"Aspekte des Prozesses der N-Freisetzung aus Humusvorratsabbau"

von Norbert Wett, Kassel

Universität Kassel Fachbereich Stadtplanung, Landschaftsplanung

zur Erlangung des akademischen Grades

Dr. Ing.

vorgelegte Dissertation

Kassel, Februar 2003

Inhaltsverzeichnis

1.	Vorwort				
2.	Einführung				
	2.1 Literaturübersicht zum Themenkomplex				
		2.1.1 Stickstoff in Waldböden	7		
		2.1.2 Temperatureffekte und Mineralisation	9		
		2.1.3 Critical Loads für Stickstoff	11		
		2.1.4 Bodenmikroorganismen als Stickstoff-Zwischenspeicher	13		
		2.1.5 Wurzelaufnahme von Stickstoff	14		
3.	Untersuchungskonzept				
	3.1 Einbettung in die Stoffbilanz-Fallstudie Zierenberg des Forschungszentrums				
		Waldökosysteme Göttingen	15		
	3.2	Versuchsansatz	16		
	3.3	Ziele	17		
4.	Mat	erial und Methoden	19		
	4.1	Untersuchungsgebiet	19		
		4.1.1 Lage und Geologie	19		
		4.1.2 Vegetation und Klima	22		
	4.2	Versuchsaufbau	23		
		4.2.1 Auswahl der Fläche	23		
		4.2.2 Rasterpunkte und weitere grundlegende Installationen	26		
		4.2.3 Weitere Versuchseinrichtungen	26		
	4.3	Methoden	31		
		4.3.1 Licht, Temperatur und Bodenfeuchte	31		
		4.3.2 Ermittlung der Gesamt-Stickstoff-Vorräte der Bodenfestphase	32		
		4.3.2.1 Probenahme und Probenvorbereitung	32		
		4.3.2.2 Analytik	33		
		4.3.3 Mikrobieller Stickstoffpool in der Festphase	33		
		4.3.3.1 Chloroform-Fumigation-Extraktion des N _{mic} der Bodenfestphase	34		
		4.3.4 Ermittlung des Stoffflusses ohne Wurzelaufnahme	37		
		4.3.5 Ermittlung der N-Zwischenspeicherung in aufwachsender Biomasse	38		
		4.3.6 Stoffhaushaltsbilanzierungen	39		
		4.3.7 Geräte und Nachweisgrenzen	39		
5.	Ergebnisse				
	5.1 Licht- und Temperaturregime				
	5.2	Wasserhaushalt	46		
		5.2.1 Saugspannung	46		
		5.2.2 Wasserflussbilanz	49		
	5.3	Stickstoffgehalte und -vorräte der Vegetation	51		
	5.4	Stickstoffgehalte und -vorräte der Bodenfestphase	53		

	5.4.1 Organische Auflage	53
	5.4.2 Mineralboden–Inventur vor Versuchsbeginn	54
	5.4.3 Stickstoffvorrat im Mineralboden der Mikrokosmen	55
5.5	Stoffflüsse und -bilanzen der Mikrokosmen	56
	5.5.1 Konzentrationen im Sickerwasser	56
	5.5.2 Zeitlicher Verlauf der Nitrat-N- und Ammonium-N-Konzentrationen im Sickerwasser	63
	5.5.3 Räumliche und zeitliche Variabilität des N-Stoffflusses	66
	5.5.3.1 Verlauf des N-Flusses im Sickerwasser-Austrag in hydrologischen Halbjahren	67
	5.5.4 Vorräte und Umsetzung von mikrobiell gebundenem Stickstoff	69
	5.5.4.1 N _{mic} -Gehalte und -Vorräte in der Bodenfestphase vor Versuchsbeginn	70
	5.5.4.2 Zeitliche Änderungen im N _{mic} -Vorrat der Bodenfestphase	
	im Sommerhalbjahr 1994	71
	5.5.5 Gesamt-N-Konzentrationen und Gesamt-N-Flüsse im Sickerwasser	74
5.6	Stickstoff-Bilanzen	79
	5.6.1 Flüssebilanz der Mikrokosmen	81
	5.6.2 Bilanzierung der Unterflächen	82
	5.6.2.1 Ammoniumbilanz	83
	5.6.2.2 Nitratbilanz	85
	5.6.2.3 Stickstoff-Gesamtbilanz	87
6. Dis	kussion	90
6.	1 Planerische Relevanz der vorliegenden Arbeit	104
7. Zus	ammenfassung	105
8. Liter	atur	109
9. Verz	zeichnisse	117
9.1	Abbildungs- und Tabellenverzeichnis	117
9.2	Abkürzungsverzeichnis	120
10. An	hang	121
10.	1 Methodischer Ansatz zur photometrischen Bestimmung des Gesamtstickstoffgehalts	
	in wässriger Lösung mittels Mikrowellenaufschluss	121
	10.1.1 Einführung	121
	10.1.2 Materialien und Durchführung	121
	10.1.4 Untersuchungen zur Absicherung der Methode	124
	10.1.5 Kontrollabgleich der Mikrowellenaufschlussmethode	130
	10.1.6 Fehlerabschätzung	134
10.	2 Korrelation Temperatur Zierenberg-Eichenberg	135
10.	3 Mineralboden-Inventur vor Versuchsbeginn	136
10.	4 Berechnung der Stickstoffvorräte	137
10.	5 Varianzanalyse	138
10.	6 Zeitlicher Verlauf der Nitrat-N-Konzentration	154
10.	7 Gesamt-N-Flüsse	155

10.8 Korrelationen Gesamt-N-Temperatur und Gesamt-N-Versickerungsrate Danksagung/Widmung

Hiermit danke ich allen, die mich bei der Fertigstellung der vorliegenden Arbeit unterstützt haben.

Mein besonderer Dank gilt meiner Frau Sophia und meiner Tochter Charlotte, die mir zum einen bei der mühevollen Arbeit des Korrekturlesens und zum anderen mit viel Geduld zur Seite gestanden haben.

Herzlich danken möchte ich vor allem Prof. Dr. Robert Mayer und Dr. Jochen Godt für ihre kontinuierliche langjährige Unterstützung bei der Fertigstellung der Arbeit.

Auch Dr. Karin Kreutzer, Dr. Sigfried Ließ und Dr. Ulrich Winter danke ich für ihre tatkräftige und praktische Unterstützung in Labor und Wald.

Den Mitarbeiterinnen des Labors für Landschaftsökologie und Bodenkunde Petra Möller, Angelika Reinhardt und Claudia Rüppel gilt mein Dank für die aktive Unterstützung bei Messung und Methodenentwicklung.

1. Vorwort

Seit 1989 wird der Stoffhaushalt, das ist die Gesamtheit der Einträge, Austräge und stofflichen Umsetzungen, in einem N-gesättigten Buchenwald auf Basalt in Zierenberg bei Kassel im Rahmen eines vom Bundesministerium für Bildung und Forschung geförderten Projektes am Fachgebiet Landschaftsökologie/Bodenkunde des Fachbereichs Stadt- und Landschaftsplanung der Universität Kassel unter Leitung von Prof. Dr. Robert Mayer und Dr. Jochen Godt untersucht.

Die vorliegende Arbeit befasst sich mit Auswirkungen von Umweltänderungen auf den Stickstoff-Stoffhaushalt.

2. Einführung

Die vorliegende Arbeit ist Teil eines vom Bundesministerium für Forschung und Technologie geförderten Projektes. Der hier zugrundeliegende Projektkomplex B hat die "Erweiterung der Kenntnis über Prozesssteuerung durch manipulierende Eingriffe in Ökosysteme" zum Ziel und wird in Zusammenarbeit mit dem Forschungszentrum Waldökosysteme Göttingen bearbeitet. Das Teilvorhaben B2-Z-a "Auswirkungen von Umweltveränderungen auf den Stoffhaushalt in einem N-gesättigten Waldökosystem" (Godt, 1993) wurde u.a. an der Universität Kassel am Fachbereich 13, Stadt- und Landschaftsplanung in der Arbeitsgruppe Landschaftsökologie/Bodenkunde bearbeitet. In diesem Teilvorhaben wurde auch die vorliegende Arbeit angefertigt. Im Rahmen dieses Teilvorhabens wird untersucht, ob in einem N-gesättigten Waldökosystem eine Erwärmung des Oberbodens zu einer Überschussnitrifikation führt, die sowohl akut verlaufende Versauerungsschübe als auch langfristig wirksame Bodenversauerung (Basenaustrag) nach sich zieht. Die Erwärmung des Oberbodens kann durch erhöhte Einstrahlung zum Boden in Folge immissionsbedingter oder waldbaulich gezielter Bestandesdachauflösung, wie auch durch Witterungsveränderung hervorgerufen sein. Eine Erhöhung der Luft- und der Bodentemperaturen in Folge immissionsbedingter Bestandesdachauflösungen, waldbaulicher Eingriffe sowie Witterungsveränderungen wird in diesem Versuch durch einen Femelhieb simuliert. Durch diesen entsteht eine Fläche mit erhöhtem Strahlungseinfall, der sich in einer Erhöhung der Bodentemperatur niederschlägt, die Mineralisationseffekte zur Folge hat.

Die Mineralisationseffekte schlagen sich in einem verstärkten Humusvorratsabbau nieder, der insgesamt zum Abbau des Stickstoffvorrats des Bodens führt.

Hauptziel dieser Arbeit ist es zu klären, ob es zu einer die Stickstoff-Aufnahme des Baumbestandes übersteigenden Stickstoff-Freisetzung in Folge von Mineralbodenerwärmung kommt oder ob ein Anstieg der mikrobiellen Biomasse und/oder ein verstärktes Aufwachsen krautiger Vegetation den Austrag von Stickstoff verhindern kann.

2.1 Literaturübersicht zum Themenkomplex

2.1.1 Stickstoff in Waldböden

Die Einträge von Stickstoffverbindungen in die Böden von Waldökosystemen stellen heute ein besonders ernstes Problem dar, da sie in den vergangenen Jahrzehnten sehr stark zugenommen haben. Grob geschätzt beträgt die jährliche natürliche N-Fixierung global 120 bis 130 Mt (ca. 100 Mt in terrestrischen, 5 - 20 Mt in marinen Ökosystemen und bis zu 10 Mt durch Blitze). Die anthropogene N-Fixierung dagegen liegt bei jährlich etwa 135 Mt (Düngerproduktion 80 Mt, Verbrennungsprozesse ca. 25 Mt, Leguminosenanbau ca. 30 Mt, NH₃ noch unzureichend berücksichtigt). Der anthropogene Stickstoffeintrag liegt heute im globalen Durchschnitt oberhalb der "natürlichen" N-Fixierung (Vitousek, 1979).

Seit etwa 1960 verändern sich globale N-Flüsse. Ein Aspekt dieser durch menschliche Tätigkeit veränderten globalen Stickstoffflüsse ist der stark angestiegene Eintrag anthropogener Immissionen über die Atmosphäre in Waldökosysteme. Hauptverursacher von Stickstoffemissionen in Deutschland sind heute die Landwirtschaft und der Verkehr. Während in Folge umfangreicher nationaler und internationaler Emissionsminderungsmaßnahmen die Emission und Deposition von Schwefelverbindungen stark zurückgingen, blieb die Belastung der Atmosphäre und der Waldökosysteme mit Stickstoffverbindungen in den letzten Jahren auf einem hohen Niveau (N₂0-Konzentration in der Atmosphäre liegt mit steigender Tendenz bei rund 310 µl/L, Watson et al., 1990 in UBA, 1995).

Wir wissen, dass Stickstoff-Verbindungen an der Bodenversauerung einen hohen Anteil haben (Eichhorn, 1995). Auch ihre Bedeutung für die Eutrophierung von Waldökosystemen hat stark zugenommen. Stickstoffeinträge, die die Speichermöglichkeiten im Biomasse-Zuwachs übersteigen, markieren den Beginn einer neuen, jetzt großflächig wirksam werdenden Entwicklung. Sicher ist, dass der Stickstoffeintrag aufgrund der bisherigen Messmethodik (Bestandesniederschlag) unterschätzt wird, da die Assimilation gasförmiger Stickstoffverbindungen nicht erfasst wurde und diese erheblichen Umfang haben kann (Ulrich, 1994). Über die Einträge gasförmiger N-Verbindungen in Waldökosystemen liegen jedoch nur wenige Ergebnisse vor: Freilandmessungen von Stickoxidemissionen über Waldböden ergaben 0,1 bis 0,3 kg N/(ha*a) NO (Koch and Brumme, 1997; Williams and Fehsenfeld, 1991 in UBA, 1995). Messungen molekularer Stickstoffemissionen wurden im Freiland bisher nicht durchgeführt – Labormessungen ergaben einen Anteil von N₂ an den N₂ + N₂0-Emissionen von 30% (Brumme, UBA, 1995). Die Datenbasis über N₂O-Freisetzungen aus Waldböden ist gering, zeigt aber in Mitteleuropa Werte unter 1 kg N/(ha*a) (Brumme et al., 1997; Schmidt et al., 1988; Goodroad and Keenay, 1984; Keller et al., 1983; Bowden et al., 1990; Duxbury et al., 1982; Matson et al., 1992; Papen et al., 1994 in UBA, 1995).

N-Bilanzen im allgemeinen und in Waldböden im speziellen sind also mit großen Unsicherheiten belastet. Dies schränkt Aussagen über Entwicklungstendenzen erheblich ein. Die Waldböden Deutschlands enthalten im Mittel 9000 kg N/ha, davon 12% im Auflagehumus, 50% in 0 - 30 cm Mineralbodentiefe, 23% in 30 - 60 cm Tiefe, und 15% in 60 - 90 cm (Ulrich, 1994). Bei einem jährlichen Umsatz im Kreislauf von ca. 100 kg N/ha ist der Vorrat als sehr hoch zu bezeichnen.

In solchen N-gesättigten Waldökosystemen kann es leicht zu einer Freisetzung von Stickstoff mit dem Sickerwasser (Grundwasserbelastung) und gasförmigen Stickstoffemissionen (Belastung der Atmosphäre) kommen. Ursachen hiefür können (vor allem in Laubwäldern) immissionsbedingte oder waldbaulich bedingte Bestandesdachauflösungen sein, die sich in einer Erhöhung der Bodentemperatur niederschlagen und insbesondere über erhöhte N-Mobilisierungen in Gasform wie auch in Form von Auswaschungen von basischen Kationen zu Grundwasserbelastungen und Versauerungserscheinungen führen können (Godt, 1994).

Folgende weitere Auswirkungen des Überangebotes an Stickstoff in Waldökosystemen sind zu erwarten:

- Frosthärte und Schädlingsabwehrkraft des Baumbestandes nehmen ab (Bücking, 1993).
- Auch auf basenreicheren Böden wird die Feinwurzelausbildung im Oberboden verstärkt (Haug et al., 1992); die Relation Höhen- zu Durchmesserwachstum wird zugunsten des Höhenwachstums verschoben (Klädtke, in UBA, 1995).
- Im Zusammenhang mit einer Klimaerwärmung könnte es zu großräumigen Schädlingskalamitäten kommen (Bolin et al., 1986).

- Unterschiedlich starke Förderung des Wachstums verschiedener Arten und damit verbundene Verschiebung im Konkurrenzgefüge und demzufolge im Artenspektrum (Sukzession) (Bücking, 1993).
- Begünstigung des Wachstums der Begleitvegetation und damit Probleme bei der Bestandesverjüngung (Bauhus, 1994).
- Probleme beim Aufbau von Mischwäldern und naturnahen Wäldern (Neitzke, 1990).
- Belastung des Grundwassers durch Nitratauswaschung (DFG, 1982).
- Emission gasförmiger Stickstoffverbindungen aus Waldböden (Brumme, 1997).
- Eutrophierung natürlicher Ökosysteme (z.B. Moore und Heide) (Ulrich, 1995).
- Auslösung eines Mangels an anderen Nährstoffen (z.B. Ca²⁺, Mg²⁺) (Vitousek, 1979).
- Mit abnehmender Basensättigung ist die Stabilisierung der Humusstoffe beeinträchtigt, so dass es leicht zur Nitratauswaschung und Denitrifikation kommt (Ulrich, 1995).

Mit dem erhöhten Stickstoffeintrag in den Boden verbunden sind Änderungen im Bodenzustand, die sich auf alle Organismen des Ökosystems auswirken – wir haben es mit Rückkopplungssystemen zwischen dem Boden und den Stoffwechselaktivitäten der Organismen zu tun.

Über diese Rückkopplungssysteme werden Änderungen entweder abgemildert bis kompensiert oder ausgelöst und verstärkt. Bei langfristiger Erhöhung des Austrages über den Eintrag spricht man von einer Entkopplung des Stickstoffkreislaufs - das System wird instationär, es tritt eine Übergangsphase ein und eine Entwicklung hin zu einem neuen Systemzustand. Damit verbunden sind Änderungen in der Biomasse (Vorrat, Zuwachs) und der Diversität (Artenvielfalt), die sich auch auf die "Elastizität des Bodens als System auswirken" (Ulrich, 1995).

2.1.2 Temperatureffekte und Mineralisation

Die Durchschnittstemperatur auf der Erde beträgt rund 288 K (15°C) und wird durch die sogenannten Treibhausgase in der Atmosphäre konstant gehalten, ohne die die mittleren Temperaturen der Erdoberfläche etwa 34°C niedriger lägen. Eine Erhöhung der Konzentration dieser Treibhausgase kann zu einer globalen Erwärmung der Atmosphäre und damit verbundenen regional stark heterogenen Klimaänderungen führen (Treibhauseffekt).

Die Auswirkungen der Klimaerwärmung auf Bodeneigenschaften und im Boden ablaufende Prozesse lassen sich zum jetzigen Zeitpunkt quantitativ noch nicht abschätzen; folgende Änderungen sind jedoch wahrscheinlich:

Ein Temperaturanstieg beschleunigt die im Boden stattfindenden Prozesse wie z.B. Verwitterung von Mineralien, die Oxydation organischer Substanzen, Mineralisation von Stickstoff, evaporationsbedingte Wasserverluste und die Diffusion von Gasen in die Atmosphäre. Die Geschwindigkeit dieser Prozesse verdoppelt sich im allgemeinen pro 10°C Temperaturanstieg, so dass die erwartete Klimaerwärmung auf die Böden regional stark unterschiedlich ausfallen wird - in einigen Regionen kann mit einer deutlichen Beschleunigung bodeninterner Prozesse gerechnet werden (Wild, 1995). Auch Niederschlags- und Evaporationsverhältnisse könnten sich auf regionaler Ebene stark ändern und dadurch die Bodenprozesse beeinflussen – seriöse Prognosen über konkrete Auswirkungen sind zum derzeitigen Zeitpunkt nicht verfügbar (Houghton et al, 1996).

Auswirkungen auf die Bodenmikroorganismen ergeben sich aus deren Ansprüchen an die Umgebungstemperatur und die damit verbundene Änderung der Wachstumsrate. Die meisten Bodenmikroorganismen sind mesophil, d.h. sie erreichen ihre maximale Wachstumsrate je nach Art zwischen 20°C und 42°C (Schlegel, 1992). Eine Erhöhung der Bodentemperatur in Richtung dieses Temperaturbereiches würde damit unmittelbar zu einer Erhöhung der Wachstumsrate der Mikroorganismen führen. Die RGT-Regel (Reaktion-Geschwindigkeit-Temperatur-Regel) besagt, dass innerhalb des Toleranzbereiches eine Temperaturerhöhung um 10 Kelvin eine 2- bis 3-fache Beschleunigung der Reaktionsgeschwindigkeit hervorruft und damit auch Prozesse der Stickstoffmineralisation schneller ablaufen. Physiologisch erklärt sich diese Erhöhung der Reaktionsgeschwindigkeit der Verschiedenen Stoffwechselreaktionen, Temperaturabhängigkeit der Aktivität von Enzymen u.a. (Wild, 1995).

10

2.1.3 Critical Loads für Stickstoff

Critical Loads sind die geschätzten Schwellenwerte für die Depositionsraten eines oder mehrerer Schadstoffe, unterhalb derer nach bisherigem Wissen keine schädigenden Wirkungen an spezifizierten Rezeptoren (z.B. an Waldökosystemen) nachweisbar sind (Nagel und Gregor, 1999). Im Rahmen von Critical Loads-Berechnungen werden u.a. Grenzen der maximalen Speicherkapazität bestimmt. Dazu ist eine qualitative und quantitative Erfassung möglichst aller Quellen- und Senkenprozesse des Nährstoffes Stickstoff im betrachteten Ökosystem notwendig. Dabei werden die langjährigen Mittel der Stoffeinträge (Deposition) gegen die fixierender Prozesse (dauerhafte Immobilisierung im Humus, langfristige Stickstoffaufnahme in der Biomasse) und Stoffausträge (Denitrifikation, Stickstoffauswaschung mit dem Sickerwasser) aufgewogen (bilanziert). Durch die Erhöhung der Bodentemperaturen können Werte der Nettostickstoff-Mineralisation erreicht werden, die dazu führen, dass Stickstoff nicht mehr im Boden gespeichert werden kann (s. voheriges Kapitel). Die Aufnahme von Stickstoff durch die Vegetation stellt dann eine zentrale Senke im Stoffhaushalt von Wäldern dar – die Vegetation erfüllt damit eine wichtige Funktion als Stickstoff-Zwischenspeicher. Für die Berechnung von Critical Loads spielt normalerweise allerdings nur der langfristig im jährlichen Holzzuwachs festgelegte Teil eine Rolle, da der in Blättern oder Nadeln inkorporierte Stickstoff dem System (Boden) in regelmässigen Abständen wieder zugeführt wird (Streufall). Auf den von uns betrachteten Flächen konnte jedoch schon im Rahmen einer Diplomarbeit von Wilk (1996) beobachtet werden, dass bis zu 7 kg N/(ha*a) allein in Sambucus racemosa (Holz) gespeichert werden. Die Stickstoffnettoaufnahme bzw. Stickstoffnettofestlegung ist zum einen von den das Wachstum bestimmenden klimatischen Faktoren wie Temperatur und Feuchtigkeit, zum anderen von der Nährstoffausstattung des Standortes abhängig. Ein erheblicher Teil des eingetragenen Stickstoffs wird im Waldboden immobilisiert. Zu nennen sind sowohl die Stickstoffakkumulation in der Humusschicht als auch die mikrobielle Fixierung. Im allgemeinen stehen Humusaufbau durch Streufall und Humusabbau hauptsächlich durch Mineralisation, Ammonifikation und Nitrifikation im Gleichgewicht. Durch geringe biologische Aktivität der Böden, wie z.B. durch niedrige pH-Werte oder Temperaturen, wird eine Humusakkumulation oder Nettoimmobilisierung begünstigt.

Die Immobilisierungsrate der Böden wird erheblich von der Temperatur beeinflusst, wobei Wärme die Immobilisierung hemmt. Niedrigere Temperaturen hingegen begünstigen die Immobilisierung von Stickstoff (Hornung et al., 1995).

Das Risiko der Stickstoffauswaschung unterliegt vielfältigen Einflussfaktoren, wie der Höhe und Dauer der Deposition von Stickstoffverbindungen, der Aufnahmefähigkeit des Bestandes, der Immobilisierungsrate des Bodens, der Nitrifikationsrate, der Durchwurzelungstiefe oder der Vornutzung (z.B. stärkere Immobilisierung bei Humusdefizit durch ehemalige Streunutzung). Die Auswaschung von Stickstoffverbindungen mit dem Sickerwasser sollte bei stabilen Ökosystemen im Gleichgewichtszustand nur sehr gering sein. Am Beispiel der unterhalb des Untersuchungsgebiets mündenden Zierenberger Trinkwasserquelle Friedrichsaue wird ein steigender Stickstoffaustrag im Untersuchungsgebiet deutlich:

Die Nitrat-Konzentration der Quelle Friedrichsaue ist von 1965 von rund 8 mg/l bis 1990 auf über 20 mg/l angestiegen. Im "Jahrhundertsommer" 1976 wurden Konzentrationen bis rund 40 mg/l erreicht.

Der Critical Load-Wert für eutrophierenden Stickstoff wird von den natürlichen Eigenschaften der betrachteten Ökosysteme am konkreten Standort bestimmt. Unter Beachtung der Critical Load-Bedingungen zur Erhaltung des Gleichgewichtszustandes begrenzen die Stickstoffaufnahme, die Immobilisierung und der Stickstoffaustrag mit dem Sickerwasser sowie der gasförmige Austrag über die Denitrifikation die Critical Loads für Waldökosysteme im Bereich zwischen etwa 5 kg N/(ha*a) und höchstens 20 kg N/(ha*a) (UBA, 2001). Der flächenmäßig größte Anteil der Critical Loads liegt in Deutschland im Bereich zwischen 5 und 15 kg N/(ha*a). Für Laubwaldareale verschieben sich die Schwerpunkte der Häufigkeitsverteilung auf den Bereich um 10 sowie um 15 kg N/(ha*a) (UBA, 2001). Dies ist auch der Bereich, der im allgemeinen angegeben wird für die Menge an Stickstoff, die intakte Waldökosysteme durchschnittlich im jährlichen Derbholzzuwachs festlegen können. Dies zeigt, dass die entscheidende Einflussgröße für die Höhe der Critical Loads die Stickstoffnettoaufnahme im Derbholzzuwachs ist, d.h. der Stickstoffentzug mit der zu erntenden Biomasse. Vergleicht man die Critical Loads für eutrophierenden Stickstoff mit den Gesamtdepositionen reduzierter und oxidierter Stickstoffverbindungen, zeigt sich, dass bei ca. 99% der Waldfläche die kritischen Belastungsgrenzen überschritten sind. Insbesondere der Nord-Westen Deutschlands sowie der Süden Ostdeutschlands weisen mit über 15 kg N/(ha*a) überdurch-

12

schnittliche Critical Load-Überschreitungen auf. In den übrigen Regionen liegen die Überschreitungen zumeist unterhalb von 15 kg N/(ha*a) (UBA, 2001). Die diesem Critical Load-Wert zugrundeliegende Definition der N-Sättigung sollte durchaus kritisch hinterfragt werden – dabei kann man bezogen auf konkrete Standorte und unter dem Aspekt der Vorsorge zu niedrigeren Critical Load-Werten kommen.

2.1.4 Bodenmikroorganismen als Stickstoff-Zwischenspeicher

Gehalt und Zusammensetzung der organischen Bodensubstanz werden u.a. entscheidend von Klimafaktoren beeinflusst. Unter den Bedingungen des gemäßigten humiden Klimas erhöhen sich mit einem Temperaturanstieg nicht nur die pflanzliche Biomasseproduktion, sondern vor allem der mikrobielle Abbau organischer Substanz. Pöhlhacker & Zech (1993) fanden bei Untersuchungen von sauren Waldböden unter Buche eine Mikroflora, die an ein breites Temperaturspektrum angepasst war und mit steigender Temperatur eine deutlich steigende mikrobielle Aktivität zeigte.

Wie im Rahmen einer Diplomarbeit (Wett, 1993) gezeigt wurde, sind Stickstoffmengen in der Größenordnung des Nettojahresstickstoffeintrages in Bodenmikroorganismen von Waldböden in verschiedenen Bindungsformen gespeichert. Mit beginnendem Temperaturanstieg im Oberboden und damit einhergehendem Humusvorratsabbau ist eine sofortige Anregung des Wachstums der im Boden befindlichen Mikroorganismen-Gemeinschaften zu erwarten. Diese legen in ihrer Zellsubstanz auch Stickstoff (in Proteinen, im Cytosol, u.a.) fest. Dadurch wird durch den Humusvorratsabbau freigesetzter Stickstoff erneut im System gebunden.

Hinweise auf eine wichtige Rolle der Bodenmikroflora als Zwischenspeicher in Verbindung mit Größenangaben zum gespeicherten Kohlenstoff finden sich in vielen Untersuchungen (Kaiser et al., 1993; Elsner & Blume, 1993; Lavahun et al., 1993; Kleber et al., 1997). Die Untersuchungen, die sich dabei auf Waldböden beziehen, sind schon seltener (Koch & Scheu, 1993; Steinmetz et al.; 1997, Stockfisch et al., 1993). Untersuchungen, die sich mit dem in Mikroorganismen gespeicherten Stickstoff unter Waldböden befassen, sind erheblich seltener (Jörgensen & Wolters, 1993; Steinmetz et al. 1997; Jörgensen, 1995).

13

In allen Arbeiten wird eine große Variabilität über alle Standorte und Bodentypen deutlich. Dabei wird klar, dass die Mikroorganismen einen relevanten Speicher für Stickstoff darstellen – fraglich ist, ob dessen potentielle Größe ausreicht, den durch Humusvorratsabbau freiwerdenden Stickstoff zu speichern. Dies ist im Rahmen einer Gesamtbilanz auf einer Fläche zu klären. In dieser Bilanz kann die Größe des N_{mic}-Pools in seiner Rolle in der Gesamtbilanz der Fläche eingeordnet und dadurch seine Rolle als Zwischenspeicher bewertet werden.

2.1.5 Wurzelaufnahme von Stickstoff

Ein wichtiger Teilprozess der Stickstoff-Umsetzung im Boden ist die Aufnahme aus dem Bodenwasser über die Wurzel in die Pflanze. Das System Boden/Wurzel wurde z.B. in den folgenden Arbeiten beschrieben:

- Wurzelinventuren, wie z.B. von Eichhorn (1993) in Zierenberg durchgeführt, liefern Angaben zur Wurzelbiomasse und den darin festgelegten N-Mengen.
- Die Feinwurzelzersetzung in Lochhieben in sauren Böden ist von Bauhus (1994) eingehend untersucht worden. Er konnte keine beschleunigte Zersetzung von Wurzeln auf Kahlschlägen finden. Daher können zur Abschätzung des durch Wurzelmineralisation bedingten Stickstoffaustrags in Lochhieben auch Ergebnisse aus Bestandesflächen verwendet werden.
- Kehong Wu (2000) fand mit verschiedenen Methoden Feinwurzelzersetzungsraten unter Buche von 20 kg/ha und Jahr im Göttiger Wald und 37,2 kg/ha und Jahr im Solling.
- "Litterbag-Versuche", die in Zierenberg durchgeführt wurden (Schauermann, 1995), liefern Aktivitätsparameter, ermöglichen aber keine Quantifizierung von Stoffflüssen.
- Der Einsatz von Einwuchszylindern (Bauhus, 1994) liefert ebenfalls Biomassedaten.
- Ein weiterer Ansatz zur Beschreibung des Systems Boden/Wurzel ist die Untersuchung morphologischer Wurzelparameter wie Wurzelspitzenhäufigkeit und –mykorrhizierung, u.a. von Eichhorn (1993) und Bauhus (1994) publiziert.

- Hydrokultur-Laborversuche an Jungbuchen (Eichhorn, 1993) ermöglichen das Studium der Stoffaufnahme von Buchen über das Wurzelsystem, sind jedoch nur bedingt geeignet, die reale Stoffaufnahme eines Buchenaltbestandes im Freiland zu simulieren.
- Rennenberg et al. (1998) und Gessler et al. (1998) legten u.a. Buchen-Feinwurzeln frei, wuschen und trockneten sie und versorgten sie mit einer definierten N\u00e4hrl\u00f6sung aus Nitrat-N und Ammonium-N. Die Aufnahmeraten wurden auf die Biomasse bezogen, auf die Fl\u00e4che hochgerechnet und ergaben eine Aufnahme von 85 kg N/(ha*a).

Der in dieser Arbeit gewählte Versuchsansatz ermöglicht indirekt die näherungsweise Abschätzung der Stoffaufnahme durch die Wurzeln, ohne diese in ihrem natürlichen Umfeld zu stören. Dabei wird der Stofffluss im Bestand mit Wurzelaufnahme (Lysimeterkerzen) mit dem ohne Wurzelaufnahme (Mikrokosmen-Versuch) verglichen. Kontinuierliche Sammlung von Bodensickerwasser mit und ohne Einfluss der Wurzelaufnahme und monatliche Bestimmung von Elementen in den Bodensickerwässern gestatten die Erstellung von Jahresgängen der Ionenkonzentrationen.

3. Untersuchungskonzept

3.1 Einbettung in die Stoffbilanz-Fallstudie Zierenberg des Forschungszentrums Waldökosysteme Göttingen

Diese Arbeit ist dem Projektkomplex B des Forschungszentrums Waldökosysteme Göttingen angegliedert. Das Teilvorhaben B2-Z-a ist im Rahmen des Teilvorhabens B2-Z angesiedelt. Diesem Teilvorhaben liegt die folgende Basishypothese zugrunde: "In einem N-gesättigten Waldökosystem führt eine Erwärmung des Oberbodens zu einer Überschussnitrifikation, die sowohl akut verlaufende Versauerungsschübe als auch langfristig wirksame Bodenversauerung (Basenaustrag) nach sich zieht. Die Erwärmung des Oberbodens kann durch erhöhte Einstrahlung zum Boden in Folge immissionsbedingter oder waldbaulich gezielter Bestandesdachauflösung, wie auch durch Witterungsveränderung hervorgerufen sein." Folgende Unterhypothesen werden in dem vorliegenden Teilprojekt geprüft:

- Eine Erhöhung der Luft- und der Bodentemperaturen in Folge immissionsbedingter Bestandesdachauflösungen, waldbaulicher Eingriffe sowie Witterungsveränderungen bewirkt einen verstärkten Humusvorratsabbau (B2-Z/1),
- der sich in Stoff- und Energiebilanzen niederschlägt (B2-Z/2)
- und somit Bodenveränderungen incl. Bodenversauerung und Grundwasserbelastungen bewirkt (B2-Z/3).
- Änderungen der Stoffhaushaltscharakteristik führen zur Destabilisierung von Waldökosystemen, die sich in Wachstumsparametern niederschlagen (B2-Z/4).

3.2 Versuchsansatz

Die Auswirkungen von Umweltveränderungen auf ein N-gesättigtes Buchenwaldökosystem über Basalt (Braunerde) sind zentraler Gegenstand des Forschungsvorhabens. Diese können vor allem Bestandesdachauflösung, immissions- oder waldbaulich bedingt und klimabedingt (z.B. als Folge der globalen Erwärmung) sein. Daraus resultiert eine Erhöhung der Durchschnittstemperaturen im Oberboden mit allen Folgen, auch bezüglich bodenbiologischer Vorgänge.

Temperatureffekte

Eine Erhöhung der Luft- und der Bodentemperaturen in Folge immisionsbedingter Bestandesdachauflösungen, waldbaulicher Eingriffe sowie Witterungsveränderungen werden in diesem Versuch durch einen Femelhieb simuliert. Durch diesen entsteht eine Fläche mit erhöhtem Strahlungseinfall, der sich in einer Erhöhung der Bodentemperatur niederschlägt, die Mineralisationseffekte zur Folge hat.

Die Mineralisationseffekte schlagen sich in einem verstärkten Humusvorratsabbau nieder, der insgesamt zum Abbau des Stickstoffvorrats des Bodens führt.

Stickstoffbilanzen

Änderungen in Stickstoffflüssen als Folge des Eingriffs werden ermittelt, indem das Produkt aus Stickstoff-Konzentration und Wasserflussrate bestimmt wird. Diese Stickstoffflüsse werden dann bilanziert.

Mikroorganismen Stickstoff-Pool

Die Erhöhung der Bodentemperaturen führt zu einer Anregung der Aktivität der Mikroorganismen. Der damit verbundene Humusvorratsabbau führt zu einer Freisetzung von Stickstoff, der sich in einem verstärkten Wachstum der Mikroorganismen-Gemeinschaft niederschlägt. Dadurch kommt es zu einem Anwachsen des Mikroorganismen-Stickstoff-Pools, der als N-Zwischenspeicher fungiert.

Stickstoffaufnahme durch die Wurzel

Kontinuierliche Sammlung von Bodensickerwasser mit und ohne Einfluss der Wurzelaufnahme und monatliche Bestimmung von Elementen in den Bodensickerwässern gestatten die Erstellung von Jahresgängen der Stickstoffaufnahme durch die Wurzeln in ihrem natürlichen Umfeld.

3.3 Ziele

Hauptziel dieser Arbeit ist es zu klären, ob es zu einer die Stickstoff-Aufnahme übersteigenden Stickstoff-Freisetzung in Folge von Mineralbodenerwärmung kommt. Im besonderen sollen folgende Kenngrößen des N-Haushalts ermittelt werden:

Gesamt-N-Vorräte der Bodenfestphase

Es soll eine Inventur des Stickstoff-Vorrates der Bodenfestphase erstellt werden. Dabei sollen räumliche Änderungen über die untersuchte Fläche dokumentiert werden. Desweiteren sollen Änderungen im Stickstoffvorrat in zwei Tiefenstufen dokumentiert werden. Die Inventur wird vor der Auflichtung einer Unterfläche durchgeführt, um die Verhältnisse im Stickstoffvorrat vor Versuchsbeginn zu dokumentieren und dienen so als Grundlage für die folgende N-Bilanzierung. Die gewonnenen Daten ermöglichen ursprünglich vorhandene Unterschiede im Stickstoffvorrat der Fläche vor Versuchsbeginn in die Bilanzierung einzubeziehen.

Mikrobieller Stickstoff-Pool

Ziel ist es, die Größe des Stickstoffzwischenspeichers der Mikroorganismen-Biomasse in der Bodenfestphase zu bestimmen und zu klären, ob in der Initialphase des Humusvorratsabbaus freigesetzter Stickstoff in der Bodenflora zwischengespeichert werden kann. Deshalb sollen räumliche Änderungen des mikrobiellen Biomassen-Stickstoff-Pools über die untersuchte Fläche dokumentiert werden und Änderungen im Stickstoffvorrat in zwei Tiefenstufen dokumentiert werden.

Weiter soll der zeitliche Aufbau des mikrobiellen Stickstoff-Pools im Jahresgang dokumentiert werden. Daraus sollen zum einen Aussagen über die langfristige Speicherung von Stickstoff im mikrobiellen Stickstoff-Pool getroffen werden und zum anderen die mikrobielle Mineralisationsrate bestimmt werden.

Stickstoffaufnahme über die Wurzel

Der in dieser Arbeit gewählte Versuchsansatz ermöglicht indirekt die näherungsweise Abschätzung der Stoffaufnahme durch die Wurzeln ohne diese in ihrem natürlichen Umfeld zu stören. Dabei wird der Stofffluss im Bestand (Lysimeterkerzen) und der in Mikrokosmen ohne Wurzelaufnahme bestimmt und verglichen. Kontinuierliche Sammlung von Bodensickerwasser mit und ohne Einfluss der Wurzelaufnahme und monatliche Bestimmung von Elementen in den Bodensickerwässern gestatten die Erstellung von Jahresgängen.

Stickstoff-Bilanzierung

Die in dieser Arbeit quantifizierten Teilprozesse des Stickstoffkreislaufes sollen in eine Stoffflussbilanz einfließen und daraus auf Prozesse der Stickstoffumsetzung geschlossen werden. Deshalb wird eine Stoffflussbilanz über zwei hydrologische Jahre erstellt und die Ein- und Austräge und der Stickstofftransport im System quantitativ erfasst.

Temperatureffekte und Stickstoffaustrag

Zu prüfen ist auch, ob eine Erwärmung des Oberbodens tatsächlich zum Stickstoffaustrag in einer Größenordnung führt, die durch das Critical Loads Concept gesetzt wird oder ob ein Anstieg der mikrobiellen Aktivität und ein verstärktes Aufwachsen krautiger Vegetation den Austrag von Stickstoff verhindern kann.

- 4. Material und Methoden
- 4.1 Untersuchungsgebiet
- 4.1.1 Lage und Geologie

Die Versuchsfläche befindet sich am Großen Bärenberg, im Kommunalwald der Stadt Zierenberg (Abb. 1), die ca. 30 km nordwestlich von Kassel liegt.

Der Große Bärenberg erreicht eine Höhe von 600,7 m ü. NN. Gemeinsam mit dem Kleinen und Großen Gudenberg sowie dem Rohrberg bildet er einen Mittelgebirgszug von ca. 4,5 km Länge.

Die vorliegenden Untersuchungen wurden in Abt. 25A durchgeführt. Sie liegt in 560 -595 m ü. NN, ist mit durchschnittlich 29° mässig bis steil geneigt, liegt am Mittelhang und ist nach Osten bis Südosten exponiert; Gauss-Krüger Koordinaten: Rechts 3518635 m, Hoch 5691253 m (0-Fläche) bis Rechts 3518865 m, Hoch 5690730 m (Auflichtungsfläche).

Abb. 1: Geographische Lage der Untersuchungsfläche, Maßstab 1:25 000 (TK 4621 Wolfhagen).

Der geologische Untergrund der Versuchsfläche am Großen Bärenberg wird aus lößüberlagerten jungtertiären Basalten gebildet. In den höheren Lagen gehören sie zur Gruppe der Basanite und Trachybasalte, die in den talwärtigen Lagen in Limburgit übergehen. Im Pleisto- und Holozän sind daraus Basaltschutt-Fließerden entstanden, wobei sich der Basaltschutt aus Splittern, Brocken und Blöcken zusammensetzt, die von Verwitterungs- und Lößlehm umgeben sind. Die meist mittel- bis hellgrauen, teils porigen Basanite können recht deutlich von den dunkel- bis schwarzgrauen Limburgiten unterschieden werden. Während die Basanite als wesentliche Gemengteile Olivin, monoklinen Pyroxen, Plagioklas, Nephelin, Analcim, Magnetit und Apatit enthalten, stellen beim Limburgit idiomorpher Olivin, Pyroxen und Magnetit hauptsächliche Mineralkomponenten dar (Rösing, 1966). In der Vergangenheit durchgeführte Abbauversuche der Basalte am Bärenberg sind wegen der geringen Qualität nicht weitergeführt worden.

Im Rahmen einer Diplomarbeit (Krug) wurden 1995 verschiedene bodenchemische und –physikalische Parameter der Bodenfestphase sowie der Wurzeln auf der Untersuchungsfläche erhoben. Krug beprobte dabei zum einen mittels Wurzelbohrer an 47 Rasterpunkten bis 25 cm Bodentiefe und legte drei Bodenprofile zur Beprobung bis 100 cm Mineralbodentiefe an. Aus den dabei gewonnenen Ergebnissen werde ich im folgenden zitieren.

Die mittlere Gesteinsdichte des Skelettanteils liegt bei 2,7 g/ml (Krug, 1995) und weist damit als Gesteinsart Basalt aus (Rösing, 1966). Die horizontale Verteilung des Skelettanteils im oberen Mineralboden reicht bei großer Variabilität von Gemengeanteilsklassen 2 (schwach steinig, grusig) bis Klasse 6 (Steine und Grus). Die vertikale Verteilung des Skelettanteils variiert über die Fläche ebenfalls stark. Der Skelettanteil ist mit fast 50 % schon im obersten Mineralboden hoch und nimmt im Mittel auf über 85 % bis 1 m Bodentiefe zu (Krug, 1995).

Die Humusform wird von F-Mull dominiert, in den nach Norden zunehmend mullartiger Moder eingestreut ist (Krug, 1995). Auf der gesamten Untersuchungsfläche herrschen tiefgründige bis flachgründige skelettreiche Braunerden über Basaltverwitterungsgestein vor. Im oberen Mineralboden liegt flächendeckend Lehm als Bodenhauptgruppe vor. Dessen Variabilität reicht auf der Fläche von sandigem Lehm über schluffigen Lehm und schwach sandigen Lehm bis hin zu schluffig-tonigem und tonigem Lehm (Krug, 1995).

20

Krug (1995) fand pH (H₂O)-Werte in Wasser von 6,0 in der Ol-Lage, 5,6 in der Of/h-Lage und 5,2 im oberen Mineralboden, die damit im mittel-sauren Bereich (AG Bodenkunde, 1994) liegen. Die Kationenaustauschkapazität liegt nach Krug (1995) in der Of-Lage bei 380 mval/kg und im Mineralboden bei 161,7 mval/kg. Das C/N-Verhältniss lag in der Ol-Lage bei 24,3, in der Of/h-Lage bei 16,3 und im oberen Mineralboden bei 12,7 (Krug, 1995). Krug fand Stickstoffvorräte von 901 kg/ha in der Auflage und 7556 kg/ha im Mineralboden bis 100 cm Bodentiefe. Der durchschnittliche Stickstoffvorrat in Feinwurzeln betrug auf der Fläche in der Auflage 13 kg/ha und im Mineralboden bis 100 cm Bodentiefe 49 kg/ha.

Abb. 2: Geologischer Untergrund der Versuchsfläche, Bärenberg (und Gudenberg), Maßstab 1:25 000 (Geologische Karte von Hessen 4621 Wolfhagen).

4.1.2 Vegetation und Klima

Der Standort der Abt. 25A wird nach vorliegendem Bestandesblatt aus der forstlichen Standortkartierung als mäßig frisch eutroph charakterisiert. Der auf Basalt stockende Buchenwald entstand aus Naturverjüngung. Das mittlere Alter des Buchenbestandes beträgt 155 (140 - 160) Jahre, in den vereinzelt Bergahorn (Acer pseudo-platanus) eingestreut ist (daneben Einzelindividuen von Fraxinus excelsior L. und Ulmus glabra Huds. em. Moss). In Abb. 4 ist eine Karte gezeigt, die die Standorte der Bäume auf der Fläche darstellt.

Das Klima ist schwach subatlantisch geprägt. Die höhenzonale Zuordnung erfolgt in die montane, untere Buchen-Bergwald Zone.

Vegetationsaufnahme

Die Vegetationsaufnahme wurde von Prof. Dr. Schmidt und Mitarbeitern, Institut für Waldbau der Univ. Göttingen, durchgeführt. Nach dem vorliegenden Zwischenbericht von Schmidt (1995) wurde die Vegetation im Rahmen einer Voruntersuchung an zwei Terminen (März und Juli 1994) aufgenommen.

Schmidt weist, nach Unterschieden in der Kraut- und Strauchschicht, zwei Haupttypen aus: ca. 75 % der Aufnahmen werden durch die beiden Indikatorarten Himbeere (Rubus idaeus L.) sowie gelbes Windröschen (Anemone ranunculoides L.) geprägt, ca. 25 % werden von den drei Arten Himbeere (Rubus idaeus L.), gemeine Esche (Fraxinus excelsior L.) sowie Hain-Rispengras (Poa nemoralis L.) beherrscht.

Der Baumjungwuchs ist mit 0,21 Individuen pro m² recht spärlich (Schmidt, 1995), darunter die Rotbuche (Fagus sylvatica L.) lediglich mit 0,03. Untersuchungen von Hakes (Hakes, 1991 mdl.) auf der benachbarten Fläche in Abt. 16 wiesen als Pflanzengesellschaft eine Hochlagenform des Hexenkraut-Haargersten Buchenwaldes (Hordelymo-Fagetum circaeetosum) aus. Hier hat er u.a. eine Zunahme der nitratophilen Vegetation beobachtet (Urtica dioica L., Sambucus racemosa L.).

Während im westlichen Teil der Fläche der Lichtgenuss recht gleichförmig ist, ist am östlichen Rand die Lichteinstrahlung größer und ungleichmäßiger. Diese hat wahrscheinlich auch auf die dortige Entwicklung der deutlich größeren Anzahl verschiedener Vegetationsgruppen (Schmidt, 1995) direkten Einfluss.

4.2 Versuchsaufbau

4.2.1 Auswahl der Fläche

Vor Versuchsbeginn in Abt. 25 bestand eine weitere Untersuchungsfläche in Abt. 16, auf der ein Versuch mit ähnlicher Fragestellung (Änderung im Stoffkreislauf bei femelartiger Auflichtung) seit 1990 durchgeführt wurde.

Ursprünglich war geplant, die Bestandeslücke in Abt. 16 zu erweitern und dort einen neuen Versuch zu beginnen. Da aber durch Windwurf zweier großkroniger Buchen sowie einem erhöhten Flächenbedarf für vegetationskundliche Untersuchungen die benachbarte Fläche nicht mehr geeignet erschien, wurde nach einer zusätzlichen Auflichtungsfläche in der Umgebung der Abt. 16 gesucht. Kriterien für die Auswahl waren:

- Die neue Fläche sollte vergleichbar zur in Abt. 16 bestehenden Fläche sein.
- Die Entfernung zur Fläche 16 sollte aus organisatorischen Gründen nicht zu groß sein.
- Die Fläche sollte in allen Parametern (z.B. Lichtgenuss, Stoffhaushalt, klimatische Verhältnisse usw.) möglichst homogen sein, um nach erfolgter Auflichtung 2 Flächen mit identischen Ausgangsbedingungen zu haben.

Diese Kriterien wurden, wie Voruntersuchungen zeigten, von allen in Frage kommenden Flächen am besten in Abt. 25 des Zierenberger Stadtwaldes erfüllt. Nach Absprache mit der Stadt Zierenberg wurde die Abt. 25 für den neuen Auflichtungsversuch im Frühjahr '94 vorbereitet. Die Auflichtung wurde im Oktober 1994 vorgenommen. Dabei wurden 40 Bäume unterschiedlicher Größe entfernt. Dadurch entstand ein Auflichtungsoval von ca. 40 * 30 m Durchmesser (siehe Abb. 4).

Abb. 3: Luftbildaufnahme der Versuchsfläche in Abt. 25 am Bärenberg nach erfolgter Auflichtung.

In Abt. 25 mit einer Gesamtfläche von 4350 m² wurden drei Unterflächen abgegrenzt (siehe Abb. 4 auf der folgenden Seite):

- Unterfläche 1 (Koordinaten B/C 2) dient als 0-Fläche und bleibt daher unverändert.
- Unterfläche 2 (Koordinaten G 3/4) liegt im Übergangsbereich zwischen 0- und Auflichtungsfläche und wird daher als Randfläche bezeichnet.
- Unterfläche 3 (Koordinaten F J II V) ist identisch mit dem Auflichtungsoval und wird daher als Auflichtungsfläche bezeichnet.

Der Flächenplan der Untersuchungsfläche auf der folgenden Seite zeigt die auf der Fläche stehenden Bäume, die Baumstümpfe der bei der Auflichtung entfernten Bäume und die Flächen zur Vegetationsuntersuchung.

Abb. 4: Flächenplan Vegetation

4.2.2 Rasterpunkte und weitere grundlegende Installationen

Die Anlage des Geländerasters (siehe Abb. 5) fand im Frühjahr 1994 statt. 47 Rasterpunkte wurden eingemessen und numeriert. Sie haben einen Abstand von 10 m, woraus eine Fläche von 100 m² für jede Unterfläche resultiert. Die Flächeninformationen wurden im folgenden digitalisiert und daraus Flächenpläne erstellt. Im Juli 1994 wurde eine beheizte Schutzhütte für Messgeräte und Lysimeterflaschen aufgebaut, die den ganzjährigen Betrieb der Versuchsfläche ermöglicht. Im August 1994 wurden mit Pflöcken und Markierungsband Wege ausgewiesen, um Trittschäden an den eigentlichen Versuchszellen zu vermeiden. Um Mensch und Tier von der Fläche fernzuhalten und somit Beschädigungen und/oder Änderungen der natürlichen Bedingungen (z.B. Wildeinfluss auf die Vegetation) zu minimieren, wurde die Fläche im Juli 1995 eingezäunt:

oberhalb mit einem Holzlattenzaun (zur Minimierung von hangabwärts-wirkender Kontamination aus Zaunmaterial) und seitlich und unterhalb mit einem Maschendrahtzaun.

4.2.3 Weitere Versuchseinrichtungen

Folgende weitere Installationen und Messungen wurden durchgeführt:

- Im Herbst 1995 wurden je 6 Depositionssammler (Bestimmung des Makroelementgehaltes) und je 9 Depositionssammler (Bestimmung des Schwermetallgehaltes) (beide nach Meiwes et al. (1984)) auf drei Unterflächen aufgestellt.
- Der Freiflächenniederschlag wurde im 1. Jahr in Abt. 38 auf der Hauptfläche von der forstlichen Versuchsanstalt in Hann. Münden mit Niederschlagssammlern nach Meiwes et al. (1984) aufgefangen und analysiert und in den folgenden Jahren mit Niederschlagssammlern in Abt. 14 in ca. 2 km Entfernung zur Untersuchungsfläche in Abt. 25 gesammelt und analysiert.
- Auf den drei Unterflächen wurde Ende 1994 zur Bestimmung der Saugspannung im Boden je ein Tensiometerfeld nach Meiwes et al. (1984) eingerichtet.
- Im Oktober 1995 wurden im Randbereich der Auflichtung und in der Vergleichsfläche je ein Feld mit Stammabflusssammlern nach Meiwes et al. (1984) von je drei Bäumen eingebaut.

- Im November/Dezember 1994 wurden Kerzen-Lysimeter nach Meiwes et al. (1984) zur Sammlung des Bodenwassers eingebaut. Die erste Probenahme fand im Januar 1995 nach Verwerfen der Initiallösung statt.
- Zum Jahreswechsel 1994/95 wurden 30 cm hohe Plexiglaszylinder mit Lysimeterbodenplatte (Eigenbau), im folgenden Mikrokosmen genannt, in die Unterflächen eingebaut und parallel dazu Proben der Bodenfestphase an gleicher Stelle entnommen. Die erste Probenahme des Bodenwassers aus den Mikrokosmen konnte nach Verwerfen der Initiallösung Ende Februar 1995 stattfinden.
- Im Rahmen der Diplomarbeit von Carsten Krug wurden Ende 1994/Anfang 1995 an jedem Rasterpunkt Proben der Bodenfestphase entnommen. Desweiteren wurden drei Bodengruben zur Charakterisierung der Horizonte und Bestimmung von Feinbodenanteil und Skelettgehalt ausgehoben.
- Auf drei Unterflächen wurden im Jahr 1994 im Rahmen eines Vorversuches je 4 Proben pro Unterfläche aus der Bodenfestphase von 0 - 30 und 30 – 60 cm Mineralbodentiefe in monatlicher Probenahme entnommen, ihr C/N-Gehalt bestimmt und der mikrobielle Stickstoff extrahiert.
- Licht- und Temperaturmessungen wurden durchgeführt, um die Verhältnisse der Fläche vor Versuchsbeginn und während des Auflichtungs-Versuchs zu dokumentieren.
- Vegetationsproben wurden 1997 am Ende der Vegetationsperiode im Rahmen einer partiellen Aberntung genommen. Auch wurden zur Abschätzung der in der Vegetation aufwachsenden Biomasse in den folgenden Jahren wiederholt Deckungsgrad und Höhe von Leitpflanzen aufgenommen.

Folgende Tabelle gibt eine Übersicht über die Einrichtungen auf den Unterflächen und die durchgeführten Messungen:

Тур	Gebiet	Messintervall	Anzahl Wiederholungen
C/N-Gehalt	Auf den drei	monatlich,	5 Proben aus je 2 Horizonten
	Unterflächen	in 1994	an 9 Monaten
Licht	Gesamtfläche	halbjährlich,	an allen 47 Rasterpunkten
		1994, 1996-1999	
Temperatur	Auf den drei	stündlich,	3 Luft, 3 St. 5 cm Bodentiefe,
kontinuierlich	Unterflächen	1995 – 1997	3 St. 30 cm Bodentiefe
Temperatur	Gesamtfläche	jährlich,	3 Jahre; Messungen jeweils in
		1996 - 1998	5 und 10 cm Bodentiefe
Deposition	Auf den drei	monatlich,	9 St. pro Fläche
Schwermetalle	Unterflächen	1995 – 1997	
Deposition	Auf den drei	monatlich,	6 St. pro Fläche
Makroelemente	Unterflächen	1995 – 1997	
Tensiometer	Auf den drei	monatlich,	9 St. pro Fläche in 10, 30,
	Unterflächen	1995 – 1997	100 cm Bodentiefe
Stammabflusssammler	Auf den drei	monatlich,	an 3 Bäumen
	Unterflächen	1995 – 1997	
Lysimeterkerzen	Auf den drei	monatlich,	3 Felder in 10, 30,
	Unterflächen	1995 – 1997	100 cm Bodentiefe
Mikrokosmen-	Auf den drei	monatlich,	10 St. pro Unterfläche
Lysimeter	Unterflächen	1995 – 1997	
Bodenprofil	Auf den drei	einmalig,	1 St. pro Unterfläche
100 cm Bodentiefe	Unterflächen	1994	
Aberntung der	Auf den drei	einmalig,	9 * 1 m ² pro Unterfläche
Vegetation	Unterflächen	1998	
Höhe und Deckungs-	Auf den drei	3 Termine,	an allen 47 Rasterpunkten
grad der Vegetation	Unterflächen	1995, 1998	

Tabelle 1: Messungen und Einrichtungen auf Fläche 25

In den folgenden beiden Abbildungen 5 und 6 ist zu sehen, wo die oben aufgelisteten Messeinrichtungen auf der Fläche installiert sind.

Abb. 5: Flächenplan Boden, Temperatur und Deposition

Abb. 6: Flächenplan Lysimeter und Tensiometer

4.3 Methoden

4.3.1 Licht, Temperatur und Bodenfeuchte

Die Lichtmessungen wurden mit einem Luxmeter "Metrux K", der Fa. Metrawatt mit Selenphotozelle durchgeführt. Betrug die Strahlungsintensität mehr als 5000 Lux, wurde der Messbereich durch Aufstecken eines Filters um den Faktor 100 erweitert. Die Parallelmessung zur Ermittlung der Maximalstrahlung erfolgte auf einem der Fläche direkt benachbarten unbeschatteten Turm in ca. 20 m Höhe. Die Messwerte der Strahlungsintensität wurden in % der Maximalstrahlung verrechnet. Die Lichtmessungen wurden an einzelnen ausgewählten Strahlungstagen ohne Bewölkung in den Jahren 1994 und 1996 – 1998 jeweils im Sommer durchgeführt.

Temperaturmessungen in 5 cm und 10 cm Bodentiefe wurden je einmal in den Jahren 1995, 1996 und 1997 mit einer Einstichelektrode (Eigenanfertigung Universität Kassel) direkt neben den eingebauten Mikrokosmen gemessen.

Stündliche, kontinuierliche Temperaturmessungen wurden auf der gleichen Fläche von Dr. Jochen Godt durchgeführt (unveröffentlichter Forschungsbericht Godt, J. 2001). Die aktuelle Saugspannung im Boden wurde auf den drei Unterflächen mittels drei Tensiometern pro Bodentiefe und Unterfläche in 10, 30 und 100cm Bodentiefe gemessen.

Auf der Untersuchungsfläche wurden wie beschrieben 30 Mikrokosmen eingebaut. Zur Bestimmung des Wasserflusses durch die Mikrokosmen wurden monatlich die in den Saugflaschen jedes einzelnen Mikrokosmos gesammelten Wasservolumina ermittelt. Im Winterhalbjahr konnten bei Frost teilweise keine Daten ermittelt werden.

4.3.2 Ermittlung der Gesamt-Stickstoff-Vorräte der Bodenfestphase

4.3.2.1 Probenahme und Probenvorbereitung

Mineralboden

Auf den drei Unterflächen (0-Fläche, Randfläche und Auflichtungsfläche) wurden in vier 3 m * 3 m großen Unterflächen (A,B,C,D) Proben aus dem Mineralboden entnommen. In jeder dieser Unterflächen wurden mit dem Pürckhauer-Bohrer 5 Proben aus 2 Tiefenstufen (0 - 25 cm und 25 - 50 cm Bodentiefe) entnommen; beprobte Stellen wurden mit einem Bambusstock markiert. Die 5 Proben aus einer Unterfläche wurden zu einer Mischprobe pro Bodentiefe vereinigt; so ergaben sich je 4 Mischproben pro Unterfläche und Horizont. Da drei Unterflächen beprobt wurden, ergab sich eine Gesamtprobenzahl von 24 Mischproben.

Die Probenahme erfolgte monatlich von April bis November 1994 und einmal im Winter 1994/95; d.h. es wurden an 9 Terminen Proben entnommen. Pro Probe wurden ca. 350 g Boden zur weiteren Bearbeitung entnommen.

Zur Bestimmung der Trockenmasse wurde der Mineralboden homogenisiert und dann 350 g Boden auf < 2 mm Korngröße gesiebt. 2 * 50 g Boden wurden danach in Erlenmeyerkolben eingewogen und 24 Stunden bei 105 °C getrocknet. Die Trockenmasse wurde durch Wiegen bestimmt. Anschließend erfolgte die Berechnung der Masse feldfeuchten Bodens entsprechend 25 g trockenem Boden. So wurde für jede Probe unterschiedlicher Feuchte die Menge feldfeuchten Bodens bestimmt, die einem Trockengewicht von 25 g entsprach. Diese Menge wurde zur weiteren Bearbeitung eingewogen.

Organische Auflage

Mit einem Stechzylinder von 18 cm Durchmesser wurden an 9 Stellen/Unterfläche Proben entnommen. Dazu wurde der Stechzylinder bis in den Ah-Horizont in den Boden eingestochen, herausgehoben und in eine Schüssel entleert und die Streulage, der Ofund falls vorhanden auch der Oh-Horizont abgetragen.

Proben der organischen Auflage wurden mechanisch homogenisiert und zur Bestimmung der Trockenmasse 2 Unterproben á 50 g in Erlenmeyerkolben eingewogen und 24 Stunden bei 105 °C getrocknet. Die Trockenmasse wurde durch Wiegen bestimmt. Anschließend erfolgte die Berechnung der feldfeuchten Masse entsprechend 25 g Trockenmasse.

32

4.3.2.2 Analytik

Bestimmung des Gesamtstickstoffgehaltes der Proben

Der Gesamtstickstoffgehalt der so vorbereiteten Proben wurde am Nitrogen/Carbon-Analyzer, NA 1500, Carlo Erba Strumentazione ermittelt. Da hierbei sowohl anorganischer als auch organischer Stickstoff erfasst wird, ist diese Methode vergleichbar mit der Gesamtstickstoffbestimmung nach Kjeldahl (Carlo Erba, Handbuch), jedoch (vor allem in Verbindung mit dem automatischen Probengeber) wesentlich schneller und auch einfacher zu handhaben.

Parameter und Nachweisgrenzen sind in Kapitel 4.3.7 aufgelistet.

4.3.3 Mikrobieller Stickstoffpool in der Festphase

Zur Ermittlung des Stickstoffanteils im Mineralboden, der in mikrobieller Biomasse gebunden ist (N_{mic}), wurden Proben des Bodens aus zwei verschiedenen Ansätzen verwendet:

- Die Bodenproben, die auch zur Ermittlung der Ges.-N-Vorräte der Bodenfestphase dienten, aus 0 – 30 cm und 30 – 60 cm Bodentiefe.
- Bodenproben des die Mikrokosmen (s. S. 27) umgebenden Mineralbodens: bei Einbau der Mikrokosmen Ende 1994 – Anfang 1995 wurden 30 Proben aus dem die Mikrokosmen umgebenden Mineralboden aus 0 – 30 cm Bodentiefe entnommen.

Zur Ermittlung des mikrobiellen N-Gehaltes wurden in beiden Ansätzen je 4 Mischproben pro Unterfläche und Bodenhorizont erstellt.

Bei der Gesamt-N-Bestimmung in der Bodenfestphase wird auch der N_{mic}-Anteil mit erfasst. Zur Quantifizierung dieses N_{mic}-Anteils am Gesamtstickstoffgehalt muss der N_{mic} extrahiert und anschliessend analysiert werden. Die verwendete Extraktions-Methode wird im folgenden Kapitel erläutert.

4.3.3.1 Chloroform-Fumigation-Extraktion des N_{mic} der Bodenfestphase

Die in der mikrobiellen Biomasse gebundenen N_{mic}-Anteile werden mit der CHCl₃-Fumigation-Extraktions-Methode nach Brookes et al. (1985) bestimmt.

Vorinkubation

Vor der CHCl₃-Fumigation ist eine 5-tägige Vorinkubation des zu fumigierenden Bodens nötig, um die in Dauerformen befindlichen Mikroorganismen zu aktivieren und damit für die CHCl₃-Fumigation zugänglich zu machen.

Hierzu wird feldfeuchter Boden in Polyäthylen-Beuteln eingewogen und 5 Tage bei Zimmertemperatur im Dunkeln aufbewahrt.

Polyäthylen gewährleistet den Gasaustausch mit der Umgebung ohne Wasserdampfdiffusion zu ermöglichen, d.h. die Proben trocknen während der Vorinkubation und der Fumigation nicht aus; dadurch wird Trockenstress vermieden, so dass den Mikroorganismen gute abiotische Bedingungen geboten werden, um sie aus den Dauerstadien heraus zu mobilisieren.

Chloroform-Fumigation

Der vorinkubierte Boden wird in den geöffneten Polyäthylen-Beuteln 24 Stunden im Exsikator bei Unterdruck einer "Chloroform-Atmosphäre" ausgesetzt.

Die Chloroform-Atmosphäre wird erzeugt, indem auf den Boden eines Exsikators ein Becherglas mit ca. 100 ml CHCl₃ mit Siedesteinen gestellt wird. Durch den an den Exsikator mittels Kolbenpumpe angelegten Unterdruck beginnt das CHCl₃ zu sieden und ersetzt die normale Atmosphäre. Die Pumpe ist an eine Zeitschaltuhr angeschlossen, die sie innerhalb von 2 Stunden jeweils ½ Stunde anschaltet, so dass gewährleistet wird, dass der Unterdruck auf einem niedrigen Niveau erhalten bleibt.

Extraktion

Nach der 24-stündigen Fumigation werden dem Boden sofort 100 ml 0,5 M K₂SO₄-Lösung zugegeben, 30 Minuten geschüttelt und bei 3500 UpM 15 Minuten zentrifugiert.

Der Überstand ist zu dekantieren und das Volumen der gewonnenen Extrakte zu bestimmen - die Extrakte werden zur Vermeidung mikrobiellen Wachstums bis zur Stickstoffkonzentrations-Bestimmung im Gefrierschrank aufbewahrt. Die nichtfumigierten Bodenproben werden ebenso extrahiert. Aus der Differenz der Stickstoffgehalte der fumigierten und der nicht-fumigierten Proben kann der mikrobielle Stickstoffgehalt N_{mic} berechnet werden.

Mit der eintägigen CHCl₃-Fumigation und anschließender Kaliumsulfatextraktion werden 54 % des mit der 5-tägigen Fumigationsextraktion extrahierbaren Stickstoffs gelöst; daher müssen alle gefundenen N_{mic}-Gehalte durch 0,54 dividiert werden (Brookes et al., 1985; Jörgensen, 1995). Bestimmung des Stickstoffgehaltes der Extrakte

Mit den gewählten Methoden erfassbare Stickstofffraktionen sind:

- 1. Nitrat-Stickstoff
- 2. Ammonium-Stickstoff
- 3. Organische Stickstofffraktionen (Methode s. Kapitel 10.1)

Sulfatfällung vor Nitratbestimmung mittels Ionenchromatographie

Die Sulfatfällung ist notwendig, um die Nitratkonzentration überhaupt am Ionenchromatograph bestimmen zu können. Bei den in der Grössenordnung von 0,5 Mol/I vorkommenden Sulfatkonzentrationen würde die Retentionszeit des Sulfats die des Nitrats überlagern und somit die anschließende Leitfähigkeitsmessung der Nitrationen unmöglich machen. Das Verdünnen der Probe allein kann das Problem nicht lösen, da erst bei sehr hohen Verdünnungsfaktoren der Sulfatpeak vom Nitratpeak zu trennen ist. Auch liegen bei den zur Sulfatverdünnung notwendigen Verdünnungsfaktoren die in den Extrakten resultiernden Nitratkonzentrationen unter der Nachweisgrenze des Ionenchromatographen. Deshalb besteht die einzige Lösung darin, das Sulfat selektiv aus der Probe zu entfernen. Wir haben hierzu eine Fällungsreaktion mit Ba(OH)₂ * 8H₂O in äquimolaren Konzentrationen angewendet.

Das Ansetzen der Lösung muss bei 60 - 70°C unter ständigem Rühren erfolgen, da sich 0,5 Mol Ba $(OH)_2 * 8H_2O$ in 1 Liter aqua dest. erst dann lösen.

Der bei der Fällung entstehende weißliche Niederschlag kann durch Zentrifugieren entfernt werden. Auch andere Verunreinigungen und Trübungen können bei der Zentrifugation entfernt werden, so dass die Lösung am Ende klar ist.

Die hohe OH⁻-Konzentration der 0,5 M Ba (OH)₂-Lösung führte zu pH-Werten von ca. 14, die starke Veränderungen des Bindungsverhaltens der zu bestimmenden Ionen am Austauschermaterial der Trennsäulen bewirken. Daher ist die Lösung im folgenden mit HCI zu neutralisieren. Um die Probenvorbehandlung zu vereinfachen, kann die Ba (OH)₂-Lösung vor der Zugabe zu den Proben neutralisiert werden, wodurch sich auch die Löslichkeit des Ba (OH)₂ verbessert.

Hierzu wird konzentrierte HCI auf 60 - 70 °C erhitzt und dann zu der ebenfalls auf 60 - 70 °C erhitzten Ba (OH)₂-Lösung gegeben, bis der pH-Wert auf 7 eingestellt ist (Kontrolle mit pH-Meter). In der Probe nun in 0,5 M Konzentration vorliegende CI⁻Ionen stören die Konzentrationsbestimmung am Ionenchromatograph nicht, da ihr Peak den Nitratpeak nicht überlagert.

10 ml der extrahierten Lösung werden dann in ein 25 ml Zentrifugenröhrchen eingefüllt und mit 10 ml der auf 60 - 70 °C erhitzten und neutralisierten 0,5 M Ba $(OH)_2 * 8H_20$ -Lösung versetzt. Danach wird das entstandene BaSO₄ durch 10-minütiges Zentrifugieren bei ca. 3500 UpM entfernt. Der Überstand ist dann bis zur Messung am Ionenchromatograph im Kühlschrank bei 2 °C aufzubewahren.

Probenvorbereitung mit Adsorbex*RP-18

Dieser Schritt der Probenvorbereitung hat das Ziel, störende organische Säuren aus den Bodenextrakten zu trennen. Würde die Bodenlösung ohne Probenvorbereitung auf die Säulen aufgebracht, wäre eine nahezu irreversible Bindung der organischen Säuren an die Austauschergruppen der Säule die Folge und die Säulen somit unbrauchbar.

Adsorbex-Festphasenextraktionssäulen basieren auf dem Prinzip der selektiven Wechselwirkungen zwischen Probemolekül und einem kovalent modifizierten Kieselgelsorbens. Die Funktionalität der stationären Phase reicht von sehr unpolar bis polar (incl. schwachen und starken lonenaustauschern); die Teilchengröße der Sorbentien beträgt 40 µm, wodurch die hohe Kapazität der Niederdruckanwendung ausgenutzt werden kann.

Die stationäre Phase der Adsorbex*-RP-18-Säulen hat folgende Struktur: -Si-C18-H37. Diese extrem unpolare stationäre Phase ermöglicht die Extraktion unpolarer funktioneller Gruppen aus polaren Lösungen, wobei hydrophile Komponenten und Ionen nicht adsorbiert werden. Die Konzentration des Nitrations kann anschließend am Ionenchromatograph ermittelt werden.

Nitratbestimmung mittels lonenchromatographie

Vor der eigentlichen Messung wird der Ionenchromatograph durch Messung von Standards bekannter Zusammensetzung und Konzentration zweipunkt-kalibriert. Hierzu werden zwei verschieden konzentrierte Standards (Hoch- und Tiefprobe) je zweimal gemessen. Anhand der bekannten, in den Standards enthaltenen Ionen-Konzentrationen, können die am Integrator ermittelten Flächen den in den Standards enthaltenen Konzentrationen zugeordnet werden. Diese werden dann mittels weiterer Standards überprüft. Falls alle Standardmessungen zufriedenstellend verlaufen, kann die Nitratkonzentration der Proben bestimmt werden.

Ammoniumbestimmung mittels Gaselektrode

Die Bestimmung des Ammoniumgehalts erfolgt mit der "METROHM Ammoniak - selektive Gaselektrode 6.0506.000" in Verbindung mit einem METROHM pH-Meter. Bei dieser Elektrode trennt eine gasdurchlässige, hydrophobe Membran die mit Lauge versetzte basische Messlösung von der Innenelektrolyt-Lösung. Da Ammonium in stark basischen Lösungen als Ammoniak gasförmig vorliegt, kann dieser durch die hydrophobe Membran diffundieren, bis der Ammoniak-Partialdruck, der der Ammoniak-Konzentration proportional ist, auf beiden Seiten gleich groß ist. Hier reagiert Ammoniak teilweise reversibel mit Wasser zu Ammonium und Hydroxyd-Ionen. Das Verhältnis von Ammoniak zu Ammonium und Hydroxyd-Ionen ist konstant. Da der Innenelektrolyt aus Ammoniumchlorid-Lösung besteht, ist die Ammoniumkonzentration auch konstant. Die Spannung der Messelektrode zur inneren Referenzelektrode ändert sich mit der Änderung der Hydroxydkonzentration, die wiederum proportional zur Ammoniakkonzentration ist.

Zur Bestimmung der Ammoniumkonzentration wird wie folgt vorgegangen:

2 ml der Probe werden auf dem Magnetrührer in ein 25 ml Becherglas gefüllt. Nach Zugabe von 25 ml NaOH konz. wird die Elktrode in die Lösung getaucht und gewartet, bis der steigende Messwert konstant ist. Die Elektrode wird bis zur nächsten Messung in eine Pufferlösung pH 4 getaucht, um deren Empfindlichkeit zu steigern. Durch Messung bekannter, verschieden konzentrierter NH₄-Lösungen erfolgt die Kalibrierung des Geräts.
Organische Stickstofffraktionen

Bodenextraktproben enthalten in der Regel verschiedene Zustandsformen des Stickstoffs. Zur Aufstellung von Stickstoffbilanzen werden die Parameter Ammonium-, Nitrit- und Nitratstickstoff bestimmt. Zur Erfassung organisch gebundenen Stickstoffs war bisher ein zusätzlicher Aufschluss nach Kjeldahl erforderlich.

Alternativ kann dieser Aufschluss mit Oxisolv (Merck, Darmstadt) im Mikrowellenaufschlussgerät durchgeführt werden. Hierbei reduziert sich die Aufschlussdauer auf wenige Minuten. Der Stickstoffgehalt wird anschließend am Photometer als Nitratstickstoff ermittelt. Weitere Vorteile sind die geringere Störanfälligkeit gegenüber Oxidationsmittelüberschuss und die Erhöhung der Tolerierbarkeit gegenüber CSB in den Proben. Diese Methode wurde von mir im Rahmen dieser Arbeit weiterentwickelt und so auf salzhaltige Bodenextrakte adaptiert.

Eine detaillierte Beschreibung des methodischen Ansatzes zur Bestimmung des Gesamtstickstoffgehalts in wässriger Lösung mittels Mikrowellenaufschluss und anschließender photometrischer Nitratstickstoff-Bestimmung befindet sich im Anhang (Kapitel 10.1).

Berechnung des N_{mic}-Gehaltes

Dazu werden die in den Extrakten bestimmten Nitrat-Stickstoff-Konzentrationen, Ammonium-Stickstoff-Konzentrationen und ggfs. die N_{org} -Stickstoff-Konzentration über die Extraktionsvolumina in Stickstoffmengen umgerechnet und addiert, dann auf das Gewicht des extrahierten Mineralbodens bezogen und zum N_{mic} -Gehalt der Bodenfestphase verrechnet.

4.3.4 Ermittlung des Stoffflusses ohne Wurzelaufnahme

Zur Ermittlung des Stoffflusses ohne Wurzelaufnahme wurden pro Unterfläche je 10 ungestörte Bodensäulen mit Plattenlysimeter (Mikrokosmen) von Dezember 1994 - Januar 1995 eingebaut. Der Durchmesser der Plexiglassäulen beträgt 20 cm, die Einbautiefe 30 cm. Um das Bodengefüge beim Einbau möglichst wenig zu stören, wurde auf die Plexiglassäulen ein angeschärfter Edelstahlring aufgesetzt, der dann mit den Säulen in den Boden eingeschlagen wurde . Dann wurde der Bodenrand um die Säulen freigegraben, die Säule mit dem Edelstahlring mit einem Spaten unterfasst und mit Auflage und Mineralboden aus dem Boden gehoben. Dann wurde eine Metallplatte oben auf die Säule aufgesetzt und die Säule auf den Kopf gestellt. Der Metallring wurde entfernt und der untere Rand der Plexiglassäule gereinigt. Nachdem ein "Zwei-Komponenten-Kleber" auf den unteren Säulenrand aufgebracht wurde, konnte das Plattenlysimeter aufgesetzt werden. Abschließend wurde auf den Spalt auf der Außenseite Dichtmasse aufgebracht. Danach wurden schwermetall- und kontaminationsfreie PVC-Schläuche an das Plattenlysimeter angeschlossen und das Lysimeter mit der Säule in das vorbereitete Entnahmeloch eingesetzt.

Nach Anschluss an die Unterdruckanlage wurde kontinuierlich Unterdruck angelegt und die anfängliche Lösung als "Spüllösung" verworfen.

Die Probenahme von Lysimeterlösungen erfolgte ab Februar 1995 bis Oktober 1997 monatlich. Die Plattenlysimeter dienten der Messung folgender Parameter:

- Ca, Mg, K, Na, Al, Fe, Mn, Si, Zn Bestimmung mit ICP
- NO_3^{-} , PO_4^{-} , CI^{-} , SO_4^{-} Bestimmung mit dem Ionenchromatographen
- NH₄⁺ Bestimmung mit Elektrode
- TC, IC, TOC Bestimmung mit dem TOC-Analyzer
- Leitfähigkeit Bestimmung mit Elektrode
- pH-Wert Bestimmung mit Elektrode
- Cd, Pb, Cu, Zn, Cr, Co, Ni mit dem AAS

Parameter, Geräte und Nachweisgrenzen sind in Kapitel 4.3.7 aufgelistet. In dieser Arbeit finden die Stickstoff-Parameter Verwendung – alle anderen Parameter werden im Rahmen des Gesamtprojekts bearbeitet.

4.3.5 Ermittlung der N-Zwischenspeicherung in aufwachsender Biomasse

Zur Ermittlung der N-Zwischenspeicherung in aufwachsender Biomasse wurde am Ende der Vegetationsperiode 1997 je 1 m² der Vegetation an 9 Rasterpunkten je Unterfläche abgeerntet. Die Proben wurden anschließend im Labor getrocknet, gemahlen und der Gesamtkohlenstoff- und Gesamtstickstoffgehalt der Proben am Nitrogen/Carbon-Analyzer, NA 1500, Carlo Erba Strumentazione ermittelt. Ziel ist aus den so gewonnenen Daten die N-Zwischenspeicherung in der Vegetation in den drei Unterflächen abzuschätzen und die Daten in die Stoffhaushaltsbilanzierungen aufzunehmen.

4.3.6 Stoffhaushaltsbilanzierungen

Durch Verrechnung der Wasserflussraten mit den Stoffkonzentrationen werden Stofffluss-Jahresbilanzen erstellt. Im Vordergrund steht die Bilanz des Stickstoffs; bei Bedarf werden Bilanzen weiterer Parameter erstellt. Alle Bilanzen werden auf durch Temperatureffekte hervorgerufene Änderungen im Stoffhaushalt untersucht. Der Vergleich von drei Vegetationsperioden soll zeigen, ob ein Trend vor allem in der Stickstoffmobilisierung zu erkennen ist.

4.3.7 Geräte und Nachweisgrenzen

In der folgenden Tabelle sind die in dieser Arbeit verwendeten Geräte/-typen und, falls sinnvoll, ihre untere Nachweisgrenze aufgeführt.

Geräteklasse			verwendeter Typ			untere Nachweisgrenze			
C/N Analysator			Nitrogen/Carbon-Analyzer NA 1500 Carlo Erba Strumentazione			N = 0,233 μg/mg Einwaage C = 2,355 μg/mg Einwaage			
ICP			Spectroflame Typ Flamme M, Spectro Analytical Instruments GmbH, Kleve			s.u.			
Element	Na	K	Al	Са	Mg	Fe	Mn	Si	Zn
untere Nach- weisgr. mg/L	0,01	0,01	0,001	0,004	0,003	0,01	0,01	0,024	0,001
AAS-Flamme			Typ 3030 , Perkin-Elmer Atom Absorptions-/Emissions- Spektrophotometer			s.u.			
Element	Cd	Pb	Cu	Zn	Cr	Со	Ni	Na	
untere Nach- weisgr. μg/L	0,02	0,1	0,1	0,01	0,1	0,1	0,1	0,02	
Ionenchromatograph		Shimadzu, Säulen Dionex AG 4A AS 4 A			s.u.				
Element	F	No3		PO4		CL		SO4	
untere Nach- weisgr. mg/L	0,05 0,25		0,1		0,2		0,5		
TOC			Typ Shim	nadzu 5000)		TC = 0,1 mg/L; IC = 0,02 mg/L		

NO ₃ Küvettentest f. Photometer	Spectroquant 14542 NO3, Merck	Messbereich 2 – 80 mg/L bei 525 nm
CSB Küvettentest f. Photometer	Spectroquant 14541 CSB, Merck	Messbereich 100 - 1500 mg/L bei 585 nm
Photometer	Perkin Elmer Typ Lambda 3	s. Methode
pH-Elektrode	Einstabmesskette Typ E 588, Fa. Metrohm AG, Herisau CH	+/- 0,05 E
Leitfähigkeits-Elektrode	WTW	k.A.
Ammonium am Photometer	nach Deutsche Norm DIN 38 406 Teil 5 - E1	0,1 mg/L
Ammonium Elektrode	WTW	0,25 mg/L
Labor-Mikrowelle	Microwave Digestion Unit MW 500, Merck, Darmstadt	k.A.
Reinstwasser-Anlage	Seralpur pro CN	< 0,05 uS/cm ²
"Baumhöhenmessgerät"	Carl Leiss Höhenmesser	k.A.
Lichtmessgerät	Luxmeter Metrux K, Fa. Metrawatt	0 – 500 000 Lux, relativ

Tabelle 2: verwendete Geräte und ihre Nachweisgrenzen

k.A. = Keine Angabe

5. Ergebnisse

5.1 Licht- und Temperaturregime

Das Untersuchungsprogramm war darauf ausgerichtet, anhand ausgewählter Parameter die Veränderungen der Wachstumsfaktoren Licht und Temperatur als Folge des Eingriffs in den Buchenbestand (Femelhieb) zu verfolgen. Auf den Stickstoffhaushalt hätten derartige Veränderungen insofern einen Einfluss, als sämtliche bodenbiologische Vorgänge ihrerseits davon abhängen.

Licht

Der Faktor Licht ist in den Abb. 7 und 8 als mittlere relative Strahlungsintensität auf den Unterflächen in Brusthöhe und am Boden in %, bezogen auf eine gleichzeitig unbeschattete Vergleichsfläche, dargestellt. Die Lichtmessungen wurden an einzelnen ausgewählten Strahlungstagen ohne Bewölkung in den Jahren 1994 (vor dem Femelhieb auf der Auflichtungsfläche) und 1996 – 1998 (nach erfolgter Auflichtung) jeweils im Sommer durchgeführt. Die erste Grafik zeigt dabei die relative Strahlungsintensität in Brusthöhe, die zweite die relative Strahlungsintensität am Boden.

Deutlich wird, dass die Lichtverhältnisse in Brusthöhe vor Versuchsbeginn auf allen Unterflächen auf niedrigem Niveau fast gleich waren. In den weiteren Messungen nach erfolgter Auflichtung zeigt sich eine deutlich höhere Strahlungsintensität auf der Randfläche und eine darüber hinaus weiter erhöhte Strahlungsintensität auf der Auflichtungsfläche. Diese Lichtverhältnisse zeigen sich in den Messungen in 1996, 1997 und 1998 in ähnlicher Abstufung, wenn auch auf einem anderen Niveau je nach Strahlungsintensität am Messtag.

Unter-Fläche → O-Fläche → Rand-Fläche — Auflichtung

Abb. 8: Relative Strahlungsintensität am Boden

Im August 1999 ändert sich dies deutlich. Auf der Auflichtungsfläche ist die mittlere Strahlungsintensität bei niedrigerer Variabilität nun geringer als auf der Randfläche. Der Verlauf der mittleren relativen Strahlungsintensität in Brusthöhe wird auf niedrigem Niveau auch am Boden sichtbar: 1994 vor Versuchsbeginn ist die mittlere Strahlungsintensität auf Auflichtungs- und Randfläche sogar etwas niedriger als auf der 0-Fläche. Dies ändert sich nach erfolgter Auflichtung in 1996,1997 und 1998 deutlich: bei diesen Messungen ist die höchste Strahlungsintensität auf der Auflichtungsfläche zu beobachten, gefolgt von der deutlich dahinter liegenden Randfläche und der wiederum deutlich dahinter liegenden 0-Fläche.

Auch am Boden dokumentiert die Messung der Lichtintensität 1999 eine Änderung in dieser Verteilung zwischen den Unterflächen: Die mittlere Lichtintensität auf der Auflichtungsfläche fällt deutlich hinter die der Randfläche zurück – die Minimalwerte der Auflichtungsfläche liegen sogar mit den Maximalwerten der 0-Fläche auf fast gleicher Höhe. Deutlich wird in beiden Grafiken, dass die erfolgte Auflichtung die mittlere Lichtintensität auf Rand- und Auflichtungsfläche im Vergleich zur unveränderten 0-Fläche stark erhöht. Diese Flächenunterschiede bleiben bis zur Messung 1998 bestehen. Die Messung 1999 macht deutlich, dass aufwachsende Vegetation bereits begonnen hat, die Lichtverhältnisse auf allen Unterflächen wieder anzugleichen.

Temperatur

Die Temperaturmessung erfolgte mittels zweier verschiedener Messansätze:

- Je eine einmalige Temperaturmessung zum gleichen Zeitpunkt eines einzelnen Vormittages mit Strahlungswetter an jedem Mikrokosmos in den Jahren 1996, 1997 und 1998.
- 2. Kontinuierliche stündliche Messungen auf den Unterflächen von 1995 1997.

Die kontinuierlichen, stündlichen Temperaturmessungen waren wegen technischer Defekte bei der Datenerfassung teilweise lückenhaft. Die fehlenden Zeitabschnitte wurden näherungsweise durch Parallelisierung der Messreihen mit den Temperatur-Messwerten der Messstelle Neu-Eichenberg-Hebenshausen des "Fachgebiet Futterbau und Grünlandökologie, Universität Kassel, Fachbereich 11", Nordbahnhofstr.1, 37213 Witzenhausen ergänzt. Die Messstelle Neu-Eichenberg-Hebenshausen (Koordinaten: 51.21 N.L. und 9.52 O.L.) liegt ca. 30 km von der Untersuchungsfläche entfernt in einer Höhe von 217 m. Korrelationsberechnungen zwischen Teilmessungen der Tagesmittelwerte der Temperatur auf der Fläche und zeitgleichen Messungen in Eichenberg ergaben sehr gute Übereinstimmungen, so dass die Temperatur in Eichenberg als repräsentativ für die Temperatur auf der Versuchsfläche in Zierenberg angesehen werden kann. In Kapitel 10.2 (Anhang) sind Ergebnisse des Vergleichs beider Temperaturdatensätze tabellarisch und grafisch dargestellt.

Die mittleren Temperaturen auf den Unterflächen der 1. Messreihe (jährlichen Einzelmessung) sind in den Abb. 9 und 10 wiedergegeben. Jeder Mittelwert repräsentiert 10 Einzelmessungen. Für die Bodentiefe von 5 cm und 10 cm sind je drei Messungen von 1996 bis 1998 für die drei Unterflächen aufgetragen.

1996 werden sowohl auf der Rand- als auch auf der Auflichtungsfläche um bis zu 1,5°C höhere Temperaturmittelwerte als auf der 0-Fläche gemessen. Die Temperaturmittelwerte auf der Auflichtungsfläche liegen um rund 0,5°C über denen der Randfläche.

Auch in 1997 liegen die Temperaturmittelwerte der Rand- und Auflichtungsfläche in beiden Bodentiefen bis zu 1,5°C über denen der 0-Fläche. Die Unterschiede zwischen Rand- und Auflichtungsfläche verwischen sich allerdings.

Abb. 9: Mittlere Temperatur auf den Unterflächen in 5 cm Bodentiefe

Abb. 10: Mittlere Temperatur auf den Unterflächen in 10 cm Bodentiefe

In 1998 liegen die Temperaturmittelwerte der Rand- und Auflichtungsfläche in beiden Bodentiefen weiterhin bis zu 1,5°C über denen der 0-Fläche. Auf der Randfläche liegen die Temperaturmittelwerte nun leicht über denen der Auflichtungsfläche. Auffällig ist auch die hohe Variabilität der Temperaturwerte auf der Randfläche vor allem in 5 cm Bodentiefe.

Beim Vergleich der Licht- mit den Temperaturdaten aus jährlicher Messung fällt auf, dass die mittleren Bodentemperaturen auf der Auflichtungsfläche bereits 1998 beginnen, unter die der Randfläche zu sinken. Damit macht sich der Trend zur Angleichung der Unterflächen bei der mittleren Bodentemperatur bereits ein Jahr vor der Angleichung der Lichtintensität bemerkbar.

5.2 Wasserhaushalt

Veränderungen des Wasserhaushalts haben unmittelbare Folgen für den Transport von gelösten Stickstoffverbindungen durch das Ökosystem (Sickerwasserfluss). Indirekt beeinflusst er über die Verfügbarkeit des Bodenwassers sämtliche bodenbiologische Prozesse mit der gesamten Mineralisierung der organischen Substanz.

5.2.1 Saugspannung

Die Saugspannung ist ein Maß für die Verfügbarkeit des Bodenwassers und damit eine wichtige Rahmenbedingung für die stoffliche Umsetzung, aber auch für bodenbiologische Prozesse (z.B. Prozesse der mikrobiellen N-Umsetzung). Die Saugspannung im Boden wurde nach erfolgter Auflichtung in 10, 30 und 100 cm Bodentiefe auf 0-, Randund Auflichtungsfläche von Februar 1995 bis November 1997 gemessen. Die Abb. 11 bis 13 zeigen Monatsmittelwerte der Unterflächen in 30 cm Bodentiefe, die der Einbautiefe der Mikrokosmen entspricht. Lücken in den dargestellten Messreihen resultieren aus Frostperioden, in denen nicht gemessen werden konnte.

In den Abb. 11 – 13 wird deutlich, dass in 30 cm Bodentiefe 1995 auf der 0-Fläche (670 mbar) und 1997 auf der Randfläche (690 mbar) die höchsten Saugspannungen zu beobachten waren. 0-Fläche und Randfläche zeigen in 30 cm Bodentiefe in allen Beobachtungsjahren längere Austrocknungsphasen. Die Auflichtungsfläche trocknete in 30 cm Bodentiefe in allen Beobachtungsjahren nur kurz aus und ist damit über den gesamten Beobachtungszeitraum deutlich feuchter als die beiden anderen Flächen. In 10 cm Bodentiefe (Tab. 3) wird deutlich, dass die Saugspannung fast im gesamten Beobachtungszeitraum auf der Randfläche am höchsten ist, der Boden dort also am stärksten austrocknet.

Saugspannung nach Auflichtung in mbar						
0-Fläche Rand-Fl. Auflichtungs-Fl.						
Jahr	MW Stdabw. MW Stdabw. MW St				Stdabw.	
1995	261	171	362	181	270	165
1996	49	20	133	75	76	39
1997	1997 90 53 140 118 59 42					42

Tabelle 3: Saugspannung 10 cm Bodentiefe, Monatsmittelwerte Juli/August

Eine Erklärung kann in aktiven Buchenwurzeln und deren Wasserentzug aus dem Boden gefunden werden. Dieser Wasserentzug führt in Kombination mit erhöhtem seitlichen Lichteinfall (Erhöhung der Bodentemperaturen) auf der Randfläche zu einer verstärkten Austrocknung.

5.2.2 Wasserflussbilanz

Bodenfeuchte und Wasserangebot sind wichtige Steuerungsgrößen des N-Haushalts. Insofern ist die Wasserflussbilanz hier von Interesse. Die Abb. 14 - 16 zeigen die einzelnen Glieder der Wasserhaushaltsgleichung für die hydrologischen Jahre 1995 (Mai 1995 bis April 1996) und 1996 (Mai 1996 bis April 1997). Die Daten wurden über die Chlorid-Bilanz ermittelt und von Godt (2002) übernommen. Dem Eintrag mit dem Freiflächen-Niederschlag sind verschiedene Austragsparameter gegenübergestellt. Die dabei verwendeten Daten zum Wasserfluss im Mineralboden in 10, 30 und 100 cm Bodentiefe wurden mit Keramik-Lysimetern (nach Meiwes et al. 1984) ermittelt. Der Wasserfluss durch die Mikrokosmen ist ebenfalls für die drei Unterflächen dargestellt. Die Wurzelaufnahme wurde berechnet aus der Differenz zwischen dem Wasserfluss im Mineralboden in 30 cm Bodentiefe und dem Wasserfluss durch die Mikrokosmen. Diese Möglichkeit zur Abschätzung der Transpirationsrate ergibt sich aus der Tatsache, dass beim Einbau der Mikrokosmen alle Wurzeln abgeschnitten wurden und der Wasserfluss durch die Mikrokosmen damit ohne Transpiration des Bewuchses erfolgt. Die Lysimeter in 30 cm Bodentiefe sitzen im durchwurzelten Boden der Unterflächen. Die Differenz entspricht damit näherungsweise der Wasseraufnahme durch die Baumwurzeln bis 30 cm Bodentiefe.

In den Abb. 14 – 16 wird deutlich, dass im Mineralboden auf der Auflichtungsfläche in 10 cm und 30 cm Bodentiefe 1995 der Wasserfluss die Niederschlagsmenge im gleichen Zeitraum übersteigt. Gleiches gilt 1996 für die Randfläche in 10 cm Bodentiefe. Dies ist bedingt durch Abtauen von Schnee im Frühjahr, der als Niederschlag schon im vorherigen hydrologischen Jahr gefallen ist, aber erst nach dem Abtauen im folgenden hydrologischen Jahr im Mineralboden registriert wird.

Weiter ist zu sehen, dass der Wasserfluss mit zunehmender Bodentiefe deutlich abnimmt. In 10 cm Bodentiefe ist 1995 der größte Wasserfluss auf der Auflichtungsfläche zu beobachten. Dies ändert sich 1996. In diesem hydrologischen Jahr ist das Maximum auf der Randfläche zu beobachten; 0- und Auflichtungsfläche liegen auf gleichem Niveau.

49

Abb. 15: Wasserfluss in mm Randfläche

Abb. 16: Wasserfluss in mm Auflichtungsfläche

50

Der höchste Wasserfluss durch das Niveau von 30 cm Bodentiefe erfolgte 1995 und 1996 auf der Randfläche.

In 100 cm Bodentiefe liegen 1995 (geringere Niederschläge) alle Flächen auf sehr ähnlichen Niveau. Die Randfläche verzeichnet den größten Wasserfluss. Im Folgejahr 1996 (hohe Niederschläge) ändert sich das: der Wasserfluss durch die Auflichtungsfläche verdoppelt sich. Auf den anderen Unterflächen ist trotz höherer Niederschläge kein deutlicher Anstieg im Wasserfluss zu beobachten, da dort aktive Baumwurzeln Wasser aufnehmen.

Der Wasserfluss durch die Mikrokosmen (Einbautiefe 30 cm) der 0-Fläche entspricht in beiden Beobachtungsjahren in etwa dem der Lysimeter in 30 cm Bodentiefe; auf den anderen Flächen ist der Wasserfluss im Mineralboden durchweg höher als in den Mikrokosmen. In beiden Jahren ist der niedrigste Wasserfluss durch die Mikrokosmen auf der Auflichtungsfläche zu beobachten; auch die Randfläche zeigt niedrigere Flussraten als die 0-Fläche, liegt aber in beiden Beobachtungsjahren über denen der Auflichtungsfläche.

Auf der 0-Fläche wird über die Wurzeln bis 30 cm Bodentiefe in beiden Jahren kaum Wasser aufgenommen. Dies ist plausibel, da auf dieser Unterfläche kaum krautige Vegetation vorhanden ist. Auf der Randfläche wird 1995 weniger Wasser über die Wurzeln aufgenommen als 1996. Dagegen wird auf der Auflichtungsfläche 1995 mehr Wasser durch Wurzeln aufgenommen als 1996, obwohl die Niederschlagsmenge 1996 deutlich über der von 1995 liegt. Ursache hierfür ist die 1996 verstärkt aufwachsende krautige und strauchige Vegetation (s. folgendes Kapitel).

5.3 Stickstoffgehalte und -vorräte der Vegetation

Die Aufnahme von Stickstoff durch die Vegetation stellt eine wesentliche Senke im Stickstoffhaushalt dar; die Bestimmung der Größe dieser Senke ist daher entscheidend für die Einordnung der gefundenen versuchsbedingten Stickstoff-Mobilisierung im Rahmen des Gesamt-Stickstoff-Haushalts.

In diesem Kapitel werden daher die Stickstoffgehalte in der oberirdischen Baumbiomasse und der aufwachsenden Kraut- und Strauchschicht dargestellt.

Oberirdische Baumbiomasse

Einem Projektbericht der Hessischen Forstlichen Versuchsanstalt zur Fallstudie Zierenberg (Eichhorn, 1993) ist zu entnehmen, dass die Erhöhung der N-Vorräte mit dem jährlichen Zuwachs an Derbholz bei 21,8 kg N/(ha*a) liegt. Damit ist die von Eichhorn in Zierenberg ermittelte Erhöhung der N-Vorräte im Derbholz entsprechend den dortigen eutrophen Standortbedingungen deutlich höher als im Durchschnitt intakter deutscher Laubwaldareale, den das Umweltbundesamt mit 10 – 15 kg N/(ha*a) angibt (UBA, 2001).

In der oberirdischen Baumbiomasse sind 992 kg N/ha festgelegt (Eichhorn, 1995). Ein Vergleich mit Ergebnissen anderer Untersuchungen (Ellenberg et al., 1982) zeigt, dass dies als hoch einzustufen ist:

Hestehaven/Dänemark, Buche	453
Solling/Deutschland, Buche	589
Langaröd/Schweden, Buche	640
Kongalund/Schweden, Buche	1060
Meathop/U.K., Laubmischwald	293

Aufwachsende Kraut- und Strauchschicht

Auf der Auflichtungsfläche dominieren krautige und strauchige Pflanzen (hauptsächlich Urtica dioica). Eine Aberntung der aufwachsenden Kraut- und Strauchschicht auf den drei Unterflächen (1997) zeigen in Tabelle 4 das Trockengewicht und die Stickstoffvorräte der Unterflächen.

Unterfläche	Trockengewicht Biomasse	Stickstoffvorrat	Variation
0-Fläche:	1330 kg/ha	33 kg N/ha	31 %
Rand-Fläche:	8000 kg/ha	154 kg N/ha	3 %
AuflFläche:	12633 kg/ha	211 kg N/ha	15 %

Tabelle 4: Trockengewicht und Stickstoffvorrat der Unterflächen der aufwachsenden Krautund Strauchschicht (Godt, unveröffentlichter Forschungsbericht, 2001)

Auffallend ist der hohe Stickstoffvorrat auf Rand-Fläche (154 kg N/ha) und Auflichtungs-Fläche (211 kg N/ha). Beim Vergleich mit dem jährlichen N-Zuwachs im Derbholz (21,8 kg N/(ha*a)) wird deutlich, dass die aufwachsende Kraut- und Strauchschicht ein sehr bedeutender Stickstoffzwischenspeicher ist.

5.4 Stickstoffgehalte und -vorräte der Bodenfestphase

5.4.1 Organische Auflage

Die Stickstoffgehalte und –vorräte der organischen Auflage wurden auf derselben Fläche vor Versuchsbeginn detailliert von Krug (1995) ermittelt. Daher erschien eine weitere Untersuchung in dieser Arbeit nicht notwendig. Um jedoch einen Überblick über die N-Gehalte und –vorräte der organischen Auflage unmittelbar vor Durchführung der Auflichtung zu erhalten, wurde diese Anfang Dezember 1994 (nach Laubfall) an den drei Unterflächen beprobt. Die folgende Tabelle 5 zeigt die Ergebnisse.

Mittelwerte über die Gesamtfläche					
OI (g /kg)	Variation	Of (g /kg)	Variation		
29,7	11,7%	23,4	19,8%		

Tabelle 5: Stickstoffgehalte Auflage unmittelbar vor der Auflichtung

Unter Berücksichtigung der auf der Untersuchungsfläche bestimmten Trockenmassen und der N-Gehalte der Auflage errechnen sich zum Zeitpunkt der Probenahme folgende N-Vorräte in der Auflage (OI + Of) auf den Unterflächen:

Mittelwerte über die Unterflächen				
Unterfläche	N-Vorrat Auflage (kg/ha)			
0-Fläche	1.235			
Rand-Fläche	866			
Auflichtung	721			

Tabelle 6: Stickstoffvorräte in der Auflage der Unterflächen

In der Auflage der 0-Fläche sind höhere N-Vorräte als auf den anderen Unterflächen vorhanden. Diese Flächenunterschiede müssen bei der folgenden Bilanzierung der Unterflächen beachtet werden.

Die Ergebnisse von Krug (1995) liegen im Gesamtniveau um rund 1/3 niedriger, als die in der vorliegenden Arbeit ermittelten Werte. Die Ursache für diese Differenz ist im Probenahmedatum zu suchen: die Probenahme von Krug erfolgte rund drei Monate nach der Probenahme in der vorliegenden Arbeit. Daher war zum Zeitpunkt von Krugs Untersuchung bereits ein Großteil der Auflage in den Boden eingearbeitet und die Stickstoffvorräte in der Auflage niedriger als die in der vorliegenden Arbeit ermittelten.

5.4.2 Mineralboden-Inventur vor Versuchsbeginn

Auf drei Unterflächen wurden an vier Probenahmestellen im Jahr 1994 im Rahmen eines Vorversuches aus der Tiefe von 0 – 30 cm und 30 – 60 cm Proben des Mineralbodens zur Bestimmung der N-Gehalte entnommen.

N-Gehalte Bodenfestphase

Abb. 17: Stickstoffgehalte 1994 vor Auflichtung

Erwartungsgemäß sind die N-Gehalte im Mineralboden von 0 – 30 cm Bodentiefe bei sehr hoher Varianz deutlich höher als im Mineralboden von 30 – 60 cm Bodentiefe. Die N-Gehalte liegen in der Schicht von 0 - 30 cm Bodentiefe bei ca. 6 – 7 g/kg Feinboden und in der Schicht von 30 – 60 cm Bodentiefe bei 2 – 3 g/kg Feinboden. Die Variationskoeffizienten liegen im Bereich von 13% – 26% und damit hoch, da in diese Werte sowohl Flächenvariationen als auch zeitlich (monatliche Probenahme) bedingte Variationen eingeflossen sind.

Die auf die Fläche bezogene Bodenmasse von 0 – 30 cm Bodentiefe beträgt 1.100 t Feinboden pro Hektar und von 30 – 60 cm Bodentiefe 840 t Feinboden pro Hektar (Krug, 1995); (siehe auch Kapitel 10.4, Anhang).

Die daraus errechneten Stickstoffvorräte liegen in der Tiefenstufe 0 – 30 cm bei 6 – 9 t/ha und in 30 – 60 cm Bodentiefe bei 2 – 3 t/ha. In der Tiefenstufe 0 – 60 cm Bodentiefe errechnen sich 8 – 12 t N/ha. Die Stickstoffvorräte der drei Unterflächen liegen in 0 – 60 cm Bodentiefe bei 8, 10 und 12 t N/ha (0-/Rand-/Auflichtungsfläche). Diese Flächenunterschiede müssen bei der folgenden Bilanzierung der Unterflächen beachtet werden. (siehe auch Kapitel 10.4, Anhang)

5.4.3 Stickstoffvorrat im Mineralboden der Mikrokosmen

Bei Einbau der Mikrokosmen Ende 1994 – Anfang 1995 wurden Proben des die Mikrokosmen umgebenden Mineralbodens (0 bis 30 cm Bodentiefe) entnommen und im Feinboden der Gesamt-N-Gehalt incl. Vorräte (Tab. 7) bestimmt.

							Standardab
			Mittelwert	Maximum	Minimum	Anzahl	weichung
Fläche	O-Fläche	N in g pro kg Feinbod	7,42	9,99	5,74	10	1,33
	Bestandesrand	N in g pro kg Feinbod	6,35	8,00	5,56	10	,71
	Auflichtung	N in g pro kg Feinbod	6,23	7,70	3,31	10	1,36

Tabelle 7: Gesamt-N-Inventur des Mineralbodens der Mikrokosmen

Die Gesamt-N-Gehalte liegen bei 3 – 10 g/kg Feinboden, die Mittelwerte auf den Unterflächen waren gleich.

Legt man dieselbe Bodendichte wie im vorangegangenen Kapitel zugrunde, so errechnen sich N-Vorräte im Mineralboden von 5,7 t/ha auf der 0-Fläche, 7,4 t/ha auf der Randfläche und 9,0 t/ha auf der Auflichtungsfläche.

5.5 Stoffflüsse und -bilanzen der Mikrokosmen

Die Untersuchung des N-Umsatzes mit Hilfe von Mikrokosmen hatte als Hauptziel die Einschätzung der Stickstoffaufnahme durch den aufwachsenden Buchenbestand und seine Unterscheidung von der dauerhaften oder intermediären Festlegung in der Humussubstanz bzw. in der mikrobiellen Biomasse. Diese Unterscheidung ist durch andere Methoden praktisch nicht möglich, so dass auch die N-Bilanz auf der von Godt (2001) untersuchten benachbarten Versuchsfläche die Fragen nach diesen beiden wesentlichen Teilflüssen nicht klären konnte. Im folgenden Abschnitt werden daher die wichtigsten Ergebnisse bei der Auswertung der Mikrokosmen vorgestellt, im darauf folgenden Kapitel werden sie in die Bilanz der jeweiligen Teilflächen eingebracht.

5.5.1 Konzentrationen im Sickerwasser

Zur Verdeutlichung der Dynamik der Prozesse des Stickstoffhaushalts im Boden der Untersuchungsfläche werden in der folgenden Tabelle 12 die N-Konzentrationen im Sickerwasser der Mikrokosmen denen mit dem Niederschlag und den Stickstoffausträgen mit dem Sickerwasser der Mikrokosmen gegenübergestellt. Mit diesem Vergleich sollen die wesentlichen N-Umsetzungen beleuchtet werden, die sich während der Passage des Sickerwassers durch den Boden abspielen. Dargestellt sind die Nitrat-N- und Ammonium-N-Konzentrationen im Niederschlag der Auflichtungsfläche (Godt, 2001), da hier keine Änderungen wegen einer Passage durch die Baumkronen zu berücksichtigen sind. Zu beachten ist, dass es sich bei den Jahren 1995 und 1996 um hydrologische Jahre (Mai - April) und bei "1997" um das erste hydrologische Halbjahr (Mai - Oktober) 1997 handelt.

Jahr		Unterfläche	Ammonium-N (mg/L)	Nitrat-N (mg/L)
1995	Eintrag	Auflichtungsfläche	1,45 (0,57)	1,56 (0,30)
	Austrag	0-Fläche	0,37 (0,31)	21,16 (19,18)
		Rand-Fläche	0,45 (0,64)	21,10 (20,28)
		Auflichtungsfläche	0,85 (0,82)	21,55 (21,23)
1996	Eintrag	Auflichtungsfläche	2,27 (1,17)	1,16 (0,67)
	Austrag	0-Fläche	0,18 (0,25)	31,55 (15,84)
		Rand-Fläche	0,16 (0,30)	34,32 (20,36)
		Auflichtungsfläche	0,18 (0,24)	47,75 (33,96)
1. Hj.	Eintrag	Auflichtungsfläche	1,61 (0,56)	2,42 (1,26)
1997	Austrag	0-Fläche	0,16 (0,25)	15,75 (12,52)
		Rand-Fläche	0,10 (0,21)	22,98 (24,32)
		Auflichtungsfläche	0,26 (0,60)	27,63 (23,86)

Standardabweichung in Klammern

Tabelle 8: Vergleich der Ammonium-N- und der Nitrat-N-Konzentration der Mittelwerte der Niederschläge der Auflichtungsfläche mit den Mittelwerten der Mikrokosmen-Austräge der Unterflächen

Der Konzentrationsvergleich macht deutlich, dass auf allen Flächen und in allen untersuchten Perioden die Nitrat-N-Konzentration im Austrag ein bis zwei Zehnerpotenzen über der Konzentration im Eintrag liegt. Besonders groß sind diese Unterschiede wiederum im hydrologischen Jahr 1996 und im ersten hydrologischen Halbjahr 1997 auf der Auflichtungsfläche. Bei der Ammonium-N-Konzentration verhält es sich genau umgekehrt: der Eintrag liegt bis zu einer Zehnerpotenz über dem Austrag.

Als Ursache können vor allem Stickstoff-Mineralisation, Ammonium-Fixierung und Nitrifikation angenommen werden. In Kapitel 5.6. soll der Versuch unternommen werden, diese Umsetzungsraten zu quantifizieren. Standardabweichung des Ges.-N-Flusses der hydrologischen Halbjahre In der folgenden Abb. 18 sind die Mittelwerte und Ihre Standardabweichung des Ges.-N-Flusses in Form von Fehlerbalken dargestellt. Den Halbjahres-Mittelwerten liegen jeweils sechs Einzelwerte (monatliche Probenahme) zugrunde.

Abb. 18: Mittelwerte des Ges.-N-Flusses in mg/(qm*Monat) der Mikrokosmen in hydrologischen Halbjahren

Bemerkenswert ist die durchgängig hohe Standardabweichung auf Rand- und Auflichtungsfläche, die ihr Maximum in der Auflichtungsfläche im 2. Halbjahr 1996 (500 – 2200 mg/m² und Monat) erreicht. Bei der Betrachtung der Einzelwerte fallen vor allem die hohen Maximalwerte als Ursache für die hohe Standardabweichung auf. Alle Effekte die zur Erhöhung des Ges.-N-Flusses führen, sind auf Rand- und Auflichtungsfläche stärker ausgeprägt als auf der 0-Fläche – wahrscheinlich die Folge von temperaturbedingten Mineralisationseffekten.

Im folgenden Halbjahr (1. Halbjahr 1997) zeigen sich auf allen Unterflächen niedrige Standardabweichungen, die bei 200 – 800 mg/m² und Monat liegt. Dies weist darauf hin, dass sich die versuchsbedingten Änderungen im Stickstoffhaushalt verringern, sich dieser also auf allen Unterflächen wieder stabilisiert. Varianzanalyse der Mittelwerte der Konzentrationen im Sickerwasser

Die Stoffflüsse der Mikrokosmen der Unterflächen sind sehr unterschiedlich, da die Gegebenheiten vor Ort an den Standorten der Mikrokosmen (die nach dem Zufallsprinzip ausgewählt wurden) unterschiedlich sind. Daraus folgen unterschiedliche Strahlungsbedingungen, unterschiedliche Luft- und Bodentemperaturen und eine unterschiedliche Verdunstung. Diese Faktoren schlagen sich in der biologischen Aktivität und der Stickstoff-Mineralisation nieder. Wie sich die Faktoren auswirken ist jedoch nicht klar – der Stoff-Austrag mit dem Sickerwasser an der Unterseite eines jeden Mikrokosmos ("Austrag") ist das Ergebnis der Auswirkung der einzelnen Faktoren. Da in dieser Arbeit nicht die Austräge einzelner Mikrokosmen von Interesse sind, werden im folgenden die mittleren Ammonium- und Nitrat-Austräge untersucht, da Stickstoff in diesen Formen gelöst vorliegt und diese daher für die in Kapitel 5.5 dargestellten Stickstoff-Flüsse und Stickstoff-Flussbilanzen als Grundlage dienen. Der Chlorid-Austrag aus Mikrokosmen wird in die statistische Analyse mit einbezogen, da er als Basis für die Bestimmung der Wasserfluss-Bilanzen dient.

Tabelle 8 zeigt das hydrologische Jahr 1995 (Mai 1995 – April 1996), Tabelle 9 das hydrologische Jahr 1996 (Mai 1996 – April 1997) und Tabelle 10 das erste hydrologische Halbjahr 1997 (Mai 1997 – Oktober 1997) jeweils für die 0-, Rand- und Auflichtungsfläche getrennt. Als statistische Parameter sind Mittelwerte für die einzelnen Unterflächen, Anzahl (N), Standardabweichungen des Mittelwertes, Minimum- und Maximum-Werte und die Varianz dargestellt.

				Chlorid
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)
0-Flaeche	Mittelwert	,47	93,24	8,16
	Ν	79,00	79,00	80,00
	Standardabweichung	,40	84,51	4,54
	Minimum	,03	,50	1,41
	Maximum	2,57	392,14	21,92
	Varianz	,16	7141,90	20,57
Rand	Mittelwert	,58	92,94	9,76
	Ν	76,00	76,00	78,00
	Standardabweichung	,83	89,32	8,29
	Minimum	,03	5,40	,37
	Maximum	4,18	453,00	61,21
	Varianz	,69	7977,28	68,77
Auflichtung	Mittelwert	,78	94,91	10,08
	Ν	77,00	71,00	76,00
	Standardabweichung	1,05	93,51	7,40
	Minimum	,03	,14	,27
	Maximum	4,38	544,59	35,13
	Varianz	1,11	8743,63	54,74
Insgesamt	Mittelwert	,61	93,66	9,31
	Ν	232,00	226,00	234,00
	Standardabweichung	,81	88,63	6,93
	Minimum	,03	,14	,27
	Maximum	4,38	544,59	61,21
	Varianz	,66	7855,93	48,04

Tabelle 9: Mittelwerte der Konzentrationen im Sickerwasser der Mikrokosmen im hydrologischen Jahr 1995 (Mai 1995 – April 1996)

				Chlorid
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)
0-Flaeche	Mittelwert	,23	139,33	7,53
	Ν	90,00	90,00	90,00
	Standardabweichung	,33	69,78	6,62
	Minimum	,02	7,35	1,59
	Maximum	2,51	360,42	52,00
	Varianz	,11	4869,48	43,83
Rand	Mittelwert	,20	151,23	9,60
	Ν	96,00	94,00	96,00
	Standardabweichung	,38	89,71	7,00
	Minimum	,03	1,46	1,12
	Maximum	2,55	357,56	54,48
	Varianz	,14	8048,61	48,96
Auflichtung	Mittelwert	,23	210,35	12,91
	Ν	98,00	96,00	97,00
	Standardabweichung	,31	149,61	10,92
	Minimum	,03	,38	,71
	Maximum	1,66	650,52	53,80
	Varianz	,09	22384,21	119,23
Insgesamt	Mittelwert	,22	167,68	10,08
	Ν	284,00	280,00	283,00
	Standardabweichung	,34	113,29	8,71
	Minimum	,02	,38	,71
	Maximum	2,55	650,52	54,48
	Varianz	,12	12834,92	75,83

Tabelle 10: Mittelwerte der Konzentrationen im Sickerwasser der Mikrokosmen im hydrologischen Jahr 1996 (Mai 1996 – April 1997)

				Chlorid
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)
0-Flaeche	Mittelwert	,20	69,37	4,91
	Ν	95,00	99,00	99,00
	Standardabweichung	,32	55,16	1,59
	Minimum	,03	2,30	1,88
	Maximum	2,00	327,00	10,00
	Varianz	,10	3042,31	2,53
Rand	Mittelwert	,13	101,24	8,17
	Ν	89,00	95,00	96,00
	Standardabweichung	,27	107,13	3,89
	Minimum	,03	,25	1,26
	Maximum	1,71	483,00	24,50
	Varianz	,07	11477,06	15,10
Auflichtung	Mittelwert	,34	121,73	9,35
	Ν	97,00	97,00	97,00
	Standardabweichung	,77	105,11	7,47
	Minimum	,03	1,75	,20
	Maximum	5,10	431,00	43,80
	Varianz	,59	11048,54	55,76
Insgesamt	Mittelwert	,23	97,23	7,45
	Ν	281,00	291,00	292,00
	Standardabweichung	,52	94,22	5,27
	Minimum	,03	,25	,20
	Maximum	5,10	483,00	43,80
	Varianz	,27	8876,74	27,76

Tabelle 11: Mittelwerte der Konzentrationen im Sickerwasser der Mikrokosmen erstes hydrologisches Halbjahr 1997 (Mai – Oktober 1997)

In den Tabellen 8 – 10 werden Flächenunterschiede der Mittelwerte aller dargestellten Austragsparameter deutlich. Wegen der großen Anzahl von Wiederholungen sind die Unterschiede trotz großer Variationskoeffizienten der Mittelwerte häufig auf einem hohen Niveau signifikant.

Der Mittelwert des Chlorid-Austrags der Unterflächen ist in allen drei untersuchten Perioden auf der Auflichtungsfläche höher als auf der 0-Fläche – d.h. alle Effekte, die zur Konzentrationserhöhung führen, sind auf der Auflichtungsfläche stärker ausgeprägt als auf der 0-Fläche. Wahrscheinlich ist das die Folge einer höheren Verdunstung.

Der Vergleich der Konzentration des Ammonium-Austrags zeigt in allen untersuchten Perioden bei hoher Streuung niedrige Mittelwerte und kaum Unterschiede zwischen den Unterflächen.

Die Mittelwerte des Nitrat-Austrages zeigen im hydrologischen Jahr 1995 kaum Unterschiede zwischen den Unterflächen. 1996 werden jedoch deutliche Flächenunterschiede auf höherem Niveau zu erkennen. Im ersten hydrolgischen Halbjahr 1997 setzt sich dieser Trend fort.

Um die beobachteten Flächenunterschiede im Nitrat-Austrag statistisch abzusichern, ist in der folgenden Tabelle 11 das Signifikanz-Niveau α als Ergebnis des t-Tests (Student) dargestellt. Flächenunterschiede der Ammonium-Konzentration im Sickerwasser der Mikrokosmen sind nicht dargestellt, da sich diese nicht absichern ließen.

verglichene Unterflächen	1995	1996	1. Hj.1997
1 – 2	< 0,2	< 0,2	0,2
1 – 3	< 0,2	0,05 *	0,05 *
2-3	< 0,2	0,1	< 0,2

1 = 0-Fläche, 2 = Rand-Fläche, 3 = Auflichtungsfläche

Tabelle 12: Signifikanz Niveau α der Flächenunterschiede der Nitrat-Konzentrationen im Sickerwasser der Mikrokosmen

Die Ergebnisse des t-Tests verdeutlichen, dass die Unterschiede in der Nitrat-Konzentration im Sickerwasseraustrag zwischen 0- und Auflichtungsfläche im hydrologischen Jahr 1996 und im ersten Halbjahr des hydrologischen Jahres 1997 auf hohem Niveau signifikant sind.

5.5.2 Zeitlicher Verlauf der Nitrat-N- und Ammonium-N-Konzentrationen im Sickerwasser

Abb. 19 zeigt den zeitlichen Verlauf der Monatsmittelwerte der Nitrat-N- und Ammonium-N-Konzentration im Sickerwasser der Mikrokosmen nach erfolgter Auflichtung. Um die Übersichtlichkeit zu verbessern, sind keine Streuungen dargestellt. Wie in Kapitel 5.5.1 angeführt, unterscheiden sich aber die Mittelwerte für die einzelnen Zeitabschnitte signifikant voneinander.

Da die deutlichsten Änderungen im zeitlichen Verlauf der Nitrat-N-Konzentration im Sickerwasser der Mikrokosmen auf der Auflichtungsfläche beobachtet wurden, ist dieser in der folgenden Abb. 19 dargestellt; die Abbildungen des zeitlichen Verlaufs der Nitrat-N-Konzentrationen der 0- und der Randfläche befinden sich in Kapitel 10.6 (Anhang). In Abb. 19 wird deutlich, dass auf der Auflichtungsfläche jeweils mit einsetzender Widerbefeuchtung im Herbst ein Anstieg der Nitrat-N-Konzentration im Sickerwasser der Mikrokosmen erfolgt. Das ist eine Folge des in der vorangegangenen Wärmeperiode mineralisierten Stickstoffs, der von der Vegetation nicht aufgenommen wurde, sondern mit der Wiederbefeuchtung ausgewaschen wird.

Um Unterschiede in der Nitrat-N-Konzentration zwischen 0-Fläche und Auflichtungsfläche zu verdeutlichen, ist die Differenz der beiden Flächen in der folgenden Abbildung dargestellt.

Abb. 19: Nitrat-N-Konzentration im Sickerwasser der Mikrokosmen der Auflichtungsfläche

Abb. 20: Differenz Nitrat-N-Konzentration in mg/l im Sickerwasser der Mikrokosmen: Auflichtungsfläche – 0-Fläche

Nach uneinheitlichem Trend im hydrologischen Jahr 1995 (Mai 1995 – April 1996) übersteigt 1996 (Mai 1996 – April 1997) die Konzentration im Sickerwasseraustrag der Auflichtungsfläche den der 0-Fläche um bis zu 40 mg Nitrat-N pro Liter! Mitte 1997 gleichen sich die Nitrat-N-Konzentrationen beider Flächen auf niedrigem Niveau wieder an.

Im Gegensatz zu den Nitrat-N-Konzentrationen liegen die Ammonium-N-Konzentrationen meist im Bereich der unteren Nachweisgrenze. Lediglich im Sommer 1995 ist ein Anstieg auf 1,5 mg NH4+/L auf Rand- und Auflichtungsfläche zu beobachten, auf den dann ein Abfall im Winter 1995/1996 bis unter die Nachweisgrenze folgt. Im Sommer 1996 bleibt dieser Anstieg aus. Im Sommer 1997 erfolgt auf der Auflichtungsfläche wiederum ein deutlicher Anstieg auf 0,9 mg NH4+/L. Daraus wird deutlich, dass Ammonium im Sickerwasser der Mikrokosmen nur einen geringen Beitrag zum Gesamt-N-Fluss durch den Boden leistet.

5.5.3 Räumliche und zeitliche Variabilität des N-Stoffflusses

Aus der Betrachtung der Nitrat-N und Ammonium-N-Konzentrationen im vorangehenden Abschnitt ergibt sich, dass der Gesamt-N-Fluss durch den Boden der Mikrokosmen ganz vom Nitrat bestimmt wird und nur wenig vom Ammonium. Am deutlichsten zeigen sich zeitliche Trends auf der Auflichtungsfläche (Abb. 21). Streuungen sowie der zeitliche Verlauf des Gesamt-N-Flusses der 0- und der Randfläche werden im Anhang (Kapitel 10.7) gezeigt.

Abb. 21: Ges.-N-Fluss der Mikrokosmen in mg/(qm*Monat) auf der Auflichtungsfläche

In Abb. 21 fällt vor allem der Anstieg der Flussrate von Oktober bis Dezember 1996 auf (Maximum Dez. 1996: 2300 mg/qm*Monat). In der darauf folgenden Vegetationsperiode 1997 geht sie sehr stark auf 140 mg/qm*Monat zurück.

Ein ähnlicher Anstieg ist für kurze Zeit auch auf der Randfläche zu beobachten. Auf der 0-Fläche fällt der Anstieg deutlich niedriger aus. Dies zeigt sich auch, wenn wir die Differenz der Flussraten zwischen Auflichtungs- und 0-Fläche bilden (Abb. 22).

Abb. 22: Differenz Ges.-N-Fluss in mg/(qm*Monat) der Mikrokosmen: Auflichtungsfläche – 0-Fläche

Von wenigen Ausnahmen abgesehen ist der Fluss durch die Mikrokosmen der Auflichtungsfläche weit höher als auf der 0-Fläche.

5.5.3.1 Verlauf des N-Flusses im Sickerwasser-Austrag in hydrologischen Halbjahren

Für eine längerfristige Beurteilung und Prognose ist es angebracht, nicht den monatlichen Verlauf der Flüsse zu betrachten, sondern über die hydrologischen Halbjahre zu bilanzieren.

Die hydrologischen Halbjahre sind wie folgt definiert:

- 1. hydrologisches Halbjahr: 1. Mai bis 31. Oktober
- 2. hydrologisches Halbjahr: 1. November bis 30. April

Abb. 23: Summen des Nitrat-N-Flusses Mikrokosmen in mg/(qm*Halbjahr) der hydrologischen Halbjahren

Abb. 23 zeigt, dass sich die Flächen bezüglich der Nitratausträge aus den Mikrokosmen während der ersten 18 Monate nach dem Eingriff nur wenig voneinander unterscheiden. Danach steigt der Nitrataustrag auf der Auflichtungsfläche stark an und übertrifft die der Randfläche und erst recht die der 0-Fläche deutlich. Diese Flächenunterschiede bleiben auch im 2. Halbjahr 1996 erhalten. Im ersten Halbjahr 1997 gleichen sich die Flächen auf niedrigem Niveau wieder aneinander an.

Die gleiche Art der Darstellung folgt in Abb. 24 für Ammonium.

Abb. 24 zeigt auf einem sehr viel niedrigeren Niveau bereits im 2. Halbjahr nach der Auflichtung einen starken Anstieg auf der Auflichtungsfläche. In der Folgezeit verschwinden die Unterschiede (Nachweisgrenze).

5.5.4 Vorräte und Umsetzung von mikrobiell gebundenem Stickstoff

Nachdem bisher die Stickstoffgehalte und -flüsse im Boden insgesamt bzw. in den Mikrokosmen Gegenstand der Betrachtung waren, sollen nun die N-Formen in einem Teilkompartiment – der mikrobiellen Biomasse – näher untersucht werden. Dieser Anteil wird hier durch die Bezeichnung N_{mic} kenntlich gemacht.

5.5.4.1 N_{mic}-Gehalte und -Vorräte in der Bodenfestphase vor Versuchsbeginn

In den Proben der Bodenfestphase, in denen auch der Ges.-N-Gehalt bestimmt wurde (s. Kapitel 4.3.2), ist in je vier Mischproben pro Unterfläche und Bodenhorizont auch der N_{mic}-Gehalt nach der Chloroform-Fumigations-Extraktions-Methode, (Brookes et al., 1985) ermittelt worden. Wegen des hohen Analyse-Aufwandes konnten keine Wiederholungen durchgeführt werden, so dass keine Angaben zu Streuungen über die Probenahmetermine gemacht werden können.

Abb. 25 zeigt die N_{mic}-Gehalte im Feinboden der Unterflächen im Sommerhalbjahr 1994 vor Versuchsbeginn. Die in der Abbildung zu jedem Unterflächenmittelwert aufgetragenen Streuungen beziehen sich auf einzelne Probenahmetermine im Sommerhalbjahr 1994.

Abb. 25: Nmic-Gehalte der Bodenfestphase im Sommerhalbjahr 1994 vor Versuchsbeginn

Deutlich wird ein höherer N_{mic} -Gehalt in 0 – 30 cm Bodentiefe. Er liegt bei ca. 35 – 180 mg/kg Feinboden.

In 30 – 60 cm Bodentiefe liegen sie bei 15 – 50 mg/kg Feinboden.

Setzt man die N_{mic}-Gehalte in Relation zu den Ges.-N-Gehalten der Bodenfestphase, erhält man ein Verhältnis von ca. 1:100 (N_{mic}: Ges.-N.).

Eine auf der gleichen Fläche angefertigte Diplomarbeit (Krug, 1995) ermittelte im oberen Mineralboden von 0 – 30 cm Bodentiefe 1.100 t Feinboden pro Hektar und in 30 - 60 cm Bodentiefe 840 t Feinboden pro Hektar (s. Kapitel 10.4, Anhang). Daraus lässt sich der mittlere N_{mic}-Vorrat der jeweiligen Unterflächen und Tiefenstufen pro Hektar errechnen:

Bodentiefe	0-Fläche	Stdabw.	Randfläche	Stdabw.	Auflichtungsfl.	Stdabw.
0 – 30 cm	72	50	72	45	94	60
30 – 60 cm	21	5	29	15	25	15

Tabelle 13: Nmic-Vorräte auf der Untersuchungsfläche in kg/ha Sommer 1994

Tabelle 13 zeigt den im Vergleich zu den beiden anderen Flächen um 20 kg höheren N_{mic} -Vorrat der Tiefenstufe 0 – 30 cm auf der Auflichtungsfläche. Setzt man N_{mic} -Vorräte in Relation zu den Ges.-N-Vorräten der Bodenfestphase, erhält man auch hier ein Verhältnis von ca. 1:100 (N_{mic} : Ges.-N.).

5.5.4.2 Zeitliche Änderungen im N_{mic} -Vorrat der Bodenfestphase im Sommerhalbjahr 1994

Abb. 26 zeigt den zeitlichen Verlauf der in mikrobieller Biomasse gebundenen Stickstoff-Vorräte der Bodenfestphase in 0 - 30 cm Bodentiefe im Sommerhalbjahr 1994 vor Versuchsbeginn.

Abb. 26: Nmic-Vorräte der Bodenfestphase in kg/ha 0 – 30 cm Bodentiefe im Sommerhalbjahr 1994 vor Versuchsbeginn

Die in Abb. 26 dargestellten Balken entsprechen dem Mittelwert aus drei Messungen je Feinbodenmischprobe. In 0 – 30 cm Bodentiefe liegt der N_{mic}-Vorrat zwischen 40 und 180 kg N_{mic}/ha. Auf allen Flächen wird eine klare Zunahme mit dem Jahresverlauf sichtbar. Der Verlauf auf der Randfläche ist uneinheitlich, die Auflichtungsfläche weist bereits vor Versuchsbeginn höhere N_{mic}-Vorräte auf als auf der 0-Fläche beobachtet werden konnte.

Im Flächenvergleich ist der größte N_{mic}-Vorrat bis Ende Mai ´94 auf der Randfläche zu beobachten – danach tritt eine Verschiebung auf – das Maximum ist nun mit rund 180 kg N_{mic}/ha deutlich auf der Auflichtungsfläche zu beobachten. Auf der Randfläche ist nach Ende Juni sogar ein Rückgang des in Mikroorganismen gespeicherten Stickstoff-Vorrats zu beobachten.

Zusammenfassend ist zu sagen, dass im Jahresverlauf auf allen Unterflächen zunächst ein Aufbau des mikrobiellen Stickstoff-Pools zu beobachten ist. Am schnellsten baut er sich auf der Auflichtungsfläche auf. Hier wird auch die große Dynamik dieses Stickstoff-Zwischenspeichers deutlich. Der im Jahresgang (April bis Oktober 1994) beobachtete maximale Anstieg des N_{mic}-Vorrats lag bei rund 130 kg/ha.
Abb. 27 zeigt dasselbe für 30 – 60 cm Bodentiefe.

Abb. 27: Nmic-Vorräte der Bodenfestphase in kg/ha 30 – 60 cm Bodentiefe im Sommerhalbjahr 1994 vor Versuchsbeginn

In 30 – 60 cm Bodentiefe liegt der N_{mic}-Vorrat zwischen rund 20 und 60 kg N_{mic}/ha und beträgt damit nur noch ein Drittel bis maximal die Hälfte des Vorrats der darüberliegenden 0 – 30 cm-Bodenschicht. Auch wird kein jahreszeitlicher Trend sichtbar.

In Tabelle 17, S. 92 ist der mikrobiell gebundene Kohlenstoff (C_{mic}) und Stickstoff (N_{mic}) im Feinboden verschiedener Untersuchungen vergleichend dargestellt. Die beste Vergleichsmöglichkeit zu der hier vorliegenden Arbeit liefert eine Untersuchung an u.a. 38 Waldböden von Jörgensen (1995). Er fand in Wäldern um Göttingen und Braunschweig unter Rotbuche zwischen 24 und 290 µg Nmic * g-1 in 0 – 10 cm Bodentiefe (entspricht 24 – 290 mg N_{mic} /kg Boden). Die in der hier vorliegenden Arbeit gefundenen N_{mic}-Gehalte lagen im Feinboden zwischen 20 und 180 mg N_{mic}/kg Boden und damit in der von Jörgensen gefundenen Größenordnung.

Der von Jörgensen beschriebene Jahresgang der N_{mic}-Konzentration (1995, Abb. 11.5) zeigt im Jahr 1991 von April bis Oktober einen deutlichen Anstieg von rund 35 auf 55 μ g N_{mic} * g⁻¹ Boden. Der Anstieg des N_{mic}-Vorrats verlief jedoch nicht kontinuierlich, sondern war auch von deutlichen Rückgängen unterbrochen. Ähnliches konnte in dieser Arbeit z.B. auf der Randfläche in 0 – 30 cm Bodentiefe beobachtet werden.

5.5.5 Gesamt-N-Konzentrationen und Gesamt-N-Flüsse im Sickerwasser

In diesem Kapitel wird die Ges.-N-Konzentration im Sickerwasser der Mikrokosmen dargestellt. Dabei beinhaltet die dargestellte Ges.-N-Konzentration (photometrisch nach Mikrowellenaufschluss bestimmt, s. Kapitel 4.3.3.1) neben NO₃-N und NH₄-N **zu-sätzlich auch N**_{org} **und N**_{mic} (Ges.-N = \sum NH₄-N + NO₃-N + N_{org} + N_{mic}).

Die dargestellten Konzentrationen sollten im Mittel über den Konzentrationen der gleichen Proben liegen, die mit Methoden analysiert wurden, die N_{org} und N_{mic} nicht erfassen (Vergleich Kapitel 4.3.3.1, S. 37, 38). Wegen der hohen Analysekosten wurden Flächenmischproben für die Monate März 1995 bis November 1996 erstellt und analysiert; Wiederholungen konnten nicht durchgeführt werden, so dass auch keine Angaben zur Streuung gemacht werden können.

Gesamt-N-Konzentrationen

Die Mittelwerte der Ges.-N-Konzentration im Sickerwasser der Unterflächen (März 1995 bis November 1996) unterscheiden sich um ca. 30 mg/L kaum. Deutlich wird jedoch eine größere Varianz in der Auflichtungsfläche.

In den folgenden drei Abb. 28 – 30 ist der monatliche Verlauf der Ges.-N-Konzentration der Unterflächen in zwei Vegetationsperioden aufgetragen.

Abb. 28: Ges.-N-Konzentration in mg/l der Mikrokosmen; Jahresgang 1995 und 1996 0-Fläche

Abb. 29: Ges.-N-Konzentration in mg/l der Mikrokosmen; Jahresgang 1995 und 1996 Randfläche

Abb. 30: Ges.-N-Konzentration in mg/l der Mikrokosmen; Jahresgang 1995 und 1996 Auflichtungsfläche

Die Abb. 28 – 30 der Unterflächen zeigen zu Beginn der Beobachtung (Sommerhalbjahr 1995) uneinheitliche Verläufe. Die Konzentration in der 0-Fläche steigt dann zum Ende der Vegetationsperiode am stärksten an – im Winter fallen die Konzentrationen dann auf allen Unterflächen auf ähnliche Werte (rund 20 mg Ges.-N/L) ab.

In der folgenden Vegetationsperiode 1996 steigt die N_{mic}-Konzentration im Sickerwasser dann stärker als im Vorjahr an – vor allem die Auflichtungsfläche zeigt nun deutlich höhere Ges.-N-Konzentrationen im Austrag. Zum Ende der Vegetationsperiode erfolgt wieder eine starke Abnahme.

Gesamt-N-Flüßraten

In den folgenden drei Abb. 31 – 33 ist der monatliche Verlauf der Ges.-N-Flüsse (NH₄- N, NO₃-N, N_{org}, N_{mic}) der Unterflächen in zwei Vegetationsperioden aufgetragen.

Abb. 31: Ges.-N-Flüsse in kg/ha*Monat der Mikrokosmen; Jahresgang 1995 und 1996 0-Fläche

Abb. 32: Ges.-N-Flüsse in kg/ha*Monat der Mikrokosmen; Jahresgang 1995 und 1996 Randfläche

Abb. 33: Ges.-N-Flüsse in kg/ha*Monat der Mikrokosmen; Jahresgang 1995 und 1996 Auflichtungsfläche

In den Abb. 31 – 33 zeigt sich nach einem anfänglichen uneinheitlichen Verlauf der monatlichen Ges.-N-Flüsse (NH₄-N, NO₃-N, N_{org}, N_{mic}) durch die Mikrokosmen ein erhöhter Austrag auf der 0-Fläche zum Ende der Vegetationsperiode 1995. Auf diesen folgt ein Abfall des Ges.-N-Austrages bis zum Beginn der Vegetationsperiode 1996 auf unter 5 kg N/ha. Dann folgt ein steiler Anstieg auf über 23 kg/ha und Monat auf der Auflichtungsfläche, der bis zum Ende dieser Vegetationsperiode andauert.

Die hier dargestellten Ges.-N-Konzentrationen bestätigen die in Kapitel 5.5.2 gefundenen Ges.-N-Konzentrationen in identischer Mikrokosmenlösung, unterscheiden sich jedoch nicht von diesen, obwohl hier zusätzlich N_{org} und N_{mic} enthalten sind und die Konzentrationen daher erhöht sein sollten. Da die in diesem Kapitel abgebildeten Daten auch nicht für den gesamten Untersuchungszeitraum vorliegen, werden sie zur Erstellung von Jahresbilanzen nicht verwendet. Für die Bilanzierung finden die in Kapitel 5.5.2 Zeitlicher Verlauf der Nitrat-N- und Ammonium-N-Konzentrationbeschriebenen Messwerte Verwendung.

Abschließend ist festzuhalten, dass die in diesem Kapitel verwendete Methode zur Bestimmung der Ges.-N-Konzentration (photometrisch nach Mikrowellenaufschluss, Σ NH₄-N + NO₃-N + N_{org} + N_{mic}) nicht mehr Stickstoff in den Mikrokosmen-Proben findet als die aus NH4-N und NO3-N errechneten Ges.-N Mengen. Der Vorteil dieser Methode liegt in der kürzeren Untersuchungsdauer und der großen Toleranz gegenüber Fremdstoffen. Wenn dies von entscheidender Bedeutung ist, kann diese Methode Vorteile gegenüber anderen Methoden zur Bestimmung von Ges.-N in flüssiger Phase haben.

5.6 Stickstoff-Bilanzen

Der Versuchsansatz mit Mikrokosmen, dessen Resultate im vorangegangenen Abschnitt dargestellt wurden, versetzt uns in die Lage, eine plausible Schätzung für die N-Aufnahme in den Buchenbestand vornehmen zu können, dessen exakte Ermittlung an unüberwindlichen methodischen Schwierigkeiten scheitern muss, wenn man einmal von extrem aufwendigen Untersuchungen mit Isotopen absieht. Auf diese Weise lässt sich der N-Haushalt einschließlich des N-Austrages mit dem Sickerwasser insgesamt entschlüsseln. Die Gesamtbilanz für einen Buchenaltbestand, wie sie von Godt (2001) für die Nachbarfläche erstellt wurde, kann jetzt zumindest den Größenordnungen nach um die Wurzelaufnahme und die Zwischenspeicherung von N im saisonalen Verlauf in der mikrobiellen Biomasse ergänzt werden. Auf dem Weg, den das Wasser vom Eintritt in den Boden bis zu seinem Austritt an der Untergrenze des Mineralbodens durchläuft, finden in der durchwurzelten Bodenschicht verschiedene Prozesse statt, durch welche der Bodenlösung und damit dem N-Kreislauf Stickstoff entzogen wird oder durch gelöste N-Verbindungen an die Bodenlösung abgegeben, d.h. in den Kreislauf eingeschleust werden. Diese Prozesse sind in der folgenden Tabelle 14 dargestellt.

Faktoren, welche die N-Freisetzung begünstigen		Faktoren, welche die N-Bindung begünstigen			
Auflichtungsfläche					
-	Beschleunigter Abbau organischer Substanzen	•	Zunahme der Biomasse von Mikroorganismen		
	infolge der Erwärmung.		infolge von günstiger Bodenfeuchte und güns-		
-	Beschleunigter Abbau der Feinwurzelbiomasse		tigen Temperaturbedingungen.		
	der abgeschnittenen Baumwurzeln.	•	Aufwachsende Vegetation speichert vor allem		
-	Die Nährstoffaufnahme durch Bäume entfällt.		in der Auflichtungsfläche N im System.		
-	Erhöhung der Bodenfeuchte und Bodentempe-				
	ratur schlägt sich in verstärkter Mineralisation				
	nieder, die zu einer Überschussnitrifikation und				
	in der Folge zum Austrag von NO₃-N führt.				
-	Durch das Einschlagen der Mikrokosmen in				
	den Boden kam es zu einer Vermischung vor				
	allem der Auflage und des Ah-Horizontes in				
	den Mikrokosmen; daraus resultiert ein ver-				
	stärkter NO ₃ -N-Austrag.				
	Rand	fläc	he		
Die	Randfläche ist vom Femelhieb und der damit ver	denen Erhöhung der Bodenfeuchte und Boden-			
ten	nperatur deutlich betroffen. Daher treffen die oben	die Mikrokosmen der Auflichtungsfläche be-			
nar	nnten Folgen für den N-Haushalt prinzipiell auch h	nier z	zu. Die Höhe der Änderungen ist jedoch wegen		
anderer Licht- und Temperaturverhältnisse nicht identisch			h mit der Auflichtungsfläche.		
0-Fläche					
•	Durch das Einschlagen der Mikrokosmen in	•	Aufwachsende Mikroorganismen-Biomasse		
	den Boden kam es zu einer Vermischung vor		speichert in geringerem Ausmaß als auf den		
	allem der Auflage und des Ah-Horizontes in		anderen Flächen N im System.		
	den Mikrokosmen. Daraus resultiert eine ver-	•	Da Vegetation auf der 0-Fläche nur in geringe-		
	stärkte Mineralisation und NO ₃ -N-Austrag.		rem Maß als auf den anderen Flächen auf-		
•	Nährstoffaufnahme durch Bäume entfällt auch		wächst, ist deren Bedeutung als N-Speicher		
	hier, da die Wurzeln abgeschnitten wurden.		wesentlich geringer.		
•	In den Mikrokosmen wurden die Wurzeln beim				
	Einbau abgeschnitten; in der Folge wird die ab-				
	sterbende Wurzelbiomasse über mehrere Jah-				
	re mineralisiert und NO ₃ -N ausgetragen.				

In Kenntnis dieser Bedingungen sind die Ergebnisse zu interpretieren, die sich bei der Bilanzierung der Mikrokosmen und der einzelnen Unterflächen ergeben.

5.6.1 Flüssebilanz der Mikrokosmen

Tabelle 15 zeigt die Bilanz der Mikrokosmen auf den einzelnen Unterflächen als Differenz zwischen dem Eintrag mit den Niederschlägen und dem Austrag mit dem Sickerwasser.

Gesamtdeposition	1995	1996			
Bestand 0-Fläche	17	35			
Bestand Randfläche	18	35			
Freifläche (AuflFläche)	14	18			
GesN-Austrag Mikrokosmen-Sickerwasser					
0-Fläche	84	93			
Randfläche	61	106			
Auflichtungsfläche	71	144			
Output Überschuss					
0-Fläche	67	58			
Randfläche	43	71			
Auflichtungsfläche	67	126			

Tabelle 15: Gesamt-N-Bilanz Mikrokosmen in kg/(ha*a) - hydrologische Jahre 1995 und 1996

1995 übersteigt der Output auf der 0-Fläche den Input um das 5-fache. Der Output-Überschuss der Randfläche liegt 1995 mit 43 kg/ha deutlich unter dem der beiden anderen Flächen. 1996 schwächt sich der Output-Überschuss auf der 0-Fläche ab (2,5fach). In diesem Jahr wird nun mit 126 kg/ha auf der Auflichtungsfläche ein hoher Output-Überschuss (8-fach) deutlich sichtbar.

Der in der 0-Fläche im Vergleich zur Auflichtungsfläche beobachtete höhere NO₃-N-Austrag im hydrologischen Jahr 1995 zeigt, dass folgende Faktoren die Dynamik des N-Haushalts im 1. Versuchsjahr am deutlichsten bestimmt haben:

- Fehlende N\u00e4hrstoffaufnahme durch B\u00e4ume
- N-Mineralisation aus Totwurzeln
- Störungen des Bodengefüges durch das Einschlagen der Mikrokosmen

Zusätzlich haben N-bindende Faktoren auf der Auflichtungsfläche schon im

1. Versuchsjahr den N-Austrag vermindert:

- Aufwachsende Vegetation
- Aufwachsende Mikroorganismen-Biomasse

Die Summe aus diesen Faktoren hat dazu geführt, dass 1995 in der 0-Fläche mit 7,8 kg/ha ein höherer N-Austrag zu beobachten ist als in der Auflichtungsfläche mit 6,5 kg/ha.

5.6.2 Bilanzierung der Unterflächen

Im vorangegangenen Kapitel wurden die Stickstoffein- und -austräge bilanziert und damit näherungsweise die Bedeutung der N-Mobilisierung im saisonalen Verlauf als Folge der Kronenauflichtung im Buchenbestand ohne die N-Aufnahme über die Wurzel quantifiziert. Im folgenden Abschnitt wird diese Bilanz nun für die einzelnen Teilflächen aufgestellt, aus denen die Mikrokosmen entnommen wurden. Diese Gesamtbilanzen sind in den folgenden Abb. 34 - 42 getrennt nach N-Formen Ammonium und Nitrat und als Summe graphisch dargestellt. In diesen Bilanzen sind die folgenden Teilflüsse ausgewiesen:

Eintrag mit den Niederschlägen

Fluss durch den Mineralboden im Niveau 10 cm u.F.

Fluss durch den Mineralboden im Niveau 30 cm u.F.

Fluss durch den Mineralboden im Niveau 100 cm u.F. (=Austrag)

Bilanz der Mikrokosmen (siehe Kap. 5.6.1)

Wurzelaufnahme (siehe Kap. 5.6.1)

Die Wurzelaufnahme ist demnach als Differenz zu verstehen:

"Austrag der Mikrokosmen" minus "Austrag der jeweiligen Teilfläche 30 cm Bodentiefe".

Alle Werte – dargestellt durch Säulen auf der X-Achse – stellen Mittelwerte mit der Dimension kg/(ha*a) über die einzelnen Teilflächen dar. Dabei ist der Eintrag mit den Niederschlägen im positiven Bereich (=Gewinne) abgetragen, die Sickerflüsse durch die verschiedenen Bodenniveaus im negativen Bereich (=Verluste). Die Wurzelaufnahme kann entsprechend dem oben gezeigten Berechnungsmodus positive oder nagative Werte annehmen. Für den positiven Fall lautet die Interpretation: die Mineralisierung übersteigt die Wurzelaufnahme.

5.6.2.1 Ammoniumbilanz

In den folgenden drei Abb. 34 – 36 ist die Ammonium-N-Bilanz der Unterflächen in den hydrologischen Jahren 1995 (Mai 1995 – April 1996) und 1996 (Mai 1996 – April 1997) aufgetragen.

Die Ammonium-Einträge mit den Niederschlägen liegen weit höher als die Austräge mit dem Sickerwasser – auch diejenigen in 10 cm Bodentiefe. Ammonium wird also im Boden umgewandelt und/oder festgelegt. Null- und Randfläche unterscheiden sich kaum. Die Auflichtungsfläche hat im Vergleich mit den beiden anderen Flächen geringere Einträge, aber höhere Austräge. Dies weist auf eine verstärkte versuchsbedingte N-Mineralisierung auf dieser Unterfläche hin.

5.6.2.2 Nitratbilanz

Die folgenden drei Abb. 37 – 39 zeigen die Nitrat-Bilanz der Unterflächen in den hydrologischen Jahren 1995 (Mai 1995 – April 1996) und 1996 (Mai 1996 – April 1997).

Die Nitrat-Einträge mit den Niederschlägen liegen auf allen Flächen und in beiden hydrologischen Jahren wesentlich niedriger als die -Austräge mit dem Sickerwasser – Nitrat-N wird also im Boden durch Nitrifizierung freigesetzt und ausgewaschen. Beim Vergleich der Mikrokosmen auf 0- und Auflichtungsfläche fällt vor allem der deutliche Anstieg im Austrag mit dem Sickerwasser im hydrologischen Jahr 1996 auf der Auflichtungsfläche auf (Verdopplung auf 140 kg/ha und Jahr); der Mikrokosmen-Austrag mit dem Sickerwasser auf der 0-Fläche unterscheidet sich in beiden Jahren nur unwesentlich.

Die über Lysimeter gemessenen Austragsraten zeigen in allen Bodentiefen im Jahresund Flächenvergleich keinen einheitlichen Trend. Der deutliche Anstieg im Austrag mit dem Sickerwasser der Mikrokosmen im hydrologischen Jahr 1996 auf der Auflichtungsfläche wird in den über Lysimeter gemessenen Austragsraten nicht deutlich. Ursächlich hierfür ist die Wurzelaufnahme von Stickstoff. Im hydrologischen Jahr 1995 zeigt sich auf der 0-Fläche eine Wurzelaufnahme von 32 kg/ha, auf der Randfläche von 18 kg/ha und auf der Auflichtungsfläche von 55 kg/ha. Im Folgejahr ist die höchste Wurzelaufnahme wiederum auf der Auflichtungsfläche zu beobachten; allerdings hat sich die Flussrate auf 124 kg/ha und Jahr mehr als verdoppelt!

Abb. 39: NO₃-N-Bilanz Auflichtungsfläche in kg/(ha*a)

Abb. 37: NO₃-N-Bilanz 0-Fläche in kg/(ha*a)

Auf der Randfläche ist die Flussrate der Wurzelaufnahme in diesem hydrologischen Jahr auf 89 kg/ha gestiegen und hat sich damit mehr als verfünffacht! Die 0-Fläche zeigt einen leichten Anstieg von 32 auf 46 kg/ha. Beim Vergleich mit den in aufwachsenden Vegetation gespeicherten N-Mengen der Unterflächen (s. Kapitel 5.3) wird deutlich, dass auf der Auflichtungsflächen mit 211 kg/ha die 6-fache N-Menge der 0-Fläche gespeichert ist. Damit erklärt sich die stark erhöhte Wurzelaufnahme von Nitrat-N auf der Auflichtungsfläche.

Trotz der erhöhten Wurzelaufnahme in 0 – 30cm Bodentiefe ist 1996 auf der Auflichtungsfläche im Gegensatz zu den Vergleichsflächen eine deutliche Zunahme im Nitrat-N-Austrag in 100 cm Bodentiefe auf über 50 kg/(ha*a) zu beobachten.

5.6.2.3 Stickstoff-Gesamtbilanz

In Tabelle 16 und den folgenden drei Abb. 40 – 42 ist die Ges.-N-Bilanz der Unterflächen in den hydrologischen Jahren 1995 (Mai 1995 – April 1996) und 1996 (Mai 1996 – April 1997) dargestellt.

Hydr. Jahr	Unterfläche	Niederschlag	Mineralboden in cm		Mikrokosmen	Wurzelaufnahme	
			10	30	100	30 cm	bis 30 cm
in kg/(ha*a)							
1995	0-Fläche	17	-81	-52	-20	-84	-32
1996	0-Fläche	35	-35	-47	-30	-93	-46
1995	Rand-Fl.	18	-51	-43	-22	-61	-18
1996	Rand-Fl.	35	-19	-17	-12	-106	-89
1995	Auflichtung	14	-36	-15	-32	-71	-56
1996	Auflichtung	18	-34	-20	-52	-144	-124

Tabelle 16: Ges.-N-Bilanz der Unterflächen der hydrologischen Jahre in kg/(ha*a)

Sowohl in Tabelle 16 als auch in den Abb. 40 – 42 wird deutlich, dass die Ges.-N-Bilanz auf allen Unterflächen und in beiden hydrologischen Beobachtungsjahren fast ausschließlich vom Nitrat-N-Fluss bestimmt ist. Lediglich der Eintrag mit dem Niederschlag ist durch die Addition des Amonium-N durchgängig leicht erhöht. Daher gilt für die Gesamt-N-Bilanz, was in den beiden Ausführungen zur Ammonium-N- und Nitrat-N-Bilanz bereits erläutert wurde.

Zusammenfassung Kapitel 5.6.2.1 – 5.6.2.3:

- Auf allen Teilflächen wird weit mehr Ammonium-N ein- als ausgetragen; Ammonium-N wird also im Boden umgewandelt und/oder festgelegt bzw. aufgenommen.
- Die Nitrat-N-Einträge mit den Niederschlägen liegen auf allen Flächen und in beiden hydrologischen Jahren wesentlich niedriger als die -Austräge mit dem Sickerwasser – Nitrat-N wird also im Boden durch Nitrifizierung freigesetzt und ausgewaschen.
- Von 1995 nach 1996 zeigt der Nitrat-N-Austrag mit dem Sickerwasser der Mikrokosmen der Auflichtungsfläche eine Verdopplung auf 140 kg/ha und Jahr.
- Dieser deutliche Anstieg im Nitrat-N-Austrag mit dem Sickerwasser der Mikrokosmen im hydrologischen Jahr 1996 auf der Auflichtungsfläche wird in den über Lysimeter gemessenen Austragsraten nicht deutlich.
- Ursächlich hierfür ist die Wurzelaufnahme von Stickstoff auf der Auflichtungsfläche (1996: 124 kg/*ha) durch die dort aufwachsende krautige und strauchige Vegetation.
- 1996 ist auf der Auflichtungsfläche im Gegensatz zu den Vergleichsflächen eine deutliche Zunahme im Nitrat-N-Austrag in 100 cm Bodentiefe auf über 50 kg/(ha*a) zu beobachten.
- Die Ges.-N-Bilanz auf allen Unterflächen und in beiden hydrologischen Beobachtungsjahren wird fast ausschließlich vom Nitrat-N-Fluss bestimmt.

6. Diskussion

Hauptziel dieser Arbeit war es zu klären, ob es zu einer die Stickstoff-Aufnahme übersteigenden Stickstoff-Freisetzung in Folge von Mineralbodenerwärmung kommt oder nicht. Im besonderen sollten die Hypothesen experimentell überprüft und folgende Ziele erreicht werden (s. auch Kapitel 3.3 Ziele):

- Ermittlung der Gesamt-N-Vorräte der Bodenfestphase vor Versuchsbeginn
- Bestimmung der Größe des mikrobiellen Stickstoff-Pools
- Quantifizierung der Stickstoffaufnahme über die Wurzel
- Auswirkung des Auflichtungsexperiments auf die Stickstoff-Flächenbilanz
- Abklärung von Temperatureffekten, die den N-Haushalt beeinflussen

Die im vorigen Abschnitt dargestellten Ergebnisse der Untersuchungen auf den verschiedenen Unterflächen und den Mikrokosmen werden in Abb. 43 zusammengefasst. Aus dieser sind zum einen die N-Vorräte in den einzelnen Kompartimenten des Buchenbestandes und zum anderen auch die Umsätze über die verschiedenen Prozesse der Mineralisierung und Festlegung abzulesen, die Gegenstand der Arbeitshypothesen waren.

Im einzelnen sind das:

- Jährlicher Derbholzzuwachs
- Vorrat in oberirdischer Baumbiomasse
- Vorrat in Auflage
- Vorrat in krautiger und strauchiger Vegetation
- Ges.-Deposition
- Vorrat im Mineralboden
- Ges.-N-Jahresbilanz
- Vorrat in Wurzeln
- Wurzelaufnahme
- Vorrat in Mikroorganismen
- Maximaler jährlicher Umsatz im N_{mic}-Pool

Abb. 43: Stickstoff-Vorräte und -Umsätze der hydrologischen Jahre 1995 und 1996 im Überblick

Gesamt-N-Inventur der Bodenfestphase vor Versuchsbeginn

Tabelle 17 zeigt die N-Vorräte in Auflage und Mineralboden der vorliegenden Arbeit im Vergleich mit verschiedenen Arbeiten anderer Autoren.

Autor	Vorrat t N/ha	Bodentiefe cm	Ort
Eichhorn, 1992	10 - 11	0 - 90	Zierenberg, Buche,
			Hauptuntersuchungsfläche
Krug, 1995	6 – 9	0 - 30	Zierenberg, Abt. 25, Buche
Meiwes und Beese, 1988	8,4	0 - 50	Göttinger Wald, Buche
Matzner, 1988	6	0 - 50	Solling, Buche
Vor, 1999	4 – 5	0 - 30	Solling, Buche
Ulrich, 1994	1,1	Auflagehumus	Mittelwert für Waldböden
	4,5	0 - 30	in Deutschland
	2,1	30 - 60	
	1,4	60 - 90	
vorliegende Arbeit	1,2	Auflagehumus	Zierenberg, Buche
0-Fläche	5,7	0 - 30	
	2,2	30 - 60	
vorliegende Arbeit	0,9	Auflagehumus	Zierenberg, Buche
Rand-Fläche	7,4	0 - 30	
	2,5	30 - 60	
vorliegende Arbeit	0,7	Auflagehumus	Zierenberg, Buche
Auflichtungs-Fläche	9,0	0 - 30	
	3,0	30 - 60	
		1	

Tabelle 17: N-Vorräte in Auflage und Mineralboden verschiedener Arbeiten

Der Vergleich macht deutlich, dass der Ges.-N-Vorrat der Untersuchungsfläche im oberen Bereich des Spektrums dessen liegt, was man in Waldböden unter Buche findet. Dies muss bei der weiteren Diskussion der Stickstoff-Bilanz beachtet werden. Eine der Definitionen der N-Sättigung von Waldökosystemen legt den Critical-Loads-Wert zugrunde. Dieser ist definiert als die Menge an Stickstoff, die intakte Waldökosysteme durchschnittlich im jährlichen Derbholzzuwachs festlegen können und entspricht damit dem Stickstoffentzug mit der zu erntenden Biomasse. In deutschen Wäldern liegt dieser bei 10 – 15 kg N/(ha*a) und ist im Vergleich mit anderen Waldarealen als hoch einzustufen (UBA, 2001). In Zierenberg liegt die jährliche Festlegung von N im Derbholzzuwachs bei 22 kg N/(ha*a) (Eichhorn, 1993) und damit deutlich über dem schon hohen Durchschnittswert. Auch der Vergleich der in der vorliegenden Arbeit ermittelten N-Vorräte mit denen anderer Autoren macht deutlich, dass die N-Vorräte im Mineralboden der Untersuchungsfläche als sehr hoch einzuordnen sind.

Wie in der Einleitung (s. Kapitel 2.1.2) ausführlich erläutert, kann ein Ökosystem als Ngesättigt bezeichnet werden, wenn die N-Verluste aus dem System die Größe der Einträge erreichen oder überschreiten (UBA, 2001). Dies ist schon auf der 0-Fläche der Fall: der Ges.-N-Austrag in 100 cm Bodentiefe liegt bei 20 – 30 kg N/(ha*a) und summiert sich mit der Festlegung von N in der Biomasse auf 40 – 50 kg/ha. Demgegenüber liegt die Gesamtdeposition mit 20 – 35 kg/(ha*a) deutlich niedriger. Damit ist schon die Kontrollfläche als deutlich N-gesättigt bzw. N-übersättigt zu bezeichnen! Auf der Auflichtungsfläche wird die N-Übersättigung noch wesentlich besser sichtbar: der Ges.-N-Austrag in 100 cm Bodentiefe liegt bei 30 – 50 kg/(ha*a) und summiert sich mit der Festlegung von N in der Biomasse auf 50 – 70 kg/ha. Demgegenüber liegt die Gesamtdeposition bei rund 20 kg/(ha*a) und damit eindeutig niedriger! Diese Zahlen zeigen, dass der N-Kreislauf entkoppelt (s. Kapitel 2.1.2) ist und es in der Folge auf allen Unterflächen zu einer erhöhten N-Mobilisierung gekommen ist. Die N-Mobilisierung wiederum führt zu dem beobachteten Anwachsen des Mikroorganismen-Stickstoff-Pools (s. Kapitel 5.5.5).

Größenordnung und Stickstoff-Umsatz des mikrobiellen Stickstoff-Pools

Die Ermittlung der N_{mic}-Gehalte und –Vorräte der Bodenfestphase zeigt auf allen Unterflächen große Spannweiten (s. Tabelle 13). Eine große Variabilität über alle Standorte und Bodentypen wird auch in anderen Arbeiten deutlich. Tabelle 17 gibt einen Überblick über die C_{mic}- und N_{mic}- Gehalte, die in verschiedenen Arbeiten gefunden wurden.

R	AUTOR	Kurzcharakteristik	Extraktions-	Extrahierter Cmin o. Nmin in a *
			Methode	kg ⁻¹ Trockensubstanz
-	Pöhlhacker, R. & Zech, W., 1993	C, Auflage, Einfluss der Temperatur, saurer Waldboden unter Buche	CFE	C-Auflage: 4 – 7
2	Koch, M., Scheu, S., 1993	C, Exponierung verschiedener Substrate, Zierenberg, Buche	SIR	C: 0,4 – 0,75
с	Kolk, A. et al., 1993	Kompensationskalkung, Auflage, saurer Waldboden, Fich-	SIR	C-Auflage: 1,5 – 9,5
4	Jörgensen, R.G., 1995	C und N, Vergleich von 38 Waldböden	CFE	C: 0,2 – 2,1 N: 0,024 – 0,29
5	Kaiser, EA. et al, 1993	C und N, Jahresgang, landwirtschaftlich genutzte Böden	CFE	C: 0,250 – 0,36 N: 0,035 – 0,065
9	Lavahun, M.F.E. et al, 1993	Tiefenprofil d. mikorobiellen Biomasse landwirtschaftlich genutzte Böden	CFE	C: 0,08 – 0,36
2	Heisler, C., Kaiser, EA., 1993	Agrarstandort, Bodenverdichtung	SIR	C: 0,25 – 0,4
8	Elsner, DC., Blume, HP., 1993	Agrarstandort, Bodenbearbeitung, Düngung	SIR	C: 0,3 – 0,65
ი	Kleber, M. et al, 1998	Grünland, Gülle	CFE	C: 1,3 – 4,7 N: 0,23 – 0,65
10	Müller et al, 1993	räumliche Variabilität der mikrobiellen Biomasse	CFE	C: 0,34 – 0,46
	Stockfisch, N. et al, 1993	Humusauflage, Waldböden	CFE	C-Auflage: 2,4 – 41 C-Boden: 0.2 – 3.2
		SIR = Substratinduzierte	Respiration, CFE	= Chloroform - Fumigation - Extraktion

Tabelle 18: mikrobiell gebundener Kohlenstoff (Cmic) und Stickstoff (Nmic) im Feinboden in verschiedenen Untersuchungen

Im Mineralboden lagen die N_{mic}-Gehalte von 0,024 – 0,65 g^{-*} kg⁻¹ und zeigten eine hohe Variabilität über alle Standorte und Bodentypen.

Ein Vergleich der hier vorliegenden Arbeit mit Untersuchung Nr. 4 (Tabelle 17) von Jörgensen (1995) bietet sich an, da sich diese Arbeit ebenfalls auf Waldböden bezieht. Jörgensen findet mit 0,024 – 0,29 g N_{mic} * kg⁻¹ Feinboden auch hier eine hohe Variabilität.

Die Entkopplung des N-Haushaltes und die damit verbundene N-Mobilisierung wird bei der Betrachtung des Jahresganges des mikrobiellen Stickstoff-Pools (s. Kapitel 5.5.5.2) deutlich: auf der Auflichtungsfläche vervierfacht sich der in mikrobieller Biomasse gebundene Stickstoffvorrat innerhalb von gut drei Monaten! Der höchste beobachtete N_{mic} -Vorrat in 0 – 30 cm Bodentiefe liegt 130 kg über dem niedrigsten. Im Rahmen einer Diplomarbeit (Wett, 1993) wurden auf einer benachbarten Fläche in 0 – 30 cm Bodentiefe mit 90 kg/ha innerhalb einer Vegetationperiode ähnliche maximale Änderungen im N_{mic} -Vorrat gefunden.

Damit konnte die Hypothese, dass mit einer Erhöhung der Bodentemperaturen auch ein Anwachsen des mikrobiellen Stickstoff-Pools verbunden ist, bestätigt werden.

Mikrobieller Stickstoff-Pool und Mineralisationsrate

Mineralisation wird allgemein definiert als Überführung organischen Stickstoffs in anorganische Formen (zunächst in NH_4^+ = Ammonifikation) durch Mikroorganismen. Die folgende Abb. 44 stellt die Rolle der Mikroorganismen bei der N-Mineralsiation vertiefend dar:

Abb. 44: Stickstoff-Kreislauf (aus Scheffer/Schachtschabel, 1992; modifiziert)

In Abb. 44 wird deutlich, dass ein Anteil des mineralisierten Stickstoffs unmittelbar wieder im Boden gebunden und damit immobilisiert wird. Man unterscheidet dabei zwischen mikrobieller Immobilisation, d.h. dem Anteil, der in mikrobielle Biomasse übergeht, und der nicht-mikrobiellen-Festlegung. Auch direkt eingetragener mineralischer Stickstoff kann der Immobilisation unterliegen. Die Netto-Mineralisation ist allgemein definiert als die Differenz der Brutto-Mineralisation und der Immobilisation. Tabelle 19 gibt einen Überblick über Netto-N-Mineralisationsraten in verschiedenen Arbeiten im Vergleich.

Autor	Netto-Mineralisation	Bodentiefe cm	Ort
	in kg N/(ha*a)		
Bauhus, 1994	90	0 – 20	Solling, Buche
Beese, 1986	39	0 – 15	Göttinger Wald
Beese, 1986	16	0 – 15	Solling, Buche
Raubuch & Meyer, 1996	102	0 – 30	Solling, Buche
Vor, 1999	103	0 – 30	Solling, Buche(ungekalkt)
vorliegende Arbeit	72 – 94	0 – 30	Zierenberg, Buche
vorliegende Arbeit	21 – 29	30 – 60	Zierenberg, Buche

Tabelle 19: Netto-N-Mineralisationsraten verschiedener Arbeiten im Vergleich

Die Bestimmung erfolgte mittels verschiedener Methoden (Netzbeutelversuche u.ä.), denen allen gemeinsam ist, dass definierte stickstoffhaltige Substrate in das Ökosystem eingebracht werden und der Stickstoffabbau in diesen Substraten (aber nicht im umliegenden Waldboden) erfasst wird – es handelt sich also um eine indirekte Bestimmung der Netto-N-Mineralisationsraten. In der vorliegenden Arbeit konnten, wie im letzten Abschnitt erläutert, im Jahresdurchschnitt in 0 – 30 cm Bodentiefe maximale Änderungen im N_{mic}-Vorrat von 130 kg N/(ha*a) beobachtet werden. Diese Änderung im N_{mic}-Vorrat ist die direkt gemessene mikrobielle Immobilisationsrate, da diese 130 kg N/(ha*a) im Sommerhalbjahr 1994 in mikrobieller Biomasse immobilisiert wurden.

Unterstellt man nun, dass auf den Aufbau im Sommerhalbjahr wiederum ein Abbau im Winterhalbjahr auf ähnliche Werte wie im April 1994 beobachtet, erfolgt, dann ist dieser Abbau die im Gegensatz zu den in Tabelle 18 dargestellten **indirekt** bestimmten Netto-N-Mineralisationsraten anderer Autoren die **direkt** bestimmte "Netto-N_{mic}-Mineralisationsrate" und kann wiederum mit bis zu 130 kg N/(ha*a) (Auflichtungsfläche) quantifiziert werden. Über die nicht-mikrobielle-Immobilisation kann auf Basis der vorliegenden Daten keine Aussage gemacht werden.

Die auf der Auflichtungsfläche beobachtete maximale "Netto-N_{mic}-Mineralisationsrate" von 130 kg N/(ha*a) liegt beim Vergleich mit den in Tabelle 18 dargestellten Netto-N-Mineralisationsraten in anderen Arbeiten in gleicher Größenordnung.

Bildet man nun die Differenz der Netto-N_{mic}-Mineralisation zwischen Auflichtungsfläche und 0-Fläche, errechnet sich ein Überschuss von 30 kg N/(ha*a) auf der Auflichtungsfläche. Dies ist durch das Auflichtungsexperiment zusätzlich mineralisierter Stickstoff und bestätigt so die Hypothese, dass mit einer Erhöhung der Bodentemperaturen auch Mineralisationseffekte verbunden sind.

Die Rolle des mikrobiellen Stickstoff-Pools als N-Zwischenspeicher

Die Variabilität in der Größe des mikrobiellen Stickstoff-Pools ist Ergebnis verschiedener bodeninterner Prozesse. Kommt es in Folge einer Erhöhung der Bodentemperaturen zu einer Entkopplung des Stickstoffkreislaufs (s. Kapitel 2.2.1) und damit verbundener Freisetzung von Stickstoff, wird dieser von den Mikroorganismen teils inkorporiert und zum Aufbau eigener Biomasse benutzt. Neben dem Vermehrungspotential der beteiligten Mikroorganismen bedingt vor allem die Größe des mikrobiellen N-Pools die Aufnahmekapazität desselben: ein größerer Mikroorganismen-Pool kann auch schneller größere N-Mengen binden, ein kleiner Pool im gleichen Zeitraum nur kleinere N-Mengen. Das im Frühjahr beginnende quantitative Anwachsen des mikrobiellen Stickstoff-Pools mit dem Jahresgang zeigt vor allem dessen Temperaturabhängigkeit auf. Die am Ende der Vegetationsperiode deutlich ansteigenden Austragsraten zeigen jedoch an, dass der freigesetzte Stickstoff von den Mikroorganismen nicht dauerhaft im System gehalten werden kann, da mit fallender Temperatur auch die Mikroorganismen absterben und der in ihrer Biomasse gespeicherte Stickstoff freigesetzt wird. Allein aufwachsende verholzende Vegetation kann Stickstoff langfristig im System binden.

Anhand dieser Arbeiten wird klar, dass der Mikroorganismen-Stickstoff-Pool einen relevanten Zwischenspeicher, aber keinen langfristigen Speicher für Stickstoff darstellt. Stickstoff-Einträge in den Boden erfolgen mit der Gesamtdeposition, dem Streufall, der Fruktifikation und durch die jährlich absterbende krautige Vegetation; demgegenüber steht der Flächenaustrag; summarisch ergeben sich hieraus rund 110 kg N/(ha*a)¹ (Eichhorn, 1993) "Netto-Flächeneintrag". Dies entspricht der Größenordnung der beobachteten mikrobiellen Netto-Mineralisationsrate. Damit wird die Hypothese der vorliegenden Arbeit bestätigt, die besagt, dass der N_{mic}-Pool eine im N-Haushalt quantitativ wichtige Funktion als saisonaler Zwischenspeicher für Stickstoff hat.

¹ Deposition (21,5) + Streufall, Fruktifikation (46,2) + N in Brennesseln (54) – Austrag (13) = Netto-Flächeneintrag (108,7), (Eichhorn, 1993)

Quantifizierung der Stickstoffaufnahme über die Wurzel

Die folgende Tabelle 20 zeigt die Ges.-N-Wurzelaufnahme in 0 – 30 cm Bodentiefe der hydrologischen Jahre 1995 und 1996 (s. Kapitel 5.6.2.3 Stickstoff-Gesamtbilanz).

Hydrologisches Jahr	0-Fläche	Rand-Fläche	Auflichtungs-Fläche
1995	32	18	56
1996	46	89	124

Tabelle 20: Ges.-N-Wurzelaufnahme 0 - 30 cm Bodentiefe in kg/ha 1995 und 1996

In der Tabelle wird deutlich, dass vor allem im hydrologischen Jahr 1996 die Ges.-N-Wurzelaufnahme auf Rand- und Auflichtungsfläche stark ansteigt.

Untersuchungen mit ähnlicher Fragestellung wurden z.B. von Eichorn (1993) durchgeführt: Die von ihm beschriebenen Hydrokultur-Laborversuche an Jungbuchen ermöglichen das Studium der Stoffaufnahme von Buchen über das Wurzelsystem, sind jedoch nur bedingt geeignet, die reale Stoffaufnahme eines Buchenbestandes im Freiland zu simulieren und liefern keine zur Bilanzierung geeigneten Daten.

Rennenberg et al. (1998) und Gessler et al. (1998) legten u.a. Buchen-Feinwurzeln eines Buchenbestandes frei, wuschen und trockneten sie und versorgten sie mit einer definierten Nährlösung aus Nitrat-N und Ammonium-N. Die Aufnahmeraten wurden auf die Biomasse bezogen, auf die Fläche hochgerechnet und ergaben eine Aufnahme von 85 kg N/(ha*a). Das entspricht in der Größenordnung der in dieser Arbeit berechneten Wurzelaufnahme von Stickstoff.

Die Wurzelaufnahme durch krautige Vegetation auf der Auflichtungsfläche im hydrologischen Jahr 1996 liegt rund 80 kg N/(ha*a) über der des Bestandes (0-Fläche). Damit wird deutlich, dass die aufwachsende Vegetation auf der Auflichtungsfläche einen Großteil des Netto-Stickstoff-Jahreseintrages in Zierenberg von rund 110 kg pro Hektar (Eichhorn, 1993) aufnehmen kann. Es verbleibt jedoch ein Rest von rund 30 kg/ha (Differenz Netto-Stickstoff-Jahreseintrag – Wurzelaufnahme Auflichtungsfläche 1996), der nicht von der aufwachsenden krautigen Vegetation der Auflichtungsfläche aufgenommen werden kann.

Ein Vergleich mit der in 0 – 30 cm Bodentiefe als "Netto-Mineralisation" angesprochenen maximalen Änderung im N_{mic} -Vorrat von 130 kg N/(ha*a) (Auflichtungsfläche) macht deutlich, dass diese "Netto-Jahres-Mineralisation" 1996 leicht über der Wurzelaufnahme liegt.

Der über Lysimeter gemessene Ges.-N-Austrag der Auflichtungsfläche in 100 cm Bodentiefe lag 1996 bei 52 kg N/(ha*a) und damit noch über den nicht von der Vegetation der Auflichtungsfläche aufgenommenen Ges.-N-Mengen. Ergebnis ist damit, dass die auf Lochhieben aufwachsende krautige und strauchige Vegetation eine auflichtungsbedingte Stickstoffmobilisierung nur teilweise kompensieren kann. Allein aufwachsende verholzende Vegetation kann Stickstoff langfristig im System binden. Die Vegetation auf der Auflichtungsfläche wird jedoch von krautiger und strauchiger Vegetation dominiert, die am Vegetationsende größtenteils abstirbt und so einen Großteil des in ihrer Biomasse festgelegten Stickstoffes wieder freisetzt.

Dies zeigt auch ein Vergleich mit dem auf der Nachbarfläche (in Abt. 16) seit 1990 laufenden Auflichtungs-Versuch: hier hat sich bis zum fünften Jahr nach erfolgter Auflichtung auf der dortigen Auflichtungsfläche ein Stickstoffvorrat von 715,6 kg N/ha in aufwachsender Vegetation gebildet. Die aufwachsende Vegetation wird auf dieser Fläche im Gegensatz zur vorliegenden Arbeit vor allem von den verholzenden Pflanzen Sambucus racemosa und Fraxinus excelsior dominiert, die Stickstoff dauerhaft festlegen. Eine auf der Fläche der vorliegenden Arbeit am Ende der Vegetationsperiode 1997 durchgeführte Aberntung macht die Dominanz von Urtica dioica auf der Auflichtungsfläche deutlich; 211 kg N/ha waren in der aufwachsenden Vegetation festgelegt (siehe Kapitel 5.3) und damit weniger als ein Drittel des Vorrats der Vergleichsfläche in der benachbarten Abt. 16 (Godt, unveröffentlichter Forschungsbericht, 2001). Mit der in dieser Arbeit dargestellten Quantifizierung der Wurzelaufnahme durch die Wurzel konnte die Hypothese bestätigt werden, die besagt, dass kontinuierliche Sammlung von Bodensickerwasser mit und ohne den Einfluss der Wurzelaufnahme die Erstellung von Jahresgängen der Stickstoffaufnahme durch die Wurzel in ihrem natürlichen Umfeld ermöglicht.

Stickstoff–Flächenbilanz

Versuchsbedingte Änderungen in der Stickstoffbilanz werden im hydrologischen Jahr 1996 auf der Auflichtungsfläche in 30 cm Bodentiefe am deutlichsten. Einem Flächeneintrag von 20 kg N/ha steht ein Flächenaustrag von ebenfalls rund 20 kg N/ha gegenüber – eine Stickstoff-Sättigung wird allein damit schon deutlich. Bezieht man nun die Mikrokosmen-Austräge mit in die Diskussion ein, wird eine große Dynamik bodeninterner Prozesse des N-Haushalts deutlich:

In den Mikrokosmen der Auflichtungsfläche wurden 1996 in 30 cm Bodentiefe über 140

kg/ha Stickstoff mobilisiert; von der neu aufwachsenden krautigen/strauchigen Vegetation der Auflichtungsfläche wurden im gleichen hydrologischen Jahr bis 30 cm Bodentiefe über 120 kg N/ha aufgenommen.

Trotz dieser Aufnahme von Stickstoff durch die Wurzeln in 0 – 30cm Bodentiefe ist 1996 auf der Auflichtungsfläche im Gegensatz zu den Vergleichsflächen eine deutliche Zunahme im Nitrat-N-Austrag in 100 cm Bodentiefe auf über 50 kg/(ha*a) zu beobachten – damit rund 30 kg N mehr als eingetragen wurden. Die Vergleichsflächen zeigen diesen deutlichen Anstieg im Austrag nicht. Denkbar wäre, dass in diesem Beobachtungsjahr auf der Auflichtungsfläche durch eine versuchsbedingte Erhöhung der Bodentemperatur eine Erhöhung der Nettostickstoff-Mineralisation erreicht wurde, die die Kapazität der Stickstoffspeicher übersteigt. Dabei ist zu bedenken, dass auf der Auflichtungsfläche höhere Ges.-N-Vorräte in der Bodenfestphase ermittelt wurden als auf den Vergleichsflächen. Der erhöhte N-Vorrat in der Bodenfestphase begünstigt die in dieser Bodentiefe beobachtete Entkopplung des Stickstoffkreislaufs (s. Kapitel. 2.2.1). Die als "Netto-Mineralisation" angesprochene maximale Änderung im N_{mic}-Vorrat von 130 kg N/(ha*a) (Auflichtungsfläche) quantifiziert die Mineralisationsleistung des Systems auf der Auflichtungsfläche und macht deutlich, dass diese "Netto-Jahres-Mineralisation" 1996 leicht über der Wurzelaufnahme liegt.

Die Erhöhung der Wurzelaufnahme auf der Auflichtungsfläche im hydrologischen Jahr 1996 auf 124 kg N/ha (78 kg N/(ha*a) über dem des Bestandes!) zeigt die Reaktion des Systems auf die Stickstoffmobilisierung. Die Stickstoff-Aufnahme durch die Vegetation stellt wie oben erläutert eine zentrale Senke im Stoffhaushalt von Wäldern dar. Die Wurzeln der krautigen und strauchigen Vegetation auf der Auflichtungsfläche reichen allerdings nicht bis in 100 cm Bodentiefe und können daher mit zunehmender Bodentiefe immer weniger Stickstoff aufnehmen, so dass sich der beobachtete erhöhte Austrag von über 30 kg N/(ha*a) in 100 cm Bodentiefe ergibt.

Damit konnte die Hypothese, dass versuchsbedingte Änderungen in Stoffflüssen zu Änderungen in der Konzentration der verschiedenen Stickstofffraktionen im aufgefangenen Sickerwasser führen, bestätigt werden.

Temperatureffekte

Eine Erhöhung der Luft- und der Bodentemperaturen in Folge immissionsbedingter Bestandesdachauflösungen, waldbaulicher Eingriffe sowie Witterungsveränderungen wurde in diesem Versuch durch einen Femelhieb simuliert. Der Nachweis erhöhter Strahlungsintensität konnte auf der Auflichtungsfläche geführt werden.

Auf der Auflichtungsfläche wird im Sommer 1996 eine positiv korrelierte Temperaturabhängigkeit des Ges.-N-Flusses deutlich. Dies schlägt sich in einer Entkopplung des Stickstoffhaushalts (s. Kapitel 2.2.1) und einer damit verbundenen deutlichen Stickstoffmobilisierung nieder (s. Kapitel 5.6.1).

Die versuchsbedingte Erhöhung der Lichtintensität und eine Zunahme der Bodenfeuchte haben zu einem verstärkten Aufwachsen krautiger und strauchiger Vegetation auf der Auflichtungsfläche geführt. Deren Wurzeln konnten den größten Teil des während der Vegetationsperiode freiwerdenden Stickstoffes in 0 – 30 cm Bodentiefe aufnehmen. In 100 cm Bodentiefe auf der Auflichtungsfläche konnte die aufwachsende krautige und strauchige Vegetation nicht verhindern, dass mobilisierter Stickstoff ausgetragen wird, da die Wurzeln der krautigen und strauchigen Vegetation nicht so tief reichen.

Die Größe des Mikroorganismen-Pools ist vor allem temperaturabhängig - daher ist die dort gespeicherte N-Menge wie beobachtet im Frühjahr gering und am Ende der Vegetationsperiode vielfach größer.

Mit Ende der Vegetationsperiode steigende Austragsraten zeigen jedoch an, dass der freigesetzte Stickstoff auch von den Mikroorganismen nicht dauerhaft im System gehalten werden kann, da mit fallender Temperatur auch die Mikroorganismen absterben und den in ihrer Biomasse gespeicherten Stickstoff freisetzen.

Anhand dieser Arbeiten wird klar, dass der Mikroorganismen-Stickstoff-Pool einen relevanten Zwischenspeicher für Stickstoff darstellt, dessen Größenordnung in etwa dem Netto-Stickstoff-Jahreseintrag entspricht – als Langzeitspeicher hat der mikrobielle Stickstoff-Pool nur eine untergeordnete Bedeutung.

Die der vorliegenden Arbeit zugrundeliegende Hypothesenkette konnte bestätigt werden: Eine versuchsbedingte Erhöhung der Bodentemperatur führt zu einer Fläche mit erhöhtem Strahlungseinfall, der sich in einer Erhöhung der Bodentemperatur niederschlägt. Die Folge sind Mineralisationseffekte, die einen verstärkten Humusvorratsabbau bedingen.

Abschließende Betrachtung

Die in der vorliegenden Arbeit untersuchten Flächen können als eindeutig N-gesättigt bezeichnet werden, da die N-Verluste aus dem System die Größe der Einträge überschreiten. Dies ist schon auf der 0-Fläche der Fall: der Ges.-N-Austrag in 100 cm Bodentiefe summiert mit dem Stickstoffentzug durch den Derbholzzuwachs liegt über der Gesamtdeposition. Damit ist schon die Kontrollfläche als N-gesättigt bzw. N-übersättigt zu bezeichnen! Auf der Auflichtungsfläche ist die N-Übersättigung vor allem 1996 noch wesentlich stärker ausgeprägt.

In einem solchen N-gesättigten Waldökosystem kann es leicht zu einer Entkopplung des Stoffhaushalts und damit zu erhöhter N-Mobilisierung kommen. Diese Entkopplung des Stickstoffkreislaufes konnte in der vorliegenden Arbeit vor allem im hydrologischen Jahr 1996 dokumentiert werden; der Überschuss-N-Output liegt auf der Auflichtungsfläche bei bis zu 50 kg N/(ha*a)!

Die beobachteten hohen N-Austräge erfolgten trotz eines ebenfalls beobachteten Anwachsens des mikrobiellen Stickstoff-Pools und des Aufwachsens einer krautigen und strauchigen Vegetation auf der Auflichtungsfläche.

Im Jahresgang konnten auf der Auflichtungsfläche in 0 – 30 cm Bodentiefe maximale Änderungen im N_{mic}-Vorrat von 130 kg N/(ha*a) beobachtet werden. Das im Frühjahr beginnende quantitative Anwachsen des mikrobiellen Stickstoff-Pools mit dem Jahresgang zeigt vor allem dessen Temperaturabhängigkeit auf. Die am Ende der Vegetationsperiode deutlich ansteigenden Austragsraten zeigen jedoch an, dass der freigesetzte Stickstoff auch von den Mikroorganismen nicht dauerhaft im System gehalten werden kann, da mit fallender Temperatur auch die Mikroorganismen absterben und der in ihrer Biomasse gespeicherte Stickstoff freigesetzt wird. Aufwachsende Vegetation auf der Auflichtungsfläche konnte einen Großteil des Netto-Stickstoff-

Jahreseintrages aufnehmen. Da die "Netto-Jahres-Mineralisation" 1996 leicht über der Wurzelaufnahme liegt, verbleibt ein Rest, der nicht von der aufwachsenden krautigen Vegetation der Auflichtungsfläche aufgenommen werden kann.

Damit erklärt sich der über Lysimeter gemessene Ges.-N-Austrag der Auflichtungsfläche in 100 cm Bodentiefe. Dieser lag 1996 sogar noch über den nicht von der Vegetation der Auflichtungsfläche aufgenommenen Ges.-N-Mengen. Ergebnis ist damit, dass die auf Lochhieben aufwachsende krautige und strauchige Vegetation eine auflichtungsbedingte Stickstoffmobilisierung nur teilweise kompensieren kann. Allein aufwachsende verholzende Vegetation kann Stickstoff langfristig im System binden.

6.1 Planerische Relevanz der vorliegenden Arbeit

In dieser Arbeit konnte aufgezeigt werden, dass anthropogene Einflüsse Veränderungen im Waldökosystem des Stadtwaldes von Zierenberg zur Folge haben, die eine sinkende Belastbarkeit des Ökosystems teilweise bis über die natürlichen Grenzen ("Critical Loads") hinaus bewirken. Dies drückt sich beispielsweise in einem deutlich steigenden Nitratgehalt des Grundwassers und der Oberflächengewässer (s. Seite 12, Quelle Friedrichsaue) im Untersuchungsraum aus.

Diese anthropogene Überlastung von Ökosystemen lässt sich in vielen unterschiedlichen Bereichen in seiner Wirkung auf den Landschaftsraum beobachten und ist bedingt durch die Zunahme von Flächenkonkurrenzen durch Bevölkerungswachstum, Zersiedlung und einer damit verbundenen allgemeinen Steigerung der Ansprüche an den Landschaftsraum. Dem hat der Gesetzgeber Rechnung getragen mit der Einführung von Instrumenten des Umweltschutzes (Immissionsschutzgesetze, Baugesetzbuch, Bodenschutzgesetz), vor allem aber den Naturschutzgesetzen des Bundes und der Länder, auf deren Grundlage die verschiedenen Planungsebenen der Landschaftsplanung beruhen.

In dieser Situation kommt den Fachwissenschaften zwei Aufgaben zu:

- mögliche Grenzen der Belastung des Ökosystems aufzuzeigen: das sind die Bedingungen, die das System toleriert, ohne seinen Charakter zu verändern, d.h. ohne sich in ein anderes System umzuwandeln. Damit ist aber gleichzeitig auch die Information verknüpft, welche Maßnahmen ggf. geeignet wären, um diese Veränderung zu verhindern bis hin zu der Frage, was diese Maßnahmen kosten würden.
- 2. die landschaftsökologischen Zusammenhänge aufzuzeigen, durch welche die Veränderung eines Parameters – beispielsweise die Depositionsrate von Stickstoff auf einen Buchenwald - im Gesamtsystem bewirkt, zu dem ja nicht nur der forstlich genutzte Teil des Waldes gehört, sondern auch das Grundwasser, die Oberflächengewässer, in dessen Einzugsgebiet dieser Wald liegt, die gesamte Tier- und Pflanzenwelt des Waldes, aber auch seine Erholungsfunktion für die Bevölkerung. Der Nachweis solcher Veränderung setzt einen experimentellen Ansatz voraus, wie er auch für das vorliegende Forschungsprogramm gewählt wurde, d.h. die Untersuchung eines realen Waldökosystems in seinen wesentlichen Kompartimenten und unter realen klimatischen Bedingungen.

Die Kenntnisse dieser Zusammenhänge und der Grenzen der Belastung sind die Voraussetzung für die Bewertung von Belastungen oder – ganz allgemein von Nutzung – und der Kosten, die diese Nutzung verursacht. Auf diese Weise ist die Nachhaltigkeit der Nutzung zu bewerten.

Die Ökologie liefert als naturwissenschaftliche Disziplin das Instrumentarium zur Verknüpfung von natürlichen und anthropogen bestimmten Landschaftsprozessen. Sie widmet sich in diesem Zusammenhang auch der Interaktion von Stoff- und Energieströmen in der Landschaft und liefert so die Grundlagen zur Bewertung der Wechselbeziehungen zwischen Standortfaktoren, Landnutzungsformen und (Lebens-) Ansprüchen von Menschen, Tieren und Pflanzen.

Die in der vorliegenden Arbeit durchgeführte Analyse des Stoffhaushaltes erlaubt es, Veränderungen, Vernetzung und Verlagerung von Stoffen sichtbar zu machen. Studien zur Nachhaltigkeit von Nutzung beinhalten in der Regel derartige Bilanzstudien. Auch in der Umweltüberwachung wird oft eine Bilanzierung angestrebt. Der Ansatz der "Critical Loads" ist eine auf einer Stoffbilanz beruhende Strategie zur Eindämmung der stofflichen Belastung von Böden und Gewässern und wurde in dieser Arbeit detailliert in die Diskussion der Ergebnisse einbezogen.

Konkret liefern die Ergebnisse der vorliegenden Arbeit Grundlagen für zukünftige Änderungen im Waldbau im Landschaftsraum Zierenberg und für vergleichbare Ökosysteme und deren Auswirkungen auf Grund- und Oberflächengewässer.

Desweiteren wurden Daten zur Bewertung der Auswirkung von Temperaturänderungen auf Waldökosysteme im Rahmen einer globalen Erwärmung gewonnen.

7. Zusammenfassung

In der vorliegenden Arbeit werden die Auswirkungen von Umweltveränderungen in einem N-gesättigten Buchenwaldökosystem über Basalt (Braunerde) untersucht. Unter veränderten Umweltbedingungen sind hier vor allem Bestandesdachauflösung, immissions- oder waldbaulich bedingt, und Klimaveränderung zu verstehen, die eine Erwärmung des Oberbodens zur Folge haben. Die Änderungen der Umweltbedingungen werden in diesem Versuchsansatz durch einen waldbaulichen Eingriff in Form eines Femelhiebs simuliert. Durch den Femelhieb entsteht eine Bestandeslücke, die in einer Erwärmung des Bodens resultieren und damit den Wasser- und Elementhaushalt insgesamt beeinflussen.

Nach Inhaltsverzeichnis und Vorwort in Kapitel 1 wird in Kapitel 2 in das Untersuchungsthema eingeführt und eine Übersicht über die Literatur des Themenkomplexes gegeben: Stickstoff in Waldböden, Temperatureffekte und Mineralisation, Bodenmikroorganismen als Stickstoff-Zwischenspeicher, Wurzelaufnahme von Stickstoff. In Kapitel 3 wird das Untersuchungskonzept, die Einbettung in die Stoffbilanz-Fallstudie Zierenberg des Forschungszentrums Waldökosysteme Göttingen und des Versuchsansatzes dargestellt. Weiter folgen in Kapitel 3 die Darstellung der Hypothesen und der Ziele dieser Arbeit:

Temperatureffekte

Die versuchsbedingte Erhöhung der Bodentemperatur hat Mineralisationseffekte zur Folge, die sich in einem verstärkten Humusvorratsabbau niederschlagen, der insgesamt zum Abbau des Stickstoffvorrats des Bodens führt.

Stickstoffbilanzen

Änderungen in Stoffflüssen führen zu Änderungen in der Stoffkonzentration der flüssigen Phase und somit zu einer Änderung der Konzentration der verschiedenen Stickstofffraktionen im aufgefangenen Sickerwasser.

Mikroorganismen Stickstoff–Pool

Die Erhöhung der Bodentemperaturen führt zu einer Anregung der Aktivität der Mikroorganismen und einem damit verbundenen Humusvorratsabbau und zu einer Freisetzung von Stickstoff, der sich in einem verstärkten Wachstum der Mikroorganismen-Gemeinschaft niederschlägt. Dadurch kommt es zu einem Anwachsen des Mikroorganismen-Stickstoff-Pools, der damit als N-Zwischenspeicher fungiert.

Stickstoffaufnahme durch die Wurzel

Kontinuierliche Sammlung von Bodensickerwasser mit und ohne Einfluss der Wurzelaufnahme und monatliche Bestimmung von Elementen in den Bodensickerwässern gestatten die Erstellung von Jahresgängen der Stoffaufnahme durch die Wurzeln in ihrem natürlichen Umfeld. In Kapitel 4 werden Material und Methoden erläutert und dabei detailliert folgende Untersuchungen auf den drei Unterflächen geschildert:

- Licht-/Temperaturmessungen und Wasserhaushalt
- der Ges.-N-Gehalt des Mineralbodens bestimmt
- N-Gehalte in der Deposition und des Stammabflusses bestimmt
- Bodenwasser aus Mikrokosmen-Lysimetern und Lysimeterkerzen gesammelt und N-Gehalte bestimmt
- Biomassen und N-Gehalte der aufwachsenden Vegetation bestimmt
- Bodenuntersuchungen zur Charakterisierung der Horizonte und Bestimmung von Feinbodenanteil und Skelettgehalt
- Bestimmung des Ges.-N-Gehaltes der Bodenfestphase
- Bestimmung des Gehaltes an N_{mic} in Bodenfestphase und Mikrokosmen-Bodenwasser

In Kapitel 5 werden die Ergebnisse der Untersuchungen und deren statistische Absicherung vorgestellt:

- Licht, Temperatur und Wasserhaushalt
- Stickstoffgehalte und -vorräte der Vegetation
- Stickstoffgehalte und -vorräte der Bodenfestphase
- Stoffflüsse und Stoffflussbilanzen der Mikrokosmen
- Nmic-Gehalte/-Vorräte und deren zeitliche Änderungen
- Gesamt-N-Bilanz der Mikrokosmen
- Stickstoff-Flächenbilanz

Die Ergebnisse werden in Kapitel 6 diskutiert. Dabei wird deutlich, dass die in der vorliegenden Arbeit untersuchten Flächen als eindeutig N-gesättigt bezeichnet werden können, da die N-Verluste aus dem System die Größe der Einträge überschreiten. Dies ist schon auf der 0-Fläche der Fall: der Ges.-N-Austrag in 100 cm Bodentiefe summiert mit dem Derbholzzuwachs liegt über der Gesamtdeposition. Damit ist schon die Kontrollfläche als N-gesättigt bzw. N-übersättigt zu bezeichnen!

Auf der Auflichtungsfläche ist die N-Übersättigung vor allem 1996 noch wesentlich stärker ausgeprägt.

In einem solchen N-gesättigten Waldökosystem kann es leicht zu einer Entkopplung des Stoffhaushalts und damit zu erhöhter N-Mobilisierung kommen. Diese Entkopplung des Stickstoffkreislaufes konnte in der vorliegenden Arbeit vor allem im hydrologischen Jahr 1996 dokumentiert werden; der Überschuss-N-Output liegt auf der Auflichtungsfläche bei bis zu 50 kg N/(ha*a)!

Die beobachteten hohen N-Austräge erfolgten trotz eines ebenfalls beobachteten Anwachsens des mikrobiellen Stickstoff-Pools und des Aufwachsens einer krautigen und strauchigen Vegetation auf der Auflichtungsfläche.

Im Jahresgang konnten auf der Auflichtungsfläche in 0 – 30 cm Bodentiefe maximale Änderungen im N_{mic}-Vorrat von 130 kg N/(ha*a) beobachtet werden. Das im Frühjahr beginnende quantitative Anwachsen des mikrobiellen Stickstoff-Pools mit dem Jahresgang zeigt vor allem dessen Temperaturabhängigkeit auf. Die am Ende der Vegetationsperiode deutlich ansteigenden Austragsraten zeigen jedoch an, dass der freigesetzte Stickstoff auch von den Mikroorganismen nicht dauerhaft im System gehalten werden kann, da mit fallender Temperatur auch die Mikroorganismen absterben und der in ihrer Biomasse gespeicherte Stickstoff freigesetzt wird. Aufwachsende Vegetation auf der Auflichtungsfläche konnte einen Großteil des Netto-Stickstoff-Jahreseintrages aufnehmen. Da die "Netto-Jahres-Mineralisation" 1996 leicht über der Wurzelaufnahme liegt, verbleibt ein Rest, der nicht von der aufwachsenden krautigen Vegetation der Auflichtungsfläche aufgenommen werden kann. Damit erklärt sich der über Lysimeter gemessenen Ges.-N-Austrag der Auflichtungsfläche in 100 cm Bodentiefe. Dieser lag 1996 sogar noch über den nicht von der Vegetation der Auflichtungsfläche aufgenommenen Ges.-N-Mengen. Ergebnis ist damit, dass die auf Lochhieben aufwachsende krautige und strauchige Vegetation eine auflichtungsbedingte Stickstoffmobilisierung nur teilweise kompensieren kann. Allein aufwachsende verholzende Vegetation kann Stickstoff langfristig im System binden.

Abschließend ist damit zu sagen, dass sowohl die mikrobielle Biomasse als auch die in Lochhieben aufwachsende krautige und strauchige Vegetation relevante Zwischenspeicher für mobilisierten Stickstoff darstellen. Ihre Grenze finden diese beiden Zwischenspeicher aber zum einen mit abnehmender Bodentiefe (über 30 cm Bodentiefe) und während der Vegetationspause im Winterhalbjahr; allein verholzende Vegetation kann mobilisierten Stickstoff dauerhaft im System halten.
8. Literatur

AG BODENKUNDE (1994): Bodenkundliche Kartieranleitung. Arbeitsgemeinschaft Bodenkunde der geologischen Landesämter und der Bundesanstalt für Geowissenschaften und Rohstoffe der Bundesrepublik Deutschland, 4. Auflage, E. Schweizbart sche Verlagsbuchhandlung, Hannover

AMATO, M. & LADD, J.N. (1987): Assay for microbial biomass based on ninhidrin reactive nitrogen in extracts of fumigated soils. Soil Biology Biochemistry 20 (1), 107 - 114

ANDERSON, T.-H. & KREITZ, S. (1997): Verschiebung des Pilz/Bakterien Verhältnisses und der Substratnutzung von Mikroorganismen-Gesellschaften in Abhängigkeit vom Boden-pH. In: Ökologische Vielfalt in Ökosystemen

ANTISARI, V. & CIAVATTA, C. & SEQUI, P. (1990): Voltalisation of ammonia during the chloroform fumigation of soil for measuring microbial biomass nitrogen. Soil Biology Biochemistry 22 (2), 225 - 228

AUGUSTIN, S. (1992): Mikrobielle Stofftransformation in Bodenaggregaten. Berichte des Forschungszentrums Wald-Ökosysteme, Reihe A, Bd. 85, Göttingen

BADALUCCO, L. & GELSOMINO, A. & DELL ÓRCO, S. & GREGO, S. & NANNIPIERI, P. (1992): Biochemical characterisation of soil organic compounds extracted by 0,5 M K₂SO₄ before and after chloroform fumigation. Soil Biology Biochemistry 24 (6), 569 - 578

BAUHUS, J. (1994): Stoffumsätze in Lochhieben. Berichte des Forschungszentrums Waldökosysteme der Universität Göttingen, Reihe A, Bd. 113

BECKER, K. W. (1993): Ringanalyse auf Ges.-C und Ges.-N an Bodenproben. Zeitschrift für Pflanzenernährung und Bodenkunde, 156, 191 - 192

BEESE, F. (1986): Parameter des Stickstoffumsatzes in Ökosystemen mit Böden unterschiedlicher Acidität. Göttinger bodenkundliche Berichte 90. Institut f. Bodenkunde und Waldernährung, Göttingen und Forschungszentrum Waldökosysteme, Göttingen

BENZLER, J. H. & FINNERN, H. & MÜLLER, W. & ROESCHMANN, G. & WILL, K. H. & WITTMANN, O. (1982): Bodenkundliche Kartieranleitung. Bundesanstalt für Geo-wissenschaften und Rohstoffe und die geologischen Landesämter in der Bundesrepublik Deutschland, Hannover

BITÖK, (1993): Stickstoff-, Schwefel- und Wasserhaushalt naturnaher Ökosysteme; Forschungskonzept des BITÖK 1993/94. BITÖK, Universität Bayreuth

BITÖK, (1994): BITÖK-Forschungsbericht 1993 - II. 1 – Stickstoff BITÖK, Universität Bayreuth

BÖMER-SCHULTE, I. (1990): Stickstoff und Humusdynamik. Berichte zur Ökotechnik, Okt., 3 - 26

BOLIN, B., DÖÖS, B. R., JÄGER, J. (1986): The Greenhouse Effect, Climate Change, and Ecosystem. Chichester (Wiley)

BROOKES, P.C. & LANDMAN, A. & PRUDEN, G. & JENKINSON, D.S. (1985): Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass-nitrogen in soil. Soil Biology Biochemistry 17 (6), 837 - 842

BROOKES, P.C. & POWLSON, D. & JENKINSON, D.S (1982): Measurement of microbial biomass phosphorus in soil. Soil Biology Biochemistry 14 (4), 319 - 29

BRUMME, R. & BORKEN, W. & FINKE, S. (1997): Temporal dynamic and annual site variation of nitrous oxide emissions from forest ecosystems. Proceedings of the 7th International Workshop on Nitrous Oxide Emissions in Cologne, Germany

BÜCKING, W. (1993): Stickstoff-Immissionen als neuer Standortfaktor in Waldgesellschaften. Phytocoenologia 23, 65 - 94

DEUTSCHE FORSCHUNGSGEMEINSCHAFT (DFG) (1982): Nitrat – Nitrit – Nitrosamine in Gewässern. Symposium aus Anlass d. Abschlusses des Schwerpunktprogrammes Nitrat, Nitrit, Nitrosamine in Gewässern/Dt. Forschungsgemeinschaft in Verbindung mit Komm. zur Prüfung von Lebensmittelzusatz und Inhaltsstoffen. Bearb. von Selenka. – Weinheim: Verlag Chemie

EICHHORN, J. (1992): Gesamtbericht Koordinationseinheit P. 6.3.2: Stress in einem Buchenwaldökosystem in der Phase des Stickstoffvorratsabbaus. Unveröffentlichter Projektbericht Hessische Forstliche Versuchsanstalt

EICHHORN, J. (1993): Projekt P.6.3.2.1; Infrastruktur, Stoffhaushalt und Feinwurzelzustand. Unveröffentlichter Projektbericht Hessische Forstliche Versuchsanstalt

EICHHORN, J. (1995): Stickstoffsättigung und ihre Auswirkung auf das Buchenwaldökosystem der Fallstudie Zierenberg. Berichte des Forschungszentrums Waldökosysteme, Göttingen, Reihe A, Bd. 124

ELLENBERG, H. & MAYER, R. & SCHAUERMANN, J. (Hrsg.) (1986): Ökosystemforschung - Ergebnisse des Sollingprojekts. Ulmer-Verlag, Stuttgart

ELSNER, D.-C. & BLUME, H.-P. (1993): Einfluss von Bearbeitung und Düngung auf die mikrobielle Biomasse typischer Ackerböden Schleswig-Holsteins. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 319 - 322

ERBA, C. (1986) Handbuch zum Gerät "Carlo Erba Strumentazione"

GESSLER, A., SCHNEIDER, S., SENGBUSCH, D. WEBER, P., HANEMANN, U., HUBER, C., ROTHE, A., KREUTZER, K., RENNENBERG, H. (1998): Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (fagus sylvatica) trees. New Phytol. 138, 275 – 285

GISI, U. et al (1990): Bodenökologie, Georg Thieme Verlag, Stuttgart

GLAVAC, V. & ULRICH, B. & JOCHHEIM, H. (1992): Raum/zeitliche Variabilität des chemischen Bodenzustands in der Phase des Stickstoff-Vorratsabbaus. Forschungszentrum Waldökosysteme, BMFT-Projekt Stabilitätsbedingungen von Waldöko-systemen; Abschlussb. d. Teilprojektes P. 6.3.2.2

GODT, J. & ZIMMERMANN, H. - W. (1991): Ökochemisches Ungleichgewicht v. Stoffkreisläufen in Buchenaltbeständen über Basalt i. d. Phase d. Bestandesdachauflösung. Berichte des Forschungszentrums Waldökosysteme, Reihe B, Bd. 92, 113 - 117, Göttingen

GODT, J., Mayer, R. (1993): Forschungs-Folgeantrag im Rahmen des Forschungszentrums Waldökosysteme Göttingen, Projektkomplex B: "Erweiterung der Kenntnisse über Prozess-Steuerung durch manipulierende Eingriffe ins Ökosystem"; B2-Z: "Auswirkungen femelartiger Auflichtungen (Solling, Zierenberg) auf Stoffhaushalt, Zersetzertätigkeit und Krautschicht. Zugleich Lieferung von Validierungsdaten für Modelle der Primärproduktion und der Mineralisation"

GODT, J. (1993): Immissions- und klimabedingte Auswirkungen auf den Stoffhaushalt in einem Ngesättigten Buchenwaldökosystem über Basalt. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, Band 69, 281 – 284

GODT, J. (1994): Initial effects of canopy disintegration on element budgets in a N-saturated beech stand. International Symposium "Ecosystem Manipulation" 16 - 21 October 1994, Bowness-on-windermere, Lake District, England, Ecosystem Research Report of the CEC (draft)

GODT, J. (2002): Canopy disintegration and effects on element budgets in a nitrogen-saturarted beech stand. Dohrenbach, Bartsch (edts.), Forst Development, Springer Verlag (Ecol. Stiud.), 143-165.

HAUG, I., PRITSCH, K., OBERWINKLER, F. (1992): Der Einfluss von Düngung auf Feinwurzeln und Mykorrhizen im Kulturversuch und im Freiland. Forschungsbericht KfK-PEF 97 Kernforschungszentrum Karlsruhe

HEISLER, C. & KAISER, E. A (1993): Collembolen und die mikrobielle Biomasse in einem Agrarstandort. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 335 - 338

HOPPE, J. & SCHULZE, A.(1997): Datenbank zur Stoffbilanzierung in Waldökosystemen; Teil 1: Datenbankstruktur und virtuelle Tabellen. Berichte des Forschungszentrums Waldökosysteme der Universität Göttingen, Reihe B, Bd. 5

HORNUNG, M., SUTTON, M. A. & WILSON, R. B. (1995): Mapping and modelling of critical loads for nitrogen: Workshop Rep. Grange-Over-Sands Workshop, 24 - 26 October 1994

HOUGHTON, J. T., MEIRA FILHO, L. G., CALLANDER, B. A., HARRIS, N., KATTENBERG, A. & MASKELL, K. (eds) (1996): Climate Change 1995. The Science of Climate Change. Contribution of Working Group 1 to the Second Assessment. Report of the Intergovernmental Panel on Climate Change.

xii + 572 pp. Cambridge, New York, Port Chester, Melbourne, Sydney: Cambridge University Press for the Intergovernmental Panel on Climate Change

INGHAM, E.R. & HORTON, K. A. (1987): Bacterial, fungal and protozoan responses to chloroform fumigation in stored soils Soil Biology Biochemistry 19 (5), 545 – 550

JAJAKIRANA, G.D., & JÖRGENSEN, R.G., & MEYER, B. (1993): Messung von Ergosterol in Böden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 317 - 318

JÖRGENSEN, R.G., BROOKES, P.C. & JENKINSON, D.S. (1989): Some relationships between microbial ATP and soil microbial biomass, measured by the fumigation-extraction procedure, and soil organic matter. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 59, 585 - 588

JÖRGENSEN, R.G. & WOLTERS, V. (1993): Mikrobiell gebundener Stickstoff in Laubwald-Böden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 339 - 342

JÖRGENSEN, R.G. & MEYER, B. & MÜLLER, T. (1991): Messung der mikrobiellen Biomasse in Böden mit der Chloroform-Fumigations-Extraktions-Methode unter Anwesenheit frischer Wurzeln. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 66, 519 - 522

JÖRGENSEN, R.G. & OLFS, H.-W. (1998): The variability between different analytical procedures and laboratories for measuring soil microbial biomass C an biomass N by the fumigation extractionmethod. Zeitschrift für Pflanzenernährung und Bodenkunde, 161, 51 - 58

JORDAN, D. & BEARE, M. H. (1991): A comparison of methods for estimating soil microbial biomass carbon. Agric. Ecosyst. Environ, 34 (1 - 4), 35 - 41

JÖRGENSEN, R.G. (1995): Die quantitative Bestimmung der mikrobiellen Biomasse in Böden mit der Chloroform-Fumigations-Extraktions-Methode. Göttinger Bodenkundliche Berichte 104, 1 - 229

KAISER, E.-A., MÜLLER, T., HEINEMEYER, O. & JOERGENSEN, R.G. (1993): Aspekte der mikrobiellen Biomasse im Zeitgang des Jahres. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 343 - 346

KASSEM, A. (1993): Bestimmung mikrobieller Biomasse im Boden: Eine kritische Betrachtung. Zeitschrift für Pflanzenernährung und Bodenkunde, 156, S. 109 - 114

KAZUYUKI & SHIBAHARA & FUJIYOSHI & TSUJI & TOGO & UMEBAJASHI (1992): Assay for microbial biomass nitrogen in unflooded paddy soil by fumigation extraction method. Nippon Dojo Hiryogaku Zasshi, 63 (3), 342 - 344

KEHONG, WU (2000): Fine Root Production and Turnover and its Contribution to Nutrient Cycling in two Beech (Fagus sylvatica L.) Forest Ecosystems. Forschungszentrum Waldökosysteme der Universität Göttingen; Reihe A; Band 170/2000 KLEBER, M. & JIAN-PING, H. & STAHR, K. (1998): Microbial biomass C- and N-dynamics in grassland soils amended with liquid manure. Zeitschrift für Pflanzenernährung und Bodenkunde, 161, 87 - 92

KOCH, A.S. & BRUMME, R. (1997): Investigations on the relationship among nitrous oxide and dinitrogen emissions in forest ecosystems. Proceedings of the 7th International Workshop on Nitrous Oxide Emissions in Cologne, Germany, 419 - 422

KOCH, M. & SCHEU, S. (1993): Mikrobielle Biomasse in Bodenaggregaten unterschiedlicher Größe eines Buchenwaldes nach Exposition im Freiland. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 347 - 350

KOLK, A. & KUBIAK, R. & EICHHORN, K.W. (1993): Anwendung von Methoden zur Charakterisierung der mikrobiellen Biomasse bzw. von deren Aktivität in stark versauerten Waldbodenhorizonten. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 351 - 354

KRUG, K. (1995): Zum Problem der räumlichen Heterogenität von bodenchemischen und – physikalischen Parametern der Bodenfestphase sowie der Wurzeln in einem stickstoffgesättigten Buchenwaldökosystem. Diplomarbeit, Universität Kassel

KUNTZE, H. & ROESCHMANN, G. & SCHWERDTFEGER, G. (1988): Bodenkunde. Verlag Eugen Ulmer, Stuttgart (UTB)

LAVAHUN, M.F.E., JOERGENSEN, R.G. & MEYER, B. (1993): Tiefenprofil der mikrobiellen Biomasse in Löss-Parabraunerden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 355 - 356

MARAUN, M. & SCHEU, S. (1993): Messung der mikrobiellen Biomasse in verschiedenen Streuhorizonten: Einfluss der Zerkleinerung. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 361 - 364

MANZKE, F. (1995): Bodenmikrobiologische und bodenchemische Kenngrössen zur Beurteilung des Umsatzes organischer Bodensubstanz in unterschiedlichen Bodennutzungssystemen. Diss agr., Institut für Pflanzenbau und Pflanzenzüchtung der Georg-August- Universität, Göttingen. Cuvillier Verlag Göttingen

MEIWES, K. J., HAUHS, M., GERKE, H., ASCHE, N., MATZNER, E., LAMERSDORF, N. (1984): Die Erfassung des Stoffkreislaufs in Waldökosystemen - Konzept und Methodik - . Berichte des Forschungszentrums Waldökosysteme, Reihe A, Bd. 7, Göttingen

MEIWES, K. J., Beese, F. (1988): Ergebnisse der Untersuchung des Stoffhaushaltes eines Buchenwaldökosystems auf Kalkstein – eine Datendokumentation. Berichte des Forschungszentrums Waldökosysteme, Göttingen, Reihe B, Bd. 9, 1 - 141, Göttingen

MONZ, C. A. & REUSS, D. E. & ELLIOT, E. T. (1991): Soil microbial biomass-C and nitrogen estimates using 2450 Mhz microwave irradiation or chloroform fumigation followed by direct extraction. Agric. Ecosyst. Environ, 34 (1 - 4), 55 - 63

MÜLLER, JOERGENSEN & MEYER (1993): Die räumliche Variabilität der mikrobiellen Biomasse einer Löss-Parabraunerde. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 367 - 368

MEYER, B. & KÜBLER, H. & MOLTERS, V. & JÖRGENSEN, R.G. (1993): Die Messung von mikrobiell gebundenem Phosphor in Laubwald-Böden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 365 - 366

NAGEL, H.-D; GREGOR, H.-D. (1999): Ökologische Wirkungsschwellen und Grenzen der Belastbarkeit. In: NAGEL, H.-D; GREGOR, H.-D. [HRSG.] (1999): Ökologische Belastungsgrenzen – Critical Loads & Levels. Ein internationales Konzept für die Luftreinhaltepolitik. Springer-Verlag

NEITZKE, M., (1990): Stickstoffernährung und Al-Toxizität bei Buchenjungpflanzen. Zeitschrift für Pflanzenernährung und Bodenkunde 153, 229 - 239

NICLARDOT, B. & VEKEMANS, X. & BARRET, P. & CATROUX, G. (1990): Use of anaerobic incubation to measure microbial biomass nitrogen by the chl. fumigation method. Rev. Ecol. Biol. Sol, 27 (3), 255 - 68

NORMAUSSCHUSS WASSERWESEN (1981): Deutsche Einheitsverfahren zur Wasser-, Abwasserund Schlammuntersuchung. DIN - 9. Lieferung 1981, Deutsches Institut für Normung e.V.

PETERSON & SOREN & HENRIKSEN & BLACKBURN & KING & GARY (1991): A comparison of phospholipid and chloroform fumigation analyses for biomass in soil: potentials and limitations. FEMS Microbiolog. Ecol. 86 (2), 185

PÖHHACKER, R. & ZECH, W. (1993): Einfluss der Temperatur auf mikrobielle Biomasse von Humushorizonten eines sauren Waldbodens, ein Mikrokosmosversuch. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 369 - 372

POLETSCHNY, H. & FABIAN, M. (1989): Vergleichende Erprobung verschiedener Stickstoff-Bestimmungsmethoden in Böden. Schriftenreihe des Bundesm. f. Ernährung, Landwirtschaft u. Forsten, Heft 378

PRIESS, J., & WANG, C.P. & BRUMME, R. (1997): Microbial activities in different depths of an undisturbed beech forest soil: C- and N-transforming processes. In: Mühle, Eichler (eds.): Terrestrial ecosystem research in Germany: State of the art and future outlook. UFZ Reports 5 - 97, 26 - 27

RAISON, R. J. & CONNEL, M.J. & KHANNA, P.K. (1987): Methology for studying fluxes of soil mineral-n in situ. Soil Biology Biochemistry 19, 5, 21 - 30

RAUBUCH, M. (1992): Wechselwirkungen zwischen mikrobiologischen und chemischen Parametern in Waldböden unter Berücksichtigung des atmosphärischen Eintrages. Berichte des Forschungszentrums Waldökosysteme der Universität Göttingen, Reihe A, Bd. 89

RAUBUCH, M. (1997): Freilandmikrokosmen als neues Instrument der Ökosystemforschung. UFZ-Bericht 5, 28

RAUBUCH, M. & BEESE, F. (1993): Verteilung der mikrobiellem Biomasse und Aktivität in Waldböden entlang eines Transektes europäischer Fichten und Kiefernstandorte. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 373 - 376

RAUBUCH, M. & BEESE, F. (1998): Interaction between microbial biomass and activity and the soil chemical conditions and the process of acid load in coniferous forest soils. Zeitschrift für Pflanzenernährung und Bodenkunde, 161, 59 - 65

RAUBUCH, M., MEYER, H. (1996): Prozesse mikrobieller Transformation im Freiland. Berichte des Forschungszentrums Waldökosysteme, Göttingen, Reihe B, Bd. 52, 117-125

RENNENBERG, H., KREUTZER, K., PAPEN, H., WEBER, P. (1998): Consequences of high loads of nitrogen für spruce (Picea abies) and beech (fagus sylvatica) forests. New Phytology 139, 71 – 86

RÖSING, F. (1966): Erläuterungen zur geologischen Karte von Hessen. Hessisches Landesamt für Bodenforschung, Wiesbaden

SCHAEFER, M. (1997): Stoffkreisläufe in der Natur- und Kulturlandschaft: eine Typisierung aus ökologischer Sicht. In: Thews, G., Servatius, C. (Hrsg.) Stoffkreisläufe in natürlichen und industriellen Prozessen. Ökosystemanalyse und Umweltforschung Band 4 11-31, Stuttgart, Jena, Lübeck, Ulm: G. Fischer

SCHAUERMANN, J. (1995): Versuchsergebnisse zur Streuzersetzung im Freiland. Unveröffentlicher Forschungsbericht

SCHEFFER, F. & ULRICH, B. (1960): Lehrbuch der Agrikulturchemie und Bodenkunde, III. Teil, Humus und Humusdüngung, Band I, F. Enke Verlag, Stuttgart

SCHELL, J. (1997): Vergleichende Untersuchung der Bodenwasser- und Xylemsaftmineralstoffgehalte im Wurzelraum von Altbuchen. Berichte des Forschungszentrums Waldökosysteme der Universität Göttingen, Reihe A, Bd. 145

SCHEU, S. (1995): Bodenfauna und Bodenmikroflora in Buchenwäldern: Wechselwirkung von Populationen, Stoffflüsse und Pflanzenwachstum. Habilitationsschrift, Göttingen

SCHLEGEL, H. G. (1992): Allgemeine Mikrobiologie, Georg Thieme Verlag, Stuttgart

SCHMIDT, W. (1995): Zwischenbericht zum Projektvorhaben B2-Z BMFT, Teilvorhaben B2-Z-b: "Dynamik der Strauch- und Krautschicht in Auflichtungsflächen auf Kalk und Basalt" SCHOLLE, G., JÖRGENSEN, R.G. & WOLTERS, V. (1991): Organische Substanz und mikrobielle Biomasse eines ungekalkten und eines gekalkten Moderprofils unter Buchen. Berichte des Forschungszentrums Waldökosysteme Bd. 22, 352 - 355

SCHOLLE, G., WOLTERS, V. & JÖRGENSEN, R.G. (1991): "Litter-bag"-Experiment zur Wirkung auf den mikrobiellen C- und N-Umsatz in einem Sauerhumus-Buchenwald. Berichte des Forschungszentrums Waldökosysteme Bd. 22, S. 390 - 393

SPANGENBERG, A. (1997): Heterogenität und Dynamik der Bodenlösungschemie am Beispiel verschiedener Nährelemente in Freiland und Tracer-Transport an Bodensäulen. Berichte des Forschungszentrums Waldökosysteme der Universität Göttingen, Reihe A, Bd. 149

STEINMETZ, G. & MEYER, H. & RAUBUCH, M. (1997): Der mikrobielle N- und C-Umsatz in einem Buchenstandort unter Berücksichtigung der Wurzelaufnahme. UFZ-Bericht 5, 29

STOCKFISCH, N. & JOERGENSEN, R.G. & WOLTERS, V. & EBERHARDT, U. (1993): Die mikrobielle Biomasse in der Humusauflage von Waldböden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 71, 381 - 382

ULRICH, B. (1995): Die Entwicklung der Waldschäden aus ökosystemarer Sicht. In: Umweltbundesamt (Hrsg.) Wirkungskomplex Stickstoff und Wald. Texte 28/95: 9 - 19, Umweltbundesamt Berlin

UMWELTBUNDESAMT (UBA), Autoren: ULRICH, B., IBROM, A., BRUCKNER-SCHATT, G., BRUMME, R., MATZNER, E., BERGER, A., BLOCK, J., KOTTKE, I., HÜTT, L, KLÄDTKE, J., HOFMANN, G., IRMLER, U., REICHE, E.-W., BOSSEL, H., WERNER, B., HEINSDORF, D., GEHRMANN, J. (1995): Wirkungskomplex Stickstoff und Wald; IMA-Querschnittseminar, Texte 28/95

UMWELTBUNDESAMT (UBA) (2001): Critical Loads Stickstoff, Nationales Critical Loads Kartierungszentrum (NFC Mapping): Dr. H.-D. Gregor, Umweltbundesamt II 1.2, Dr. H.-D. Nagel, ÖKO-DATA; http://www.umweltdaten.de/uid/html/cl_nut.html

VITOUSEK, P.M. & GOSZ, J.R. & GRIER, CH.C. & MELILLO, J.M. & REINERS, W.A. & TODD, R.L. (1979): Nitrate losses from disturbed ecosystems. Science, Vol. 204, 469 - 474

VOR, T. (1999): Stickstoffkreislauf eines Buchenbestandes nach Auflichtung und Kalkung. Berichte des Forschungszentrums Waldökosysteme der Universität Göttingen, Reihe A, Bd. 163

VORONY, R.P. & PAUL, E. A. (1983): Determination of kc and kn in situ for calibration of the chloroformincubation method. Soil Biology Biochemistry 16 (1), 9 - 14

WANG, C.P. & PRIESS, J. & BRUMME, R. (1996): Vertical differenciation of N-pools and -fluxes 15N microcosm experiments with undisturbed beech forest soil. International conference on Stable Isotopes and the Integration of Biological, Ecological and Geochemical Processes. Newcastle July 1996

WILD, A. (1995): Umweltorientierte Bodenkunde. Spektrum Akademischer Verlag

WILK, E. (1996): Die biogeochemische Rolle der krautigen Vegetation auf einem N-gesättigten Buchen-Basaltstandort. Diplomarbeit, Universität Kassel

9. Verzeichnisse

9.1 Abbildungs- und Tabellenverzeichnis

Abbildungen

Abb. 1: Geographische Lage der Untersuchungsfläche, Maßstab 1:25 000 (TK 4621 Wolfhagen).	19
Abb. 2: Geologischer Untergrund der Versuchsfläche, Bärenberg (und Gudenberg), Maßstab 1:25 000 (Geologische Karte von Hessen 4621 Wolfhagen).	21
Abb. 3: Luftbildaufnahme der Versuchsfläche in Abt. 25 am Bärenberg nach erfolgter Auflichtung.	24
Abb. 4: Flächenplan Vegetation	25
Abb. 5: Flächenplan Boden, Temperatur und Deposition	29
Abb. 6: Flächenplan Lysimeter und Tensiometer	30
Abb. 7: Relative Strahlungsintensität in Brusthöhe (1,3 m)	42
Abb. 8: Relative Strahlungsintensität am Boden	42
Abb. 9: Mittlere Temperatur auf den Unterflächen in 5 cm Bodentiefe	45
Abb. 10: Mittlere Temperatur auf den Unterflächen in 10 cm Bodentiefe	45
Abb. 11: Monatsmittelwerte der Saugspannung auf der 0-Fläche 30 cm	47
Abb. 12: Monatsmittelwerte der Saugspannung auf der Randfläche 30 cm	47
Abb. 13: Monatsmittelwerte der Saugspannung auf der Auflichtungsfläche 30 cm	47
Abb. 14: Wasserfluss in mm 0-Fläche	50
Abb. 15: Wasserfluss in mm Randfläche	50
Abb. 16: Wasserfluss in mm Auflichtungsfläche	50
Abb. 17: Stickstoffgehalte 1994 vor Auflichtung	54
Abb. 18: Mittelwerte des GesN-Flusses in mg/(qm*Monat) der Mikrokosmen in hydrologischen Halbjahren	58
Abb. 19: Nitrat-N-Konzentration im Sickerwasser der Mikrokosmen der Auflichtungsfläche	64

Abb. 20: Differenz Nitrat-N-Konzentration in mg/l im Sickerwasser der Mikrokosmen:	
Auflichtungsfläche – 0-Fläche	65
Abb. 21: GesN-Fluss der Mikrokosmen in mg/(qm*Monat) auf der Auflichtungsfläche	66
Abb. 22: Differenz GesN-Fluss in mg/(qm*Monat) der Mikrokosmen: Auflichtungsfläche – 0-Fläche	67
Abb. 23: Summen des Nitrat-N-Flusses Mikrokosmen in mg/(qm*Halbjahr) der hydrologischen Halbjahren	68
Abb. 24: Summen des Ammonium-N-Flusses Mikrokosmen in mg/(qm*Halbjahr) der hydrologischen Halbjahre	69
Abb. 25: Nmic-Gehalte der Bodenfestphase im Sommerhalbjahr 1994 vor Versuchsbeginn	70
Abb. 26: N _{mic} -Vorräte der Bodenfestphase in kg/ha 0 – 30 cm Bodentiefe im Sommerhalbjahr 1994 vor Versuchsbeginn	72
Abb. 27: N _{mic} -Vorräte der Bodenfestphase in kg/ha 30 – 60 cm Bodentiefe im Sommerhalbjahr 1994 vor Versuchsbeginn	73
Abb. 28: GesN-Konzentration in mg/l der Mikrokosmen; Jahresgang 1995 und 1996 0-Fläche	75
Abb. 29: GesN-Konzentration in mg/I der Mikrokosmen; Jahresgang 1995 und 1996 Randfläche	75
Abb. 30: GesN-Konzentration in mg/l der Mikrokosmen; Jahresgang 1995 und 1996 Auflichtungsfläche	75
Abb. 31: GesN-Flüsse in kg/ha*Monat der Mikrokosmen; Jahresgang 1995 und 1996 0-Fläche	77
Abb. 32: GesN-Flüsse in kg/ha*Monat der Mikrokosmen; Jahresgang 1995 und 1996 Randfläche	77
Abb. 33: GesN-Flüsse in kg/ha*Monat der Mikrokosmen; Jahresgang 1995 und 1996 Auflichtungsfläche	77
Abb. 34: NH₄-N-Bilanz 0-Fläche in kg/(ha*a)	84
Abb. 35: NH₄-N-Bilanz Randfläche in kg/(ha*a)	84
Abb. 36: NH ₄ -N-Bilanz Auflichtungsfläche in kg/(ha*a)	84
Abb. 37: NO ₃ -N-Bilanz 0-Fläche in kg/(ha*a)	86
Abb. 38: NO ₃ -N-Bilanz Randfläche in kg/(ha*a)	86
Abb. 39: NO ₃ -N-Bilanz Auflichtungsfläche in kg/(ha*a)	86
Abb. 40: GesN-Bilanz 0-Fläche in kg/(ha*a)	88
Abb. 41: GesN-Bilanz Randfläche in kg/(ha*a)	88
Abb. 42: GesN-Bilanz Auflichtungsfläche in kg/(ha*a)	88
Abb. 43: Stickstoff-Vorräte und -Umsätze der hydrologischen Jahre 1995 und 1996 im Überblick	91
Abb. 44: Stickstoff-Kreislauf (aus Scheffer/Schachtschabel, 1992; modifiziert)	96

Tabellen:

Tabelle 1: Messungen und Einrichtungen auf Fläche 25	28
Tabelle 2: verwendete Geräte und ihre Nachweisgrenzen	39/40
Tabelle 3: Saugspannung 10 cm Bodentiefe, Monatsmittelwerte Juli/August	48
Tabelle 4: Trockengewicht und Stickstoffvorrat der Unterflächen der aufwachsenden Kraut- und Strauchschicht (Godt, unveröffentlichter Forschungsbericht, 2001)	52
Tabelle 5: Stickstoffgehalte Auflage unmittelbar vor der Auflichtung	53
Tabelle 6: Stickstoffvorräte in der Auflage der Unterflächen	53
Tabelle 7: Gesamt-N-Inventur des Mineralbodens der Mikrokosmen	55
Tabelle 8: Vergleich der Ammonium-N- und der Nitrat-N-Konzentration der Mittelwerte der Niederschläge der Auflichtungsfläche mit den Mittelwerten der Mikrokosmen-Austräge der Unterflächen	57
Tabelle 9: Mittelwerte der Konzentrationen im Sickerwasser der Mikrokosmen im hydrologischen Jahr 1995 (Mai 1995 – April 1996)	60
Tabelle 10: Mittelwerte der Konzentrationen im Sickerwasser der Mikrokosmen im hydrologischen Jahr 1996 (Mai 1996 – April 1997)	61
Tabelle 11: Mittelwerte der Konzentrationen im Sickerwasser der Mikrokosmen erstes hydrologisches Halbjahr 1997 (Mai – Oktober 1997)	62
Tabelle 12: Signifikanz Niveau α der Flächenunterschiede der Nitrat-Konzentrationen im Sickerwasser der Mikrokosmen	63
Tabelle 13: Nmic-Vorräte auf der Untersuchungsfläche in kg/ha Sommer 1994	71
Tabelle 14: Faktoren der N-Bindung und N-Freisetzung in Mikrokosmen der Unterflächen	80
Tabelle 15: Gesamt-N-Bilanz Mikrokosmen in kg/(ha*a) - hydrologische Jahre 1995 und 1996	81
Tabelle 16: GesN-Bilanz der Unterflächen der hydrologischen Jahre in kg/(ha*a)	87
Tabelle 17: N-Vorräte in Auflage und Mineralboden verschiedener Arbeiten	92
Tabelle 18: mikrobiell gebundener Kohlenstoff (Cmic) und Stickstoff (Nmic) im Feinboden in verschiedenen Untersuchungen	94
Tabelle 19: Netto-N-Mineralisationsraten verschiedener Arbeiten im Vergleich	97
Tabelle 20: GesN-Wurzelaufnahme 0 – 30 cm Bodentiefe in kg/ha 1995 und 1996	99

9.2 Abkürzungsverzeichnis

- a = Jahr
- Abb. = Abbildung, Abbildungen
- Abt. = Abteilung Aufl.-Fl. = Auflichtungsfläche
- C = Kohlenstoff
- C_{mic} = mikrobieller Kohlenstoff
- Ges. = Gesamt
- k.a. = keine Angabe
- N = Stickstoff
- N_{mic} = mikrobieller Stickstoff
- N_{org} = organischer Stickstoff
- 0-FI. = 0-Fläche
- $qm = m^2$
- Rand-FI. = Randfläche
- S. = Seite
- Stdabw. = Standardabweichung
- u.a. = unter anderem
- u.F. = und Folgende

10. Anhang

10.1 Methodischer Ansatz zur photometrischen Bestimmung des Gesamtstickstoffgehalts in wässriger Lösung mittels Mikrowellenaufschluss

10.1.1 Einführung

Sickerwasser- und Bodenextraktproben enthalten in der Regel verschiedene Zustandsformen des Stickstoffs.

Zur Ermittlung der Stickstoffbilanz werden die Parameter Ammonium-, Nitrit- und Nitratstickstoff bestimmt. Zur Erfassung organisch gebundenen Stickstoffs war bisher ein zusätzlicher Aufschluss nach Kjeldahl erforderlich.

Alternativ kann dieser Aufschluss mit Oxisolv im Mikrowellenaufschlussgerät durchgeführt werden. Hierbei reduziert sich die Aufschlussdauer auf wenige Minuten. Der Stickstoffgehalt wird anschließend am Photometer als Nitratstickstoff ermittelt. Weitere Vorteile sind die geringere Störanfälligkeit gegenüber Oxidationsmittelüberschuss und die Erhöhung der Tolerierbarkeit gegenüber CSB in den Proben. An die Beschreibung dieser neuen Methode schließt sich eine Vergleichsmessung zwischen dem Bodenlabor der Universität Kassel und dem Zentrallabor des Waldforschungszentrums Göttingen an.

10.1.2 Materialien und Durchführung

Materialien

- Mikrowellenaufschlussgerät MW 500, Merck
- Aufschlussbasisset incl. 6 Teflonaufschlussgefäßen, Merck
- Photometer Lambda 3, Perkin Elmer
- 2 Rundküvettenhalter für Lambda 3, Perkin Elmer
- Oxisolv Aufschlussreagenz, Merck
- Spektroquant Nitrat Küvettentest, Merck
- Merkoquant Nitrat/Nitrit Test, Merck
- Natronlauge 2 M zur Analyse

- Amidoschwefelsäure zur Analyse
- Universalindikatorstäbchen pH 0 14
- Nitrat Standardlösung 1000 mg/l NO3-

Durchführung

Während der Durchführung dieser Methode müssen grundsätzlich, die geltenden Sicherheitsbestimmungen (s. Anleitung des Herstellers), beachtet werden.

Aufschluss

- Die im Kühlschrank bei 4°C aufbewahrten Proben auf Raumtemperatur bringen, gut schütteln und im Messkolben 1 : 5 verdünnen.

- Je 10 ml der Probe unter dem Abzug aus dem Messkolben in je eins der sechs Aufschlussgefäße pipettieren.

- 1 Tropfen aus einer 10 ml Pipette 2 M NaOH zusetzen, um den pH-Wert der Probe auf 5 - 9 einzustellen.

- 2 Dosierlöffel Oxisolv zugeben (pH-Wert liegt nun bei 11 – 11,5).

- Die Aufschlussgefäße fest verschließen, aufschütteln und in den Halter in der Mikrowelle stellen.

Die Mikrowelle muss grundsätzlich mit allen 6 Aufschlussgefäßen bestückt sein, um einen gleichmäßigen Aufschluss zu gewährleisten. Man rechnet mit einer Minute Aufschlusszeit pro Gefäß, d.h. 6 Minuten bei 6 Gefäßen.

 Nach dem Aufschluss lässt man die Gefäße 10 Minuten abkühlen; beim Öffnen Handschuhe, Kittel und Schutzbrille tragen; Gefäßöffnung vom Körper weghalten.
Die Lösung muss nun farblos sein und einen pH-Wert von 1 – 1,5 haben.

- Ist die Lösung nicht farblos, hat der Aufschluss nicht vollständig funktioniert und muss mit 2 weiteren Löffeln Oxisolv und Einstellung des pH-Wertes mit NaOH wiederholt werden.

 Mittels des Merkoquant Nitrat/Nitrit Tests werden die Proben nun auf störende Nitrit-Ionen getestet; bei Nitrit-Konzentratioen über 1 mg/l müssen diese mit Amidoschwefelsäure maskiert werden (5 ml Probe werden mit 30 - 50 mg Amidoschwefelsäure versetzt). Auch kann eingeschätzt werden, ob die Proben im Messbereich des Nitrattests liegen (falls nicht muss verdünnt werden). Photometrische Bestimmung des Nitratgehaltes

- Zuerst werden beide Rundküvettenhalter in das Photometer eingebaut.

- Gerät muss auf UV und VIS "on" eingestellt sein.

- Dann wird das Gerät eingeschaltet und die Basislinienkorrektur gegen Luft abgewartet.

- Nun können die beiden Rundküvettenhalter justiert werden.

- Die Wellenlänge wird auf 585 nm eingestellt.

- Die Messmethode wird auf "Conc" eingestellt.

 2 mit Aqua dest. gefüllte Rundküvetten werden in je einen der Strahlengänge des Photometers gestellt.

 Durch Drücken der Taste "Auto Zero" wird der Auto Zero-Zyklus ausgelöst.
Nachdem die Konzentrationsanzeige "0" zeigt, kann mit der Konzentrationseichung begonnen werden.

- Eine <u>aufgeschlossene</u> Blindprobe (Aqua dest.) und ein aufgeschlossener Nitratstandard im Konzentrationsbereich der höchsten zu erwartenden Nitrat-Konzentration (max. 80 mg/l; s. Anleitung Spektoquant Nitrat) werden zur Messung am Photometer vorbereitet:

- Zugabe eines Messlöffels Reagenz NO₃-1K zu jeder Testküvette; schütteln, bis sich alles gelöst hat (löst sich schlecht).

- 1,5 ml Probe zugeben, Küvette verschließen, umschütteln und abstellen (Probe wird heiß, aber keinesfalls kühlen!).

- Blindprobe in hinteren Strahlengang des Photometers einstellen, Standardprobe in den vorderen.

- Am Tastenfeld Konzentration der Standardprobe eintasten (z.B. 40.00)

- Genau 10 Minuten nach Zugabe der Probe zur Testküvette Taste "Auto Conc" drücken.

- Erneutes drücken der Taste "Auto Conc" zeigt nun den ermittelten Faktor, der zu Vergleichszwecken notiert werden kann.

- Nun kann die Nitratkonzentration aller Proben im Photometer bestimmt werden.

Achtung: die Färbung der Proben bleibt nicht, wie in der Merck Anleitung zum Nitrat Küvettentest zu lesen ist, 60 Minuten stabil, sondern schwankt (telefonische Aussage Laborchemiker Fa. Merck);

deshalb unbedingt Färbungsintensität aller Proben exakt 10 Minuten nach Zugabe der Probe zur Testküvette im Photometer messen.

Die Temperatur der Probe in der Testküvette sollte ebenfalls für alle Proben gleich sein, da hierdurch die Reaktionsgschwindigkeit und damit die Intensität der Färbung verändert werden.

Immer mit dem oberen senkrechten schwarzen Strich nach vorne in den Küvettenhalter stellen.

Faktorbestimmung: mg/l/Extinktion = Steigung

Berechnung des Gesamtstickstoffgehaltes mg/L Nitrat-N * 0,2259 = mg/I Ges.-N

10.1.4 Untersuchungen zur Absicherung der Methode

Erstellung einer Kalibrierungsgeraden mittels Nitratstandardlösung

Aus einer 1000 mg/l Nitratstandardlösung wurden verschiedene Verdünnungen von 0 – 80 mg/l angefertigt.

Diese Lösungen wurden, wie in Punkt 3 beschrieben, aufgeschlossen und ihre Konzentration, wie in Punkt 4 beschrieben, bestimmt. Daraus ergaben sich folgenden Werte:

Konzentration	Extinktion
0 mg/l	0
10 mg/l	0,290
20 mg/l	0,620
30 mg/l	0,916
40 mg/l	1,222
50 mg/l	1,491
60 mg/l	1,898
70 mg/l	2,124
80 mg/l	2,368

Tabelle: Erstellung der Kalibrierungsgerade

Abbildung: Nitrat-Kalibrierungsgerade

Testen der Aufschlussreaktion mittels einer EDTA-Lösung

Eine EDTA-Stammlösung wurde nach einer Vorschrift der Fa. Merck in "Oxisolv Mikrowellenaufschluss, Geräteanleitung; Funktionstest" unverdünnt aufgeschlossen. Anschließend wurde die Nitrat-Konzentration im Photometer bestimmt.

Es sollten 50 mg/l Nitrat gefunden werden; folgende Ergebnisse wurden ermittelt:

Probe 1:47,78 mg Nitrat/lProbe 2:47,05 mg Nitrat/l

Probe 3: 47,60 mg Nitrat/I

Messung einer Bodenstandardlösung nach Chloroform-Fumigation

Da diese Methode zur Bestimmung des Gesamtstickstoffgehalts dazu dienen soll, den Gesamtstickstoffgehalt von Bodenproben nach Chloroform-Fumigation zu ermitteln, wurde die Funktionsfähigkeit der Methode an einer Standardlösung gleicher Matrix ermittelt.

Diese Lösung wurde wie folgt hergestellt:

1 kg Boden feldfeucht wurde im Zierenberger Stadtwald aus dem Ah-Horizont entnommen und für 24 Stunden mit Chloroform (50 ml im Becherglas mit Siedesteinen) im Exikator begast.

Danach wurde der Boden mit 2 L 0,5M K₂SO₄-Lösung extrahiert und gefiltert.

Der Bodenextrakt wurde, wie die Proben, bei -20°C tiefgefroren gelagert.

Zur Messung wurde er aufgetaut und nach Erreichen von Zimmertemperatur 1 : 5 verdünnt und, wie in Punkt 3 und 4 beschrieben, behandelt, um die Ges.-

Stickstoffkonzentration zu bestimmen.

Folgende Werte ergaben sich:

Nr.	Extinktion	Konzentration	
1	0,994	32,50	mg/l
2	1,022	33,5	mg/l
3	1,016	33,3	mg/l
4	0,921	30,3	mg/l
5	0,953	31,3	mg/l
6	0,995	32,5	mg/l
7	0,950	31,2	mg/l
8	0,889	29,2	mg/l
9	1,010	33,0	mg/l
10	0,995	32,7	mg/l

MW: 1,95 mg/l; Std.-Abweichung: 1,41 mg/l; Variationskoeffizient: 4,4 % Tabelle: Messergebnisse der Ges.-N-Konzentrationsbestimmung

Fremdstoffkonzentration

Desweiteren wurden folgende Fremdstoffkonzentrationen im unter 5.3 beschriebenen Bodenstandard unverdünnt ermittelt:

Element	Bd-STD	nach Aufschluss
AL	55,2 mg/l	62,44 mg/l
Са	138, 8 mg/l	318 mg/l
Cd	54,1 μg/l	k. A.
Cu	11,8 μg/l	< Messbereich
Fe	1,0 mg/l	7,87 mg/l
Mg	71,72 mg/l	89,04 mg/l
Mn	7,65 mg/l	7,78 mg/l
Ni	512 μg/l	540 μg/l
Zn	4,8 mg/l	5,87 mg/l
Si	0,68 mg/l	24,64 mg/l
Na	41,05 mg/l	4936 mg/l

Tabelle: Ermittelte Fremdstoffkonzentrationen

Die Unterschiede in den Konzentrationen der verschiedenen Elemente vor und nach Aufschluss erklären sich zum einen durch den zum Aufschluss notwendigen Zusatz des Reagenz Oxisolv und zum anderen durch Freisetzung der Elemente aus organischen Verbindungen.

Da die Proben bei der Nitratbestimmung im Verhältnis 1 : 5 verdünnt werden, kann davon ausgegangen werden, dass die ermittelten Fremdstoffe die photometrische Nitratbestimmung nicht stören.

Bestimmung des CSB-Gehaltes wässriger Proben

Während der Durchführung dieser Methode müssen grundsätzlich die geltenden Sicherheitsbestimmungen (s. Anleitung des Herstellers) beachtet werden.

Dies ist notwendig, um zu testen, ob der CSB-Gehalt der Proben unter den Konzentrationen liegt, die die Nitratbestimmung nach der Spektroquant-Methode stören (< 1000 mg/l).

Materialien

- Kaliumhydrogenphthalat zur Analyse
- Spektroquant CSB Küvettentest
- Photometer Lambda 3, Perkin Elmer
- Beheizbares Sandbad, Fa. HLG Typ ST 82 (oder Thermoblock, Merck)

Herstellung der Kaliumhydrogenphthalat Standard-Lösung

- Kaliumhydrogenphthalat 2 Stunden bei 105°C bzw. bis zur Massekonstanz trocknen

- 8,500 g in Aqua dest. lösen, mit 5 ml H_2SO_4 versetzen und auf 1 L auffüllen. Der CSB-Gehalt dieser Lösung liegt bei 10 000 mg/l.

- Anschließend wird aus der Standard-Lösung im Messkolben eine Verdünnung auf 1 mg/l CSB (Messbereich) angesetzt.

Probenvorbereitung

- 3 ml Probe in ein Küvette geben (Küvette wird heiß)
- Im Sandbad bei 148°C 2 Stunden erhitzen
- Probe herausnehmen und genau 10 Minuten im Küvettenständer abkühlen lassen
- Probe kurz umschütteln
- Weiter abkühlen lassen bis 20 40 °C erreicht sind
- Probe sofort im Photometer analysieren

Photometrische Bestimmung des CSB-Gehaltes

- Zuerst werden beide Rundküvettenhalter in das Photometer eingebaut.

- Gerät muss auf UV und VIS "on" eingestellt sein; dann wird das Gerät eingeschaltet und die Basislinienkorrektur gegen Luft abgewartet.

- Nun können die beiden Rundküvettenhalter justiert werden.

- Die Wellenlänge wird auf 585 nm eingestellt; die Messmethode auf "Conc" eingestellt.

- 2 mit Aqua dest. gefüllte Rundküvetten werden in je einen der Strahlengänge des Photometers gestellt. Durch Drücken der Taste "Auto Zero" wird der Auto Zero-Zyklus ausgelöst. Nachdem die Konzentrationsanzeige "0" zeigt, kann die Konzentrationseichung begonnen werden.

- Eine Blindprobe (Aqua dest.) und der CSB-Standard werden zur Messung am Photometer vorbereitet:

- Blindprobe in hinteren Strahlengang des Photometers einstellen, Standardprobe in den vorderen.

- Am Tastenfeld Konzentration der Standardprobe eintasten (z.B. 1.00).

- Taste "Auto Conc" drücken.

- Erneutes Drücken der Taste "Auto Conc" zeigt nun den ermittelten Faktor, der zu Vergleichszwecken notiert werden kann.

- Nun können alle Proben anstelle der Standardprobe im Photometer gemessen werden.

Ergebnisse CSB-Gehalt:

- Erneutes Messen der Standard-Lösung ergab einen durchschnittlichen CSB-Gehalt von 1070 mg/l.

- Die ermittelten CSB-Gehalte der Proben aus mikrobieller Extraktion lagen bei unverdünnten Proben mit ca. 130 mg CSB/l weit unter der Grenze, über der Störungen der Nitrat-Bestimmung erwartet werden müssen.

10.1.5 Kontrollabgleich der Mikrowellenaufschlussmethode

Einleitung

Im Labor der Niedersächsischen Forstlichen Versuchsanstalt wird Ges.-Stickstoff in flüssiger Phase mittels Zenko Autoanalyser bestimmt.

Das Verfahren beruht auf einer gekoppelten photometrischen Messung der verschiedenen Stickstofffraktionen.

Der organische Stickstoff wird mittels UV-Licht in Nitrat-Stickstoff umgewandelt und ebenfalls photometrisch bestimmt.

Proben

Die 10 gemessenen Proben sind Mischproben aus je 10 Proben von Lysimetern in Mikrokosmen aus 30 cm Bodentiefe. Die Mikrokosmen sind eingebaut auf der Versuchsfläche in Abt. 25 in Zierenberg; die Proben stammen aus den Monaten Juli, August und September '96 und wurden bis zur Anfertigung der Mischproben bei 4°C im Kühlschrank aufbewahrt. Danach standen sie bis zur Messung 2 Tage bei Zimmertemperatur im Labor; die nach Göttingen transportierten Proben wurden bis zur Messung ebenfalls bei Zimmertemperatur aufbewahrt.

Probenvorbereitung und Transport

Die Proben wurden bis zum Anlegen der Verdünnungsreihe im Kühlschrank bei 4°C aufbewahrt. Dann wurden Sie bei Zimmertemperatur im Messkolben 1 : 10 verdünnt und 10 ml zum Transport in Kunststoffflaschen abgefüllt und ungekühlt nach Göttingen transportiert. Die in unserem Labor verbliebenen Lösungen wurden ebenfalls ungekühlt aufbewahrt. 2 Tage nach Abfüllung wurden die Proben in beiden Laboren gemessen.

Ergebnisse des Kontrollabgleichs

GÖ	GÖ	GÖ	KS	KS	KS	KS	KS	GÖ
NO_3	NH_4	GesN	NO ₃ -IC	NO ₃ -PH	NH_4	GesN	N_{org}	N _{org}
22,62	,24	22,56	21,14	18,90	,01	17,66	-,29	-,20
16,47	,07	16,67	14,85	13,88	,02	14,55	,13	,00
25,02	,07	25,45	23,03	19,68	,01	22,60	,65	,05
26,53	,01	27,05	22,70	22,53	,03	28,76	1,38	,11
18,49	,20	18,95	29,22	15,27	,03	15,46	,02	-,05
22,81	,09	23,60	19,91	19,43	,01	21,21	,39	,10
33,71	,07	34,78	30,78	30,11	,04	30,35	,02	,19
18,58	,12	18,98	15,81	15,83	,02	18,91	,68	,00
21,65	,12	22,08	19,62	18,31	,01	22,55	,95	,00,
35,52	,19	37,29	31,37	29,68	,01	32,03	,52	,25

alle Werte in mg/l

Tabelle: Ergebnisse der Vergleichsmessung

GÖ = Niedersächsische Forstliche Versuchsanstalt - alle Messungen wurden photometrisch durchgeführt, der Aufschluss erfolgte mittels UV-Licht (kontinuierliche Durchflussmessung, Zenko).

KS = Kassel; Bestimmung wie beschrieben.

KS NO₃ IC = Mittelwert aus 10 Einzelwerten am (einzeln) IC gemessen.

KS NO₃ PH = Mischproben am Photometer gemessen.

KS NH₄ = Mittelwert aus 10 Einzelwerten am Photometer gemessen.

KS Ges N = Mischproben nach Mikrowellenaufschluss als NO₃-N am Photometer gemessen.

KS N_{org} = KS Ges.-N - KS NO₃ PH -KS NH₄ immer auf N umgerechnet.

GÖ N_{org} = GÖ Ges.-N - GÖ NO₃ -Gö NH₄ immer auf N umgerechnet.

Im folgenden sind die Ergebnisse grafisch dargestellt:

Abbildung: Vergleich Ges.-N-Werte Kassel - Göttingen

Abbildung: Vergleich Ammonium-Werte Kassel - Göttingen

Kurzbeschreibung der Ergebnisse

- Grundsätzlich fällt auf, dass in Göttingen im Gegensatz zu Kassel fast kein organischer Stickstoff gefunden wurde.
- Die ermittelten Nitratkonzentrationen lagen in Göttingen durchgehend auf einem höheren Niveau.
- Die in Kassel ermittelten Ammoniumkonzentrationen lagen im Bereich der unteren Nachweisgrenze der angewandten Methoden, sodass ein Vergleich nicht sinnvoll erscheint.
- Der grafische Vergleich der Ges.-N-Werte und der Nitrat-Werte liefert gute Übereinstimmungen zwischen beiden Laboren, wenn auch die in Kassel ermittelten Werte auf einem niedrigeren Niveau liegen, als die in Göttingen ermittelten.

10.1.6 Fehlerabschätzung

Der Hersteller und Entwickler der Methode, die Firma Merck, Darmstadt, macht Angaben zum Methodenfehler von der zu analysierenden Lösung abhängig. Komplexe stickstoffhaltige Lösungen (z.B. kommunale Abwasser) zeigten Fehler von bis zu +-30%. Daher ist das Verfahren nicht dazu geeignet, den Anteil von einzelnen Stickstofffraktionen im Ges.-N in komplexen stickstoffhaltigen Lösungen durch Differenzmessungen (z.B. N_{org} mit und ohne Fumigations-Extraktion) zu erfassen, wenn deren zu erwartender Anteil unter 30% am Ges.-N beträgt. Voruntersuchungen zur Bestimmung der Anteile der einzelnen N-Fraktionen mit anderen Messmethoden sind daher in jedem Fall nötig! Fallen diese positiv aus, stellt diese Methode einen schnellen Analyseweg zur Bestimmung der Ges.-Stickstoffkonzentration dar.

		Zierenberg 5 cm Boden	Ziernberg 0 cm Luft	Zierenberg 15 cm Boden	Eichenberg 200 cm Luft	Eichenberg 5 cm Luft	Eichenberg 2 cm Boden	Eichenberg 5 cm Boden	Eichenberg 20cm Boden
Zierenberg 5 cm	Korrelation nach	1,00	,994**	,993**	,842**	,843**	**806'	,920**	,943**
	Signifikanz (2-	n	000'	000'	000'	,000	000'	000'	000'
	Z	750	421	67	750	611	611	611	607
Ziernberg 0	Korrelation nach	,994**	1,00	,979**	,928**	,904**	,952**	,962**	,973**
	Signifikanz (2-	000'		000'	000'	,000	000'	000'	000'
	Z	421	421	67	421	321	321	321	321
Zierenberg 15 cm	Korrelation nach	' 6 63**	,979**	1,00	,806**	,827**	,948**	**696'	,990**
	Signifikanz (2-	000'	000'	-	000'	,000	000'	000'	000'
	Z	67	67	67	67	46	46	46	46
Eichenberg 200cm	Korrelation nach	,842**	,928**	,806**	1,00	,979**	,935**	,921**	,893**
	Signifikanz (2-	000'	000'	000'	ŗ	,000	000'	000'	000'
	Z	750	421	67	827	655	655	655	651
Eichenberg 5 cm	Korrelation nach	,843**	,904**	,827**	**679,	1,00	,962**	,947**	,916**
	Signifikanz (2-	000'	000'	000'	000'	-	000'	000'	000'
	z	611	321	46	655	655	655	655	651
Eichenberg 2 cm	Korrelation nach	**806'	,952**	,948**	,935**	,962**	1,00	**866'	,986**
	Signifikanz (2-	000'	000'	,000	000'	,000	-	000'	000'
	Z	611	321	46	655	655	655	655	651
Eichenberg 5 cm	Korrelation nach	,920**	,962**	,969**	,921**	,947**	,998**	1,00	,994**
	Signifikanz (2-	000'	000'	,000	000'	,000	000'	-	000'
	Z	611	321	46	655	655	655	655	651
Eichenberg 20cm	Korrelation nach	,943**	,973**	**066'	,893**	,916**	,986**	,994**	1,00
	Signifikanz (2-	000'	000'	,000	000'	,000	000'	000'	
	z	607	321	46	651	651	651	651	651

Korrelationen Temperatur Zierenberg - Eichenberg °C; Zeitraum 1.3.95 - 4.6.97

10.2 Korrelation Temperatur Zierenberg-Eichenberg

**. Die Korrelation ist auf dem Niveau von 0,01 (2-seitig)

Tabelle: Korrelationen Temperatur Zierenberg - Eichenberg °C; Zeitraum 1.3.95 - 4.6.97

Vergleichszeitraum 1.3.1995 - 4.6.1997

Abbildung: Vergleich der Lufttemperaturen Zierenberg - Neu-Eichenberg

Fläche	g N/kg Boden	Variation in %
0-Fläche – I	5,02	26
0-Fläche – II	2,63	13
Randfläche – I	6,47	21
Randfläche- II	2,96	28
Auflichtungsfläche - I	7,88	22
Auflichtungsfläche - II	3,58	24

I = 0 - 30 cm Bodentiefe; II = 30 - 60 cm Bodentiefe

Tabelle: Stickstoffgehalte 1994

10.4 Berechnung der Stickstoffvorräte

Mittlere Feinbodenmasse in folgender Tiefenverteilung aus Diplomarbeit (Krug, 1995) auf der auch in der vorliegenden Arbeit untersuchten Fläche:

Bodentiefe cm	Feinbodenmassen t/ha	Variation %
0 – 10	430	k.a.
10 – 20	390	k.a.
20 – 40	640	k.a.
40 – 60	520	k.a.
60 – 80	450	k.a.
80 – 100	420	k.a.
		k.a.
berechnet $\Sigma 0 - 30$	1.100	k.a.
berechnet Σ 30 – 60	840	k.a.

Tabelle: Feinbodenmasse Diplomarbeit Krug (1995)

Mithilfe dieser Feinbodenmassen lassen sich aus den in dieser Arbeit bestimmten N-Konzentrationen die im folgenden dargestellten Stickstoffvorräte errechnen.

	Vorrat t/ha	Variation %	Vorrat t/ha	Variation %	Vorrat t/ha
Fläche	0 – 30 cm		30 – 60 cm		Σ 0 – 60cm
0-Fläche	5,7	26	2,2	13	7,9
Randfläche	7,4	21	2,5	28	9,8
Auflichtungsfläche – I	9,0	22	3,0	24	12,0

Tabelle: Stickstoffvorrat im Feinboden 1994

10.5 Varianzanalyse

		112	118	119	120	122	130
Nitrat	10-MAR-1995	73,80	41,10	32,70	49,90	48,60	,
(mg/L)	03-MAY-1995	50,40	28,80	29,00	19,70	36,10	10,24
	31-MAY-1995	9,91	5,40	19,00	15,70	90,80	162,40
	09-AUG-1995	58,50	28,30	73,20	61,60	66,60	109,30
	05-SEP-1995	91,82	13,53	17,55	158,80	23,20	4,00
	29-SEP-1995	15,97	30,08	148,57	155,73	22,60	,
	30-OCT-1995	453,00	50,94	240,12	378,97	3,00	,
	30-NOV-1995	4,59	49,77	262,80	279,78	,	1,95
	12-JAN-1996	24,34	97,94	,	,	9,15	4,84
	17-APR-1996	9,58	,	54,18	,	,38	4,97
	29-APR-1996	1,46	39,70	27,67	67,62	5,99	5,04
	05-JUN-1996	63,53	74,05	108,65	89,01	4,31	90,36
	02-JUL-1996	167,74	162,69	236,37	118,27	181,18	341,56
	01-AUG-1996	298,54	191,51	202,05	140,47	,	511,06
	30-AUG-1996	218,87	145,04	181,72	104,58	405,87	393,06
	08-OCT-1996	221,60	134,75	216,38	42,50	477,33	92,50
	06-NOV-1996	237,74	104,65	60,62	14,11	368,37	21,10
	06-DEC-1996	168,00	49,30	3,89	12,80	278,00	43,20
	04-FEB-1997	54,40	76,50	11,60	,	415,00	158,00
	11-APR-1997	41,80	13,50	7,95	21,70	336,00	41,60
	06-MAY-1997	56,00	,25	5,78	14,80	161,00	27,40
	12-JUN-1997	82,20	26,50	47,20	25,90	101,00	27,90
	09-JUL-1997	71,20	36,00	28,80	10,00	70,20	9,62
	29-JUL-1997	62,30	36,00	9,20	1,83	120,00	1,75
	01-SEP-1997	5,19	10,60	4,46	1,88	71,70	2,40
	06-OCT-1997	166,00	,	2,52	1,86	38,80	2,36
	04-NOV-1997	398,00	483,00	9,99	,	121,00	47,20

Auffälligkeiten von Konzentrations-Mittelwerten einzelner Mikrokosmen

110 – 130 = Bezeichnung einzelner Mikrokosmen

Tabelle: Auffällige Nitratkonzentration Mikrokosmen: Standardabweichung größer Mittelwert

		114	123
Nitrat	10-MAR-1995	66,60	64,30
(mg/L)	03-MAY-1995	56,90	41,30
	31-MAY-1995	133,40	58,90
	09-AUG-1995	113,10	17,68
	05-SEP-1995	111,00	222,45
	29-SEP-1995	130,68	164,78
	30-OCT-1995	338,60	544,59
	30-NOV-1995	274,17	553,21
	12-JAN-1996	222,96	650,52
	17-APR-1996	149,32	295,33
	29-APR-1996	145,68	339,12
	05-JUN-1996	106,19	211,41
	02-JUL-1996	189,52	177,28
	01-AUG-1996	218,12	165,87
	30-AUG-1996	240,03	279,46
	08-OCT-1996	286,50	439,54
	06-NOV-1996	268,55	608,52
	06-DEC-1996	151,00	431,00
	04-FEB-1997	191,00	248,00
	11-APR-1997	107,00	73,10
	06-MAY-1997	86,70	59,50
	12-JUN-1997	107,00	87,70
	09-JUL-1997	174,00	114,00
	29-JUL-1997	189,00	192,00
	01-SEP-1997	86,60	267,00
	06-OCT-1997	59,30	256,00
	04-NOV-1997	367,00	427,00

Tabelle: Auffällige Nitratkonzentration Mikrokosmen: Hoher Mittelwert

Varianz pro Mikrokosmos

Standorte von Mikrokosmen:

- 101 110: 0-Fläche
- 111 120: Rand-Fläche
- 121 130: Auflichtungs-Fläche

Die Varianzanalyse wurde für jeden Mikrokosmos durchgeführt; im folgenden sind Varianzanalysen einiger Mikrokosmen exemplarisch dargestellt:

Linterflagebo			Nitrot (mg/L)	Chlorid
	Minimarum			(IIIg/L)
0-Flaeche	Minimum	,03	6,10	2,08
	Maximum	,89	261,39	7,90
	Mittelwert	,1868	110,2469	4,8273
	Varianz	4,317E-02	5793,293	2,545
	Standardabweichung	,2078	76,1137	1,5954
	Ν	25	26	26
Insgesamt	Minimum	,03	6,10	2,08
	Maximum	,89	261,39	7,90
	Mittelwert	,1868	110,2469	4,8273
	Varianz	4,317E-02	5793,293	2,545
	Standardabweichung	,2078	76,1137	1,5954
	Ν	25	26	26

Bericht

Tabelle: Mittelwerte Mikrokosmos 101

				Chlorid
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)
0-Flaeche	Minimum	,03	1,93	1,93
	Maximum	2,57	307,50	20,70
	Mittelwert	,3848	94,4625	6,0879
	Varianz	,264	7028,696	12,103
	Standardabweichung	,5135	83,8373	3,4789
	Ν	27	28	28
Insgesamt	Minimum	,03	1,93	1,93
	Maximum	2,57	307,50	20,70
	Mittelwert	,3848	94,4625	6,0879
	Varianz	,264	7028,696	12,103
	Standardabweichung	,5135	83,8373	3,4789
	Ν	27	28	28

Bericht

Bericht						
				Chlorid		
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)		
0-Flaeche	Minimum	,03	5,02	2,43		
	Maximum	,83	169,11	11,68		
	Mittelwert	,1454	88,2065	5,6919		
	Varianz	4,665E-02	2201,825	4,387		
	Standardabweichung	,2160	46,9236	2,0944		
	Ν	26	26	26		
Insgesamt	Minimum	,03	5,02	2,43		
	Maximum	,83	169,11	11,68		
	Mittelwert	,1454	88,2065	5,6919		
	Varianz	4,665E-02	2201,825	4,387		
	Standardabweichung	,2160	46,9236	2,0944		
	Ν	26	26	26		

Tabelle: Mittelwerte Mikrokosmos 110

Unterflaeche		NH4 (ma/L)	Nitrat (ma/L)	Chlorid
Unternaeche		NII4 (IIIg/L)	Nillal (IIIg/L)	(IIIg/L)
Rand	Minimum	,03	2,41	,37
	Maximum	,72	357,56	33,84
	Mittelwert	,1229	110,7704	10,6008
	Varianz	2,565E-02	9888,446	67,212
	Standardabweichung	,1601	99,4407	8,1983
	Ν	24	23	26
Insgesamt	Minimum	,03	2,41	,37
	Maximum	,72	357,56	33,84
	Mittelwert	,1229	110,7704	10,6008
	Varianz	2,565E-02	9888,446	67,212
	Standardabweichung	,1601	99,4407	8,1983
	Ν	24	23	26

Bericht						
				Chlorid		
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)		
Rand	Minimum	,03	1,83	3,27		
	Maximum	2,41	378,97	61,21		
	Mittelwert	,2292	76,9054	16,0584		
	Varianz	,253	8718,199	221,718		
	Standardabweichung	,5033	93,3713	14,8902		
	Ν	25	24	25		
Insgesamt	Minimum	,03	1,83	3,27		
	Maximum	2,41	378,97	61,21		
	Mittelwert	,2292	76,9054	16,0584		
	Varianz	,253	8718,199	221,718		
	Standardabweichung	,5033	93,3713	14,8902		
	Ν	25	24	25		

Tabelle: Mittelwerte Mikrokosmos 120

Bericht							
				Chlorid			
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)			
Auflichtung	Minimum	,03	2,68	,27			
	Maximum	1,27	254,47	10,10			
	Mittelwert	,2585	90,4492	5,9367			
	Varianz	,112	6685,333	6,834			
	Standardabweichung	,3340	81,7639	2,6143			
	Ν	26	25	27			
Insgesamt	Minimum	,03	2,68	,27			
	Maximum	1,27	254,47	10,10			
	Mittelwert	,2585	90,4492	5,9367			
	Varianz	,112	6685,333	6,834			
	Standardabweichung	,3340	81,7639	2,6143			
	Ν	26	25	27			

Bericht							
				Chlorid			
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)			
Auflichtung	Minimum	,03	1,75	,20			
	Maximum	4,24	511,06	13,19			
	Mittelwert	,6552	91,4680	4,1388			
	Varianz	1,688	18382,599	10,882			
	Standardabweichung	1,2993	135,5824	3,2988			
	Ν	27	25	25			
Insgesamt	Minimum	,03	1,75	,20			
	Maximum	4,24	511,06	13,19			
	Mittelwert	,6552	91,4680	4,1388			
	Varianz	1,688	18382,599	10,882			
	Standardabweichung	1,2993	135,5824	3,2988			
	Ν	27	25	25			

Räumliche Varianz pro Probenahmetermin und Parameter

Die Varianzanalyse wurde für jeden Probenahmetermin durchgeführt; im folgenden sind einige Varianzanalysen exemplarisch dargestellt:

				Chlorid
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)
0-Flaeche	Minimum	,15	11,10	5,79
	Maximum	1,08	77,90	17,15
	Mittelwert	,6100	40,0000	9,5330
	Varianz	,112	331,376	14,018
	Standardabweichung	,3340	18,2037	3,7440
	Ν	10	10	10
Rand	Minimum	,06	32,70	3,82
	Maximum	,98	73,80	13,44
	Mittelwert	,4100	53,4200	8,4290
	Varianz	,107	196,037	12,783
	Standardabweichung	,3273	14,0013	3,5753
	Ν	10	10	10
Auflichtung	Minimum	,07	5,10	8,47
	Maximum	,64	64,30	18,82
	Mittelwert	,2725	41,3500	12,9475
	Varianz	5,425E-02	551,409	15,872
	Standardabweichung	,2329	23,4821	3,9840
	Ν	8	8	8
Insgesamt	Minimum	,06	5,10	3,82
	Maximum	1,08	77,90	18,82
	Mittelwert	,4421	45,1786	10,1143
	Varianz	,106	358,194	16,604
	Standardabweichung	,3260	18,9260	4,0748
	Ν	28	28	28

Bericht

Tabelle: Mittelwerte Tag 3721
Bericht					
				Chlorid	
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)	
0-Flaeche	Minimum	,15	,50	4,68	
	Maximum	,94	31,40	19,09	
	Mittelwert	,5380	9,2600	8,1860	
	Varianz	9,442E-02	69,629	17,435	
	Standardabweichung	,3073	8,3444	4,1756	
	Ν	10	10	10	
Rand	Minimum	,03	5,40	4,96	
	Maximum	,83	182,60	15,05	
	Mittelwert	,3450	64,6920	11,6440	
	Varianz	5,754E-02	4205,520	13,512	
	Standardabweichung	,2399	64,8500	3,6759	
	Ν	10	10	10	
Auflichtung	Minimum	,12	1,20	1,54	
	Maximum	1,00	162,40	20,46	
	Mittelwert	,4750	74,7500	9,7870	
	Varianz	7,932E-02	2471,603	28,002	
	Standardabweichung	,2816	49,7152	5,2917	
	Ν	10	10	10	
Insgesamt	Minimum	,03	,50	1,54	
	Maximum	1,00	182,60	20,46	
	Mittelwert	,4527	49,5673	9,8723	
	Varianz	7,845E-02	2951,614	20,360	
	Standardabweichung	,2801	54,3288	4,5122	
	Ν	30	30	30	

	Be	richt		
				Chlorid
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)
0-Flaeche	Minimum	,11	62,23	2,19
	Maximum	1,21	392,14	17,44
	Mittelwert	,4380	181,1450	6,4750
	Varianz	,106	8775,897	19,094
	Standardabweichung	,3255	93,6798	4,3696
	Ν	10	10	10
Rand	Minimum	,03	50,94	,37
	Maximum	,59	453,00	40,04
	Mittelwert	,1420	224,3522	8,0770
	Varianz	3,051E-02	21177,429	131,737
	Standardabweichung	,1747	145,5247	11,4777
	Ν	10	9	10
Auflichtung	Minimum	,03	2,68	1,19
	Maximum	1,12	544,59	28,71
	Mittelwert	,3740	157,4133	9,0020
	Varianz	,120	38493,205	97,001
	Standardabweichung	,3466	196,1969	9,8489
	Ν	10	9	10
Insgesamt	Minimum	,03	2,68	,37
	Maximum	1,21	544,59	40,04
	Mittelwert	,3180	187,4050	7,8513
	Varianz	9,635E-02	21374,867	78,040
	Standardabweichung	,3104	146,2015	8,8340
	Ν	30	28	30

	Bericht					
				Chlorid		
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)		
0-Flaeche	Minimum	,06	77,59	3,23		
	Maximum	,50	200,26	14,40		
	Mittelwert	,2070	121,7970	6,2470		
	Varianz	1,820E-02	1144,975	10,567		
	Standardabweichung	,1349	33,8375	3,2508		
	Ν	10	10	10		
Rand	Minimum	,03	118,27	4,47		
	Maximum	,70	236,37	24,62		
	Mittelwert	,2200	176,2690	9,7460		
	Varianz	4,624E-02	1284,738	39,377		
	Standardabweichung	,2150	35,8432	6,2751		
	Ν	10	10	10		
Auflichtung	Minimum	,03	155,27	3,62		
	Maximum	,42	341,56	25,65		
	Mittelwert	,1480	211,4380	9,9130		
	Varianz	1,511E-02	3951,169	50,942		
	Standardabweichung	,1229	62,8583	7,1374		
	Ν	10	10	10		
Insgesamt	Minimum	,03	77,59	3,23		
	Maximum	,70	341,56	25,65		
	Mittelwert	,1917	169,8347	8,6353		
	Varianz	2,570E-02	3387,120	34,265		
	Standardabweichung	,1603	58,1990	5,8536		
	Ν	30	30	30		

	Be	richt		
				Chlorid
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)
0-Flaeche	Minimum	,03	6,01	3,19
	Maximum	,34	200,00	7,29
	Mittelwert	,1000	63,4910	4,8370
	Varianz	1,189E-02	3328,373	1,959
	Standardabweichung	,1090	57,6921	1,3996
	Ν	10	10	10
Rand	Minimum	,03	11,60	4,95
	Maximum	,49	191,00	13,60
	Mittelwert	,1244	83,9222	8,4078
	Varianz	2,395E-02	2475,629	7,388
	Standardabweichung	,1548	49,7557	2,7180
	Ν	9	9	9
Auflichtung	Minimum	,03	26,60	3,51
	Maximum	1,39	415,00	34,40
	Mittelwert	,2970	167,1889	11,9111
	Varianz	,164	19005,474	105,899
	Standardabweichung	,4048	137,8603	10,2907
	Ν	10	9	9
Insgesamt	Minimum	,03	6,01	3,19
	Maximum	1,39	415,00	34,40
	Mittelwert	,1755	103,3896	8,2586
	Varianz	7,149E-02	9546,930	43,010
	Standardabweichung	,2674	97,7084	6,5582
	Ν	29	28	28

	Be	richt		
				Chlorid
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)
0-Flaeche	Minimum	,08	2,30	1,88
	Maximum	2,00	110,00	5,42
	Mittelwert	,6230	52,3510	3,6430
	Varianz	,433	2058,288	1,605
	Standardabweichung	,6578	45,3684	1,2671
	Ν	10	10	10
Rand	Minimum	,03	1,88	1,26
	Maximum	1,71	132,00	12,80
	Mittelwert	,3000	54,6230	6,4470
	Varianz	,331	2625,110	14,751
	Standardabweichung	,5756	51,2358	3,8407
	Ν	10	10	10
Auflichtung	Minimum	,03	2,40	,89
	Maximum	3,20	267,00	12,50
	Mittelwert	,6180	100,4700	6,7670
	Varianz	,930	7895,602	13,845
	Standardabweichung	,9642	88,8572	3,7209
	Ν	10	10	10
Insgesamt	Minimum	,03	1,88	,89
	Maximum	3,20	267,00	12,80
	Mittelwert	,5137	69,1480	5,6190
	Varianz	,549	4412,167	11,410
	Standardabweichung	,7411	66,4241	3,3779
	Ν	30	30	30

Bericht					
				Chlorid	
Unterflaeche		NH4 (mg/L)	Nitrat (mg/L)	(mg/L)	
0-Flaeche	Minimum	,03	13,70	3,50	
	Maximum	,57	327,00	10,00	
	Mittelwert	,1120	143,6900	6,1430	
	Varianz	3,093E-02	9167,097	4,461	
	Standardabweichung	,1759	95,7450	2,1122	
	Ν	10	10	10	
Rand	Minimum	,03	9,99	5,33	
	Maximum	,09	483,00	24,50	
	Mittelwert	4,000E-02	351,1100	11,2856	
	Varianz	6,000E-04	18243,964	35,172	
	Standardabweichung	2,449E-02	135,0702	5,9306	
	Ν	6	9	9	
Auflichtung	Minimum	,03	5,83	1,17	
	Maximum	,34	427,00	24,70	
	Mittelwert	9,125E-02	143,6038	11,2838	
	Varianz	1,144E-02	19241,082	87,871	
	Standardabweichung	,1070	138,7122	9,3740	
	Ν	8	8	8	
Insgesamt	Minimum	,03	5,83	1,17	
	Maximum	,57	483,00	24,70	
	Mittelwert	8,708E-02	212,8044	9,3804	
	Varianz	1,657E-02	23899,113	42,426	
	Standardabweichung	,1287	154,5934	6,5135	
	Ν	24	27	27	

Auffälligkeiten einzelner Probenahmetage

		05.09.1995	30.10.1995	30.11.1995	01.08.1996	11.04.1997
Chlorid	25/I/1A	7,90	5,95	6,88	5,99	3,73
(mg/L)	25/I/1B	21,92	17,44	26,40	10,06	6,05
	25/I/2A	11,16	5,20	6,89	8,16	7,53
	25/I/2B	8,54	9,40	12,60	3,67	5,37
	25/I/3A	20,70	4,80	6,49	3,47	5,49
	25/I/3B	17,28	6,48	6,56	3,60	3,74
	25/I/4A	5,38	2,70	4,65	2,65	2,93
	25/I/4B	11,55	2,19	52,00	3,08	3,59
	25/I/5A	20,24	6,51	17,56	6,05	3,07
	25/I/5B	11,68	4,08	9,89	5,33	4,41
	25/II/6A	14,16	4,20	6,84	4,28	5,48
	25/II/6B	16,90	2,64	4,36	9,27	5,05
	25/II/7A	11,56	4,27	3,54	5,71	5,08
	25/II/7B	28,78	5,67	11,02	6,64	7,26
	25/II/8A	,	,37	1,25	33,84	9,13
	25/II/8B	,	4,36	7,50	10,49	8,42
	25/II/9A	7,57	3,67	4,09	5,79	11,90
	25/II/9B	10,79	6,00	7,79	15,80	9,85
	25/II/10A	13,49	9,55	15,15	8,31	5,34
	25/II/10B	61,21	40,04	54,48	14,03	4,74
	25/III/11A	5,64	4,61	5,74	6,06	6,29
	25/III/11B	35,13	2,37	2,78	51,13	43,80
	25/III/12A	25,36	25,30	16,19	5,54	6,40
	25/III/12B	30,40	28,71	33,29	12,14	4,38
	25/III/13A	4,29	1,99	2,18	5,81	9,34
	25/III/13B	10,54	6,60	9,74	7,69	6,78
	25/III/14A	5,37	3,35	7,32	26,75	30,40
	25/III/14B	6,48	6,28	2,92	5,11	10,80
	25/III/15A	10,87	9,62	7,96	4,62	5,90
	25/III/15B	6,93	1,19	,71	13,19	5,03

Tabelle: Auffälligkeiten einzelner Probenahmetage

- Auffälliges Probenahmedatum:
 - 3900: hohe Chlorid-Konzentration.
- Chlorid-Konzentration Standardabweichung größer Mittelwert: 3955, 3985, 4230 und 4483.

Im folgenden sind Auffälligkeiten von Konzentrations-Mittelwerten einzelner Mikrokosmen beschrieben:

Die Nummern 101 bis 130 bezeichnen dabei einzelne Mikrokosmen; die Standorte der Mikrokosmen sind in Abb. 6 aufgeführt.

Chlorid:

Hohe Varianz der Chloridkonzentration

(Standardabweichung größer als Mittelwert);

108: Der Extremwert am 30.5.95 liegt mit 52 mg/L eine Größenordnung über den sonstigen Werten dieses Mikrokosmos, aber im Rahmen der Werte anderer Mikrokosmen. Diese weit über den Einträgen liegenden Konzentrationen lassen sich im allgemeinen durch Verdunstungseffekte und damit verbundener Erhöhung der Chlorid-Konzentration erklären. Auch eine Kontamination ist denkbar. Die Flüssebilanz kann dies aufklären.

124: Min- und Max-Werte liegen sehr weit auseinander.

• Ammonium:

Die Ammoniumkonzentrationen schwanken generell uneinheitlich bei niedrigen stark schwankenden Einzelwerten – sicherbare Unterschiede zwischen Unterflächen sind nicht zu erkennen.

Nitrat:

In den Mikrokosmen 112, 118, 119, 120, 122 und 130 ist eine hohe Varianz der Nitratkonzentration (Standardabweichung größer als Mittelwert) zu beobachten. Auffallend hohe Mittelwerte sind in den Mikrokosmen 114 und 123 zu beobachten. ten.

Alle Mikrokosmen mit hoher Varianz liegen in Rand- und Auflichtungsfläche; daher erscheint es plausibel, dass die beobachtete hohe Varianz dieser Mikrokosmen versuchsbedingt (Auflichtung) ist.

Im folgenden sind Auffälligkeiten einzelner Probenahmetage beschrieben:

Chlorid:

5.9.95, 30.10.95, 30.11.95, 1.8.96, 11.4.97: starke Schwankungen an einem Probenahmedatum, ohne erkennbaren Trend.

• Ammonium:

Keine extremen Auffälligkeiten der Proben eines Datums.

Nitrat:

3803 = 31.5.95: Starke Schwankungen an einem Probenahmedatum, da in der 0-Fläche sehr geringe Werte, in der Auflichtungsfläche jedoch mittelhohe Werte erreicht wurden. Eine Begründung kann in den hohen Schwankungen zu Versuchsbeginn in der ersten Erwärmung nach Einbau der Mikrokosmen liegen.

10.6 Zeitlicher Verlauf der Nitrat-N-Konzentration

Abbildung: Zeitlicher Verlauf der Nitrat-N-Konzentration der 0-Fläche

zeitlicher Verlauf der Nitrat-N-Konzentration auf der Randfläche

10.7 Gesamt-N-Flüsse

Ges.-N-Flusses pro Monat der 0-Fläche

Abbildung: Zeitlicher Verlauf des Ges.-N-Flusses der 0-Fläche

Ges.-N-Flusses pro Monat der Rand-Fläche

Abbildung: Zeitlicher Verlauf des Ges.-N-Flusses der Rand-Fläche

Besamt-N-Versickerungsrate	
emperatur und G	
n Gesamt-N-Te	
10.8 Korrelatione	

2
٩
2
•
Ŧ
α
7
5
2
3
-

Luftemperatu cm [°] C+3 5 cm ¹ Eichenberg Monate plus 2 200cm in (2 versetat ver 1,000273 ver 28 2.07 2.07 -207 2.07 -207 2.07 -207 2.27 -7.73 2.3 2.3 2.3 2.3 2.27 -7.742**	in °C um 2 Monate	NH4-N						-
1000 Version V	reaty I NHA-N (movil)	(mg/(qm* Deriode))	Nitrat (mo(1)	NO3-N (mg/(qm* Beriode))	N-gesamt	GESAMT-N (mg/(qm*P	Chlorid	CI (mg/(qm* Deriode))
28 23 23 23 23 23 23 23 23 23 23 23 23 23	,227 ,495*	*	-,083	-,135	-,071	-,129	-,207	-,253
28 23 73 1,000 07 , 23 23 23 23 86 ,000	,286 ,007	,027	,675	,494	,718	,512	,291	,193
73 1,000 07	24 28	28	28	28	28	28	28	28
07	,742** -,257	-,111	-,590**	-,452*	-,599**	-,455*	-,408	-,064
3 23 7 7,742** 6 0,000	,000 ,236	,613	,003	,030	,003	,029	,053	,773
6 ,000	21 23	23	23	23	23	23	23	23
,000	1,000 ,028	,176	-,612**	-,392	-,617**	-,392	-,430*	-,050
2	, ,896	,412	,001	,058	,001	,058	,036	,815
	24 24	24	24	24	24	24	24	24
5** -,257	,028 1,000	,815**	-,343	-,409*	-,319	-,399*	-,116	-,271
,236	,896	000'	,074	,031	,098	,036	,556	,162
3 23	24 28	28	28	28	28	28	28	28
-,111	,176 ,815*	1,000	-,365	-,234	-,354	-,222	-,066	,115
,613	,412 ,000		,056	,232	,064	,257	,741	,559
23	24 28	28	28	28	28	28	28	28
-,590**	-,612**	-,365	1,000	,820**	**666'	,818**	,728**	,272
,003	,001 ,074	,056	•	000,	000'	,000	000'	,161
23	24 28	28	28	28	28	28	28	28
-,452*	-,392 -,409*	-,234	,820**	1,000	,815**	1,000**	,604**	,608**
,030	,058 ,031	,232 28	,000 80	, 8C	,000 80	,000 28	,001 80	,001 80
1 -,599**	-,617** -,319	-,354	**666'	,815**	1,000	,813**	,731**	,263
8 ,003	,001 ,098	,064	000'	,000		,000	000	,176
28 23	24 28	28	28	28	28	28	28	28
-,455*	-,392 -,399*	-,222	,818**	1,000**	,813**	1,000	,605**	,611**
,029	,058 ,036	,257	,000	000,	,000	-	,001	,001
8 23	24 28	28	28	28	28	28	28	28
7 -,408	-,430*	-,066	,728**	,604**	,731**	,605**	1,000	,574**
31 ,053	,036 ,556	,741	,000	,001	000'	,001		,001
28 23	24 28	28	28	28	28	28	28	28
-,064	-,050 -,271	,115	,272	,608**	,263	,611**	,574**	1,000
33 ,773	,815 ,162	,559	,161	,00,	,176	,001	,001	^ g
23 23	24 20	22	97	22	22	87	207	20

** Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant.
* Die Korrelation ist auf dem Niveau von 0,05 (2-seitig) signifikant.

Tabelle: Korrelation Ges.-N - Temperatur und Ges.-N - Versickerungsrate

Zusammenfassung der Korrelationstabelle der vorherigen Seite:

		GESAMT-N (mg/(qm*Per iode))*100	Monats-MW Lufttemp Eichenberg 5 cm °C + 3 Monate versetzt	Versickerun gsrate (mm / Periode)
GESAMT-N	Korrelation nach Pearson	1,000	-,574**	,341**
(mg/(qm*Periode))*100	Signifikanz (1-seitig)	,	,000	,001
	Ν	84	69	84
Monats-MW Lufttemp	Korrelation nach Pearson	-,574**	1,000	,047
Eichenberg 5 cm °C + 3 Monate versetzt	Signifikanz (1-seitig)	,000	,	,352
	Ν	69	69	69
Versickerungsrate (mm /	Korrelation nach Pearson	,341**	,047	1,000
Periode)	Signifikanz (1-seitig)	,001	,352	,
	Ν	84	69	84

**• Die Korrelation ist auf dem Niveau von 0,01 (1-seitig) signifikant.

Tabelle: Zusammenfassung der Korrelationsberechnungen

Erklärung:

Hiermit versichere ich, dass ich die vorliegende Dissertation selbständig und ohne unerlaubte Hilfe angefertigt und andere als die in der Dissertation angegebenen Hilfsmittel nicht benutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten und unveröffentlichten Schriften entnommen sind, habe ich als solche kenntlich gemacht.

Kein Teil dieser Arbeit ist in einem anderen Promotions- oder Habilitationsverfahren verwendet worden.

Kassel, den