi
m1ðzÞ

p
, equation (43) can be rewritten as:

1

m1ðzÞ
¼

1

m1ð0Þ
exp 22

Z x

0

Aðx0Þdx0
� �

) 1½zðxÞ� ¼ 11exp 2

Z x

0

Aðx0Þdx0
� �

;

0 , x , 1;

ð51Þ

where 11 ¼ 1(0) represents the permittivity of the first layer or the first medium.
Equations (50) and (51) are the basic equations for reconstruction. The transmission
kernel T þ (z, t), required to determine the electric conductivity se profile of the
unknown slab, can be associated with the forward traveling wave E þ (z, t) as:

uþð1; sþ 1 2 xÞ ¼ tþðx; 1Þ uþðx; sÞ þ

Z s

s0¼0

Tðx; s2 s0uþðx; s0Þds0
� �

: ð52Þ

XI. Numerical implementation of the inverse solver
The embedding equation (40) can be rewritten as:

›

›x
Rþðx; s2 2xÞ ¼ 2

1

2
AðxÞ

Z s22x

0

Rþðx; s2 2x2 s0ÞRþðx; s0Þds0: ð53Þ

Let us fix a constant D( ¼ Dx ¼ Ds). Integrating this equation from x–D to x and
keeping time at s þ 2x, yields:

Rþðx; sÞ2 Rþðx2 D; sþ 2DÞ ¼ 2
1

2

Z x

x2D

Aðx0ÞðRþ
*R

þÞðx0; sþ 2ðx2 x0ÞÞdx0; ð54Þ

where:

ðRþ
*R

þÞðx; sÞ ¼

Z s

0

Rþðx; s2 s0ÞRþðx; s0Þds0: ð55Þ

Let us introduce a uniform grid of points (xi, sj):

xi ¼ iD; i ¼ 0; 1; . . . ;N and sj ¼ 2jD; j ¼ 0; 1; . . . ;N 2 i: ð56Þ

Considering D ¼ 1/N, where N is the number of grid points, yields:

Ri; j ¼ Rðxi; sjÞ; Ai ¼ AðxiÞ: ð57Þ
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Using this grid point, equation (54) will be transformed into:

Rþ
i;j¼ Rþ

i21;jþ12
D2

2
Ai

Xj21

k¼1

Rþ
i;j2kR

þ
i;kþAi21

Xjþ1

k¼1

Rþ
i21;jþ12kR

þ
i21;k

( )" #
12

D2

8
A2

i

 !
:

ð58Þ

Again from equation (46):

Ai ¼ 24Rþ
i21;1 1 þ

D2

8
A2

i21

( )
: ð59Þ

The error made in equations (49) and (50) is of order O(D3). The initialization of the
algorithm is made by assigning:

Rþ
0;j ¼ Rþð0; 2jDÞ ¼ lRþð2jlDÞ; j ¼ 0; 1; . . . ;N : ð60Þ

The reconstruction is done in two steps as shown in Figure 10. At first, A(xi) is
calculated from the (i 2 1)-th grid. Second, Rþ

i; j is calculated from current time step
data of the (i 2 1)-th grid, old time step data of the i-th grid and next time step data of
the (i 2 1)-th grid.

XII. Software implementation of the inverse solver
The inversion scheme has already been tested to reconstruct sinusoidal shaped, square
shaped, and multiple Gaussian shaped relative permittivity profiles using the
reflection data from the Dirac pulse, the Gaussian pulse, five pulses of a sinusoidal
wave, raised cosine and step function in both noisy and noise-free environments. As an
example, we focus on the first test specimen considered for the forward solver and
compute the profiles of the relative permittivity and electric conductivity by applying
synthetic reflection and transmission data. Figure 11 shows inversion results of
synthetic data.

In Figure 12 reconstruction is performed using measured data from lime sandstone,
provided by the Federal Institute for Materials Research and Testing (BAM, Germany).
The reference signal is a step function of the magnitude of 1 V. The measured reflected
signal is shown on the left and the reconstructed relative permittivity profile is
presented on the right. Lime sandstone has the relative permittivity of the range of 5-8
depending on the moisture level and the amount of impurities inside it. The test result
shown in Figure 12, lies in that range and thus complies with the theoretical data.

XIII. Conclusions
The presented forward and inverse solver show accurate modeling and inversion
results for different types of slabs and incident electromagnetic pulses. Slabs having
continuous and discontinuous relative permittivity and electric conductivity profiles
have already been tested successfully. The inverse algorithm is specially suitable for
time domain reflectometry applications. Further, modifications are under development
to use this algorithm for ground-penetrating radar applications.
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