Zur Kurzanzeige

dc.date.accessioned2023-12-22T12:55:56Z
dc.date.available2023-12-22T12:55:56Z
dc.date.issued2019
dc.identifierdoi:10.17170/kobra-202312219265
dc.identifier.urihttp://hdl.handle.net/123456789/15323
dc.description© This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjecttitaniumeng
dc.subjectultra-fine grainedeng
dc.subjectsevere plastic deformationeng
dc.subjectfatigueeng
dc.subjectcyclic stabilityeng
dc.subjectelevated temperatureeng
dc.subject.ddc620
dc.subject.ddc660
dc.titleCyclic Deformation Response of Ultra-fine Grained Titanium at Elevated Temperatureseng
dc.typeAufsatz
dcterms.abstractThis study focuses on the high-temperature cyclic deformation response (CDR) of ultra-fine grained (UFG) titanium of commercial purity (grade 4) processed via equal channel angular extrusion as a severe plastic deformation method. Low-cycle fatigue experiments were conducted at elevated temperatures up to 600 °C and at strain amplitudes ranging from 0.2% to 0.6%. Besides temperature and strain amplitude, the influence of two processing routes (8BC and 8E) on the fatigue characteristics of UFG Ti was examined. It is clearly revealed that the CDR of UFG Ti is not strongly affected by the alteration of strain path during ECAE processing, as long as highly efficient routes are employed. Both routes lead to high volume fraction of high angle grain boundaries and improved fatigue performance up to 400 °C is demonstrated. Electron backscatter diffraction assisted microstructural characterization was used to analyze elementary degradation mechanisms affecting cyclic mechanical behavior. Micrographs reveal the occurrence of severe recrystallization and grain growth only at temperatures above 400 °C and, thus, grade 4 UFG Ti is characterized by unprecedented cyclic stability in comparison to other UFG alloys.eng
dcterms.accessRightsopen access
dcterms.creatorSajadifar, Seyed Vahid
dcterms.creatorYapici, Guney Guven
dcterms.creatorDemler, Eugen
dcterms.creatorKrooß, Philipp
dcterms.creatorWegener, Thomas
dcterms.creatorMaier, Hans Jürgen
dcterms.creatorNiendorf, Thomas
dc.relation.doidoi:10.1016/j.ijfatigue.2019.01.021
dc.subject.swdTitanger
dc.subject.swdUltrafeinkornger
dc.subject.swdPlastische Deformationger
dc.subject.swdMaterialermüdungger
dc.subject.swdZyklische Belastungger
dc.subject.swdStabilitätger
dc.subject.swdHochtemperaturger
dc.type.versionacceptedVersion
dcterms.source.identifiereissn:1879-3452
dcterms.source.journalInternational Journal of Fatigueeng
dcterms.source.pageinfo228-239
dcterms.source.volumeVolume 122
kup.iskupfalse


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Attribution-NonCommercial-NoDerivatives 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 International