
BUFFERED SIMULATION
FOR BÜCHI AUTOMATA

Dissertation zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

im Fachbereich Elektrotechnik/Informatik der Universität Kassel

Milka Hutagalung

Mai 2018

Erster Gutachter: Prof. Dr. Martin Lange
Zweiter Gutachter: Prof. Dr. Antonı́n Kučera
Tag der Disputation: 27. September 2018

Abstract

We introduce a new family of simulation relations between two non-deterministic Büchi
automata (NBA) called buffered simulation. We extend the game framework of the stan-
dard fair simulation such that Duplicator can skip her turn and store the letter that is read
by Spoiler temporarily to a buffer. Duplicator then can execute the letters in the buffer in
some later round. In this way, she has a preview of Spoiler’s move and has more chances
to mimic Spoiler’s run correctly than in the standard fair simulation game. We generalise
such a simulation to the case where multiple buffers are involved. In such a case, a rule
that tells us to which buffers a letter should be stored is given. Once Spoiler reads a letter,
Duplicator stores it to all the associated buffers, and when she wants to execute the letter,
she has to pop it from all the associated buffers.

We study the decidability and complexity of buffered simulation with one or mul-
tiple buffers. We show that buffered simulation is undecidable if some of the buffers
are unbounded. It is even already highly undecidable in the case of two buffers where
one is unbounded and the other one is of capacity 0. In the case where all buffers are
bounded, buffered simulation is decidable in polynomial time. In the case of a single,
but unbounded buffer, buffered simulation is PSPACE-complete for a variant that requires
Duplicator to pop all the letters from the buffer each time she decides to move. It is,
however, EXPTIME-complete for the general case.

We further show that buffered simulation with one buffer can be used to incremen-
tally approximate language inclusion between two NBA. In the case of multiple buffers,
it can be used to approximate a more general problem, namely the trace closure inclusion
problem, which is known to be highly undecidable. We give a theoretical justification of
buffered simulation by giving a characterisation using the notion of continuity. Buffered
simulation with unbounded buffers can be characterised by the existence of a continu-
ous function that witnesses the language or trace closure inclusion between the input au-
tomata. We can lift such a characterisation to the case of bounded buffers by considering
a Lipschitz continuous function instead of just a continuous one. Such a characterisation,
however, only holds for some restricted automata called cyclic-path-connected automata.

Zusammenfassung

Wir stellen eine neue Familie von Simulationsrelationen zwischen zwei nicht determi-
nistischen Büchi Automaten (NBA), genannt gepufferte Simulation vor. Wir erweitern
das Spiel-Framework der üblichen fairen Simulation, so dass Duplicator ihren Spiel-
zug überspringen und die Buchstaben, die Spoiler gelesenen hat, vorübergehend in ei-
nem Puffer speichern kann. Duplicator kann diese Buchstaben in ihrer Struktur dann
später ausführen. Duplicator hat damit eine Vorschau in die Bewegungen von Spoiler
und somit mehr Chancen, den Lauf Spoilers korrekt nachzuahmen als im Standard-
Simulationsspiel. Wir verallgemeinern dann diese Simulationsrelationen auf mehrere Puf-
fer. In einem solchen Fall gibt es eine Regel, die angibt, in welchen Puffern ein Buchsta-
be gespeichert werden soll. Sobald Spoiler einen Buchstaben liest, speichert Duplicator
ihn in jedem zugeordneten Puffer und wenn Duplicator ihn in ihrer Struktur ausführen
möchte, muss sie den Buchstaben von jedem zugehörigen Puffer löschen.

Wir untersuchen die Entscheidbarkeit und Komplexität von gepufferten Simulatio-
nen mit einem oder mehreren Puffern. Wir zeigen, dass gepufferte Simulation nicht mehr
entscheidbar ist, wenn einige Puffer unbegrenzt sind. Es ist tatsächlich sogar schon hoch-
gradig unentscheidbar bei zwei Puffern, in denen einer unbegrenzt ist und der andere die
Kapazität 0 hat. In dem Fall, in dem alle Puffer begrenzt sind, ist gepufferte Simulation
in polynomieller Zeit entscheidbar. Für die Simulation mit einem einzelnen, aber unbe-
schränkten Puffer ist die gepufferte Simulation PSPACE-vollständig für eine Variante, bei
der Duplicator alle Buchstaben aus dem Puffer löschen muss, jedes Mal wenn sie sich
bewegt. Es ist jedoch EXPTIME-vollständig für den allgemeinen Fall.

Wir zeigen weiterhin, dass gepufferte Simulation mit einem Puffer Spracheinklusi-
on zwischen zwei NBA schrittweise approximiert. Mit mehreren Puffern kann gepufferte
Simulation die Inklusion des Spurabschlusses zweier NBA approximieren, welche be-
kanntermaßen hochgradig unentscheidbar ist. Wir formulieren eine theoretische Unter-
mauerung für gepufferte Simulation, indem wir sie als Stetigkeitsfrage in einem geeig-
neten topologischen Raum auffassen. Gepufferte Simulation mit unbeschränkten Puffern
kann durch die Existenz einer stetigen Funktion, die die Sprache oder die Spurabschluss
Inklusion zwischen den beiden Automaten bezeugt, charakterisiert werden. Wir können
diese Charakterisierung auf gepufferte Simulation mit begrenzten Puffern erweitern, in-
dem wir sogar Lipschitz-Stetigkeit der Funktion verlangen. Eine solche Charakterisierung
gilt allerdings nur für eine beschränkte Klassen von Automaten, die wir zyklisch-pfad-
verbunden nennen.

Acknowledgements

First of all, I would like to express my deepest gratitude to my advisor, Prof. Dr. Martin
Lange, for the opportunity to join his research group and for the academic guidance he
has given me throughout my doctoral work. The discussion with him and his continuous
support have encouraged me to explore various research questions and approaches. They
have enormously helped me produce this dissertation. I would also like to thank him for
his tremendous support, especially after I had my first son some years ago. Without his
support, I would never have a flexible time to complete this dissertation.

I would like to extend my gratitude to Prof. Dr. Étienne Lozes for his advice in the
initial stage of my research. I am very grateful for his comments regarding the decidability
of buffered simulation with one unbounded buffer. They have given me an invaluable
insight. I also thank Prof. Dr. Antonı́n Kučera for being the second reviewer of this
dissertation and Prof. Dr. Dietrich Kuske for his practical suggestions that have enriched
this work considerably.

I have had the great pleasure of working with all my former colleagues in the Univer-
sity of Kassel. Without them, my lunchtime in the university would have been very plain
and boring. I particularly would like to thank Florian Bruse for proofreading the draft of
this dissertation and pointing out some bug in one important lemma I overlooked. I wish
to thank Daniel Kernberger for giving me a useful feedback for the last rehearsal of my
thesis defense and Norbert Hundeshagen for many helpful tips and advice on finishing
the doctoral work. I also owe many thanks to Michael Möller, Tina Landefeld and Lara
Yörük for their practical help during my time in the university.

This dissertation would not have been possible without the support of my parents,
son and siblings. They are the source of my strength. I am extremely grateful for their
unwavering support during my tough times. I would have given up many times had it not
been for their support.

Last but not least, a very special thank to my husband, David, for his endless love
and support. I especially thank him for encouraging me to pursue these doctoral studies
and for always listening to my countless doubts and worries. Words cannot express how
grateful I am to have his support through the ups and downs of writing this dissertation.

2

Selbstständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbständig, ohne unerlaubte
Hilfe Dritter angefertigt und andere als die in der Dissertation angegebenen Hilfsmit-
tel nicht benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten
oder unveröffentlichten Schriften entnommen sind, habe ich als solche kenntlich gemacht.
Dritte waren an der inhaltlichen Erstellung der Dissertation nicht beteiligt; insbesondere
habe ich nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genom-
men. Kein Teil dieser Arbeit ist in einem anderen Promotions- oder Habilitationsver-
fahren durch mich verwendet worden.

Milka Hutagalung

3

Contents

1 Introduction 7

2 Preliminaries 13
2.1 Formal Languages . 13
2.2 Decision Problems . 14

2.2.1 Complexity Classes . 14
2.2.2 Undecidability Degree . 15
2.2.3 Tiling Problems . 16

2.3 Automata . 17
2.3.1 Finite Automata . 17
2.3.2 ω-Automata . 19

2.4 Infinite Games . 24
2.5 Simulation . 25
2.6 Extended Simulations . 29

2.6.1 Static Multi-Letter Simulation 29
2.6.2 Dynamic Multi-Letter Simulation 32
2.6.3 Multi-Pebble Simulation . 35
2.6.4 Delay Simulation . 37

3 Buffered Simulation 41
3.1 Simulation with One Buffer . 41
3.2 The Flushing Variant . 48
3.3 Relation to Other Simulations . 51

3.3.1 Static Multi-Letter Simulation 51
3.3.2 Dynamic Multi-Letter Simulation 52
3.3.3 Multi-Pebble Simulation . 53
3.3.4 Delay Simulation . 56

3.4 Simulation with n ≥ 1 Buffers . 59
3.5 Expressive Power . 66

4 Decidability and Complexity 72
4.1 Simulation with One Bounded Buffer 73
4.2 Simulation with n ≥ 1 Bounded Buffers 75
4.3 Simulation with One Unbounded Buffer 77

4.3.1 The Flushing Variant . 77
4.3.2 Lower Bound for Deciding vω 84
4.3.3 Upper Bound for Deciding vω 92

4.4 Simulation with n ≥ 1 Unbounded Buffers 100
4.4.1 Σ0

1- and Π1
1- Hardness . 100

4

CONTENTS 5

4.4.2 Π0
1- and Σ1

1- Hardness . 106
4.4.3 BΣ1

1-Hardness . 114
4.4.4 Membership in Σ1

2 ∩ Π1
2 . 117

4.5 Summary . 118

5 Application to Formal Languages 120
5.1 The Language Inclusion Problem . 121

5.1.1 Incremental Approximation . 121
5.1.2 Comparison . 122

5.2 The Trace Closure Inclusion Problem 124
5.2.1 Mazurkiewicz Traces . 124
5.2.2 Incremental Approximation . 126

5.3 Topological Characterisations . 128
5.3.1 Characterisation of vω,...,ω . 128
5.3.2 Characterisation of vk,...,k . 134
5.3.3 Cyclic-Path-Connected Automata 143

5.4 Summary . 154

6 Conclusion 155

List of Figures

1.1 A pair of Büchi automataA (left) and B (right) in whichA @B. 8
1.2 A pair of Büchi automataA and B. 10
1.3 A pair of Büchi automataA and B. 11

2.1 The arithmetical and analytical hierarchies. 15
2.2 NBAA, B in whichA @2

Stat B. 30

3.1 NBAAk, Bk in whichAk v
k+1 Bk, butAk @

k Bk. 43
3.2 NBAAk, Bk in whichA @k

FFlush B, butAvk
Flush B. 50

4.1 NBAA and B for the corridor tiling problem. 78
4.2 The components Bhor and Bver. 78
4.3 NBA A (above) and B (below) to encode the interaction in the corridor

tiling game. 87
4.4 NBAA (above) and B (below) for the corridor tiling game. 89
4.5 NBAA, B for Example 4.3.26. 93
4.6 A game where each of the players alternatingly chooses a lasso. 97
4.7 NBAA and B that force Spoiler to produce an octant tiling. 101
4.8 NBAA and B for the octant tiling problem. 103
4.9 AutomatonA′ for the recurrent octant tiling problem. 105
4.10 F-structure. 106
4.11 NBAA and B to force Duplicator to produce an octant tiling. 108
4.12 The componentsAcheck and Bcheck to ensure horizontal compatibility. . . 110
4.13 NBAA, B for the octant tiling problem. 111
4.14 Automaton B′′ for the recurrent octant tiling problem. 113
4.15 Reduction from P1 ∧ P2 toAvω,0 B. 115
4.16 Reduction from P1 ∨ P2 toAvω,0 B. 115
4.17 Complexity of deciding buffered simulation. 119

5.1 An automatonA with non-regular trace closure. 144
5.2 Connected and non-connected dependency graphs. 144
5.3 Topological characterisation of buffered simulation. 154

6.1 Translation of parity automataA, B to Büchi automata. 156

6

Chapter 1

Introduction

Automata. Automata play an important role in computer science. They are known to
have many applications in diverse area such as in compiler design for parsing and lexical
analysis [ASU86, HMU06], in XML processing for document validation and query pro-
cessing [Sch07, Koc09], in system verification and static program analysis for modelling
the system and properties that want to be verified [VW86, NNH99], in classical logic to
obtain a decision procedure for monadic-second-order logic [Büc62], in natural language
processing to represent natural language [KK94, LK93], in DNA sequence analysis to
model the evolution and role of DNA sequences [BF84, TPKC07], and many more. This
is because automata are one of the most basic models of computation. We can model
systems or programs as automata and then analyse their computation and behaviour by
looking at the automata model.

For systems or programs that always terminate, such as parsers, search engines, or
compilers, one uses the notion of finite automata. However nowadays there are also many
systems that no longer transform an input to output and then terminate. Instead, they
continuously interact with the user or environment. Some examples of such systems are
web servers, communication protocols, or operating systems. For such non-terminating
reactive systems, one often uses the notion of ω-automata.

One of the simplest forms of ω-automata are Büchi automata. They are widely used
to model reactive systems and to specify their non-terminating behaviour [EH00, Hol04].
Intuitively, a Büchi automaton can be seen as a directed graph where the edges are labeled,
and some nodes are considered to be final or accepting. The nodes represent the states
of the system and an a-labeled edge represents the state-changing of the system when
the action a is executed. A Büchi automaton runs on a given input word that has an
infinite length. The run goes through an infinite sequence of states and the input word is
considered to be valid or accepted if the run visits a final state infinitely often. A Büchi
automaton can be seen as an acceptor of a language over infinite words. For example, the
Büchi automatonA that is depicted in Figure 1.1 accepts the language L(A) that consists
of two infinite words: abaω and acaω.

Language Inclusion. By considering the automaton-model, we can reduce many prob-
lems regarding the analysis of system design to the problems over automata, which then
can be solved using some algorithms on graph. For example, one of the most important
problems in computer science is the problem of checking whether a system behaves ac-
cordingly with respect to a given specification, e.g. never reaches a deadlock, is logically
correct, etc. Such a problem becomes undoubtedly important especially in a life-critical

7

8

a
b

c

a

a

a

a

b a

c a

Figure 1.1: A pair of Büchi automataA (left) and B (right) in whichA @B.

system where some occurrence of errors can have an extremely expensive cost to repair
or even threaten our life. For example, in programs that control part of medical system,
or in flight control programs. For such reactive non-terminating systems, testing is not
enough and one needs to formally verify the systems.

The problem of verifying whether such systems meet the desired specification can
be reduced to the problem of deciding language inclusion L(A) ⊆ L(B) between two
Büchi automata A and B. The automaton A represents the computation of the system
and the automaton B represents the desired computation given by the specification. Un-
fortunately, the problem of deciding language inclusion between two Büchi automata is
computationally hard. It is PSPACE-complete [MS73]. Hence one of the major chal-
lenges in the field of automata theory is to find a good and decent approximation for
language inclusion.

Simulation. Simulation is a preorder relation between the states of an automaton. We
say that a state p simulates a state q if p can mimic all stepwise behaviours of q. We can
use simulation to approximate language inclusion between two Büchi automataA, B, by
looking at how their initial states relate [DHWT92]. If the initial state of B simulates the
initial state ofA then we can conclude that L(A) ⊆ L(B).

There is a game characterisation for simulation. The game is played by two players
called Spoiler (male) and Duplicator (female). Initially, two pebbles are placed each in
the initial states of A and B. In each round, Spoiler moves the pebble in A one step
by reading a letter and Duplicator tries to mimic this move by moving the pebble in B
one step by reading the same letter. This continues round by round. If one of the players
eventually gets stuck then the opponent wins, otherwise Duplicator wins if whenever
Spoiler visits a final state infinitely often, she also visits a final state infinitely often. If
Duplicator wins no matter how Spoiler plays then we say that the automaton B simulates
A, i.e.A v B, and hence L(A) ⊆ L(B) holds.

For any two Büchi automata A, B, unlike language inclusion, deciding whether Du-
plicator wins the simulation game can be done in polynomial time. This, however, comes
at price. There are many pairs of automata where simulation fails to show language in-
clusion. For example, consider the two Büchi automataA, B depicted in Figure 1.1. This
is a standard example where simulation fails to show language inclusion. First note that
L(A) ⊆ L(B). The languages of A and B are indeed the same. Duplicator, however,
loses the simulation game. In the first round, after Spoiler reads a, Duplicator has to
move the pebble to one of the successors of the initial state of B. Without loss of general-
ity, suppose to the one with a b-transition. In the next round, Spoiler can choose to read
c and make Duplicator get stuck. Hence Duplicator loses the simulation game.

The reason why simulation fails to show language inclusion is because Duplicator
is too weak to guess the run that will be formed by Spoiler. Duplicator might move the

CHAPTER 1. INTRODUCTION 9

pebble to some successor which prevents him to form a corresponding run in the future. In
the literature, there are many attempts that try to extend simulation by adding more power
to Duplicator or by restricting the move of Spoiler such that simulation gets closer to
language inclusion.

• In the static k-letter simulation that is introduced in [HLL13], instead of only one
step, Spoiler is forced to move the pebble k > 0 steps in each round. Duplicator
then has more information about Spoiler’s run in each round. For example, con-
sider again the two automata A, B from Figure 1.1. Duplicator wins the static
2-letter simulation game. In the first round, Spoiler is forced to read either ab or
ac. Duplicator then can mimic this move by going to one of the accepting states in
B by reading the same word. From the accepting state, Duplicator can mimic any
of Spoiler’s move and win the game. By considering such an extended simulation,
we can show language inclusion in cases which cannot be shown by the standard
simulation.

• In the k-pebble simulation, the standard simulation game is extended such that Du-
plicator has more power [Ete02]. She can control k > 0 pebbles, and hence has
more chances to correctly mimic Spoiler’s move. For example, if we consider again
the two automataA, B given by Figure 1.1 then Duplicator wins the 2-pebble sim-
ulation game. In the first round, after Spoiler reads a, Duplicator moves her two
pebbles each to the a-successors of the initial state ofA. In the second round, after
Spoiler reads b or c, Duplicator moves one of her pebbles to reach the final state
and drops the other one. From this state, Duplicator can play accordingly and show
language inclusion.

• In the k-lookahead and dynamic k-letter simulations that are introduced indepen-
dently in [CM13] and in [HLL13], in each round i, Duplicator chooses `i ≤ k
and Spoiler is forced to move `i steps. Such a simulation indeed extends the static
k-letter simulation. The static k-letter simulation game is a special case of the dy-
namic one where in each round i, Duplicator always chooses `i = k. It is shown
that the dynamic k-letter simulation game has more advantages. It can show more
language inclusions than the static one and admits a hierarchy, i.e. whenever Du-
plicator wins the k-lookahead or dynamic k-letter simulation game, she also wins
the one with parameter k′ > k. This property does not hold for the static k-letter
simulation.

• In the delay simulation that is introduced in [HKT10], the extended simulation
game is played on a language L of pairs of infinite words with respect to a delay
function f : N+ → N+. In every round i > 0, Spoiler chooses a word of length f (i)
and Duplicator chooses a letter. The play goes on for infinitely many rounds and
Duplicator wins iff the pair of infinite words formed by Spoiler and Duplicator
belongs to L. Such a simulation generalises the one over automata. For example,
we can see the standard simulation between two Büchi automata A, B as a special
case of delay simulation in which L consists of pairs of accepting runs ofA, B that
are over the same word and f (i) = 1 for all i > 0.

Buffered Simulation. In this work, we extend the underlying idea of the k-lookahead
or the dynamic k-letter simulations. We extend the game framework of the standard sim-
ulation with a FIFO buffer such that Duplicator can skip her turn and use the buffer to

10

a
b, c

a

a

b

b

c

c

Figure 1.2: A pair of Büchi automataA and B.

temporarily store the letter that is read by Spoiler. Duplicator can pop some or all the
letters from the buffer in some later round to continue her move. The buffer can have a
bounded or an unbounded capacity.

For example, consider the automataA, B in Figure 1.2. In this case, Duplicator loses
the k-lookahead or the dynamic k-letter simulation for any k ∈ N. At the end of the first
round, Spoiler’s pebble is in the accepting state of A and Duplicator’s pebble is in one
of the accepting states of B. Let us assume that Duplicator’s pebble is in the accepting
state with b-transition. In the second round, Spoiler can make Duplicator get stuck by
reading c. Hence Duplicator loses k-lookahead or dynamic k-letter simulation games for
any k > 0. Duplicator, however, wins the simulation game with a buffer of size 1. In
the first round, after Spoiler reads a, Duplicator skips her turn and puts a to the buffer.
In the second round, after Spoiler reads b or c, Duplicator pushes it to the buffer. She
then pops a and moves the pebble to the accepting state with b-transition if Spoiler reads
b, and to the one with c-transition if Spoiler reads c. In this way, she will not get stuck
in the next round. Duplicator does this similarly for the rest of the play, i.e. she always
keeps her run one step behind Spoiler’s run. She uses the buffer to store the last letter
that is read by Spoiler. Duplicator wins the game with a buffer of capacity 1 and shows
language inclusion betweenA, B which cannot be shown with the lookahead or dynamic
multi-letter simulations.

In the field of formal languages, there is a theory that extends the concept of words
and languages to model concurrent computations. Recall that in concurrent computations,
some actions or processes can be executed simultaneously. The actions or processes that
are executed simultaneously are considered to be independent of each other. The theory
of Mazurkiewicz traces has been introduced to model such computations [Maz89, DR95].
Mazurkiewicz traces or just traces basically extend the concept of words in which some
letters are allowed to commute. The letters that can commute model the processes that
are independent of each other, and the letters that cannot commute model the ones that
are dependent on each other. Intuitively, if two processes are independent of each other,
the order of which process should be executed first or later does not matter. For example,
if we consider traces over the letters a, b, c in which a, b are independent of each other,
but not with c then the word cabaω is considered to be trace equivalent to the word cbaaω.
This is because the second and the third letters, i.e. a and b, is allowed to commute with
each other. In fact, the letter b is allowed to commute with any a in the word cabaω.
Hence cabaω is also trace equivalent to any word of the form ca∗baω.

For any language L, the trace closure of L is denoted with [L]. It consists of any
words that are trace equivalent to some word in L. For example, consider the automaton
A in Figure 1.3 and suppose the letters a, b are independent of each other, but not with
c. The language of A then is L(A) = {cabaω} and its trace closure is [L(A)] = ca∗baω.
The trace closure [L(A)] intuitively represents any possible sequential computations that
can be executed by the concurrent system modeled byA. Given two automata A, B, the

CHAPTER 1. INTRODUCTION 11

c a b
a

c b a
a

Figure 1.3: A pair of Büchi automataA and B.

problem of checking whether [L(A)] ⊆ [L(B)] then models the verification of systems
that admit concurrency [Sak92, MSB+16]. The system and the specification that we want
to check are modeled respectively by the automata A and B. Unfortunately, checking
trace closure inclusion between two Büchi automata is known to be highly undecidable
[Sak92, Fin12].

We can slightly extend the framework of buffered simulation to approximate the trace
closure inclusion. Consider a game where instead of only one FIFO buffer, Duplicator
can use multiple FIFO buffers to temporarily store Spoiler’s letters. Unlike in the case
where only one buffer is involved, in this case, we assume that there is a rule that asso-
ciates each letter to one or several buffers. Once Spoiler reads a letter, a copy of this letter
gets pushed into all of the associated buffers. However if Duplicator would like to read
the letter, she also has to pop it from all the associated buffers. Such a simulation can
be used to approximate trace closure inclusion. Intuitively, we model the independence
between letters via the rule that associates letters to buffers. A pair of independent letters
should not share a buffer and a pair of dependent letters should share at least one buffer.
For example, consider the two Büchi automata A, B as in Figure 1.3 in which the letters
a, b are independent of each other, but not with c. In this case, we consider a game with
two buffers in which the first one is associated with a, c and the second one with b, c.

In the first round, after Spoiler reads c and pushes a copy of c to the first and second
buffers, Duplicator reads c and pops them immediately from the first and the second
buffers. In the second round, Spoiler will read a and pushes a copy of it to the first buffer.
Duplicator cannot do anything except to skip her turn and let a go to the first buffer. In
the third round, after Spoiler reads b and pushes it to the second buffer, Duplicator pops
b then a and reads ba. She then reaches the accepting state from which she can simulate
any of Spoiler’s move and win the game. Thus Spoiler produces the word cabaω and
Duplicator produces cbaω, a word that is trace equivalent to Spoiler’s word. In general, if
Duplicator wins the corresponding buffered simulation game then we have the inclusion
L(A) ⊆ [L(B)] which is equivalent to the trace closure inclusion [L(A)] ⊆ [L(B)].

Despite of its simple and natural definition, the decidability and complexity of buffered
simulation however is not trivial. This is true even in the case where we only have one
buffer with bounded capacity. In the case of static, dynamic, and lookahead simulation
games, the problem of deciding whether Duplicator wins can be done in polynomial time
for a fixed parameter k. However, we cannot simply use this result for buffered simulation
since we have seen that simulation with one buffer of capacity 1 is even more expressive
than any k-lookahead or dynamic k-letter simulation. In the case where we consider an
unbounded buffer, the decidability and complexity of buffered simulation then becomes
even harder. Many questions regarding systems with an unbounded FIFO buffer are often
undecidable [CF05]. Decidability of buffered simulation with an unbounded buffer may
therefore be seen as surprising. The decidability question also gets more non-trivial in
the case of multiple buffers. It is not obvious whether deciding buffered simulation with
multiple buffers is still possible. If yes then we have a decidable approximation for a

12

highly undecidable problem. However, if not then it would also be interesting to know
how undecidable it is and whether there are some decidable instances.

It is interesting to know how good buffered simulation is to approximate trace closure
or language inclusion, i.e. whether there are pairs of automata A, B in which buffered
simulation fails to show their inclusion. If there are such pairs, it is also interesting to
know whether we can classify such automata and find their characteristics.

Thesis Outline. This thesis studies buffered simulation together with its decidability
and complexity. We will consider both of the cases where only one buffer is involved
and where multiple buffers are involved. The first one is basically a natural extension of
the standard simulation which approximates language inclusion. The second one approxi-
mates a more general problem than language inclusion namely the trace closure inclusion.
This thesis is presented as follows.

In Chapter 2, we recall the basic notions regarding words, languages, automata, deci-
sion problems, games, and simulation. We use the standard definitions and notations as
in the literature. We also list some extended simulation that are available in the literature.
We show their basic definitions and recall their important property.

In Chapter 3, we give the formal definition of buffered simulation. We first show
the framework of buffered simulation with one buffer and then consider its natural exten-
sion to the case where multiple buffers are involved. We present the expressive power
of buffered simulation and consider some of its restricted variants called the flushing
variants. We compare simulation with one buffer to the extended simulations that are
mentioned in Chapter 2.

Chapter 4 is the main part of this work. In this chapter, we give the complexity results
regarding buffered simulation. We start with the case where all buffers are bounded. We
then continue to the case where some buffers are unbounded. If there is only a single
buffer and the capacity is unbounded, solving buffered simulation is still decidable. The
complexity even gets better when we consider its flushing variant. However, in the case
where multiple buffers are involved and one of them is unbounded, buffered simulation is
undecidable. We then show how undecidable such a problem is.

In Chapter 5, we give the application of buffered simulation in the field of formal lan-
guages. Buffered simulation and its flushing variant can be used to incrementally approxi-
mate language and trace closure inclusion. We further show a characterisation of buffered
simulation. Buffered simulation, in general, can be characterised by the existence of a
continuous function that witnesses the trace closure inclusion between the given two au-
tomata A, B. This allows us to classify pairs of Büchi automata in which their language
or trace closure inclusion cannot be shown with buffered simulation. We can even refine
the characterisation of buffered simulation to the case of bounded buffers by considering
a Lipschitz continuous function. However, such a refined characterisation only holds for
some restricted class of automata called cyclic-path-connected automata.

In Chapter 6, we give the conclusion of our work. We list some open problems re-
garding buffered simulation for further works.

Publications Parts of this thesis have been published in some refereed proceedings. A
slightly different version of Section 3.1 and Section 3.2 can be found in [HLL13] and
[HLL14]. Some preliminary works of Section 3.4 and Section 3.5 have appeared in
[HHK+16a] and [HHK+16b]. Section 4.3 and Section 4.4 have appeared in [HHK+18]
and Section 5.3 has been published in [Hut17].

Chapter 2

Preliminaries

We recall the basic notions that will be used throughout this work. We will start by con-
sidering formal languages and decision problems. We then continue with the notion of
automata and consider infinite games, mathematical frameworks that can be used to model
all sorts of interaction. We then recall the notion of simulation and its game characteri-
sation. At the end of this chapter, we list some extended simulations that are available in
the literature.

2.1 Formal Languages
A formal language, or just a language, is defined with respect to an alphabet. An alphabet
is a set of letters that is usually denoted with Σ. In general, a letter can be any symbol and
an alphabet can contain finitely or infinitely many letters. However in this work, we will
mainly consider the usual letters instead of arbitrary symbols and only consider alphabets
with finitely many letters.

A sequence of letters is called a word and the length of a word is defined as the length
of the sequence. In our context, a word can have a finite or infinite length. The set of all
finite words over Σ is denoted with Σ∗ and the set of all infinite words over Σ is denoted
with Σω. The set of non-empty finite words over Σ is denoted with Σ+, i.e. Σ+ = Σ∗ \ {ε}.
We also consider the set of all finite and infinite words over Σ and denote it with Σ∞, i.e.
Σ∞ = Σ∗ ∪ Σω. A language of finite or infinite words over Σ is defined as a subset of Σ∗ or
Σω, respectively. A language of infinite words is also called an ω-language.

Example 2.1.1. Consider the alphabet Σ = {a, b}. The set L = {ab, abb, abbb, . . .} is a
language of finite words over Σ and L′ = {abbbb . . .} is an ω-language over Σ.

Throughout this work, we fix the notation regarding words and languages as follows.
For any word w ∈ Σ∞, we denote by |w| the length of w, and by |w|a the number of
occurrences of the letter a in w. We denote by Pos(w) the set of positions in w, i.e.
Pos(w) = {1, . . . , |w|} if w ∈ Σ∗ and Pos(w) = {1, 2, . . .} if w ∈ Σω. For any i ∈ Pos(w),
we denote by w(i) the letter that occurs at position i in w. For example, if w = abbca then
w(2) = w(3) = b. We denote respectively by suffix(w) and prefix(w) the sets of suffixes
and prefixes of w. We denote by Σw the set of letters that occur in w.

One important class of languages that is widely used in many application domains is
the class of regular languages. Given an alphabet Σ, the set of regular languages L is
defined as the smallest set that contains the empty set ∅, the empty string language {ε},
the singleton language {a}, for any a ∈ Σ, and for all L, L′ in L, it contains the union

13

14 2.2. DECISION PROBLEMS

L ∪ L′, the concatenation L · L′, and the Kleene star L∗. For example, the language L
from Example 2.1.1 is regular. This is because the languages L1 = {a} and L2 = {b}∗ are
regular and hence by definition L = L1 · L2 is also regular. We will often describe regular
languages with the usual regular expression. For example, we write ab∗ for the language
L from Example 2.1.1.

For the infinite case we say that the ω-language L ⊆ Σω is ω-regular if L = (L1 \ {ε})ω

and the language L1 ⊆ Σ∗ is regular, or L = L1 · L2
ω and the languages L1, L2 ⊆ Σ∗ are

regular, or L = L1 ∪ . . . ∪ Ln and the languages L1, . . . , Ln ⊆ Σω are regular. For example,
the language L′ from Example 2.1.1 is regular because {a} and {b} are regular, and hence
L′ = {a} · {b}ω is ω-regular.

2.2 Decision Problems
A decision problem is a question that asks whether for some given elements x1, . . . , xn that
can be represented with some finite data structure, a property P(x1, . . . , xn) holds or not
[RJ87, Sip96, Koz97]. For example, given an integer x ∈ N+, check whether it is a prime
number or not, or given some pairs of words (u1, v1), . . . , (un, vn) ∈ {0, 1}∗ × {0, 1}∗, check
whether there are indices i1, . . . , im such that ui1 . . . uim = vi1 . . . vim . A decision problem
can be decidable or not. By decidable this means there exists an algorithm that always ter-
minates and give us a correct answer. For example, the first problem regarding the prime
number is decidable, whereas the second one, which is known as Post Correspondence
Problem, is not [Pos46].

2.2.1 Complexity Classes
In the theory of computation, decision problems are classified based on how difficult
they are to solve. By difficult this means the computational resources that are needed by
the algorithm to answer the problem. We refrain from giving the detailed explanation
regarding computational complexity and its hierarchy since we will only use them to
classify the complexity of our buffered simulation. For more detailed explanations, we
refer to the literature [Pap94, Sip96]. The following are the classes and the notations that
we will consider through out this work.

• PTIME: the class of decision problems that can be solved by a deterministic Turing
machine using a polynomial amount of time.

• PSPACE: the class of decision problems that can be solved by a deterministic Turing
machine using a polynomial amount of space.

• NPSPACE: the class of decision problems that can be solved by a non-deterministic
Turing machine using a polynomial amount of space. Due to Savitch’s theorem, this
class coincides with the class PSPACE [Sav70].

• EXPTIME: the class of decision problems that can be solved by a deterministic
Turing machine using an exponential amount of time, i.e. O(2p(n)), where p(n) is a
polynomial function of n.

• 2EXPTIME: the class of decision problems that can be solved by a deterministic
Turing machine using a doubly exponential amount of time, i.e. O(22p(n)

), where
p(n) is a polynomial function of n.

CHAPTER 2. PRELIMINARIES 15

∆0
0

Σ0
1

Π0
1

∆0
1

Σ0
2

Π0
2

. . .

. . .

∆1
0

Σ1
1

Π1
1

∆1
1

Σ1
2

Π1
2

. . .

. . .

Arithmetical Analytical

Figure 2.1: The arithmetical and analytical hierarchies.

Recall that the hierarchy of these classes is as follows.

PTIME ⊆ PSPACE = NPSPACE ⊆ EXPTIME ⊆ 2EXPTIME

Recall also that a problem P is called hard under polynomial-time reduction for some class
C if all problems in C can be reduced in polynomial time to P. A problem P is called com-
plete under polynomial-time reduction for C if it is in C and hard under polynomial-time
reduction for C. In this thesis, since we will only consider polynomial-time reduction, we
will simply call a problem P hard or complete for some class C. Intuitively, if the problem
P is complete for the class C then P is considered as a maximally difficult problem in the
class C.

2.2.2 Undecidability Degree

There is also a classification for undecidable problems, that is, whether one problem is
more undecidable than others [RJ87, Mos80, Jap94]. In recursion theory, the classifica-
tion is based on the complexity of the formula that defines the problem. The first levels
of the hierarchy are called the arithmetical hierarchy, which classifies the undecidable
problems using first order arithmetical formulas. It then continues with the analytical hi-
erarchy, which classifies the undecidable problems using second order formulas. Each of
these hierarchies has infinitely many classes. We illustrate them in Figure 2.1.

The classes in the arithmetical hierarchy are denoted with Σ0
i and Π0

i where i ∈ N.
For any i ∈ N, we denote by ∆0

i the intersection of Σ0
i and Π0

i . The lowest level in the
hierarchy is ∆0

0 which contains all decidable problems. For any i > 0, the classes Π0
i and

Σ0
i are inductively defined by each time adding the universal and existential quantifiers,

respectively. Hence a problem is in Σ0
i+1 if it can be defined as ∃x1 . . . ∃xn ψ where ψ is

in Π0
i . Similarly, a problem is in Π0

i+1 if it can be defined as ∀x1 . . . ∀xn ψ where ψ is in
Σ0

i . For example, if P(x, y) is a decidable problem or property then ∃x P(x, y) is in Σ0
1 and

∀y∃x P(x, y) is in Π0
2.

In extension to the arithmetical hierarchy, the analytical hierarchy classifies undecid-
able problems based on second order formulas. The classes are denoted with Σ1

i and Π1
i

where i ∈ N. For any i ∈ N, we denote by ∆1
i the intersection of Σ1

i and Π1
i . The lowest

level in the analytical hierarchy is ∆1
0 that contains all problems in the arithmetical hier-

archy are in this class. For any i > 0, the classes Π1
i and Σ1

i are inductively defined by
each time adding the universal and existential second-order quantifiers, respectively. A

16 2.2. DECISION PROBLEMS

problem is in Σ1
i+1 if it can be defined as ∃X1 . . . ∃Xn ψ where ψ is in Π1

i . Similarly, a
problem is in Π0

i+1 if it can be defined as ∀X1 . . . ∀Xn ψ where ψ is in Σ1
i .

Note that the class Π1
1 strictly contains the whole arithmetical hierarchy, and hence if

a problem is Π1
1-complete, it is far more undecidable than the problems that are Σ0

1 or Π0
1-

complete. Any undecidable problem that is hard for some class in the analytical hierarchy
is usually called highly undecidable. In the following, we exemplify the decidability,
undecidability, and high undecidability with the family of tiling problems.

2.2.3 Tiling Problems
Intuitively, we have a finite set of domino-types, i.e. squares where each side is colored
with possibly different colors. For each type, we have infinitely many copies. The prob-
lem is to tile some region of a plane with dominos such that the connecting sides have the
same color.

Formally, a tiling system T = (T,H,V) consists of a finite set of tiles T , a horizontal
compatibility relation H ⊆ T × T , and a vertical compatibility relation V ⊆ T × T . A
tiling on a region R ⊆ N × N is a mapping t : R → T such that (ti, j, ti+1, j) ∈ H for all
(i, j), (i + 1, j) ∈ R and (ti, j, ti, j+1) ∈ V for all (i, j), (i, j + 1) ∈ R.

Example 2.2.1. Let T = (T,H,V) be a tiling system where T = {t1, t2, t3}, H = V =

{(t1, t2), (t2, t1), (t2, t3), (t3, t2)} and R = N+ × N+. Let t : R→ T , where

t(x, y) =


t1, if x, y even
t3, if x, y odd
t2, otherwise.

The function t is a tiling on R with respect to T . The first row is tiled with t3t2t3t2 . . ., the
second row with t2t1t2t1 . . ., the third row with t3t2t3t2 . . ., and so on.

The problem of deciding whether for a given tiling system T , there exists a tiling
for the first quadrant of Cartesian plane, i.e. N+ × N+, is known as the unbounded tiling
problem. This problem was first introduced in [Wan60]. It is known to be undecidable
and complete for the class Π0

1.

Proposition 2.2.2 ([Wan60]). The unbounded tiling problem is Π0
1-complete.

Equivalently, the problem of deciding whether for a given tiling system T , there exists
a tiling for the octant of Cartesian plane, i.e. {(i, j) ∈ N+ ×N+ | i ≤ j}, is also undecidable
and complete for the class Π0

1. Such a problem is also known as the octant tiling problem.

Proposition 2.2.3 ([BGG97]). The octant tiling problem is Π0
1-complete.

There is a decidable variant of tiling problem called corridor tiling problem. In this
case, we are given a tiling system T = (T,H,V) and a size of corridor n > 0 encoded
unarily. We are then asked whether there exists a tiling t on the region {1, . . . , n} × N+.
The problem of solving the corridor tiling problem is known to be PSPACE-complete
[Boa97, Chl86].

There is also a variant of corridor tiling where besides the tiling system T = (T,H,V)
and a size of corridor n > 0 encoded unarily, we are also given some initial and final tiles

CHAPTER 2. PRELIMINARIES 17

tI , tF ∈ T . We are then asked whether there exists m > 0 such that we have a tiling on
{1, . . . , n} × {1, . . . ,m} that uses the initial tile tI as the first tile and the final tile tF as the
last tile, i.e. t(1, 1) = tI and t(n,m) = tF . Such a variant of corridor tiling is also known to
be PSPACE-complete.

Proposition 2.2.4 ([Boa97, Chl86]). Both variants of the corridor tiling problem are
PSPACE-complete.

Furthermore, there is a variant of tiling problem that is highly undecidable called
recurrent tiling problem. This problem extends the unbounded and octant tiling problems
by additionally asking for infinite occurrences of a certain tile in the first column. Given a
tiling system T = (T,H,V) with a designated final tile tF ∈ T , the problem asks whether
there exists a tiling t on N+ × N+, or equivalently in {(i, j) ∈ N+ × N+ | i ≤ j}, such that
there exist infinitely many j with t(1, j) = tF .

Proposition 2.2.5 ([Har85]). Both the recurrent unbounded and recurrent octant tiling
problems are Σ1

1-complete.

We will use this family of tiling problems later and use them to show the hardness of
buffered simulation.

2.3 Automata

An automaton is a mathematical model that is often used to reason about computations of
a system or program. Intuitively, it is an abstract machine that runs on a given input word
by going through a sequence of states and either accepts or rejects the input word. An
automaton visually can be seen as a directed graph where each edge is labeled and some
nodes are considered to be final or accepting. The node represents the state of the system
and an edge that is labeled with a represents the state-changing of the system when the
action a is executed. Based on the length of the input word, automata are classified into
two kinds: finite or ω-automata.

2.3.1 Finite Automata

Formally, a finite automaton is defined as a tuple A = (Q,Σ, E, qI , F) where Q is a set of
states, Σ is an alphabet, qI ∈ Q is a starting state, E ⊆ Q × Σ × Q is a transition relation,
and F ⊆ Q is the set of final states. We usually write p a

−−→ p′ if (p, a, p) ∈ E. For any

finite word w = a1 . . . an ∈ Σ∗, a run r of an automaton A is an alternating sequence of
states and letters, i.e. r = q0a1q1 . . . anqn, such that for all i ∈ {1, . . . , n}, qi−1

ai−−→ qi. The

run r is called accepting if q0 = qI and qn ∈ F, and such a word w = a1 . . . an is said to
be accepted by the automaton A. The set of words that are accepted by A is denoted
by L(A) and it is called the language ofA. The size or cardinality ofA is the number of
states in A and it is denoted by |A|. The automaton A is called deterministic if for any
state q ∈ Q and letter a ∈ Σ, there is a unique state q′ ∈ Q such that q a

−−→ q′. Moreover,

for any run r = p0a1 p1 . . . an pn, we denote by word(r) the word a1 . . . an.

Example 2.3.1. Consider the following automatonA over the alphabet Σ = {a, b, c}.

18 2.3. AUTOMATA

q0 q1

q2

q3

a b

c

a

a

The automatonA is non-deterministic since from q0 there is no q ∈ QA such that q0
b
−−→ q′.

Moreover, r = q0aq1bq2 and r′ = q0aq1cq3aq3 are some examples of accepting runs inA.
The language ofA is L(A) = aba∗ ∪ aca∗.

The class of the languages that are accepted by finite automata coincides with the class
of regular languages.

Proposition 2.3.2 ([Kle56]). Let Σ be an alphabet. A language L ⊆ Σ∗ is regular iff there
is a finite automatonA such that L = L(A).

This allows many decision problems regarding regular languages such as inclusion
or universality to be solved using algorithms on graphs. For example, one standard way
to check universality of a language L recognised by A is by checking whether its com-
plement, i.e. the automaton A that recognises Σ∗ \ L(A), accepts the empty language.
Unfortunately, such an automatonA is exponentially larger thanA.

Complementation of NFA

For any NFA A, there is a deterministic finite automaton (DFA) A that recognises the
complement of L with size at most 2|A|. We can constuct such a DFA with the subset
construction which basically converts A to a DFA that recognises the same language L
and then invert its final states [RS59, HMU06].

Proposition 2.3.3 ([RS59]). For any NFAA over Σ, there is an NFAA of size O(2n) such
that L(A) = Σ∗ \ L(A).

This upper bound is known to be optimal. We cannot complement an NFA with a
blow up better than O(2n) [SS78, Bir93].

Inclusion of NFA

For any two NFA, deciding language inclusion L(A) ⊆ L(B) is computationally hard. It is
PSPACE-complete [MS73]. It is in PSPACE since to decide inclusion, we have to check
whether the intersection of the language of A and the complement of the language of B
is empty, i.e. whether L(A)∩ L(B) = ∅. It is possible to construct an NFA that recognises
L(A)∩L(B) and by Proposition 2.3.3 such an NFA is exponentially larger thanB. We can
then test it for emptiness. Checking the emptiness for finite automata is NLOGSPACE-
complete: we can use the depth-first-search algorithm to check whether there is a final
state that is reachable from the initial state. This then yields an NPSPACE procedure and
by Savitch theorem [Sav70], the problem is also in PSPACE.

This upper bound is optimal. Checking language inclusion between two NFA is also
PSPACE-hard. For example, we can polynomially reduce the corridor tiling problem to
the problem of deciding language non-inclusion L(A) * L(B). Given a tiling system T
= (T,H,V), initial and final tiles tI , tF , and a width n, we construct two NFAA, B over T
such that the automatonA accepts any word w ∈ (T n)+ where the first and the last letters
are tI and tF , and B accepts such a word w if there is a vertical or horizontal mismatch.
We have language non-inclusion L(A) * L(B) iff there exists a valid corridor tiling.

CHAPTER 2. PRELIMINARIES 19

Proposition 2.3.4 ([MS73]). For any two NFAA, B, deciding L(A) ⊆ L(B) is PSPACE-
complete.

Finite automata are suitable to model systems or programs that always terminate such
as compilers, parsers, search engines, etc. [ASU86, HMU06]. Such a system is designed
to run only for some period of time and then gives an output. For systems that are designed
to run forever such as operating systems, communication protocols, or web servers, one
usually considers ω-automata [VW94, Tho90], an extended notion of finite automata that
accept ω-languages.

2.3.2 ω-Automata
We will start with the simplest form of ω-automata called (non-deterministic) Büchi
automata. Non-deterministic Büchi automata, or shortly NBA, were introduced in the
1960’s as an auxiliary device to obtain a decision procedure for monadic-second-order
logic [Büc62]. However, they are now used in many applications such as in system ver-
ification to model reactive systems and specify their non-terminating behaviour [EH00,
Hol04] and in termination analysis of recursive programs [LJBA01, FV09]. The defini-
tion of NBA basically does not differ from the definition of finite automata. It is also a
quintuple A = (Q,Σ, E, qI , F). The difference is that a run is an infinite alternating se-
quence ρ = q0a1q1a2 . . . where for all i ∈ N, (qi, ai+1, qi+1) ∈ E. Such a run ρ is accepting
if q0 = qI and there exist infinitely many i such that qi ∈ F. Hence we can see NBA as the
acceptors of ω-languages. For example, consider again the automaton A from Example
2.3.1. If we see it as a Büchi automaton instead of a finite automaton, the language of A
is L(A) = abaω ∪ acaω.

Let us denote with Run(A) the set of infinite runs of A and AccRun(A) the set of
accepting runs ofA.

The class of languages that are accepted by NBA coincides with the class of ω-regular
languages.

Proposition 2.3.5 ([Büc62]). Let Σ be an alphabet. For any language L ⊆ Σ∗, L is ω-
regular iff there is a Büchi automatonA over Σ such that L = L(A).

Many decision problems regarding non-terminating reactive systems can be solved
using an automata-theoretic approach. For example, the problem of checking whether the
behaviour of a reactive system complies to some specification is typically modeled as the
inclusion problem between two NBA in which one represents the system and the other
one represents the specification [VW86, Var96]. Unfortunately, the same as in the case of
finite automata, solving language inclusion between two NBA is expensive. We need to
perform complementation for one of the input automata.

Complementation of NBA

Given an NBAA over Σ, we can construct an NBAA that recognises the complement of
L(A). In general, the automatonA is also exponentially larger thanA [Büc62, SVW87].
We will show the complementation procedure for NBA that uses Ramsey’s theorem from
the combinatorics area [Ram30]. The reason is because in Chapter 4, we will use a similar
approach to show decidability of a special case of buffered simulation.

First let us denote with q0
a1...an−−−−−→ qn if there exists a finite run q0a1q1 . . . qn in A

and write q0
a1...an−−−−−→

F
qn if such a run goes through an accepting state, i.e. there exists

20 2.3. AUTOMATA

i ∈ {1, . . . , n} such that qi ∈ F. We say that two finite words u, v ∈ Σ∗ are equivalent
if they behave the same in the automatonA.

Definition 2.3.6 ([Büc62]). Given an NBA A = (Q,Σ, E, qI , F), two words u, v ∈ Σ∗ are
equivalent and we write u ≈ v, if for every p, q ∈ Q,

• p u
−−→ q iff p v

−−→ q, and

• p u
−−→

F
q iff p v

−−→
F

q.

For any word u ∈ Σ∗, we denote by [u] the equivalence class of u, i.e. [u] = {w ∈ Σ∗ | w ≈
u}, and with Σ∗/≈, the set of all equivalence classes induced by ≈.

Example 2.3.7. Consider the following NBAA over Σ = {a, b, c}.

q1 q2
a

b, c

We have ab ≈ ac since by reading ab or ac, we can go from state q1 to q2. We also
see an accepting state whenever we form such paths. In fact, every finite word that is
started with a and followed by finitely many b or c is equivalent to ab and ac. We have
[ab] = [ac] = a(b ∪ c)∗.

For any NBAA and a word u ∈ Σ∗, let us define the transition profile of u as a labeled
graph G = (V, E, f) where the nodes are V = QA, the edges are E = {(p, q) ∈ QA × QA |
p u
−−→ q}, and for any edge (p, q), the labeling is f (p, q) = 1 if p u

−−→
F

q and f (p, q) = 0

otherwise.

Example 2.3.8. Consider the NBA A over Σ = {a, b, c} from Example 2.3.7. Let u1 =

ab, u2 = bc, and u3 = aa. The following are the transition profiles of u1, u2, and u3,
respectively.

q1 q2
1 q1 q2 1 q1 q2

Intuitively, the edge in the transition profile of u represents the path that can be formed
by reading u inA and the label tells us whether the path sees a final state or not. Hence for
any two equivalent words u ≈ u′, their transition profiles are the same. Any equivalence
class in Σ∗/≈ is indeed uniquely determined by a transition profile. We can also say that
Gu is a transition profile of the class [u] instead of the word u. Moreover, since there are
at most 3|A|

2
different transition profiles, we have the following proposition.

Proposition 2.3.9. For any NBAA, |Σ∗/≈| ≤ 3|A|
2
.

LetA be some NBA and [u] in Σ∗/≈. We can construct a DFAA′ that recognises [u]
[SVW87]. The technique is similar to the subset construction, but in an extended way.
Suppose QA = {q1, . . . , qn} are the set of states in A. A state in the DFA A′ then is of
the form (P1, . . . , Pn) where Pi ⊆ QA × {0, 1} for all i ∈ {1, . . . , n}. We remember n-tuples
of sets instead of a single set because we need to capture information about runs that can
start from any state in A. Each component P1, . . . , Pn in the state of A′ simulates runs
that are started from q1, . . . , qn respectively. We then remember whether each run has seen
an accepting state by using 0 or 1. A run in A′ then is accepting if it represents runs that
start and end in the corresponding state according to the transition profile of [u].

CHAPTER 2. PRELIMINARIES 21

Proposition 2.3.10 ([SVW87]). LetA be an NBA with n states. For any [u] ∈ Σ/≈, there
is a DFAA′ where |A′| ≤ 4n2

such that L(A′) = [u].

For any infinite word w ∈ Σω, there are two equivalence classes [u], [v] ∈ Σ∗/≈ such
that w ∈ [u] · [v]ω [Büc62]. We can even find such a proper pair of equivalence classes,
that is, the one that satisfies [uv] = [u] and [vv] = [v] [FV10]. We can show this by using
the well-known Ramsey’s theorem from the combinatorics area. For notational purpose,
let us denote with [[S]]2, the set of all subsets of S with cardinality 2, i.e.

[[S]]2 = { {i, j} | i, j ∈ S , i , j }.

We can state Ramsey’s theorem as follows.

Proposition 2.3.11 ([Ram30, Ros81]). Let 〈P1, . . . , Pn〉 be a partition of [[N]]2. There is
an infinite set X ⊆ N and i ∈ {1, . . . , n} such that [X]2 ⊆ Pi.

Intuitively, this proposition says that if we have a complete graph, in which the nodes
are natural numbers, and we color every edge with some number between 1 to n, then
there must be a subgraph over infinitely many nodes where all of its edges have the same
color. We can use this proposition to show the following characterisation of infinite words.

Proposition 2.3.12 ([Büc62]). For every NBAA over Σ and w ∈ Σω there is a proper pair
of equivalence classes [u], [v] ∈ Σ/≈ such that w ∈ [u] · [v]ω.

Proof. Let w = a1a2 . . . Together with the relation ≈, the word w defines a partition of
[[N]]2. Let Σ∗/≈ = {[u1], . . . , [un]} and

Pk = {{i, j} | i < j and ai . . . a j−1 ∈ [uk]},

for k ∈ {1, . . . , n}. Hence Pk contains any pair of i, j where ai . . . a j−1 ∈ [uk]. Since any
word ai . . . a j−1 belongs to one of [u1], . . . , [un] and [u1], . . . , [un] are disjoint, 〈P1, . . . , Pn〉

is a partition of [[N]]2.
By Proposition 2.3.11, there is an infinite set X ⊆ N and an equivalence class [v] ∈

Σ∗/∼ such that for all i, j ∈ X, we have ai . . . a j−1 ∈ [v]. Let i1, i2, . . . be the infinite
increasing sequence in X. Hence the word w is of the form w0w1w2 . . . where wk =

aikaik+1 . . . aik+1 for k > 0. Let [u] be the equivalence class of w0w1. Since w2,w3, . . . ∈ [v],
we have w ∈ [u] · [v]ω.

To show that the pair [u], [v] is proper, first note that u ≈ w0w1 and v ≈ w2. Hence
uv ≈ w0w1w2. Since w1 ≈ w1w2 and w0w1 ≈ u, we have uv ≈ u. Thus [uv] = [u].
Moreover, note also that w1 ≈ v, w2 ≈ v, and w1w2 ≈ v. This nonetheless implies that
vv ≈ v. Thus [vv] = [v]. �

Moreover, if we consider a pair of equivalence classes [u], [v] ∈ Σ∗/≈, either the ω-
language [u]·[v]ω is included in L(A) or included in the complement of L(A). To illustrate
this, suppose we have a word w ∈ [u] · [v]ω. Hence w = w0w1 . . . where w0 ∈ [u] and
w1,w2, . . . ∈ [v]. If w ∈ L(A) then there are p0, p1, . . . such that

p0
w0−−−→ p1

w1−−−→ p2 . . .

and infinitely many i such that pi
wi−−→
F

pi+1. Now let w′ ∈ [u] · [v]ω be an arbitrary word.

We have w′ = w′0w′1 . . . where w′0 ∈ [u] and w′1,w
′
2, . . . ∈ [v]. Moreover, since wi ≈ w′i for

all i ≥ 0, we have
p0

w′0−−−→ p1
w′1−−−→ p2 . . .

22 2.3. AUTOMATA

and there exist infinitely many i such that pi −→
F

pi+1. Thus w′ is also accepted by A.

Since w′ is arbitrary, this shows [u] · [v]ω ⊆ L(A). In the case of w < L(A), we have
[u] · [v]ω ⊆ L(A). Since otherwise, there is a word w′′ ∈ [u] · [v]ω, but w′′ ∈ L(A). We
have shown that this would imply w ∈ L(A), and contradicts our initial assumption.

Proposition 2.3.13 ([Büc62]). For any [u], [v] ∈ Σ∗/≈,

• if [u] · [v]ω ∩ L(A) , ∅ then [u] · [v]ω ⊆ L(A).

• if [u] · [v]ω ∩ L(A) , ∅ then [u] · [v]ω ⊆ L(A).

We can construct an NBA that recognises the complement of the language of A as
follows. Suppose Σ∗/≈ = {[u1], . . . , [un]}. Let A1, . . . ,An be the corresponding finite
automata that recognise [u1], . . . , [un] respectively. By Proposition 2.3.10, each of the
automata at most has 4|A|

2
states. Now for each [ui], [u j] ∈ Σ∗/≈ in which the intersection

of [ui] · [u j]ω with L(A) is empty, we construct an NBA Ai j that recognises [ui] · [u j]ω

fromAi andA j. We then construct the NBAA that recognises the complement of L(A)
by taking the union of all such NBA.

Proposition 2.3.14 ([SVW87]). For any NBAA, there is an NBAA of size O(16|A|
2
) such

that L(A) = L(A).

This upper bound, however, is not the optimal one. In the literature, there is a more
involved procedure that constructs the complement of an NBA A with the blow-up of
O((0.76 · |A|)|A|) [Sch09] which is known to be the optimal one [Yan08]. Nevertheless,
we cannot avoid the exponential blow-up when complementing an NBA [Saf88, HL11].

Language Inclusion of NBA

As in the case of finite automata, checking language inclusion L(A) ⊆ L(B) between
two NBA A, B is also PSPACE-complete. We have to check whether the intersection of
the language of A and the complement of the language of B is empty. The NBA that
recognises L(A) ∩ L(B) is exponentially larger than B. However, checking emptiness
for an NBA is NLOGSPACE-complete. We can check with a depth-first-search whether
there is a final state p that is reachable from the initial state and reachable from itself. This
yields an NPSPACE procedure and by Savitch’s theorem [Sav70], solving such a problem
is also in PSPACE.

Checking language inclusion between two NBA is also PSPACE-hard. We can lift the
hardness of solving language inclusion problem between the NFA.

Proposition 2.3.15 ([Büc62, SVW87]). For any two NBAA,B, deciding L(A) ⊆ L(B) is
PSPACE-complete.

Other ω-Regular Automata

Besides Büchi automata, there are also other ω-automata that coincide with the ω-regular
languages such as generalised Büchi automata (GNBA) and parity automata [Tho90].
Their definitions do not differ significantly from Büchi automata. The only difference is
in the last component that defines the acceptance of a run. Before we give their definition,
first for any infinite sequence a1a2 . . . where a1, a2, . . . ∈ S , let us denote with inf(a1a2 . . .)
the set of elements of S that infinitely occur in a1a2

CHAPTER 2. PRELIMINARIES 23

• In a GNBA, instead of a set of final states F ⊆ Q, the acceptance is defined with
respect to a set of sets of states {F1, . . . , Fn} ⊆ 2Q. We say that a run r = q0a1q1a2 . . .
is accepting iff for each i ∈ {1, . . . , n}, there is a state q ∈ Fi that is seen infinitely
often in r, i.e. inf(q0q1 . . .) ∩ Fi , ∅.

• In a parity automaton, the acceptance is defined with respect to a priority function
Ω : Q → N that assigns a priority to each state. We say that a run r = q0a1q1a2 . . .
is accepting iff the highest priority that is seen infinitely often in r is even, i.e.
max(inf(Ω(q0)Ω(q1) . . .)) is even.

These are ω-automata other than Büchi automata that we will consider in this work. Note
that Büchi automata can be seen as a special case of GNBA and parity automata. A Büchi
automatonAwith the set of final states F can be seen as a parity automaton with a priority
function Ω : Q → {1, 2} where Ω(q) = 2 if q ∈ F and 1 if q < F, and as a GNBA with
acceptance {F}.

We can also translate both GNBA and parity automata to Büchi automata. For any
GNBA A with acceptance {F1, . . . , Fn}, we can construct an NBA A′ that is obtained
from A by additionally having a counter c ∈ {1, . . . , n,>} in its state space. The counter
is used to remember whether we have seen at least one state from F1, . . . , Fn. Once we
have seen all of them then we reset the counter. In the automatonA′, the states where we
reset the counter are considered to be accepting. Hence an accepting run in the NBA A′

simulates the one in GNBAA.

Proposition 2.3.16 ([Tho90]). For any GNBAA with n states, there is an NBAA′ of size
O(n2) such that L(A) = L(A′).

For a parity automaton A with priority 0, 1, . . . , n, we can construct an NBA A′ that
guesses the maximal priority that will be seen infinitely often. Intuitively, the automaton
A′ consists of the original states from A and b n

2c + 1 copies of A, namely A0, . . ., Ab n
2 c

,
that are reachable from the original states of A. Each Ai contains states with priority
at most i and the states in Ai with priority i are considered to be accepting. Hence to
simulate an accepting run ρ ofA in which i is the maximal priority that is seen infinitely
often, we first go through the states in the original copy of A. Since after some k steps,
we will never visit a state with priority more than i, then after k steps, we move toAi and
simulate ρ from there. Such a run is accepting in A′. We can simulate any accepting run
in the parity automatonA in the NBAA′.

Proposition 2.3.17 ([Tho90]). For any parity automatonA with n states and m priorities,
there is an NBAA′ of size O(nm) such that L(A) = L(A′).

Proposition 2.3.16 and Proposition 2.3.17 show that we can polynomially translate
GNBA and parity automata to Büchi automata. Hence the inclusion problem between
GNBA or parity automata can be reduced to the one between Büchi automata. Deciding
language inclusion between such automata is in PSPACE. It is also PSPACE-hard since
Büchi automata are a special case of GNBA and parity automata.

Proposition 2.3.18 ([MS73]). For any two GNBA or parity automata A,B, the problem
of deciding whether L(A) ⊆ L(B) is PSPACE-complete.

Through out this work, we will mostly consider Büchi automata. However in some
part of this work, we will consider language inclusion between GNBA and parity au-
tomata.

24 2.4. INFINITE GAMES

2.4 Infinite Games
An infinite two-player game is a mathematical framework that models the ongoing inter-
action between two agents that possibly lasts in infinite duration. An infinite two-player
game or just game is basically composed of two components: a configuration graph and
a winning condition. A configuration graph is the arena where the game takes place and a
winning condition is the component that determines the winner of the game.

In its formal definition, a game is a tuple G = (G, v0,Win) where G = (V,V0,V1, E) is
a configuration graph, (V, E) is a finite or infinite directed graph, 〈V0,V1〉 is a partition of
V into nodes that belong to player 0 and player 1, v0 is the starting node, and Win is the
winning condition. The game is played by two players, usually called player 0 (female)
and player 1 (male). Intuitively, a play proceeds as follows. Initially, a pebble is placed in
the starting node. In each round, if the pebble is in the node of player i ∈ {0, 1} then player
i moves the pebble one step to some successor node. If he or she cannot do so then the
opponent wins. Otherwise we proceed to the next round. Hence either eventually one of
the players gets stuck, and in this case the opponent wins, or the play goes on for infinitely
many rounds and both of the players form an infinite path in the configuration graph. We
formally call such a path a play. The set of plays in G is denoted by Play(G), or simply
Play, and it consists of all infinite words π = v0v1 . . . ∈ Vω such that (vi, vi+1) ∈ E for all
i ≥ 0. We determine whether player 0 wins the play π by looking at the winning condition
Win. In general, the winning condition Win is a subset of Play. Player 0 wins an infinite
play π iff π is in Win.

We can also consider some well-known ω-regular conditions to define the winning
condition of a game. For example, we can consider Büchi or parity conditions that are
explicitly defined in the previous section. With a Büchi condition, Win is a set F ⊆ V , and
player 0 wins the play π = v0v1 . . . iff there exist infinitely many i such that vi ∈ F. With
parity condition, Win is a priority function Ω : V → N that assigns a priority to each node
and player 0 wins the play π = v0v1 . . . iff the maximum priority that is seen infinitely
often in π is even.

We say that a player wins the game G if no matter how the opponent plays, he or she
can win the play in G. One often uses the notion of strategy in order to formally define
this. A strategy of player i ∈ {0, 1} is a partial function σi : V∗ · Vi → V such that for
every finite play r = v0 . . . vn, we have (vn, σ(r)) ∈ E. Intuitively, a strategy σi tells player
i where to move the pebble. We say a play v0v1 . . . is played according to σi if for every
j ∈ N, whenever v j ∈ Vi, we have σi(v0 . . . v j) = v j+1. A strategy σi of player i is called
winning if player i wins any play π that is played according to σi. If a player has a winning
strategy then he or she wins the game G.

Example 2.4.1. Consider a parity game G = ((V,V0,V1, E), v0,Ω) where the game graph
is depicted as follows.

v0 v1v2

We denote the nodes that belong to player 0 by circle and the ones that belong to player 1
by square. Consider a priority function Ω : V → {0, 1, 2} where Ω(vi) = i. Player 1 wins
the game G since he has a winning strategy σ1 where for every finite play r, σ1(rv0) = v1.
In other words, whenever the pebble arrives in v0, player 1 moves it to v1. No matter how

CHAPTER 2. PRELIMINARIES 25

player 0 plays, we always obtain a play in which the highest priority that is seen infinitely
often is 1. Thus player 1 wins the game G.

The winning strategy for Player 1 that we have given in Example 2.4.1 is of a special
kind. Player 1 basically decides where to move the pebble based only on the current
position of the pebble and not from the history of the play. Such a strategy is called
memoryless. Formally, a strategy σi for player i ∈ {0, 1} is called memoryless if for any
v ∈ Vi and two finite plays that end in v, i.e. r = v0v1 . . . v and r′ = v′0v′1 . . . v, we have
σi(r) = σi(r′).

There is a nice result regarding the determinacy of parity games. Parity games are
memoryless-determined [EJ91]. Determined means that either player 0 or player 1 wins
the game, and memoryless means that the player that wins has a memoryless winning
strategy. Furthermore, in the case where the parity game is played on a finite graph, the
problem of deciding the winner of a parity game can be solved in time polynomially in its
size and exponentially in the number of priorities [Jur00].

In this work, we will mostly consider parity games with three priorities 0, 1, and 2.
Such a parity game G with |V | many nodes and |E| many edges can be solved in time
O(|V | · |E|).

Proposition 2.4.2 ([Jur00]). LetG = ((V,V0,V1, E), v0,Ω) be a parity game with priorities
0, 1, and 2. The problem of deciding whether player 0 wins G can be done in time
O(|V | · |E|).

Throughout this work, we will frequently refer to this proposition. We will often
reduce some decidability questions of buffered simulation to the problem of deciding the
winner of a parity game with priorities 0, 1, and 2.

2.5 Simulation
Originally, simulation was introduced as a pre-order relation between states in a labeled
transition system [Mil71]. Recall that a labeled transition system (LTS) is a labeled di-
rected graph L = (S , I, Act,→) where S is a set of states, I ⊆ S is a set of initial states,
Act is a set of actions, and −→ ⊆ S × Act × S is an edge relation. We write s a

−−→ t if

(s, a, s′) ∈ −→. Intuitively, simulation relates two states s, s′ in an LTS if s′ can mimic all

stepwise behaviour of s. For an LTS L = (S , I, Act,−→), let R ⊆ S × S be a binary relation

such that for any pair (s1, s2) ∈ R, action a ∈ Act, and state s1
′ ∈ S , if s1

a
−−→ s1

′ then there

is s2
′ ∈ S such that s2

α
−−→ s2

′ and (s′1, s
′
2) ∈ R. Simulation then is defined as the greatest

such relation R.

Example 2.5.1. Consider the following LTS L = (S , I, Act,−→) where S = {s1, s2, s3},

I = {s2}, Act = {a, b}, and the relation −→ is illustrated as follows.

s1 s2 s3

b

b

b

b

a

a

26 2.5. SIMULATION

In this case, the simulation relation is R = {(s1, s1), (s1, s3), (s2, s2), (s3, s1), (s3, s3)}.

There is a simple game characterisation to check whether a state s′ simulates a state s.
The game is played between two players called Spoiler (male) and Duplicator (female).
Initially, two pebbles, owned by Spoiler and Duplicator, are placed each in s and s′,
respectively. In every round, Spoiler moves his pebble one step by reading an action
and Duplicator tries to mimic this by moving her pebble one step and reading the same
action. This then continues round by round. If one of the players eventually gets stuck
then we declare the opponent to be the winner. Otherwise, the play goes on infinitely
many rounds, and in this case Duplicator wins. It is not hard to see that the state s′

simulates s, i.e. (s, s′) ∈ R, iff Duplicator wins the simulation game.
The notion of simulation can be adapted to relate the states of an automaton. We

can extend the notion of simulation and use it for quotienting automata [BG03, GBS02,
EWS01], approximating language inclusion [DHWT92, FW05, ABH+08], pruning tran-
sitions [ACC+11, ACC+10], and improving existing decision procedures on NBA like
the Ramsey-based one [FV09] or the antichain algorithm for inclusion and universality
checking [DR09].

In this work, we will consider simulation for approximating language inclusion be-
tween two NBA A and B. We check whether the initial state of B simulates the one
of A. We will consider the simulation game where Spoiler’s and Duplicator’s pebbles
are initially placed in the initial state of A and B, respectively. The players then move
their pebbles alternatingly as we have described before. However in this case, if we ob-
tain an infinite play, Duplicator does not immediately win. The winning condition for
Duplicator is also defined with respect to the acceptance of A and B. There are several
possibilities to define this.

• If we consider the direct winning condition as in [DHWT92], Duplicator wins iff
for each round i > 0, whenever Spoiler visits an accepting state inA then she also
visits an accepting state B.

• If we consider the delay winning condition as in [EWS01], Duplicator wins iff for
each round i > 0, whenever Spoiler visits an accepting state inA, Duplicator also
visits an accepting state in B in some round i′ ≥ i.

• If we consider the fair winning condition as in [HKR02], Duplicatorwins iff when-
ever Spoiler visits an accepting state inA infinitely often, Duplicator also visits an
accepting state in B infinitely often.

Note that if Duplicatorwins with the direct winning condition then she also wins with
the delay winning condition. Furthermore, if Duplicator wins with the delay winning
condition then she also wins with the fair winning condition. The converses of these two
properties however do not hold.

Example 2.5.2. Consider the following two NBAA, B.

a a a
a

a a a
a

In this case, Duplicator can play such that the play goes on for infinitely many rounds.
Note that if we consider the direct winning condition, Duplicator loses the simulation

CHAPTER 2. PRELIMINARIES 27

game. In the first round, Spoiler moves his pebble to an accepting state, but Duplicator
does not. Hence Duplicator loses. However, if we consider the delay winning condition
then Duplicator wins. In the second round, Duplicator moves her pebble to an accepting
state, and after this round, Spoiler never visits an accepting state anymore. Moreover, if
we consider the fair winning condition, Duplicator also wins since Spoiler does not visit
an accepting state infinitely often.

If we swap the automata, that is, Spoiler now controls the pebble in B and Duplicator
inA, then Duplicator loses if we consider the direct and delay winning conditions. This
is because Spoiler sees an accepting state in the second round, but started from this round,
Duplicator does not see any accepting state. Duplicator however still wins the simulation
game if we consider the fair winning condition since Spoiler does not see an accepting
state infinitely often.

Simulation with the direct, delay, or fair winning conditions can be used to approxi-
mate language inclusion, in the sense that, language inclusion holds if Duplicator wins
the simulation game. However, simulation with the fair winning condition provides a bet-
ter approximation. There might be a case where language inclusion holds and Duplicator
loses the simulation game with the direct or delay winning condition, but wins with the
fair winning condition.

Example 2.5.3. Consider again the NBA A, B in Example 2.5.2. We have L(A) =

L(B) = ∅, and hence we have language inclusion L(B) ⊆ L(A). In the game where
Spoiler controls the pebble in B and Duplicator in A, we have seen that Duplicator
loses if we consider direct or delay condition, but wins with the fair condition.

The direct and delay winning conditions are simply too strong for approximating lan-
guage inclusion. Through out this work we will only consider simulation with the fair
winning condition. We formally define the simulation game that we will refer throughout
this work in the framework of two-player game as in Section 2.4.

Definition 2.5.4 ([HKR02]). Let A, B be two NBA over Σ. The (fair) simulation game
is G(A,B) = ((V,V0,V1, E), v0,Win) where V = V0 ∪ V1, Spoiler’s and Duplicator’s
configurations are respectively

V1 = QA × QB × {S},

V0 = QA × Σ × QB × {D},

the edge relation E is defined as

(p, q,S)→ (p′, a, q,D) in E iff p a
−−→ p′,

(p, a, q,D)→ (p, q′,S) in E iff q a
−−→ q′,

the initial configuration is v0 = (p0, q0,S) where p0, q0 is the pair of the initial states of
A, B, and an infinite play v0v1v1 . . . ∈ Win iff either there exist infinitely many i such that
vi = (p, q,S) with q ∈ FB or there are only finitely many i such that vi = (p, q,D) with
p ∈ FA. We writeAv B if Duplicator wins G(A,B).

If Duplicator wins the simulation game G(A,B) then we have language inclusion
L(A) ⊆ L(B). Every accepting word that can be produced by Spoiler in A can be mim-
icked by Duplicator in B. We formally show this as follows.

28 2.5. SIMULATION

Proposition 2.5.5. IfAv B then L(A) ⊆ L(B).

Proof. Suppose Duplicator wins G(A,B). Let w = a1a2 . . . ∈ L(A) be some arbitrary
accepting word inA and ρ = p0a1 p1 . . . an accepting run over w inA. Consider the game
G(A,B) where Spoiler plays ρ and Duplicator plays according to the winning strategy.
Suppose we obtain a play v′0v1v′1 . . . in G(A,B). Hence v′0 = (p0, q0,S) is the initial
configuration of G(A,B) and for all i > 0, we have vi = (pi, ai, qi−1,D) and v′i = (pi, qi,S)
where qi−1, qi ∈ QB. The state q0 is the initial state of B and by definition of the edge
relation in G(A,B), we have

q0
a1−−→ q1

a2−−→ q2 . . . (2.1)

Moreover, since Duplicator wins the play v′0v1v′1 . . ., there are infinitely many i such that
qi ∈ FB. Hence the run in (2.1) is accepting and w ∈ L(B). Since we consider an arbitrary
w, we have L(A) ⊆ L(B). �

The converse of this proposition, however, does not hold. We can simply construct
two NBA where language inclusion holds, but simulation does not.

Example 2.5.6. Consider again the following two NBA A (left) and B (right) over the
alphabet Σ = {a, b, c} that we have presented in Figure 1.1. For convenience, we present
them again as follows.

p0 p1

pb

pc

a
b

c

a

a

q0

qb q′b

qc q′c

a

a

b a

c a

In this case, we have L(A) ⊆ L(B) and indeed L(A) = L(B). However, Spoiler wins
G(A,B) with the following winning strategy. Initially, he moves his pebble from p0 to
p1 by reading a, i.e. he proceeds from the initial configuration (p0, q0,S) to (p1, a, q0,D).
Duplicator then will move her pebble from q0 to some qx where x ∈ {b, c} and proceed to
the configuration (p1, qx,S). From such a configuration, Spoiler reads x ∈ {b, c} \ {x} by
moving his pebble from p1 to px. Hence we reach the configuration

(px, x, qx,D). (2.2)

Such a configuration does not have a valid successor since from the state qx there is no
x-transition. Hence Duplicator gets stuck in the second round and loses the simulation
game G(A,B).

The simulation game that is defined in Definition 2.5.4 can be seen as a parity game.
Duplicator corresponds to player 0 and Spoiler to player 1. It is not hard to see that the
winning condition of the simulation game can be expressed as a parity condition.

Proposition 2.5.7. For any two NBAA, B over Σ, there is a parity game G with priorities
0, 1, and 2 where the numbers of nodes and edges are respectively

|V | = O(|A| · |B| · |Σ|),

|E| = O(|A|2 · |B|2 · |Σ|)

such that Duplicator wins G(A,B) iff player 0 wins the parity game G.

CHAPTER 2. PRELIMINARIES 29

Proof. Let G = (V,V0,V1, E) be the configuration graph of G(A,B) and v0 the initial
configuration of G(A,B). Consider the parity game G = (G, v0,Ω) where Ω is a priority
function that mimics the winning condition of Duplicator in the game G(A,B), i.e.

Ω(v) =


2, if v = (p, q,S) and q ∈ FB

1, if v = (p, a, q,D) and p ∈ FA

0, otherwise.

Suppose Duplicator wins G(A,B). In the parity game G, player 0 plays according to the
winning strategy for Duplicator inG(A,B). Suppose we obtain a play π = v0v1 Since
Duplicator wins G(A,B), either there exist infinitely many i such that vi = (p, q,S) with
q ∈ FB or there are only finitely many i such that vi = (p, a, q,D) with p ∈ FA. In the first
case, the highest priority that is seen infinitely often is 2 and in the second case, it is 0.
Hence player 0 wins G. We can also show the other direction similarly.

The size of the constructed parity game G is the same as the size of the configuration
graph of G(A,B). It has at most |A| · |B| · (|Σ| + 1) many nodes and |A|2 · |B|2 ·|Σ| many
edges. �

Since by Proposition 2.4.2, deciding the winner of a parity game with n nodes, m
edges, and priorities 0, 1, and 2 can be done in time O(nm), we have the following propo-
sition.

Proposition 2.5.8. For any two NBAA, B, decidingAv B is in time O
(
|A|3 · |B|3 · |Σ|2).

This shows that deciding simulation can be done in polynomial time. We have a
polynomial approximation for language inclusion. Such a cheap approximation, however,
comes at price. We have seen in Example 2.5.6 that simulation is too weak to show
language inclusion. There are even simple NBA A, B in which their language inclusion
cannot be shown by simulation. One reasonable question then is to ask whether we can
extend simulation such that it can capture more language inclusion. In the next section,
we give some extended simulations that are available in the literature.

2.6 Extended Simulations
One simple reason why the standard fair simulation fails to show language inclusion is
because Duplicator’s power is very limited. Duplicator only sees the accepting run that is
formed by Spoiler inA step by step, but has to guess the corresponding run inB correctly.
This is in contrast to language inclusion in which one can see the whole accepting run in
A and then decide whether there is a corresponding run in B. Hence the typical extension
of simulation is to modify the game framework such that either Duplicator has more
power or Spoiler has less power.

2.6.1 Static Multi-Letter Simulation
In the static multi-letter simulation, the game framework is modified such that Spoiler
is weaker than in the standard fair simulation game. He is forced to read more than one
letter in each round. More precisely, in the static k-letter simulation, where k > 0, in each
round, Spoiler moves the pebble k steps over some word a1 . . . ak and Duplicator tries to
mimic this move by moving the pebble k steps over the same word. The winning condition

30 2.6. EXTENDED SIMULATIONS

p0 p1 p2 p3 p4

pb

pc

a a a a
b

c

a

a

q0 q1 q2 q3

qb q′b

qc q′c

a a a
a

a

b a

c a

Figure 2.2: NBAA, B in whichA @2
Stat B.

is the same as in the standard fair simulation. Duplicator wins iff Spoiler eventually gets
stuck or whenever Spoiler forms an accepting run, Duplicator also forms an accepting
run.

Definition 2.6.1 ([HLL13]). Let A, B be two NBA over Σ and k > 0. The static k-letter
simulation game is Gk

Stat(A,B) = ((V,V0,V1, E), v0,Win) where Spoiler’s and Duplica-
tor’s configurations are respectively

V1 = QA × QB × {>,⊥} × {S},

V0 = QA × Σk × QB × {>,⊥} × {D},

V = V0 ∪ V1, the edge relation E is defined as

(p, q, b,S)→ (p′,w, q, b′,D) in E iff p w
−−→ p′ and b′ =

> if p w
−−→

F
p′

⊥ otherwise,

(p,w, q, b,D)→ (p, q′, b′,S) in E iff q w
−−→ q′ and b′ =

> if q w
−−→

F
q′

⊥ otherwise,

the initial configuration is v0 = (p0, q0,⊥,S) where p0, q0 is the pair of the initial states of
A, B, and an infinite play v0v1 . . . ∈ Win iff either there exist infinitely many i such that
vi = (pi, qi,>,S) or there are only finitely many i such that vi = (pi, qi,>,D). We write
Avk

Stat B if Duplicator wins Gk
Stat(A,B).

Example 2.6.2. Consider again the two NBAA, B from Example 2.5.6. We haveAv2
Stat

B. In the first round of the game G2
Stat(A,B), initially Spoiler will move his pebble two

steps from p0 to some state px where x ∈ {b, c} by reading ax, i.e. he proceeds from the
initial configuration (p0, q0,⊥,S) to (px, ax, q0,>,D). Duplicator then responds to this
by moving her pebble from q0 to qx, i.e. she proceeds to

(px, qx,>,S). (2.3)

From such a configuration, after Spoiler reads aa by looping in px and proceeding to
(px, aa, qx,>,D), Duplicator reads aa by looping in qx and proceeding back to (2.3).
Duplicator repeats this procedure indefinitely. Hence Duplicator visits an accepting state
infinitely often. She forms an accepting run. We obtain a play v0v1 . . . where there are
infinitely many i such that vi = (p, q,>,S). Duplicator wins the game G2

Stat(A,B).

CHAPTER 2. PRELIMINARIES 31

Example 2.6.3. Consider the two NBAA, B in Figure 2.2. We haveA @2
Stat B. Spoiler

wins the game G2
Stat(A,B) with the following winning strategy. Initially, he reads aa and

hence the play proceeds from the initial configuration (p0, ε, q0,⊥,S) to (p2, aa, q0,⊥,D).
Duplicator does not have any choice except to read aa by going to q2 and reaching the
configuration (p2, q2,⊥,S). From this configuration, Spoiler again reads aa and proceeds
to (p4, aa, q2,⊥,D). Duplicator again does not have any choice except to read aa by going
to some state qx where x ∈ {b, c}. The play then reaches the configuration (p4, qx,⊥,S).
In the next round, Spoiler reads xa where x ∈ {b, c} \{x} and proceeds to the configuration
(px, xa, qx,>,D). Such a configuration, however, does not have a valid successor since
there is no x-transition from qx. Hence in the third round, Duplicator gets stuck and loses
the play. Spoiler wins the game G2

Stat(A,B).

Note that if k = 1, the static k-letter simulation game is equivalent to the standard fair
simulation game. Spoiler and Duplicator only move one step in each round. Duplicator
wins Gk(A,B) iff she wins the static k-letter simulation game G1

Stat(A,B).

Proposition 2.6.4 ([HLL13]). v1
Stat = v.

Similarly to the ordinary fair simulation, static k-letter simulation also approximates
language inclusion. If we have A vk

Stat B for some k ∈ N then we also have language
inclusion L(A) ⊆ L(B). The reason is also similar to the of the standard fair simula-
tion. Every accepted word that can be produced by Spoiler in A can be mimicked by
Duplicator in B by playing according to the winning strategy in Gk

Stat(A,B).

Proposition 2.6.5 ([HLL13]). For any two NBAA, B, if there is k ∈ N such thatA vk
Stat

B then L(A) ⊆ L(B).

Note that the reverse direction of this theorem does not hold. Similarly to ordinary
simulation, language inclusion does not imply static multi-letter simulation. There are
some cases in which language inclusion holds, but static k-letter simulation does not hold.

Corollary 2.6.6. There are two NBA A, B such that L(A) ⊆ L(B), but A @k
Stat B for all

k > 0.

Proof. Consider the following two NBAA, B.

p0 p1 q0

q1

q2

a

b

b
a

b

a a

b

We have L(A) ⊆ L(B), butA @k
Stat B for any k > 0. Spoiler has a winning strategy in the

game Gk
Stat(A,B). He reads ak indefinitely by looping in p0 until Duplicatormoves to q1,

i.e. from any configuration (p0, q, b,S) where q , q1 and b ∈ {⊥,>}, Spoiler proceeds
to (p0, ak, q,>,D) by reading ak. However if Duplicator eventually moves to q1 then he
moves to p1, i.e. from the configuration (p0, q1,>,S), Spoiler proceeds to

(p1, bk, q1,>,D) (2.4)

by reading bk.
Now suppose Duplicator never moves to q1. Hence she does not form an accepting

run. We obtain a play v′0v1v′1 . . . where for all i > 0, vi = (p0, ak, q0,>,D) and v′i =

(p0, q0,⊥,S). Hence Spoiler wins. However, if Duplicator eventually moves to q1, then

32 2.6. EXTENDED SIMULATIONS

in the next round, the play proceeds to (2.4). Since there is no b-transition from q1, such a
configuration does not have a valid successor. Duplicator gets stuck and hence loses the
play. Spoiler wins the game Gk

Stat(A,B) for all k > 0. �

We can also see the static k-letter simulation as a parity game similarly as in the case
of the fair simulation. We can consider the same priority function as in (3.6). However the
size of the configuration graph of Gk

Stat(A,B) is slightly bigger than the one of G(A,B),
Recall from Definition 2.6.1 that Spoiler’s and Duplicator’s configurations in Gk

Stat(A,B)
are of the form (p, q, b,S) and (p,w, q, b,D) where p ∈ QA, q ∈ QB, w ∈ Σk, and b ∈
{⊥,>}. Hence there are 2 · |A| · |B| · (|Σ|k + 1) many configurations. Moreover, the edges
in the configuration graph of Gk

Stat(A,B) are of the form

(p, q, b,S)→ (p′,w, q, b′,D) or
(p,w, q, b,D)→ (p, q′, b′,S).

where p, p′ ∈ QA, q, q′ ∈ QB, w ∈ Σk, and b, b′ ∈ {⊥,>}. Hence the number of edges in
the corresponding parity game is at most 4 · |A|2 · |B|2 ·|Σ|k.

Proposition 2.6.7 ([HLL13]). For any two NBA A, B and k > 0, there is a parity game
G with priorities 0, 1, and 2 where the numbers of nodes and edges are

|V | = O(|A| · |B| · |Σ|k),

|E| = O(|A|2 · |B|2 · (|Σ|k)

such that Duplicator wins Gk
Stat(A,B) iff player 0 wins the parity game G.

By Proposition 2.4.2, since deciding the winner of a parity game with n nodes, m
edges, and priorities 0, 1, and 2 can be done in time O(nm), we have the following propo-
sition.

Proposition 2.6.8 ([HLL13]). For any two NBAA, B over Σ, deciding whetherAvk
StatB

is in time O
(
|A|3 · |B|3 · |Σ|2k).

2.6.2 Dynamic Multi-Letter Simulation
Another extension of simulation game that is introduced in [HLL13] is the dynamic k-
letter simulation game. This simulation is also independently introduced in [CM13].
Intuitively the game proceeds as follows. In the beginning of each round i > 0, Duplicator
first chooses some `i ≤ k. Spoiler then moves his pebble `i steps by reading some word
w of length `i and Duplicator tries to mimic this move by moving her pebble `i steps by
reading the same word w. The winning condition of the game does not differ from the
static multi-letter or the standard fair simulation. If one of the players gets stuck then the
opponent wins, otherwise Duplicator wins iff whenever Spoiler forms an accepting run,
she also forms one. Note that the static k-letter simulation is indeed a special case of the
dynamic one where Duplicator always chooses `i = k for each round.

Let us denote by Σ≤k the set of finite words over Σ of length at most k. The game is
formally defined as follows.

Definition 2.6.9 ([CM13, HLL13]). Let A, B be two NBA over Σ and k > 0. The
dynamic k-letter simulation game isGk

Dyn(A,B) = ((V,V0,V1, E), v0,Win) where Spoiler’s
and Duplicator’s configurations are respectively

V1 = QA × QB × {1, . . . , k} × {>,⊥} × {S},

CHAPTER 2. PRELIMINARIES 33

V0 = QA × Σ≤k × QB × {>,⊥} × {D},

V = V0 ∪ V1, the edge relation E is defined as

(p, q, `, b,S)→ (p′,w, q, b′,D) in E iff

w ∈ Σ`, p w
−−→ p′, and

b′ =

> if p w
−−→

F
p′

⊥ otherwise,

(p,w, q, b,D)→ (p, q′, `, b′,S) in E iff

q w
−−→ q′, ` ≤ k, and

b′ =

> if q w
−−→

F
q′

⊥ otherwise,

the initial configuration is v0 = (p0, ε, q0,⊥,D) where p0, q0 is the pair of the initial states
ofA, B, and an infinite play v0v1 . . . ∈ Win iff either there exist infinitely many i such that
vi = (pi,wi, qi,>,S) or there are only finitely many i such that vi = (pi, qi, `i,>,D). We
writeAvk

Dyn B if Duplicator wins Gk
Dyn(A,B).

Example 2.6.10. Consider again the two NBA A, B in Figure 2.2. We have A v2
Dyn B.

Duplicator wins the game G2
Dyn(A,B) with the following winning strategy. Initially she

asks Spoiler to move the pebble two steps, i.e. she proceeds from the initial configuration
(p0, ε, q0,⊥,D) to (p0, q0, 2,⊥,S). Spoiler then does not have any choice except to read aa
and reach the configuration (p2, aa, q0,⊥,D). From this configuration, Duplicator reads
aa, moves her pebble from q0 to q2, and asks Spoiler to move her pebble one step for
the next round, i.e. Duplicator proceeds to (p2, q2, 1,⊥,S). Spoiler again does not have
any choice except to read a and continue to the configuration (p3, a, q2,⊥,D). Duplicator
reads a, moves her pebble from q2 to q3, and asks Spoiler to move two steps for the next
round. She proceeds to (p3, q3, 2,⊥,S). From this configuration, Spoiler might either
read ab or ac, i.e. he proceeds to some configuration (px, ax, q3,>,D) where x ∈ {b, c}.
Duplicator then responds to this by reading ax, moving her pebble from q3 to qx, and
asking Spoiler to move one step for the next round. She proceeds to

(px, qx, 1,>,S). (2.5)

From this configuration, whenever Spoiler continues to (px, a, qx,>,D), Duplicator pro-
ceeds back to (2.5). She repeats this procedure indefinitely. Hence Duplicator forms
an accepting run. We obtain a play v0v1 . . . in which there exist infinitely many i such
that vi = (p, q, `,>,S). By definition, Duplicator wins the play. She wins the game
G2

Dyn(A,B).

Similarly to static k-letter simulation, in the case where k = 1, dynamic k-letter sim-
ulation is equivalent to the fair simulation. Duplicator wins the game Gk

Dyn(A,B) iff she
wins the game G(A,B).

Proposition 2.6.11 ([CM13, HLL13]). v1
Dyn = v.

It is not hard to see that if Duplicator wins the static k-letter simulation game, she
also wins the dynamic k-letter simulation game. She simply chooses `i = k in every round
i > 0 and moves exactly as in the static k-letter simulation game.

34 2.6. EXTENDED SIMULATIONS

Proposition 2.6.12 ([HLL13]). For all k > 0, vk
Stat ⊆ v

k
Dyn.

The other direction, however, does not hold. Duplicator might lose the static k-letter
simulation game even though she wins the dynamic one. Consider again the two NBA
A and B in Figure 2.2. We have seen in Example 2.6.10 that Duplicator wins the game
G2

Dyn(A,B). However, she loses the game G2
Stat(A,B) as we have seen in Example 2.6.3.

However, similarly to the static multi-letter simulation, dynamic multi-letter simula-
tion also approximates language inclusion. If there exists k > 0 such that A vk

DynB then
we have language inclusion L(A) ⊆ L(B). The reason is similar to the case of the fair
simulation and the static k-letter simulation. If Duplicator wins Gk

Dyn(A,B) for some
k > 0 then for every accepting word that can be produced by Spoiler in A, Duplicator
can mimic it in B by playing according to the winning strategy in Gk

Dyn(A,B).

Proposition 2.6.13 ([CM13, HLL13]). For any two NBAA, B if there is k > 0 such that
A vk

Dyn B then L(A) ⊆ L(B).

The approximation of language inclusion with dynamic k-letter simulation is not com-
plete. There are some cases in which language inclusion holds, but dynamic k-letter sim-
ulation does not hold for any k > 0. We can consider the same NBAA, B as in the static
case.

Proposition 2.6.14. There are two NBA A, B such that L(A) ⊆ L(B), but A @k
Dyn B for

all k > 0.

Proof. Consider the two NBAA, B as in the proof of Proposition 2.6.6. We have L(A) ⊆
L(B), butA @k

Dyn B for any k > 0. In the game Gk
Dyn(A,B), Spoiler wins by considering a

similar winning strategy as in the proof of Proposition 2.6.6, i.e. he reads a` for any length
` that is chosen by Duplicator. He reads a` by looping in p0 until Duplicatormoves to q1.
Formally, from any configuration (p0, q, `, b,S) where ` ≤ k and b ∈ {⊥,>}, if q , q1 then
Spoiler proceeds to (p0, a`, q,>,D), and if q = q1 then he proceeds to (p1, b`, q1,>,S).
We can show similarly as in the proof of Proposition 2.6.6 that Spoiler wins Gk

Dyn(A,B)
by using such a strategy. �

We can also see the dynamic k-letter simulation game as a parity game in the same way
as in the case of the static k-letter simulation. The size of the parity game that corresponds
to the dynamic k-letter simulation game is slightly bigger than the static one. Recall from
Definition 2.6.9 that Spoiler’s and Duplicator’s configurations in Gk

Dyn(A,B) are of the
forms (p, q, `, b,S) and (p,w, q, b,D) where p ∈ QA, q ∈ QB, ` ∈ {1, . . . , k}, w ∈ Σ≤k,
and b ∈ {⊥,>}. Since |Σ≤k| = |Σ1| + . . . + |Σk| = O(|Σ|k+1), we will obtain a parity game
with 2 · |A| · |B| · (k + |Σ|k+1) nodes. Moreover, the edges in the configuration graph of
Gk

Dyn(A,B) are of the form

(p, q, `, b,S)→ (p′,w, q, b′,D) or
(p,w, q, b,D)→ (p, q′, `, b′,S).

where p, p′ ∈ QA, q, q′ ∈ QB, w ∈ Σk, ` ∈ {1, . . . , k}, and b, b′ ∈ {⊥,>}. Hence the number
of edges in the corresponding parity game is at most 4k · |A|2 · |B|2 · |Σ|k+1.

Proposition 2.6.15 ([HLL13]). For any two NBAA, B and k > 0, there is a parity game
G with priorities 0, 1, and 2 where the number of nodes and edges are respectively

|V | = O(|A| · |B| · |Σ|k+1),

CHAPTER 2. PRELIMINARIES 35

|E| = O(|A|2 · |B|2 · |Σ|k+1)

such that Duplicator wins Gk
Dyn(A,B) iff player 0 wins the parity game G.

Since deciding the winner of a parity game with |V | many nodes, |E| many edges, and
priorities 0, 1, and 2 can be done in time O(|V | · |E|), we have the following proposition.

Proposition 2.6.16 ([CM13, HLL13]). For any two NBAA,B over Σ and k ∈ N, deciding
A vk

Dyn B is in time O
(
|A|3 · |B|3 · |Σ|2k+2).

2.6.3 Multi-Pebble Simulation
Multi-pebble simulation is a bit different from the static and dynamic multi-letter simula-
tions. The players move alternatingly one step in each round as in the ordinary simulation
game. However in this case, Duplicator is allowed to control several pebbles [Ete02].
In the k-pebble simulation game, where k > 0, Duplicator controls k pebbles. Initially,
Spoiler’s pebble is placed in the initial state of A and all of Duplicator’s pebbles are
placed in the initial state of B. The play then proceeds as follows. In each round i > 0,
Spoiler moves his pebble in A one step by reading some letter a. Duplicator chooses
some a-successors of the states which are currently occupied by her pebbles in B. She
then moves her pebbles to the chosen successors by reading a. Note that there might be
a case where some of Duplicator’s pebbles cannot be moved, e.g. suppose Duplicator
controls 2 pebbles which are currently in the states q1 and q2, q1 has an a-successor, but
q2 does not. In such a case, Duplicator drops the pebbles that cannot be moved, dupli-
cates the remaining ones so she has k pebbles again, and then moves them to the chosen
successors. Duplicator wins an infinite play iff either Spoiler’s pebble does not form an
accepting run or all of her pebbles that survive infinitely many rounds see some accepting
state infinitely often.

Let us denote by P≤k(S) the set of all subsets of S of size at most k. Hence if |S | = n
then |P≤k(S)| ≤ (n + 1)k. The game is formally defined as follows.

Definition 2.6.17 ([Ete02]). Let A, B be two NBA over Σ and k > 0. The k-pebble sim-
ulation game is Gk

Peb(A,B) = ((V,V0,V1, E), v0,Win) where Spoiler’s and Duplicator’s
configurations are respectively

V1 = QA ×
(
P≤k(QB) \ {∅}

)
× P≤k(QB) × {S},

V0 = QA × Σ ×
(
P≤k(QB) \ {∅}

)
× P≤k(QB) × {D},

V = V0 ∪ V1, the edge relation E is defined as

(p,Q,R,S)→ (p′, a,Q,R,D) in E iff p a
−−→ p′

(p, a,Q,R,D)→ (p,Q′,R′,S) in E iff

∀q′ ∈ Q′ ∃q ∈ Q such that q a
−−→ q′ and

R′ = {r′ ∈ Q′\FB | ∃r ∈ R : r a
−−→ r′} if R , ∅,

R′ = Q′\FB if R = ∅,

the initial configuration is v0 = (p0, {q0}, ∅,S) where p0, q0 is the pair of the initial states
ofA, B, and an infinite play v0v1 . . . ∈ Win iff either there exist infinitely many i such that
vi = (p,Q, ∅,S) or there are only finitely many i such that vi = (p,Q,R,D) with p ∈ FA.
We writeAvk

Peb B if Duplicator wins Gk
Peb(A,B).

36 2.6. EXTENDED SIMULATIONS

The first and the third components in the configuration tell us the position of Spoiler’s
and Duplicator’s pebbles. Since Duplicator uses k many pebbles, instead of one state,
the third component is a set of at most k many states. The third component is used to
define the winning condition of Duplicator. It remembers which pebbles that have not
seen an accepting state since the last reset. Each time Duplicator moves her pebbles, we
also update this component. Once it becomes empty then we reset. We put back again
the current position of all Duplicator’s pebbles. Hence if we visit infinitely often config-
urations in which the third component is empty then all Duplicator’s pebbles that survive
infinitely many rounds see an accepting state infinitely often. The second component in
Duplicator’s configuration is the letter that has been read by Spoiler and has to be read
by Duplicator, whereas the last component, as in the other simulation games we have
described before, tells us which player that has the next turn.

Example 2.6.18. Consider again the NBAA, B from Example 2.5.6. We haveA v2
Peb B.

In the gameG2
Peb(A,B), Duplicator has the following winning strategy. In the first round,

after Spoiler moves his pebble from p0 to p1 by reading a, i.e. proceeds from the initial
configuration (p0, {q0}, ∅,S) to (p1, a, {q0}, ∅,D), Duplicator moves her two pebbles from
q0 each to qb and qc. She proceeds to (p1, {qb, qc}, {qb, qc},S). In the second round, after
Spoiler moves his pebble from p1 to some px where x ∈ {b, c}, by reading x, we reach
the configuration (px, x, {qb, qc}, {qb, qc},D). Duplicator then drops the pebble in qx where
x ∈ {b, c} \ {x}, duplicates the one at qx once, and moves them to q′x, i.e. she continues to
(px, {q′x}, ∅,S). From this configuration, for the rest of the play, whenever Spoiler reads a
and proceeds to (px, a, {q′x}, ∅,D), Duplicator also reads a by moving her pebbles through
the loop in qx and proceeding back to (px, {q′x}, ∅,S). All Duplicator pebbles form an
accepting run. We obtain a play v0v1 . . . in which there are infinitely many i such that
v = (p,Q, ∅,S). Hence Duplicator wins the play. She wins the game G2

Peb(A,B).

Note that if k = 1 then it is not hard to see that the k-pebble game is equivalent to
the fair simulation game since Duplicator only controls one pebble. Duplicator wins the
game G1

Peb(A,B) iff she wins G(A,B).

Proposition 2.6.19 ([Ete02]). v1
Peb = v.

Intuitively, the multi-pebble game extends the fair simulation game by giving Dupli-
cator more power by controlling k many pebbles. Such a simulation also approximates
language inclusion in the same sense as the static and dynamic multi-letter simulations.

Proposition 2.6.20 ([Ete02]). For any two NBA A, B, if there is k > 0 such that A vk
Peb

B then L(A) ⊆ L(B).

The reverse direction of this proposition, however, does not hold. Similarly to static
and dynamic multi-letter simulations, the approximation for language inclusion with multi-
pebble simulation is also not complete. There is an example of a language inclusion which
cannot be shown by multi-pebble simulation. We can even consider the same pair of NBA
as in the case of static and dynamic multi-letter simulations.

Corollary 2.6.21. There are two NBAA, B such that L(A) ⊆ L(B), butA @k
Peb B for all

k > 0.

Proof. Consider again the two NBA A,B in the proof of Proposition 2.6.6. We have
L(A) = L(B) butA @k

Peb B for any k ∈ N. In the game Gk
Peb(A,B), Spoiler has a winning

CHAPTER 2. PRELIMINARIES 37

strategy as follows. She reads a indefinitely by looping in p0 until Duplicator moves all
her pebbles from the initial state to q1, i.e. from any configuration (p0,Q,R,S) where
Q , {q1}, Spoiler proceeds to (p0, a,Q,R,D). However if Duplicator eventually moves
all her pebbles to q1 then Spoiler moves to p1 by reading b, i.e. from the configuration
(p0, {q1}, ∅,S), Spoiler proceeds to

(p1, b, {q1}, ∅,D). (2.6)

Now suppose Duplicator eventually moves all her pebbles from the initial state to q1.
In the next round, the play then proceeds to the configuration (2.6). Such a configuration
does not have a valid successor since there is no b-transition from q1. Hence Duplicator
loses the play. In the case where Duplicator never moves all of her pebbles from the
initial state to q1 then one of her pebbles, namely the one that is in q0, does not form
an accepting run. We obtain a play v′0v1v′1 . . . in which for all i > 0, v′i = {p0,Qi,Ri,S},
Qi ⊆ {q0, q1}, and q0 ∈ Ri. Since Ri , ∅ for all i > 1, by definition, Duplicator loses the
play. Spoiler wins the game Gk

Peb(A,B). �

We can see the multi-pebble simulation game Gk
Peb(A,B) as a parity game where

player 1 corresponds to Spoiler and player 0 to Duplicator. It is not hard to see that the
winning condition of the multi-pebble simulation game can be expressed as a parity con-
dition. We can simply consider a parity game G that is played in the same configuration
graph as Gk

Peb(A,B) with a priority function that assigns priority 2 to any configuration
(p,Q,R,S) with R = ∅, priority 1 to any configuration (p, a,Q,R,D) with p ∈ FA, and
priority 0 to other configurations. In this way, a play in the parity game G is won by
player 0 iff it is won by Duplicator in the multi-pebble simulation game Gk

Peb(A,B).
Moreover, by the definition of Gk

Peb(A,B), it is not hard to see that the configuration
graph of Gk

Peb(A,B) has at most |A| · (|B| + 1)2k · (|Σ| + 1) nodes and |A|2 · (|B| + 1)4k · |Σ|

edges.

Proposition 2.6.22 ([Ete02]). For any two NBA A, B and k ∈ N, there is a parity game
G with priorities 0, 1, and 2 where the numbers of nodes and edges are respectively

|V | = O(|A| · |B|2k · |Σ|),

|E| = O(|A|2 · |B|4k · |Σ|)

such that Duplicator wins Gk
Peb(A,B) iff player 0 wins the parity game G.

Since deciding the winner of such a parity game can be done in time linearly in the
products of the number of its nodes and edges, we have the following property.

Proposition 2.6.23 ([Ete02]). For any two NBAA, B over Σ, decidingAvk
PebB is in time

O(|A|3 ·|B|6k ·|Σ|2).

2.6.4 Delay Simulation
Delay simulation is introduced in [HKT10] and it is a bit different than the other extended
simulations that have been mentioned before. Spoiler and Duplicator do not play on two
automata, but on a regular language L ⊆ (Σ1×Σ2)ω with respect to a function f : N+ → N+

called delay function. In every round i > 0, Spoiler chooses some word w over Σ1 of
length f (i) and Duplicator chooses some letter from Σ2. The play goes on for infinitely

38 2.6. EXTENDED SIMULATIONS

many rounds and each of the players forms an infinite word. Spoiler forms an infinite
word over Σ1 and Duplicator over Σ2. Duplicator wins the play iff the pair of the infinite
words that are formed by Spoiler and Duplicator is in the language L. The game is
formally defined as follows.

Definition 2.6.24 ([HKT10]). Let L ⊆ (Σ1 × Σ2)ω be a regular language over Σ1 × Σ2 and
f : N+ → N+. The delay simulation game over the language L and delay function f
is G f

Del(L) = ((V,V0,V1, E), v0,Win) where Spoiler’s and Duplicator’s configurations are
respectively

V1 = N+ × Σ2 ∪ {ε} × {S}
V0 = N+ × Σ∗1 × {D},

V = V0 ∪ V1, the edge relation E is defined as

(i, b,S)→ (i, a1 . . . an,D) in E iff n = f (i) and a1 . . . an ∈ Σ∗1

(i,w,D)→ (i + 1, b,S) in E iff b ∈ Σ2,

the initial configuration is v0 = (1, ε,S), and an infinite play

(1, ε,S)(1, b1,D)(2, a1 . . . an1 ,S)(1, b2,D) . . .

is in Win iff (a1, b1)(a2, b2) . . . ∈ L. We say that L is solvable with f if Duplicator wins
G

f
Del(L).

Example 2.6.25. Consider the language L over Σ = {0, 1} × {0, 1} that is given by the
following NBA.

(∗, 0)
Σ (0, ∗)

Σ

(∗, 1)
Σ (1, ∗)

Σ

By ∗ we mean any bit of {0, 1}. Hence (a1, b1)(a2, b2) . . . ∈ Σω is in L iff b1 = a3.
For any delay function f where f (1) ≥ 3, the language L is solvable with f . Dupli-
cator has a winning strategy in the game G f

Del(L). In the first round, Spoiler will choose
a word a1 . . . a f (1) ∈ {0, 1}∗, i.e. he proceeds from the initial configuration (1, ε,S) to
(1, a1 . . . a f (1),D). Since f (1) ≥ 3, Duplicator then responds to this by choosing the letter
a3, i.e. she proceeds to (1, a3,S). Furthermore, started from the second round, no matter
what Spoiler does, Duplicator simply extends her word with 0. From any configuration
(i,w,D) where i > 1, Duplicator proceeds to (i + 1, 0,S). In this way, Spoiler forms
a1a2 . . . while Duplicator forms a30ω. Since the word (a1, a3)(a2, 0)(a3, 0) . . . is in the
language L, Duplicator wins the play. She wins the game G f

Del(L).

In [HKT10], it is shown that if L is solvable with some arbitrary delay function f then
it is also solvable with a special kind of delay function f ′ in which f ′(1) = d for some
constant d ∈ N and f (i) = 1 for all i > 1. Such a special delay function is called constant
delay function. If the language L can be represented by a deterministic parity automaton
A and is solvable with some delay function f then it is also solvable with a constant
delay function where the constant is doubly exponential in the size of the automaton and
exponential in the number of priorities.

CHAPTER 2. PRELIMINARIES 39

Proposition 2.6.26 ([HKT10]). Given a language L ⊆ (Σ1 × Σ2)ω that can be represented
by a DPA with n states and m priorities, let d = 22(mn)n+1mn. The language L is solvable
with some f iff L is solvable with a constant delay function with constant d.

Therefore for any regular language L that can be represented by a DPA with n states
and m priorities, the problem of deciding whether there is a delay function f such that
Duplicator wins delay simulation G f

Del(L) is decidable in doubly exponential time. The
following is the main result in [HKT10].

Proposition 2.6.27 ([HKT10]). For any ω-regular language L ⊆ (Σ1 × Σ2)ω that can be
represented by a DPA with n states and m priorities, deciding whether there exists a delay
function f such that L is solvable with f is decidable in 2EXPTIME.

Now one might wonder how delay simulation relates to the fair simulation game. A
fair simulation game is indeed a special case of delay simulation game. For any two NBA
A and B, we can reduce the game G(A,B) to a game G f

Del(L) where f is a constant delay
function with constant 1. The language L is defined over the pairs of transitions ofA and
B such that (e1, e′1)(e2, e′2) . . . ∈ L iff either e1e2 . . . does not express a valid run in A, it
expresses a valid run in A but not accepting, or it expresses a valid accepting run in A
but e′1e′2 . . . expresses a valid accepting run in B over the same word. In the game G f

Del(L),
Spoiler has to form a valid accepting run in A since otherwise he loses, and Duplicator
has to mimic it in B stepwise by forming a corresponding accepting run. If Duplicator
fails to do so then the players form a word that is not in L, and she loses the play. We
show this formally as follows.

Lemma 2.6.28. For any two NBAA,B over Σ, let LA,B ⊆ (EA×EB)ω such that ((p0, a1, p′1),
(q0, b1, q′1)) ((p1, a2, p′2), (q1, a2, q′2)) . . . ∈ (EA × EB)ω is in LA,B iff either

• p′i , pi for some i > 0,

• p′i = pi for all i > 0 and p0a1 p1 . . . < AccRun(A), or

• q′i = qi, ai = bi for all i > 0 and q0b1q1 . . . ∈ AccRun(B).

LA,B is solvable with a delay function with constant 1 iffA v B.

Proof. Suppose Duplicator wins the game G(A,B). Let f be a delay function with
constant 1, i.e. f (i) = 1 for all i ∈ N. In the delay simulation game G f

Del(LA,B), Du-
plicator plays as follows. Suppose in the beginning of round i + 1, Spoiler and Du-
plicator have formed the words (p0, a1, p′1) . . . (pi−1, ai, p′i) ∈ (EA)∗ and (q0, b1, q′1) . . .
(qi−1, bi, q′i) ∈ (EB)∗, and Spoiler extends his word with (pi, ai+1, p′i+1) ∈ EA. Hence we
reach the configuration (i+1, (pi, ai+1, p′i+1),D). In the case where there is j, 1 ≤ j ≤ i, such
that p′j , p j, Duplicator simply extends her word by choosing some arbitrary transition
(q, b, q′) ∈ EB. Otherwise, we have p′j = p j for all 1 ≤ j ≤ i and r = p0a1 p1 . . . piai+1 p′i
is a valid run in A. In this case, Duplicator considers what she would do in G(A,B) if
Spoiler has formed the run r and she has formed the run r′ = q0b1q1 . . . qi. If Duplicator
extends her run to qi+1 by reading ai+1 then in the game G f

Del(LA,B), Duplicator continues
by extending her word with (q′i , ai+1, qi+1), i.e. she proceeds to (i + 2, (q′i , ai+1, qi+1),S).

Now suppose Spoiler and Duplicator have formed infinite words ρ = (p0, a1, p′1)
(p1, a2, p′2) . . . and ρ′ = (q0, b1, q′1)(q1, b2, q′2) There are three cases: either ρ does
not correspond to a valid run, i.e. there is i > 0 such that p′i , pi, ρ corresponds to a

40 2.6. EXTENDED SIMULATIONS

valid run but not accepting, i.e. p′i = pi for all i ∈ N, but p0a1 p1 . . . < AccRun(A), or
ρ corresponds to a valid and accepting run in A. In the first two cases, by definition of
LA,B, Duplicator wins. In the third case, since Duplicator plays according to the wining
strategy in G(A,B), we have ai = bi for all i ∈ N and q0b1q1 . . . is accepting. Hence
((p0, a1, p′1), (q0, b1, q′1)) ((p1, a2, p′2), (q1, b2, q′2)) . . . is in LA,B. Duplicator also wins the
game G f

Del(LA,B). We can also show similarly that Duplicator wins G(A,B) if she wins
the game G f

Del(LA,B). �

Delay simulation can be used to approximate language inclusion. If there exists d ∈ N
such that the language LA,B is solvable with a delay function with constant d then language
inclusion holds.

Corollary 2.6.29. For any two NBA A, B over Σ if LA,B is solvable with some delay
function with constant d then L(A) ⊆ L(B).

Proof. For any word w = a1a2 . . . ∈ L(A), let ρ = p0a1 p1 . . . be an accepting run
over w in A. Let f be some delay function with constant d such that LA,B is solvable
with f . We then consider the game G f

Del(LA,B), assuming that Spoiler forms a word
(p0, a1, p1)(p1, a2, p2) . . . and Duplicator plays according to the winning strategy. Since
Duplicatorwins, she will form (q0, a1, q1)(q1, a2, q2) . . . such that ((p0, a1, p1), (q0, a1, q1))
((p1, a2, p2), (q1, a2, q2)) . . . ∈ LA,B. Since p0a1 p1 . . . is an accepting run in A, by defini-
tion of LA,B, q0a1q1 . . . is an accepting run in B. Hence w ∈ L(B). �

In the next chapter, we will introduce our notion of buffered simulation and compare
it with all the extended simulations that have been mentioned in this chapter. We will
further show the advantage and disadvantage of using the extended simulations when
approximating language inclusion in comparison to buffered simulation in Chapter 5.

Chapter 3

Buffered Simulation

In this chapter, we give the formal definition of buffered simulation which is the main
topic of this work. We will start with a simple case of buffered simulation where only one
buffer is involved. In such a case, buffered simulation is a simple extension of standard
fair simulation. It extends the game framework of the standard fair simulation such that
Duplicator can postpone her move and use the buffer to temporarily store letter that is
read by Spoiler, before she executes it in her structure. We will consider some variants
of such a simulation game and show how they relate to the extended simulations that we
have listed in the previous chapter.

From the case of one buffer, we will consider its natural extension to the case where
multiple buffers are involved. Duplicator can use several buffers to store Spoiler’s letters
in which each letter determines to which buffers it should be stored. We will show various
examples of buffered simulation with multiple buffers and also its expressive power.

3.1 Simulation with One Buffer

To illustrate buffered simulation with one buffer, consider a simulation game where a
FIFO buffer is available throughout the play. Spoiler plays by moving his pebble one
step in each round as in the standard fair simulation, but Duplicator is allowed to skip
her turn and use the buffer to store Spoiler’s letter. For simplicity, let us assume that the
capacity of the buffer is k ∈ N. This simply means that Duplicator can only use the buffer
to store at most k many letters. Intuitively, a play proceeds as follows. In each round,
Spoiler moves his pebble one step inA by reading a letter, suppose a, and then pushes a
copy of a to the buffer. Duplicator responds to this by either skipping her turn and doing
nothing, or popping some letters from the buffer, suppose a1, . . . , an, and then moving her
pebble in B, n steps, by reading a1 . . . an. After Duplicator’s turn, the buffer should not
contain more than k many letters, otherwise Duplicator loses immediately. The play then
proceeds to the next round.

The winning condition in the buffered simulation game is the same as in the standard
fair simulation game. Duplicator wins iff Spoiler eventually gets stuck or Duplicator
forms an accepting run whenever Spoiler forms one. We can formally define buffered
simulation with one buffer as follows.

Definition 3.1.1. LetA, B be two NBA over Σ and k ∈ N. The buffered simulation game
with one buffer of capacity k is Gk(A,B) = ((V,V0,V1, E), v0,Win) where Spoiler’s and

41

42 3.1. SIMULATION WITH ONE BUFFER

Duplicator’s configurations are respectively

V1 = QA × Σ≤k × QB × {>,⊥} × {S},

V0 = QA × Σ≤k+1 × QB × {>,⊥} × {D},

V = V0 ∪ V1, the edge relation E is defined as

(p,w, q, b,S)→ (p′,wa, q, b,D) in E iff p a
−−→ p′,

(p,w, q, b,D)→ (p,w′, q′, b′,S) in E iff ∃u = a1 . . . an ∈ Σ∗ such that q u
−−→ q′,

w = uw′, and

b′ =

> if u , ε and q u
−−→

F
q′

⊥ otherwise,

the initial configuration is v0 = (p0, ε, q0,⊥,S) where p0, q0 is the pair of the initial states
of A, B and an infinite play v0v1 . . . ∈ Win iff there exist infinitely many i such that
vi = (p,w, q,>,D) or there are only finitely many i such that vi = (p,w, q, b,S) with
p ∈ FA. We writeAvk B if Duplicator wins Gk(A,B).

In the configuration of Gk(A,B), the first and the third components respectively rep-
resent the position of Spoiler’s and Duplicator’s pebbles, the second one represents the
content of the buffer, the fourth one remembers whether Duplicator has moved through
an accepting state, and the last one tells us which player has the next turn. It is not nec-
essary to remember whether Spoiler has moved through an accepting state since he only
moves one step in each round. We can simply determine this by looking at Spoiler’s
current state.

Note that we include the requirement where Duplicator should obey the capacity
restriction by the definition of a valid configuration. Spoiler’s configuration (p,w, q, b,S)
is only valid if |w| ≤ k. Hence Duplicator can only proceed to a configuration where the
buffer contains at most k many letters. If such a move is not possible then Duplicator
gets stuck and loses the play immediately. However, since we only check the capacity
restriction after Duplicator’s move, the configuration (p,w, q, b,D) is valid if |w| ≤ k + 1.
This intuitively means that Spoiler can push one more letter to a “full” buffer and it is
Duplicator’s responsibility to shorten the buffer again. We illustrate this condition in the
following example.

Example 3.1.2. Consider again the two NBAA,B from Example 2.5.6. For convenience,
we present them again as follows.

p0 p1

pb

pc

a
b

c

a

a

q0

qb q′b

qc q′c

a

a

b a

c a

We have A v1 B since Duplicator wins G1(A,B) with the following winning strategy.
After Spoiler proceeds from the initial configuration (p0, ε, q0,⊥,S) to (p1, a, q0,⊥,D) by
reading a, Duplicator skips her turn. Hence at the end of the first round, we reach the con-
figuration (p1, a, q0,⊥,S). Spoiler then continues to some configuration (px, ax, q0,⊥,D)

CHAPTER 3. BUFFERED SIMULATION 43

p0 p1 · · · pk+1

pb

pc

a a a
b

c

a

a

q0

q1 · · · q2k+1 qb

q2 · · · q2k+2 qc

a

a

a a b a

a a c ak

k

Figure 3.1: NBAAk, Bk in whichAk v
k+1 Bk, butAk @

k Bk.

by reading some x ∈ {b, c}. Duplicator responds to this by reading ax and proceeds
to (px, ε, q′x,>,S), i.e. she pops ab or ac from the buffer by going to the accepting state
q′b or q′c respectively. From the configuration (px, ε, q′x,>,S), it is not hard to see that
Duplicator can continue accordingly and win the play.

In the game Gk(A,B), the capacity constraint has to be satisfied only after Duplica-
tor’s turn. Hence it is also possible to consider buffered simulation where the capacity
of the buffer is 0. Intuitively, this just means that Duplicator has to pop the letter that is
pushed by Spoiler immediately. In fact, buffered simulation with one buffer of capacity 0
is equivalent to the ordinary simulation. We formally show this as follows.

Theorem 3.1.3. v = v0.

Proof. Let A, B be two NBA and suppose Duplicator wins G(A,B). In the game
G0(A,B), Duplicator plays as follows. In any round i > 0, if we are at some configura-
tion (p, a, q, b,D) then we look at what Duplicator would do in the game G(A,B) if she
is at the configuration (p, a, q,D). If she reads a by going to q′, i.e. proceeds to (p, q′,S),
then in G0(A,B), Duplicator does the same. She proceeds to (p, q′, b′,S) where b′ = >

iff q′ ∈ FB. Duplicator moves her pebble in the same way as in in G(A,B).
Let v0v1 . . . be a play that is obtained in the game G0(A,B). Since Duplicator wins

G(A,B), either there exist infinitely many i such that vi = (pi, qi, bi,D) with qi ∈ FA, or
there are infinitely many i such that vi = (pi, ai, qi, bi,S) with qi ∈ FB and hence bi = >.
Thus Duplicatorwins the play v0v1 She wins the gameG0(A,B) if she winsG(A,B).
The other direction can also be shown similarly. �

In the buffered simulation game Gk(A,B), Duplicator has a preview of Spoiler’s
move. The bigger the buffer, the more preview Duplicator can have. Actually, winning
is monotone in the amount of information available about the opponent’s future moves.
Whenever Duplicator wins the buffered simulation game Gk(A,B), she also wins any
game Gk′(A,B) in which k′ ≥ k.

Theorem 3.1.4. v0 (v1 (v2 . . .

Proof. For any k ∈ N, we have vk ⊆ vk+1. Duplicator can use the winning strategy in
Gk(A,B) for the game Gk+1(A,B).

For the strictness part, consider the automata in Figure 3.1. For all k ∈ N, Duplicator
wins the game Gk+1(Ak,Bk). Intuitively, she skips her turn until Spoiler’s pebble reaches
pk+1. Hence we eventually reach the configuration (pk+1, ak+1, q0,⊥,S). Spoiler then will
read some x ∈ {b, c} and proceed to the configuration (px, ak+1x, q0,⊥,D). Duplicator

44 3.1. SIMULATION WITH ONE BUFFER

responds to this by popping all the letters from the buffer and reaches the corresponding
accepting state, i.e. she proceeds to (px, ε, qx,>,D). From such a configuration, Duplica-
tor can play accordingly and win the play.

Duplicator, however, loses the game Gk(Ak,Bk). In Gk(Ak,Bk), the winning strategy
for Spoiler is to initially move his pebble to pk+1. Since the capacity of the buffer is k,
in some round k′ ≤ k + 1, Duplicator moves her pebble. At the end of round k + 1, we
reach some configuration (pk+1,w, qi,⊥, S) where w ∈ a∗ and 1 ≤ i ≤ 2k + 2. If i is odd
then Spoiler reads c and proceeds to (pc,wc, qi,⊥,D), otherwise he reads b and proceeds
to (pb,wb, qi,⊥,D). Since from any state qi, if i is odd, there is no c-transition, and if i is
even, there is no b-transition, from such configurations, Duplicator eventually gets stuck
and loses the play. �

It is also possible to consider buffered simulation in which the capacity of the buffer
is unbounded. This simply means that there is no bound on how many letters Duplicator
can store to the buffer. She can store as many letters as she wants. Let us denote such
a game with Gω(A,B). The formal definition of Gω(A,B) is basically the same as Def-
inition 3.1.1. The only difference is in the definition of Spoiler’s and Duplicator’s valid
configurations. For the game Gω(A,B), we have

V1 = QA × Σ∗ × QB × {>,⊥} × {S}, (3.1)

V0 = QA × Σ∗ × QB × {>,⊥} × {D}. (3.2)

We writeA vω B if Duplicator wins Gω(A,B).

Example 3.1.5. Consider the following two NBA A and B that are obtained by slightly
modifying the automata from Example 3.1.2.

p0 p1

pb

pc

a
b

c

a

a

a

q0

qb q′b

qc q′c

a

a

b a

c a

a

a

We have A vω B since Duplicator has a winning strategy in the game Gω(A,B) as
follows. She skips her turns until Spoiler moves the pebble to the accepting state pb or
pc, i.e. from any configuration

(p,w, q0,⊥,D) (3.3)

where w ∈ Σ∗, if p ∈ {p0, p1}, Duplicator proceeds to (p,w, q0,⊥,S).
If Spoiler eventually reaches pb or pc, i.e. reaches the configuration (3.3) with p = px

and x ∈ {b, c}, then Duplicator moves her pebble from q0 to q′b or q′c, respectively, by
popping all the letters from the buffer. She proceeds to

(px, ε, q′x,>,S). (3.4)

From such a configuration, it is not hard to see that Duplicator can continue accordingly
and win the play.

In the case where Spoiler never moves his pebble to pb or pc then he does not form
an accepting run. We obtain a play v0v′1v1 . . . in which for all i > 0, v′i = (p0,w, q, b,D)
and p0 < FA. In such a case, Duplicator wins the play. Hence Duplicator wins the game
Gω(A,B).

CHAPTER 3. BUFFERED SIMULATION 45

Buffered simulation with an unbounded buffer includes the one with a bounded buffer.
If Duplicator wins Gk(A,B) for some k ∈ N then she also wins Gω(A,B) with the same
winning strategy. For all k ∈ N, we have vk ⊆ vω. This inclusion however is strict. We
formally show this in the following proposition.

Proposition 3.1.6. For any k ∈ N, vk (vω.

Proof. For the strictness part, consider the two NBA A, B from Example 3.1.5. For any
k ∈ N, Spoiler wins the game Gk(A,B). The winning strategy is as follows. He loops in
p0 by reading a until Duplicatormoves to qb or qc. In other words, from any configuration
(p0,w, q0,⊥,S) where w ∈ a≤k, Spoiler proceeds to (p0,wa, q0,⊥,D). Since the capacity
of the buffer is bounded by k, there is a round k′ ≤ k + 1 where Duplicator leaves q0. The
play eventually reaches a configuration (p0,w′, qx,⊥,S) where w′ ∈ a≤k and x ∈ {b, c}, In
such a case, Spoiler continues to px where x ∈ {b, c} \ {x} by reading ax, i.e. he proceeds
to (p1,w′a, qx,⊥,D) by reading a, and after Duplicator continues to some configuration
(p1,w′′, qx,⊥,S) by skipping her turn or popping some as from the buffer, he proceeds to

(px,w′′x, qx,⊥,S) (3.5)

by reading x.
From such a configuration, Spoiler continues by looping in px for the rest of the play.

Since from qx there is no x-transition, Duplicator eventually will get stuck and lose the
play.

Duplicator loses the game Gk(A,B) for all k ∈ N. However, from Example 3.1.5, we
have seen that she wins Gω(A,B). Hence we have the desired property. �

Buffered simulation with an unbounded buffer does not characterise language inclu-
sion. There are cases in which Duplicator loses the buffered simulation game with an
unbounded buffer, but language inclusion holds.

Corollary 3.1.7. There are two NBAA, B such that L(A) ⊆ L(B), butA @ω B.

Proof. Consider the pair of automata A′, B′ that are obtained from A, B from Example
3.1.5 by considering all states to be accepting. Hence L(A′) = L(B′) = a+·(aω∪(b∪c)·aω).
However, we have A′ @ω B′. The winning strategy for Spoiler in the game Gω(A′,B′)
is similar to the one that we have described in the proof of Proposition 3.1.6. Intuitively,
Spoiler loops in the initial state ofA′ indefinitely until Duplicator leaves the initial state
of B′. If Duplicator eventually leaves the initial state then we can show similarly as in
the proof of Proposition 3.1.6 that she eventually gets stuck and lose the play. However,
if Duplicator never leaves the initial state then she does not form an accepting run, but
Spoiler forms one. We obtain a play v0v1 . . . in which there are only finitely many i such
that vi = (p,w, q,>,S), but there are infinitely many i such that vi = (p,w, q, b,D) with
p ∈ FA. Hence Spoiler wins Gω(A′,B′). �

Any buffered simulation game Gk(A,B) with k ∈ N ∪ {ω}, can be seen as a parity
game. Player 1 corresponds to Spoiler and player 0 to Duplicator. It is not hard to see
that the winning condition of the buffered simulation game can be expressed as a parity
condition.

Theorem 3.1.8. For any two NBA A,B over Σ and k ∈ N ∪ {ω}, we can construct in
polynomial time a parity game G with priorities 0, 1, and 2 such that Duplicator wins
Gk(A,B) iff player 0 wins the parity game G.

46 3.1. SIMULATION WITH ONE BUFFER

Proof. Let G = (V,V0,V1, E) be the configuration graph of Gk(A,B) and v0 the initial
configuration of Gk(A,B). Consider the parity game G = (G, v0,Ω) where Ω is a priority
function that mimics the winning condition of Duplicator in the game Gk(A,B), i.e.

Ω(v) =


2 if v = (p,w, q,>,S)
1 if v = (p,w, q, b,D) and p ∈ FA

0 otherwise.
(3.6)

Suppose Duplicator wins Gk(A,B). In the parity game G, player 0 plays according to the
winning strategy for Duplicator in Gk(A,B). Let π = v0v1 . . . be a play that is obtained
in G. Since Duplicator wins Gk(A,B), either there exist infinitely many i such that vi =

(p,w, q,>,S) or there are only finitely many i such that vi = (p,w, q,>,D). In the first
case, the highest priority that is seen infinitely often is 2 and in the second one, it is 0.
Hence player 0 wins G. We can also show the other direction similarly. �

This shows that the buffered simulation game Gk(A,B), k ∈ N ∪ {ω}, can be seen as
a parity game by considering a priority function as in (3.6). Recall that in a parity game,
the winner always has a memoryless strategy. Thus the winner of Gk(A,B), k ∈ N ∪ {ω},
also has a memoryless winning strategy.

There is also a special kind of winning strategy for Duplicator if she ever wins a
buffered simulation game. If Duplicator wins the buffered simulation game Gk(A,B)
for some k ∈ N ∪ {ω}, she also has a winning strategy in which she only pops at most
one letter in each round. We can convert any winning strategy in the buffered simulation
game to such a special one. Intuitively, if the strategy tells Duplicator to move her pebble
by popping several letters from the buffer then Duplicator remembers the path that she
should have taken and moves the pebble in the next rounds by popping the letters one by
one.

To formally show this, let Gk
One(A,B) be a variant of buffered simulation game where

in every round, Duplicatormoves her pebble at most only one step. The formal definition
of Gk

One(A,B) is basically the same as the one in Definition 3.1.1, but with |u| ≤ 1. We
writeA vk

One B if Duplicator wins Gk
One(A,B).

Theorem 3.1.9. vk
One= vk.

Proof. The left-to-right direction is trivial since if Duplicator wins Gk
One(A,B) then Du-

plicator also wins Gk(A,B) by considering the same winning strategy.
For the other direction, suppose Duplicator wins Gk(A,B). Let σ be a memory-

less winning strategy for Duplicator in the game Gk(A,B). In Gk
One(A,B), from the

initial configuration, Duplicator plays according to σ until at one point the strategy
tells Duplicator to pop n > 1 many letters, i.e. to proceed from some configuration
(p, a1 . . . am, q, b,D) to

(p, an+1 . . . am, qn, b′,S), (3.7)

by taking some path qa1q1 . . . anqn. In the game Gk
One(A,B), Duplicator pops the letters

a1, . . . , an one by one. Note that if during such moves, Spoiler moves his pebble along
the path r = pam+1 p1 . . . am+n pn then from the configuration (p, a1 . . . am, q, b, D), the play
proceeds successively to the configurations:

(p, a2 . . . am, q1, b1,S), (p1, a2 . . . am+1, q1, b1,D), . . . , (pn, an+1 . . . am+n, qk, bk,D),

CHAPTER 3. BUFFERED SIMULATION 47

where bi = > iff qi ∈ FB for all i ∈ {1, . . . , k}. Duplicator then looks again what she
would do in Gk(A,B) if from the configuration (3.7), Spoiler continues by moving the
pebble along the path r. She then repeats this procedure indefinitely.

Let π = v0v1 . . . be the play that is obtained in the game Gk
One(A,B). Since Duplica-

tor forms the same run that she would have formed in Gk(A,B) and she wins the game
Gk(A,B), there exist infinitely many i such that vi = (p,w, q,>,D) or there are only
finitely many i such that vi = (p,w, q, b,D) with p ∈ FA. Hence Duplicator also wins the
play π. She wins the game Gk

One(A,B). �

In the case where we consider a game with a bounded buffer, there is even a more
restricted winning strategy for Duplicator if she ever wins the buffered simulation game.
If Duplicator wins the game Gk(A,B) in which k ∈ N, there is a winning strategy where
Duplicator skips her turn for the first k rounds and pops only one letter in each round for
the rest of the play. Note that if Duplicator plays according to such a strategy then after
the k-th round, the buffer is always full, i.e. it always contains k many letters at the end
of the round. In each round i > k, Duplicator always forms a run that is k steps behind
Spoiler’s run.

We can convert any Duplicator’s winning strategy in Gk(A,B), where k ∈ N, to such
a special one. Intuitively, if the strategy tells Duplicator to move her pebble in some
round i ≤ k, Duplicator remembers the path that she should have taken and only moves
the pebble after round k, step by step. To show this formally, let Gk

Full(A,B), k ∈ N, be a
restricted variant of buffered simulation where Duplicator’s move is restricted such that
she has to skip her turn in the first k rounds and move the pebble one step in each round
for the rest of the play. The formal definition of Gk

Full(A,B) is the same as the one in
Definition 3.1.1, but with |u| = 0 if |w| ≤ k and |u| = 1 if |w| = k + 1. We write A vk

Full B

if Duplicator wins Gk
Full(A,B). In the following, we show that the game Gk

Full(A,B) and
the original buffered simulation game Gk(A,B) are indeed equivalent.

Theorem 3.1.10. vk
Full= v

k.

Proof. The left-to-right direction is trivial. For the right-to-left direction, by Theorem
3.1.9, it suffices to show that vk

One ⊆v
k
Full. Now suppose Duplicator wins Gk

One(A,B).
The winning strategy for Duplicator in Gk

Full(A,B) is as follows. Initially, she skips her
turns for the first k rounds. Suppose in the first k rounds, Spoiler moves his pebble along
the run p0a1 p1 . . . pk and in round k + 1, he goes to pk+1 by reading ak+1. Hence in round
k + 1, we are in the configuration

(pk+1, a1 . . . ak+1, q0,⊥,D). (3.8)

Duplicator then looks at what she would do in Gk
One(A,B) if from the initial configura-

tion, Spoilermoves the pebble along the path r = p0a1 p1 . . . pk+1. If Duplicator responds
to this by moving the pebble along q0a1q1 . . . qn and proceeding to the configuration

(pk+1, an+1 . . . ak+1, qn, bn,D) (3.9)

then in the game Gk
Full(A,B), Duplicator pops the letters a1, . . . , an one by one. If during

such moves, Spoiler moves his pebble along the path r′ = pk+1ak+2 pk+2 . . . ak+n+1 pk+n+1

then from the configuration (3.8), the play proceeds successively to the configurations:

(pk+1, a2 . . . ak+1, q1, b1,S), (pk+1, a2 . . . ak+2, q1, b1,D), . . . , (pk+n+1, an+1 . . . ak+n+1, qn, bn,D),

48 3.2. THE FLUSHING VARIANT

where bi = > iff qi ∈ FB for all i ∈ {1, . . . , k}. Duplicator again looks at what she would
do in Gk

One(A,B) if from configuration (3.9), Spoiler moves along r′. She then repeats
the same procedure for the rest of the play.

Since Duplicator forms the same run that she would have formed in Gk
One(A,B) and

she wins Gk
One(A,B), in the play v0v1 . . . that is formed in Gk

Full(A,B), there are infinitely
many i with vi = (p,w, q,>,S) or finitely many i such that vi = (p,w, q, b,D) with p ∈ FA.
Duplicator also wins the game Gk

Full(A,B). �

Hence in the buffered simulation game with one buffer of capacity k ∈ N, if Duplica-
tor wins the game Gk(A,B), we can assume that there is a winning strategy that initially
lets the buffer fill up with k many letters and then moves alternatingly with Spoiler by
popping one letter in each round for the rest of the play.

3.2 The Flushing Variant
Another interesting variant of buffered simulation game is the one where Duplicator is
required to pop all the letters from the buffer each time she moves the pebble. Hence afer
Duplicator moves, the buffer is always empty. Let us denote such a game Gk

Flush(A,B)
and call it the flushing variant. Moreover, let us also call the move where Duplicator pops
all the letters from the buffer flushing. The formal definition of Gk

Flush(A,B) only differs
from Definition 3.1.1 in the length of the word u that is chosen by Duplicator. We either
have |u| = 0 or |u| = |w|. We write A vk

Flush B if Duplicator wins the flushing variant
Gk

Flush(A,B).

Example 3.2.1. Consider the following two NBAA, B that we have presented in Figure
1.2. For convenience, we present the automata again as follows.

p0 p1
a

b, c qa

qb

qc

a

a

b

b

c

c

Duplicator loses the flushing variant Gk
Flush(A,B) for any k ∈ N. Spoiler wins with the

following winning strategy. He initially goes to p1 and loops there by reading b until
at one point Duplicator flushes the buffer and leaves the initial state. Formally, from
the initial configuration (p0, ε, qa,⊥,S), Spoiler proceeds to (p1, a, qa,⊥,D) and from any
configuration (p1,w, qa,⊥,S) where w , ε, he continues to (p1,wb, qa,⊥,D).

Since the capacity of the buffer is bounded by k, there is some round k′ ≤ k + 1 where
Duplicator flushes the buffer. Hence at round k′ + 1, we reach some configuration (p1, ε,
qx,>,S) where x ∈ {b, c}. Spoiler then continues by reading x where x ∈ {b, c} \ {x}. He
proceeds to

(p1, x, qx,>,D). (3.10)

Spoiler then reads b by looping in p1 for the rest of the play. Duplicator eventually gets
stuck because there is no x-transition from qx. Thus Spoiler wins Gk

Flush(A,B).

Similarly to the general case, we can also consider the flushing variant for the case
where we consider an unbounded buffer. For any NBA A, B, let us denote such a game
with GωFlush(A,B). The definition of GωFlush(A,B) is the same as Gk

Flush(A,B) where k ∈ N.

CHAPTER 3. BUFFERED SIMULATION 49

The only difference is in the definition of Spoiler’s and Duplicator’s valid configurations.
They are respectively defined as in (3.1) and (3.2). We write A vωFlush B if Duplicator
wins GωFlush(A,B).

Example 3.2.2. Consider again the two NBAA, B from Example 3.2.1. Duplicator also
loses the flushing variant GωFlush(A,B). The winning strategy for Spoiler is the same as in
Example 3.2.1. He reads abbb . . . indefinitely until Duplicator flushes the buffer by going
to some state qx where x ∈ {b, c}. Spoiler then reads x ∈ {b, c} \ {x} to make Duplicator
get stuck.

In this case, Duplicator additionally might skip her turn forever and never flushes
the buffer. However Spoiler still wins in such a case since he forms an accepting run
and Duplicator does not. We obtain a play v0v′1v1 . . . where for all i > 0, we have vi =

(p1,w, qa,⊥,S) and v′i = (p1,w, qa,⊥,D) where w ∈ ab∗. Since p1 ∈ FA, Spoiler wins
the play. He wins the game GωFlush(A,B).

Unlike the variantsGk
Full(A,B) andGk

One(A,B), the flushing variantGk
Flush(A,B) is not

equivalent to the original buffered simulation game. We do not have the inclusion vk ⊆

vk
Flush because there are cases in which Duplicator wins the general buffered simulation

game, but loses the corresponding flushing variant.

Theorem 3.2.3. For any k ∈ N+ ∪ {ω}, vk
Flush(v

k.

Proof. The inclusion part is trivial since any winning strategy in Gk
Flush(A,B) is also a

winning strategy in Gk(A,B). For the strictness part, consider the two NBA A, B in
Example 3.2.1. We have seen that Duplicator loses the flushing variant Gk

Flush(A,B) for
any k ∈ N ∪ {ω}. However, she wins the general buffered simulation game Gk(A,B)
with k = 1. Initially, Spoiler will read a in the first round. He will proceed from the
initial configuration (p0, ε, qa,⊥,S) to (p1, a, qa,⊥,D). Duplicator then skips her turn.
She proceeds to the configuration (p1, a, qa,⊥,S). Now from any configuration

(p1, x, qx, bx,S) (3.11)

where x ∈ {a, b, c} and bx ∈ {>,⊥}, Spoiler will read b or c and continue to the configura-
tion (p1, xb, qx, bx,D) or (p1, xc, qx, bx,D), respectively. In the first case, Duplicator pops
x from the buffer and proceeds to (p1, b, qb,>,S) and in the second one to (p1, c, qc,>,S).
Hence we are back again to the configuration of the form (3.11). Duplicator repeats
this procedure indefinitely. In other words, Duplicator skips her turn in the first round
and then moves the pebble one step for the rest of the play according to the letter that
is pushed by Spoiler to the buffer. If Spoiler pushes b then Duplicator pops one letter
from the buffer and moves from her current state to qb. However, if Spoiler pushes c
then she moves to qc. Thus in each round, Duplicator’s has a preview of Spoiler’s move
one step. This enables her to move the pebble accordingly. She will never get stuck.
Duplicator will form an accepting run, i.e. we obtain a play v0v′1v1v′2 . . . where for all
i > 1, we have vi = (p,w, q,>,S). Hence Duplicator wins the play. He wins the game
G1(A,B). By Theorem 3.1.4 and Proposition 3.1.6, she also wins the game Gk(A,B) for
all k ∈ N+ ∪ {ω}. �

The flushing variant also admits a hierarchy with respect to the capacity of the buffer
as in the general case. It is not hard to see that the inclusions vk

Flush ⊆ v
k+1
Flush and vk

Flush ⊆

vωFlush hold for all k ∈ N. The inclusions are indeed strict since the examples that are used
for the general case in the proof of Theorem 3.1.4 and Theorem 3.1.6 also work for the
flushing variant. Thus we have the following theorem.

50 3.2. THE FLUSHING VARIANT

p0 · · · pk pk+1

pb

pc

a a a
b

c

a

a

q0 · · · qk

qk+1 qb

qk+2 qc

a a
a

a

b a

c ak k

Figure 3.2: NBAAk, Bk in whichA @k
FFlush B, butAvk

Flush B.

Theorem 3.2.4. For all k ∈ N,

• vk
Flush (v

k+1
Flush.

• vk
Flush (v

ω
Flush.

The Full-Flushing Variant

Beside the flushing variant, we can also consider a more restricted variant where Dupli-
cator is only allowed to flush the buffer after the buffer is full. This variant of course
only makes sense if the capacity of the buffer is bounded. Otherwise, the buffer will never
be full. Let us call such a variant full-flushing variant and denote it with Gk

FFlush(A,B),
k ∈ N. The full-flushing variant proceeds exactly like the flushing variant Gk

Flush(A,B),
but in every round, Duplicator skips her turn if Spoiler does not push a letter into a full
buffer, otherwise she flushes the buffer. The formal definition of Gk

FFlush(A,B) only differs
from Definition 3.1.1 in the length of the word u that is chosen by Duplicator. We have
|u| = 0 if |w| ≤ k and |u| = |w| if |w| = k + 1. We writeA vk

FFlush B if Duplicator wins the
full-flushing variant Gk

FFlush(A,B).
The full-flushing variant is weaker than the ordinary flushing variant. There are cases

where Duplicator loses the full-flushing variant but wins the ordinary flushing variant.
We will show this in general, i.e. for any k ∈ N, there is a pair of automata A, B such
that Duplicator loses the full-flushing variant Gk

FFlush(A,B), but wins the flushing variant
Gk

Flush(A,B).

Theorem 3.2.5. For any k > 0, vk
FFlush (v

k
Flush.

Proof. The inclusion is trivial. For the strictness part, let k > 0 and consider two NBA
Ak, Bk as given in Figure 3.2. We have Ak @

k
FFlush Bk. Spoiler has a winning strategy in

the game Gk
FFlush(Ak,Bk). He first reads ak+1. Since Duplicator is only allowed to flush

the buffer when the buffer is filled with k + 1 many letters, the play eventually proceeds
to the configuration (pk+1, ak+1, q0,⊥, D). From this configuration, Duplicator has no
choice except to flush the buffer. She reads ak+1 and proceeds to (pk+1, ε, qk+1, ⊥,S) or
(pk+1, ε, qk+2, ⊥, S). In the first case, Spoiler continues to (pc, c, qk+1,⊥,D) by reading
c and in the second one to (pb, b, qk+2,⊥,D) by reading b. From such configurations,
Duplicator eventually will get stuck since the state qk+1 only has a b-transition and the
state qk+2, a c-transition. Hence Duplicator loses the game Gk

FFlush(Ak,Bk).
Duplicator, however, wins the gameGk

Flush(Ak,Bk). She wins with the following strat-
egy. After Spoiler proceeds from the initial configuration (p0, ε, q0,⊥,S) to (p1, a, q0,⊥,
D) by reading a, Duplicator immediately pops a from the buffer. She proceeds to (p1, ε,
q1, ⊥, S). Duplicator then skips her turn until Spoiler reaches either pb or pc. We even-
tually reach the configuration (pb, akb, p1,⊥,D) or (pc, akc, p1,⊥,D). In this case, Du-

CHAPTER 3. BUFFERED SIMULATION 51

plicator flushes the buffer and proceeds to (pb, ε, qb,>,S) or (pc, ε, qc,>,S) respectively.
From this configuration, Duplicator can play accordingly and win the play. �

Unlike the flushing variant and the general case of buffered simulation, the full-
flushing variant does not admit a hierarchy as the capacity of the buffer grows. If Dupli-
cator wins the full-flushing variant Gk

FFlush(A,B) then it is not necessary that Duplicator
also wins Gk′

FFlush(A, B) for any k′ ≥ k.

Theorem 3.2.6. For any k > 0, vk
FFlush * v

k+1
FFlush.

Proof. Consider again the NBA given in Figure 3.2. For any k > 0, we haveAk+1 v
k
FFlush

Bk+1. Duplicator wins the game Gk
FFlush(Ak+1,Bk+1) with the following winning strategy.

She first waits until the buffer is filled with k+1 many letters, i.e. until the play proceeds to
(pk+1, ak+1, q0,⊥,D). From this configuration, Duplicator flushes the buffer and proceeds
to the configuration (pk+1, ε, qk+1,⊥,S). Duplicator then waits again until the buffer is
filled with k + 1 many letters, i.e. until the play proceeds to (pb, abak−1, qk+1,⊥,D) or
(pc, acak−1, qk+1,⊥,D). From such configurations, Duplicator again flushes the buffer
and proceeds to the configuration (pb, ε, qb,>,S) or (pc, ε, qc,>,S), respectively. From
this configuration, Duplicator can continue accordingly and win the play. Duplicator,
however, loses the game Gk+1

FFlush(Ak+1,Bk+1) as we have seen in the proof of Theorem
3.2.5. �

The flushing and the full-flushing variants of buffered simulation with one buffer are
closely related to the static and dynamic multi-letter simulations. We will investigate
their relations, together with the relation of buffered simulation with one buffer to other
extended simulations listed in Chapter 2 in the following section.

3.3 Relation to Other Simulations

3.3.1 Static Multi-Letter Simulation
Let us start with the static multi-letter simulation. Recall that in the static k-letter sim-
ulation game, at each round, Spoiler moves his pebble k steps and Duplicator follows
this by moving her pebble k steps. This is basically equivalent to the the full-flushing
variant of buffered simulation where Duplicator has to skip her turn until Spoiler pushes
k many letters to the buffer and then flushes the buffer. The static k-letter simulation is
indeed equivalent to the full-flushing variant of buffered simulation where the capacity of
the buffer is k − 1. Note that we have k − 1 instead of k since in the game Gk−1

FFlush(A,B),
Spoiler can still push one more letter to a full buffer before Duplicator flushes the buffer.

Theorem 3.3.1. For any k > 0, vk
Stat = vk−1

FFlush.

Proof. Suppose Duplicator wins Gk
Stat(A,B). The winning strategy for Duplicator in

Gk−1
FFlush(A,B) is as follows. From some configuration (p, ε, q, b,S), if the play eventu-

ally proceeds to the configuration (pk, a1 . . . ak, q,⊥,D) because Spoilermoves his pebble
along the run r = pa1 p1 . . . pk then Duplicator looks at what she would do in the game
Gk

Stat(A,B) if she is in some configuration (pk, a1 . . . ak, q, b,D) where b = > iff at least
one of p1, . . ., pk is a final state. If Duplicator proceeds to the configuration (pk, q′, b′,S)
then in Gk−1

FFlush(A,B), she proceeds to (pk, ε, q′, b′,S).

52 3.3. RELATION TO OTHER SIMULATIONS

Now let v0v1 . . . be the play that is obtained in Gk−1
FFlush(A,B). Since Duplicator wins

Gk
Stat(A,B), either there exist infinitely many i such that vi = (p, ε, q,>,S) or there are

only finitely many i such that vi = (p,w, q, b,D) with pi ∈ FA. Hence Duplicator also
wins the play v0v1 She wins the game Gk

FFlush(A,B). The other direction can also be
shown similarly. �

3.3.2 Dynamic Multi-Letter Simulation

For the dynamic k-letter simulation, we will show similarly that it is included in the flush-
ing variant of buffered simulation where the buffer is of capacity k − 1. Recall that in
the dynamic k-letter simulation game, at each round, Duplicator can choose how long
Spoiler should move his pebble. If Duplicator chooses ` ≤ k then Spoiler moves his
pebble ` steps and Duplicator responds to this by moving her pebble also ` steps. Any
winning strategy in the dynamic k-letter simulation game can be translated to the one for
the flushing variant of buffered simulation of capacity k − 1. Intuitively, if in the dynamic
k-letter simulation game Duplicator chooses ` then in the flushing variant of buffered
simulation, Duplicator skips her turn and lets Spoiler push ` many letters to the buffer
before Duplicator flushes the buffer. Hence if Duplicatorwins the dynamic k-letter game
Gk

Dyn(A,B), she also wins the flushing variant Gk−1
FFlush(A,B).

Theorem 3.3.2. For any k > 0, vk
Dyn ⊆ v

k−1
Flush.

Proof. Suppose Duplicator wins the game Gk
Dyn(A,B). The winning strategy for Dupli-

cator in the game Gk−1
Flush(A,B) is as follows. If in Gk

Dyn(A,B), Duplicator proceeds from
the initial configuration (p0, ε, q0, b,D) to (p0, q0, `,⊥,S) then in the game Gk−1

Flush(A,B)
Duplicator initially skips her turn until Spoiler pushes ` many letters to the buffer by
moving his pebble along some path r = pa1 p1 . . . p`. Hence we reach some configuration
(p`, a1 . . . a`, q0,⊥,D). Duplicator then looks at what she would do in Gk

Dyn(A,B) if she
is in the configuration (p`, a1 . . . a`, q0, b,D) where b = > iff at least one of p1, . . . , p`
is final. If Duplicator proceeds to (p`, q′, `′, b′,S) then in the game Gk−1

FFlush(A,B), she
proceeds to (pk, ε, q′, b′,S), waits until Spoiler pushes `′ many letters to the buffer, and
then repeats the same procedure.

Now let v0v1 . . . be the play that is obtained in Gk−1
Flush(A,B). Since Duplicator wins

Gk
Dyn(A,B), either there exist infinitely many i such that vi = (p, ε, q,>,S) or there are

only finitely many i such that vi = (p,w, q, b,D) with pi ∈ FA. Hence Duplicator also
wins the play v0v1 She wins the game Gk

Flush(A,B). �

Note that unlike the static k-letter simulation, if Duplicator wins the flushing variant
with buffer of capacity k − 1, it is not the case that she also wins the dynamic k-letter
simulation game. There is even a pair of automataA, B where Duplicator wins the game
G1

Flush(A,B), but loses the game Gk
Dyn(A,B) for all k > 0.

Lemma 3.3.3. There is a pair of NBAA, B such thatA @k
Dyn B for all k > 1, butA v1

Flush
B.

Proof. Consider the following two NBAA, B that are slightly modified from the ones in
Example 3.1.2.

CHAPTER 3. BUFFERED SIMULATION 53

p0 p1

pb

pc

a
b

c

a

a

a

q0

qb q′b

qc q′c

a

a

b a

c a

a

Duplicator wins G1
Flush(A,B). She simply flushes the buffer whenever Spoiler moves

his pebble to p0 and skips her turn if Spoiler moves to p1, i.e. from any configuration
(p, a, q0,⊥,D) if p = p0 then she proceeds to (p0, ε, q0,⊥,S) and if p = p1 then she
proceeds to

(p1, a, q0,⊥,S). (3.12)

Spoiler eventually will move his pebble to p1 since otherwise he will lose for not pro-
ducing an accepting run. Hence in some round, we will reach the configuration (3.12).
From this configuration, Spoiler will proceed to some configuration (px, ax, q0,⊥, D)
where x ∈ {b, c} by reading x. Duplicator then flushes the buffer and continues to
(px, ε, q′x,>,S). From this configuration, it is not hard to see that Duplicator can con-
tinue accordingly and win the play.

Duplicator however loses the game Gk
Dyn(A,B) for any k > 1. The winning strat-

egy for Spoiler is as follows. In the first round, if Duplicator chooses some ` ≤ k, i.e.
proceeds from the initial configuration to (p0, q0, `,⊥,S), then Spoiler loops ` − 1 many
times in p0 by reading a`−1 and then goes to p1 by reading a. Hence we reach the config-
uration (p1, a`, q0,⊥,D). Duplicator will either reads a` by looping in q0, ` many times,
or looping in q0, ` − 1 many times, and then going to some qx, x ∈ {b, c} by reading a. In
other words, she will either proceed to some configuration

(p1, q0, `
′,⊥,S) or (3.13)

(p1, qx, `
′,⊥,S) (3.14)

where `′ ≤ k. In the first case, Spoiler reads ba`
′−1 by going to pb. In the second case,

he reads xa`
′−1 where x ∈ {b, c} \ {x} by going to px. Hence the play either proceeds to

(pb, ba`
′−1, q0,>,D) from (3.13) or to (px, xa`

′−1, qx,>,D) from (3.14). These configura-
tions however do not have a valid successor since there is no b-transition from q0 and no
x-transition from qx. Hence Duplicator loses the game Gk

Dyn(A,B). �

This nonetheless shows that the inclusion in Theorem 3.3.2 is indeed strict for k > 1.

Corollary 3.3.4. For any k > 1, vk
Dyn (v

k−1
Flush.

Proof. Let k > 1 be some number. The inclusion vk
Dyn ⊆ v

k−1
Flush holds because of Theorem

3.3.2. Consider the NBAA,B as in Lemma 3.3.3. We have seen thatA @k
Dyn B. However,

sinceA v1
Flush B, by Theorem 3.2.4,A vk−1

Flush B. Hence vk
Dyn (v

k−1
Flush. �

3.3.3 Multi-Pebble Simulation
Unlike the static and dynamic multi-letter simulations, it is not obvious how buffered
simulation relates to multi-pebble simulation. In multi-pebble simulation, Duplicator
has to move immediately after Spoiler reads a letter, but she can use multiple pebbles
to mimic Spoiler’s run. She can drop or duplicate her pebbles before moving them to
some corresponding successors. This is in contrast to the buffered simulation game where
Duplicator only uses one pebble, but she can skip her turn.

54 3.3. RELATION TO OTHER SIMULATIONS

It turns out that the winning strategy in the buffered simulation game can be translated
to the one of multi-pebble simulation. Intuitively, the move where Duplicator skips her
turn after Spoiler reads a can be mimicked by the move where Duplicator duplicates and
moves her pebbles to all of the corresponding a-successors. By doing so, she keeps all the
possibilities of extending her run by reading a. Recall that if the capacity of the buffer is k
then Duplicator can skip her turn until Spoiler pushes k + 1 many letters to the buffer. In
multi-pebble simulation, we can mimic such a move if Duplicator uses k′ many pebbles
where k′ is the maximum number of states that can be reached by reading a word of length
at most k + 1. By having k′ many pebbles, Duplicator can keep duplicating and moving
her pebbles to all of the corresponding successors for k consecutive rounds.

Moreover, the move where Duplicator pops ` many letters from the buffer and goes to
some state q can be mimicked by considering the state q that has been visited by some of
her pebbles after ` steps. Duplicator simply drops all the pebbles that do not visit q after
` many steps. She keeps the ones that were at q, together with other pebbles duplicated
from them. By doing so, Duplicator intuitively commits to a certain way of extending
her run ` steps, namely to the state q, and only considers possible extensions from q.

If Duplicator forms an accepting run ρ in the buffered simulation game Gk(A,B)
then in the corresponding multi-pebble simulation Gk′

Peb(A,B), Duplicator only keeps
pebbles that form ρ. Hence if ρ is accepting then all Duplicator’s pebbles that survive
infinitely many rounds also see an accepting state infinitely often. Duplicator wins the
game Gk′

Peb(A,B) if she wins Gk(A,B). This translation also holds for the case of un-
bounded buffer. In the case where the capacity of the buffer is k = ω then k′ is simply the
number of states that are reachable by reading any finite word in B.

Theorem 3.3.5. LetA, B be two NBA over Σ. For any q ∈ QB and i ∈ N ∪ {ω}, let

OutDegi(q) =

|{q
′ | q w
−−→ q′, w ∈ Σi}| if i ∈ N,

|{q′ | q w
−−→ q′, w ∈ Σ∗}| if i = ω,

and

k′ =

maxi∈{1,...,k+1}, q∈QB{OutDegi(q)} if k ∈ N,
maxq∈QB{OutDegω(q)} if k = ω.

IfAvk B thenAvk′
Peb B.

Proof. Suppose Duplicatorwins the game Gk(A,B). By Theorem 3.1.9, Duplicator also
wins Gk

One(A,B). In the game Gk′
Peb(A,B), from the initial configuration (p0, S 0, ∅,S)

where S 0 = {q0}, if Spoiler moves along the path r = p0a1 p1a2 . . ., we consider what
Duplicator would do from the initial configuration of the game Gk

One(A,B) if Spoiler
also moves along r. Suppose Duplicator skips her turn and only moves in some round
n > 0 by proceeding from the configuration (pn, a1 . . . an, q0,⊥,D) to

(pn, a2 . . . an, q1, b1,S). (3.15)

In the game Gk′
Peb(A,B), for the first n − 1 rounds, after Spoiler reads ai, Dupli-

cator moves her pebbles to all of the corresponding ai-successors, i.e. in every round
i ∈ {1, . . . , n − 1}, she proceeds to the configuration

(pi, S i,Ri,S) (3.16)

CHAPTER 3. BUFFERED SIMULATION 55

where S i = {q′ | q ai−−→ q′, q ∈ S i−1}. By definition of the multi-pebble simulation game,

the set Ri contains the positions of pebbles in round i that have not yet seen an accepting
state since the last reset. Moreover, by the definition of k′, the configuration in (3.16) is
valid. For any i ∈ {1, . . . , n − 1}, we have |S i| ≤ k′.

Now in round n, the move of Duplicator is a bit different. She only keeps the pebbles
that are generated from the ones that went to q1 in the first round. Let S ′1 = {q1} and

S ′i = {q′ | q ai−−→ q′, q ∈ S ′i−1}

for all i ∈ {2, . . . , n}. In round n, Duplicator proceeds to (pn, S ′n,Rn,S). The configuration
(pn, S ′n, Rn,S) is also a valid configuration since by definition, S ′i ⊆ S i for all i ∈ {1, . . . , n},
and hence |S ′n| ≤ k′. Moreover, note that if in (3.15) we have b1 = > and in (3.16), for
all i ∈ {1, . . . , n − 1}, we have Ri , ∅, then the set Rn is empty. This is because all the
pebbles in S ′n have gone through q1 and q1 is accepting. Hence if in (3.15), b1 = >, we
have Ri = ∅ for some i ∈ {1, . . . , n}. From the configuration (pn, S ′n,Rn,S), Duplicator
then repeats the same procedure.

Now let v0v′1v1v′2 . . . and u0u′1u1u′2 . . . be the plays that are obtained in Gk(A,B) and in
Gk′

Peb(A,B). Since Duplicator wins the play v0v′1v1v′2 . . ., either there are infinitely many
i such that vi = (pi,wi, qi,>,S) or only finitely many i such that v′i = (pi,wi, qi, ci,D)
with pi ∈ FA. The first case implies that we also have infinitely many i such that ui =

(pi, S i, ∅,S) and the second one implies that there are only finitely many i such that u′i =

(pi, ai, S i,Ri,D) with pi ∈ FA. Thus Duplicator also wins the play u0u′1u1u′2 She wins
Gk′

Peb(A,B). �

This theorem shows that buffered simulation is included in multi-pebble simulation,
in the sense that if Duplicator wins the game Gk(A,B) for some k ∈ N ∪ {ω} then she
also wins the game Gk′

Peb(A,B) for some k′. One question then is to ask whether the other
direction also holds. The answer is negative. Multi-pebble simulation is not included in
buffered simulation.

Theorem 3.3.6. There are two NBA A, B such that A v2
Peb B, but A @k B for all k ∈

N ∪ {ω}.

Proof. Consider again the two NBA A′, B′ that are obtained from the automata A, B
from Example 3.1.5 by considering all states to be accepting. Duplicator wins the game
G2

Peb(A′,B′). The strategy is as follows. Duplicator first moves her two pebbles each
to qb, qc, and loops there as long as Spoiler reads a. In other words, from the initial
configuration (p0, {q0}, ∅,S), after Spoiler proceeds to

(p, a, {q0}, ∅,D) (3.17)

where p ∈ {p0, p1}, Duplicator proceeds to

(p, {qb, qc}, ∅,S). (3.18)

Now if Spoiler continues by reading a, Duplicator loops in qb and qc, and hence proceeds
back to (3.18).

If Spoiler eventually reads b or c, Duplicator drops one of her pebbles, duplicates
the other one, and moves them to one of the corresponding accepting states. Formally,

56 3.3. RELATION TO OTHER SIMULATIONS

whenever Spoiler proceeds to (pb, b, {qb, qc}, ∅,D) or (pc, c, {qb, qc}, ∅,D) then Duplicator
proceeds to

(pb, {q′b}, ∅,S) or (3.19)
(pc, {q′c}, ∅,S), (3.20)

respectively.
There are two possibilities. Either Spoiler eventually reads b or c, or he never does so.

In the first case, we eventually reach the configuration (3.19) or (3.20). It is not hard to see
that from such configurations, Duplicator can continue accordingly and win the play. In
the second case, the play proceeds to the configuration (p0, {qb, qc}, ∅,S) infinitely often.
In this case, Duplicator also wins the play.

Hence Duplicator wins G2
Peb(A′,B′). However, we have seen in Corollary 3.1.7 that

Duplicator loses the game Gω(A′,B′). By Proposition 3.1.6, she also loses the game
Gω(A′,B′) for all k ∈ N. Thus we have the desired result. �

3.3.4 Delay Simulation
Regarding delay simulation, there is a strong relation between buffered simulation and
delay simulation. Recall that delay simulation is played on an ω-regular language L ⊆
(Σ1×Σ2)ω where both of the players try to construct an infinite word and the play proceeds
according to some delay function f : N+ → N+. In round i, Spoiler extends his word with
some word over Σ1 of length f (i) and Duplicator extends her word by reading one letter
from Σ2. The objective of Duplicator is to make the play produce a pair of words that
is in L. We have seen in Lemma 2.6.28 that the standard fair simulation game G(A,B)
is a special case of delay simulation which is played on some ω-regular language LA,B
with a delay function with constant 1. The language LA,B intuitively expresses the pair of
accepting runs ofA and B that are over the same word.

A buffered simulation game Gk(A,B) where k ∈ N can be seen as a special case of
delay simulation which is also played on such a language LA,B, but with a delay function
with constant k + 1. The reduction is basically similar to the one in Lemma 2.6.28.

Theorem 3.3.7. Given two NBAA, B, there exists an ω-regular language LA,B such that
A vk B for some k ∈ N iff LA,B is solvable with a delay function f with constant k + 1.

Proof. Given two NBA A, B, consider the language LA,B as in Lemma 2.6.28. Suppose
Duplicator wins the game Gk(A,B) for some k ∈ N. By Theorem 3.1.10, she also wins
Gk

Full(A,B). The winning strategy for Duplicator in the delay simulation game G f
Del(LA,B)

can be derived from the one in Gk
Full(A,B). In the first round of G f

Del(LA,B), after Spoiler
reads the word (p0, a1, p′1)(p1, a1, p′2) . . . (pk, ak+1, p′k+1) ∈ EA∗, Duplicator does as fol-
lows. If there is i ∈ {1, . . . , k} such that p′i , pi or p0 is not an initial state then Duplicator
simply chooses an arbitrary transition (q, a, q′) ∈ EB. Otherwise r = p0a1 p1 . . . p′k+1 is
a valid run, and in this case, Duplicator considers what she would do if in the buffered
simulation game Gk

Full(A,B), Spoiler forms r. Since Duplicator wins Gk
Full(A,B), she

will move the pebble one step along some transition (q0, a1, q1). Duplicator then reads
this transition in the delay simulation game. Duplicator considers a similar procedure for
the rest of the play.

Now suppose in G f
Del(LA,B), Spoiler forms an infinite word ρ = (p0, a1, p′1) (p1, a2, p′2)

. . . and Duplicator forms ρ′ = (q0, b1, q′1)(q1, b2, q′2) Since Duplicator plays according

CHAPTER 3. BUFFERED SIMULATION 57

to the winning strategy, whenever p′i = pi for all i ∈ N, and p0a1 p1 . . . is an accepting run
then q′i = qi and ai = bi for all i ∈ N, and q0a1q1 . . . is also an accepting run. By definition,
the word ((p0, a1, p′1), (q0, a1, q′1)) ((p1, a2, p′2), (q1, a2, q2)′) . . . is in LA,B. Thus Duplicator
wins the play. In the case where p′i , pi for some i ∈ N or p0a1 p1 . . . not an accepting run,
by the construction of the language LA,B, Duplicator also wins the play. Hence whenever
Duplicator wins Gk

Full(A,B), she also wins G f
Del(LA,B). The other direction can also be

shown similarly. �

This theorem shows that we can reduce buffered simulation with one bounded buffer
to delay simulation. One may also ask whether the other direction holds, i.e. whether we
can reduce delay simulation to buffered simulation with a bounded buffer. The answer is
positive. However, we need to consider buffered simulation between two parity automata.

Until now, we have only defined buffered simulation for Büchi automata. Neverthe-
less, we can also define buffered simulation game for any ω-regular automata similarly.
To define such a game formally, we need to modify the third component in the configu-
ration which is used to define the winning condition. In the buffered simulation game for
Büchi automata, the third component simply remembers whether Duplicator has seen an
accepting state or not. In the buffered simulation game for parity automata, we make the
third component remember the highest priority that is seen by Duplicator. The winning
condition in buffered simulation over parity automata is essentially the same as the one
over Büchi automata. Duplicator wins iff she forms an accepting run or Spoiler does
not form an accepting run. We formally define buffered simulation between two parity
automata as follows.

Definition 3.3.8. Let A, B be two parity automata over Σ with priorities PA, PB ⊆ N
respectively and k ∈ N. Buffered simulation with one buffer of capacity k between A,
B is Ĝk(A,B) = ((V,V0,V1, E), v0,Win) where Spoiler’s and Duplicator’s configurations
are

V1 = QA × Σ≤k × QB × PB ∪ {0} × {S},

V0 = QA × Σ≤k × QB × PA × {D},

V = V0 ∪ V1, the edge relation E is defined as

(p,w, q, b,S)→ (p′,wa, q, b,D) in E iff p a
−−→ p′,

(p,w, q, b,D)→ (p,w′, qn, b′,S) in E iff ∃u = a1 . . . an ∈ Σ∗ such that

q a1−−→ q1 . . .
an−−→ qn, w = uw′, and

b′ =

max{ΩB(q1), . . . ,ΩB(qn)} if u , ε
0 else,

the initial configuration is v0 = (p0, ε, q0, 0,S) where p0, q0 is the pair of the initial states
ofA,B, and the play

(p0,w0, q0, b0,S)(p1,w′0, q0, b0,D)(p1,w1, q1, b1,S)(p2,w′1, q1, b1,D) . . .

is in Win iff max(inf(b0b1 . . .)) is even or max(inf(ΩA(p0)ΩA(p1) . . .)) is not even. We
writeA v̂k B if Duplicator wins the game Ĝk(A,B).

58 3.3. RELATION TO OTHER SIMULATIONS

Example 3.3.9. Consider the following two parity automataA,Bwhere ΩA(pi) = ΩB(qi) =

i.

p2 p1

c

a

a c

q1 q2

q4

a

a c

a

a, c

We have A @̂k B for any k ∈ N since in the game Ĝk(A,B), Spoiler has the following
winning strategy. He loops in the initial state p2 by reading a until Duplicator goes to q4,
i.e. from any configuration

(p2,w, q, b,S), (3.21)

if q , q4, Spoiler proceeds to (p2,wa, q, b,D).
If Duplicator eventually goes to q4 then Spoiler goes to p1 and loops there for the rest

of the play by reading c. Formally, if we reach a configuration as in (3.21) with q = q4,
Spoiler proceeds to (p1,wc, q4, b,S) and from any configuration (p1,wc, q4, b,S), Spoiler
proceeds to (p1,wcc, q4, b,S). Duplicator eventually gets stuck from such a configuration
since there is no c-transition from q4.

However, if Duplicator never goes to q4, there are two cases: either she eventually
goes to q2 or she never leaves the initial state. In the second case, Spoiler also wins since
he forms an accepting run while Duplicator does not, i.e. we obtain a play (p0,w0, q0, b0,
S) (p1,w′0, q0, b0,D) (p1,w1, q1, b1,S) . . . where max(inf(b0b1 . . .)) is 1, but max(inf(ΩA

(p0)ΩB(p1) . . .)) is 2. In the first case, we reach some configuration (p2,w, q2, b,D) where
w ∈ a+. Since from q2 there is no a-transition, from such a configuration, Duplicator
eventually gets stuck. Hence Spoiler wins the play. He wins Ĝk(A,B) for any k ∈ N.

We can reduce delay simulation to buffered simulation between two parity automata
in which one of them is deterministic. Recall that deterministic parity automata (DPA)
are as expressive as NBA. They both recognise exactly the class of ω-regular languages
[Saf88, Tho90]. Given an ω-regular language L ⊆ (Σ1 × Σ2)ω, let C be a deterministic
parity automaton that recognises L. We will consider buffered simulation between two
parity automataA, B, in whichA is deterministic and recognises L1 ⊆ Σω1 , the projection
of L to Σ1, and B is non-deterministic and obtained from C by remembering the second
component of the letters in its state space. We formally show the reduction as follows.

Theorem 3.3.10. Given anω-regular language L ⊆ Σ1×Σ2, there are two parity automata
A, B such that A vk B for some k ∈ N iff L is solvable with some delay function f with
constant k + 1.

Proof. Let C = (Q,Σ1×Σ2, E, q0,Ω) be a deterministic parity automaton such that L(C) =

L. We construct two parity automata A, B over Σ1 as follows. The automaton A is a
deterministic parity automaton that recognises the language

L1 = {a1a2 . . . ∈ Σ1
ω | ∃b1b2 . . . ∈ Σ2

ω : (a1, b1)(a1, b2) . . . ∈ L}. (3.22)

There is such a deterministic parity automaton A since the language L is regular, and
hence L1 is also regular. The automaton B is the tuple (Q × (Σ2 ∪ {ε}),Σ1, E′, (q0, ε),Ω′)
where E′ is defined as

((p, b′), a, (p′, b)) ∈ E′ iff (p, (a, b), p′) ∈ E

CHAPTER 3. BUFFERED SIMULATION 59

and the priority function Ω′ is defined as Ω′(p, b) = Ω(p) for all (p, b) ∈ Q × (Σ2 ∪ {ε}).
Now suppose Duplicator wins the game G f

Del(L) with some delay function f with
constant k + 1. In the game Ĝk(A,B), Duplicator wins with the following winning strat-
egy: in the first k rounds, she skips her turn. Hence in round k + 1, the play proceeds to
some configuration (pk+1, a1 . . . ak+1, (q0, ε), 0,D). In this case, Duplicator then considers
what she would do in the first round of G f

Del(L) assuming that Spoiler reads a1 . . . ak+1. If
Duplicator reads b1 then she considers the state q1 in C that can be reached by reading
(a1, b1) from q0. There is such a unique q1 since C is deterministic. In the buffered sim-
ulation game Ĝk(A,B), Duplicator proceeds to (pk+1, a2 . . . ak+1, (q1, b1),Ω(q1),S), i.e.
she moves the pebble from the initial state (q0, ε) to the state (q1, b1) by reading a1. For
the rest of the play, Duplicator considers the same procedure: if in round i of the delay
simulation game G f

Del(L), Duplicator extends her word with bi then in round i + k of the
game Ĝk(A,B), from the state (qi−1, bi−1), Duplicator extends her run by reading ai and
going to the state (qi, bi) where qi is the state that can be reached in C by reading (ai, bi)
from qi−1.

Suppose in the game Ĝk(A,B), Spoiler forms an accepting run over some word
a1a2 . . . ∈ L1. By the construction of the winning strategy, Duplicator forms a run

ρ′ = (q0, ε)
a1−−→(q1, b1) a2−−→ . . .

over a1a2 By the definition of B, there is a corresponding run ρ = q0(a1, b1) q1(a2, b2)
. . . in C. Since C is deterministic, such a run ρ over w = (a1, b1)(a2, b2) . . . is unique.
Moreover w ∈ L since Duplicator wins G f

Del(L). Since w is accepted by C, the run ρ
is accepting. This implies that ρ′ is also accepting. Hence Duplicator wins the play.
Duplicator wins Ĝk(A,B) if she wins G f

Del(L). The other direction can also be shown
similarly. �

Together with Theorem 3.3.7, this theorem shows that to some extent, delay simula-
tion is equivalent to buffered simulation with one bounded buffer. The capacity of the
buffer corresponds to the delay constant. However, note that in the case of unbounded
buffer, the buffered simulation game cannot be reduced to any delay simulation game.
The reason is simply because there is no corresponding constant for the unbounded ca-
pacity.

3.4 Simulation with n ≥ 1 Buffers
We can naturally extend the definition of buffered simulation in Definition 3.1.1 to a more
general case, where instead of only one buffer, we have several buffers. Duplicator can
use multiple buffers to store Spoiler’s letters. However, unlike in the case where we only
have one buffer, in this case, every time Spoiler reads a letter, we also have to determine
to which buffer the letter should be put. There are several possibilities to define this. For
example, we can consider a game where one of the players decides this or we can also
consider a game where there is a fixed rule that tells to which buffer the letter should be
put. In this work, we will consider a game where each letter determines the buffers where
it should be put.

The motivation behind this choice comes from the area of formal languages. First
note that the possibility to put letters to different buffers is strongly related to the corre-
spondence between the words that are produced by Spoiler and Duplicator. If there is

60 3.4. SIMULATION WITH N ≥ 1 BUFFERS

only one buffer then Duplicator has no choice except to produce exactly the same word
that is produced by Spoiler. However if there is more than one buffer then Duplicator
may produce a different word than Spoiler. For instance, suppose we have two buffers in
which the letters a and b should be put into the first buffer and the letter c into the second
one. If now Spoiler reads the word abc and Duplicator skips her turns then the condition
of the buffers is as follows.

. . . b a

. . . c

The first buffer is filled with a, b and the second one with c. Duplicator can respond to
this by first popping the first buffer and then the second one. In such a case, she reads abc.
However, she can also pop the buffers with a different order: she first pops one letter from
the first buffer, then the second one, and then the first one again. In such a case, she reads
acb. The fact that a and b get stored in the same buffer introduces a dependency between
the letters a and b. Duplicator can only read a word in which a and b occur in the same
order as in the Spoiler’s word. On the other hand, the fact that a and b get stored in a
different buffer than c introduces an independency between the letters a, b and the letter c
with respect to the order in which they occur in Spoiler’s and Duplicator’s words. This
is intuitively the reason why after Spoiler reads abc, Duplicator may respond with abc,
acb, or even cab, i.e. by popping the two letters from the second buffer and then the first
buffer. The words abc, acb, and cab are considered to be equivalent to abc modulo to such
an independency. This equivalence is already known in the area of formal language by
the name of (Mazurkiewicz) traces [Maz89]. We will discuss more about Mazurkiewicz
traces together with the application of buffered simulation in such area later in Chapter 5,

In general, the dependency between the letters is not necessarily transitive. For in-
stance, we might have a case where the letters a, b are dependent on each other, b, c are
also dependent on each other, but a, c are independent of each other. If we want to model
such a dependency then intuitively the letters a and c have to be stored in two different
buffers, but b in the same buffer as a, as well as, c. Thus in buffered simulation, we will
allow a letter to be put into several buffers. For example, to model such a case, we con-
sider a game with two buffers where the letter a is stored in the first buffer, c in the second
one, and b in both the first and the second buffers. Whenever Spoiler reads b then two
copies of b are pushed each to the first and second buffers, and if Duplicator wants to
read b then b has to be popped from the first and second buffers. Duplicator cannot read
b if b is not in the top of the first and second buffers. To illustrate this, suppose Spoiler
reads acb and Duplicator skips her turns. The condition of the buffers then is as follows.

. . . b a

. . . b c

The first buffer is filled with a, b and the second one with c, b. Duplicator then can
respond to this by first popping a from the first buffer, c from the second one, and then
b from both of the first and the second buffers. In such a case, Duplicator will read acb.
However, she can also pop c and a in the reverse direction. She first pops c from the
first buffer, a from the second one, and then followed by popping b from the first and

CHAPTER 3. BUFFERED SIMULATION 61

the second buffers. In such a case, Duplicator reads cab. These, however, are the only
possibilities for Duplicator. Duplicator, for instance, cannot pop a and then b since once
she pops b, she has to pop it from both the first and second buffers.

We will formally define buffered simulation with multiple buffers, by using the notion
of distributed alphabet [Zie87]. A distributed alphabet basically is a tuple of (not nec-
essarily disjoint) alphabets (Σ1, . . . ,Σn). We will simply consider two NBA A, B over a
distributed alphabet Σ̂ = (Σ1, . . . ,Σn) instead of an ordinary alphabet Σ. Intuitively the
NBA A, B are defined over the alphabet Σ = Σ1 ∪ . . . ∪ Σn and for all i ∈ {1, . . . , n}, the
alphabet Σi tells us the set of letters that are stored to the i-th buffer. We will assume that
the distributed alphabet is part of the input.

In the buffered simulation game with multiple buffers, each of the buffers might have
a different capacity. One buffer might be bounded and the other one might be unbounded.
Hence instead of considering a single capacity, we will use a capacity vector to denote
the capacity of the buffers. More precisely, we will define the game on two NBA A, B
over Σ̂ = (Σ1, . . . ,Σn) with respect to some capacity vector κ = (k1, . . . , kn) ∈ (N ∪ {ω})n.
For all i ∈ {1, . . . , n}, the capacity ki is the capacity of the i-th buffer.

A buffered simulation game played on two NBA A, B over Σ̂ = (Σ1, . . . ,Σn) with
capacity κ = (k1, . . . , kn) proceeds as follows. In each round, Spoiler moves the pebble
in A one step by reading a letter a and pushes a copy of a to all buffers i ∈ {1, . . . , n}
where a ∈ Σi, i.e. to all buffers that are associated with a. Duplicator can either skip her
turn or move the pebble in B by reading b1 . . . bm. If she reads b1 . . . bm then for each b j,
started from j = 1, she pops b j from all buffer i ∈ {1, . . . , n} where b j ∈ Σi, i.e. from all
buffers that are associated with b j. The winning condition is the same as the game with
one buffer. Duplicator wins if either Spoiler gets stuck or whenever Spoiler forms an
accepting run, Duplicator also forms an accepting run. Duplicator also has to obey the
capacity restriction. She loses immediately if she violates the capacity restriction of one
of the buffers. Furthermore, we additionally require that every letter that is pushed to the
buffers has to be eventually popped by Duplicator. This is to make sure that Duplicator
plays fairly. She should not win the game if she only pops letters from some certain
buffers and ignores other buffers.

Before we give the formal definition of buffered simulation with multiple buffers, let
us consider the notion of projection. The projection of a word w over Σ to Σi ⊆ Σ is
basically a word that is obtained from w by deleting all letters that do not belong to Σi.
We will use the notion of projection to denote the content of some buffer.

Definition 3.4.1. Given a distributed alphabet Σ̂ = (Σ1, . . . ,Σn), let Σ = Σ1 ∪ . . . ∪ Σn.
For any i ∈ {1, . . . , n}, a projection πi is a function πi : Σ∞ → Σ∞i such that πi(a1a2 . . .) =

πi(a1)πi(a2) . . . where πi(a) = a if a ∈ Σi and πi(a) = ε if a < Σi.

For example, suppose we have a distributed alphabet Σ̂ = (Σ1,Σ2) in which Σ1 = {a, b}
and Σ2 = {a, c}. The projections of w = ababc to Σ1 and Σ2 are respectively π1(w) = abab
and π2(w) = aac.

We formally define the buffered simulation game with multiple buffers as follows.

Definition 3.4.2. Given two NBA A, B over Σ̂ = (Σ1, . . . ,Σn) and a capacity vector
κ = (k1, . . . , kn) ∈ (N∪ {ω})n, buffered simulation game denoted with Gκ

Σ̂
(A,B), or simply

Gκ(A,B), is a tuple ((V,V0,V1, E), v0,Win) where Spoiler’s and Duplicator’s configura-
tions are respectively

V1 = QA × (Σ≤k1
1 × . . . × Σ≤kn

n) × QB × {1, . . . , n,>,⊥} × {S},

62 3.4. SIMULATION WITH N ≥ 1 BUFFERS

V0 = QA × (Σ≤k1+1
1 × . . . × Σ≤kn+1

n) × QB × {1, . . . , n,>,⊥} × {D},

where Σ
≤ki
i = Σ

≤ki+1
i = Σ∗ if ki = ω. Let Σ = Σ1 ∪ . . .∪ Σn, the edge relation E is defined as

(p, (w1, . . . ,wn), q, c,S)→ (p′, (w1π1(a), . . . ,wnπn(a)), q, c,D) in E
iff p a

−−→ p′

(p, (w1, . . . ,wn), q, c,D)→ (p, (w′1, . . . ,w
′
n), q′, c′,S) in E

iff

∃u = a1 . . . am ∈ Σ∗ such that q u
−−→ q′

wi = πi(u)w′i for all i ∈ {1, . . . , n}, and

c′ =



1 if c = >,

c + 1 if c ∈ {1, . . . , n − 1} and either wc = ε or ,
∃ j ∈ {1, . . . ,m} : a j ∈ Σn,

⊥ if c = n and either wn = ε or ∃ j ∈ {1, . . . ,m} : a j ∈ Σc,

> if c = ⊥, u , ε, and q u
−−→

F
q′,

c otherwise,

the initial configuration is v0 = (p0, ε, q0,⊥,S) where p0, q0 is the pair of the initial
states of A, B, and we have v0v1 . . . ∈ Win iff there exist infinitely many i such that
vi = (p,w, q,>,S) or there are only finitely many i such that vi = (p,w, q, b,D) with
p ∈ FA. We writeAvκ B if Duplicator wins Gκ(A,B).

The definition of Gκ(A,B) is similar to the one in Definition 3.1.1. The first and
the third components of the configuration represent the positions of Spoiler’s and Du-
plicator’s pebbles and the second one represents the content of the buffer. In this case,
instead of a single word, the second component is an n-tuple of words (w1, . . . ,wn). For
all i ∈ {1, . . . , n}, the word wi represents the content of the i-th buffer. The last component
of the configuration tells us the player that has the next turn and the second last one is
used to determine the winning condition. In this case, instead of a bit, it is a counter.
The counter starts from ⊥. It changes to > if Duplicator moves her pebble through an
accepting state, and from >, it changes to 1. From 1, the counter increases gradually to
n. Intuitively, the counter increases from c to c + 1 if Duplicator pops at least one letter
from buffer c or buffer c is empty. If the counter is n and Duplicator pops a letter from
buffer n or buffer n is empty then the counter resets to ⊥. Thus if the counter reaches >
infinitely often, this means that Duplicator never ignores a buffer and sees an accepting
state infinitely often.

As in the case of buffered simulation with one buffer, the requirement where Dupli-
cator should obey the capacity restriction is included in the definition of valid config-
urations. Spoiler’s configuration (p, (w1, . . . ,wn), q, c,S) is only valid if wi ≤ ki for all
i ∈ {1, . . . , n}. Hence Duplicator can only proceed to a configuration where each buffer
i contains at most ki many letters. If such a move is not possible then Duplicator gets
stuck and loses the play immediately. Since we only check the capacity restriction after
Duplicator’s move, the configuration (p, (w1, . . . ,wn), q, c,D) is valid if wi ≤ ki + 1 for
all i ∈ {1, . . . , n}. Spoiler can push one more letter into “full” buffers and it is Dupli-
cator’s responsibility to shorten the buffers again. Hence we can also consider buffered
simulation in which some buffers have capacity 0. If buffer i ∈ {1, . . . , n} has a capacity
0 then this just means that Duplicator has to pop the letter that is pushed into buffer i
immediately.

CHAPTER 3. BUFFERED SIMULATION 63

Example 3.4.3. Consider a buffered simulation game that is played in the following two
NBAA, B over the distributed alphabet Σ̂ = ({a, b}, {b}, {c}) and a capacity κ = (2, 2, 0).

p0 p1 p2 p3
b b c

a
q0 q1 q2 q3 q4

c b b c

a

In the game Gκ(A,B), there are three buffers where the letter a will be stored in the
first one, b in the first and the second ones, and c in the third one. Duplicator wins
the game Gκ(A,B) with the following winning strategy. Initially, she skips her turn in
the first two rounds. Hence at the end of the first round, after Spoiler reads b and Du-
plicator skips her turn, we reach the configuration (p1, (b, b, ε), q0,⊥, S). In the sec-
ond round, after Spoiler reads another b and Duplicator skips her turn, we reach the
configuration (p1, (bb, bb, ε), q0,⊥, S). In the third round, Spoiler will read c and pro-
ceed to the configuration (p3, (bb, bb, c), q0,⊥, D). In this case, Duplicator empties the
buffers by reading cbb and going to the accepting state q3, i.e. she proceeds to the con-
figuration (p3, (ε, ε, ε), q3,>, S). In the next round, Spoiler will read a and Duplica-
tor cannot do anything except to skip her turn, i.e. she proceeds to the configuration
(p2, (a, ε, ε), q3, 1,S). Spoiler then will read c and in this case, Duplicator pops both c
and a from the buffers and goes back to q3 by reading ca. The play then proceeds to
the configuration (p3, (ε, ε, ε), q3, 2,S). Duplicator repeats this procedure for the rest of
the play: she waits in q3 until Spoiler pushes a and c to the buffers, and then goes back
to q3 by emptying the buffers. The counter resets infinitely often and we will reach the
configuration (p3, (ε, ε, ε), q3,>,S) infinitely often. By definition, Duplicator wins the
play.

As in the case of buffered simulation with one buffer, we can also consider a game
where some buffers have an unbounded capacity.

Example 3.4.4. Consider the following two NBA A, B over Σ̂ = ({a, b}, {b}, {c}) that are
obtained from Example 3.4.3 by adding an a-loop from p2.

p0 p1 p2 p3
b b

a
c

a
q0 q1 q2 q3 q4

c b b c

a

First note that to win a buffered simulation game that is played on such NBA, Duplicator
needs an unbounded buffer to store unboundedly many a. Duplicator loses any game
Gk1,k2,k3(A,B) if k1 ∈ N since Spoiler has the following winning strategy. He first reads bb
and then loops in p2 by reading a for the rest of the play. The play eventually reaches the
configuration (p2, (bbak1−1, bb, ε), q0,⊥,D) which does not have a valid successor. Hence
Duplicator loses the play.

Duplicator, however, wins the game Gω,2,0(A,B). Intuitively, she skips her turn and
moves her pebble only when Spoiler reads c. Note that Spoiler will read c by going to
p3, infinitely often, since otherwise he will lose for not forming an accepting run, i.e. we
will obtain a play v0v1 . . . where there are only finitely many i such that vi = (p,w, q, b,D)
with p ∈ FA.

Now suppose Spoiler reads his first c after reading a, m1 ≥ 0 many times. We reach
the configuration (p3, (bbam1 , bb, c), q0,⊥,D). In this case, Duplicator empties the sec-
ond and the third buffers by going to the accepting state q3 i.e. she proceeds to the

64 3.4. SIMULATION WITH N ≥ 1 BUFFERS

configuration (p3, (am1 , ε, ε), q3,>,S). Duplicator then waits again until Spoiler reads
c, i.e. until the play proceeds to some configuration (p3, (am1+m2+1, ε, c), q3, 1,D) where
m2 ≥ 0. In such a case, Duplicator empties the last two buffers again. She proceeds
to (p3, (am1+m2 , ε, ε), q3, 2,S). We can repeat this principle for the rest of the play. The
counter resets infinitely often and we will reach some configuration (p3, (w, ε, ε), q3,>,S)
where w ∈ a∗, infinitely often. Duplicator wins such a play. She wins Gω,2,0(A,B).

In this example, the content of the first buffer in the game Gω,2,0(A,B) might keep
growing since Duplicator can pop at most one a each time she moves, but Spoiler can
push several as before Duplicator moves. However, Duplicator still plays fairly since
every a that is pushed to the buffer is eventually popped by Duplicator. In the follow-
ing, we show an example where Duplicator can only form an accepting run by playing
unfairly.

Example 3.4.5. Consider the following two NBA A, B over Σ̂ = ({a, b}, {b}, {c}) that are
obtained by slightly modifying Duplicator’s automaton in Example 3.4.3. We change the
label of the outgoing edge from q3 from c to a.

p0 p1 p2 p3
b b c

a
q0 q1 q2 q3 q4

c b b a

a

In this case, Spoiler wins the game Gω,ω,ω(A,B) by reading the word bb(ca)ω. First note
that if Spoiler reads such a word, Duplicator loses if she does not move infinitely of-
ten since Spoiler forms an accepting run. Hence let us assume that Duplicator moves
infinitely often. In the first two rounds, Duplicator cannot move her pebble because
there is only c-transition from the initial state. However, in the third round, after Spoiler
reads c, we reach the configuration (p3, (bb, bb, c), q0,⊥,D). Duplicatormight pop every-
thing from the buffer and go to the accepting state, i.e. she proceeds to the configuration
(p3, (ε, ε, ε), q3,>,S). From this configuration, after Spoiler reads acac and proceeds to
(p3, (aa, ε, cc), q3, 1,D), Duplicator might continue by reading aa and going back to the
accepting state. Hence we reach the configuration (p3, (ε, ε, cc), q3, 2,S). Duplicator then
can repeat this procedure for the rest of the play and successively proceed to the config-
urations (p3, (ε, ε, cccc), q3, 3,S), (p3, (ε, ε, cccccc), q3, 3,S) etc., each time after Spoiler
reads acac. Duplicator’s pebble visits an accepting state infinitely often. However the
play never reaches a configuration in which the counter is > because after the third round,
Duplicator never pops c from the third buffer. Duplicator loses the play by considering
such a strategy. In fact, there is no way for Duplicator to pop the second c that is pushed
to the buffer. She loses the game Gω,ω,ω(A,B).

In the following, we give another example in which Duplicator loses the buffered
simulation game. We consider the same NBA A, B as in Example 3.4.4, but with a
slightly different distributed alphabet.

Example 3.4.6. Consider again the two NBA A, B from Example 3.4.4, but now over a
distributed alphabet Σ̂ = ({a, b}, {b, c}). Hence we will consider a game with two buffers
in which the letter a is pushed to the first one, b to the first and the second ones, and c to
the second one. In this case, we have A @ω,ω B. Spoiler wins the game Gω,ω(A,B) by
reading bb(ca)ω. In the first three rounds, Duplicator cannot do anything except to skip
her turn and hence in the third round, we reach the configuration

(p3, (bb, bbc), q0,⊥,D). (3.23)

CHAPTER 3. BUFFERED SIMULATION 65

However from this configuration, Duplicator also cannot pop the buffer since q0 only
has a c-transition and c is not at the top of the second buffer. From configuration (3.23),
Duplicator can only skip her turn for the rest of the play. Hence we obtain a play v0v1 . . .
in which there is no i such that vi = (p,w, q,>,S), but there are infinitely many i such that
vi = (p,w, q, b,D) where p ∈ FA. Thus Spoiler wins.

We can also consider the flushing variant of buffered simulation with multiple buffers
in the same way as in the case of one buffer. Recall that the flushing variant is a more
restricted case of buffered simulation in which Duplicator has to pop the entire content
of the buffers once she decided to move her pebble. The formal definition of the flushing
variant of buffered simulation with multiple buffers only differs from Definition 3.4.2 in
the length of the word u that is chosen by Duplicator. We have |u| = 0 or |u| = |w|
where w is the word that satisfies πi(w) = wi for all i ∈ {1, . . . , n}. Hence by reading w,
Duplicator empties all the buffers. For any two NBA A, B over a distributed alphabet
Σ̂ = (Σ1, . . . ,Σn) and a capacity vector κ = (k1, . . . , kn), we denote the flushing variant
between two NBA A, B by GκFlush(A,B). We write A vκFlush B if Duplicator wins the
flushing variant GκFlush(A,B).

Example 3.4.7. Consider the following two NBAA and B over Σ̂ = ({a}, {b}).

q0 q1 q2 q3

q4

q5

a a b
b

b

a

b

p0

p1 p3 p5 p7

p2 p4 p6 p8

a

a

b a b a

b a b
b

Duplicator wins the game G2,1
Flush(A,B) with the following winning strategy. Initially,

she skips her turn in the first three rounds. Hence at the end of the third round, we
reach the configuration (q3, (aa, b), p0,⊥,S). In the next round, after Spoiler proceeds
to (q4, (aa, bb), p0, ⊥,D) or (q5, (aa, bb), p0, ⊥,D) by reading b, Duplicator responds
to this by reading abab and empties the buffer. She proceeds to (q4, (ε, ε), p7,>,S) or
(q5, (ε, ε), p8,>, S) respectively. From such configurations, it is not hard to see that Du-
plicator can continue accordingly and win the play.

In a buffered simulation game with one buffer, restricting Duplicator to move only
at most one step in each round does not make any difference to the general case where
Duplicator is allowed to move several steps at each round. This, however, is not the case
if we consider a game with multiple buffers. There are some cases in which Duplicator
can only win if she is allowed to move more than one step in each round. To show this
formally, let GκOne(A,B) be a buffered simulation game between two NBA A, B over
Σ̂ = (Σ1, . . . ,Σn) and capacity κ = (k1, . . . , kn) where Duplicator is restricted to pop at
most one letter in each round. Hence the formal definition of GκOne(A,B) is the same as
in Definition 3.4.2, but with |u| ≤ 1. In the following, we show that there are two NBAA,
B in which Duplicator wins Gκ(A,B), but loses GκOne(A,B).

Example 3.4.8. Consider the two NBAA and B over Σ̂ = ({a}, {b}) from Example 3.4.7.
We have seen that Duplicator wins the game G2,1

Flush(A,B), and hence also wins the game
G2,1(A,B) with the same winning strategy. She, however, loses the game G2,1

One(A,B).
Spoiler has a winning strategy by first reading aab.

If Duplicator skips her turn in the first three rounds then the play proceeds to the con-
figuration (q3, (aa, b), p0,⊥, S). In the next round, Spoiler proceeds to the configuration

66 3.5. EXPRESSIVE POWER

(q4, (aa, bb), p0, 1,D). Such a configuration has no valid successor in G2,1
One(A,B) since

Duplicator can only pop one a from the buffer, and this would leave the second buffer
with two letters. Hence from such a configuration, Duplicator gets stuck and loses the
play.

Now let us assume that Duplicator moves during the first three rounds. At the end
of the third round, the play proceeds to some configuration (q3, (w1,w2), pi,⊥,S) where
i ∈ {1, . . . , 6}. From such a configuration, Spoiler then proceeds to the configuration
(q4, (w1,w2b), pi,⊥,D) if i is even and to (q5, (w1,w2b), pi,⊥,D) if i is odd. In the first
case, the play eventually proceeds to some configuration (q4, (w, ε), p8,>,D) where w ∈
a+, and in the second one, to (q5, (ε,w), p7,>,D) where w ∈ b+. Since from p7, there is no
b-transition and from p8, there is no a-transition, such configurations do not have a valid
successor. Hence Duplicator loses the game G2,1

One(A,B).

In the following section, we will characterise the expressive power of buffered simu-
lation. We will see how expressive buffered simulation is with respect to the distributed
alphabets and capacity vectors. We will also see some possibilities of reduction between
buffered simulation itself.

3.5 Expressive Power
Before we show the expressive power of buffered simulation with multiple buffers, first
note that there is no particular order on the tuples in the distributed alphabet. The dis-
tributed alphabet simply tells us how the letters are distributed among the buffers. For
instance, the distributed alphabet Σ̂ = ({a, b}, {b, c}) and Σ̂′ = ({b, c}, {a, b}) intuitively tells
us the same thing: there are two buffers in which one of them is used to store a, b, and the
other one for b, c.

However, if we consider a pair of distributed alphabet and a capacity vector, there
is a natural order in which they are written as a pair of n-tuples. For example, consider
again the previous distributed alphabets Σ̂, Σ̂′, and two distinct numbers k1, k2. The games
G

k1,k2

Σ̂
(A, B) and Gk1,k2

Σ̂′
(A, B) are clearly different. In the first one, we can store at most

k1 many as and in the second one k2 many as. The games Gκ
Σ̂
(A, B) and Gκ

′

Σ̂′
(A, B) are

equivalent if the pair of the distributed alphabet and capacity vectors Σ̂′, κ′ is a permutation
of Σ̂, κ. In such a case, if Duplicator wins Gκ

Σ̂
(A, B), she also wins the game Gκ

′

Σ̂′
(A, B).

She simply moves her pebble in the same way as in Gκ
Σ̂
(A, B).

One important observation is that if during a play in Gκ
Σ̂
(A, B), Duplicator resets the

counter once, it is not necessary that she also resets the counter once in the corresponding
game Gκ

′

Σ̂′
(A, B). The order of the buffers is different. For instance, in some round of

Gκ
Σ̂
(A, B), Duplicator might pop a letter from the first buffer and increase the counter

from 1 to 2, but in the corresponding game Gκ
′

Σ̂′
(A, B), the letter might be popped from

the last buffer and we do not increase the counter if it is 1. However, since in Gκ
Σ̂
(A,

B), Duplicator eventually will pop the letter from the j-th buffer, where σ(j) = 1, in the
game Gκ

′

Σ̂′
(A, B), the counter eventually will also increase from 1 to 2. Duplicator resets

the counter infinitely often in Gκ
′

Σ̂′
(A, B) if she also does so in Gκ

Σ̂
(A, B). This is not

an overwhelming finding in the theory of buffered simulation but stating this observation
allows us to formulate some results more easily.

Theorem 3.5.1. Let Σ̂ = (Σ1, . . . ,Σn) be a distributed alphabet, κ = (k1, . . . , kn) a capacity
vector, and σ : {1, . . . , n} → {1, . . . , n} a permutation. Let Σ̂′ = (Σσ(1), . . . ,Σσ(n)) and

CHAPTER 3. BUFFERED SIMULATION 67

κ′ = (kσ(1), . . . , kσ(n)). We have
vκ

Σ̂
=vκ

′

Σ̂′
.

Proof. Let A, B be two NBA over Σ̂ = (Σ1, . . . ,Σn) and suppose Duplicator wins the
game Gκ

Σ̂
(A, B). We will show that Duplicator wins Gκ

′

Σ̂′
(A, B) by playing in the same

way as in Gκ
Σ̂
(A, B).

In the gameGκ
′

Σ̂′
(A,B), suppose from the initial round, Spoilermoves the pebble along

p0a1 p1a2 We look at what Duplicator would do in the game Gκ
Σ̂
(A,B) if Spoiler does

the same move. If Duplicator skips her turn and only moves the pebble for the first time
in some round m > 0 along a run r then in the game Gκ

′

Σ̂′
(A,B), Duplicator also skips

her turn and only moves the pebble in round m along r. She then repeats this procedure
indefinitely.

Now let v0v′1v1v′2 . . . and u0u′1u1u′2 . . . be the plays that are obtained in Gκ
Σ̂
(A,B) and in

Gκ
′

Σ̂′
(A,B). Since in the game Gκ

′

Σ̂′
(A,B), Duplicator moves her pebble in the same way

as in Gκ
Σ̂
(A,B), we have

vi = (pi,wi, qi, ci,S), (3.24)

ui = (pi,w′i , qi, c′i ,S), (3.25)

for all i > 0. In other words, the configurations that are reached by Duplicator in every
round of Gκ

Σ̂
(A,B) and Gκ

′

Σ̂′
(A,B) only differ in the second and the fourth components.

This similarly also holds for the configurations reached by Spoiler.
Since Duplicator wins the play v0v′1v1v′2 . . ., either there are only finitely many i such

that v′i = (pi,wi, qi, ci,D) with pi ∈ FA or there are infinitely many i such that vi =

(pi,wi, qi, ci,S) with
ci = >. (3.26)

In the first case, there are also finitely many i such that u′i = (pi,wi, qi, ci,D) with pi ∈ FA

and hence Duplicator wins u0u′1u1u′2 In the second one, we will show that there are
also infinitely many i such that ui = (pi,w′i , qi, c′i ,D) with c′i = >. We will show this by
contradiction.

Suppose there are only finitely many such i. This implies that in the game Gκ
′

Σ̂′
(A,B),

there is a round i0 > 0 where started from this round, the counter never changes: we have
c ∈ {1, . . . , n,⊥,>} such that

c′i = c (3.27)

for all i ≥ i0. First note that c , > since otherwise in the next round, i.e. round i0 + 1, the
counter will changes to 1 and we have a contradiction to (3.27). We also have c , ⊥ since
(3.26) holds for infinitely many i. Duplicator sees an accepting state in Gκ

Σ̂
(A,B) as well

as in Gκ
′

Σ̂′
(A,B), infinitely often, and hence if c = ⊥, there is a round i1 > i0 where the

counter increases to > and we again have a contradiction to (3.27). Thus c ∈ {1, . . . , n}.
We will show that this will also give us a contradiction. For all j ∈ {1, . . . , n}, let

w j, w′j be the contents of the j-th buffer in round i0 of the games Gκ
Σ̂
(A,B) and Gκ

′

Σ̂′
(A,B),

respectively. First, note that w′c , ε since otherwise in round i0+1 the counter will increase
from c and we again have a contradiction to (3.27). Furthermore, since Σ̂ = (Σ1, . . . ,Σn),
Σ̂′ = (Σσ(1), . . . ,Σσ(n)), and σ a permutation, we have w′c = wd for c = σ(d). In the game
Gκ

Σ̂
(A,B), there is a round i1 ≥ i0 where Duplicator pops the d-th buffer since otherwise

the counter at one point never changes and we have a contradiction since (3.26) holds
for infinitely many i. Hence in round i1 of the game Gκ

′

Σ̂′
(A,B), Duplicator pops the c-th

68 3.5. EXPRESSIVE POWER

buffer. The counter increases from c to c + 1 if c < n or resets to ⊥ if c = n. This again a
contradiction to (3.27). Hence there is no such round i0. We have infinitely many i such
that c′i = >. Duplicator wins the play u0u′1u1u′2 She wins the game Gκ

′

Σ̂′
(A,B). The

other direction can be shown similarly. �

Eliminating Buffers

There are some cases where we can eliminate some certain buffers without giving any
players more power to win the game. For example, consider a buffered simulation game
with two buffers in which the first one has more capacity than the second one, and every
letter that is stored in the first buffer also gets stored in the second one. In such a case,
the first buffer can be eliminated. This is intuitively because the first buffer is redundant
to the second one. Whenever Spoiler reads a letter and a copy of the letter is pushed to
the first buffer, one copy of the letter is also pushed to the second one. If Duplicator
never violates the capacity constraint of the second buffer, since the first buffer is bigger
than the second one, Duplicator also never violates the capacity constraint of the first
buffer. Hence eliminating the first buffer does not give any disadvantage or advantage for
Duplicator.

Let Gκ
′

Σ̂′
(A, B) be the game obtained from Gκ

Σ̂
(A, B) by eliminating the i-th buffer

because of redundancy to the i′-th buffer. By Theorem 3.5.1, without loss of generality,
we can assume that i = 1 and i′ = 2. If Duplicator wins the game Gκ

Σ̂
(A, B) then she

also wins the game Gκ
′

Σ̂′
(A, B). She simply moves her pebble in the same way as in Gκ

Σ̂
(A,

B). In this case, it is clear that if during the play in Gκ
Σ̂
(A, B), Duplicator resets the

counter once, she also resets the counter at least once in the game Gκ
Σ̂
(A, B). The reason

is because we now consider a game with less buffers and the order of the buffers does not
change. If Duplicator resets the counter infinitely often in Gκ

Σ̂
(A, B), she also does so in

Gκ
′

Σ̂′
(A, B).

Theorem 3.5.2. For any two distributed alphabets Σ̂ = (Σ1, . . . ,Σn), Σ̂′ = (Σ2, . . . ,Σn)
and two capacity vectors κ = (k1, . . . , kn), κ′ = (k2, . . . , kn) in which k1 ≥ k2 and Σ1 ⊆ Σ2,
we have

vκ
Σ̂
⊆vκ

′

Σ̂′
. (3.28)

The other direction of (3.28) also holds. If Duplicator wins the game Gκ
′

Σ̂′
(A, B), she

also wins the game Gκ
Σ̂
(A, B) by moving her pebble in the same way as in Gκ

′

Σ̂′
(A, B).

However note if in Gκ
′

Σ̂′
(A, B), Duplicator resets the counter once, in the game Gκ

Σ̂
(A, B),

Duplicator might not do so. In the game Gκ
Σ̂
(A, B), the counter might not increase from

1. This is because Duplicator pops a letter from Σ2 that does not belong to Σ1. However
since Σ1 ⊆ Σ2, in Gκ

′

Σ̂′
(A, B), Duplicator eventually will pop the letter from Σ1 in the

first buffer, and in Gκ
Σ̂
(A, B), the counter increases from 1. Duplicator resets the counter

infinitely often in Gκ
Σ̂
(A, B) if she also does so in the game Gκ

′

Σ̂′
(A, B).

Theorem 3.5.3. For any two distributed alphabets Σ̂ = (Σ1, . . . ,Σn), Σ̂′ = (Σ2, . . . ,Σn)
and two capacity vectors κ = (k1, . . . , kn), κ′ = (k2, . . . , kn) in which k1 ≥ k2 and Σ1 ⊆ Σ2,
we have

vκ
Σ̂
⊇vκ

′

Σ̂′
.

Proof. Let A, B be two NBA over Σ̂ = (Σ1, . . . ,Σn). Suppose Duplicator wins Gκ
′

Σ̂′
(A,

B). In the game Gκ
Σ̂
(A, B), Duplicator simply moves her pebble in the same way as in

Gκ
′

Σ̂′
(A,B).

CHAPTER 3. BUFFERED SIMULATION 69

Now let v0v′1v1v′2 . . . and u0u′1u1u′2 . . . be the plays that are obtained in Gκ
Σ̂
(A,B) and in

Gκ
′

Σ̂′
(A,B). Since in the game Gκ

Σ̂
(A,B), Duplicatormoves the pebble in the same way as

in Gκ
′

Σ̂′
(A,B), we also have the properties as in (3.24) and (3.25) for all i > 0.

We will show that if there are infinitely many i such that ui = (pi,w′i , qi, c′i ,D) with

c′i = >, (3.29)

there are also infinitely many i such that vi = (pi,wi, qi, ci,D) with ci = >. We will show
this by contradiction.

Suppose there are only finitely many such i. With the same reasoning as in the proof
of Theorem 3.5.1, this implies that in the game Gκ

Σ̂
(A,B), there is a round i0 ≥ 0 where

started from this round, the counter never changes from c ∈ {1, . . . , n}, i.e.

ci = c (3.30)

for all i ≥ i0.
For all j ∈ {1, . . . , n}, let w j and w′j be the content of the j-th buffer in round i0 of the

games Gκ
Σ̂
(A,B) and Gκ

′

Σ̂′
(A,B), respectively. We have wc , ε since otherwise in round

i0 +1 the counter will increase from c and we have a contradiction to (3.30). Furthermore,
since Σ̂′ = (Σ2, . . . ,Σn), Σ̂ = (Σ1, . . . ,Σn), we have wc = w′c−1 for c > 1.

Now suppose c > 1. In the game Gκ
′

Σ̂′
(A,B), there is a round i1 ≥ i0 where Duplicator

pops the (c − 1)-th buffer since otherwise, at one point the counter in Gκ
′

Σ̂′
(A,B) never

changes and this contradicts that (3.29) holds for infinitely many i. Hence in round i1 + 1,
the counter increases from c to c + 1 if c < n or resets to ⊥ if c = n. This is again a
contradiction to (3.30).

In the case where c = 1, since Σ1 ⊆ Σ2, we have wc = π1(w′c) where π1 is the projection
to Σ1. In the game Gκ

′

Σ̂′
(A,B), there is a round i2 ≥ i0 where Duplicator pops the first

letter of π1(w′c) from the first buffer. Otherwise, at one point the counter never changes
and this again contradicts that (3.29) holds for infinitely many i. Hence in round i2 of
Gκ

Σ̂
(A,B), Duplicator pops the first buffer and the counter increases from 1 which is

again a contradiction to (3.30).
Hence there is no such round i0. We have infinitely many i such that ci = >. Since

Duplicator wins u0u′1u2u′2 . . ., she also wins the play v0v′1v1v′2 Duplicator wins the
game Gκ

Σ̂
(A,B). �

Hierarchy over Capacity Vectors

As in the case of one buffer, buffered simulation with multiple buffers also gets more
expressive as the capacity of the buffers grows. We have a similar hierarchy as in Theorem
3.1.4. First, let us consider an order over the capacity vectors by considering the total
order on N ∪ {ω} that is extended to the point-wise comparisons on n-tuples of elements
from N∪ {ω}. For any two capacity vectors κ = (k1, . . . , kn) and κ′ = (k′1, . . . , k

′
n), we have

κ ≤ κ′ iff ki ≤ k′i for all i ∈ {1, . . . , n}. Furthermore, we write κ < κ′ iff κ ≤ κ′ and there is
i ∈ {1, . . . , n} such that ki < k′i . For example, we have (78, 6, 19) < (ω, 6, 23) but (3, 4) �
(5, 2). By considering such an order, as the capacity vector grows, buffered simulation gets
more expressive. This, however, only holds with respect to a fixed distributed alphabet.

Theorem 3.5.4. Let Σ̂ = (Σ1, . . . ,Σn) be a distributed alphabet. For any two capacity
vectos κ, κ′ in which κ < κ′, we have vκ

Σ̂
(vκ

′

Σ̂
.

70 3.5. EXPRESSIVE POWER

Proof. For any two NBA A, B over Σ̂ and two capacity vectors κ < κ′, any winning
strategy in Gκ(A,B) is also a winning strategy in Gκ

′

(A,B). Hence for all κ < κ′, we have
vκ

Σ̂
⊆ vκ

′

Σ̂
. For the strictness part, suppose κ = (k1, . . . , kn), κ′ = (k′1, . . . , kn

′), and κ < κ′.
Since κ < κ′, we have k1 < k′1. Now consider the following two NBA A, B where a is
some arbitrary letter in Σ1.

p0 p1 . . . pk′1
a a a q0

We have A vκ
′

B. This is because in the game Gκ
′

(A,B), Duplicator wins by just skip-
ping her turn. At the end of round k′1, we reach the configuration (pk′1

, (ak′1 , ε, . . . , ε), q0,
⊥,S) which does not have any valid successor since the state pk′1

does not have a succes-
sor. Hence Spoiler gets stuck and Duplicator wins the play. However, we have A @κ B.
Spoiler wins Gκ(A,B) by reading ak1+1. This is possible because k1 < k′1. Hence at round
k1 + 1, after Spoiler reads a, we reach the configuration (pk1 , (a

k1+1, ε, . . . , ε), q0,⊥,D)
which does not have any valid successor since the state q0 does not have a successor.
Hence Duplicator loses the game Gκ(A,B). �

Hierarchy over Distributed Alphabets

Theorem 3.5.4 shows that for a fixed distributed alphabet, buffered simulations gets more
expressive as the capacity of the buffers grows. It turns out that for a fixed capacity vec-
tor, buffered simulation also gets more expressive as the distributed alphabet gets “less”
distributed. By “less” distributed, we mean each buffer gets associated to the same or a
smaller set of letters.

To show this formally, consider the order on the distributed alphabets by considering
the inclusion that is extended to the point-wise comparisons of n-tuples of subset of Σ. For
any two distributed alphabets Σ̂ = (Σ1, . . . ,Σn) and Σ̂′ = (Σ′1, . . . ,Σ

′
n) where Σ1 ∪ . . . ∪ Σn

= Σ′1 ∪ . . . ∪ Σ′n, we say Σ̂′ is finer than Σ̂ and write Σ̂′ ≤ Σ̂ if Σ′i ⊆ Σi for all i ∈ {1, . . . , n}.
The finer the distributed alphabet, the stronger is Duplicator to win the game. Intuitively,
this is because in the game with a finer distributed alphabet, each letter that is read by
Spoiler now is put to the same set of buffers or less. Hence Duplicator’s moves are less
restricted.

If Duplicator wins the game Gκ
Σ̂
(A,B) then she also wins the game Gκ

Σ̂′
(A,B) where

Σ̂′ ≤ Σ̂ by moving her pebble as in Gκ
Σ̂
(A,B). Note that if Duplicator resets the counter

in Gκ
Σ̂
(A,B) infinitely often, she will also do so in the game Gκ

Σ̂′
(A,B). Since otherwise,

there is a non-empty buffer, let us assume the i-th one, in Gκ
Σ̂′

(A,B) that is ignored by
Duplicator. Since every letter that gets stored to the i-the buffer in the game Gκ

Σ̂′
(A,B)

also gets stored to the i-th buffer in Gκ
Σ̂
(A,B), this means Duplicator also ignores the

i-th buffer in Gκ
Σ̂
(A,B) and contradicts our initial assumption. We formally show this as

follows.

Theorem 3.5.5. Let κ = (k1, . . . , kn) be a capacity vector. For any two n-tuples of dis-
tributed alphabets Σ̂, Σ̂′ in which Σ̂ < Σ̂′, we have vκ

Σ̂′
⊆ vκ

Σ̂
.

Proof. Let A, B be two NBA over Σ̂ = (Σ1, . . . ,Σn) and suppose Duplicator wins the
game Gκ

Σ̂
(A, B). Let Σ̂′ = (Σ′1, . . . ,Σ

′
n) be some distributed alphabet in which Σ̂′ ≤ Σ̂

and π, π′ be the projections with respect to Σ̂, Σ̂′, respectively. In the game Gκ
Σ̂′

(A, B),
Duplicator moves her pebble in the same way as in Gκ

Σ̂
(A, B).

CHAPTER 3. BUFFERED SIMULATION 71

Now let v0v′1v1v′2 . . . and u0u′1u1u′2 . . . be the plays that are obtained in Gκ
Σ̂
(A,B) and in

Gκ
Σ̂′

(A,B). Since in the game Gκ
Σ̂′

(A,B), Duplicator plays as in Gκ
Σ̂
(A,B), we also have

the same properties as in (3.24) and (3.25).
We will show that if there are infinitely many round i such that vi = (pi,wi, qi, ci,D)

with
ci = >, (3.31)

there are also infinitely many round i such that ui = (pi,wi, qi, c′i ,D) with c′i = >. We will
show this by contradiction.

Suppose there are only finitely many such i. By the same reasoning as in Theorem
3.5.1, this implies that in the game Gκ

Σ̂′
(A,B), there is a round i0 ≥ 0 where started from

this round, the counter never changes from c ∈ {1, . . . , n}, i.e.

c′i = c (3.32)

for all i ≥ i0.
For all j ∈ {1, . . . , n}, let w j, w′j be the contents of the j-th buffer in round i0 in the

games Gκ
Σ̂
(A,B), Gκ

Σ̂′
(A,B), respectively. Since Σ̂′ ≤ Σ̂, we have π′j(w j) = w′j for all

j ∈ {1, . . . , n}. Note that we have w′c , ε since otherwise in round i0 + 1, the counter will
increase from c and this contradicts (3.32) holds for all i ≥ i0. In the game Gκ

Σ̂
(A,B),

there is some round i1 ≥ i0 where Duplicator pops the first letter of π′c(w
′
c) from buffer c.

Otherwise, the counter in Gκ
Σ̂
(A,B) at one point, never changes and this contradicts that

(3.31) holds for infinitely many i. Hence in round i1 of Gκ
Σ̂′

(A,B), Duplicator also pops a
letter from buffer c. In round i1 + 1, the counter will increase to c + 1 if c < n or resets to
⊥ if c = n. This again contradicts that (3.32) holds for all i ≥ i0. Hence there is no such
round i0. We have infinitely many i such that c′i = >.

Since Duplicator wins Gκ
Σ̂
(A,B), she wins v0v′1v1 Thus she also wins the play

u0u′1u1 Duplicator wins the game Gκ
Σ̂′

(A,B). �

The comparison between buffered simulation games with different distributed alpha-
bet, however, is not particularly meaningful. Buffered simulation games are defined with
respect to a distributed alphabet, and hence each distributed alphabet defines its own class
of structures and the corresponding buffered simulations become relations on different
classes of structures. We will see in the following chapter that the complexity and decid-
ability issues of buffered simulation games do not depend on how the letters are distributed
among the buffers, but only on how many buffers are involved and how big they are.

Chapter 4

Decidability and Complexity

In the previous chapter, we have seen the formal definition of buffered simulation. It
extends the game framework of the standard fair simulation with one or multiple buffers
such that Duplicator can store the letter that is read by Spoiler temporarily to the buffers
before she executes it in her structure. Duplicator can have a preview of Spoiler’s move
and more chances to mimic it correctly. In general, each of the buffers might have a
bounded or an unbounded capacity.

The definition of buffered simulation is quite simple and natural, but it is not clear
whether such a simulation is still decidable. If all buffers are bounded, intuitively buffered
simulation should still be decidable since the number of configurations is finite. However
if some buffers are unbounded, the number of configurations is no longer finite. It is al-
ready infinite even in the case where we only have one unbounded buffer. Hence in the
case where some buffers are unbounded, buffered simulation might be no longer decid-
able.

We study the decidability and complexity of buffered simulation in various cases. In
general, we will consider the following decision problem.

Given : Two NBAA,B over Σ̂ = (Σ1, . . . ,Σn) and a capacity vector
κ = (k1, . . . , kn) ∈ (N ∪ {ω})n

Question : Does Duplicator win the game Gκ(A,B)?
(4.1)

Before we show the decidability and complexity of this problem, we will consider some
of its simpler instances in the first three sections of this chapter. In the first one, we will
consider the problem of deciding buffered simulation in which only one buffer is involved
and the capacity is bounded, i.e. the instance of (4.1) in which n = 1 and k1 ∈ N. In the
second one, we will consider a more general problem, namely deciding buffered simula-
tion where multiple buffers are involved and all of them have a bounded capacity, i.e. the
instance of (4.1) where n ≥ 1 and k1, . . . , kn ∈ N. In the third section, we will consider
the problem of deciding buffered simulation where only one buffer is involved but the ca-
pacity is unbounded, i.e. the instance of (4.1) where n = 1 and k1 = ω. All of these three
instances turn out to be decidable. The decidability of the first two is expected since the
number of configurations in the game Gκ(A,B) is finite. However the decidability of the
third one is quite surprising. In such a case, the number of configurations in the buffered
simulation game is infinite and questions about systems with an unbounded FIFO buffer
are often undecidable. For instance in [CF05], it is shown that the linear-time properties
of a system with two machines and one buffer are undecidable. Nevertheless, we will
see that by adding one more buffer, even with a minimal capacity, buffered simulation

72

CHAPTER 4. DECIDABILITY AND COMPLEXITY 73

is no longer decidable. We will end this chapter with some sections that show the high
undecidability of the problem stated in (4.1).

4.1 Simulation with One Bounded Buffer
Let us start with a simple case of buffered simulation where there is only one bounded
buffer. Consider the following problem.

Given : Two NBAA,B over Σ and k ∈ N

Question : Does Duplicator win the game Gk(A,B)?

In Theorem 3.1.8, it is shown that we can reduce any buffered simulation game Gk(A, B)
where k ∈ N∪ {ω} to a parity game G where player 1 corresponds to Spoiler and player 0
to Duplicator. The parity game G is played in the configuration graph of Gk(A,B) with a
parity function that mimics the winning condition of Gk(A,B). The size of G is the same
as the size of the configuration graph of Gk(A,B). For a bounded capacity k ∈ N, we can
refine Theorem 3.1.8 to the following corollary.

Corollary 4.1.1. For any two NBA A,B over Σ and a capacity k ∈ N, we can construct
in polynomial time a parity game G with priorities 0, 1, 2 that is played on a graph where
the numbers of nodes and edges are

|V | = O(|A| · |B| · |Σ|k+2),

|E| = O(|A|2 · |B|2 · |Σ|2k+3)

such that Duplicator wins Gk(A,B) iff player 0 wins the parity game G.

Proof. Consider the parity game G as described in the proof of Theorem 3.1.8. The nodes
in the parity game G are the configurations of Gk(A,B). By Definition 3.1.1, the set of
configurations in Gk(A,B) is

V = QA × Σ≤k+1 × QB × {>,⊥} × {S,D}.

Since |Σ≤k+1| = |Σ|0 + |Σ|1 + . . .+ |Σ|k+1 = O(|Σ|k+2), the number of nodes in G is O(|A| · |B| ·
|Σ|k+2).

The edges in the parity game G are also the same as the edges in the configura-
tion graph of Gk(A,B). Recall also from Definition 3.1.1 that the outgoing edges from
Spoiler’s configurations are of the form

(p,w, q, b,S)→ (p′,wa, q, b,D)

where w ∈ Σ≤k and a ∈ Σ. Since |Σ≤k| = O(|Σ|k+1), the number of outgoing edges from
Spoiler’s configuration is O (|A|2 ·|B| ·|Σ|k+2). The outgoing edges from Duplicator’s
configuration, however, are of the form

(p,w, q, b,D)→ (p,w′, q′, b′,S)

where w ∈ Σ≤k+1 and w′ ∈ Σ≤k. Thus the number of outgoing edges from Duplicator’s
configuration is O (|A| ·|B|2 ·|Σ|2k+3). Hence we have the desired result. �

Now recall that by Proposition 2.4.2 from [Jur00], deciding whether player 0 wins a
parity game with priorities 0, 1, and 2 on a graph of n nodes and m edges is in time O(nm).
Hence we have the following theorem.

Theorem 4.1.2. For any two NBAA,B over Σ and a capacity k ∈ N, decidingA vk B is
in time O(|A|3 · |B|3 ·|Σ|3k+5).

74 4.1. SIMULATION WITH ONE BOUNDED BUFFER

The Flushing Variant

In the case where we consider the flushing variant, solving buffered simulation can be
done slightly easier than this. First note that the flushing variant Gk

Flush(A,B) can also be
reduced to a parity game in the same way as we reduce Gk(A,B). We can reduce it to a
parity game G′ = (G′, c′0,Ω) where G′ and c′0 are the configuration graph and the initial
configuration of the game Gk

Flush(A,B), and Ω is the priority function as in (3.6).
Let G and G′ be the parity games for Gk(A,B) and Gk

Flush(A,B), respectively. The
numbers of nodes in the parity game G and G′ are the same since the configurations in
Gk(A,B) and Gk

Flush(A,B) do not differ. The number of edges in G′, however, is slightly
less than the one in G. This is because the move of Duplicator in Gk

Flush(A,B) is more
restricted. In the configuration graph of the flushing variant Gk

Flush(A,B), there are two
kinds of outgoing edges from Duplicator’s configuration: the one that corresponds to the
case where Duplicator flushes the buffer and the one where she skips her turn. They are
respectively of the form

(p,w, q, c,D)→ (p, ε, q′, c′,S) and
(p,w′, q, c,D)→ (p,w′, q,⊥,S).

where p ∈ QA, q, q′ ∈ QB, w ∈ Σ≤k+1, w′ ∈ Σ≤k, and c, c′ ∈ {⊥,>}. Since |Σ≤k+1| =

O(|Σ|k+2), the number of outgoing edges from Duplicator’s configuration in the configu-
ration graph of Gk

Flush(A,B) is O(|A| ·|B|2 ·|Σ|k+2). The numbers of outgoing edges from
Spoiler’s configuration in G and in G′, however, are the same. It is O(|A|2 ·|B| ·|Σ|k+2).
There is no different in how Spoiler move in the game Gk(A,B) or Gk

Flush(A,B). Hence
we have the following theorem.

Theorem 4.1.3. For any two NBAA,B over Σ and k ∈ N, we can construct in polynomial
time a parity game G′ with priorities 0, 1, and 2 that is played on a graph where the
numbers of nodes and edges are

|V | = O(|A| · |B| · |Σ|k+2),

|E| = O(|A|2 · |B|2 · |Σ|k+2)

such that Duplicator wins Gk
Flush(A,B) iff player 0 wins G′.

Again, since deciding the winner of a parity game with priorities 0, 1, and 2 is linear
in the products of the numbers of nodes and edges, we have the following corollary.

Corollary 4.1.4. For any two NBA A,B over Σ and k ∈ N, deciding whether A vk
Flush B

is in time O(|A|3 |B|3 ·|Σ|2k+4).

For the full-flushing variant, recall from Section 3.3 that the game can be reduced
to the static (k + 1)-letter simulation game. Hence by Proposition 2.6.8, we have the
following corollary.

Corollary 4.1.5. For any two NBA A,B over Σ and a capacity k ∈ N, deciding whether
A vk

FFlush B is in time and O(|A|3 · |B|3 · |Σ|2k+2).

Buffered simulation with one bounded buffer together with its flushing variants, can
be solved in time polynomially in the size of the automata and exponentially in the size of
the alphabet where the exponent is the size of the buffer. Thus for a given fixed capacity,
we can solve buffered simulation with one buffer and its flushing variant in polynomial
time.

Corollary 4.1.6. For a fixed capacity k ∈ N, deciding vk, vk
Flush, and vk

FFlush are in PTIME.

CHAPTER 4. DECIDABILITY AND COMPLEXITY 75

4.2 Simulation with n ≥ 1 Bounded Buffers
Now let us look at a more general problem. Consider the problem of deciding buffered
simulation where multiple bounded buffers are involved.

Given : Two NBAA,B over Σ̂ = (Σ1, . . . ,Σn) and a κ = (k1, . . . , kn) ∈ Nn

Question : Does Duplicator win the game Gκ(A,B)?

As in the case of one buffer, this problem can also be reduced to a parity game. We
can consider a parity game that is played on the configuration graph of Gκ(A,B) with
a priority function that mimics the winning condition of Gκ(A,B). The following is a
generalisation of Corollary 4.1.1.

Theorem 4.2.1. Given two NBAA,B over Σ̂ = (Σ1, . . . ,Σn) and κ = (k1, . . . , kn) ∈ Nn, we
can construct in polynomial time a parity game G with priorities 0, 1, and 2 that is played
on a graph where the numbers of nodes and edges are

|V | = O(|A| · |B| · |Σ1|
k1+2 . . . · |Σn|

kn+2 · n),

|E| = O(|A|2 · |B|2 · |Σ1|
2k1+3 . . . · |Σn|

2kn+3 · n2)

such that Duplicator wins Gκ(A,B) iff player 0 wins the parity game G.

Proof. Let G = (V,VS ,VD, E) be the configuration graph of Gκ(A,B) and v0 the initial
configuration of Gκ(A,B). The parity game G is a triple (G, v0,Ω) where Ω is a priority
function that mimics the winning condition in Gκ(A,B), i.e. for any configuration v ∈ V ,

Ω(v) =


2 if v = (p,w, q,>,S)
1 if v = (p,w, q, c,D) where p ∈ FA

0 otherwise.
(4.2)

With the same reasoning as in the proof of Theorem 3.1.8, we can show that Duplicator
wins Gκ(A,B) iff player 0 wins the parity game G.

The nodes in the parity game G are the configurations of the game Gκ(A,B). Recall
from Definition 3.4.2 that the set of configurations in Gκ(A,B) is

V = QA × (Σ≤k1+1
1 × . . . × Σ≤kn+1

n) × QB × {1, . . . , n,⊥,>} × {S,D}.

Since |Σ≤ki+1
i | = O(|Σi|

ki+2) for all i ∈ {1, . . . , n}, the number of nodes in G is O(|A| · |B| ·
|Σ1|

k1+2 . . . · |Σn|
kn+2 · n).

The edges in the parity game G are also the same as the edges in the configuration
graph of Gκ(A,B). By Definition 3.4.2, the outgoing edges from Spoiler’s configuration
are of the form

(p,w, q, c,S)→ (p′,w′, q, c,D),

where

w = (w1, . . . ,wn),
w′ = (w1π1(a1), . . . ,wnπn(an)),

and wi ∈ Σ
≤ki
i , πi(ai) = ε or ai ∈ Σi, for all i ∈ {1, . . . , n}. Since |Σ≤ki

i | = O(|Σi|
ki+1) for all

i ∈ {1, . . . , n}, the number of outgoing edges from Spoiler’s configuration is O (|A|2 ·|B|
·|Σ1|

k1+2 . . . ·|Σn|
kn+2 · n).

76 4.2. SIMULATION WITH N ≥ 1 BOUNDED BUFFERS

The outgoing edges from Duplicator’s configuration, however, are of the form

(p,w, q, c,D)→ (p,w′, q′, c′,S),

where

w = (w1, . . . ,wn),
w = (w′1, . . . ,w

′
n),

and wi ∈ Σ
≤ki+1
i , w′i ∈ Σ

≤ki
i for all i ∈ {1, . . . , n}. Hence the number of outgoing edges from

Duplicator’s configuration is O (|A| ·|B|2 ·|Σ1|
2k1+3 . . . ·|Σn|

2kn+3 · n2). Thus the number of
edges in G is O(|A|2 · |B|2 · |Σ1|

2k1+3 . . . · |Σn|
2kn+3 · n2). �

Since deciding the winner of a parity game with priorities 0, 1, and 2 over a graph
with n nodes and m edges is in time O(nm), we have the following theorem.

Theorem 4.2.2. For any two NBA A,B over Σ̂ = (Σ1, . . . ,Σn) and κ = (k1, . . . , kn) ∈ Nn,
decidingA vκ B is in time O(|A|3 ·|B|3 ·|Σ1|

3k1+5 . . . ·|Σn|
3kn+5 · n3).

In the case of the flushing variant, i.e. deciding vκFlush, the complexity is slightly better.
We can show this in a similar way as in the case of one buffer. The reason is because
the number of edges in the configuration graph of GκFlush(A,B) is slightly less than the
one of Gκ(A,B). In the configuration graph of GκFlush(A,B), the outgoing edges from
Duplicator’s configurations that correspond to the case where Duplicator flushes the
buffer and where she skips her turn are respectively of the form

(p,w, q, c,D)→ (p, ε, q′, c′,S) and
(p,w′, q, c,D)→ (p,w′, q,⊥,S),

where p ∈ QA, q, q′ ∈ QB, c, c′ ∈ {1, . . . , n,⊥,>},

w = (w1, . . . ,wn),
w′ = (w′1, . . . ,w

′
n),

ε = (ε, . . . , ε),

and wi ∈ Σ
≤ki+1
i , w′i ∈ Σ

≤ki
i for all i ∈ {1, . . . , n}. Since |Σ≤ki+1

i | = O(|Σi|
ki+2) for all

i ∈ {1, . . . , n}, the number of outgoing edges from Duplicator’s configuration in the con-
figuration graph of GκFlush(A,B) is O(|A| ·|B|2 ·|Σ1|

k1+2 . . . ·|Σn|
kn+2 ·n2). The numbers of

outgoing edges from Spoiler’s configuration in G and G′ are the same. They are O(|A|2·
|B| · |Σ1|

k1+2 . . . ·|Σn|
kn+2 · n). Thus we have the following theorem.

Theorem 4.2.3. For any two NBA A,B over Σ̂ = (Σ1, . . . ,Σn) and κ = (k1, . . . , kn) ∈ Nn,
we can construct in polynomial time a parity game G′ with priorities 0, 1, and 2 that is
played on a graph where the numbers of nodes and edges are

|V | = O(|A| · |B| · |Σ1|
k1+2 . . . · |Σn|

kn+2 · n),

|E| = O(|A|2 · |B|2 · |Σ1|
k1+2 . . . · |Σn|

kn+2 · n2)

such that Duplicator wins GκFlush(A,B) iff player 0 wins G′.

CHAPTER 4. DECIDABILITY AND COMPLEXITY 77

Again, by Proposition 2.4.2, the winner of a parity game with priorities 0, 1, and 2 is
linear in the products of the numbers of nodes and edges. Hence we have the following
corollary.

Corollary 4.2.4. For any two NBAA,B over Σ̂ = (Σ1, . . . ,Σn) and κ = (k1, . . . , kn) ∈ Nn,
deciding whetherA vκFlush B is in time O(|A|3 |B|3 ·|Σ1|

2k1+4 . . . ·|Σn|
2kn+4 ·n3).

Both of the flushing variant and the general case of buffered simulation with multiple
bounded buffers can be solved in time polynomially in the size of the automata and in
the number of the buffers. They are however exponential in the size of the alphabets
where the exponent is the capacity of the buffers. Thus for a fixed capacity vector κ,
buffered simulation with multiple bounded buffers and its flushing variant can be solved
in polynomial time.

Corollary 4.2.5. For a fixed κ ∈ N+, deciding vκ and vκFlush are in PTIME.

4.3 Simulation with One Unbounded Buffer
Now let us consider a more general case where some unbounded buffer is involved. First
consider the case where there is only one buffer. We will start with the flushing variant,
i.e.

Given: Two NBAA,B over Σ

Question: Does Duplicator win the game GωFlush(A,B)?
(4.3)

Note that we can also reduce the game GωFlush(A,B) to a parity game in the same way
as we reduce the game Gk(A,B) where k ∈ N. We can see it as a parity game that is
played in the configuration graph of GωFlush(A,B) with the same priority function as in
(3.6). However, recall that the set of configurations in the game GωFlush(A,B), as well as
Gω(A,B), is

V = QA × Σ∗ × QB × {>,⊥} × {S,D}.

Since the content of the buffer can be any finite word from Σ∗, there are infinitely many
configurations. Reducing the game GωFlush(A,B) to a parity game in the same way as we
reduce the game Gk(A,B), where k ∈ N, will only give us a parity game on an infinite
graph which does not help us in showing decidability or undecidability of (4.3).

Nevertheless, we will show that the problem in (4.3) is indeed decidable. We will first
give the lower bound of solving such a problem and then its upper bound. After presenting
the complexity characterisation of deciding vωFlush completely, we will continue with a
more involved problem, namely deciding vω.

4.3.1 The Flushing Variant
It turns out that deciding whether Duplicator wins GωFlush(A,B) can no longer be done
in PTIME. The problem is PSPACE-hard. We will present a reduction from the corridor
tiling problem. Recall from Chapter 2 that in the corridor tiling problem, we are given
a tiling system T , a corridor width n > 0, and are asked whether we can tile the region
{1, . . . , n} × N+. Such a problem can be reduced to the one of deciding vωFlush. Intuitively,
we construct two NBAA, B such that Spoiler’s role is to produce a tiling row by row in
A and Duplicator’s role is to make sure that there is no horizontal or vertical mismatch

78 4.3. SIMULATION WITH ONE UNBOUNDED BUFFER

p0 p1 . . . p2# T T

#

q0

Bhor

Bver

T ∪ {#}n

Figure 4.1: NBAA and B for the corridor tiling problem.

q0 q1 ...
shor

#
a1

am

aH
1

aH
m

T Σ

q0 ...

. . .

. . .

...
sver

a1

am

T ∪ {#}

T ∪ {#}

T ∪ {#}

T ∪ {#}

aV
1

aV
m

Σ

n

Figure 4.2: The components Bhor and Bver.

by playing in B. The automaton B is basically equipped with two accepting sinks: shor

and sver such that whenever Duplicator detects a horizontal or vertical mismatch, she
simply flushes the buffer and reaches shor or sver to win the play.

Formally, given a tiling system T = (T,H,V) and a width n > 0, we construct two
NBA A, B as in Figure 4.1. They are defined over Σ = T ∪ {#}. The symbol # is used
to denote the beginning of a tiling of a row. The automaton for Spoiler will produce a
word of the form #w1#w2# . . . where w1, w2, . . . ∈ T n. The words w1, w2, . . . correspond
to the tiling of the first row, the second row, etc. The automaton for Duplicator, however,
is more complex. It consists of two components: Bhor that is used to detect the horizontal
mismatch and Bver for the vertical mismatch. We illustrate Bhor and Bver in Figure 4.2.
We assume that T = {a1, . . . , am}. Moreover, for any tile t ∈ T , we denote by tH, the
set of tiles that are not horizontally compatible with t, i.e. tH = {t′ ∈ T | (t, t′) < H}.
Similarly we denote by tV , the set of tiles that are not vertically compatible with t, i.e.
tV = {t′ ∈ T | (t, t′) < V}.

Intuitively, any infinite word w = #t1,1 . . . tn,1#t1,2 . . . tn,2# . . . ∈ (# · T n)ω is accepted by
B if it contains a vertical or horizontal mismatch, i.e. there exist i ∈ {1, . . . , n} and j > 0
such that (ti, j, ti+1, j) < H or (ti, j, ti, j+1) < V . Duplicator can read such a word w from the
initial state q0 by going to the accepting sink shor or sver and loop there for the rest of the
play.

Lemma 4.3.1. Given a tiling system T = (T,H,V) and a width n > 0, consider the two
NBAA, B in Figure 4.1. We have

L(A) = (# · T n)ω and

L(A) ∩ L(B) = {#w1#w2# . . . ∈ (# · T n)ω | ∃i, j : (wi(j),wi(j + 1)) < H or
wi(j),wi+1(j)) < V}.

Now if we consider the game GωFlush(A,B) between the two NBA A, B as in Figure
4.1, Spoiler wins if there exists a corridor tiling. The strategy for Spoiler is simply to
read the tiling row by row and by the construction of B, Duplicator will never reach any
accepting sinks. However, if there is no corridor tiling, Duplicator simply waits until
Spoiler produces a vertical or horizontal mismatch. At that point, she flushes the buffer
by going to one of the accepting sinks.

CHAPTER 4. DECIDABILITY AND COMPLEXITY 79

Theorem 4.3.2. Given a tiling system T = (T,H,V) and a width n > 0, we can construct
in polynomial time two NBA A,B such that Spoiler wins GωFlush(A,B) iff there exists a
corridor tiling.

Proof. Consider the two NBAA,B as given in Figure 4.1. Suppose there exists a corridor
tiling t. The strategy for Spoiler is to read w = #t1,1 . . . tn,1#t1,2 . . . tn,2# Since for all
i ∈ {1, . . . , n} and j > 0, we have (ti, j, ti+1, j) ∈ H and (ti, j, ti, j+1) ∈ V , by Lemma 4.3.1,
w < L(A)∩ L(B), but w ∈ L(A). Hence w < L(B). There is no accepting run over w in B.
Spoiler wins because he forms an accepting run, but Duplicator does not.

For the reverse direction, suppose there is no corridor tiling. Intuitively, the strategy
for Duplicator is to wait until we reach some configuration

(p2,w#t1 . . . tn#t′1 . . . t
′
n, q0,⊥,D) (4.4)

where w ∈ (# · T n)∗, t1, t′1 . . . , tn, t′n ∈ T , and there is i ∈ {1, . . . , n} such that (ti, ti+1) < H
or (ti, t′i) < V . In the first case, Duplicator pops w by looping in q0, pops #t1 . . . ti−1 by
going to q1, and then pops titi+1 by going to the accepting sink shor. In the second one,
Duplicator pops w#t1 . . . ti−1 by looping in q0 and then pops ti . . . tn#t′1 . . . t

′
i by going to

the accepting sink sver.
If we never reach a configuration as in (4.4) then Spoiler produces the word #t1,1 . . . tn,1

#t1,2 . . . tn,2# . . . where for all i ∈ {1, . . . , n} and j > 0, (ti, j, ti+1, j) ∈ H and (ti, j, ti, j+1) ∈
V . In such a case, we can construct a corridor tiling t : {1, . . . , n} × N+ → T where
t(i, j) = ti, j which contradicts our initial assumption. Hence the play eventually reaches a
configuration as in (4.4) and Duplicator will reach the accepting sink shor or sver. From
the accepting sink, it is not hard to see that Duplicator can play accordingly and win the
play. �

Note that the size of the automata A, B in Figure 4.1 is polynomially larger than
the given tiling system and corridor width. We also have a polynomial-time reduc-
tion from the corridor tiling problem to the flushing variant of buffered simulation with
one unbounded buffer. Since by Proposition 2.2.4, solving the corridor tiling problem
is PSPACE-hard, deciding whether Duplicator wins GωFlush(A,B) is also PSPACE-hard.
Hence we have the following corollary.

Corollary 4.3.3. Deciding vωFlush is PSPACE-hard.

Upper Bound

This lower bound is indeed tight. We will show that deciding whether Duplicator wins
the flushing variant GωFlush(A,B) can be done in PSPACE. Before we show this, let us first
denote the set of Spoiler’s configurations with an empty buffer by Vε , i.e. the configu-
ration (p,w, q, b,S) is in Vε iff w = ε. Moreover, let us also denote the set of Spoiler’s
configurations that are winning for Spoiler by WS , i.e. a configuration (p,w, q, b,S) is in
WS iff Spoiler has a winning strategy to win the play that is started from (p,w, q, b,S).
We will give an algorithm that computes the set of Spoiler’s configurations with an empty
buffer that are winning for Spoiler, i.e. the set WinS = WS ∩ Vε . Once we have WinS,
we can easily decide whether Spoiler wins GωFlush(A,B) by checking whether the initial
configuration is in such a set.

80 4.3. SIMULATION WITH ONE UNBOUNDED BUFFER

Fixpoint Iteration for Computing WinS

The set WinS can be computed via fixpoint iteration. For the base case, we consider the
set of configurations WinS0

⊆ Vε in which Spoiler wins by forming an accepting run that
cannot be mimicked by Duplicator. First, for any automatonA and a state p, let us denote
withAp, the automatonA where p is its initial state, i.e.Ap = (QA,ΣA, EA, p, FA). We
define the set WinS0 as follows.

Definition 4.3.4. For any two NBAA, B,

WinS0 = {(p, ε, q, b,S) ∈ Vε | L(Ap) * L(Bq)}. (4.5)

Example 4.3.5. Consider again two NBA A, B from Example 3.2.1. For convenience,
we present them again as follows.

p0 p1
a

b, c qa

qb

qc

a

a

b

b

c

c

The initial configuration (p0, ε, qa,⊥,S) does not belong to WinS0 since L(A) = L(B), and
hence L(Ap0) ⊆ L(Bqa). The configurations (p1, ε, qb,>,S) and (p1, ε, qc,>,S), however,
are in WinS0. Note that

L(Ap1) = (b ∪ c)ω,
L(Bqb) = b · (b ∪ c)ω, and
L(Bqc) = c · (b ∪ c)ω.

Thus L(Ap1) * L(Bqb) and L(Ap1) * L(Bqc). In fact, we have

WinS0 = {(p, ε, q,⊥,S), (p, ε, q,>,S) ∈ Vε | (p, q) ∈ QA × QB \ {(p0, qa)}}.

From any configuration (p, ε, q,⊥,S) or (p, ε, q,>,S) in WinS0, Spoiler simply con-
siders the word w ∈ L(Ap)\L(Bq) and then plays the accepting run of w inA. Duplicator
would never form a corresponding accepting run and loses the play.

Proposition 4.3.6. WinS0
⊆ WinS.

Proof. Let (p, ε, q, b,S) ∈ WinS0. By definition of WinS0, there is a word w ∈ L(Ap)
such that w < L(Bq). Let ρ be an accepting run over w in Ap. The winning strategy for
Spoiler from the configuration (p, ε, q, b,S) in GωFlush(A,B) is to play ρ. Since w < L(Bq),
there is no accepting run over w from q. Hence Spoiler forms an accepting run, but
Duplicator does not. We obtain a play v0v1 . . . such that there are infinitely many i such
that vi = (p,w, q, b,D) with p ∈ FA and finitely many i such that vi = (p,w, q,>,S).
Spoiler wins the play. �

The set WinS indeed is the least set that contains WinS0 such that from any config-
uration in WinS, Spoiler can force Duplicator to eventually proceed to WinS0. We will
show this by considering the set of attractors. For any set of configurations U ⊆ Vε , the
set AttrS (U) is defined as the set of configurations in Vε from which Spoiler can play a
certain accepting run and force Duplicator to eventually flush the buffer and proceed to
U. We formally denote this as follows.

CHAPTER 4. DECIDABILITY AND COMPLEXITY 81

Definition 4.3.7. LetA, B be two NBA. For any U ⊆ Vε , the set of attractors of U is

AttrS (U) = {(p, ε, q, b,S) ∈ Vε | ∃ ρ = pa1 p1a2 p2 . . . ∈ AccRun(Ap)
such that ∀ ρ′ = qa1q1a2q2 . . . ∈ AccRun(Bq), there

are finitely many i with (pi, ε, qi,>,S) < U}.

Example 4.3.8. Consider again the two NBA A, B in Example 4.3.5 and the set U =

{(p1, ε, qb,>,S), (p1, ε, qc,>,S)}. The initial configuration (p0, ε, qa,⊥,S) is in the set
AttrS (U) since we can consider the accepting run ρ = p0a(p1bp1c)ω over the word a(bc)ω.
There is only one accepting run in B over the same word, i.e. ρ′ = qaa(qbbqcc)ω, and
we have (p1, ε, qb,>,S), (p1, ε, qc,>,S) ∈ U. Hence by definition, (p0, ε, qa,⊥,S) ∈
AttrS (U).

The fixpoint-algorithm starts from WinS0. In every step, we add the attractors of the
current set until we reach a fixed point. We eventually reach a fixed point since we only
add more configurations and there are only finitely many configurations that we can add.
Let us denote such a fixed point with W.

Definition 4.3.9. For all i ∈ N, let WinS0 as in (4.5),

WinSi+1 = WinSi
∪ AttrS (WinSi),

and W = WinSi0 where WinSi0 = WinSi for all i > i0.

Intuitively, if a configuration (p, ε, q, b,S) does not belong to the fixed point W then
from such a configuration, Duplicator eventually can proceed to some other configuration
(p′, ε, q′,>,S) that does not belong to W.

Lemma 4.3.10. Consider a play in GωFlush(A,B) from some configuration (p, ε, q, b,S)
< W. Duplicator has a strategy such that either Spoiler loses or the play eventually
proceeds to some configuration

(p′, ε, q′,>,S) < W.

Proof. The strategy for Duplicator is as follows. She skips her turn until the play reaches
some configuration (p′,w, q,⊥,D) where there exists q′ such that

q w
−−→

F
q′

and (p′, ε, q′,>,S) < W. In such a case, Duplicator flushes the buffer and proceeds to the
configuration (p′, ε, q′,>,S).

If Spoiler forms an accepting run ρ = pa1 p1 . . . then Duplicator eventually flushes
the buffer. We will show this by contradiction. Suppose Spoiler forms such an accepting
run ρ, but Duplicator never flushes the buffer. Let ρ′ = qa1q1 . . . be an accepting run
in B and i0 > 0 be the smallest index such that qi0 ∈ FB. By definition of the strategy,
Duplicator does not flush the buffer in any round i ≥ i0 because (pi, ε, qi,>,S) ∈ W.
Hence there are only finitely many indices i such that (pi, ε, qi,>,S) < W. By definition
of attractor, (p, ε, q, b,S) ∈ AttrS (W). Moreover, by definition of W, (p, ε, q,>,S) ∈ W.
This contradicts our initial assumption. Thus either Spoiler does not form an accepting
run and in this case Duplicator wins, or Duplicator eventually flushes the buffer and
proceeds to some configuration (p′, ε, q′,>,S) < W. �

82 4.3. SIMULATION WITH ONE UNBOUNDED BUFFER

By using this lemma, we can show that Duplicator wins from any configuration
(p, ε, q, b,S) that does not belong to the fixed point W. She simply flushes the buffer
only if she reaches some configuration (p′, ε, q′,>,S) that also does not belong to W.

Lemma 4.3.11. WinS ⊆ W.

Proof. Let (p, ε, q, b,S) < W. Thus we have (p, ε, q, b,S) < WinSi for all i ∈ N. Dupli-
cator wins GωFlush(A,B) from such a configuration. Initially, she plays with the strategy
as we have described in the proof of Lemma 4.3.10. By doing so, either she wins, or the
play eventually proceeds to some configuration (p′, ε, q′,>,S) < W. From configuration
(p′, ε, q′,>,S), since it does not belong to W, we can repeat the procedure again. We do
this indefinitely. Hence either Duplicator eventually wins by using the strategy as de-
scribed in the proof of Proposition 4.3.10 or she proceeds to some configuration of the
form (p′, ε, q′,>,S) infinitely often. In such a case, Duplicator also wins the play. Hence
(p, ε, q, b,S) < WinS. �

We will show that the reverse direction of this lemma also holds. If a configuration
(p, ε, q, b,S) belongs to W then it also belongs to WinSi for some i ∈ N. Hence Spoiler
can force the play to proceed to some configuration that belongs to WinSi−1, then WinSi−2,
and so on, until we reach the one that belongs to WinS0. From such a configuration, by
Proposition 4.3.6, we know that Spoiler will win the play.

Theorem 4.3.12. WinS = W.

Proof. The left-to-right direction holds by Lemma 4.3.11. For the right-to-left direction,
let (p, ε, q, b,S) ∈ W. By Definition 4.3.9, we have an i ∈ N such that (p, ε, q, b,S) ∈
WinSi. If i = 0, by Proposition 4.3.6, (p, ε, q, b,S) ∈ WinS. Hence we have the de-
sired result. Now suppose i > 0. By Definition 4.3.9, either (p, ε, q, b,S) ∈ WinSi−1 or
(p, ε, q, b,S) ∈ AttrS (WinSi−1). In the first case, by the induction hypothesis, (p, ε, q, b,S) ∈
WinS and hence we also have the desired result. In the second case, by the definition of at-
tractor, there exists an accepting run ρ = pa1 p1a2 . . . inA such that for any accepting run
ρ′ = qa1q1a2 . . . in B, there are only finitely many j such that (p j, ε, q j,>,S) < WinSi−1.
From (p, ε, q, b,S), the strategy for Spoiler is to play the run ρ indefinitely until Dupli-
cator flushes the buffer and proceeds to some configuration (p′, ε, q′,>,S) ∈ WinSi−1. If
Duplicator never does so then either she does not form an accepting run, or she indeed
forms an accepting run ρ′0 = qa1q′1a2q′2 . . . but never proceeds to such a configuration.
Let j1, j2, . . . be the rounds where Duplicator flushes the buffer and sees some accepting
state. Hence (p j1 , ε, q

′
j1 ,>,S), (p j2 , ε, q

′
j2 ,>,S), . . . < WinSi−1. There are infinitely many

j such that (p j, ε, q′j,>,S) < WinSi−1. This contradicts (p, ε, q, b,S) ∈ AttrS (WinSi−1).
Thus if Spoiler plays ρ, either Duplicator does not form an accepting run or she eventu-
ally flushes the buffer and proceeds to some configuration (p′, ε, q′,>,S) ∈ WinSi−1(W).
In the first case, Spoiler wins because he forms an accepting run. In the second case,
Spoiler also wins because by the induction hypothesis, such a configuration is winning
for Spoiler. We have (p, ε, q, b,S) ∈ WinS. �

Hence the fixed point W is indeed WinS. We can compute WinS, by first computing
W0 = WinS0, then W1 = W0 ∪ AttrS (W0), then W2 = W1 ∪ AttrS (W1), etc. until we reach a
fixed point.

CHAPTER 4. DECIDABILITY AND COMPLEXITY 83

The Complexity of Computing WinS

For any flushing variant game GωFlush(A,B), given a set U ⊆ Vε and some configuration
(p, ε, q, b,S) ∈ Vε , it is not obvious how difficult it is to decide the membership (p, ε, q,
b,S) ∈ AttrS (U). It turns out that we can reduce such a membership problem to a language
non-inclusion between two generalised Büchi automata (GNBA). Intuitively, we construct
two GNBA A′ and B′ over the transitions of A such that A′ accepts the sequence of
transitions (p, a1, p1) (p1, a2, p2) . . . that corresponds to the accepting run of A, and the
automaton B′ only accepts such a sequence if there exists an accepting run qa1q2a2 . . . in
B such that there are infinitely many i with (pi, ε, qi,>,S) < U. In this way, if there is no
language inclusion betweenA′,B′, there is an accepting run pa1 p1a2 . . . inA such that for
all accepting run qa1q2a2 . . . inB, there are only finitely many i where (pi, ε, qi,>,S) ∈ U,
and hence we have the membership (p, ε, q, b,S) ∈ AttrS (U).

Lemma 4.3.13. Deciding whether (p, ε, q, b,S) ∈ AttrS (U) is in PSPACE.

Proof. Suppose Spoiler’s and Duplicator’s automata are A = (QA,Σ, EA, p0, FA) and
B = (QB,Σ, EA, q0, FB). Consider two GNBA

A′ = (QA,Σ′, EA
′

, p, {FA}),

B′ = (QA × QB,Σ′, EB
′

, (p, q), {QA × FB,U′})

where Σ′ = EA,

EA
′

= {r (r,a,r′)
−−−−−→ r′ | (r, a, r′) ∈ EA},

EB
′

= {(r, s) (r,a,r′)
−−−−−→(r′, s′) | (s, a, s′) ∈ EB},

and
U′ = {(p′, q′) ∈ QA × QB | (p′, ε, q′,>,S) ∈ Vε \ U}.

Now suppose L(A′) ⊆ L(B′). Let ρ = pa1 p1a2 . . . be an accepting run in A. Hence
the word w = (p, a1, p1) (p1, a2, p2) . . . is accepted byA′. Since L(A′) ⊆ L(B′), the word
w is also accepted by B′. There is an accepting run

(p, q) (p,a1,p1)
−−−−−−−→(p1, q1) (p1,a2,p2)

−−−−−−−−→(p1, q1) . . .

over w in B′. By the acceptance condition of B′, the run qa1q1a2 . . . is accepting in
B and there are infinitely many i such that (pi, ε, qi,>,S) < U. Hence by definition,
(p, ε, q, b,S) < AttrS (U).

For the reverse direction, suppose L(A′) * L(B′). There exists w = (p, a1, p1)
(p1, a2, p2) . . . ∈ Σ′ω such that w is accepted byA′, but not by B′. Let

(p, q) (p,a1,p1)
−−−−−−−→(p1, q1) (p1,a2,p2)

−−−−−−−−→(p2, q2) . . .

be an infinite run in B′ over w. Since w < L(B′), the run is not accepting in B′. Either
qa1q1a2 . . . is not accepting in B or there are only finitely many i such that (pi, ε, qi,>,S)
< U. Thus (p, ε, q, b,S) ∈ AttrS (U).

We have (p, ε, q, b,S) ∈ AttrS (U) iff L(A′) * L(B′). We can reduce the problem
of deciding (p, ε, q, b,S) ∈ AttrS (U) to the problem of deciding language non inclusion
L(A′) * L(B′) between two GNBA A′ and B′. By Proposition 2.3.18, deciding whether
L(A′) * L(B′) is in PSPACE. Hence deciding whether (p, ε, q, b,S) ∈ AttrS (U) is also in
PSPACE. �

84 4.3. SIMULATION WITH ONE UNBOUNDED BUFFER

Algorithm 1 DecidingAvωFlush B.

1: W ← WinS0

2: W ′ ← WinS0
∪ AttrS (WinS0)

3: while W , W ′ do
4: W ← W ′

5: W ′ ← W ∪ AttrS (W)
6: end while
7:
8: if (p0, ε, q0,⊥,S) ∈ W then return no
9: else yes

10: end if

By using this lemma, for any set U ⊆ Vε , the set AttrS (U) can be computed in
PSPACE. We simply check whether for every Spoiler’s configuration (p, ε, q, b,S), we
have (p, ε, q, b,S) ∈ AttrS (U). Since there are only polynomially many such configura-
tions, we can also compute AttrS (U) in PSPACE.

Corollary 4.3.14. The set AttrS (U) can be computed in PSPACE.

The set WinS0 can also be computed in PSPACE. Note that by Definition 4.5, deciding
whether some configuration (p, ε, q, b,S) is in WinS0 can be done by checking language
non-inclusion between two Büchi automata. Since there are also polynomially many such
configurations, we have the following corollary.

Corollary 4.3.15. The set WinS0 can be computed in PSPACE.

We can then decide whether Spoiler wins GωFlush(A,B), by first computing the set
WinS. Corollary 4.3.15 and Corollary 4.3.14 show that such a set can be computed in
PSPACE. After we have WinS, we check the membership of the initial configuration of
GωFlush(A,B) in WinS.

Theorem 4.3.16. Deciding whether Duplicator wins GωFlush(A,B) is in PSPACE.

Proof. Consider the algorithm depicted in Algorithm 1. By Corollary 4.3.15 and Corol-
lary 4.3.14, the first two steps can be done in PSPACE. Each while-loop iteration can also
be done in PSPACE and there are at most 2 · |A| · |B| many iterations. Checking whether
the initial configuration (p0, ε, q0,⊥,S) is in W can also be done in polynomial time since
|W | ≤ 2 · |A| · |B|. Hence Algorithm 1 runs in PSPACE. �

Together with Corollary 4.3.3, we have characterised the complexity for solving the
flushing variant GωFlush(A,B) completely.

Corollary 4.3.17. Deciding vωFlush is PSPACE-complete.

4.3.2 Lower Bound for Deciding vω

Now one might ask if the problem of deciding the general case, i.e. vω, is also in PSPACE.
Unfortunately this is not the case. We will show that for any two NBAA, B, the problem
of deciding whether A vω B is indeed EXPTIME-hard. We will give a reduction from
the game variant of the corridor tiling problem.

CHAPTER 4. DECIDABILITY AND COMPLEXITY 85

Corridor Tiling Game

Recall from Section 2.2 that there is a variant of the corridor tiling problem, where beside
a tiling system T = (T,H,V) and a corridor width n > 0, we are also given initial and
final tiles tI , tF ∈ T and then asked whether there exists a height m ∈ N and a tiling in the
region {1, . . . , n} × {1, . . . ,m} that uses tI as the first tile and tF in the last tile.

The game variant of this problem is played between two players: Starter (female)
and Completer (male). The objective of Completer is to construct a valid tiling row by
row whereas Starter tries to prevent this by choosing the first tile of each row. Starter
considers the initial tile for the first row and Completer wins if eventually the final tile is
used in some row. Hence in each round i > 0, the play proceeds as follows.

1. Starter chooses t1,i ∈ T , the first tile of row i, such that (t1,i−1, t1,i) ∈ V . If i = 1
then t1,i = tI .

2. Completer then completes row i. She chooses t2,i, . . . , tn,i ∈ T such that

• (t1,i, t2,i), (t2,i, t3,i) . . . , (tn−1,i, tn,i) ∈ H and

• (t1,i−1, t1,i), (t2,i−1, t2,i) . . . , (t1,i−1,, t1,i) ∈ V if i > 1.

If one of the players gets stuck then the opponent wins. If the play goes on for infinitely
many rounds and the final tile is never used then Starter wins. Otherwise Completer
wins immediately if at some round m > 0, there exist j such that t j,m = tF . We formally
define the game as follows.

Definition 4.3.18. A corridor tiling game isGtile(T , tI , tF , n) = ((V,VComp,VSt, E), v0,Play)
where VComp ⊆ T n × {St} and VSt ⊆ T n ∪ {ε} × T × {Comp} are respectively Starter and
Completer’s configurations. The edge relation E is defined as follows.

((t1 . . . tn,St), (t1 . . . tn, r1,Comp)) ∈ E iff (t1, r1) ∈ V and for all 1 ≤ i ≤ n, ti , tF ,

((t1 . . . tn, r1,Comp), (r1 . . . rn,St)) ∈ E iff
for all 1 ≤ i < n, (ri, ri+1) ∈ H and
for all 1 ≤ i ≤ n, (ti, ri) ∈ V.

The initial configuration is v0 = (ε, tI ,Comp) and the winning condition is Play, the set
of all infinite plays in Gtile(T , tI , tF , n).

Note that by definition of the winning condition, Starter wins any infinite play. How-
ever, the corridor tiling game is defined such that if Completer eventually produces a
row with the final tile then Starter gets stuck, and hence she loses the play immediately.
Thus Completer wins iff the final tile is eventually used or Starter gets stuck because he
cannot choose a tile for the first row that obeys the vertical matching relation.

Proposition 4.3.19 ([Boa97, Chl86]). Deciding whether Completer wins the corridor
tiling game Gtile(T , tI , tF , n) where n is encoded unarily is EXPTIME-complete.

Reduction from the Corridor Tiling Game

We will use the corridor tiling game to show the EXPTIME-hardness of solving the
buffered simulation game with one unbounded buffer. Intuitively, we can use the same
principle as in the case of the flushing variant where Spoiler’s role is to produce a tiling

86 4.3. SIMULATION WITH ONE UNBOUNDED BUFFER

row by row and Duplicator checks whether there is a horizontal or vertical mismatch.
However in this case, we also need to encode the interaction between the players. Spoiler,
who will mimic Completer’s move, has to produce a row after Duplicator chooses the
first tile and Duplicator, who will mimic Starter’s move, has to choose the first tile of
the next row after Spoiler completes the current row. The players move alternatingly.
This is in contrast to the nature of buffered simulation where the players may not move
alternatingly. In the game Gω(A,B), Duplicator can skip her turn, even for unboundedly
many rounds.

Nevertheless, we will show that we can still encode the interaction in the corridor
tiling game to the one between Spoiler and Duplicator in the buffered simulation game.
The trick is that we consider two NBA A, B such that after producing the tiling of a
row, Spoiler can repeat it indefinitely until Duplicator announces the first tile of the next
row. Duplicator will do so by moving her pebble to some certain state. Duplicator then
mimics the repeated tiling indefinitely until Spoiler stops repeating and reading the tiling
of the next row.

We illustrate the two NBAA, B that encode such interactions in Figure 4.3. They are
defined over Σ = T ∪ {#, $} where # is a special symbol that indicates the beginning of a
row and $ for the repetition of a row. Without loss of generality, we assume that there are
m > 0 many tiles, i.e. T = {a1, . . . , am}, and a1 is the initial tile. For any tile t ∈ T , we
denote with t the set of tiles that are not t, i.e. t = T\{t},

The automaton A is very simple. It accepts any word of the form w = c0w1c1w2 . . .
where c0 = # and for all i > 0, wi ∈ T n and ci ∈ {#, $}. The automaton B, however,
is more involved. It basically consists of m main states qa1 , . . ., qam and a component
that starts from q2 which can reach the accepting sink sid. The state q2 is reachable from
any main state by a #-transition. Any main state qt can reach the accepting sink st by
reading #t. Moreover, the main states qa1 , . . ., qam are also reachable from one another by
a #-transition.

To illustrate what Duplicator can do in the game Gω(A,B), consider a play that starts
from the initial configuration (p0, ε, qa1 ,⊥,S). Initially, Spoiler is forced to read # and
then a word w ∈ T n that corresponds to the tiling of the first row where the first tile is a1,
i.e. w(1) = a1. If the first tile is not a1 then Duplicator can go to the accepting sink sa1 by
reading #w(1) and win the play. Moreover, after reading w, Spoiler has to repeat it. She
is forced to read ww$. . . since otherwise Duplicator can go to the accepting sink sid

or one of the accepting sinks sa1 , . . ., sam . We formulate this observation in the following
lemma.

Lemma 4.3.20. Consider the two NBA A, B as in Figure 4.4 and a play in Gω(A,B)
from some configuration

(p1,w#, qt, b,D)

where w ∈ T n ∪ {ε}, t ∈ T, and b ∈ {>,⊥}.

• Duplicator has a strategy such that either Spoiler loses or the play proceeds to
some configuration

(p1, #w′, qt,⊥,D) (4.6)

where w′ ∈ T n and w′(1) = t.

• From (4.6), for any t′ ∈ T, Duplicator has a strategy such that either Spoiler loses
or the play proceeds to

(p1,w′#, qt′ ,>,D). (4.7)

CHAPTER 4. DECIDABILITY AND COMPLEXITY 87

p0 p1 . . . p2# T T

#, $

qa1

...

qam

sa1

sam

#

#

a1

am

T ∪ {$}

T ∪ {$}

Σ

Σ ##

#

q2 ...

. . .

. . .

...
sid

a1

am

T ∪ {$} T ∪ {$}

T ∪ {$} T ∪ {$}

a1

am

T ∪ {$} Σ

n

n

#

#

Figure 4.3: NBAA (above) and B (below) to encode the interaction in the corridor tiling
game.

Proof. For the first part, the strategy for Duplicator is simply to wait until Spoiler reads
w′ ∈ T n. If w′(1) , t then Duplicator loops in qt by reading w and then goes to st by
reading #w′(1). From the accepting sink, it is not hard to see that Duplicator can play
accordingly and win the play. In the case where w′(1) = t, Duplicator pops w by looping
in qt. The play then proceeds to the configuration (4.6).

For the second part, the strategy is as follows. Initially, Duplicator pops # from the
buffer and goes to qt′ , i.e. she proceeds to

(p1,w′, qt′ ,>,S). (4.8)

If Spoiler responds to this by reading # then we have the desired result. Otherwise,
Spoiler reads $ and in this case, Duplicator skips her turn for the next n rounds. Hence
we reach some configuration (p1,w′$w′′, qt′ ,⊥,D) where w′′ ∈ T n.

If there exists i ∈ {1, . . . , n−1} such that w′(i) , w′′(i) then Duplicator goes to sid: she
pops w′(1), . . . ,w′(i−1) by going to q2, and then pops w′(i), . . . ,w′(n), $,w′′(1), . . . ,w′′(i)
by going to sid. From sid, Duplicator can play accordingly and win the play.

Otherwise, we have w′ = w′′. In this case, Duplicator pops w′$ by looping in qt′ .
Hence we reach the configuration (4.8) again.

Duplicator repeats this procedure indefinitely. If Spoiler never reads #, the play
reaches the configuration as in (4.8) infinitely often, and in this case Duplicator wins.
Otherwise, Spoiler eventually reads # and we reach the configuration (4.7). �

The first part of this lemma shows that after Spoiler reads w#, where w ∈ T n, by being
in some state qt where t ∈ T , Duplicator forces Spoiler to produce a word w′ ∈ T n, the
tiling of the next row, in which the first tile is t. The second part shows that Duplicator
can choose any tile t′ ∈ T as the first tile of the next row, i.e. by moving to qt′ , and then

88 4.3. SIMULATION WITH ONE UNBOUNDED BUFFER

force Spoiler to eventually stop repeating the current tiling by looping in qt′ to mimic
the repeated tiling. Spoiler eventually starts producing the tiling of the next row since
otherwise he will lose because Duplicator forms an accepting run.

Now to illustrate what Spoiler can do in the game Gω(A,B), consider the play from
some configuration (p1,w#, qt,>,D) where w ∈ T n or from any configuration of the form
(p1, ŵww . . . #, qt,>,D) where ŵ is a suffix of w. If Spoiler continues by reading a
tiling w′ in which w′(1) = t and repeating it, i.e. reading w′$w′$. . ., then Duplicator will
never reach any accepting sink in B. She is indeed forced to eventually pop # from the
buffer and move to some state qt′ . We formulate this observation as follows.

Lemma 4.3.21. Consider the two NBA A, B as in Figure 4.4 and a play in Gω(A,B)
from some configuration

(p1, w̃#, qt, b,D)

where w ∈ T n, w̃ ∈ suffix(w) · ($ w)∗, t ∈ T, and b ∈ {>,⊥}. For any w′ ∈ T n where
w′(1) = t, Spoiler has a strategy such that either Duplicator loses or the play proceeds
to some configuration

(p1, w̃′#, qt′ , b′,D) (4.9)

w̃′ ∈ suffix(w′) · ($w′)∗, t′ ∈ T, and b′ ∈ {>,⊥}.

Proof. The strategy for Spoiler is as follows. He reads w′$w′$w′ . . . indefinitely until
Duplicator pops # from the buffer. If Duplicator never does so then Spoilerwins because
he forms an accepting run. Hence let us assume that Duplicator eventually pops # from
the buffer by going to some state q. We have q , st because w′(1) = t. We also have
q , st′ for all t′ ∈ T , t′ , t, since there is only one # in the buffer and we need at least
two to reach such st′ from qt. Moreover, q , sid because for all i > 0, the i-th and the
i + (n + 1)-th letters of w′$w′$w′ . . . are identical. Hence either q is one of the main states,
i.e. q = qt′ for some t′ ∈ T , or some other non-sink state. In the second case, Spoiler
wins by keep reading w′$w′$w′ . . . since we have seen that Duplicator will never reach
an accepting sink and form an accepting run. In the first case, Spoiler does as follows. If
Duplicator pops # when Spoiler reads $ or the k-th letter of w′, Spoiler continues reading
until the last letter of w′ and then reads #. Hence we reach a configuration as in (4.9). �

This lemma basically shows that by repeating the tiling of the current row, Spoiler
forces Duplicator to choose the first tile of the next row. Duplicator cannot reach any
accepting sink. Note that the main states qa1 , . . ., qam in B intuitively correspond to the
tiles that can be chosen by Duplicator. The move of Duplicator from qt to qt′ corresponds
to the move of Starter that chooses the tile t′ for the next row, after choosing t for the
current row.

We can slightly extend the automataA, B to fully encode the corridor tiling game. To
encode the vertical and horizontal mismatches, we simply extend Duplicator’s automaton
with the components Bhor and Bver that we have illustrated in Figure 4.2. We extend the
automaton B such that Spoiler is forced to produce a tiling that matches horizontal and
vertically since otherwise Duplicator can reach the accepting sink shor or sver. Further-
more, we can also force Duplicator to choose the first tile that matches vertically. We
simply restrict the #-transition from the main states qa1 , . . ., qam . For any main state qt,
t ∈ T , we have

qt
#
−−→ qt′ iff (t, t′) ∈ V.

CHAPTER 4. DECIDABILITY AND COMPLEXITY 89

p0 p1 . . . p2# T T

#, $

qa1

...

qam

sa1

sam

#

#

a1

am

T ∪ {$} \ {tF}

T ∪ {$} \ {tF}

Σ

Σ #

#

Bhor

q2 ...

. . .

. . .

...
sid

a1

am

T ∪ {$} T ∪ {$}

T ∪ {$} T ∪ {$}

a1

am

T ∪ {$} Σ

Bver

n

n

#

#

Figure 4.4: NBAA (above) and B (below) for the corridor tiling game.

Hence Duplicator can choose t′ as the first tile of the next row if t′ is vertically matched
with the first tile t of the current row. Moreover, we can also encode the situation where
Completer immediately wins when the final tile is used. We simply disallow Duplicator
to pop the final tile from the main states qa1 , . . ., qam . Hence once Spoiler produces a row
with a final tile, he can repeat it forever and win the play. Duplicator cannot mimic such
a move because she cannot pop tF from the buffer. We illustrate such extended automata
in Figure 4.4.

By considering such automataA, B, we can extend the property described in Lemma
4.3.20. Intuitively, after Spoiler produces a tiling w ∈ T n, if w does not contain the final
tile, Duplicator can force Spoiler to produce a word w′ ∈ T , the tiling of next row, that
is horizotally compatible and also vertically compatible with w. We lift the property in
Lemma 4.3.20 as follows.

Lemma 4.3.22. Consider the two NBA A, B as in Figure 4.4 and a play in Gω(A,B)
from configuration

(p1,w#, qt, b,D)

where w ∈ T n ∪ {ε}, t ∈ T, and b ∈ {>,⊥}.

• If w(i) , tF for all i ∈ {1, . . . , n}, Duplicator has a strategy such that either Spoiler
loses or the play proceeds to some configuration

(p, #w′, qt,⊥,D) (4.10)

where w′ ∈ T n and the following holds.

– w′(1) = t,

– (w′(i),w′(i + 1)) ∈ H for all i ∈ {1, . . . , n − 1}, and

90 4.3. SIMULATION WITH ONE UNBOUNDED BUFFER

– (w(i),w′(i)) ∈ V for all i ∈ {1, . . . , n}.

• From (4.10), if w′(i) , tF for all i ∈ {1, . . . , n} then for any t′ ∈ T where (t, t′) ∈ T,
Duplicator has a strategy such that either Spoiler loses or the play proceeds to

(p1,w′#, qt′ ,>,D).

Proof. For the first part, the strategy for Duplicator is the same as in the first part of
Lemma 4.3.20. He simply waits until Spoiler reads w′ ∈ T n. Additionally, we have
(w′(i),w′(i + 1)) ∈ H for all i ∈ {1, . . . , n − 1} and (w(i),w′(i)) ∈ V for all i ∈ {1, . . . , n}
since otherwise Duplicator can go to the accepting sink shor or sver. Moreover, Duplicator
can pop w by looping in qt since w does not contain tF .

For the second part, the strategy for Duplicator is the same as in the second part of
Lemma 4.3.20. �

We can also extend Lemma 4.3.21 in a similar way. Intuitively, after Duplicator an-
nounces the first tile and forces Spoiler to produce a new row, if Spoiler produces a tiling
w′ ∈ T n that is vertically and horizontally compatible with the current row then whenever
w′ contains the final tile, Spoiler wins by repeating w′ for the rest of the play. In the case
where w′ does not contain the final tile, by repeating w′, Spoiler forces Duplicator to
eventually announce the first tile of the next row. We lift the property in Lemma 4.3.21 as
follows.

Lemma 4.3.23. Consider the two NBA A, B as in Figure 4.4 and a play in Gω(A,B)
from configuration

(p1, w̃#, qt, b,D)

where w ∈ T n, w̃ ∈ suffix(w) · ($ w)∗, t ∈ T, and b ∈ {>,⊥}. For any w′ ∈ T n with

• w′(1) = t,

• (w′(i),w′(i + 1)) ∈ H for all i ∈ {1, . . . , n − 1}, and

• (w(i),w′(i)) ∈ V for all i ∈ {1, . . . , n},

the following holds.

• If there exists i ∈ {1, . . . , n} such that w′(i) = tF then Spoiler has a strategy to win
the play.

• If for all i ∈ {1, . . . , n}, w(i) , tF , then Spoiler has a strategy such that either
Duplicator loses or the play proceeds to some configuration

(p1, w̃′#, qt′ , b′,D)

where w̃′ ∈ suffix(w′) · ($w′)∗, (t, t′) ∈ V, and b′ ∈ {>,⊥}.

Proof. For the first part, let i0 ∈ {1, . . . , n} such that w′(i0) = tF . The strategy for Spoiler
is simpler than the one in Lemma 4.3.21. He reads w′$w′$. . . for the rest of the play. If
Duplicator never pops # then Spoiler wins. If Duplicator eventually pops # then, as we
have seen in the proof of Lemma 4.3.21, she does not go to the accepting sid or any st′ ,
t ∈ T , and loses if she moves to some other states beside the main ones. Additionally,
in this case, she also does not pop # by going to the accepting sink shor or sver because

CHAPTER 4. DECIDABILITY AND COMPLEXITY 91

(w′(i),w′(i + 1)) ∈ H for all i ∈ {1, . . . , n − 1} and (w(i),w′(i)) ∈ V for all i ∈ {1, . . . , n}.
Hence let us assume that Duplicator goes to some main state qt′ . By definition of B,
we have (t, t′) ∈ V . Moreover, since w′(i0) = tF and there is no tF-successor from qt′ ,
Duplicator cannot pop w′(i0) from the buffer. She will not form an accepting run from
qt′ . Since Spoiler forms an accepting run and Duplicator does not, Spoiler wins the play.

For the second part, the strategy for Spoiler is the same as the one in Lemma 4.3.21.
�

We can use Lemma 4.3.22 and Lemma 4.3.23 to show that CompleterwinsGtile(T , a1,
tF , n) iff Spoiler wins Gω(A,B). We translate the winning strategy of Completer to
Spoiler and Starter to Duplicator.

Theorem 4.3.24. Given a tiling system T = (T,H,V), initial and final tiles t1,1, tF ∈

T, and a width n > 0, we can construct in polynomial time two NBA A,B such that
Completer wins Gtile(T , t1,1, tF , n) iff Spoiler wins Gω(A,B).

Proof. ConsiderA, B as given in Figure 4.4. Suppose Completer wins Gtile(T , t1,1, tF , n).
If in the initial round, he proceeds from the initial configuration (t1,1,Comp) to

(t1,1, . . . , tn,1,St) (4.11)

then in Gω(A,B), Spoiler proceeds as follows. Initially, he reads # and proceeds to
(p1, #, qt1,1 , >,D). If one of t1,1, . . . , tn,1 is the final tile then Spoiler follows the strategy
as described in the first part of Lemma 4.3.23 to push w1 = t1,1, . . . , tn1 and win the play.
Otherwise, he follows the strategy as in the second part to push w1 = t1,1, . . . , tn,1 and
according to the lemma, he either wins or the play proceeds to

(p1, w̃1#, qt1,2 , b1,D) (4.12)

where w̃1 ∈ suffix(w1) ·($w1)∗, (t1,1, t1,2) ∈ V , and b1 ∈ {>,⊥}. Spoiler then considers what
Completer would do in the tiling game if from (4.11), Starter continues to (t1,2,Comp).
If Completer responds to this by going to (t1,2 . . . tn,2,St) then from (4.12), Spoiler again
follows the strategy as described in Lemma 4.3.23 to push w2 = t1,2, . . . , tn,2. We repeat
this procedure indefinitely. Since Completer wins the tiling game, either the final tile is
eventually used or Starter gets stuck because she cannot choose a first tile that matches
vertically. In the first case, Spoiler wins by considering the strategy from the first part of
Lemma 4.3.23 and in the second case, Spoiler wins by considering the strategy from the
second part of Lemma 4.3.23. Spoiler wins Gω(A,B).

Now suppose Starter wins Gtile(T , t1,1, tF , n). In the first round of Gω(A,B), Spoiler
initially will read # and the play will proceed to (p1, #, qt1,1 ,⊥,D). Duplicator then follows
the strategy as described in the first part of Lemma 4.3.22. According to Lemma 4.3.22,
either she wins or the play eventually proceeds to some configuration

(p1, #w1, qt1,1 ,⊥,D) (4.13)

where w1 = t1,1 . . . tn,1 and (ti,1, ti+1,1) ∈ H for all i ∈ {1, . . . , n − 1}. Note that for all
i ∈ {1, . . . , n}, we have ti,1 , tF , since otherwise Completer would have won the tiling
game. Duplicator then considers what Starter would do in the tiling game if from the
initial configuration, Completer proceeds to (t1,1 . . . tn,1,St). If Starter responds to this
by going to (t1,2,Comp) then from (4.13), Duplicator follows the strategy as described

92 4.3. SIMULATION WITH ONE UNBOUNDED BUFFER

in the second part of Lemma 4.3.22 by moving to qt1,2 . According to the lemma, either
Duplicator wins or the play eventually proceeds to

(p1,w1#, qt1,2 ,>,D). (4.14)

Duplicator then follows the strategy as described in Lemma 4.3.22 again. She repeats this
procedure for the rest of the play. Hence either eventually Duplicator wins by following
the strategy as described in Lemma 4.3.22 or the play reaches some configuration as in
(4.14) infinitely often. In such a case, Duplicator forms an accepting run. She also wins
the play. Duplicator wins Gω(A,B). �

Note that the size of the automata A and B in Figure 4.4 is polynomially larger than
the tiling system T and the corridor width n. We also have a polynomial-time reduction
from the corridor tiling game to the buffered simulation game with one unbounded buffer.
Since solving the corridor tiling game is EXPTIME-hard, deciding whether Duplicator
wins Gω(A,B) is also EXPTIME-hard. Hence we have the following corollary.

Corollary 4.3.25. Deciding vω is EXPTIME-hard.

4.3.3 Upper Bound for Deciding vω

Corollary 4.3.25 shows that deciding buffered simulation with one unbounded buffer is
EXPTIME-hard. However, it is still not clear whether the problem is decidable. One
might get tempted to consider a technique similar to what we have used for decidingvωFlush.
This, unfortunately, is not possible. It is true that in the game Gω(A,B) and GωFlush(A,B),
Duplicator can skip her turn as long as she wants. However unlike GωFlush(A,B), in the
gameGω(A,B), Duplicator can store some letters in the buffer as much as she wants after
she moves the pebble. Recall that the PSPACE-algorithm for deciding vωFlush heavily relies
on the fact that once Duplicator moves, the play always proceeds to some configuration
with an empty buffer. Since there are only finitely many such configurations, we can
check for each of them, whether it is winning for Spoiler. This technique however is not
suitable for the game Gω(A,B). In the game Gω(A,B), after Duplicator moves, there
might be some letters left in the buffer. There are infinitely many possible configurations
that can be reached after Duplicator’s move.

Nevertheless we will show that the problem of deciding vω is indeed still decidable.
We will use a more involved technique. We will even show that the lower bound in
Corollary 4.3.25 is tight.

Before we present the algorithm for deciding vω, let us recall the equivalence relation
≈ defined in Definition 2.3.6. We will use this equivalence relation to show an important
characterisation of accepting runs in A, B which will be the key of our algorithm. The
characterisation is similar to the characterisation of infinite words that are used to show
complementation of Büchi automata [Büc62].

First recall that in Definition 2.3.6, the equivalence relation ≈ is defined with respect to
a single automatonA. Two words u, v ∈ Σ∗ are equivalent, i.e. u ≈ v, if they both behave
the same in the automaton A. We will consider a natural extension of ≈ that is defined
with respect to a pair of automataA, B instead of a single automatonA. Intuitively, two
finite words u, v are equivalent if they both behave the same in the automata A, B: if by
reading u we can go from state p to p′ inA and q to q′ in B then we can also do the same
by reading v and if by reading u from p to p′ or from q to q′ we see a final state, we also
see a final state by reading v. We refrain from giving a new definition for the relation ≈.

CHAPTER 4. DECIDABILITY AND COMPLEXITY 93

q1 q2
a

b, c q3

q4

q5

a

a

b

b
c

c

Figure 4.5: NBAA, B for Example 4.3.26.

For the rest of this subsection, we will simply assume that the automata A and B share
the same state space and only differ in their initial states.

Example 4.3.26. Consider the two automata A, B in Figure 4.5 where A = (Q,Σ, δ, q1,
F), B = (Q,Σ, δ, q3, F), Q = {q1, . . . , q5}, Σ = {a, b, c}, and F = {q2, q4, q5}. We have
bb ≈ bc since by reading bb or bc, we either make an accepting cycle from q2 or from q4,
or a path from q4 to q5 that goes through an accepting state. The equivalence class of bb
in fact consists of any word over b or c that starts with b, i.e. [bb] = b · {b, c}∗. Hence the
transition profile of the equivalence class [bb] is as follows.

q1 q2 1 q3

q4

q5

1

1

In the preliminary chapter, we have shown that the equivalence classes induced by the
relation ≈ can be used to finitely characterise Σω. By Proposition 2.3.12, for every infinite
word w ∈ Σω, there exists a pair of proper equivalence classes [u], [v] ∈ Σ∗/≈ such that
w ∈ [u][v]ω, and recall that by proper it means the pair [u], [v] satisfies [uv] = [u] and
[vv] = [v].

Now suppose we have an infinite run ρ in A or B from p ∈ Q. Since the numbers of
states inA and B are finite, there must be a state p′ ∈ Q that appears infinitely often in ρ.
Hence for every accepting run ρ, we can see it as a run that initially goes from p to p′ and
then is followed by infinitely many cycles over p′. Moreover if ρ is accepting, we can see
ρ as a run that initially goes from a starting state p to some state p′ followed by infinitely
many accepting cycles over p′, i.e.

ρ = p w0−−−→ p′ w1−−−→
F

p′ w2−−−→
F

p′ (4.15)

Now one interesting property holds if ρ is an accepting run over some word w ∈ [u][v]ω

where [u], [v] is a proper pair. In such a case, we can factorise ρ into the form (4.15)
where w0 ∈ [u] and w1,w2, . . . ∈ [v]. This is simply because the pair [u], [v] is proper.

Lemma 4.3.27. Let ρ be an accepting run in A, B from p ∈ Q over a word w ∈ Σω. If
w ∈ [u][v]ω and [u], [v] is a proper pair then we can factorise ρ into

ρ = p w0−−−→ p′ w1−−−→
F

p′ w2−−−→
F

p′ . . . (4.16)

where w0 ∈ [u] and w1,w2, . . . ∈ [v].

Proof. Suppose we have an accepting run ρ in A or B from p ∈ Q over w ∈ [u][v]ω

where the pair [u], [v] is proper. Since w ∈ [u][v]ω, the word w can be factorised into
w = w0w1 . . . where w0 ∈ [u] and w1,w2 . . . ∈ [v]. This implies that we can also factorise
the run ρ into

ρ = p w0−−−→ p1
w1−−−→ p2

w2−−−→ p3 . . . (4.17)

94 4.3. SIMULATION WITH ONE UNBOUNDED BUFFER

for some p1, p2, . . . ∈ Q. Since ρ is accepting, there exist infinitely many i such that
pi

wi−−→
F

pi+1. Moreover since the numbers of the states inA and B are finite, there exists a

state p′ ∈ Q and infinitely many j such that p j = p′. Hence we can find infinitely many
indices i1 < i2 < . . . such that

ρ = p
w0...wi1−−−−−−→ p′

wi1+1...wi2−−−−−−−−→
F

p′
wi2+1...wi3−−−−−−−−→

F
p′

Note that the pair [u], [v] is proper, that is, [uv] = [u] and [vv] = [v]. Since w1,w2, . . . ∈
[v] and [vv] = [v], we have wi . . .w j ∈ [v] for all 0 < i < j. Moreover, since w0 ∈ [u] and
[uv] = [u], we additionally have w0 . . .wi ∈ [u] for all i > 0. Hence w0 . . .wi1 ∈ [u] and
wik+1 . . .wik+1 ∈ [v] for all k > 0. �

We can even simplify this property with Proposition 2.3.12. Recall that by Proposition
2.3.12, for any infinite word w ∈ Σω, there exists a proper pair [u], [v] ∈ Σ∗/≈ such that
w ∈ [u][v]ω [Büc62, FV09]. Hence the premise in Lemma 4.3.27 is always true and we
have the following corollary.

Corollary 4.3.28. For any accepting run ρ inA,B from p ∈ Q, the run ρ can be factorised
into

ρ = p w0−−−→ p′ w1−−−→
F

p′ w2−−−→
F

p′ . . . (4.18)

where w1,w2, . . . ∈ [w1] and the pair [w0], [w1] is proper.

Proof. Let ρ be an accepting run from p ∈ Q and w = word(ρ). By Proposition 2.3.12,
there exists a proper pair [u], [v] such that w ∈ [u][v]ω. By Lemma 4.3.27, we can factorise
ρ into ρ = p w0−−−→ p1

w1−−−→
F

p2
w2−−−→
F

p3 . . . where w0 ∈ [u] and w1,w2, . . . ∈ [v]. Hence we

have the desired result. �

Now let us formally call a finite run that ends in a cycle a lasso.

Definition 4.3.29. A finite run r = p1a1 p2 . . . an−1 pn with n > 1, is a lasso if there exists
i ∈ {1, . . . , n − 1} such that pi = pn.

Intutively, a finite run r is a lasso if r can be factorised into

r = p u
−−→ p′ v

−−→ p′

where u ∈ Σ∗ and v ∈ Σ+. In such a case, we will simply call r a lasso over the pair of
words u, v. A lasso basically consists of two parts: the initial part and the cycle part. If the
cycle part of the lasso goes through an accepting state, let us call the lasso to be accepting,
and if the words in the initial and cycle parts belong to some proper pair of equivalence
classes, let us call the lasso to be proper.

Example 4.3.30. Consider again the two automata A, B in Figure 4.5. The finite runs
r1 = q1aq2bq2cq2 and r2 = q3aq4bq5cq4 are accepting lassos over a, bc since they can be
factorised into

r1 = q1
a
−−→ q2

bc
−−→

F
q2,

r2 = q3
a
−−→ q4

bc
−−→

F
q4.

CHAPTER 4. DECIDABILITY AND COMPLEXITY 95

Moreover note that the pair [a], [bc] is proper. We have a ≈ abc since by reading a or abc,
we either go from q1 to q2, q3 to q4, or q3 to q5, through an accepting state. We also have
bcbc ≈ bc since in Example 4.3.26, we have seen that every finite words over b, c that are
started with b are equivalent to each other. Hence r1 and r2 are indeed proper accepting
lassos over a, bc.

Corollary 4.3.28 shows that any accepting run always starts with a proper accepting
lasso. Intuitively, an accepting run can be seen as a proper accepting lasso that repeats
the cycle part infinitely often. By repeating the cycle part, we mean forming an accepting
cycle over a word that is not necessarily the same, but equivalent with respect to ≈. For
example, the accepting run ρ in (4.18) is a proper accepting lasso over w0, w1 that repeats
the cycle part infinitely often by reading w2,w3, . . . ≈ w1.

For any NBA A, a proper accepting lasso characterises the accepting words from
some state. If there exists a proper accepting lasso from p, suppose over u, v, then for any
word w ∈ [u][v]ω, the word w is accepted from p. The converse also holds: if there is no
proper accepting lasso over u, v from p then for any word w ∈ [u][v]ω, the word w is not
accepted from p. This idea is similar to the characterisation of infinite words with respect
to some NBAA by using equivalence classes Σ∗/≈ [Büc62, FV09].

Proposition 4.3.31. Let u, v ∈ Σ∗ be two finite words where the pair [u], [v] is proper.

• If there exists an accepting lasso r where

r = p u
−−→ p′ v

−−→
F

p′ (4.19)

then for any w ∈ [u][v]ω, there is an accepting run over w from p.

• If there is no accepting lasso as in (4.19) then for any w ∈ [u][v]ω, there is no
accepting run over w from p.

Proof. For the first part, let w ∈ [u][v]ω. Hence w can be factorised into w = w0w1 . . .
where w0 ∈ [u] and w1,w2, . . . ∈ [v]. Suppose we have an accepting lasso as in (4.19).
Since w0 ≈ u and w1,w2, . . . ≈ v, we can consider the accepting run ρ where

ρ = p w0−−−→ p′ w1−−−→
F

p′ w2−−−→
F

p′

over w.
For the second part, let us show it by contradiction. Suppose there is no accepting

lasso as in (4.19), but there is an accepting run ρ over w where w ∈ [u][v]ω. By Lemma
4.3.27, the run can be factorised into

p w0−−−→ p′ w1−−−→
F

p′ w2−−−→
F

p′ . . .

where w0 ∈ [u] and w1,w2 . . . ∈ [v]. Since w0 ≈ u and w1 ≈ v, we also have an accepting
lasso over u, v from p to p′ which contradicts our initial assumption. �

We will consider this observation to reduce the game Gω(A,B) into a simpler game.

96 4.3. SIMULATION WITH ONE UNBOUNDED BUFFER

Reduction to a Lasso Game

First let us look at some possible winning strategy for Duplicator in Gω(A,B). In the
buffered simulation game Gω(A,B), Duplicator is equipped with an unbounded buffer.
She can store as many letters as she wants to foresee Spoiler’s run. Hence one possi-
ble strategy for Duplicator is to wait indefinitely until she is sure that Spoiler indeed
can form an accepting run. She waits until Spoiler forms a proper accepting lasso. If
Spoiler never forms a proper accepting lasso, by Lemma 4.3.27, he also does not form an
accepting run. Duplicator wins the play by waiting forever. However if Spoiler eventu-
ally forms a proper accepting lasso, suppose over w0,w1 then Duplicator needs to check
whether she can also form a proper accepting lasso over w0, w1 from the initial state of B.
If Duplicator cannot form one then she will lose the play. Spoiler can keep repeating the
accepting loop forever and form some accepting run over w ∈ [w0][w1]ω. By the second
part of Proposition 4.3.31, there is no accepting run over w that can be formed by Dupli-
cator from the initial state of B, and hence she loses the play. However if there is such an
accepting lasso over w0,w1 then Duplicator should wait a bit more and not immediately
form a corresponding accepting lasso. Duplicator should wait until Spoiler repeats the
cycle part once, i.e. until Spoiler forms

p0
w0−−−→ p1

w1−−−→
F

p1
w2−−−→
F

p1 (4.20)

where w2 ≈ w1. After Spoiler forms such an extended lasso, Duplicator pops w0w1 by
forming a corresponding one over w0,w1, lets w2 stay in the buffer, and waits again until
Spoiler forms another proper accepting lasso from p1 and repeats the procedure.

Now one might wonder whether waiting until Spoiler repeats the cycle part is neces-
sary. It is indeed necessary to wait until Spoiler repeats the cycle part and we will show
this in the following example.

Example 4.3.32. LetA, B be the following two NBA.

p0 p1 p2

p3

p4

a b
c

d

b

c

d
q0 q1

q2

q3

q4

q5

a
b

b

c

d

c

b

d

According to the strategy that we have described before, to win the game Gω(A,B), Du-
plicator should wait until Spoiler forms a proper accepting lasso. In this case, initially
Duplicator waits until Spoiler either reads abb, abcc, or abdd. Suppose Spoiler reads
abb. If Duplicator immediately flushes the buffer then the play proceeds to the configura-
tion (p2, ε, q1,>,S). From this configuration, Spoiler can continue by reading c or d and
make Duplicator get stuck in q1. Hence Duplicator loses. This, however, will not hap-
pen if Duplicator additionally waits until Spoiler repeats the cycle part, i.e. until Spoiler
reads abbb. In this case, Duplicator forms a corresponding lasso by reading abb and
proceeding to the configuration (p2, b, q1,>,S). From this configuration, Duplicator then
waits again until Spoiler forms a proper accepting lasso and repeats the cycle part, i.e. un-
til Spoiler either reads bb, ccc, or ddd. Duplicator again can respond to this by forming
a corresponding lasso, that is, by reading bb, bcc, or bdd respectively and proceeding to

CHAPTER 4. DECIDABILITY AND COMPLEXITY 97

Round 1 Round 2

S chooses: p0
u1−−−→ p1

v1−−→
F

p1
v′1−−→
F

p1 p1
u2−−−→ p2

v2−−→ p3
v′2−−→
F

p3

D chooses: q0
u1−−−→ q1

v1−−→
F

q1 q1
v′1u2
−−−−→ q2

v2−−→
F

q2

. . .

. . .

Round 3

Figure 4.6: A game where each of the players alternatingly chooses a lasso.

the configuration (p2, b, q1,>,S), (p3, c, q4,>,S), or (p4, d, q5,>,S). By repeating such a
procedure, Duplicator will never get stuck and win the play.

Note that if Duplicator plays according to the strategy as described before, there are
three possibilities: first, at one point she waits for the rest of the play because Spoiler does
not form a proper accepting lasso and repeat the cycle part as in (4.20), second, Spoiler
infinitely often forms a proper accepting lasso and repeats the cycle part, and Duplicator
always forms a corresponding lasso, or third, at one point Spoiler forms a proper accept-
ing lasso and repeats the cycle part, but Duplicator cannot form a corresponding one.
In the first case, Duplicator wins because by Lemma 4.3.27, we know that Spoiler does
not form an accepting run. In the second one, Duplicator also wins because she forms
an accepting lasso infinitely often and hence forms an accepting run. In the third case,
Duplicator loses the play because Spoiler can extend the lasso into an accepting run that
cannot be mimicked by her. This intuitively allows us to reduce the game Gω(A,B) into a
game where both of the players move alternatingly by choosing a proper accepting lasso.
In every round i > 0, Spoiler forms a proper accepting lasso over ui, vi and repeats the cy-
cle part once by reading v′i ≈ vi. Duplicator responds to this by forming a corresponding
accepting lasso over ui, vi after reading v′i−1. If one of the players cannot do so then the
opponent wins. We illustrate how such a game proceeds in Figure 4.6.

In such a game, the number of configurations is still infinite. There are infinitely many
possible lassos that can be chosen by Spoiler. However, we can finitely represent lassos
by using the equivalence classes from Σ∗/≈. First note that in the transition profile of
some equivalence class [u], if there is an edge (p,p′) then there is a path from p to p′

by reading u. Moreover, if the edge is labeled with 1 then there is such a path that goes
through an accepting state. Let us denote with p [u]

−−−→ q if there exists an edge from p to q

in the transition profile of [u] and p [u]
−−−→

F
q if the edge is labeled with 1. Hence instead of

choosing a proper accepting lasso from p, Spoiler can choose a proper pair of equivalence
classes [u], [v] ∈ Σ∗/≈ and a state p′ such that p [u]

−−−→ p′ and p′ [v]
−−−→

F
p′.

We can equivalently consider a game where in each round the players do not choose
a lasso, but its representation. In every round i > 0, Spoiler chooses a pair of proper
equivalence classes [ui], [vi] and a state pi such that

pi−1
[ui]−−−→ pi

[vi]−−−→
F

pi

and Duplicator chooses a state qi such that

qi−1
[vi−1][ui]−−−−−−−→ qi

[vi]−−−→
F

qi.

98 4.3. SIMULATION WITH ONE UNBOUNDED BUFFER

Let us call such a game lasso game. It is formally defined as follows.

Definition 4.3.33. For any two NBAA,B over Σ, a lasso game isGL(A,B) = ((V,V0,V1, E),
v0,Play) where Duplicator’s and Spoiler’s configurations are V0 = Q× (Σ∗/≈)3×Q×{D},
and V1 ⊆ Q × Σ∗/≈ × Q × {S}, V = V0 ∪ V1, the edge relation E is defined as

(p, [w], q,S)→ (p′, [w], [u], [v], q,D) in E iff
p [u]
−−−→ p′ [v]

−−−→
F

p′ and

[u], [v] is proper

(p, [w], [u], [v], q,D)→ (p, [v], q′,S) in E iff q [w][u]
−−−−−→ q′ [v]

−−−→
F

q′,

the initial configuration is v0 = (p0, [ε], q0,S) where p0, q0 is the pair of the initial states
ofA, B, and the winning condition is Play, the set of all infinite plays in GL(A,B).

Note that by the definition of the winning condition, Duplicator wins any infinite
play in the lasso game. Hence we can also see the lasso game GL(A,B) as a parity game
where every node has an even priority. Consider a parity game G that is played on the
configuration graph of GL(A,B) with a priority function that assigns priority 0 to all the
nodes in G. It is not hard to see that Duplicator wins the lasso game GL(A,B) iff player
0 wins the parity game G.

The size of the parity game G is the same as the size of the configuration graph of
GL(A,B). In the preliminary chapter, we have seen that the number of equivalence classes
in Σ∗/≈ is exponential in the size of the automata. If Q is the set of states ofA and B, we
have |Σ∗/≈| = O(3Q2

). Hence the number of nodes and edges in the lasso game GL(A,B)
is |V | = |E| = O(33Q2

). By Proposition 2.4.2, since we can decide whether player 0 wins
such a parity game of n nodes and m edges in timeO(n·m), we have the following theorem.

Theorem 4.3.34. Deciding whether Duplicator wins GL(A,B) is in O(36(|A|+|B|)2
).

We will show that the winning strategy for Duplicator in the buffered simulation game
Gω(A,B) can be derived from the one in the lasso game GL(A,B). First note that in every
round of the lasso game GL(A,B), Spoiler chooses a representative of a proper accepting
lasso and Duplicator responds to this by choosing the corresponding representative of
the accepting lasso. This intuitively corresponds to the situation where in the buffered
simulation game Gω(A,B), Duplicator lets Spoiler play indefinitely until he forms a
proper accepting lasso and repeats the cycle part. Once Spoiler does this then Duplicator
moves by forming a corresponding accepting lasso that she would have chosen in the
lasso game. Duplicator keeps playing in such a way for the rest of the play. If in the lasso
game Duplicator never gets stuck then Duplicator can mimic any accepting lasso that is
formed by Spoiler in the buffered simulation game.

Theorem 4.3.35. If Duplicator wins GL(A,B) then she also wins Gω(A,B).

Proof. Suppose Duplicator wins GL(A,B). We will show a winning strategy for Dupli-
cator in Gω(A,B) where she only pops the buffer and proceeds to some configuration
(p,w, q,>,S) where w is idempotent, i.e. [w] = [ww].

Suppose we are at some configuration (p,w, q, b,S) where b ∈ {>,⊥} and w ∈ Σ∗ is
idempotent. Duplicator waits until Spoiler forms a proper accepting lasso and repeats
the cycle part once, i.e. until Spoiler forms

r = p u
−−→ p′ v

−−→
F

p′ v′
−−→

F
p′

CHAPTER 4. DECIDABILITY AND COMPLEXITY 99

where u ≈ uv and v ≈ v′ ≈ vv′. Note that if Spoiler never forms such a run then by
Lemma 4.3.27 he does not form an accepting run from p. Duplicator wins Gω(A,B)
by waiting forever. However if Spoiler forms such a run then we reach a configuration
(p′,wuvv′, q, b′,D). In this case, Duplicator considers what she would do in the lasso
game GL(A,B) if we are at some configuration c = (p, [w], q,S) and Spoiler moves to
c′ = (p′, [w], [u], [v], q,D). If Duplicator chooses q′ and proceeds to c′′ = (p′, [v], q′,S)
then by definition of the lasso game GL(A,B), there is a path

q wu
−−−→ q′ v

−−→
F

q′

in B. In the game Gω(A,B), Duplicator takes such a path and proceeds to the configura-
tion

(p′, v′, q′,>,S). (4.21)

Now the buffer contains the word v′. Since v′ ≈ v and v is idempotent, v′ is also idempo-
tent.

By considering this strategy either at one point Duplicator skips her turn for the rest
of the play or Duplicator moves infinitely often. In the first case, by Lemma 4.3.27,
Spoiler does not form an accepting run and in the second one, Duplicator reaches the
configuration of the form (4.21) infinitely often. She forms an accepting run. Hence in
both cases, Duplicator wins the play. She wins the game Gω(A,B). �

The reverse direction of this theorem also holds. We can derive a winning strategy for
Duplicator in the lasso game from the winning strategy in the buffered simulation game.

Theorem 4.3.36. Duplicator wins GL(A,B) if she wins Gω(A,B).

Proof. Suppose Duplicator wins Gω(A,B). The winning strategy for Duplicator in
GL(A, B) is as follows. Suppose we are at some configuration (p, [w], q,S). If Spoiler
moves to some (p′, [w], [u], [v], q,D) then Duplicator considers what she would do in the
game Gω(A,B) if we are at some configuration (p,w, q,⊥,S) and Spoiler plays an ac-
cepting run over uvω by reading u from p to p′ followed by infinitely many accepting
cycles over v from p′. If Duplicator plays according to the winning strategy in Gω(A,B)
then at one point she forms a run of the form

q wuv∗
−−−−→ q′ v+

−−−→
F

q′. (4.22)

Otherwise she does not form an accepting run over wuvω and loses the play which contra-
dicts that Duplicator plays according to some winning strategy. Note that by the definition
of the lasso game GL(A,B), the pair [u], [v] is proper, that is, [uv] = [u] and [vv] = [v].
Hence any word of the form wuv∗ and v+ belongs to [w][u] and [v], respectively. In the
lasso game GL(A,B), Duplicator responds to this by proceeding to the configuration
(p′, [v], q′,S).

Hence from any configuration (p, [w], q,S), if Spoilermoves to some arbitrary config-
uration (p′, [w], [u], [v], q,D), Duplicator can always respond to it. Hence either Spoiler
gets stuck or the play goes on for infinitely many rounds. In both cases, Duplicator
wins. �

Theorem 4.3.35 and Theorem 4.3.36 show that we can polynomially reduce buffered
simulation with an unbounded buffer to a lasso game. The reduction is even linear because
it is just the identity mapping. By Theorem 4.3.34, since we have seen that solving the

100 4.4. SIMULATION WITH N ≥ 1 UNBOUNDED BUFFERS

lasso game can be done in time exponentially in the size of the automata, deciding whether
Duplicator wins Gω(A,B) is in EXPTIME. Together with Corollary 4.3.25, we have the
following result.

Corollary 4.3.37. Deciding vω is EXPTIME-complete.

4.4 Simulation with n ≥ 1 Unbounded Buffers
Now the only question left regarding the decidability of buffered simulation is in the case
where multiple buffers are involved and some of them have an unbounded capacity. Un-
fortunately, in this case, buffered simulation is not only undecidable, but also highly unde-
cidable. This even already holds in the case where we only consider buffered simulation
with two buffers in which one is unbounded and the other one has a capacity 0.

We will first show that deciding the negative instance of buffered simulation, i.e.
whether Spoiler wins Gκ(A,B), is Σ1

1-hard by a reduction from the recurrent octant tiling
problem. We then show that deciding the positive instance is also Σ1

1-hard by considering
a more involved reduction. We combine these two results and obtain a higher undecid-
ability degree of buffered simulation. The problem is indeed hard for the class BΣ1

1, a
class that is strictly bigger than the first level of the analytical hierarchy. We will also
show that deciding buffered simulation is in the second level of the analytical hierarchy,
i.e. it is in ∆1

2.

4.4.1 Σ0
1
- and Π1

1
- Hardness

First we will show that deciding buffered simulation is Σ0
1-hard by a reduction from the

octant tiling problem. Recall that the octant tiling problem asks us whether there exists a
tiling for the octant of the Cartesian plane [BGG97]. Hence the width of the area that has
to be tiled is not fixed. The width of the first row is one, the second row is two, etc. The
octant tiling problem is clearly more complex than the corridor tiling problem. Recall
that in the corridor tiling problem, the width of the area that has to be tiled is fixed. We
can reduce it to the flushing variant GωFlush(A,B) where the role of Spoiler is to produce
a tiling of width n > 0 and Duplicator’s role is to make sure that the tiling is valid.
Since the width is fixed, we can encode any possible tilings in Spoiler’s automaton and
the vertical and horizontal mismatches in Duplicator’s automaton. However, if now we
consider the octant tiling problem, it is not clear anymore how to make Duplicator detect
the horizontal or vertical mismatch.

Nevertheless, we will show that we can still reduce the octant tiling problem to the
buffered simulation game with a similar principle as the corridor tiling problem. We
construct two NBA A, B such that Spoiler’s role is to produce a tiling row by row in A
and Duplicator’s role is to check whether there is a mismatch.

First we will show that we can construct two NBA A, B such that Spoiler is forced
to produce a tiling where the length of each row keeps growing by one, i.e. he is forced
to produce a word #w1#w2# . . . where wi ∈ T i. The trick is to consider a second buffer of
capacity 0 that is used to store two new symbols c and c#. We construct the automatonA
such that each time Spoiler reads a tile or #, and pushes it to the first buffer, he also reads
c or c# respectively, and pushes it to the second buffer. Since the capacity of the second
buffer is 0, Duplicator has to pop c or c# immediately. The automaton B is constructed
such that each time Duplicator pops c or c#, she compares it with the top symbol of the

CHAPTER 4. DECIDABILITY AND COMPLEXITY 101

p0

p1

p#

T c
#

c#

q0

q#

s1

q1

q2

q3 s2

c

Σ

c#

#

c#

c

T ∪ {#}

ΣT c

Figure 4.7: NBAA and B that force Spoiler to produce an octant tiling.

first buffer. If the top symbol is #, Duplicator pops # and then forces Spoiler to read
exactly a tile and a #. However, if the top symbol is a tile then Duplicator pops it and
forces Spoiler to read only a new tile. In this way, whenever the content of the first buffer
is t1 . . . tn#, Duplicator will force Spoiler to push t′1, . . . , t

′
n+1, # consecutively to the first

buffer.
We illustrate such NBAA,B in Figure 4.7. They are defined over Σ̂ = (T∪{#}, {c, c#}).

We denote by Σ the set of all letters in A, B, i.e. Σ = T ∪ {#, c, c#}. The automaton A is
very simple. It accepts any word of the form t1c1t2c2 . . . where for all i > 0, ti ∈ T ∪ {#},
and ci = c if ti ∈ T and ci = c# if ti = #. The automaton B, however, is more involved. It
basically consists of two parts. The first one that starts from q0 and the second one from
q1. From q0 we can reach the accepting sink s1 by reading c, and from q1 we can reach
the accepting sink s2 by reading xc# where x ∈ T ∪ {#}. The state q1 is reachable from q0

by a c#-transition.
Now consider the game Gω,0(A,B). From the initial configuration (p0, (ε, ε), q0,⊥,S),

Spoiler is forced to read # since otherwise Duplicator can go to the accepting sink s1 and
win the play. Furthermore, from any configuration (p0, (w#, ε), q1,⊥,S) where w ∈ T i

and i ≥ 0, Spoiler is forced to proceed to some configuration (p0, (w′#, ε), q1,⊥,S) where
w′ ∈ T i+1. We show this formally in the following lemma.

Lemma 4.4.1. Consider the two NBA A, B over Σ̂ = (T ∪ {#}, {c, c#}) as in Figure 4.7
and a play in Gω,0(A,B) from a configuration

(p0, (t1 . . . tn#, ε), q1,⊥,S)

where t1 . . . tn ∈ T ∗.

• Duplicator has a strategy such that either Spoiler loses or the play proceeds to
some configuration (p0, (t′1 . . . t

′
n+1#, ε), q1,⊥,S) where t′1, . . . , t

′
n+1 ∈ T.

• For any t′1, . . . , t
′
n+1 ∈ T, Spoiler has a strategy such that either Duplicator loses or

the play proceeds to (p0, (t′1 . . . t
′
n+1#, ε), q1,⊥,S).

Proof. For the first part, from the configuration (p0, (t1 . . . tn#, ε), q1,⊥,S), if Spoiler ini-
tially reads #c# then Duplicator goes to the accepting sink s2 by popping t1 from the first
buffer and reading t1c#. From the accepting sink, Duplicator can play accordingly and
win the play. However if Spoiler reads t′1c for some t′1 ∈ T , Duplicator loops in q1 by

102 4.4. SIMULATION WITH N ≥ 1 UNBOUNDED BUFFERS

popping t1 from the first buffer and reading t1c. She proceeds to (p0, (t2 . . . tn#t′1, ε), q1,
⊥,S). Duplicator then repeats this procedure for n many times. Hence either Duplicator
wins by reaching the accepting sink s2 and looping there forever or the play eventually
proceeds to some configuration (p0, (#t′1 . . . t

′
n, ε), q1,⊥,S) where t′1, . . . , t

′
n ∈ T . Now

from such a configuration, if Spoiler reads #c# then Duplicator goes to the accepting
sink s2 by popping # from the buffer and reading #c#. However if Spoiler reads t′n+1c
for some t′n+1 ∈ T , Duplicator pops # from the first buffer, reads #c by going to q0 and
proceeding to (p0, (t′1 . . . t

′
n+1, ε), q0,⊥,S). From this configuration, if Spoiler reads tc

where t ∈ T then Duplicator goes to the accepting sink s1 by letting t go to the first
buffer and reading c. Otherwise, Spoiler reads #c# and in this case Duplicator proceeds
to (p0, (t′1 . . . t

′
n+1#, ε), q1,⊥,S).

For the second part, the strategy for Spoiler is to initially read t′1. Duplicator either
skips her turn or pops t1 from the buffer by going to q2 or q3. If Duplicator goes to
q3, we reach the configuration (p1, (t2 . . . tn+1#t′1, ε), q3,⊥,S). In the next round, after
Spoiler reads c, Duplicator gets stuck because there is no c-transition from q3. Hence
let us assume that Duplicator skips her turn or goes to q2. Spoiler then reads c and goes
back to p0. In both cases, Duplicator has no choice except to pop c immediately and
proceed to the configuration (p0, (t2 . . . tn#t′1, ε), q1, ⊥,S). Spoiler repeats this procedure
n many times to push t′1, . . ., t′n consecutively to the buffer. Hence either Duplicator loses
or the play eventually proceeds to (p0, (#t′1 . . . t

′
n, ε), q1,⊥,S). From such a configuration

Spoiler then pushes t′n+1 in the same way. However in this case, after Spoiler reads t′n+1,
Duplicator either skips her turn or pops the top symbol of the buffer by going to q# or
q3. If Duplicator goes to q3, we can show similarly as before, that Duplicator eventually
gets stuck and loses the play. Now assume that she skips her turn or goes to q#. Spoiler
then reads c and goes back to p0. Duplicator has no choice except to pop c immediately
by going to q0. She proceeds to (p0, (t′1 . . . t

′
n+1, ε), q0, ⊥,S). Spoiler then reads #c# and

Duplicator has no choice except to proceed to (p0, (t′1 . . . t
′
n+1#, ε), q1, ⊥,S). �

The second part of this lemma tells us that if the first buffer contains a tiling of a row
of length n then Spoiler can continue by producing a tiling of a row of length n + 1. The
first part of the lemma then tells us that this is in fact the only way for Spoiler to continue
since otherwise Duplicator can reach one of the accepting sinks and win the play.

Reduction from the Octant Tiling Problem

We can slightly extend these two NBA to reduce the octant tiling problem. We can encode
the horizontal and vertical mismatches into Duplicator’s automaton. Encoding the hori-
zontal mismatch is not hard. We simply allow Duplicator to read t t′ ∈ T 2 if (t, t′) < H
from q1 to the accepting sink s2. Thus Spoiler is forced to produce a tiling that matches
horizontally since otherwise Duplicator can go to s2. Encoding the vertical mismatch,
however, is a bit more involved. First recall that every time Spoiler reads a tile, he an-
nounces it by reading the new symbol c. We extend the automata such that instead of
using a single symbol c for each tile t ∈ T , we use a new symbol ct for each tile t ∈ T . If
Spoiler and Duplicator are in p0 and q1, after Spoiler reads a tile t ∈ T and pushes it to
the first buffer, she reads ct, instead of c, and pushes it to the second buffer. Duplicator
then compares ct with the top symbol of the first buffer. If it is #, Duplicator does the
same move as before. She pops # and forces Spoiler to read exactly a tile and a #. How-
ever, if the top symbol is some t′ ∈ T then Duplicator pops it and forces Spoiler to read a
new tile t that matches vertically, i.e. (t′, t) ∈ V , or otherwise he goes to the accepting sink

CHAPTER 4. DECIDABILITY AND COMPLEXITY 103

p0

pa

pb

p#

a ca

b cb

#

c#

q0

q#

s1

q1

qa

qb

s2

ca, cb

Σ

c#

#ca, cb

aVca, bVcb,

{a, b, #} c#,

aaH , bbH

ΣaV ca

bV cb

Figure 4.8: NBAA and B for the octant tiling problem.

s2 by reading t′ ct. Hence if the content of the first buffer is t1 . . . tn#, Spoiler is forced to
push t′1, . . ., t′n+1# where (t′i , t

′
i+1) ∈ H and (ti, t′i) ∈ V for all i ∈ {1, . . . , n}.

We illustrate such extended automata in Figure 4.8. For simplicity, we assume that
there are only two tiles, i.e. T = {a, b}. If there are more, we can extend the automata
accordingly. Moreover, for any tile t ∈ T , we denote by tV the set of tiles that can be put
below t, i.e. tV = {t′ ∈ T | (t′, t) ∈ V}, and by tV the set of tiles that cannot be put below
t, i.e. tV = T\tV . We also denote by tH the set of tiles that cannot be put to the right of t,
i.e. tH = {t′ ∈ T | (t, t′) < H}. Moreover, we abbreviate the transitions q1

x
−−→ q̇1

y
−−→ s2 with

q1
xy
−−→ s2. By considering such extended automata, we can extend the property in Lemma

4.4.1 as follows.

Lemma 4.4.2. Consider the two NBAA, B over Σ̂ = (T ∪{#}, {c#, ct | t ∈ T }) as in Figure
4.8 and the play in Gω,0(A,B) from configuration

(p0, (t1 . . . tn#, ε), q1,⊥,S)

where t1 . . . tn ∈ T ∗.

• If (ti, ti+1) ∈ H for all i ∈ {1, . . . , n − 1} then for any t′1, . . . , t
′
n+1 ∈ T where (t1, t′1),

. . ., (tn, t′n) ∈ V, Spoiler has a strategy such that either Duplicator loses or the play
proceeds to

(p0, (t′1 . . . t
′
n+1#, ε), q1,⊥,S).

• If (ti, ti+1) < H for some i ∈ {1, . . . , n− 1}, Duplicator has a strategy to win the play.

• If (ti, ti+1) ∈ H for all i ∈ {1, . . . , n − 1}, Duplicator has a strategy such that either
Spoiler loses or the play proceeds to some configuration

(p0, (t′1 . . . t
′
n+1#, ε), q1,⊥,S)

where t′1, . . . , t
′
n+1 ∈ T and (t1, t′1), . . . , (tn, t′n) ∈ V.

Proof. For the first part, the strategy for Spoiler is the same as in the proof of Lemma
4.4.1. Initially Spoiler reads t′1ct′1

. Since (t1, t′1) ∈ V , Duplicator cannot go to the ac-

cepting sink s2 by reading t1ct′1
because t1 < t′1

V . Duplicator also cannot go to there by

104 4.4. SIMULATION WITH N ≥ 1 UNBOUNDED BUFFERS

reading t1t2 because t2 < t1
H. Duplicator can only pop t1 and loop in q1 by reading t1ct′1

.
Hence by reading t′1ct′1

. . . t′n+1ct′n+1
and then #c#, either Duplicator loses because she gets

stuck as in the proof of Lemma 4.4.1 or the play eventually proceeds to the configuration
(p0, (t′1 . . . t

′
n+1 #, ε), q1,⊥,S).

For the second part, let i0 ∈ {1, . . . , n−1} be the minimal index such that (ti0 , ti0+1) < H.
In the initial round, if Spoiler reads #c# or i0 = 1 then Duplicator goes to the accept-
ing sink s2 by reading t1c# or t1t2 respectively. Otherwise, Spoiler reads t′1ct′1

for some
t′1 ∈ T and i0 , 1. In this case, Duplicator pops t1 from the first buffer and reads t1ct′1
by looping in q1. Duplicator repeats this procedure for i0 − 1 many times. Hence ei-
ther Duplicator eventually reaches the accepting sink s2 and wins or the play proceeds to
(p0, (ti0 . . . tn#t′1 . . . t

′
i0−1, ε), q1,⊥,S). From this configuration, since (ti0 , ti0+1) < H, Dupli-

cator can go to the accepting sink s2 by reading ti0ti0+1 and win the play.
For the third part, Duplicator plays similarly as in the proof of Lemma 4.4.1. Addi-

tionally, from any configuration (p0, (ti . . . tn#t′1 . . . t
′
i−1, ε), q1,⊥,S), if Spoiler reads t′i ct′i

in which (ti, t′i) < V then Duplicator goes to the accepting sink s2 by popping ti from
the first buffer and reading ct′i . Hence either Spoiler loses because Duplicator reaches an
accepting sink and loops there forever or the play eventually proceeds to (p0, (t′1 . . . t

′
n+1#,

ε), q1,⊥,S) where (ti, t′i) ∈ V for all i ∈ {1, . . . , n}. �

We can reduce the octant tiling problem to the buffered simulation game Gω,0(A,B)
by considering the two NBA in Figure 4.8. If there exists an octant tiling then Spoiler
simply reads the tiling row by row. Since Duplicator cannot reach any accepting sink,
Spoiler will win the play. On the other hand, if there is no octant tiling then Duplicator
simply makes sure that Spoiler is constructing an octant tiling row by row until he forms
a vertical or horizontal mismatch. At that point, Duplicator reaches one of the accepting
sinks.

Theorem 4.4.3. Given a tiling system T = (T,H,V), we can construct in polynomial time
two NBAA,B such that Spoiler wins Gω,0(A,B) iff there exists an octant tiling.

Proof. Consider the two NBA A, B in Figure 4.8. Suppose there exists an octant tiling
t. From the initial configuration (p0, (ε, ε), q0,⊥,S), Spoiler first reads #c#. Duplicator
cannot do anything except to let # go to the first buffer and then pop c# immediately from
the second one. Hence we are in the configuration

(p0, (#, ε), q1,⊥,S). (4.23)

Spoiler then follows the strategy as described in the first part of Lemma 4.4.2 to push the
tiling of the first row: t1,1. Either Duplicator loses or the play proceeds to (p1, (t1,1#, ε), q1,
⊥,S). Spoiler again follows the strategy as described in Lemma 4.4.2 to push the tiling
of the second row: t1,2t2,2, and repeats the same procedure for the rest of the play. Hence
either Duplicator loses or both Spoiler and Duplicator visit p0 and q1 infinitely often.
Since Spoiler forms an accepting run and Duplicator does not, Spoiler wins.

For the other direction, suppose there is no octant tiling. Initially, if Spoiler reads
t1 ct1 for some t1 ∈ T , then Duplicator goes to the accepting sink s1. Otherwise, Spoiler
reads #c# and in this case, Duplicator has no choice except to proceed to the configuration
(4.23). Duplicator then follows the strategy as described in the third part of Lemma 4.4.2.
According to the lemma, either she wins or the play proceeds to (p1, (t1,1#, ε), q1,⊥,S)
for some t1,1 ∈ T . From this configuration, Duplicator again follows the strategy as
described in the third part of Lemma 4.4.2. Hence either she wins or the play proceeds to

CHAPTER 4. DECIDABILITY AND COMPLEXITY 105

p0

pa

pb

p# p̂0

p̂a

p̂b

a ca

b cb

#
#

c#

a ca

b cb

Figure 4.9: AutomatonA′ for the recurrent octant tiling problem.

(p1, (t2,1t2,2#, ε), q1,⊥,S) for some t2,1, t2,2 ∈ T where (t1,1, t1,2) ∈ V . Now if (t2,1, t2,2) < H
then Duplicator follows the strategy as described in the second part of Lemma 4.4.2 to
win the play. Otherwise she follows the strategy as described in the third part of Lemma
4.4.2 again. She repeats this procedure for the rest of the play. Hence either Duplicator
wins or both Spoiler and Duplicator visit the states p0 and q1 infinitely often. In such a
case, let

t1,1 # t1,2t2,2 # t1,3t2,3t3,3 # t1,4t2,4t3,4t4,4 # . . . (4.24)

be the sequence of letters that are pushed by Spoiler to the first buffer. By Lemma 4.4.2,
we have (ti, j, ti, j+1) ∈ V and (ti, j, ti+1, j) ∈ H for all i ≤ j. Hence we can construct an
octant tiling t where t(i, j) = ti, j. This however contradicts our initial assumption. Hence
Duplicator wins the play. �

We have a polynomial-time reduction from the octant tiling problem to the problem of
deciding whether Duplicator wins buffered simulation game Gω,0(A,B). Thus we have
the following corollary.

Corollary 4.4.4. Deciding vω,0 is Σ0
1-hard.

We can lift the reduction in Theorem 4.4.3 to reduce a highly undecidable problem,
namely the recurrent octant tiling problem [Har85]. We encode the situation where the
final tile is used as the first tile of a row infinitely often by slightly modifying the au-
tomaton for Spoiler. Instead of the automatonA as in Theorem 4.4.3, we consider a new
automaton A′ that simulates A and remembers the tile that is used as the first tile of a
row in its structure. The automaton A′ is obtained from A by adding a copy of it. We
constructA′ such that Spoiler uses the original part to push the first tile of a row and the
copy part to push the rest of the tiles. Instead of the initial state p0, we make the state
that corresponds to the final tile tF , i.e. ptF , in the original part, to be accepting, and the
rest of the states are not. In this way, Spoiler produces an accepting run iff the final tile
is used as the first tile infinitely often. We illustrate such an automaton A′ in Figure 4.9.
We assume that a is the final tile, and hence the state pa is accepting and the rest of the
states are not.

Theorem 4.4.5. Given a tiling system T = (T,H,V) and a final tile tF ∈ T, we can
construct two NBA A′,B such that Spoiler wins Gω,0(A′,B) iff there exists a recurrent
octant tiling.

106 4.4. SIMULATION WITH N ≥ 1 UNBOUNDED BUFFERS

p1 p2

pa

pb

ṗa

ṗa

c
a

b

ca

cb

c

c

q1 s1

qa

qb

q̇a

q̇b

q̈a

q̈b cb

ca

c

c

T

T

c

c

ca

cb

Σ

Figure 4.10: F-structure.

Proof. Consider the two automata A′, B, in which A′ is the automaton that is obtained
from the automatonA from Theorem 4.4.3 by adding a copy of it as we have illustrated in
Figure 4.9 and B is the automaton as in Theorem 4.4.3. Suppose there exists a recurrent
octant tiling t. The winning strategy for Spoiler is the same as the one in Theorem 4.4.3.
He pushes #t1,1#t1,2t2,2# . . . to the first buffer. Since there exist infinitely many i such that
t1,i = tF , he visits the accepting state qtF infinitely often and hence forms an accepting run.
Since Duplicator does not form an accepting run, Spoiler wins.

For the reverse direction, suppose there is no recurrent octant tiling. The winning
strategy for Duplicator is also the same as the one in the proof of Theorem 4.4.3. Hence
either Duplicator wins or both Spoiler and Duplicator respectively visit p0 and q1 in-
finitely often. In such a case, Spoiler pushes a sequence of letters as in (4.24) that obeys
the vertical and horizontal compatibility relation, i.e. for all i ≤ j, (ti, j, ti+1, j) ∈ H and
(ti, j, ti, j+1) ∈ V . Now suppose there are infinitely many j such that t1, j = tF . In this case,
we can construct a recurrent octant tiling t where t(i, j) = ti, j. This, however, contradicts
our initial assumption. Hence there are only finitely many j such that t1, j = tF . Spoiler
visits qtF finitely often and hence does not form an accepting run. Duplicator wins the
play. �

Since we can polynomially reduce the recurrent octant tiling problem to the problem
of deciding @ω,0, we have the following corollary.

Corollary 4.4.6. Deciding vω,0 is Π1
1-hard.

4.4.2 Π0
1
- and Σ1

1
- Hardness

Corollary 4.4.6 shows that we can reduce the recurrent octant tiling problems to the neg-
ative instance of buffered simulation. One then can equally ask whether the problem can
also be reduced to the positive instance of buffered simulation in a similar way. It is how-
ever not clear how to do so since we need to switch the role of the players. We have to
make Duplicator as the one that produces the tiling, and not Spoiler. This seems to be
against the nature of buffered simulation since the player that has the role to produce is
Spoiler, whereas Duplicator’s role is simply to mimic what Spoiler has produced. Nev-
ertheless, we will show that it is possible to make Duplicator the player that chooses the
tiling. The trick is to use the following special structure.

CHAPTER 4. DECIDABILITY AND COMPLEXITY 107

F-structure

Given a tiling system T = (T,H,V), consider the two NBA AF, BF as in Figure 4.10
over the distributed alphabet Σ̂ = (Σ1,Σ2) where Σ1 = T and Σ2 = {c} ∪ {ct | t ∈ T }. For
simplicity, we again assume that the set of tiles T consists only two tiles a and b. If there
are more, the automata can be extended accordingly. For any tile t ∈ T , we denote by ct

the set of letters in Σ2 that are not ct, i.e. ct = Σ2\{ct}. We also denote by Σ the set of all
letters inA, B, i.e. Σ = Σ1 ∪ Σ2.

Consider the game Gω,0(AF,BF) and a play from the initial configuration. Duplicator
can choose a tile t ∈ T and force Spoiler to push it to the first buffer. The strategy is
simply to read ccttc. Spoiler will push t to the first buffer since otherwise Duplicator can
reach the accepting sink s1. We generalise such a property to the following lemma that
will be the key of our reduction.

Lemma 4.4.7. Consider the two NBAAF, BF over Σ̂ = (T, {c} ∪ {ct | t ∈ T }) as in Figure
4.7 and a play in Gω,0(AF,BF) from some configuration

(p1, (t1 . . . tn, ε), q1, x,S) (4.25)

where t1, . . . , tn ∈ T, n > 0, and x ∈ {2,⊥,>}.

• For any t ∈ T, Duplicator has a strategy such that either Spoiler loses or the play
proceeds to

(p1, (t2 . . . tn t, ε), q1, x′,S)

where x′ = > if x ∈ {2,⊥} and x′ = 2 if x = >.

• Spoiler has a strategy such that the play proceeds to some configuration

(p1, (t2 . . . tn t, ε), q1, x′,S)

where t ∈ T, x′ = > if x ∈ {2,⊥} and x′ ∈ {2,⊥} if x = >.

Proof. For the first part, the strategy for Duplicator is as follows. From the configura-
tion (4.25), after Spoiler reads c, Duplicator pops c by going to qt, i.e. she proceeds to
(p2, (t1 . . . tn, ε), qt, x′,S) where by definition of Gω,0(AF,BF), x′ = ⊥ if x ∈ {2,⊥} and
x′ = 1 if x = >. Spoiler then will read some tile t′ ∈ T by going to pt′ and Duplica-
tor cannot do anything except to skip her turn and proceed to (pt′ , (t1 . . . tn t′, ε), qt, x′,S).
From this configuration, Spoiler will read ct′ . If t′ , t, Duplicator goes to the accepting
s1 by reading ct′ ∈ ct. From the accepting sink, Duplicator can continue accordingly
and win the play. However, if t′ = t then Duplicator goes to q̇t by popping ct from the
buffer. We reach the configuration (ṗt, (t1 . . . tn t, ε), q̇t, x′,S). Spoiler then will read c and
Duplicator responds to this by going to q1, i.e. she proceeds to (p1, (t2 . . . tn t, ε), q1, x′′,S)
where by definition of Gω,0(AF,BF), x′′ is > if x′ = ⊥ and 2 if x′ = 1.

For the second part, the strategy for Spoiler is as follows. First he reads c. If Du-
plicator responds to this by going to qt then Spoiler reads t by going to pt. Duplicator
will skip her turn and we reach the configuration (pt, (t1 . . . tn t, ε), qt, x′,S) where x′ = ⊥

if x ∈ {2,⊥} and x′ = 1 if x = >. Spoiler then reads ct. Duplicator cannot go to the
accepting sink since ct < ct. However, she can read ct by going to q̇t or read ct t1 by going
to q̈t. Hence the play respectively proceeds to the configuration

(ṗt, (t1 . . . tn t, ε), q̇t, x′,S) or (4.26)

108 4.4. SIMULATION WITH N ≥ 1 UNBOUNDED BUFFERS

p0 ṗ0 p1 p2

pa

pb

ṗa

ṗb

ṗ′a

ṗ′b

c#

c

c

c
a

b

c

c

cb

ca

ca

cb

q0 q1 s2

qa

qb

q̇a

q̇b

q̈a

q̈b

q̈′a

q̈′b

s1 s3

c#

c

c

ca

cb

ca

c

c

cb

c

c

c#
c

Σ

Σ Σ
T

T

#

#

Figure 4.11: NBAA and B to force Duplicator to produce an octant tiling.

(ṗt, (t2 . . . tn t, ε), q̈t, x′′,S) (4.27)

where x′′ = ⊥ if x′ = ⊥ and x′′ = 2 if x′ = 1. In the next round, Spoiler will read c and
Duplicator does not have any choice except to go to p1 and proceed to some configuration
(p1, (t2 . . . tn t, ε), q1, x′′′,S) where x′′′ ∈ {2,⊥,>}. If she comes from (4.26) then x′′′ is >
if x′ = ⊥, and 2 if x′ = 1. However if she comes from (4.27) then x′′′ is > if x′′ = ⊥, and
⊥ if x′′ = 2. �

The first part of this lemma shows that Duplicator can choose any tile and force
Spoiler to push it to the first buffer. The second part then shows that this is the only thing
that Duplicator can do. She cannot reach the accepting sink if Spoiler reads the tile of
Duplicator’s choice accordingly.

We will use such an F-structure to enable Duplicator to choose a tiling of a row and
force Spoiler to push the tiles one by one to the first buffer.

Reduction from the Octant Tiling Problem

For a given tiling system T , first we will show that we can construct two NBAA, B such
that Duplicator has to choose the words w1,w2, . . . where wi ∈ T i and force Spoiler to
push #w1#w2 . . . to the buffer. The principle is similar to the automata given in Lemma
4.4.1, but we use the F-structure to make Spoiler reads the tiles that Duplicator chooses.
Initially, Spoiler is forced to push # and then a tile t1 of Duplicator’s choice. Each time
Spoiler pushes a tile ti, i > 0, Duplicator pops the top symbol of the first buffer. If the
top symbol is a tile, Spoiler is forced to push only the tile ti. However if it is #, Spoiler is
forced to push # after he pushes the tile ti. Duplicator then continues to force Spoiler to
push some tile ti+1 of her choice. Thus if the content of the first buffer is t1 . . . tn#, Spoiler
then is forced to push t′1, . . ., t′n+1, # consecutively to the buffer.

We illustrate such NBA A, B in Figure 4.11. They are defined over the distributed
alphabet Σ̂ = (Σ1,Σ2) where Σ1 = T ∪ {#} and Σ2 = {c, c#} ∪ {ct | t ∈ T }. Each of the
automata A and B intuitively consists of two parts. The left parts that start from p0 and
q0, and the right parts that start from p1 and q1. Note that the right parts are nonetheless
the F-structure.

Consider the game Gω,0(A,B). From the initial configuration (p0, (ε, ε), q0,⊥,S),
Spoiler will read # and then c#. The play then proceeds to the configuration (p1, (#, ε), q1,

CHAPTER 4. DECIDABILITY AND COMPLEXITY 109

>,S). Furthermore, from any configuration (p1, (w#, ε), q1,>,S) where w ∈ T i and i ≥ 0,
by Lemma 4.4.7, we can show that Duplicator can choose w′ ∈ T i+1 and force Spoiler
to push the letters of w′ one by one to the first buffer and proceed to the configuration
(p1, (w′#, ε), q1,>,S). We show this formally in the following lemma.

Lemma 4.4.8. Consider the two NBA A, B over Σ̂ = (T ∪ {#}, {c, c#} ∪ {ct | t ∈ T }) as in
Figure 4.11 and a play in Gω,0(A,B) from some configuration

(p1, (t1 . . . tn#, ε), q1,>,S) (4.28)

where t1 . . . tn ∈ T ∗.

• For any t′1, . . . , t
′
n+1 ∈ T, Duplicator has a strategy such that either Spoiler loses or

the play proceeds to some configuration

(p1, (t′1 . . . t
′
n+1#, ε), q1,>,S).

• Spoiler has a strategy such that the play eventually proceeds to some configuration

(p1, (t′1 . . . t
′
n+1#, ε), q1,>,S)

where t′1, . . . , t
′
n+1 ∈ T.

Proof. For the first part, from the configuration (4.28), Duplicator follows the strategy
as described in the first part of Lemma 4.4.7 to push the tile t′1. Hence either Duplicator
wins or the play proceeds to (p, (t2 . . . tn#t′1, ε), q1, 2,S) where p ∈ {p0, p1}. If p = p0,
Spoiler then will read # and then c#. In such a case, Duplicator first skips her turn and
then goes to the accepting sink s3 by reading c# ∈ c. Duplicator can play accordingly
from the accepting sink and win the play. However if p = p1, Duplicator again follows
the strategy from the first part of Lemma 4.4.7 to push t′2. She repeats this procedure n
many times to push t′1, . . . , t

′
n to the buffer. According to Lemma 4.4.7, either Duplica-

tor wins or the play eventually proceeds to (p1, (#t′1 . . . t
′
n, ε), q1, x,S) where x ∈ {2,>}.

From such a configuration, Duplicator again follows the same strategy to force Spoiler
to push t′n+1 to the buffer. In this case, either Duplicator wins or the play proceeds to
(p, (t′1 . . . t

′
n+1, ε), q0, x′,S) where p ∈ {p0, p1}. If p = p1 then Spoiler will continue by

reading c. Duplicator goes to the accepting sink s1 by reading c ∈ c# and plays accord-
ingly from the accepting sink to win the play. However if p = p0 then we reach the con-
figuration (p0, (t′1 . . . t

′
n+1, ε), q0, x′,S) where x′ ∈ {2,⊥}. Spoiler then will read #. Dupli-

cator skips her turn, and hence proceeds to the configuration (ṗ0, (t′1 . . . t
′
n+1#, ε), q0,⊥,S).

Spoiler will continue by reading c# and Duplicator responds to this by popping c# imme-
diately. The play then proceeds to (p1, (t′1 . . . t

′
n+1#, ε), q1,>,S).

For the second part, Spoiler first follows the strategy as described in the proof of
Lemma 4.4.7. He lets Duplicator force him to push some t′1 ∈ T and then goes back
to p1. Hence we reach the configuration (p1, (t2 . . . tn#t′1, ε), q1, x,S) where x ∈ {2,⊥}.
Spoiler repeats this procedure for n many times. By Lemma 4.4.7, the play eventually
proceeds to (p2, (#t′1 . . . t

′
n, ε), q1, x′, S) where t′1, . . . , t

′
n ∈ T and x′ ∈ {2,⊥,>}. From such

a configuration, Spoiler again lets Duplicator force him to push some t′n+1 ∈ T . However
now he goes to q0. Hence we reach some configuration (p0, (t′1 . . . t

′
n+1, ε), q0, x′, S) where

x′ = ⊥ if x ∈ {⊥, 2} and x′ ∈ {2,⊥} if x = >. Spoiler reads # and then c#. Duplicator
first skips her turn and proceeds to (p1, (t′1 . . . t

′
n+1#, ε), q1, ⊥, S). She then pops c# and

proceeds to (p1, (t′1 . . . t
′
n+1#, ε), q1, >, S). �

110 4.4. SIMULATION WITH N ≥ 1 UNBOUNDED BUFFERS

p1

s4

$

$

q1

ha . . . hb

s5

#

ba

#
#

$

Figure 4.12: The componentsAcheck and Bcheck to ensure horizontal compatibility.

The first part of this lemma tells us that if the first buffer contains a tiling of a row of
length n then Duplicator can choose a tiling of a row of length n + 1 and force Spoiler to
push the tiles one by one to the buffer. The second part tells us that this is in fact the only
way for Duplicator to continue.

We can slightly extend these two automata to reduce the octant tiling problem. We
encode the horizontal mismatch by adding two new components Acheck and Bcheck as
illustrated in Figure 4.12. The new components Acheck and Bcheck are defined over T ∪
{#, $} where $ is a new symbol that belongs to the first buffer. The component Acheck is
very simple. It accepts the word $ω from the state p1. The component Bcheck is more
involved. It consists of an accepting sink and a state ht for each tile t ∈ T . The accepting
sink is reachable from q1 by reading # and from each state ht by reading t. Moreover for
all t ∈ T , we have ht

t′
−−→ ht′ iff (t, t′) ∈ H. Hence from q1, the component Bcheck accepts

any word of the form t1 . . . tm# $ω where m > 0 and (ti, ti+1) ∈ H for all i ∈ {1, . . . ,m − 1}.
Now if we extend the automataA, B withAcheck, Bcheck then from any configuration

(p1, (t1 . . . tn#, ε), q1,>,S), where t1, . . . , tn ∈ T , if there is some i ∈ {1, . . . , n} such that
(ti, ti+1) < H, Spoiler wins by going to the accepting sink s4 in Acheck and loops there
forever. Duplicator will never reach the accepting sink s5 in Bcheck and lose the play.
Spoiler, however, should not go to s4 if there is no such i since Duplicator can reach s5

and win the play. Hence Spoiler should only use the new component Acheck if there is a
horizontal mismatch.

Encoding the vertical mismatch to the automata A, B is also simple. First recall that
each time after Duplicator forces Spoiler to read a new tile, she pops a tile or # from
the top of the first buffer. The tile that Duplicator pops is indeed the one that is put
below the new tile. Up to now, Duplicator can pop any tile. Hence to encode the vertical
compatibility, we simply restrict the tile that Duplicator can pop. It should only be the
one that matches vertically with the new tile. Hence from any state q̇t, Duplicator can
only reach q̈t by reading t′ where (t′, t) ∈ V . Let us denote with tV the set of tiles that
can be put below t, i.e. tV = {t′ | (t′, t) ∈ V}. We illustrate the extended two NBA A,
B that encode the horizontal and vertical mismatch in Figure 4.12. By considering such
automata, we can extend the property in Lemma 4.4.8 as follows.

Lemma 4.4.9. Consider the two NBA A, B over Σ̂ = (T ∪ {#, $}, {c, c#} ∪ {ct | t ∈ T }) as
in Figure 4.13 and a play in Gω,0(A,B) from

(p1, (t1 . . . tn#, ε), q1,>,S)

where t1 . . . tn ∈ T ∗.

CHAPTER 4. DECIDABILITY AND COMPLEXITY 111

p0 ṗ0 p1 p2

pa

pb

ṗa

ṗb

ṗ′a

ṗ′b Acheck

c#

c

c

c
a

b

c

c

cb

ca

ca

cb

q0 q1 s2

qa

qb

q̇a

q̇b

q̈a

q̈b

q̈′a

q̈′b

s1 s3

Bcheck

c#

c

c

ca

cb

ca

c

c

cb

c

c

c#
c

Σ

Σ Σ
aV

bV

#

#

Figure 4.13: NBAA, B for the octant tiling problem.

• If (ti, ti+1) ∈ H for all i ∈ {1, . . . , n − 1} then for any t′1, . . . , t
′
n+1 ∈ T where (t1, t′1),

. . ., (t1, t′1) ∈ V, Duplicator has a strategy such that either Spoiler loses or the play
proceeds to (p1, (t′1 . . . t

′
n+1#, ε), q1,>,S).

• If (ti, ti+1) < H for some i ∈ {1, . . . , n−1} then Spoiler has a strategy to win the play.

• If (ti, ti+1) ∈ H for all i ∈ {1, . . . , n − 1} then Spoiler has a strategy such that
either Duplicator loses or the play proceeds to (p1, (t′1 . . . t

′
n+1#, ε), q1,>,S) where

(ti, t′i) ∈ V for all i ∈ {1, . . . , n}.

Proof. For the first part, the strategy for Duplicator is as follows. If initially Spoiler
goes to the accepting sink s4 in Acheck, Duplicator then goes to the accepting sink s5 in
Bcheck by reading t1 . . . tn#. This is possible because (ti, ti+1) ∈ H for all i ∈ {1, . . . , n − 1}.
From the accepting sink, Duplicator can play accordingly and win the play. However,
if Spoiler does not go to the accepting sink s4 then Duplicator follows the strategy as
described in the first part of Lemma 4.4.8.

For the second part, the strategy for Spoiler is simply to go to the accepting sink s4 in
Acheck, i.e. he proceeds to (s4, (t1 . . . tn#$, ε), q1,>,D), and then loops in s4 forever. Since
(ti, ti+1) < H for some i ∈ {1, . . . , n − 1}, Duplicator will never be able to pop $ from the
buffer. Spoiler wins by looping in s4 forever.

For the third part, Spoiler follows the strategy as described in the proof of Lemma
4.4.8. Note that from any configuration (p1, (ti . . . tn#t′1 . . . t

′
i−1, ε), q1, x,S) where x ∈

{2,⊥,>}, Spoiler reads c. Duplicator will read c by going to some qt′i and proceeding
to some configuration (p2, (ti . . . tn #t′1 . . . t

′
i−1, ε), qt′i , x

′,S) where x ∈ {⊥, 1}. From this
configuration, Spoiler reads t′i and then ct′i . If (ti, t′i) < V , since there is no ti-transition
from q̇t′i , Duplicator will get stuck and lose the play. Otherwise the play proceeds as
in the proof of Lemma 4.4.8, to some configuration (p1, (ti+1 . . . tn # t′1 . . . t

′
i , ε), q1, x′′,S)

where x′′ ∈ {2,⊥,>}. Hence either Duplicator loses or the play eventually proceeds to
some configuration (p1, (t′1 . . . t

′
n+1#, ε), q1,>,S) where (ti, t′i) ∈ V for all i ∈ {1, . . . , n}. �

We can reduce the octant tiling problem to the buffered simulation gameGω,0(A,B) by
considering such NBAA, B. If there exists an octant tiling then Duplicator simply forces
Spoiler to read the tiling row by row. If Spoiler does not obey, Duplicator can reach one
of the accepting sinks and win the play, otherwise she goes through the accepting state

112 4.4. SIMULATION WITH N ≥ 1 UNBOUNDED BUFFERS

infinitely often. On the other hand, if there is no octant tiling, Spoiler simply reads every
tile that is chosen by Duplicator until there is a vertical or horizontal mismatch. In the
first case, Duplicator eventually gets stuck and loses the play, and in the second one,
Spoiler can go to the accepting sink inAcheck and win the play. We show this formally in
the following theorem.

Theorem 4.4.10. Given a tiling system T = (T,H,V), we can construct in polynomial
time two NBAA,B such that Duplicator wins Gω,0(A,B) iff there exists an octant tiling.

Proof. Consider the two NBA A, B that are illustrated in Figure 4.13. Suppose there
exists an octant tiling t. In the game Gω,0(A,B), initially Spoiler will read # then c#, and
Duplicator has no choice except to proceed to

(p1, (#, ε), q1,>,S). (4.29)

From this configuration, Duplicator follows the strategy as described in Lemma 4.4.9.
She forces Spoiler to read the tiling of the first row: t1,1. According to the lemma, either
Duplicator wins or the play proceeds to (p1, (t1,1#, ε), q1,>,S). Duplicator then follows
the strategy as described in Lemma 4.4.9 again. She forces Spoiler to read the tiling
of the second row: t1,2t2,2. She repeats this procedure for the rest of the play. Hence
either Duplicator wins by following the strategy as described in Lemma 4.4.9 or both
Spoiler and Duplicator go through the states p1 and q1 infinitely often. In the second
case, Duplicator also wins the play.

For the other direction, suppose there is no octant tiling. Initially, Spoiler reads #c#.
The play then proceeds to (4.29). From such a configuration, Spoiler follows the strategy
as in the third part of Lemma 4.4.9. Hence either Duplicator loses or the play proceeds to
(p1, (t1,1#, ε), q1,>,S) for some t1,1 ∈ T . From this configuration, Spoiler again follows
the strategy as described in the third part of Lemma 4.4.9. Either Duplicator loses or
the play proceeds to (p1, (t2,1t2,2#, ε), q1,>,S) for some t2,1, t2,2 ∈ T . Now if (t2,1, t2,2) <
H, Spoiler follows the strategy as in the second part of Lemma 4.4.9 to win the play.
Otherwise, he follows the strategy as described in the third part again. Spoiler repeats
this procedure indefinitely. Hence either he wins by following the strategy as described
in Lemma 4.4.9 or both Spoiler and Duplicator go through p1 and q1 infinitely often. In
such a case, let

t1,1 # t1,2t2,2 # t1,3t2,3t3,3 # t1,4t2,4t3,4t4,4 # . . .

be the sequence of letters that are pushed by Spoiler to the first buffer. By Lemma 4.4.9,
(ti, j, ti, j+1) ∈ V and (ti, j, ti+1, j) ∈ H for all i ≤ j. Hence we can construct an octant tiling
t where t(i, j) = ti, j. This however contradicts our initial assumption. Spoiler wins the
play. �

We have a polynomial-time reduction from the octant tiling problem to the game
Gω,0(A,B). Thus we have the following corollary.

Corollary 4.4.11. Deciding vω,0 is Π0
1-hard.

We can also lift the reduction in Theorem 4.4.10 to reduce the recurrent octant tiling
problem. Instead of the automaton B, we will consider a new automaton B′ for Du-
plicator, that simulates B and remembers the tile that is used as the first tile of a row
in its structure. The automaton B′ is obtained from B by simply adding a copy of the
F-structure of B. We construct B′ such that Duplicator uses the original F-structure to

CHAPTER 4. DECIDABILITY AND COMPLEXITY 113

q0 q1 s2

qa

qb

s1 s3

q̂1 ŝ2

q̂a

q̂b

ŝ3

Bcheck

c
c

c

ca

ca

ca

c

cb

c

Σ

Σ

aV

bV

#

#

c#

c

aV

bV

c

c

¬ca

¬ca

ca

c

cb

c

c

c

c#

Σ

ΣΣ

#

#

Figure 4.14: Automaton B′′ for the recurrent octant tiling problem.

force Spoiler to read the first tile of a row, and then uses the copy for the rest of the tiles.
Instead of the state q1, we make the state in the original F-structure that corresponds to
the final tile tF , i.e. qtF , to be accepting, and the rest of the non-sink nodes non-accepting.
In this way, Duplicator forms an accepting run iff the final tile is used as the first tile
of a row infinitely often. We illustrate such an extended automaton B′ in Figure 4.14.
We assume that a is the final tile, and hence the state qa is accepting and the rest of the
non-sink states are not.

Theorem 4.4.12. Given a tiling system T = (T,H,V) and a final tile tF ∈ T, we can
construct two NBAA,B′ such that Duplicator winsGω,0(A,B′) iff there exists a recurrent
octant tiling.

Proof. Consider two NBAA,B′ whereA is the automaton as in Theorem 4.4.10 andB′ is
obtained from the automaton B from Theorem 4.4.10 by adding a copy of the F-structure
as we have illustrated in Figure 4.14. Suppose there exists a recurrent octant tiling t. The
winning strategy for Duplicator is intuitively the same as the one in Theorem 4.4.10. She
forces Spoiler to push #t1,1#t1,2t2,2# . . . to the first buffer. Since there exist infinitely many
i such that t1,i = tF , Duplicator visits the accepting state qtF infinitely often and hence
wins the play.

For the reverse direction, suppose there is no recurrent octant tiling. The winning
strategy for Spoiler is also the same as the one in Theorem 4.4.10. She simply reads
every letter that is forced by Duplicator and reaches the accepting sink in Acheck if there
is a horizontal mismatch. Hence either Spoiler wins because Duplicator produces a
vertical or horizontal mismatch, or both Spoiler and Duplicator visit the states p1 and q1

infinitely often. In the second case, let

t1,1 # t1,2t2,2 # t1,3t2,3t3,3 # t1,4t2,4t3,4t4,4 # . . .

be the sequence of letters that are pushed to the first buffer. Since there is no vertical or
horizontal mismatch, we have (ti, j, ti+1, j) ∈ H and (ti, j, ti, j+1) ∈ V for all i ≤ j. Now suppose

114 4.4. SIMULATION WITH N ≥ 1 UNBOUNDED BUFFERS

there are infinitely many j such that t1, j = tF . In this case, we can construct a recurrent
octant tiling t where t(i, j) = ti, j. This however contradicts our initial assumption. Hence
there are only finitely many j such that t1, j = tF . Duplicator visits qtF finitely often and
hence does not form an accepting run. Spoiler, on the other hand, forms an accepting run.
Thus Spoiler wins. �

Since we can polynomially reduce the recurrent octant tiling problem to the problem
of deciding whether Duplicator wins buffered simulation game Gω,0(A,B), we have the
following corollary.

Corollary 4.4.13. Deciding vω,0 is Σ1
1-hard.

In the next subsection, we will show that we can use Corollary 4.4.11 and Corollary
4.4.13 to show that solving buffered simulation is not only hard for the first level of the
analytical hierarchy, but also hard for a higher class BΣ1

1 that strictly contains Σ1
1 and Π1

1.

4.4.3 BΣ1
1
-Hardness

Before we show the BΣ1
1-hardness of buffered simulation, let us shortly recall a decision

problem that asks whether a property P(x1, . . . , xn) holds for given x1, . . . , xn ∈ N, P.
Since the outcome of P is either positive or negative, we can also see the boolean com-
bination of decision problems as a decision problem. Intuitively, for a problem P, ¬P is
a problem that asks whether the outcome of P is not positive, P1 ∧ P2 asks whether the
outcome of both P1 and P2 are positive, and P1 ∨ P2 asks whether the outcome of one of
P1 and P2 is positive.

Let us denote by BΣ1
1 the set of all boolean combinations of problems in Σ1

1, i.e. a
problem P is in BΣ1

1 if either P is in Σ1
1, P is ¬P′ and P′ is in BΣ1

1, P is P1 ∧ P2 and P1, P2

are in BΣ1
1, or P is P1 ∨ P2 and P1, P2 are in BΣ1

1. Note that the class BΣ1
1 is strictly larger

than Σ1
1 and Π1

1 since it contains the problems which are in Π1
1, but not in Σ1

1, and also the
ones which are in Σ1

1, but not in Π1
1. We will show that buffered simulation is not only

hard for the classes Σ1
1 and Π1

1, but also for BΣ1
1.

For any decision problem P1 ∧ P2 where P1 and P2 are in Σ1
1, we can reduce it to the

buffered simulation game. First note that by Corollary 4.4.13, we can construct two pairs
of automata A1, B1 and A2, B2 such that for all i ∈ {1, 2}, Duplicator wins Gω,0(Ai,Bi)
iff Pi has a positive outcome. Thus we can construct two NBA A and B from A1,A2

and B1,B2 respectively, such that in the game Gω,0(A,B), Spoiler can force the play to
proceed to the component that corresponds to A1,B1 or A2,B2. If both P1 and P2 have
positive outcomes then no matter how Spoiler plays, Duplicator can win the play. On
the other hand, if one of P1 and P2 has a negative outcome, suppose P1, then Spoiler can
force the play to proceed toA1, B1 and win the play.

Lemma 4.4.14. Let P1, P2 ∈ Σ1
1. There are two NBA A, B over Σ̂ = (Σ1,Σ2) such that

P1 ∧ P2 has a positive outcome iffA vω,0 B.

Proof. Since P1, P2 ∈ Σ1
1, by Corollary 4.4.13, we can reduce them to the problem of

deciding vω,0. There are two pairs of NBAA1, B1 andA2, B2 such that for all i ∈ {1, 2},
Ai v

ω,0 Bi iff Pi has a positive outcome. Supose Ai,Bi are defined over a distributed
alphabet Σ̂i = (Σi,1,Σi,2). Consider two NBA A and B that are defined over Σ̂ = (Σ1,Σ2)
where

Σ1 = Σ1,1 ∪ Σ2,1,

CHAPTER 4. DECIDABILITY AND COMPLEXITY 115

p0

A1

A2

e1

e2

q0

B1

B2

e1

e2

Figure 4.15: Reduction from P1 ∧ P2 toAvω,0 B.

p0 p1

A1

A2

e

e1

e2

q0 s

q1

q2

B1

B2

e

e

e2

e1

e1

e2

Σ

Figure 4.16: Reduction from P1 ∨ P2 toAvω,0 B.

Σ2 = Σ1,2 ∪ Σ2,2 ∪ {e1, e2}),

and e1, e2 are two additional new letters that are not in Σi, j for all i, j ∈ {1, 2}. The automata
A, B are constructed from A1,A2 and B1,B2, respectively, as we have illustrated in
Figure 4.15.

Now consider the game Gω,0(A,B). If P1 ∧ P2 has a positive outcome then in the first
round, after Spoiler proceeds to some configuration (pi

0, (ε, ei), q0,⊥,D) where pi
0 is the

initial state ofAi and i ∈ {1, 2}, Duplicator has no choice except to pop ei from the second
buffer and go to qi

0, the initial state of Bi. Hence the play proceeds to (pi
0, (ε, ε), q

i
0,⊥,S),

which are the initial configuration of the game Gω,0(Ai,Bi). Since Pi has a positive out-
come for all i ∈ {1, 2}, from such a configuration, Duplicator can play according to the
winning strategy in Gω,0(Ai,Bi) and win the play. On the other hand, if P1 ∧ P2 has a
negative outcome, let i0 ∈ {1, 2} such that Pi0 has a negative outcome. In the first round,
Spoiler reads ei0 , and hence proceeds to (pi0

0 , (ε, ei0), q0,⊥,D). Duplicator then will con-
tinue to (pi0

0 , (ε, ε), q
i0
0 ,⊥,S). Since this corresponds to the initial configuration of the

game Gω,0(Ai0 ,Bi0), Spoiler can play according to the winning strategy in Gω,0(Ai0 ,Bi0)
and win the play. �

We can also show similarly that any decision problem P1 ∨ P2 where P1 and P2 are in
Σ1

1, can be reduced to buffered simulation game. Consider again the two pairs of automata
A1, B1 andA2, B2 where for all i ∈ {1, 2}, Duplicator wins Gω,0(Ai,Bi) iff Pi has a posi-
tive outcome. We then construct two NBAA and B fromA1,A2 and B1,B2 respectively,
such that in the game Gω,0(A,B), Duplicator is the player that chooses whether to pro-
ceed to A1,B1 or A2,B2. This is possible by using a similar structure as the F-structure
in the initial part of A, B. If one of P1 and P2 has a positive outcome, suppose P1, then
Duplicator proceeds to A1, B1 and wins the play. On the other hand, if both P1 and P2

have negative outcomes then no matter how Duplicator plays, Spoiler wins.

Lemma 4.4.15. Let P1, P2 ∈ Σ1
1. There are two NBA A, B over Σ̂ = (Σ1,Σ2) such that

P1 ∨ P2 has a positive outcome iffA vω,0 B.

Proof. Again, since P1, P2 ∈ Σ1
1, by Corollary 4.4.13, we can reduce them to the problem

of deciding buffered simulation vω,0. There are two pairs of NBA A1, B1 and A2, B2

116 4.4. SIMULATION WITH N ≥ 1 UNBOUNDED BUFFERS

such that for all i ∈ {1, 2}, Ai v
ω,0 Bi iff Pi has a positive outcome. Suppose Ai,Bi are

over the distributed alphabet Σ̂i = (Σi,1,Σi,2). Consider two NBAA and B that are defined
over Σ̂ = (Σ1,Σ2) where

Σ1 = Σ1,1 ∪ Σ2,1,

Σ2 = Σ1,2 ∪ Σ2,2 ∪ {e, e1, e2}),

and e, e1, e2 are three additional new letters that are not in Σi, j for all i, j ∈ {1, 2}. The
automataA, B are constructed fromA1,A2 and B1,B2 as illustrated in Figure 4.16.

Now consider the game Gω,0(A,B). If P1 ∨ P2 has a positive outcome then in the first
round, after Spoiler proceeds to (p1, (ε, e), q0,⊥,D), Duplicator goes to qi where Pi has
a positive outcome. Hence the play proceeds to the configuration (p1, (ε, ε), qi,⊥,S). If
Spoiler reads ei where i ∈ {1, 2} \ {i}, Duplicator goes to the accepting sink s by reading
ei. Otherwise, Spoiler reads ei and in this case, Duplicator proceeds to the configura-
tion (pi

0, (ε, ε), q
i
0,⊥,S) where pi

0, qi
0 are the initial states of Ai, Bi. Such a configuration

corresponds to the initial configuration of the game Gω,0(Ai,Bi). Since Pi has a posi-
tive outcome, from such a configuration, Duplicator can play according to the winning
strategy in Gω,0(Ai,Bi) and win the play. Now suppose P1 ∨ P2 has a negative outcome.
The strategy for Spoiler is as follows. If in the first round, after Spoiler reads e, Du-
plicator goes to some state qi, i ∈ {1, 2}, Spoiler then continues the play by reading ei.
The play then proceeds to some configuration (pi

0, (ε, ε), q
i
0,⊥,S) where pi

0, qi
0 are the

initial states ofAi, Bi. Such a configuration corresponds to the initial configuration of the
game Gω,0(Ai,Bi). Since for all i ∈ {1, 2}, Pi has a negative outcome, Spoiler can play
according to the winning strategy in Gω,0(Ai,Bi) and win the play. �

By considering a similar reduction as in Lemma 4.4.14 and Lemma 4.4.15, we can
show that any problem in BΣ1

1 can be reduced to a buffered simulation game.

Theorem 4.4.16. For any decision problem P ∈ BΣ1
1, there are two NBA A, B over

Σ̂ = (Σ1,Σ2) such that P has a positive outcome iffA vω,0 B.

Proof. Let P ∈ BΣ1
1. Without loss of generality, let us assume that P is in normal form

where negation is only applied to the atomic problems. We will show that the property
holds by induction on the structure of P. If P ∈ Σ1

1 then by Corollary 4.4.13 we have
the desired result. If P is ¬P′ and P′ ∈ Σ1

1 then P ∈ Π1
1. By Corollary 4.4.6 we also

have the desired result. If P is P1 ∧ P2 and P1, P2 ∈ BΣ1
1, by induction hypothesis, there

are two pairs of NBA A1,B1 and A2,B2 such that for all i ∈ {1, 2}, the problem Pi has
a positive outcome iff Ai v

ω,0 B. We can construct two NBA A, B as in the proof of
Lemma 4.4.14 such thatA vω,0 B iff P has a positive outcome. Similarly, if P is P1 ∨ P2

and P1, P2 ∈ BΣ1
1, by induction hypothesis, there are two pairs of NBAA1,B1 andA2,B2

such that for all i ∈ {1, 2}, the problem Pi has a positive outcome iff Ai v
ω,0 Bi. We can

construct two NBA A, B as in the proof of Lemma 4.4.15 such that A vω,0 B iff P has a
positive outcome. �

Since every problems in BΣ1
1 can be reduced to the problem of deciding buffered

simulation vω,0, we have the following theorem.

Theorem 4.4.17. Deciding vω,0 is BΣ1
1-hard.

In the following subsection, we will show that the problem of deciding whether Du-
plicator wins the buffered simulation game Gκ(A,B) for two NBA A, B over Σ̂ =

CHAPTER 4. DECIDABILITY AND COMPLEXITY 117

(Σ1, . . . ,Σn) and a κ = (k1, . . . , kn) is indeed in the second level of the analytical hier-
archy. Such a problem is in the class Σ1

2 ∩ Π1
2, a class that does not contain any complete

problem [RJ87].

4.4.4 Membership in Σ1
2
∩ Π1

2

To complete the undecidability result of buffered simulation, we will show that for any
two NBA over Σ̂ = (Σ1, . . . ,Σn) and a capacity vector κ = (k1, . . . , kn), the problem of
deciding A vκ B is in the classes Σ1

2 and Π1
2. Recall that to show such memberships,

we have to show that the problem can be characterised by second-order formulae of the
form ∀X ∃Y φ1(X,Y) and ∃X ∀Y φ2(X,Y) where φ1 and φ2 are first-order formulae [RJ87,
Kec95].

Before we show the formulae, we will give the predicates that are used to construct
them. First, consider the game Gκ(A,B) = ((V,VD,VS, E), v0,Win). A valid finite play in
such a game is nonetheless a path r ∈ V+ in the configuration graph of Gκ(A,B). Hence
the following is the predicate that defines the valid finite plays in Gκ(A,B).

FinPlay(r) := ∀i ∈ {1, . . . , |r|} V(ri) ∧ E(ri, ri+1) ∧ v0(r1) (4.30)

Furthermore, a valid finite play r is played according to some Spoiler’s or Duplica-
tor’s strategy σS or σD, respectively, if for all i ∈ {1, . . . , n}, whenever ri ∈ Vx, x ∈ {S,D},
then ri+1 is σx(r1 . . . ri). Hence the following are the predicates that define valid finite
plays that are played according to Spoiler’s strategy σS and Duplicator’s strategy σD,
respectively.

FinConsistentS(r, σS) := ∀i ∈ {1, . . . , |r|} VS(ri)⇒ ri+1 = σS(r1 . . . ri) (4.31)
FinConsistentD(r, σD) := ∀i ∈ {1, . . . , |r|} VD(ri)⇒ ri+1 = σD(r1 . . . ri) (4.32)

We can also lift the decidable predicates in (4.30) - (4.32) for the infinite case. The
following are the predicates that respectively define valid infinite plays, infinite plays that
are played according to some Spoiler’s strategyσS, and the ones that are played according
to some Duplicator’s strategy σD.

InfPlay(π) := ∀i ∈ N V(πi) ∧ E(πi, πi+1) ∧ v0(π0)
ConsistentS(π, σS) := ∀i ∈ N VS(πi)⇒ πi+1 = σS(π0 . . . πi)
ConsistentD(π, σD) := ∀i ∈ N VD(πi)⇒ πi+1 = σD(π0 . . . πi)

These predicates are of the form ∀xψ(x) where ψ(x) is quantifier-free. Hence the problem
of deciding whether an infinite play is valid or whether a play is played according to some
Spoiler’s or Duplicator’s strategy belongs to the class Π0

1.
Now let FD be the set of Spoiler’s configurations in which the fourth component is >,

and FS the set of Duplicator’s configurations in which the first component is an accepting
state, i.e. FD = {(p,w, q, c,S) ∈ VS | c = >} and FS = {(p,w, q, c,D) ∈ VD | p ∈ FA}.
Intuitively, FD and FS are the sets of configurations which are obtained from Spoiler’s
and Duplicator’s moves through some accepting state. An infinite play π = v0v1 . . . then
is winning for Duplicator if either there are infinitely many i such that vi ∈ FD or there
are only finitely many i such that vi ∈ FS. Hence the following predicate defines plays
that are winning for Duplicator.

WinD(π) := ∃i ∈ N ∀ j > i ∃k > j ¬FS(π j) ∧ FD(πk)

118 4.5. SUMMARY

Intuitively, it says that Duplicator wins a play π if at one point, we do not see configu-
rations from FS any more, but we keep seeing the ones from FD. The predicate is of the
form ∃x∀y∃zψ(x) where ψ(x) is quantifier-free. Hence the problem of deciding whether
an infinite play is winning for Duplicator belongs to the class Σ0

3.

Deciding vκ is in Σ1
2

Now we will give a formula that defines buffered simulation A vκ B by using all pred-
icates that we have given before. Recall that Duplicator wins Gκ(A,B) iff there exists
Duplicator’s strategy such that for every valid play that is played according to this strat-
egy, either it is an infinite play and winning for Duplicator, or it is a finite play where
Spoiler eventually gets stuck. Hence we can consider the following formula.

vκ(A,B) := ∃σD ∀π,(
InfPlay(π) ∧ ConsistentD(π, σD)⇒ WinD(π)

)
∨

(
∃i ¬FinPlay(π0 . . . πi+1) ∧ FinPlay(π0 . . . πi)
∧ FinConsistentD(π0 . . . πi, σD)⇒ VS(πi)

)
Note that this predicate is of the form ∃X∀Y ψ(X,Y) where ψ(X,Y) is a first order formula
and all of its atomic predicates are decidable. Hence we have the following lemma.

Lemma 4.4.18. Deciding vκ is in Σ1
2.

Deciding vκ is in Π1
2

We can also define buffered simulation with another formula. It is also the case that
Duplicator wins Gκ(A,B) iff for every Spoiler’s strategy, there exists a valid play that
is played according to the strategy such that either the play is infinite and winning for
Duplicator or it is a finite play where Spoiler eventually gets stuck. Hence we can also
define buffered simulation with the following formula.

vκ(A,B) := ∀σS ∃π(
InfPlay(π) ∧ ConsistentS(π, σS)⇒ WinD(π)

)
∨

(
∃i ¬FinPlay(π0 . . . πi+1) ∧ FinPlay(π0 . . . πi)
∧ FinConsistentS(π0 . . . πi, σS)⇒ VS(πi)

)
The formula is of the form ∀X∃X ψ(X,Y) where ψ(X,Y) is a first order formula and its
atomic predicates are also decidable. Hence the problem of deciding whether Duplicator
wins Gκ(A,B) is also in Π1

2.
We can put this together with Lemma 4.4.18 and have the following theorem.

Theorem 4.4.19. Deciding vκ is in ∆1
2.

4.5 Summary
We summarise the complexity of buffered simulation that is shown in this chapter in
Figure 4.17. In the case where we only consider one buffer with a fixed and bounded
capacity k ∈ N, buffered simulation and its flushing variant can be solved in polynomial
time. This result can be lifted to the case of multiple buffers. Buffered simulation with

CHAPTER 4. DECIDABILITY AND COMPLEXITY 119

Problem
Complexity

Given Question
A, B over Σ and
a fixed k ∈ N

IsA vk B?
PTIME

Cor. 4.1.6, Cor. 4.2.5
IsA vk

Flush B?

A, B over Σ̂ = (Σ1, . . . ,Σn)
and a fixed κ ∈ Nn

IsA vκ B?
IsA vκFlush B?

A, B over Σ
IsA vωFlush B?

PSPACE-complete
Cor. 4.3.17

IsA vω B?
EXPTIME-complete

Cor. 4.3.25

A, B over Σ̂ = (Σ1,Σ2) IsA vω,0 B?
in ∆1

2 and BΣ1
1-hard

Thm. 4.4.17, Thm. 4.4.19A, B over Σ̂ = (Σ1, . . . ,Σn)
and a fixed κ ∈ (N ∪ {ω})n IsA vκ B?

Figure 4.17: Complexity of deciding buffered simulation.

n ≥ 1 buffers and a fixed capacity vector κ = (k1, . . . , kn) ∈ N+ can be solved in polynomial
time. In the case where we consider unbounded buffers, solving buffered simulation where
only one buffer is involved is PSPACE-complete for the flushing variant and EXPTIME-
complete for the general case. However if multiple buffers are involved then buffered
simulation is undecidable. It is in the class of ∆1

2 and hard for the class BΣ1
1. This high

undecidability is true already for the case where we only have two buffers in which one is
unbounded and the other one is of capacity 0.

Chapter 5

Application to Formal Languages

In this chapter, we will present the application of buffered simulation in the field of formal
languages. In the case where we only have one buffer, buffered simulation approximates
language inclusion between two Büchi automata in the same way as the standard fair
simulation. If Duplicator wins the buffered simulation game Gk(A,B) for some k ∈
N ∪ {ω} then we have language inclusion L(A) ⊆ L(B). Intuitively, the possibility to use
a buffer gives Duplicator more power to mimic Spoiler’s run. The bigger the buffer the
more power Duplicator has to show language inclusion. Hence buffered simulation gets
closer to language inclusion as the size of the buffer grows.

In the case where we consider multiple buffers, buffered simulation can be used to
approximate a more general problem than language inclusion, namely Mazurkiewicz trace
inclusion. Mazurkiewicz traces, or just traces, basically extend the concept of words, in
which some letters are allowed to commute and some are not [Maz77, DR95]. They are
used to model the computation of concurrent systems. The problem of deciding the trace
closure inclusion of ω-languages recognised by Büchi automata is known to be highly
undecidable [Sak92, Fin12]. However, we can use buffered simulation to approximate
this problem. For any two NBA A, B over Σ̂ = (Σ1, . . . ,Σn), if Duplicator wins the
buffered simulation game Gκ(A,B) for some κ ∈ (N ∪ {ω})n then we have trace closure
inclusion [L(A)] ⊆ [L(B)].

The approximation of language or trace closure inclusion with buffered simulation
however is not complete. There are pairs of automata where language or trace closure
inclusion holds, but buffered simulation does not. Hence one may ask whether there is a
characteristic of pairs of automata in which their language or trace closure inclusion can-
not be shown by buffered simulation. The answer to this question turns out to be related
to the notion of continuity from the field of topology. First note that language or trace clo-
sure inclusion can be characterised by the existence of a function that maps each accepting
run in Spoiler’s automaton to a corresponding accepting run in Duplicator’s automaton.
It turns out that in the case where we have such a function that is also continuous, lan-
guage or trace closure inclusion also implies buffered simulation. The reverse direction
of this property indeed also holds. Language or trace closure inclusion can be shown with
buffered simulation iff such a continuous function exists. Intuitively, we should be able
to lift this characterisation to the case of bounded buffers by considering a function that
is not only continuous, but also Lipschitz continuous. However we will show that the
characterisation with a Lipschitz continuous function does not hold in general, but only
for some more restricted automata.

This chapter is organised as follows. The first section shows the use of buffered sim-

120

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 121

Algorithm 2 Checking L(A) ⊆ L(B).
1: k ← 0
2: whileA @k B do
3: k ← k + 1
4: end while
5: return yes

ulation with one buffer to approximate language inclusion incrementally. The second one
considers the application of buffered simulation with multiple buffers to approximate trace
closure inclusion. We first recall the theory of Mazurkiewicz traces, the trace closure in-
clusion problem, and its high undecidability. We then show that buffered simulation with
multiple buffers can be used to approximate such a problem. The last part of this chapter
considers the characterisation of buffered simulation with the notion of continuity. We
first show the characterisation of buffered simulation with a continuous function and then
the refined characterisation of buffered simulation with bounded buffers with a Lipschitz
continuous function which only holds for cyclic-path-connected automata.

5.1 The Language Inclusion Problem
First let us consider the application of buffered simulation with one buffer for the language
inclusion problem. Language inclusion between two ω-regular languages represented by
two NBA A, B is known to be an important problem in the area of formal languages
[VW86, Var96]. Such a problem can be used to model the verification problem of non-
terminating reactive system. The system that we want to verify is modeled by an automa-
tonA and the specification that has to be met by the system is modeled by an automaton
B. The problem of checking whether the system meets the specification then is reduced to
the problem of checking language inclusion L(A) ⊆ L(B). This problem is unfortunately
hard to compute, i.e. it is PSPACE-complete.

5.1.1 Incremental Approximation
Buffered simulation with one buffer can be used to approximate language inclusion in the
same sense as the standard fair simulation.

Theorem 5.1.1. If there exists k ∈ N ∪ {ω} such thatAvk B then L(A) ⊆ L(B).

Proof. Suppose w ∈ L(A). Since w is accepted by A, there exists an accepting run
ρ ∈ AccRun(A) over w. Let k ∈ N ∪ {ω} such that A vk B. Since Duplicator wins
Gk(A,B), if Spoiler plays ρ and Duplicator plays according to the winning strategy then
Duplicator forms an accepting run ρ′ ∈ AccRun(B). Suppose w = a1a2 Hence
a1, a2, . . . are the letters that are pushed to the buffer consecutively. Since Duplicator
pops every letter in this order, we have word(ρ′) = a1a2 Thus w ∈ L(B). �

We can show language inclusion by using a buffered simulation game with one buffer.
Note that Duplicator gets stronger in showing language inclusion as the buffer capacity
grows. Recall from Theorem 3.1.4 and Proposition 3.1.6 that buffered simulation with
one buffer admits a hierarchy, i.e. we have

v0 (v1 (. . . (vω.

122 5.1. THE LANGUAGE INCLUSION PROBLEM

Hence as the capacity grows, there are more pairs of automata for which their language
inclusion can be shown by buffered simulation. This then allows us to use buffered sim-
ulation as an incremental tool for approximating language inclusion. To show language
inclusion between two automata A and B, we start from some small capacity k ∈ N
and then check whether A vk B holds. If yes then we conclude that language inclusion
holds. Otherwise we increase k and then check again. We illustrate such a procedure in
Algorithm 2.

Drawback of Algorithm 2 One of the biggest drawbacks of Algorithm 2 is that the
algorithm may not terminate. For example, it does not terminate on two NBA A, B
where L(A) * L(B). For such A, B, by Theorem 5.1.1, we know that A @k B for any
k ∈ N. Hence for any two NBA where language inclusion does not hold, the algorithm
runs forever. The algorithm might also not terminate on A, B in which L(A) ⊆ L(B).
For example, consider the two NBA A, B from Example 3.1.5. In this case, we have
L(A) ⊆ L(B), but we have seen thatA @k B for any k ∈ N. For such inputs, Algorithm 2
also does not terminate.

Complexity of Algorithm 2 In Theorem 4.1.2 we have seen that deciding buffered
simulation A vk B is in time O(|A|3 · |B|3 · |Σ|3k · k3). Hence each while-loop iteration in
Algorithm 2 runs in polynomial time. However note that for each while-loop iteration,
the size of the buffer, i.e. k, is incremented by one. Hence as k grows, the complexity of
solving buffered simulationAvk B also grows exponentially in k.

5.1.2 Comparison

The flushing variant of buffered simulation can also be used to approximate language
inclusion incrementally. We can consider a similar procedure as in Algorithm 2 where in
each while-loop iteration, instead of checkingA@kB, we checkA@k

FlushB orA@k
FFlushB.

The incremental algorithms induced by the flushing and the full-flushing variants also
have the same drawbacks as Algorithm 2. They do not terminate onA, B where L(A) *
L(B), and onA, B in which L(A) ⊆ L(B), but for all k ∈ N,A @k

Flush B orA @k
FFlush B.

The incremental algorithms induced by the flushing and the full-flushing variants how-
ever run slightly better than the general case. Recall that for a fixed k ∈ N, deciding
Avk

FlushB andAvk
FFlushB are respectively O(|A|3 · |B|3 · |Σ|2k+4) and O(|A|3 · |B|3 · |Σ|2k+2).

Hence the base of the exponent in these cases is |Σ|2, while in the general case it is |Σ|3.
Since the base of the exponent is smaller than in the general case, as k grows, the com-
plexity of the incremental algorithm induced by the flushing or the full-flushing variant
grows slower than the general case.

There is however one disadvantage of the incremental algorithm induced by the full-
flushing variant in comparison to the one induced by the flushing variant or the general
case. Recall from Chapter 3 that the full-flushing variant does not admit a hierarchy. We
have seen in Theorem 3.2.6 that for any k ∈ N, there exist A, B such that A vk

FFlush B,
butA @k+1

FFlush B. Hence Duplicator does not get stronger in winning Gk
FFlush(A,B) as the

capacity k grows. In this case, determining whether increasing the parameter k will not
help us anymore is harder than in the case of the flushing variant or the general case of
buffered simulation.

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 123

Algorithm 3 Checking L(A) ⊆ L(B) with Multi-Pebble Simulation.
1: k ← 0, n← |B|
2: whileA @k

Peb B and k ≤ n do
3: k ← k + 1
4: end while
5: If k ≤ n return yes otherwise don’t know

Comparison with the Multi-Pebble Incremental Approach

Another possible incremental approach for language inclusion is multi-pebble simulation.
As we have seen in Chapter 2, multi-pebble simulation also approximates language in-
clusion in the same way as standard fair simulation. Recall that by Proposition 2.6.20, if
Duplicator wins the game Gk

Peb(A,B) for some k ∈ N then we have language inclusion
L(A) ⊆ L(B). Moreover in [Ete02], it is also shown that multi-pebble simulation also
admits a hierarchy in the same sense as buffered simulation. For any k ≥ 1, if we have
Avk

Peb B then this impliesAvk+1
Peb B.

Proposition 5.1.2 ([Ete02]). v1
Peb ⊆ v

2
Peb ⊆ v

3
Peb ⊆ . . .

This proposition shows that as the number of the pebbles grows, Duplicator gets
stronger in winning the multi-pebble simulation game. Hence multi-pebble simulation
also gets closer to the language inclusion as the number of pebbles grows. We can use
multi-pebble simulation to incrementally approximate language inclusion as in the case
of buffered simulation.

There is, however, one advantage of using multi-pebble simulation. Note that when
the number of pebbles is equal to the number of states in Duplicator’s automaton then
adding more pebbles does not give any advantage for Duplicator to win the game. We
have the following proposition.

Proposition 5.1.3 ([Ete02]). IfAvk
Peb B for some k > 0 thenAv|B|Peb B.

This allows us to stop increasing the parameter k if it reaches the size of Duplica-
tor’s automaton. Hence unlike buffered simulation and its flushing variant, multi-pebble
simulation induces an incremental approach that always terminates.

Consider the incremental algorithm given in Algorithm 3. Given two NBA A, B, we
start with k = 0 and check whether A vk

Peb B. If this is not the case then we gradually
increase the parameter k by one. If we reach k = |B| and we still have A @k

Peb B then
we stop and conclude that we do not know whether L(A) ⊆ L(B) holds. However, if we
eventually haveAvk

PebB for some k ≤ n then we conclude that language inclusion holds.

Complexity of Algorithm 3 In comparison to Algorithm 2, Algorithm 3 has a drawback
with respect to its complexity. First note that by Proposition 2.6.23, for any two NBAA,
B, and a k ∈ N, deciding A vk

Peb B can be done in time O(|A|3 · |B|3k · |Σ|3). Hence as k
grows, the complexity of solving multi-pebble simulation also grows exponentially in k.
However note that the base of the exponent is a variable. It is the size of the automaton
B which is part of the input and usually very large. This is in contrast to the incremental
algorithm induced by buffered simulation. As k grows, the complexity of solving buffered
simulation also grows exponentially in k but the base of the exponent is fixed. It is the size
of the alphabet Σ which is usually small and not part of the input. Hence the complexity

124 5.2. THE TRACE CLOSURE INCLUSION PROBLEM

of solving buffered simulation in each while-loop iteration of Algorithm 2 is expected to
grow much slower than those of multi-pebble simulation.

5.2 The Trace Closure Inclusion Problem
Another possible application of buffered simulation comes from the area of Mazurkiewicz
traces [DR95]. Mazurkiewicz traces, or just traces, are used to model concurrent compu-
tations. In a concurrent computation, two processes can be dependent on or independent
of each other. If two processes are dependent on each other then the order in which one
should be executed first is important; one process might need the output of the other one.
On the other hand, if two processes are independent of each other then the order in which
they should be executed does not matter. They can be executed simultaneously and the
output is still the same.

The theory of Mazurkiewicz traces is used to provide a mathematical model for con-
curent computations. A process is modeled by a letter and the independency between the
processes is modeled by the independency between the letters. A concurrent computa-
tion then can be linearly modeled by a word where two adjacent independent letters are
allowed to commute with each other. For example, suppose we consider words over a, b,
and c where a, b are independent of each other, but not of c: the letters a, b can commute
with each other, but they cannot commute with c. The finite word abc then is considered
to be equivalent to bac. Both of abc and bac correspond to a concurrent computation of
a and b followed by the execution of c. Note that this concept can also be naturally ex-
tended to infinite words. For example, if we consider the same independency between a,
b, c then the infinite word abab . . . is considered to be equal to the infinite word baba . . .
Both of these words model the concurrent computation of aaa . . . and bbb We will
recall the formal definition of Mazurkiewicz traces and trace closure inclusion in the first
part of this section and the application of buffered simulation for Mazurkiewicz traces in
the second one.

5.2.1 Mazurkiewicz Traces
Formally, traces are defined over a distributed alphabet Σ̂ = (Σ1, . . . ,Σn). Given a dis-
tributed alphabet Σ̂ = (Σ1, . . . ,Σn), let Σ = Σ1 ∪ . . . ∪ Σn be the union of the alphabets
and πi, i ∈ {1, . . . , n}, be the projection with respect to Σ̂ as in Definition 3.4.1. Two
words v,w ∈ Σ∞ are said to be trace equivalent, written v ∼ w, iff πi(v) = πi(w) for all
i ∈ {1, . . . , n}. Note that in the finite case, two words are trace equivalent only if they
are of the same length. If they are not then there must be a letter a such that |v|a , |w|a
which implies πi(v) , πi(w) for some i ∈ {1, . . . , n} where a ∈ Σi. We exemplify trace
equivalence in the following example.

Example 5.2.1. Consider a distributed alphabet Σ̂ = ({a, c}, {b, c}). We have abc / abcc
since π1(abc) = ac , acc = π1(abcc). However we have abc ∼ bac since π1(abc) =

π1(bac) = ac and π2(abc) = π2(bac) = bc. We also have (ab)ω ∼ (ba)ω since π1((ab)ω) =

π1((ba)ω) = aω and π2((ab)ω) = π2((ba)ω) = bω. Note that for any word w ∈ (a ∪ b)ω in
which |w|a = |w|b = ∞, we indeed have w ∼ (ab)ω since π1(w) = aω and π2(w) = bω.

By definition of trace equivalence, intuitively two letters a, b ∈ Σ can commute with
each other iff they do not share any Σi, i.e. there is no i ∈ {1, . . . , n} such that a, b ∈ Σi.

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 125

The equivalence classes of Σ∗ with respect to ∼ are called finite traces and the equiv-
alence classes of Σω with respect to ∼ are called infinite traces. For any language L ⊆ Σ∞

we denote the trace closure of L by [L]. It is the set of words that are trace equivalent to
some words in L, i.e.

[L] = {v ∈ Σ∞ | v ∼ w, w ∈ L}.

Example 5.2.2. Consider again the distributed alphabet Σ̂ from Example 5.2.1 and the
languages L1 = a∗(cb)∗ and L2 = (ab)ω. Since for every w ∈ L1, there is no w′ that is
distinct from w such that w′ ∼ w, we have [L1] = L1. For the language L2, note that the
words that are trace equivalent to (ab)ω are the ones over a, b that contain infinitely many
a and b. Hence [L2] = {w ∈ (a ∪ b)ω | |w|a = |w|b = ∞}.

The definition of trace equivalence that we consider here is defined with respect to a
distributed alphabet, a notion due to [Zie87]. The original definition of trace equivalence
however is defined with respect to an independence alphabet, a pair of alphabet and a
relation between the letters that tells us which pair of letters can commute with each other
[Maz89].

Formally, an independence alphabet is a pair (Σ, I) where Σ is an alphabet and I is
a relation over Σ that is irreflexive and symmetric called independence relation. The
independence relation defines pairs of letters that commute with each other. For a dis-
tributed alphabet Σ̂ = (Σ1, . . . ,Σn), the corresponding independence alphabet is (Σ, I)
where Σ = Σ1 ∪ . . . ∪ Σn and I = {(a, b) ∈ Σ2 | @i ∈ {1, . . . , n} : a, b ∈ Σi}.

Example 5.2.3. The corresponding independence alphabet of the distributed alphabet Σ̂

given in Example 5.2.1 is (Σ, I) where Σ = {a, b, c} and

I = {(a, b), (b, a)}.

Another possible notion to define trace equivalence is by considering a dependence al-
phabet. A dependence alphabet is a pair (Σ,D) where Σ is an alphabet and D is a relation
over Σ that is reflexive and symmetric, called dependence relation. In contrast to the in-
dependence relation, the dependence relation defines pairs of letters that do not commute
with each other. For any independence alphabet (Σ, I), the corresponding dependence
alphabet is (Σ,D) where D = Σ2 \ I.

Example 5.2.4. The corresponding dependence alphabet of (Σ, I) given in Example 5.2.3
is (Σ,D), where

D = {(a, a), (b, b), (c, c), (a, c), (c, a), (c, b), (b, c)}.

Beside the dependence alphabet, one also often uses the notion of dependency graph.
A dependency graph is an equivalent notion for the dependence alphabet (Σ,D). It is a
visualisation of the dependence alphabet where the nodes are letters in Σ and we have
an edge between two letters if they are dependent on each other. One important thing
in the dependency graph is that self-loops are omitted. For any dependence alphabet
(Σ,D), the corresponding dependency graph is the graph G = (V, E) where V = Σ and
E = D \ {(q, q) | q ∈ V}.

Example 5.2.5. Consider the dependence alphabet (Σ,D) from the previous example. The
corresponding dependency graph is the following graph.

a − c − b

126 5.2. THE TRACE CLOSURE INCLUSION PROBLEM

Given a dependency graph G, two letters commute with each other if they are not in
the edge relation. For any dependency graph G = (V, E), the corresponding distributed
alphabet is the tuple Σ̂ = (Σ1, . . . ,Σn) in which {Σ1, . . . ,Σn} is the set of maximal cliques
in G. Hence two letters a, b ∈ V are in the edge relation (a, b) ∈ E iff there exists
i ∈ {1, . . . , n} such that a, b ∈ Σi.

Distributed, independence, and dependence alphabets, as well as dependency graphs,
are equivalent notions that can be used to define trace equivalence. They can be derived
from each other. It is sometimes more convenient to use one of them than the others. For
the rest of this work, we will mostly use the definition of trace equivalence with respect
to a distributed alphabet.

Now consider the following decision problem.

Given : Two NBAA,B over Σ̂ = (Σ1, . . . ,Σn)
Question : Is [L(A)] ⊆ [L(B)]?

(5.1)

Such a problem can be used to model the verification problem of reactive system that
admits concurrency [Sak92, MSB+16]. The system and the specification that we want to
check are modeled respectively by the NBAA and B over the distributed alphabet Σ̂ that
models the dependency between the processes of the system. Hence the trace closures
[L(A)] and [L(B)] represent all possible concurrent computations that can be executed by
the system and the permitted behaviours. The problem of checking whether the concurrent
system meets the given specification then can be modeled by the trace closure inclusion
[L(A)] ⊆ [L(B)]. This problem, however, is known to be highly undecidable.

Proposition 5.2.6 ([Sak92, Fin12]). Given two NBA A, B over Σ̂, deciding [L(A)] ⊆
[L(B)] is undecidable and it is Π1

1-hard.

5.2.2 Incremental Approximation

Buffered simulation with multiple buffers can be used to approximate trace closure in-
clusion [L(A)] ⊆ [L(B)]. Before we show this, first note that the trace closure inclusion
[L1] ⊆ [L2] is equivalent to the inclusion L1 ⊆ [L2].

Lemma 5.2.7. For any two ω-languages L1, L2 over Σ̂,

[L1] ⊆ [L2] iff L1 ⊆ [L2].

Proof. For the right-to-left direction, suppose L1 ⊆ [L2]. Let w ∈ [L1] be some arbitrary
word. There is a word w′ ∈ L1 such that w′ ∼ w. Since L1 ⊆ [L2], we have w′ ∈ [L2].
There is a word w′′ ∈ L2 such that w′′ ∼ w′. Since w ∼ w′′ and w′′ ∼ w′, we have
w ∈ [L2]. Hence [L1] ⊆ [L2]. The left-to-right direction simply holds because L1 ⊆ [L1].
Thus [L1] ⊆ [L2] implies L1 ⊆ [L2]. �

For any two ω-regular languages L1, L2 over Σ̂ = (Σ1, . . . ,Σn) recognised by NBAA,
B respectively, buffered simulation can be used to approximate the inclusion L1 ⊆ [L2].

Theorem 5.2.8. Let A, B be two NBA over Σ̂ = (Σ1, . . . ,Σn). If A vκ B for some
κ ∈ (N ∪ {ω})n then L(A) ⊆ [L(B)].

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 127

Algorithm 4 Checking [L(A)] ⊆ [L(B)] forA, B over Σ̂ = (Σ1, . . . ,Σn).
1: (k1, . . . , kn)← (0, . . . , 0)
2: i← 1
3: whileA @k1,...,kn B do
4: ki ← ki + 1
5: If i < n then i← i + 1 else i← 1 end if
6: end while
7: return yes

Proof. Let w ∈ L(A). Since w is accepted byA, there is an accepting run ρ ∈ AccRun(A)
over w. If Spoiler plays ρ and Duplicator plays according to the winning strategy then
Duplicator forms an accepting run ρ′ ∈ AccRun(B). Suppose v = word(ρ′). Let i ∈
{1, . . . , n} and πi(w) = a1a2 . . . ∈ Σ∞i . We have a1, a2, . . . being the sequence of letters that
are pushed by Spoiler consecutively to buffer i. Since Duplicator only pops letters that
have been pushed to the buffers, πi(v) is a prefix of a1a2 If it is a proper prefix then
there is some letter that is pushed to buffer i, but not popped by Duplicator. By definition
of buffered simulation, Duplicator loses the play. This contradicts that Duplicator plays
according to the winning strategy. Hence πi(v) = πi(w). Since we consider an arbitrary i,
this holds for all i ∈ {1, . . . , n}. Hence v ∼ w. Moreover since v ∈ L(B), w ∈ [L(B)]. �

Buffered simulation with multiple buffers can be used to approximate trace closure
inclusion incrementally in the same sense as buffered simulation with one buffer approx-
imates language inclusion. Recall that by Theorem 3.5.4, buffered simulation with multi-
ple buffers also admits a hierarchy. We have

vκ1 (vκ2 (vκ3 . . .

for any capacity vectors κ1 < κ2 < Duplicator gets stronger in showing trace
closure inclusion if the capacity of the buffers grows. For any two NBA A, B over
Σ̂ = (Σ1, . . . ,Σn), we can check trace closure inclusion incrementally by starting with
some small capacity vector (k1, . . . , kn) ∈ Nn and check whether we have buffered simula-
tionA vk1,...,kn B. If this is the case then we conclude that we have trace closure inclusion
[L(A)] ⊆ [L(B)]. Otherwise, we increase the capacity of one of the buffers and repeat the
procedure again. We illustrate such a procedure in Algorithm 4.

Similar to the case of language inclusion, the incremental approximation for trace
closure inclusion might not terminate. It does not terminate on any A, B over Σ̂ =

(Σ1, . . . ,Σn) where [L(A)] * [L(B)] and also on any A, B over Σ̂ = (Σ1, . . . ,Σn) where
[L(A)] ⊆ [L(B)], butA @κ B for all κ ∈ Nn.

By Lemma 5.2.7 and Theorem 5.2.8, we have seen that buffered simulation implies
trace closure inclusion. However, note that the converse does not hold. We have seen in
Corollary 3.1.7 that language inclusion, a simple case of trace closure inclusion, does not
imply buffered simulation. Hence one may ask whether there are cases, in which trace clo-
sure or language inclusion also implies buffered simulation. We will show that the answer
to this question is related to the notion of continuity. If we have a continuous function that
witnesses trace closure or language inclusion then trace closure or language inclusion also
implies buffered simulation. We will show this in more detail in the following section.

128 5.3. TOPOLOGICAL CHARACTERISATIONS

5.3 Topological Characterisations
Before we give the topological characterisation of buffered simulation, we will show that
the inclusion L(A) ⊆ [L(B)], equivalently [L(A)] ⊆ [L(B)], can be characterised by a
function that maps the accepting runs ofA to B over some trace equivalent words. Let us
call such a function trace-preserving.

Definition 5.3.1. LetA,B be two NBA over Σ̂. A function f : AccRun(A)→ AccRun(B)
is called trace-preserving if for all ρ ∈ AccRun(A), word(ρ) ∼ word(f (ρ)).

Example 5.3.2. Consider the following two NBAA, B over Σ̂ = ({a}, {b}).

p0 p1

b

a

b

q0 q1
a

b

There is a unique trace-preserving function f , namely the one that maps every accepting
run of A to a unique accepting run of B, i.e. f (ρ) = q0a(q1b)ω for all ρ ∈ AccRun(A).
Such a function is trace-preserving since any accepting run ofA is over some word bnabω

where n > 0, and they are mapped to an accepting run of B over a trace equivalent word
abω.

If we have a trace-preserving function f : AccRun(A) → AccRun(B), any word that
is accepted byA has a trace equivalent word which is also accepted by B. Hence we have
L(A) ⊆ [L(B)]. On the other hand, if we have such an inclusion L(A) ⊆ [L(B)] then it is
clear that we can derive a trace-preserving function f .

Lemma 5.3.3. L(A) ⊆ [L(B)] iff there exists a trace-preserving function f : AccRun(A)
→ AccRun(B).

Proof. Suppose there exists a trace-preserving function f : AccRun(A) → AccRun(B).
Let w ∈ L(A). Since w is accepted by A, there is an accepting run ρ ∈ AccRun(A) over
w. Let ρ′ = f (ρ) and w′ = word(ρ′). Since ρ′ ∈ AccRun(B), we have w′ ∈ L(B), and
since f is trace-preserving, we have w ∼ w′. Hence by definition of the trace closure,
w ∈ [L(B)]. Thus, L(A) ⊆ [L(B)].

For the reverse direction, suppose L(A) ⊆ [L(B)]. For any ρ ∈ AccRun(A), we define
f (ρ) as the least accepting run in B with respect to the lexicographical order that satisfies
word(f (ρ)) ∼ word(ρ). Such a run f (ρ) exists since L(A) ⊆ [L(B)]. �

This shows that the inclusion L(A) ⊆ [L(B)] can be characterised by the existence of
a trace-preserving function. We will further see that such a characterisation can be lifted
for buffered simulation by requiring the function f to be continuous.

5.3.1 Characterisation of vω,...,ω

Throughout this section, we will define continuity of a trace-preserving function by con-
sidering the standard metric for infinite words [Tho90, PP04]. To show this, first for any
automatonA over Σ̂ = (Σ1, . . . ,Σn), let Σ = Σ1 ∪ . . .∪Σn. An accepting run ofA then can
be seen as an infinite word over QA ·Σ. The distance between two words is determined by
the longest common prefix. If two words are the same then their distance is 0, and if their
longest common prefix is of length i − 1 then their distance is 1

2i . The longer they share a
common prefix, the closer is their distance.

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 129

Definition 5.3.4. Let Σ be an alphabet. The distance on Σω is a function d : Σω × Σω →

[0, 1] where for every w = a0a1 . . ., w′ = b0b1 . . ., ∈ Σω,

d(w,w′) =

0 if w = w′

2−i if ai , bi and for all j < i, a j = b j.

Example 5.3.5. Consider the following two NBAA, B over Σ̂ = ({a, b}).

p0 p1 q0

q1

q2

a
b

b a
b

a

a

b

Let n ∈ N be some number and ρA, ρB be the accepting runs over anbω in A, B re-
spectively. There are such unique ρA and ρB, i.e. ρA = (p0a)n p0b(p1b)ω and ρB =

(q0a)nq0b(q1b)ω. Let ρ′
A

= (p0a)ω and ρ′
B

= (q0a)(q1a)ω be two accepting runs over
aω in A and B respectively. The distance between ρA and ρ′

A
is 2−(n+1) and the distance

between ρB and ρ′
B

is 2−2.

It is not hard to see that the distance function given in Definition 5.3.4 is a metric. We
will use it to determine the continuity of a trace-preserving function. Recall that from the
standard definition in topology, a function is continuous if for any two inputs that are very
close, their outputs are also very close. Hence for a function over the accepting runs of
A, B, continuity is defined as follows.

Definition 5.3.6. A function f : AccRun(A) → AccRun(B) is continuous if for every
ρ ∈ AccRun(A) and i ∈ N, there exists j ∈ N such that for all ρ′ ∈ AccRun(A),

d(ρ, ρ′) < 2− j ⇒ d(f (ρ), f (ρ′)) < 2−i.

If a function f : AccRun(A) → AccRun(B) is continuous, this intuitively means
that for any two distinct accepting runs in A that share a very long common prefix, their
images in B also do not diverge very early. Thus each of the transitions in the output
run can be determined by looking at some finite prefix of the input run. If we need to
look at the whole input run then there are two very similar accepting runs in which their
images already differ in some early transition. In the following, we give an example of a
non-continuous trace-preserving function.

Example 5.3.7. Consider again the NBAA,B from Example 5.3.5. Let f : AccRun(A)→
AccRun(B) be a trace-preserving function. Hence there exists an n0 > 0 such that the ac-
cepting run ρ over aω inA is mapped into

f (ρ) = (q0a)n0(q1a)ω.

Such a function f is not continuous. To show this, for any n ∈ N, let ρn be the accepting
run in A over anbω. By Example 5.3.5, we know that there is such a unique ρn for each
n ∈ N. Moreover let i0 = n0 + 1. Hence for all n ∈ N, we have d(ρ, ρn) = 2−(n+1), but
d(f (ρ), f (ρn)) = 2−(n0+1) ≮ 2−i0 . By Definition 5.3.6, f is not continuous.

130 5.3. TOPOLOGICAL CHARACTERISATIONS

If we have buffered simulation A vω,...,ω B then we can construct a continuous trace-
preserving function f from the winning strategy of Duplicator in the game Gω,...,ω(A,B).
For any accepting run ρ in A, we define f (ρ), as the run that is formed by Duplicator
in Gω,...,ω(A,B), assuming that Spoiler plays ρ and Duplicator plays according to the
winning strategy. Such a function is continuous since each of the transitions of the output
run can be determined by looking at some finite prefix of the input run. We show this
formally as follows.

Lemma 5.3.8. A vω,...,ω B only if there exists a continuous trace-preserving function
f : AccRun(A)→ AccRun(B).

Proof. Let f be the function as we have defined before. To show that f is continuous, let ρ
be an accepting run inA and i ∈ N a number. If Spoiler plays ρ in the game Gω,...,ω(A,B)
and Duplicator plays according to the winning strategy then there is a round j > 0 such
that Duplicator forms a finite run of length i. Let ρ′ be an accepting run in A that is
distinct from ρ, but shares with ρ a common prefix of length at least j, i.e. d(ρ, ρ′) < 2− j.
In the first j rounds, Duplicator does not see any difference whether Spoiler is actually
playing ρ or ρ′. Duplicator makes the same moves in response to ρ or ρ′. This implies
that the output runs f (ρ) and f (ρ′) share the same prefix of length i. Hence

d(f (ρ), f (ρ′)) < 2−i. (5.2)

Thus we have (5.2) if d(ρ, ρ′) < 2− j. Since we consider an arbitrary ρ and i, this hold for
all ρ ∈ AccRun(A) and i ∈ N. By definition, the function f is continuous. �

The reverse direction of this lemma also holds. We will show this by using an inter-
mediate game called Γ-game, which is inspired from the delay simulation game [HKT10].
The winning condition is determined by some set of pairs of words that are produced by
Spoiler and Duplicator.

Γ-Game

A Γ-game is a two-player game that is played similarly as the buffered simulation game.
It is played on two NBA A, B with a delay k ∈ N. The winning condition however is
not determined by the acceptance of A and B, but by an objective function f : R1 → R2

where R1 ⊆ Run(A) and R2 ⊆ Run(B). Intuitively, in every round, Spoiler moves the
pebble in A by reading a letter and Duplicator either skips her turn or moves the pebble
in B by reading a word. The length difference between Spoiler’s and Duplicator’s runs at
the end of the round is at most k. The main difference to the buffered simulation game is
that, in the Γ-game, the letters that are read by Spoiler are not put to buffers. Duplicator
can read any word freely even using letters that are not yet read by Spoiler. This is not the
case in the buffered simulation game. If one of the players gets stuck then the opponent
wins. Otherwise the play goes on infinitely many rounds and produces two infinite runs
ρ, ρ′ ofA, B, respectively. Duplicator wins iff whenever ρ ∈ Dom(f) then ρ′ = f (ρ). We
formally define the game as follows.

Definition 5.3.9. Given two NBA A,B, a delay k ∈ N, and an objective function f :
R1 → R2 where R1 ⊆ Run(A) and R2 ⊆ Run(B), the Γ-game Γk(A,B, f) is defined as
((V,V0,V1, E), v0,Win) where Spoiler’s and Duplicator’s configurations are respectively

V1 = QA × {0, . . . , k} × (Σ · QB)≤k+1 ∪ QB × {S},

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 131

V0 = Σ · QA × {1, . . . , k + 1} × QB × {D},

V = V0 ∪ V1, the edge relation E is defined as

(p, i, a1q1 . . . amqm,S)→ (ap′, i + 1, qm,D) in E iff p a
−−→ p′,

(ap, i, q,D)→ (p, i − m, a1q1 . . . amqm,S) in E iff q a1−−→ q1 . . .
am−−−→ qm,

the initial configuration is v0 = (p0, 0, q0,S) where p0, q0 is the pair of the initial states of
A, B, and an infinite play

(r0, i0, s0,S)(r1, i′1, s0,D)(r1, i1, s1,S)(r2, i′2, s1,D)(r2, i2, s2,S) . . .

is in Win iff ρ = r0r1r2 . . . < R1 or f (ρ) = s0s1s2

Intuitively, the first and the third components in the configuration remember the last
move that is made by Spoiler and Duplicator. Hence collecting the first and the third
components of the configurations in a play gives us the infinite runs that are formed by
Spoiler and Duplicator, respectively. The second component remembers the length dif-
ference between Spoiler’s and Duplicator’s runs.

Example 5.3.10. Consider the two NBA A, B and a trace-preserving function f : Acc
Run (A) → AccRun(B) as in Example 5.3.2. Duplicator wins the Γ-game Γ0(A,B, f)
with the following winning strategy. Initially, Spoiler will read a or b by moving his peb-
ble from p0 to p0 or p1, respectively. He proceeds from the initial configuration (p0, 0,q0,
S) to (bp0, 1, q0,D) or (ap1, q0, 1, D). Duplicator reads a and moves her pebble to q1. She
proceeds to (p0, 0, aq1, S) or (p1, 0, aq1, S) accordingly. Spoiler again will continue by
reading a or b and moves his pebble to p0 or p1. He proceeds to

(xp, 1, q1,D) (5.3)

where x ∈ {a, b} and p ∈ {p0, p1}. From such a configuration, Duplicator continues by
reading b and loops in q1 for the rest of the play, i.e. she proceeds to (p, 0, bq1, S).

Hence for every accepting run ρ that is formed by Spoiler, Duplicator forms the
run ρ′ = p0a(q1b)ω which is nonetheless the f -image of ρ. Duplicator wins the game
Γ0(A,B, f).

We can naturally extend the Γ-game to the case where we consider an unbounded
delay, i.e. k = ω. The definition of the game Γω(A,B, f) is the same as in Definition
5.3.9, but Spoiler’s and Duplicator’s configurations are respectively

V1 = QA × N × (Σ · QB)∗ ∪ QB × {S} and

V0 = Σ · QA × N+ × QB × {D}.

In [HKT10], for any ω-regular languange L ⊆ (Σ1 × Σ2)ω, it is shown that Duplicator
wins the delay simulation game G f ′

Del(L) with some delay function f ′ iff there is a contin-
uous function λ : Σω1 → Σω2 that satisfies (a1, b1)(a2, b2) . . . ∈ L if λ(a1a2 . . .) = b1b2
We can show that a similar property holds for the Γ-game. The the function λ intuitively
corresponds to the objective function in the Γ-game. Duplicator wins the Γ-game when-
ever the objective function f is continuous. We can derive a winning strategy from such a
continuous function. Duplicator simply waits until she reaches a round where for every
infinite run that can be extended from Spoiler’s current run, its f -image can be extended
from Duplicator’s run. The continuity of f guarantees that Duplicator eventually will
move.

132 5.3. TOPOLOGICAL CHARACTERISATIONS

Lemma 5.3.11. Duplicator wins Γω(A,B, f) if f is continuous.

Proof. The winning strategy for Duplicator is as follows. Suppose Spoiler and Duplica-
tor have formed the runs rA and rB respectively. If Spoiler extends his run one step to
r′
A

= rAap then Duplicatormoves if for every run ρ ∈ Dom(f) that can be extended from
r′
A

, the image f (ρ) can be extended from r′
B

= rBb1q1 . . . bnqn for some n > 0. In such a
case, Duplicator extends her run to such a maximal r′

B
. Otherwise, Duplicator skips her

turn.
Duplicator will always form an infinite run whenever Spoiler forms some infinite run

from Dom(f). We can show this by contradiction. Suppose Spoiler forms an infinite run
ρ ∈ Dom(f), but after some round m ∈ N, Duplicator always skips her turn. Let rA, rB
be the runs that are formed by Spoiler and Duplicator respectively, in round m, and for
any i ∈ N, let ri

A
= rAa1q1 . . . aiqi be the run that is formed by Spoiler in round m + i.

According to the winning strategy, for all i ∈ N, there exists ρi ∈ Dom(f) that is distinct
from ρ such that ρ and ρi can be extended from ri

A
but their images: f (ρ) and f (ρi) cannot

be extended from some r′
B

= rBa1q1, an extension of rB. Otherwise, Duplicator would
have extended her run after round m. Hence for all i > 0, we have

d(ρ, ρi) ≤ 2−(|rA |+1+i) and

d(f (ρ), f (ρi)) = 2−(|rB |+1).

In other words, the sequence ρ1, ρ2, . . . gets closer to ρ but f (ρ1), f (ρ2), . . . differ from
ρ already in the (|rB| + 1)-th transition. This contradicts that f is continuous. Hence if
Spoiler forms an infinite run ρ ∈ Dom(f), Duplicator also forms an infinite run ρ′.

Moreover note that the following invariant holds: in any round i where Spoiler’s and
Duplicator’s runs are respectively r(i)

A
and r(i)

B
, if there is ρ ∈ Dom(f) that is started with

r(i)
A

then f (ρ) is started with r(i)
B

. Hence whenever Spoiler forms a run ρ in Dom(f),
Duplicator forms the f -image of ρ. Thus Duplicator wins Γω(A,B, f). �

The reverse direction of this lemma also holds. Duplicator loses any Γ-game Γω(A,B,
f) if f is not continuous. The winning strategy for Spoiler is to play the run ρ ∈ Dom(f)
in which f is not continuous at ρ, i.e. for all i ∈ N, we have ρi ∈ Dom(f) that shares the
same prefix of length i with ρ, but their images f (ρi) and f (ρ) differ already in some early
transitions. We show this formally in the following lemma.

Lemma 5.3.12. Duplicator wins Γω(A,B, f) iff f is continuous.

Proof. The right-to-left direction holds because of Lemma 5.3.11. For the left-to-right
direction, suppose f is not continuous. By definition, there exists ρ ∈ Dom(f) and i0 ∈ N
such that for every i ∈ N, we have ρi ∈ Dom(f) that is distinct from ρ and d(ρ, ρi) <
2−i, but d(f (ρ), f (ρi)) ≥ 2−i0 . The winning strategy for Spoiler is to first play ρ until
Duplicator forms a finite run rB of length i0. Suppose this happens in round n. If rB is
not a prefix of f (ρ) then Spoiler keeps playing ρ for the rest of the play. Otherwise, he
continues by playing ρn. This is possible, since by definition, the runs ρ and ρn share the
same prefix of length n. In the first case, Spoiler wins because Duplicator does not form
the f -image of ρ. In the second case, since d(f (ρ), f (ρn)) ≥ 2−i0 , the output runs f (ρ)
and f (ρn) share the same prefix of length at most i0 − 1. Since |rB| = i0 and rB is a prefix
of f (ρ), rB is not a prefix of f (ρn). Hence Duplicator also does not form the f -image
of ρn. Spoiler forms either the run ρ or ρn ∈ Dom(f), but Duplicator does not form the
corresponding f -image of Spoiler’s run. Hence Spoiler wins Γω(A,B, f). �

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 133

In the case where Duplicator wins the Γ-game Γω(A,B, f) and f is trace-preserving
then Duplicator also wins the buffered simulation game Gω,...,ω(A,B). At a glance, it
seems that Duplicator can use the winning strategy from the Γ-game for the buffered
simulation game. Unfortunately this is not the case. The winning strategy in the Γ-game
may not be suitable for the buffered simulation game. The reason is that the strategy in
the Γ-game may tell Duplicator to output a letter that is not yet in the buffer.

Example 5.3.13. Consider again the two NBAA, B from Example 5.3.2. It is shown that
Duplicator wins the Γ-game Γ0(A,B, f) and hence she also wins the game Γω(A,B, f)
with the same winning strategy. She wins with a winning strategy that tells Duplicator to
read a in the first round and then b for the rest of the play. This strategy however is not
suitable for the game Gω,ω(A,B) since Spoiler may not read a in the first round.

The fundamental reason why we cannot simply use the winning strategy in the Γ-game
is because the move of Duplicator in the buffered simulation game is more restricted
than in the Γ-game. In the buffered simulation game Gκ(A,B) whereA, B are NBA over
Σ̂ = (Σ1, . . . ,Σn), if Duplicator pops a1, a2, . . . from buffer i then a1, a2, . . . is exactly the
sequence of letters that have been put by Spoiler to buffer i. Hence if v,w ∈ Σ∗ are the
words that are produced by Spoiler and Duplicator after some finite rounds in Gκ(A,B),
πi(w) is a prefix of πi(v) for all i ∈ {1, . . . , n}. This however is not the case in the Γ-game
Γω(A,B, f) since Duplicator can produce any run independently of Spoiler’s run.

A Sufficient and Necessary Condition for vω,...,ω

Nevertheless, for any two NBA A, B over Σ̂ = (Σ1, . . . ,Σn) and a trace preserving func-
tion f : AccRun(A) → AccRun(B), we can translate Duplicator’s winning strategy in
the Γ-game Γω(A, B, f) to the buffered simulation game Gω,...,ω(A,B). In the buffered
simulation game Gω,...,ω(A,B) , Duplicator simply skips her turn if the winning strategy
in the Γ-game tells Duplicator to output a letter a ∈ Σ that is not yet read by Spoiler. Since
f is trace preserving, Spoiler eventually will read a. In such a case, Duplicator pops a
and tries to form the same run that she would have formed in the Γ-game maximally. We
show this formally as follows.

Lemma 5.3.14. Let f : AccRun(A) → AccRun(B) be a trace-preserving function. If
Duplicator wins Γω(A,B, f) then she also wins Gω,...,ω(A,B).

Proof. Suppose the NBA A, B are over Σ̂ = (Σ1, . . . ,Σn) and Duplicator wins the Γ-
game Γω(A,B, f). The winning strategy in the buffered simulation game Gω,...,ω(A,B) is
as follows. Suppose Spoiler and Duplicator currently have formed the runs rA and rB.
Let w = word(rA) and w′ = word(rB). If the strategy in the Γ-game Γω(A,B, f) tells
Duplicator to extend rB to r′

B
:= rBb1 p1 . . . bm pm, m ≥ 0, then in the buffered simulation

game, we extend rB to rBb1q1 . . . bm′qm′ , m′ ≤ m, the maximal prefix of r′
B

such that
πi(w′b1 . . . bm′) is a prefix of πi(w) for all i ∈ {1, . . . , n}.

Duplicator will form the same run that she would have formed in the game Γω(A, B,
f). Suppose Spoiler plays an accepting run ρ and let ρ1, ρ2 be the runs that are formed
by Duplicator in Γω(A,B, f) and Gω,...,ω(A,B). Since we always extend Duplicator’s
run in the buffered simulation game by taking the prefix of the original extension in the
Γ-game, it is clear that any finite prefix of ρ2 is also a prefix of ρ1. We will show that the
converse also holds: any finite prefix of ρ1 is a prefix of ρ2. Suppose rB is a finite prefix of
ρ1. Hence there is rA, a finite prefix of ρ, such that in the Γ-game, when Spoiler extends

134 5.3. TOPOLOGICAL CHARACTERISATIONS

his run to rA, Duplicator extends her run to rB. Let w = word(rA) and w′ = word(rB).
Since f is trace-preserving, there is r′

A
:= rAa1 p1 . . . ak pk, k ≥ 0, a finite prefix of ρ, such

that πi(w′) is a prefix of πi(wa1 . . . ak) for all i ∈ {1, . . . , n}. Hence when Spoiler forms
r′
A

, Duplicator extends her run to rB in the Γ-game. This implies that rB is a prefix of ρ2.
Hence we have ρ1 = ρ2.

Now suppose Spoiler plays an accepting run ρ ∈ AccRun(A) in Gω,...,ω(A,B). Dupli-
cator then forms f (ρ). By definition of f , the run f (ρ) is accepting. Hence Duplicator
also wins the play in Gω,...,ω(A,B). �

We can put this lemma together with Lemma 5.3.11 to show that the existence of a
continuous trace-preserving function is indeed sufficient for buffered simulation.

Lemma 5.3.15. A vω,...,ω B if there exists a continuous trace-preserving function f :
AccRun(A)→ AccRun(B).

Proof. Suppose we have a continuous trace-preserving function f : AccRun(A) →
AccRun(B). Since f is continuous, by Lemma 5.3.11, Duplicator wins the Γ-game
Γω(A,B, f). Moreover since f is trace-preserving, by Lemma 5.3.14, Duplicator also
wins the game Gω,...,ω(A,B). �

If we put Lemma 5.3.15 and Lemma 5.3.8 together, we obtain a characterisation of
buffered simulation. This characterisation can be seen as a refinement of the characterisa-
tion of trace closure inclusion. Recall that in Lemma 5.3.3, we characterise trace closure
inclusion by the existence of a trace-preserving function. For buffered simulation, such a
function is required to be continuous.

Theorem 5.3.16. A vω,...,ω B if and only if there exists a continuous trace-preserving
function f : AccRun(A)→ AccRun(B).

By using this characterisation, we can classify pairs of automata in which their lan-
guage or trace closure inclusion cannot be shown by buffered simulation. Let Incl be the
set of all triples A, B, Σ̂ where A, B are NBA over Σ̂ and we have [L(A)] ⊆ [L(B)].
Moreover, let Cont ⊆ Incl such that a triple A, B, Σ̂ is in Cont iff we have a continuous
trace-preserving function f : AccRun(A) → AccRun(B), and DisCont = Incl \ Cont. If
the tripleA, B, Σ̂ is in Cont then by Lemma 5.3.3 and Theorem 5.3.16,A, B are automata
over Σ̂ = (Σ1, . . . ,Σn) where A vκ B for some κ ∈ (N ∪ {ω})n. On the other hand, if the
tripleA,B, Σ̂ is in DisCont thenA @κ B for any κ ∈ (N ∪ {ω})n.

Example 5.3.17. Consider the NBAA,B over Σ̂ = ({a, b}) in Example 5.3.5. It is not hard
to see that L(A) ⊆ L(B) since their language are the same. We have a trace-preserving
function f : AccRun(A) → AccRun(B). However in Example 5.3.7 we have seen that
any of such function f is not continuous. Hence the triple A, B, Σ̂ belongs to DisCont.
This implies thatA @k B for all k ∈ N ∪ {ω}.

5.3.2 Characterisation of vk,...,k

Theorem 5.3.16 shows that we can characterise buffered simulation with unbounded buffers
by the existence of a continuous trace-preserving function. One natural question then
is to ask whether we can have a similar characterisation for buffered simulation with
bounded buffers. Intuitively, we should be able to obtain such a characterisation by requir-
ing the trace preserving function to be Lipschitz continuous instead of only continuous.

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 135

In [HKT10], for any ω-regular languange L ⊆ (Σ1 × Σ2)ω, it is shown that Duplicator
wins the delay simulation game G f ′

Del(L) with some constant delay function f ′ iff there
is a Lipschitz continuous function λ : Σω1 → Σω2 that satisfies (a1, b1)(a2, b2) . . . ∈ L if
λ(a1a2 . . .) = b1b2 We will show that we can also have a similar characterisation for
buffered simulation. However we will see that such a characterisation only holds for some
restricted cases.

First recall that a function is Lipschitz continuous if there exists a constant c such that
for any two inputs of distance d, their outputs’ distance is at most c · d.

Definition 5.3.18. A function f : AccRun(A) → AccRun(B) is Lipschitz continuous if
there exists a constant c ≥ 0 such that for any ρ, ρ′ ∈ AccRun(A), we have

d(f (ρ), f (ρ′)) ≤ 2c d(ρ, ρ′).

Intuitively, if a function f : AccRun(A) → AccRun(B) is Lipschitz continuous with
constant c then for any two distinct accepting runs ρ, ρ′ in A, if their outputs f (ρ), f (ρ′)
diverge at position i, the runs ρ and ρ′ diverge already at position (i + c). Thus we can
determine the i-th transition of the output run by looking at the first (i + c) transitions of
the input run.

Example 5.3.19. Consider the two NBA A,B over Σ̂ = ({a}, {b}) from Example 3.4.7.
For convenience, we present them again as follows.

q0 q1 q2 q3

q4

q5

a a b
b

b

a

b

p0

p1 p2 p3 p4

p5 p6 p7 p8

a

a

b a b a

b a b
b

There is a unique trace-preserving function f , namely the one that maps the accepting
runs over aabbaω and aabω in A to the ones over ababaω and ababω in B, respectively.
The function f is Lipschitz continuous with constant c ≥ 3. This is because for any
two accepting runs ρ, ρ′ in A, the distance d(ρ, ρ′) is either 0 or 2−4 and the distance
d(f (ρ), f (ρ′)) is either 0 or 2−1. Hence d(f (ρ), f (ρ′)) ≤ 2c d(ρ, ρ′).

For any two NBAA, B over Σ̂ = (Σ1, . . . ,Σn), if we have buffered simulationA vk,...,k

B for some k ∈ N then we can construct a trace-preserving function f that is Lipschitz
continuous with constant c = nk. We can construct such a function f from the winning
strategy of Duplicator in the same way as in Lemma 5.3.8.

Lemma 5.3.20. If A vk,...,k B for some k ∈ N then there exists a Lipschitz continuous
trace-preserving function f : AccRun(A)→ AccRun(B).

Proof. For every accepting run ρ inA, we define f (ρ) as the accepting run that is formed
by Duplicator in the game Gk...,k(A,B), assuming that Spoiler plays ρ and Duplicator
plays according to the winning strategy. Such a function is Lipschitz continuous with
constant c = nk, which is the total capacity of all the buffers. To show this, let ρ be
an accepting run in A and n ∈ N be a number. If Spoiler plays ρ then in round n + c,
Duplicator forms a run of length at least n. Let ρ′ be an accepting run in A that is
distinct from ρ, but shares the same prefix of length n + c with ρ. In the first n + c
rounds, Duplicator does not see any difference whether Spoiler is actually playing ρ or ρ′.
Duplicatormakes the same move in response to ρ or ρ′. This implies that d(f (ρ), f (ρ′)) ≤
2c · d(ρ, ρ′). Hence by definition, f is Lipschitz continuous with constant c. �

136 5.3. TOPOLOGICAL CHARACTERISATIONS

The reverse direction of this lemma however does not hold. There is a case where we
have a Lipschitz continuous trace-preserving function f : AccRun(A) → AccRun(B),
butA @k,...,k B for any k ∈ N. One simple reason is that Spoiler can play a non-accepting
run inA that cannot be mimicked by Duplicator.

Example 5.3.21. Consider the following two NBAA, B over Σ̂ = ({a, b}).

q0 q1

q2

a a

b
b

p0 p1
a a

There is a unique Lipschitz continuous trace-preserving function f : AccRun(A) →
AccRun(B). It is f (ρ) = p0a(p1a)ω for all ρ ∈ AccRun(A). This function is trace-
preserving since there is only one accepting run inA, which is over aω, and it is mapped
to a run over the same word. The function f is Lipschitz continuous with Lipschitz con-
stant 0 since there is only one output run. Hence the distance between two output runs
is always 0. However we have A @k B for all k ∈ N. Spoiler wins the game Gk(A,B)
by playing the word bω. Duplicator eventually fills the buffer more than its capacity and
hence loses the play.

This example shows that in the game with bounded buffers, Duplicator might lose
the play even though Spoiler does not form an accepting run. This however is irrelevant
to the use of buffered simulation as an approximation for trace closure inclusion. We are
only interested in accepting runs that can be formed by Spoiler. We can simply avoid this
by assuming that Duplicator’s automaton is complete. Without loss of generality, we will
assume that for every q ∈ QB and a ∈ Σ, there exists q′ ∈ QB such that (q, a, q′) ∈ EB.
If Duplicator’s automaton is complete then she can mimic any non-accepting run that is
formed by Spoiler.

However, the reason why Lipschitz continuity is not enough to capture buffered sim-
ulation with bounded buffers is more complex. Even if we assume that Duplicator’s
automaton is complete, there are still cases in which we have a Lipschitz continuous
trace-preserving function f : AccRun(A)→ AccRun(B), butA @k,...,k B for all k ∈ N.

Example 5.3.22. Consider the following two NBAA, B over Σ̂ = ({a}, {b}).

p0 p1

b

a

b

q0 q1 q2
a

b

b

a

a, b

In this case, Duplicator’s automaton B is complete. Moreover we also have a unique
Lipschitz continuous trace-preserving function f : AccRun(A) → AccRun(B), namely
the one that maps every accepting run inA to the one over abω in B, i.e. f (ρ) = q0a(q1b)ω

for all ρ ∈ AccRun(A). The function f is trace-preserving since any accepting run in A
is over the word bnabω, n ≥ 0, and it is mapped to an accepting run over trace equivalent
word: abω. It is also Lipschitz continuous since the function maps every accepting run
in A to the same run in B and therefore the distance between two output runs is always
0. Hence the function f is Lipschitz continuous with Lipschitz constant 0. However we
have A @k,k B, for any k ∈ N. Spoiler wins the game Gk,k(A,B) by first reading bbb . . .

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 137

indefinitely. Duplicator eventually moves to the non-accepting sink q2, i.e. she proceeds
to the configuration (p0, (ε,w), q2,⊥,S) where w ∈ b≤k. From this configuration, Spoiler
can continue by reading abω and form an accepting run. Duplicator will not form an
accepting run from q2 and hence lose the play.

In this example, the reason why Duplicator loses is different from Example 5.3.21.
For every accepting run that can be formed by Spoiler in A, there is a corresponding
accepting run in B over a trace equivalent word. There is even a unique correspondence.
Duplicator does not need any lookahead. She simply produces the accepting run over
abω no matter what Spoiler reads. However, to execute her first move, Duplicator has to
wait until Spoiler reads a. Spoiler eventually will read a since otherwise he will lose for
not producing an accepting run. However the problem is that there is no bound on how
long Duplicator has to wait until Spoiler reads a. She first needs to store unboundedly
many bs to the buffer. The main reason is because in the word that is produced by Spoiler,
the letter a can commute unboundedly to the left or to the right. Spoiler may read a in
a very late or early round, but Duplicator has to read a for her first move. To avoid this
situation, we need to restrict Spoiler’s automaton such that he only produces words where
each letter cannot commute unboundedly. If each letter in the word produced by Spoiler
only commutes at most d steps then whenever Duplicator knows she has to read a letter
a ∈ Σ, the letter a will be read by Spoiler at most in the next d rounds. We will formalise
such an automaton by considering the notion of correspondence relation and commutative
degree.

The Correspondence Relation

First let us define a correspondence relation Corr that is defined for two given words
v,w ∈ Σ∗. It relates the positions in v to the ones in w which carry the same letter and have
the same order with respect to this letter.

Definition 5.3.23. For any v,w ∈ Σ∗, let Corrv,w ⊆ Pos(v) × Pos(w) such that (i, i′) ∈
Corrv,w iff

• v(i) = w(i′) = a for some a ∈ Σ, and

• |v(1) . . . v(i)|a = |w(1) . . .w(i′)|a

Example 5.3.24. Consider the words v = abbc and w = acbb over Σ = {a, b, c}. In this
case, we have Corrv,w = {(1, 1), (2, 3), (3, 4), (4, 1)}.

Intuitively, the position i in v corresponds to the position j in w if they are the positions
of some letter a ∈ Σ and both i and j are the positions of the n-th a. If v and w are trace
equivalent with respect to some Σ̂ = (Σ1, . . . ,Σn) then for any letter a ∈ Σ1 ∪ . . . ∪ Σn, the
number of occurrences of a in v and w are always the same. In such a case, a correspon-
dence relation is nonetheless a bijection, and we will simply denote the corresponding
position of i ∈ Pos(v) with Corrv,w(i).

Now let Σ̂ = (Σ1, . . . ,Σn) be some distributed alphabet, (Σ,D) its corresponding de-
pendence alphabet, and w ∈ Σ∗. The correspondence relation can be used to characterise
the letters in w that are in the dependence relation D.

Lemma 5.3.25. If (w(i),w(j)) ∈ D and i ≤ j then for any v ∼ w,

Corrw,v(i) ≤ Corrw,v(j).

138 5.3. TOPOLOGICAL CHARACTERISATIONS

Proof. Let Σ̂ = (Σ1, . . . ,Σn) be the corresponding distributed alphabet. We can show this
by contradiction. Suppose Corrw,v(i) > Corrw,v(j). Let i′ = Corrw,v(i) and j′ = Corrw,v(j).
Moreover, let a, b ∈ Σ such that w(i) = v(i′) = a and w(j) = v(j′) = b. By definition of
the correspondence relation,

|w(1) . . .w(i)|a = |v(1) . . . v(i′)|a = n1

|w(1) . . .w(j)|b = |v(1) . . . v(j′)|b = n2

for some n1, n2 ∈ N. Since (a, b) ∈ D, there exists k ∈ {1, . . . , n} such that a, b ∈ Σk. Since
i ≤ j, there exists at least n1 many as before the n2-th b in πk(w). Since i′ > j′, there exists
less than n1 many as before the n2-th b in πk(v). Hence πk(w) , πk(v). This contradicts
that w ∼ v. Thus i′ ≤ j′. �

Intuitively, this lemma shows that if two letters of w at positions i and j are dependent
on each other, their corresponding letters at positions i′ and j′ in any word v ∼ w never
change order, i.e. if i ≤ j then i′ ≤ j′.

On the other hand, for any position i0 ∈ Pos(w), if the letters at positions i0 and i0 + 1
are independent of each other, we can find a trace equivalent word v such that the positions
i0, i0 + 1 in w correspond to the positions i0 + 1, i0 in v, respectively. For example, we
can simply obtain v from w by swapping the letters at positions i0 and i0 + 1. We can
generalise this property as follows.

Lemma 5.3.26. If (w(i0),w(i0 +1)), (w(i0),w(i0 +2)), . . . , (w(i0),w(i0 +m)) < D then there
exists v ∼ w such that

Corrw,v(i) =


i + m if i = i0,

i − 1 if i0 < i ≤ i0 + m,
i otherwise.

Proof. Let ` = |w| and b0, . . . , bm ∈ Σ such that w(i0) = b0, w(i0 + 1) = b1, . . ., w(i0 + m) =

bm. Moreover let Σ̂ = (Σ1, . . . ,Σn) be the corresponding distributed alphabet and

v1 = w(1) . . .w(i0 − 1),
v2 = b0 b1 . . . bm,

v′2 = b1 . . . bm b0,

v3 = w(i0 + (m + 1)) . . .w(`).

Since (b0, b1), . . . , (b0, bm) < D, there is no k ∈ {1, . . . , n} and j ∈ {1, . . . ,m} such that
b0, b j ∈ Σk. Hence for all i ∈ {1, . . . , n}, we have πi(v2) = πi(v′2) = b0 if b0 ∈ Σi and
πi(v2) = πi(v′2) = πi(b1 . . . bm) if b0 < Σi. Thus πi(v2) = πi(v′2) for all i ∈ {1, . . . , n}. We
have v2 ∼ v′2. Let v = v1v′2v3. Since w = v1v2v3 and v2 ∼ v′2, it is clear that v ∼ w.

By the construction of v, we have w(i0) = v(i0+m) = b0. We also have |w(1) . . .w(i0)|b0 =

|v(1) . . . v(i0 + m)|b0 since b1, . . . , bm are distinct from b0. Hence (i0, i0 + m) ∈ Corrw,v.
For any j ∈ {1, . . . ,m}, we have w(i0 + j) = v((i0 + j) − 1) = b j. We also have

|w(1) . . .w(i0 + j)|b j = |v(1) . . . v(i0 + j)|b j since b1, . . . , bm are distinct from b0. Hence
(i0 + 1, i0), . . . , (i0 + m, i0 + (m − 1)) ∈ Corrw, v.

For any i ∈ Pos(w) where i < i0 and i > i0+m, by the construction of v, we have w(i) =

v(i) = a for some a ∈ Σ and |w(1) . . .w(i)|a = |v(1) . . . v(i)|a. Hence (i, i) ∈ Corrw,v. �

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 139

Intuitively, this lemma shows that if the letter at position i0 is independent of the ones
at position i0 +1, . . . , i0 +m, there exists a word v that is trace equivalent to w such that the
position i0 in w corresponds to the position i0 + m in v, and the positions i0 + 1, . . . , i0 + m
in w correspond to the positions i0, . . . , i0 + m− 1 in v, respectively. We simply can obtain
such a word v from w by moving the letter at position i0 over the ones at positions i0 + 1,
. . ., im.

The Commutative Degree of an AutomatonA

Now consider a word w ∈ Σ∗ over some distributed alphabet Σ̂ = (Σ1, . . . ,Σn). The
correspondence relation Corrw,v, where v ∼ w, simply determines how far the letters in
w can commute to the left or right. If there is a word v ∼ w where (i, i + m) ∈ Corrw,v

then the letter at position i in w can commute m steps to the right. Likewise for direction
left. If there is a word v′ ∼ w where (i, i − m) ∈ Corrw,v′ then the letter at position i in
w can commute m steps to the left. Thus the maximal length of how far the letter in w
can commute to the left or right can be determined by looking at all the correspondence
relations Corrw,v where v ∼ w. Let us call such a maximal length commutative degree.

Definition 5.3.27. Let Σ̂ = (Σ1, . . . ,Σn) be a distributed alphabet, Σ = Σ1 ∪ . . . ∪ Σn the
union of the alphabets, and w ∈ Σ∗. Let

Deg+
w(i) = max{ j − i | (i, j) ∈ Corrw,v, w ∼ v, v ∈ Σ∗}

Deg−w(i) = max{i − j | (i, j) ∈ Corrw,v, w ∼ v, v ∈ Σ∗}.

The commutative degree of the letter at position i ∈ Pos(w) is

Degw(i) = max{Deg+
w(i),−Deg+

w(i)}.

Intuitively Deg+
w(i) is the maximal length of how far the letter at position i in w can

commute to the right and Deg−w(i) is the maximal length of how far the letter at position i
in w can commute to the left.

Example 5.3.28. Let Σ̂ = ({a, b}, {a, c}). Consider the word w = acbb. The set of all
words that are trace equivalent to w is S = {acbb, abcb, abbc}. We have Degw(1) = 0
since for all v ∈ S , Corrw,v(1) = 1. The first letter a cannot commute to the left or right.
Moreover, we have Degw(2) = 2 since

Corrw,v(2) =


2 if v = acbb
3 if v = abcb
4 if v = abbc.

Thus the letter c at position 2 can commute at most two steps to the right. We also have
Degw(3) = Degw(4) = 1 since

Corrw,v(3) =


3 if v = acbb
2 if v = abcb
3 if v = abbc

and Corrw,v(4) =


4 if v = acbb
4 if v = abcb
3 if v = abbc.

Thus both the letters b in w can commute at most one step to the left.

140 5.3. TOPOLOGICAL CHARACTERISATIONS

For any word w ∈ Σ∗, we define the commutative degree of w as the maximal commu-
tative degree of its letters, i.e.

Deg(w) = max{Degw(i) | i ∈ Pos(w)}.

Hence Deg(w) is at most |w| − 1. For an automatonA, we define the commutative degree
ofA as the supremum of the commutative degree of all finite words produced byA, i.e.

Deg(A) = sup{Deg(a1 . . . an) | p1
a1−−→ p2 . . .

an−−→ pn+1}.

Hence we have Deg(A) = k for some k ∈ N if for every word w over some finite
run in A, Degw(i) ≤ k for all i ∈ Pos(w). In other words, each letter in the finite word
produced byA commute at most k steps to the left or right. In such a case, let us call the
commutative degree ofA finite.

On the other hand, we have Deg(L) = ∞ if for each k ∈ N, there is a finite word w
produced by A and a position i in w such that Degw(i) > k. In this case, let us call the
commutative degree ofA infinite.

Example 5.3.29. Consider the following NBAA over Σ̂ = ({a}, {b}).

a
b

In this case, the commutative degree of A is infinite. To show this, let k ∈ N be some
arbitrary number. Consider the word w = abk+1. The first letter of w commutes k + 1
steps to the right: there is a word v = bk+1a where v ∼ w and (1, k + 2) ∈ Corrw,v. Hence
Degwk

(1) > k. Since we consider an arbitrary k, this holds for any k ∈ N. For all k ∈ N,
there exists a word w over some finite run inA such that Deg(w) > k. Hence by definition,
Deg(A) = ∞.

We will show that for any two NBA A, B, if the commutative degree of A is finite
and B is complete then the reverse direction of Lemma 5.3.8 holds. We will show this by
using the Γ-game that is defined in the previous subsection.

A Sufficient Condition for vk,...,k

First note that if Duplicatorwins the Γ-game Γk(A,B, f) where k ∈ N and f : AccRun(A)
→ AccRun(B) is trace-preserving, this does not necessarily imply that Duplicator also
wins the buffered simulation game Gk,...,k(A,B). Consider again the two automata A,
B from Example 5.3.21 and a trace-preserving function f (ρ) = q0a(q1a)ω for all ρ ∈
AccRun(B). Duplicator wins the Γ-game Γk(A,B, f) with delay k = 0. She just reads aω

no matter what Spoiler plays. However, Duplicator loses the buffered simulation game
G0,0(A,B). Spoiler wins by reading b in the first round. Duplicator cannot pop b im-
mediately since there is no b-transition from the initial state of B. Hence she violates the
capacity constraint and loses the play.

However if the automatonB is complete, this would not happen. In any gameGκ(A,B),
where κ ∈ N+ and B is complete, whenever Spoiler forms a finite run over w ∈ Σ∗ that
cannot be extended to any accepting run, Duplicator simply empties the buffer and forms
any run over some word v ∼ w. Duplicator then continues by simply reading the letter
that is read by Spoiler in every round. She will win the play since Spoiler will not form
an accepting run. Duplicator always forms an infinite run over a trace equivalent word.

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 141

Lemma 5.3.30. Let A, B be two NBA over Σ̂ = (Σ1, . . . ,Σn) in which B is complete and
f : AccRun(A) → AccRun(B) a function. Duplicator wins Γc(A,B, f) if f is Lipschitz
continuous with constant c.

Proof. Consider the following winning strategy for Duplicator in the Γ-game Γc(A,
B, f). Suppose Spoiler and Duplicator have formed the runs rA and rB respectively,
and Spoiler extends his run one step to r′

A
= rAap. If r′

A
cannot be extended to some

ρ ∈ Dom(f) then Duplicator extends her run maximally, i.e. to r′
B

such that word(r′
A

) ∼
word(r′B). This is possible since B is complete. However in the case where r′

A
can be ex-

tended to some ρ ∈ Dom(f) then we consider the same strategy as in the proof of Lemma
5.3.11: Duplicator skips her turn unless there exists r′

B
:= rBb1q1 . . . bmqm such that f (ρ)

is started with r′
B

. In such a case, Duplicator extends her run to such a maximal r′
B

.
We can show similarly as in the proof of Lemma 5.3.11 that Duplicatorwins the game

Γω(A, B, f), in which the delay is unbounded. However, in this case we can also show
that there is no round where the length difference of Spoiler’s and Duplicator’s run is
more than c. We will show this by contradiction: suppose there is a round where Spoiler
and Duplicator’s run are respectively rA, rB, and |rA| − |rB| > c. By the construction
of the winning strategy, this implies that we have two runs ρ1, ρ2 ∈ Dom(f) that can
be extended from rA, but both f (ρ1), f (ρ2) share the same prefix of no longer than rB:
d(f (ρ1), f (ρ2)) ≥ 2−(|rB |+1). Since d(ρ1, ρ2) ≤ 2−(|rA |+1) and |rA| − |rB| > c, we have

d(f (ρ1), f (ρ2)) > 2c · d(ρ1, ρ2).

This contradicts that f is Lipschitz continuous with constant c. Hence there is no round
where the length difference of Spoiler’s and Duplicator’s run is more than c. Duplicator
also wins Γc(A,B, f). �

Conversely, if f is not Lipschitz continuous, Duplicator loses Γk(A,B, f) for any
k ∈ N. Spoiler can play the accepting runs ρ1, ρ2 inA that share the same prefix of length
n, but the output runs f (ρ1), f (ρ2) differ in their first (n − k) transitions. In round n, Du-
plicator will form either the prefix of f (ρ1) or f (ρ2), and Spoiler can choose accordingly
which run he should form. Duplicator will lose for not producing the image of Spoiler’s
run. We show this formally as follows.

Lemma 5.3.31. Duplicator loses Γk(A,B, f) for all k ∈ N if f is not Lipschitz continuous.

Proof. By definition, if f is not Lipschitz continuous then for any k ∈ N, there exist
ρ1, ρ2 ∈ AccRun(A) such that d(f (ρ1), f (ρ2)) > 2k d(ρ1, ρ2). Hence let k be a number
and ρ1, ρ2 be such accepting runs. Let n ∈ N such that 2−(n+1) = d(ρ1, ρ2). The winning
strategy for Spoiler in the game Γk(A,B, f) is to first play ρ1. At the end of round n,
Duplicator forms a run r of length at least n − k. In the case where r is not a prefix
of f (ρ1), Spoiler keeps playing ρ1 for the rest of the play. Otherwise he continues by
playing ρ2. This is possible since ρ1, ρ2 share the same prefix of length n. In the first case,
Spoiler wins because Duplicator does not form the f -image of ρ1. In the second case,
since d(f (ρ1), f (ρ2)) > 2−(n−k−1), f (ρ1), f (ρ2) differ already at least in their first (n − k)
transitions. Since r is of length n − k and r is a prefix of f (ρ1), r is not a prefix of f (ρ2).
Spoiler wins the play. �

Now in the case where Duplicator wins the game Γk(A,B, f) where f : AccRun(A)
→ AccRun(B) is trace-preserving, the completeness of B is still not sufficient to derive
buffered simulation A vk′,...,k′B for some k′ ∈ N. Recall again the two automata A,

142 5.3. TOPOLOGICAL CHARACTERISATIONS

B from Example 5.3.22 and a trace-preserving function f (ρ) = q0a(q1b)ω for all ρ ∈
AccRun(A). The automaton B is complete. Duplicator wins the Γ-game Γk(A,B, f) for
k = 0. However Duplicator loses Gk,...,k(A,B) for any k ∈ N. This however will not
happen if the commutative degree ofA is finite.

If the commutative degree ofA is finite and B is complete then whenever Duplicator
wins the Γ-game Γc(A,B, f) for some c ∈ N and f is trace-preserving, she also wins the
buffered simulation gameGk,...,k(A,B) for some k ∈ N. We can even specify k = max{c, d}
where d ∈ N is the commutative degree ofA. Consider the winning strategy in the Γ-game
as described in the proof of Lemma 5.3.30 and the translation as in Lemma 5.3.14. If the
winning strategy in the Γ-game tells Duplicator to extend her run to r′

B
= rBb1q1 . . . bmqm

then in the Γ-game, Duplicator extends rB to rBb1b1 . . . bm′qm′ the maximal prefix of r′
B

that satisfies: πi(w) is a prefix of πi(v), for all i ∈ {1, . . . , n}. We have seen in Lemma 5.3.14
that with such a strategy, Duplicatorwins the buffered simulation gameGω,...,ω(A,B). We
will show that in the case where the commutative degree ofA is some d ∈ N, Duplicator
in fact only stores at most max{c, d} many letters to each buffers.

The winning strategy intuitively is as follows. Duplicator first waits to have a preview
of Spoiler’s move c steps. She stores at most c many letters to each buffer. Since Dupli-
cator wins Γc(A,B, f), after a lookahead of c steps, she knows how she should extend
her run. Let us assume that she should read a letter a. If the letter a is already in the buffer
then she can pop it and move her pebble along some a-transition. However if a is not yet
in the buffer, she waits for more rounds until Spoiler reads a. Since Deg(A) = d, the
letter a will be read by Spoiler at most in the next |d − c| rounds. Hence to win the play
Duplicator only needs to store at most k = max{c, d} letters. We formally show this as
follows.

Theorem 5.3.32. Let f : AccRun(A) → AccRun(B) be a trace-preserving function for
two NBA A, B over Σ̂ = (Σ1, . . . ,Σn) in which Deg(A) = d ∈ N and B is complete. If
Duplicator wins Γc(A,B, f) for some c ∈ N then Duplicator wins Gk,...,k(A,B) where
k = max{c, d}.

Proof. Consider the winning strategy as we have defined before. In the proof of Lemma
5.3.14, such a strategy is winning for Duplicator in the game Gω,...,ω(A,B). We will
additionally show that there is no round where one of the buffers is filled with k + 1 many
letters. We will show this by contradiction. Suppose there is such a round. Let rA, rB be
the runs that are formed by Spoiler and Duplicator in this round. Hence |rA| − |rB| > k.
Note that Duplicator does not extend her run longer than rB because either the winning
strategy in Γc(A,B, f) tells her to extend only to rB, or it actually tells her to extend to
some run r′

B
longer than rB, but rB is the maximal prefix of r′

B
that satisfies

πi(word(rB)) is a prefix of πi(word(rA)), (5.4)

for all i ∈ {1, . . . , n}. In the first case, since |rA| − |rB| > c, it contradicts that the strategy
is winning in Γc(A,B, f). In the second case, suppose r′

B
is extended from rB by reading

u = a1 . . . am, i.e. r′
B

= rB a1 p1 . . . am pm. Since (5.4) holds, |word(rB)|a1 ≤ |word(rA)|a1 .
However, since rB is the maximal prefix of r′

B
that satisfies (5.4), we have

|word(rB)|a1 = |word(rA)|a1 = `

for some ` ∈ N. Otherwise rBa1 p1 also satisfies (5.4) and contradicts the maximality of rB.
Now let w and v be the words that are produced respectively by Spoiler and Duplicator

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 143

in the game Gω,...,ω(A,B). Hence word(rA) and word(r′
B

) are prefixes of w and v, respec-
tively. Since we assume that f is trace-preserving, w ∼ v. Let i ∈ Pos(w) and j ∈ Pos(v)
be the positions of the (`+1)-th a1 in w and v, respectively. Hence i > |rA| and j = |rB|+1.
Since |rA| − |rB| > k and k ≥ d, we have i − j > d. However, since (i, j) ∈ Corrw,v and w is
a word over some finite path inA, this contradicts Deg(A) = d. Hence there is no round
where one of the buffers is filled with more than k letters. Duplicator wins the buffered
simulation game Gk,...,k(A,B). �

We can put this lemma together with Lemma 5.3.30 to show that the existence of a
Lipschitz continuous trace-preserving function f : AccRun(A) → AccRun(B) implies
buffered simulation A vk,...,kB for some k ∈ N, if the commutative degree of A is finite
and the automaton B is complete.

Theorem 5.3.33. Let A, B be two NBA in which the commutative degree of A is finite
and B is complete. A vκ B for some κ ∈ N∗ if there exists a Lipschitz continuous trace-
preserving function f : AccRun(A)→ AccRun(B).

Proof. Suppose we have a Lipschitz continuous trace-preserving function f : AccRun(A)
→ AccRun(B) with Lipschitz constant c. Since f is Lipschitz continuous and B is
complete, by Lemma 5.3.30 Duplicator wins the game Γc(A,B, f). Moreover let d =

Deg(A). Since f is trace-preserving, by Lemma 5.3.32, Duplicator also wins the game
Gk,...,k(A,B) where k = max(c, d). �

Together with Lemma 5.3.20, this theorem allows us to further refine the characteri-
sation in Theorem 5.3.16 into the following corollary.

Corollary 5.3.34. Let A, B be two NBA in which the commutative degree of A is finite
and B is complete. A vκ B for some κ ∈ N+ iff there exists a Lipschitz continuous
trace-preserving function f : AccRun(A)→ AccRun(B).

This corollary shows a characterisation of buffered simulation with bounded buffers
by considering the existence of a Lipschitz continuous trace-preserving function. The
characterisation holds if Spoiler’s automatonA has a finite commutative degree and Du-
plicator’s automaton B is complete. Note that the condition for A is a semantic condi-
tion and the condition for B is a syntactic one. We can check whether the automaton B
is complete by looking at its structure. However it is not obvious whether we can also
check whether the commutative degree of A is finite by looking at its structure. Hence
one may ask if there is a syntactic characterisation for such a condition. In the following
subsection, we will show that such a syntactic characterisation indeed can be obtained by
slightly lifting the condition for automata that have a regular trace closure.

5.3.3 Cyclic-Path-Connected Automata

Let us first consider a characterisation of an automaton that has a regular trace closure.
Note that if the language L(A) is regular then its trace closure [L(A)] might not be reg-
ular. For example, consider the automaton A in Figure 5.1 over Σ̂ = ({a, c}, {a, b}). The
language L(A) = (ab)∗cω is regular, but its trace closure [L(A)] = {vcω | v ∈ {a, b}∗, |v|a =

|v|b} is not. However, there is sufficient syntactic condition for automata that have a regular
trace closure [CL87]. It uses the notion of connected words.

144 5.3. TOPOLOGICAL CHARACTERISATIONS

ac

b

c

Figure 5.1: An automatonA with non-regular trace closure.

a b c d e

(a) G.

a b c d

(b) Gw.

a b d e

(c) Gw′ .

Figure 5.2: Connected and non-connected dependency graphs.

Connected Words

Let w be a word over a distributed alphabet Σ̂ and G the corresponding dependency graph
of Σ̂. The word w is called connected if the subgraph of G induced by the alphabet of w
is connected.

Example 5.3.35. Consider a distributed alphabet Σ̂ = ({a, b}, {b, c}, {c, d}, {d, e}). Its cor-
responding dependency graph G then is given as in Figure 5.2a. Moreover, the word
w = adbc is connected, but the word w = adbe is not. This is because the subgraph of G
induced by Σw = {a, b, c, d} as given in Figure 5.2b is connected and the one induced by
Σw′ = {a, b, d, e} as given in 5.2c is not.

Intuitively, a word w is connected if there is no group of letters that are independent
of all other letters in w. If a word w is not connected, we can partition the letters of w into
two components such that each two letters from different components are independent of
each other.

Proposition 5.3.36 ([DR95]). Let Σ̂ = (Σ1, . . . ,Σn) be a distributed alphabet and G =

(Σ,D) the corresponding dependency graph. If w ∈ Σ∗ is not connected then there exists
a partition Σw = 〈Σ′,Σ′′〉 such that

w ∼ π′(w) π′′(w) ∼ π′′(w) π′(w), (5.5)

where π′, π′′ are projections from Σ to Σ′ and Σ′′, respectively.

This proposition intuitively shows us that if w is not connected then we can partition
w into two subsequences of letters w1, w2 such that the letters in w1 and w2 can swap their
positions, i.e. w ∼ w1w2 ∼ w2w1.

The connectedness of a word is closely related to the commutative degree. If w is
not connected then in the word wk, the first letter of wk can commute at least k steps
to the right. Likewise for the last letter of wk. It can commute at least k steps to the
left. The reason is because by Proposition 5.3.36, we can partition the word w into two
subsequences of letters w1, w2 of w in which the letters in w1 and w2 are independent of
each other. Each letter of w either belongs to w1 or w2, but not both. Thus suppose the
first letter of w belongs to w1. Since wk ∼ wk

2wk
1, it is not hard to see that the first letter of

w indeed commutes |wk
2| steps to the right.

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 145

Lemma 5.3.37. If w is not connected then Deg(wk) ≥ k.

Proof. Suppose w is not connected. By Proposition 5.3.36, there exists a partition Σw =

〈Σ′,Σ′′〉 such that (5.5) holds where π′, π′′ are projections from Σ to Σ′ and Σ′′, respec-
tively. Moreover, we also have that

wk ∼ π′(w)k π′′(w)k
∼ π′′(w)k π′(w)k.

In the case where the first letter of w belongs to Σ′, i.e. w(1) = a ∈ Σ′, consider the
word v = π′′(w)k π′(w)k that is trace equivalent to w. Let n = |π′′(w)k

| and w′ = wk. Hence
w′(1) = v(n + 1) = a and |w′(1)|a = |v(1) . . . v(n + 1)|a = 1 because v(1), . . . , v(n) , a. This
implies (1, n + 1) ∈ Corrw′,v. Moreover, since n ≥ k, we have Deg(w′) ≥ k.

In the case where the first letter of w belongs to Σ′′, we can show similarly that
Deg(wk) ≥ k by considering the word v = π′(w)k π′′(w)k. �

We can also extend this observation for the word uw in which u is connected and
uw is not. By Proposition 5.3.36, we can partition the word uw into w1,w2 such that
uw ∼ w1w2 ∼ w2w1. However, since u is connected, each letter of u either belongs to w1

or w2, but not both. Let us assume to w1. There is at least one letter in w that belongs
to w2 since otherwise uw is connected. Now consider the word ukw that is obtained by
repeating the word u, k many times before we read w. The letters in ukw that occur after
position |uk| and belongs to w2 can commute |uk| steps to the left. We formally show this
as follows.

Lemma 5.3.38. If w is connected and uw is not then

• Deg(ukw) ≥ k

• Deg(wuk) ≥ k

Proof. We will show this for the first part. The second one can be shown similarly. Since
uw is not connected, by Proposition 5.3.36, there is a partition Σuw = 〈Σ′,Σ′′〉 such that
uw ∼ π′(uw)π′′(uw) ∼ π′′(uw)π′(uw) where π′ and π′′ are projections from Σ to Σ′ and Σ′′,
respectively. This also implies

ukw ∼ uk−1π′(uw) π′′(uw) ∼ uk−1π′′(uw) π′(uw).

Since u is connected, either Σu ⊆ Σ′ or Σu ⊆ Σ′′, but not both.
Now suppose Σu ⊆ Σ′. We then have π′′(uw) = π′′(w). This implies

ukw ∼ uk−1π′(uw) π′′(w) ∼ π′′(w) uk−1 π′(uw).

Let v = π′′(w) π′(ukw) and w′ = ukw. Let i be the smallest position in w′ such that w′(i) ∈
Σ′′. Since Σu ⊆ Σ′, we have i > |uk|. Let a ∈ Σ′′ such that w′(i) = a. The smallest position j
in v such that v(j) ∈ Σ′′ is j = 1. Hence w′(i) = v(1) = a and |w′(1) . . .w′(i)|a = |v(1)|a = 1.
We have (i, 1) ∈ Corrw′,v. Since |uk| ≥ k, we have i > k. Since i − 1 ≥ k, we also have
Deg(w′) ≥ k.

In the case where Σu ⊆ Σ′′, we can show similarly that Deg(ukw) ≥ k by considering
the word v = π′(w)π′′(ukw). �

146 5.3. TOPOLOGICAL CHARACTERISATIONS

Loop-Connected Automata

Now let us call an automaton loop-connected if every cycle is over a connected word.
For example, consider the automatonA from Example 5.3.22. It is loop-connected since
every cycle in A is over some word w ∈ b∗ and such a word w is connected with respect
to any distributed alphabet. On the other hand, the automaton A in Figure 5.1 over Σ̂ =

({a, c}, {b, c}) is not loop-connected. There is a cycle from the initial state over ab and such
a word is not connected with respect to the given Σ̂. It is shown that loop-connectedness
implies a regular trace closure.

Proposition 5.3.39 ([CL87]). For any NBA A over Σ̂, if A is loop-connected then the
trace closure [L(A)] is regular.

Consider again the automatonA over Σ̂ from Example 5.3.22. The automaton indeed
has a regular trace closure. The trace closure ofA is [L(A)] = b∗abω.

It turns out that loop-connectedness is a necessary condition for an automaton to have
a finite commutative degree. If an automatonA is not loop-connected then for any k ∈ N,
we can consider a word that is produced by going through the non-connected cycle k + 1
many times. By Lemma 5.3.37, the commutative degree of such a word is more than k.
Hence k is not the commutative degree ofA.

Lemma 5.3.40. If the commutative degree ofA is finite thenA is loop-connected.

Proof. We can show this by contraposition. Suppose A is not loop-connected. There
is a cycle over a non-connected word w. For any k ∈ N, consider the word wk+1 that
is produced by a run that goes through such a cycle k + 1 many times. Since u is not
connected, by Lemma 5.3.37 the commutative degree of wk+1 is greater than k. Hence for
any k ∈ N, Deg(A) ≥ k. The commutative degree ofA is infinite. �

The converse of this lemma however does not hold. IfA is loop-connected, this does
not necessarily imply that the commutative degree of A is finite. For example, consider
the automatonA from Example 5.3.22. It is loop-connected, but the commutative degree
ofA is not finite as we have seen in Example 5.3.29.

Cyclic-Path-Connected Automata

To characterise automata with finite commutative degree, one reasonable attempt is to
tighten the property of loop-connectedness. Instead of only for cycles, let us require
every path in A that contains a cycle to be over a connected word and we will call such
an automaton cyclic-path-connected.

Definition 5.3.41. An automatonA is cyclic-path-connected if for any path

p u
−−→ q v

−−→ q w
−−→ r

in which u,w ∈ Σ∗, and v ∈ Σ+, the word uvw is connected.

For example, consider the automaton A from Example 5.3.22. The automaton A is
loop-connected but not cyclic-path-connected since the path

p0
a
−−→ p1

b
−−→ p1

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 147

contains a cycle but the word ab is not connected.
We can lift Lemma 5.3.40 for a cyclic-path-connected automaton. Intuitively, if an

automaton A is loop-connected but not cyclic-path-connected then for any k ∈ N, we
simply consider the word that is produced by a non-connected cyclic path that goes over
a certain cycle k + 1 many times. Thus we either read uk+1w or wuk+1 in which uw is not
connected, but u is connected. By Lemma 5.3.38, the commutative degree of such a word
is more than k. Hence k is not the commutative degree ofA.

Theorem 5.3.42. If the commutative degree ofA is finite thenA is cyclic-path-connected.

Proof. Let us show this again by contraposition. SupposeA is not cyclic-path-connected.
IfA is loop-connected then by Lemma 5.3.40,A has an infinite commutative degree, and
we have the desired result. Now supposeA is loop-connected. By definition, there exists
a cyclic-path

p u
−−→ q v

−−→ q w
−−→ r

in which u,w ∈ Σ∗, and v ∈ Σ+ inA, but uvw is not connected. SinceA is loop-connected,
the word v is connected. Thus either uv or vw is not connected. In the first case, for every
k ∈ N, consider the word uvk+1 over the run

p u
−−→ q v

−−→ q . . . v
−−→ q.

Since uv is connected and v is not, by the second part of Lemma 5.3.38, the commutative
degree of such a word is at least k + 1. Hence for any k ∈ N, Deg(A) > k. We have
Deg(A) = ∞. In the second case, we can also show similarly that Deg(A) = ∞ by
considering the word vk+1w and the first part of Lemma 5.3.38. �

In contrast to Lemma 5.3.40, the converse of this theorem holds. However we need
a more involved technique to show it. For the rest of this chapter, we will the converse
of Theorem 5.3.42s. We will show that if an automaton A is cyclic-path-connected then
whenever we visit a certain cycle over a word of length n, n many times, each two letters
that are read before and after the repeated cycle do not commute with each other. Intu-
itively, the connected word produced by such a repeated cycle blocks other letters from
commuting with each other. To show this formally we introduce the relation Block.

Relation Block

Intuitively, the relation Block is defined for a given word w over some distributed alphabet
Σ̂. It tells us the positions of letters of w that cannot commute with each other. Formally,
let w be some finite word over Σ̂, (Σ,D) the corresponding distributed alphabet, and

Dw = {(i, j) ∈ Pos(w)2 | (w(i),w(j)) ∈ D, i ≤ j}.

The relation Blockw then is defined as the transitive closure of such a relation.

Example 5.3.43. Consider the word w = cdbca in which the dependency between the
letters is given by the dependency graph G from Figure 5.2a. We have

Dw = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 4), (3, 5)}

D2
w = Dw ∪ {(1, 5)}

D∗w = D2
w

Hence Blockw = D2
w.

148 5.3. TOPOLOGICAL CHARACTERISATIONS

In this example, (1, 5) ∈ Blockw even though the letters a and c are independent of
each other. This is because in between them, at position 3, we have b to which both a and
c are dependent on. Hence the first and the fifth letters of w do not commute with each
other.

In general, if (i0, in) ∈ Blockw, there are n − 1 ≥ 0 many positions i1 < . . . < in−1 in
between i0 and in such that for all k ∈ {0, . . . , n − 1}, the letters at positions ik and ik+1 are
dependent on each other. The letters at position i0 and in cannot commute with each other.

Lemma 5.3.44. If (i, j) ∈ Blockw then for all v ∼ w, Corrw,v(i) ≤ Corrw,v(j).

Proof. For the base case, let (i, j) ∈ Dw. Hence (w(i),w(j)) ∈ D. By Lemma 5.3.25, we
have the desired result. For the inductive case, let (i, j) ∈ Dn

w for some n ∈ N. Hence there
exists k, i < k ≤ j such that (i, k) ∈ Dn−1

w and (k, j) ∈ Dw. Since (i, k) ∈ Dn−1
w , by induction

hypothesis, for any w′ ∼ w,

Corrw,w′(i) ≤ Corrw,w′(k). (5.6)

Moreover since (k, j) ∈ Dw, we have (w(k),w(j)) ∈ D. Again by Lemma 5.3.25, for any
w′′ ∼ w,

Corrw,w′′(k) ≤ Corrw,w′′(j). (5.7)

Now let v be some arbitrary word such that v ∼ w. By (5.6), we have Corrw,v(i) ≤
Corrw,v(k). By (5.7), we have Corrw,v(k) ≤ Corrw,v(j). Hence Corrw,v(i) ≤ Corrw,v(j). �

The set Blockw is also complete in the sense that if a pair i < j is not in Blockw then the
letters at positions i and j can exchange their order. The reason is because by definition of
Blockw, any letter in between i and j is independent of the ones at position i and j. Hence
the letter at position i can commute (j − i) many steps to the right.

Lemma 5.3.45. Let w ∈ Σ∗ and j ∈ Pos(w).

• If there exist i < j such that (i, j) < Blockw then there exists v ∼ w such that (j, j−1)
∈ Corrw,v.

• If there exist i > j such that (j, i) < Blockw then there exists v ∼ w such that (j, j+1)
∈ Corrw,v.

Proof. We will show this for the first part. The second part can be shown similarly. First,
without loss of generality, let us assume that i is the biggest of such a position. Hence for
all i′ where i < i′ < j,

(i′, j) ∈ Blockw. (5.8)

This implies (w(i),w(i′)) < D for all i′, i < i′ ≤ j since otherwise (i, j) ∈ Blockw and con-
tradicts our initial assumption. Thus we can apply Lemma 5.3.26 and obtain the desired
result. �

We can lift this lemma to the case where we have several of such is. If there are
positions i1, . . . , im < j and all of them are not in the block relation with j then the position
j can commute m steps to the left, likewise if there are i1, . . . , im > j and all of them are
not in the block relation with j. The position j then can commute m steps to the right.

Lemma 5.3.46. Let w ∈ Σ∗ and j ∈ Pos(w).

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 149

• If there are m distinct positions i1, . . . , im < j such that (i1, j), . . . , (im, j) < Blockw

then there exists v ∼ w such that (j, j − m) ∈ Corrw,v.

• If there are m distinct positions i1, . . . , im > j such that (j, i1), . . . , (j, im) < Blockw

then there exists v ∼ w such that (j, j + m) ∈ Corrw,v.

Proof. We will show this for the first part. The second one can be shown similarly. For the
base case, let m = 1. By the first part of Lemma 5.3.45, we have the desired result. Now
suppose m > 1. There exist m distinct positions i1, . . . , im < j such that (i1, j), . . ., (im, j)
< Blockw. Without loss of generality, let us assume that im is the largest of such positions.
Hence for all i′, im < i′ < j, we have (i′, j) ∈ Blockw. This implies (w(im),w(i′)) < D for
all i′, im < i′ ≤ j, since otherwise (im, j) < Blockw and contradicts our assumption. By
applying Lemma 5.3.26, we have a word u ∼ w where

Corrw,u(i) =


j if i = im,

i − 1 if im < i ≤ j
i otherwise.

(5.9)

Now in u, there are (m − 1) many distinct positions i1, . . . , im−1 < j − 1 and (i1, j −
1), . . . , (im−1, j − 1) < Blocku. By induction hypothesis, there exists v ∼ u such that
(j−1, j−m) ∈ Corrv,u. Since by (5.9), (j, j−1) ∈ Corrw,v, we have (j, j−m) ∈ Corrw,u. �

The block relation is indeed closely related to the commutative degree. By looking
at how many positions i there are such that i < j and (i, j) < Blockw we can determine
how far the letter at position j can commute to the left. The other direction also holds
similarly. By looking at how many positions i there are such that i > j and (j, i) < Blockw

we can determine the maximal length of how far the letter at position j can commute to
the right. To show this formally, let us collect such positions i in the following sets.

Block−w(i) = { j < i | (j, i) < Blockw} (5.10)

Block+
w(i) = { j > i | (i, j) < Blockw} (5.11)

Intuitively, these two sets collect the positions that are not in the Block relation with i.
The positive and negative signs are simply used to indicate whether it occurs before or
after the position i. In the following, we show that the size of the sets in (5.10) and (5.11)
indeed are the commutative degree of the letter at position i.

Lemma 5.3.47. Let w be some finite word over Σ̂. We have

Degx
w(i) = |Blockx

w(i)|

for all x ∈ {+,−} and i ∈ Pos(w).

Proof. We will show this for b = −. A similar argument can be used for b = +. Let
k1 = Deg−w(i) and k2 = |Block−w(i)|.

If k1 < k2 then k1 < |Block−w(i)|. There are at least k1 + 1 many distinct positions in
Block−w(i). By definition of Block−w(i), there are distinct positions i1, . . . , ik1+1 < i in w such
that (i1, i), . . . , (ik1+1, i) < Blockw. By Lemma 5.3.46, there exists w′ such that w′ ∼ w and
(i, i − (k1 + 1)) ∈ Corrw,w′ . This implies Deg−w(i) > k1, which contradicts Deg−w(i) = k1.

150 5.3. TOPOLOGICAL CHARACTERISATIONS

However if k1 > k2 then Deg−w(i) > k2. By definition of Deg−w(i), there exist a word w′

and a position i′ ∈ Pos(w′) such that w ∼ w′, (i, i′) ∈ Corrw,w′ , and i − i′ > k2. Consider
the set of positions

S = {` < i | Corrw,w′(`) > i′}

in w. If |S | < i − i′ then there are two distinct positions `1, `2 < i where Corrw,v(`1) =

Corrw,v(`2). This is impossible by the definition of the correspondence relation since w ∼
v. Hence |S | ≥ i− i′ and thus |S | > k2. Since there are only k2 many positions in Block−w(i)
and more than k2 position in S , there is at least one position that belongs to S but does
not belong to Block−w(i). Let j be such a position. Hence (j, i) ∈ Blockw. However, since
j ∈ S , Corrw,w′(j) > Corrw,w′(i). This contradicts Lemma 5.3.44. Hence k1 = k2. �

By using this lemma, we can show that the commutative degree ofA is finite whenever
there exists a constant d ∈ N such that for every finite word w produced byA and position
i ∈ Pos(w), the size of Block−w(i) and Block+

w(i) are bounded by d. In the following, we
will show such a constant d indeed exists ifA is cyclic-path-connected.

Cyclic-Path-Connected ≈ Finite Commutative Degree

First we will show that if we have a cyclic-path-connected automaton and a word over
some cyclic path i.e. a path that contains a cycle, each of the letters does not commute
with at least one letter from the cycle. To illustrate this, consider the cyclic path

p w1−−−→ q u
−−→ q w2−−−→ p′

over w = w1uw2 in some cyclic-path-connected A. Hence the word u is over a cycle. If
there is a letter in w1, u, or w2 that commutes with all other letters in u thenA is not cyclic-
path-connected: if it is in u then u is not connected, if it is in w1 = a1 . . . an, suppose at
position i, then ai . . . anu is not connected, and if it is in w2 = b1 . . . bm, suppose at position
j, then ub1 . . . b j is not connected.

Lemma 5.3.48. Let p w1−−−→ q u
−−→ q w2−−−→ r be a path in a cyclic-path-connected automaton

A. Let P1, P2, P3 ∈ Pos(w) where

P1 = {1, . . . , |w1|},

P2 = {|w1| + 1, . . . , |w1u|},
P3 = {|w1u| + 1, . . . , |w1uw2|}.

The following holds.

• For all i ∈ P1, there exists j ∈ P2 such that (i, j) ∈ Blockw.

• For all j ∈ P3, there exists i ∈ P2 such that (i, j) ∈ Blockw.

Proof. We will show the proof for the first part. The second one can be shown similarly.
Let i ∈ P1, P′1 = P1 \ {1, . . . , i}, n = |w1|, w = w1uw2, and w′ = w(i)w(i + 1) . . .w(n).
Since w′u is over a cyclic-path, w′u is connected. There exists j ∈ P′1 ∪ P2 such that
(w(i),w(j)) ∈ D. If j ∈ P2 then (i, j) ∈ Blockw. If j ∈ P′1 then by induction hypothesis,
there exists j′ ∈ P2 such that (j, j′) ∈ Blockw. Since (i, j) ∈ Blockw, we have (i, j′) ∈
Blockw. �

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 151

Let us call a path r in some automatonA a wall if for every path that is extended from
r, the letters that are read before and after r do not commute with each other.

Definition 5.3.49. A path r = p0
a1−−→ p1

a2−−→ . . . an−−→ pn over w = a1 . . . an inA is called a

wall if for every path r′ extended from r, i.e.

r′ = q w1−−−→ p0
a1−−→ . . . an−−→ pn

w2−−−→ q′

over v = w1ww2, we have (i, j) ∈ Blockv for all i ∈ {1, . . . , |w1|} and j ∈ {|w1w| +
1, . . . , |w1ww2|}.

Example 5.3.50. Consider the following automaton over Σ̂ = ({a, b}, {b, c}, {c, d}).

p0 p1

p2

p3

b

a d

c

The corresponding dependency graph of Σ̂ is G : a − b − c − d. If we consider the simple
cycle c = p1

c
−−→ p2

b
−−→ p1 then the path

p0
a
−−→ p1

c
−−→ p2

b
−−→ p1

d
−−→ p3

is extended from c. It is over w = acbd. However since (1, 4) < Blockw, the cycle c is not
a wall.

On the other hand, the cycle

r = p1
c
−−→ p2

b
−−→ p1

c
−−→ p2

b
−−→ p1

that goes through c twice, is a wall. For every path that is extended from r, every pair of
letters that are read before and after r does not commute with each other. Consider the
extended path r′ from r which is over the word v = acbcbd. The first and the last letter of
v do not commute with each other: we have (1, 6) ∈ Blockv since (1, 3), (3, 4), (4, 6) ∈ Dv.

Now let us denote with C(A) the set of simple cycles inA. By simple cycle, we mean
a path that does not visit the same state twice except the first and the last states. Formally,

C(A) = {p1
a1−−→ . . . ak−−→ pk+1 | p1 , . . . , pk and p1 = pk+1}.

For any automaton A with n states and m simple cycles, if we have a path of length n2m
then there exists a simple cycle that we have visited at least n many times. This is a simple
consequence from the fact that for every path of length n, there exists a state that has been
visited at least twice.

Proposition 5.3.51. Let A be an automaton, n = |A|, and m = |C(A)|. For every path
r in A of length n2m, there exists a simple cycle c ∈ C(A) that is visited by r at least n
many times.

Proof. Suppose r is a path of length n2m in A. Hence there exists a state q ∈ QA that is
visited at least nm + 1 many times in r. In other words, the path r visits at least nm many
cycles from q. Since every cycle is either simple or contains a simple cycle, the path r
also visits at least nm many simple cycles. Since there are only m many different simple
cycles inA, there exists a simple cycle c that is visited at least n many times in r. �

152 5.3. TOPOLOGICAL CHARACTERISATIONS

Any path r of length |A|2 · |C(A)| in some cyclic-path-connected automaton A is a
wall. The main reason is because such a path visits a simple cycle, suppose over u, at least
n = |A|many times. By Lemma 5.3.48, each letter that is read before r does not commute
with any letter from the first u and each letter that is read after r does not commute with
any letter from the last u. The letters in the first and last us, suppose at positions i1 and
in, however, do not commute with each other. This is because u is connected. There are
letters at positions i2, . . ., in−1, that occur in the second u, up to (n − 1)-th u, such that the
ones at positions i j and i j+1 are dependent on each other for all j ∈ {1, . . . , n − 1}. We
formally show this as follows.

Lemma 5.3.52. Let A be an NBA over Σ̂ = (Σ1, . . . ,Σn). If A is cyclic-path-connected
then every path of length |A|2 · |C(A)| is a wall.

Proof. Let r be a path of length |A|2 · |C(A)| and n = |A|. By Proposition 5.3.51, the path
r can be seen as

p v0−−→ q u
−−→ q v1−−→ q u

−−→ q . . . vn−−→ p′

where u is a word over a simple cycle from q. The word u occurs at least n many times in
r. If we consider a path r′ that is extended from r then r′ is over w = w1(v0uv1u . . . vn)w2

for some w1,w2 ∈ Σ∗. Let i0 and j0 be two positions that occur in w1 and w2 respectively,
i.e. i0 ∈ {1, . . . , |w1|} and j0 ∈ {|w1(v0uv1 . . . vn)| + 1, . . . , |w|}. For simplicity, let us call
the word u that occurs in between v0 and v1 the first u, the one in between v1 and v2 the
second u, and so on. Moreover for any k ∈ {1, . . . , n}, let mk be the starting position of
the k-th u, i.e. mk = |w1v0u . . . uvk−1| and let Pk be the set of positions of the k-th u, i.e.
Pk = {mk + 1, . . . ,mk + |u|}. By the first part of Lemma 5.3.48, since we can see the path
r′ as

p1
w1 v0−−−−→ q u

−−→ q v1u...vn w2−−−−−−−−→ p2,

every letter in w1 does not commute with at least one letter in the first u: there is i1 ∈ P1

such that
(i0, i1) ∈ Blockw. (5.12)

By the second part of Lemma 5.3.48, since we can also see the path r′ as

p1
w1 v0u...vn−1−−−−−−−−−→ q u

−−→ q vn w2−−−−→ p2,

every letter in w2 does not commute with at least one letter in the n-th u: there is j1 ∈ Pn

such that
(j1, j0) ∈ Blockw. (5.13)

We will show that the letters in the first and the n-th u do not commute with each other.
First note that there is a path from w(i1) to w(j1) in the dependency graph Gu since w(i1),
w(j1) ∈ Σu and the word u is connected. Moreover, there exists such a path of length less
than n since |Gu| ≤ n. Note that |Gu| ≤ n because u is a word over a simple cycle. Hence
the length, as well as, the number of different letters of u are less than n. Let us choose
i2 ∈ P2, i3 ∈ P3, . . . , in′ ∈ Pn′ , n′ ≤ n, i.e. the positions in the second u, the third u, etc.,
such that

w(i1)→ w(i2)→ w(i3)→ . . .→ w(in′)→ w(j1)

is the shortest path from w(i1) to w(j1) in the dependency graph Gu = (Σu, Eu). Since u is
connected, for all a, b ∈ Σu, (a, b) ∈ Eu implies (a, b) ∈ D. Hence

(w(i1),w(i2)), . . . , (w(in′),w(j1)) ∈ D.

CHAPTER 5. APPLICATION TO FORMAL LANGUAGES 153

Since i1 < i2 < . . . < in′ < j1, we have (i1, i2), (i2, i3), . . . , (in′ , j1) ∈ Blockw. This implies
(i1, j1) ∈ Blockw. By (5.12) and (5.13), (i0, j0) ∈ Blockw. Thus r is a wall. �

Hence if we have a cyclic-path-connected automaton A and a word w produced by
A, all letters in w do not commute with any letter that occurs in more than |A|2 · |C(A)|
positions away. In other words, each letter in w can only commute at most |A|2 · |C(A)|
positions to the left or right.

Lemma 5.3.53. Let A be a cyclic-path-connected automaton over Σ̂ = (Σ1, . . . ,Σn),
p1a1 p2 . . . ak pk+1 is a finite run onA over w = a1 . . . ak, and i ∈ Pos(w). We have

• |Block+
w(i)| ≤ |A|2 · |C(A)|

• |Block−w(i)| ≤ |A|2 · |C(A)|

Proof. Let n = |A| and m = |C(A)|. We will show this for the first part. The second part
can be shown similarly.

First note that by definition, Block+
w(i) ⊆ {i + 1, . . . , k}. Hence if k < i + n2m + 1, there

are at most k − i many positions in such a set. We have |Block+
w(i)| ≤ n2 · m.

However, if k ≥ i + n2m + 1, by Lemma 5.3.52, the paths pi+1ai+1 . . . pi+n2m+1 are walls
inA. Hence (i, j) ∈ Blockw for all j > i+n2m. This implies Block+

w(i) ⊆ {i+1, . . . , i+n2m}.
Thus, we also have |Block+

w(i)| ≤ n2 · m. �

Together with Lemma 5.3.47 this lemma shows that for any cyclic-path-connected
automaton A, the commutative degree of A is finite. Hence the reverse direction of
Theorem 5.3.42 also holds. Cyclic-path-connectedness syntactically characterises the au-
tomata with finite commutative degree.

Corollary 5.3.54. A is cyclic-path-connected iff the commutative degree ofA is finite.

Proof. The right-to-left direction holds by Theorem 5.3.42. For the other direction, sup-
pose A is cyclic-path-connected. Let d = |A|2 · |C(A)|. Moreover let r = p1a1 . . . ak pk+1

be some arbitrary finite run inA over w = a1 . . . ak and i ∈ Pos(w). By Lemma 5.3.53,

|Blockb
w(i)| ≤ d

for all b ∈ {+,−}. By Lemma 5.3.47, we have Deg+
w(i), Deg−w(i) ≤ d. Since we consider

a word w over some arbitrary run in A and position i of w, this holds for all word w
produced byA and position i of w. Hence by definition, Deg(A) ≤ d. �

By using this corollary, the characterisation of buffered simulation with bounded
buffers in Theorem 5.3.33 can be revised as follows.

Corollary 5.3.55. For any two NBA A, B in which A is cyclic-path-connected and B
is complete, A vk,...,k B for some k ∈ N iff there exists a Lipschitz continuous trace-
preserving function f : AccRun(A)→ AccRun(B).

154 5.4. SUMMARY

L(A) ⊆ [L(B)] ∃ trace-preserving (TP) f : AccRun(A)→ AccRun(B)

Avω,...,ω B ∃ continuous TP f : AccRun(A)→ AccRun(B)

Avk,...,k B ∃ Lipschitz continuous TP f : AccRun(A)→ AccRun(B)

+

A is cyclic-path-connected and B is complete
Cor. 5.3.55

Lem. 5.3.3

Thm. 5.3.16

Lem. 5.3.20

Thm. 5.2.8

Figure 5.3: Topological characterisation of buffered simulation.

5.4 Summary
We have shown that for any two NBAA, B over Σ, buffered simulation with one bounded
buffer can be used to approximate language inclusion L(A) ⊆ L(B) incrementally. We
check whether buffered simulation A vk B holds by starting from k = 0 and gradually
increasing the parameter k. Language inclusion then holds if A vk B holds for some
k ∈ N.

A similar approach also holds for approximating trace closure inclusion [L(A)] ⊆
[L(B)]. Given two NBA A, B over Σ̂ = (Σ1, . . . ,Σn), we check whether buffered simula-
tion A vκ B holds by starting from κ = (0, . . . , 0) and gradually increasing the capacity
vector κ. Trace closure inclusion then holds ifA vκ B holds for some κ ∈ Nn.

The characterisation of buffered simulation is summarised in Figure 5.3. First we have
shown that the inclusion L(A) ⊆ [L(B)], and equivalently [L(A)] ⊆ [L(B)], can be char-
acterised by the existence of a trace-preserving function f : AccRun(A) → AccRun(B).
We can lift this characterisation for buffered simulation A vω,...,ω B by considering the
existence of such a trace-preserving function f that is also continuous. Furthermore, in
the case where A is cyclic-path-connected and B is complete, we can lift the character-
isation for buffered simulation with bounded buffers, i.e. A vk,...,k B for some k ∈ N, by
considering the existence of such a trace-preserving function f that is not only continuous
but also Lipschitz continuous.

Chapter 6

Conclusion

We have studied buffered simulation, an extension of the standard fair simulation between
two Büchi automata where Duplicator is allowed to store the letters that are read by
Spoiler to the buffers before she executes them in her structure. The possibility to use
buffers allows Duplicator to have a preview of Spoiler’s moves. She can mimic Spoiler’s
run more accurately than in the standard fair simulation.

Buffered simulation with one buffer approximates language inclusion better than stan-
dard simulation. We can even use it to incrementally approximate language inclusion.
In the case where multiple buffers are involved, buffered simulation approximates trace
closure inclusion, a more general problem than language inclusion which models the veri-
fication problem of concurrent systems. We can also use buffered simulation with multiple
buffers to incrementally approximate trace closure inclusion.

The computational complexity of solving buffered simulation varies depending on the
number of the buffers and their sizes. It ranges from PTIME, in the case where all buffers
are bounded, to somewhere between BΣ1

1 and ∆1
2 in the analytical hierarchy, in the case

where some buffers are unbounded. There are also some special cases of buffered sim-
ulation in which the complexities are complete for the classes EXPTIME and PSPACE.
This wide span of complexity classes can be seen as an indication of the richness of the
framework.

We justify the framework of buffered simulation theoretically by showing a character-
isation with the notion of continuity from topology. Buffered simulation in general can
be characterised by the existence of a continuous function that witnesses trace closure or
language inclusion. This charaterisation then allows us to classify pairs of automata in
which their language or trace closure inclusion can be shown with buffered simulation.
The characterisation can even be refined for the case where all buffers are bounded by
considering the existence of such a function that is also Lipschitz continuous. The refined
characterisation, however, only holds for some restricted class of automata namely the
cyclic-path-connected automata.

In the following, we list some open problems regarding buffered simulation.

Buffered Simulation on Other ω-Regular Automata. In this work, we only have con-
sidered buffered simulation between two Büchi automata. One possible further work is
to consider buffered simulation on other ω-regular automata such as generalised Büchi,
parity, Rabin, Street, or Muller automata. One may get tempted to solve such a simula-
tion by first translating the automata to Büchi automata by using a standard translation
such as the one in [GTW02]. For example, consider a parity automatonA with priorities

155

156

A

b

a

b

ba

A0

A2

B

a, b

b b

a, b
b

a

b

ba

B0

B2

Figure 6.1: Translation of parity automataA, B to Büchi automata.

{0, 1, . . . , n} and the standard translation in [GTW02]. We then obtain a Büchi automaton
A′ from A by adding m copies of A: A0,A2, . . .Am where from the original part of
A, we can choose non-deterministically to continue to either A0,A2, . . . , or Am. Each
automaton Ai consists of states with priority at most i. Moreover in Ai, the states with
priority i are considered to be accepting. Now consider the simulation problem on these
translated automata. It turns out that such a translation is not faithful, even with respect
to fair simulation. To exemplify this, consider the pair of parity automata A (left) and B
(right) as follows.

2 0

b

a

a b

1

2 1

0

a, b

b

a

a

a

b

b

a, b

Both of the automata are universal. They accept all infinite words over a and b. Consider
their translations to Büchi automataA′, B′ that are given in Figure 6.1. In this case, if we
consider the fair simulation game betweenA′, B′ then Duplicatorwins. She simply stays
and moves accordingly in B if Spoiler stays inA. She moves to B0 or B2 only if Spoiler
moves toA0 orA2, respectively. Duplicator, however, loses the standard fair simulation
game in the original automata A, B. This is because at one point she has to reveal the
even priority that she will see infinitely often. If Duplicator chooses 2 then Spoiler can
continue by reading bω and if Duplicator chooses 0 then Spoiler can continue by reading
aω. Hence Duplicator loses for not producing an accepting run. This shows that the
translation, even though it preserves the language, does not preserve non-simulation.

Hence we first need to find a faithful translation to Büchi automata that also preserves
simulation. Alternatively, we can also try to solve simulation between various ω-regular
automata directly without translating them first to Büchi automata.

CHAPTER 6. CONCLUSION 157

Practical Implementation of Buffered Simulation. In Chapter 5, we have seen that
bounded buffered simulation can be used to approximate language and trace closure in-
clusion incrementally. The incremental algorithm basically starts with some small vector
capacity κ ∈ N+ and then checks buffered simulation successively by increasing κ. For
each buffered simulation with a fixed capacity κ ∈ N+, we can reduce it to a parity game
with three priorities.

It is then interesting to see how this works in practice. One possible further work
is to implement the incremental algorithm by using some parity game solver as a back-
end. For example, we can use PGSolver [FL09] or Oink [vD18] that already implement
various algorithms for solving parity games. We then compare the implementation of
buffered simulation with other approximation methods such as the incremental algorithm
induced by the multi-pebble simulation or the flushing variants. We might also compare
them with some complete approximation methods such as the ones that are based on
complementation [SVW87], rank-based method [FKWV13, Sch09], or Ramsey based
method [ACC+11, ACC+10, FV10].

An Upper Bound for Incremental Approximation. Recall that the incremental ap-
proximation for language and trace closure inclusion given in Chapter 5 might not termi-
nate. If we consider two NBAA, B over Σ̂ = (Σ1, . . . ,Σn) where for any κ ∈ Nn,A @κ B,
then the algorithm runs forever. Unlike the incremental approximation induced by multi-
pebble simulation, we do not have an upper bound κ0 ∈ N

n that tells us to stop increasing
the capacity vector κ.

It is then interesting to know whether such a bound exists, i.e. whether there is κ0 ∈ N
n

such that if A @κ0 B then A @κ B for all κ > κ0. Having such an upper bound κ0 will
give us a terminating incremental approximation since increasing κ further will not make
the approximation for language or trace closure inclusion any better. We can stop the
algorithm when κ reaches κ0.

Undecidability ofvκ
Flush

. In this work, we have shown that deciding buffered simulation
for the general case is highly undecidable. Given two NBA A, B over Σ̂ = (Σ1, . . . ,Σn)
and a vector capacity κ ∈ (N ∪ {ω})n, the problem of deciding A vκ B is highly unde-
cidable. One possible further work is to consider its flushing variant. Intuitively, solving
the flushing variant of buffered simulation should be easier than the general case since
Duplicator’s moves are more restricted. She is required to empty the entire buffer every
time she decides to move. In the case of one buffer, the flushing variant has a slightly
better complexity. Deciding A vω B and A vωFlush B are respectively EXPTIME and
PSPACE-complete.

It is reasonable to ask whether this also holds in the general case, whether deciding the
flushing variantAvκFlush B is easier than decidingAvκ B. In Section 4.4, we have shown
that decidingA vκ B is highly undecidable by a reduction from the recurrent octant tiling
problem. However, we cannot use the same technique for the flushing variant since the
reduction heavily relies on Duplicator’s ability to constantly keep some content in the
buffer, namely the tiling of the last row. Hence it would also be interesting to see whether
deciding the flushing variant A vκFlush B is still decidable or ”less“ undecidable than the
general case.

Buffered Simulation on Non-ω-Regular Automata. Besides considering buffered sim-
ulation between automata that recognise regular languages, we can also consider buffered

158

simulation between two automata that recognise non-regular languages such as push-
down automata or visibly pushdown automata. Pushdown automata are automata with
a stack [HU67, HMU06]. They recognise the class of context-free languages. Visibly
pushdown automata on the other hand are more restricted [AM04, AM09]. They are
pushdown automata in which we cannot push and pop the stack with the same input let-
ter. They recognise the class of visibly context-free languages which is strictly included
in the context-free languages. Deciding language inclusion between pushdown automata
over finite words is known to be undecidable and the one between visibly pushdown au-
tomata is EXPTIME-complete [Löd14, AM04].

Similarly to the case of regular languages, we can also consider pushdown and visi-
bly pushdown automata for infinite words. The complexity result of deciding language
inclusion in the finite case can be lifted to the infinite case. Deciding language inclusion
between pushdown automata over infinite words is undecidable and the one between visi-
bly pushdown automata is EXPTIME-complete [AM04]. Moreover, solving the standard
fair simulation between pushdown automata as well as visibly pushdown automata over
infinite words is also EXPTIME-complete [KM02, Srb06].

Now if we consider buffered simulation with a single bounded buffer between two
visibly pushdown automata over infinite words, it is not hard to see that the problem is
also decidable in EXPTIME. We can reduce it to a parity game on a pushdown system.
We model the stacks that are produced by Spoiler and Duplicator, whose heights differ
by at most k + 1, as one stack. The EXPTIME-hardness then follows from the standard
fair simulation between visibly pushdown automata.

Nevertheless, if we consider an unbounded buffer, it is not obvious anymore whether
buffered simulation between visibly pushdown automata is still decidable. The height
difference between Spoiler’s and Duplicator’s stacks is unbounded. Note that in the case
of pushdown automata, buffered simulation with an unbounded buffer is undecidable.
This is because simulation with an unbounded buffer captures language inclusion for fi-
nite words. Duplicator simply can wait until Spoiler produces a word in its full length
before she moves. Since language inclusion between two pushdown automata for finite
words is undecidable, buffered simulation with an unbounded buffer between pushdown
automata for infinite words is also undecidable. However this might not be the case for
visibly pushdown automata. Deciding language inclusion between two visibly pushdown
automata for finite words is still decidable. Thus deciding simulation with an unbounded
buffer between two visibly pushdown automata over infinite words might be still decid-
able. We first can ask whether the technique using the lasso game as in Section 4.3 can be
extended to the case of visibly pushdown automata.

Application of Cyclic-Path-Connected Property. In Section 5.3, we have seen a re-
stricted class of automata, namely cyclic-path-connected automata. If an automaton is
cyclic-path-connected then there exists a bound k ∈ N such that for every word over a
finite run, each of its letters does not commute more than k steps. This property might
have an application in some other area than buffered simulation. For example, it might be
useful in the area of Message Sequence Graphs (MSG) that is used to model the spec-
ification of communication between a system and its environment by means of message
interchange [GR93, DH99]. In [MP99], it is shown that by restricting an MSG to be loop-
connected, two undecidable problems concerning the correctness and consistency become
decidable, namely in EXPSPACE. The reason is because a loop-connected MSG only al-
lows local synchronisation instead of global synchronisation. Now if we consider a more

CHAPTER 6. CONCLUSION 159

restricted property such as cyclic-path-connected then a cyclic-path-connected MSG intu-
itively only allows bounded local synchronisation. Thus one reasonable question is to ask
whether by restricting the MSG to be cyclic-path-connected, this would give us a better
complexity than EXPSPACE for such problems concerning correctness and consistency.

Index

C(A), see simple cycle
L(A), see language
Vε , 79
Γ-game, 130
Σ, see alphabet
Σ∗, 13
Σ+, 13
Σ∞, 13
Σw, 13
Block, see block relation
BΣ1

1, 114
prefix(w), see prefix
suffix(w), see suffix
Pos(w), see positions
∼, 124
vk

Full, 47
vk

One, 46
WinS, 79

WinS0, 80
WinSi+1, 81

shor, 78
sver, 78
Acheck, 110
Bcheck, 110
Deg, see commutative degree
≈, 92
vk

FFlush, 50
vk

Flush, 48
vκ, 62
vk, 42
2EXPTIME, see complexity

alphabet, 13
distributed alphabet, 61
independence alphabet, 125

attractors, 81
automata, see automaton
automaton, 17, 19

ω-automaton, 17
Büchi automaton, 19
deterministic automaton, 17

finite automaton, 17
generalised Büchi automaton, 23
parity automaton, 23

block relation, 147
buffered simulation, 41

with multiple buffers, 61
with one buffer, 41

capacity vector, 61
commutative degree, 139

finite commutative degree, 140
infinite commutative degree, 140

complexity, 14
configuration graph, 24
continuous function, 129
correspondence relation, 137
cyclic-path-connected, 146

decidability, 14
decision problem, 14
delay function, 37

constant delay function, 38
delay simulation, 37
dependence relation, 125
dependency graph, 125
deterministic, see automaton
distance, 128
dynamic k-letter simulation, 32

EXPTIME, see complexity

fair simulation , see simulation
flushing, 48
flushing variant

full-flushing variant, 50
formal language, see language

game, 24
GNBA, see automaton

independence relation, 125
infinite two-player game, see game

160

INDEX 161

labeled transition system, see LTS
language, 13

ω-language, 13
language ofA, 17
regular language, 13

language inclusion, 18, 22
lasso, 94

accepting lasso, 94
lasso game, 98
proper lasso, 94

letters, 13
Lipschitz constant, 135
Lipschitz continuous, 135
loop-connected, 146
LTS, 25

memoryless determinacy, 25
message sequence graph, 158
MSG , see message sequence graph
multi-pebble simulation, 35

NBA, see automaton
non-deterministic, see deterministic
NPSPACE, see complexity

play, 24
positions, 13
Post Correspondence Problem, 14
prefix, 13
projection, 61
proper, 93
proper equivalence class, 21
PSPACE, see complexity
PTIME, see complexity
pushdown automata, 158

visibly pushdown automata, 158

Ramsey’s theorem, 21
run, 17

accepting run, 17

simple cycle, 151
simulation, 25
simulation game, 27
static k-letter simulation, 29
strategy, 24

memoryless winning strategy, 25
winning strategy, 24

suffix, 13

tiling, 16

corridor tiling, 16
octant tiling, 16
recurrent tiling, 17
unbounded tiling, 16

tiling problem, 16
corridor tiling problem, 16
octant tiling problem, 16
recurrent tiling problem, 17
unbounded tiling problem, 16

tiling system, 16
trace, 125

finite trace, 125
infinite trace, 125
trace closure, 125

trace equivalent, 124
trace-preserving function, 128
transition profile, 20

wall, 151
winning condition, 24

delay, 26
direct, 26
fair, 26

word, 13
accepted word, 17
connected word, 143
finite word, 13
infinite word, 13

Bibliography

[ABH+08] P. A. Abdulla, A. Bouajjani, L. Holı́k, L. Kaati, and T. Vojnar. Computing
simulations over tree automata. In C. R. Ramakrishnan and J. Rehof, edi-
tors, Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, pages 93–108. Springer, 2008.

[ACC+10] P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Holı́k, C.-H. Hong, R. Mayr,
and T. Vojnar. Simulation subsumption in Ramsey-based Büchi automata
universality and inclusion testing. In T. Touili, B. Cook, and P. Jackson, edi-
tors, Proceedings of the 22nd International Conference on Computer Aided
Verification, CAV’10, pages 132–147. Springer, 2010.

[ACC+11] P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Holı́k, C.-H. Hong, R. Mayr, and
T. Vojnar. Advanced Ramsey-based Büchi automata inclusion testing. In J.-
P. Katoen and B. König, editors, Proceedings of the 22nd International Con-
ference on Concurrency Theory, CONCUR’11, pages 187–202. Springer,
2011.

[AM04] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceeding
of the 36th Symposium on Theory of Computing, STOC’04, pages 202–211.
ACM, 2004.

[AM09] R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of
the ACM, 56(3):16:1–16:43, 2009.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley Longman Publishing Co., Inc., 1986.

[BF84] C. Burks and D. Farmer. Towards modeling DNA sequences as automata.
Physica D: Nonlinear Phenomena, 10(1):157 – 167, 1984.

[BG03] D. Bustan and O. Grumberg. Simulation-based minimization. ACM Trans-
actions on Computational Logic, 4(2):181–206, 2003.

[BGG97] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem.
(Perspectives in Mathematical Logic). Springer, 1997.

[Bir93] J.-C. Birget. State-complexity of finite-state devices, state compressibility
and incompressibility. Mathematical systems theory, 26(3):237–269, 1993.

[Boa97] P. V. E. Boas. The convenience of tilings. In A. Sorbi, editor, Complexity,
Logic, and Recursion Theory, pages 331–363. Marcel Dekker Inc, 1997.

162

BIBLIOGRAPHY 163

[Büc62] J. R. Büchi. On a decision method in restricted second order arithmetic.
In E. Nagel, P. Suppes, and A. Tarski, editors, Proceedings of the 1st In-
ternational Congress on Logic, Methodology and Philosophy of Science,
LMPS’60, pages 1–11. Stanford University Press, 1962.

[CF05] G. Cécé and A. Finkel. Verification of programs with half-duplex commu-
nication. Information and Computation, 202(2):166–190, 2005.

[Chl86] B. S. Chlebus. Domino-tiling games. Journal of Computer and System
Sciences, 32(3):374–392, 1986.

[CL87] M. Clerbout and M. Latteux. Semi-commutations. Information and Com-
putation, 73(1):59–74, 1987.

[CM13] L. Clemente and R. Mayr. Advanced automata minimization. In Proceeding
of the 40th Symposium on Principles of Programming Languages, POPL’13,
pages 63–74. ACM, 2013.

[DH99] W. Damm and D. Harel. LSCs: Breathing life into message sequence charts.
In Proceeding of the 3rd IFIF International Conference on Formal Methods
for Open Object-Based Distributed Systems, FMOODS’99. Kluwer, 1999.

[DHWT92] D. L. Dill, A. J. Hu, and H. Wong-Toi. Checking for language inclusion
using simulation relations. In Proceeding of the 3rd International Workshop
on Computer Aided Verification, CAV’91, pages 255–265. Springer, 1992.

[DR95] V. Diekert and G. Rozenberg. The Book of Traces. World Scientific Publish-
ing Co., Inc., 1995.

[DR09] L. Doyen and J.-F. Raskin. Antichains for the automata-based approach to
model-checking. Logical Methods in Computer Science, 5(1), 2009.

[EH00] K. Etessami and G. J. Holzmann. Optimizing Büchi automata. In Pro-
ceeding of the 11th International Conference on Concurrency Theory, Con-
cur’00, pages 153–167. Springer, 2000.

[EJ91] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy.
In Proceedings of the 32nd Annual Symposium on Foundations of Computer
Science, SFCS ’91, pages 368–377. IEEE Computer Society, 1991.

[Ete02] K. Etessami. A hierarchy of polynomial-time computable simulations for
automata. In Proceeding of the 13th International Conference on Concur-
rency Theory, CONCUR’02, pages 131–144. Springer, 2002.

[EWS01] K. Etessami, T. Wilke, and R. A. Schuller. Fair simulation relations, parity
games, and state space reduction for Büchi automata. In Proceedings of the
28th International Colloquium on Automata, Languages and Programming,
ICALP ’01, pages 694–707. Springer-Verlag, 2001.

[Fin12] O. Finkel. Three applications to rational relations of the high undecidability
of the infinite post correspondence problem in a regular ω-language. In-
ternational Journal of Foundations of Computer Science, 23(7):1481–1498,
2012.

164 BIBLIOGRAPHY

[FKWV13] S. Fogarty, O. Kupferman, T. Wilke, and M. Y. Vardi. Unifying Büchi
complementation constructions. Logical Methods in Computer Science,
9(1):248–263, 2013.

[FL09] O. Friedmann and M. Lange. Solving parity games in practice. In Proceed-
ing of the 7th International Symposium on Automated Technology for Verifi-
cation and Analysis, ATVA ’09, pages 182–196. Springer-Verlag, 2009.

[FV09] S. Fogarty and M. Y. Vardi. Büchi complementation and size-change ter-
mination. In Proceeding of the 15th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS ’09, pages
16–30. Springer-Verlag, 2009.

[FV10] S. Fogarty and M. Y. Vardi. Efficient Büchi universality checking. In
Proceeding of the 16th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’10, pages 205–220.
Springer-Verlag, 2010.

[FW05] C. Fritz and T. Wilke. Simulation relations for alternating Büchi automata.
Theoretical Computer Science, 338(1):275 – 314, 2005.

[GBS02] S. Gurumurthy, R. Bloem, and F. Somenzi. Fair simulation minimization. In
Proceeding of the 14th International Conference on Computer-Aided Verifi-
cation, CAV’02, pages 610–624. Springer, 2002.

[GR93] J. Grabowski and E. Rudolph. Message Sequence Chart (MSC) - A Survey
of the new CCITT Language for the Description of Traces within Commu-
nication Systems. CCITT, pages 30–48, 1993.

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata Logics, and Infinite
Games: A Guide to Current Research. Springer-Verlag New York, Inc.,
2002.

[Har85] David Harel. Recurring dominoes: Making the highly undecidable highly
understandable. In Selected Papers of the International Conference on
”Foundations of Computation Theory” on Topics in the Theory of Compu-
tation, pages 51–71. Elsevier North-Holland, Inc., 1985.

[HHK+16a] M. Hutagalung, N. Hundeshagen, D. Kuske, M. Lange, and É. Lozes. Multi-
buffer simulations for trace language inclusion. In Proceedings of the 7th
International Symposium on. Games, Automata, Logics and Formal Verifi-
cation, GandALF’16, pages 213–227, 2016.

[HHK+16b] M. Hutagalung, N. Hundeshagen, D. Kuske, M. Lange, and É. Lozes. Two-
buffer simulation games. In Proceedings Cassting Workshop on Games for
the Synthesis of Complex Systems and 3rd International Workshop on Syn-
thesis of Complex Parameters, Cassting/SynCoP’16, pages 27–38, 2016.

[HHK+18] M. Hutagalung, N. Hundeshagen, D. Kuske, M. Lange, and É. Lozes. Multi-
buffer simulations: Decidability and complexity. Inf. Comput., 262(2):280–
310, 2018.

BIBLIOGRAPHY 165

[HKR02] T. A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simulation. Infor-
mation and Computation, 173(1):64–81, 2002.

[HKT10] M. Holtmann, L. Kaiser, and W. Thomas. Degrees of lookahead in reg-
ular infinite games. In Proceedings of the 13th International Conference
on Foundations of Software Science and Computational Structures, FOS-
SACS’10, pages 252–266. Springer, 2010.

[HL11] Martin Hofmann and Martin Lange. Automatentheorie und Logik. eXa-
men.press. Springer, 2011.

[HLL13] M. Hutagalung, M. Lange, and E. Lozes. Revealing vs. concealing: More
simulation games for Büchi inclusion. In Proceeding of the 7th International
Conference on Language and Automata Theory and Applications, LATA’13,
pages 347–358. Springer, 2013.

[HLL14] M. Hutagalung, M. Lange, and E. Lozes. Buffered simulation games for
Büchi automata. In Proceedings 14th International Conference on Automata
and Formal Languages, AFL’14, pages 286–300, 2014.

[HMU06] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata The-
ory, Languages, and Computation (3rd Edition). Addison-Wesley Longman
Publishing Co., Inc., 2006.

[Hol04] G. J. Holzmann. The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004.

[HU67] J.E. Hopcroft and J.D. Ullman. Nonerasing stack automata. Journal of
Computer and System Sciences, 1(2):166 – 186, 1967.

[Hut17] M. Hutagalung. Topological characterisation of multi-buffer simulation.
In Proceedings of the 11th International Workshop Reachability Problems,
RP’17, pages 101–117. Springer, 2017.

[Jap94] G. Japaridze. The logic of arithmetical hierarchy. Annals of Pure and Ap-
plied Logic, 66:89–112, 1994.

[Jur00] M. Jurdziński. Small progress measures for solving parity games. In H. Re-
ichel and S. Tison, editors, Proceeding of the 17th Symposium on Theoret-
ical Aspects of Computer Science, volume 1770 of LNCS, pages 290–301.
Springer, 2000.

[Kec95] A.S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathe-
matics. Springer-Verlag, 1995.

[KK94] R. M. Kaplan and M. Kay. Regular models of phonological rule systems.
Computational Linguistics, 20(3):331–378, 1994.

[Kle56] S. C. Kleene. Representation of events in nerve nets and finite automata. In
C. Shannon and J. McCarthy, editors, Automata Studies, pages 3–41. Prince-
ton University Press, 1956.

166 BIBLIOGRAPHY

[KM02] A. Kucera and R. Mayr. Simulation preorder over simple process algebras.
Information and Computation, 173(2):184–198, 2002.

[Koc09] C. Koch. Applications of automata in XML processing. In S. Maneth, editor,
Implementation and Application of Automata, pages 2–2. Springer, 2009.

[Koz97] D. C. Kozen. Automata and Computability. Springer-Verlag New York, Inc.,
1st edition, 1997.

[LJBA01] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle
for program termination. In Proceeding of the 28th ACM Symposium on
Principles of Programming Languages, pages 81–92. ACM, 2001.

[LK93] C. L. Lucchesi and T. Kowaltowski. Applications of finite automata repre-
senting large vocabularies. Software: Practice and Experience, 23(1):15–30,
1993.

[Löd14] C. Löding. Decision problems for deterministic pushdown automata on infi-
nite words. In Proceeding of the 14th International Conference on Automata
and Formal Languages, AFL’14, pages 55–73, 2014.

[Maz77] Antoni Mazurkiewicz. Concurrent program schemes and their interpreta-
tions. DAIMI Report Series, 6(78), 1977.

[Maz89] A. W. Mazurkiewicz. Basic notions of trace theory. In Linear Time, Branch-
ing Time, and Partial Order in Logics and Models for Concurrency, volume
354, pages 285–363. Springer, 1989.

[Mil71] R. Milner. An algebraic definition of simulation between programs. In Pro-
ceeding of the 2nd International Joint Conference on Artificial Intelligence,
pages 481–489. British Computer Society, 1971.

[Mos80] Y. N. Moschovakis. Descriptive Set Theory. Elsevier Science Limited, 1980.

[MP99] A. Muscholl and D. Peled. Message sequence graphs and decision problems
on Mazurkiewicz traces. In M. Kutyłowski, L. Pacholski, and T. Wierzbicki,
editors, Proceeding of the 24th International Symposium on Mathematical
Foundations of Computer Science, MFCS’99, pages 81–91. Springer, 1999.

[MS73] A. R. Meyer and L. J. Stockmeyer. Word problems requiring exponen-
tial time. In Proceeding of the 5th Symposium on Theory of Computing,
STOC’73, pages 1–9. ACM, 1973.

[MSB+16] P. Metzler, H. Saissi, P. Bokor, R. Hesse, and N. Suri. Efficient verification
of program fragments: Eager POR. In Proceeding of the 14th International
Symposium Automated Technology for Verification and Analysis, ATVA’16,
pages 375–391, 2016.

[NNH99] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., 1999.

[Pap94] C. M. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

BIBLIOGRAPHY 167

[Pos46] E. Post. A variant of a recursively unsolvable problem. Bulletin of the
American Mathematical Society, 53:264–268, 1946.

[PP04] J.-E. Pin and D. Perrin. Infinite Words: Automata, Semigroups, Logic and
Games. Elsevier, 2004.

[Ram30] F. P. Ramsey. On a problem of formal logic. Proceedings of the London
Mathematical Society, s2-30(1):264–286, 1930.

[RJ87] H. Rogers Jr. Theory of Recursive Functions and Effective Computability.
MIT Press, 1987.

[Ros81] J. G. Rosenstein. Linear Orderings. Pure and applied mathematics. Elsevier,
1981.

[RS59] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3(2):114–125, 1959.

[Saf88] S. Safra. On the complexity of omega-automata. In Proceeding of the 29th
Symposium on Foundations of Computer Science, pages 319–327. IEEE
Computer Society, 1988.

[Sak92] J. Sakarovitch. The ”last” decision problem for rational trace languages. In
Proceeding of the 1st Latin American Symposium on Theoretical Informat-
ics, LATIN’92, pages 460–473. Springer, 1992.

[Sav70] W. J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences, 4(2):177–192,
1970.

[Sch07] T. Schwentick. Automata for XML-a survey. Journal of Computer and
System Sciences, 73(3):289–315, 2007.

[Sch09] S. Schewe. Büchi complementation made tight. In S. Albers and J.-Y.
Marion, editors, Proceeding of the 26th International Symposium on The-
oretical Aspects of Computer Science, STACS’09, pages 661–672. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2009.

[Sip96] M. Sipser. Introduction to the Theory of Computation. International Thom-
son Publishing, 1st edition, 1996.

[Srb06] J. Srba. Visibly pushdown automata: From language equivalence to simula-
tion and bisimulation. In Z. Ésik, editor, Proceeding of the 20th Internation
Workshop on Computer Science Logic, CSL’06, pages 89–103. Springer,
2006.

[SS78] W. J. Sakoda and M. Sipser. Nondeterminism and the size of two way fi-
nite automata. In Proceeding of the 10th ACM Symposium on Theory of
Computing, pages 275–286. ACM, 1978.

[SVW87] A. P. Sistla, M. Y. Vardi, and F. Wolper. The complementation problem for
Büchi automata with applications to temporal logic. Theoretical Computer
Science, 49(2):217 – 237, 1987.

168 BIBLIOGRAPHY

[Tho90] W. Thomas. Automata on infinite objects. In Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), pages 133–192.
1990.

[TPKC07] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik. Privacy preserving
error resilient DNA searching through oblivious automata. In Proceeding
of the 14th ACM Conference on Computer and Communications Security,
pages 519–528. ACM, 2007.

[Var96] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In
F. Moller and G. Birtwistle, editors, Logics for Concurrency: Structure ver-
sus Automata, pages 238–266. Springer, 1996.

[vD18] Tom van Dijk. Oink: An implementation and evaluation of modern parity
game solvers. In Tools and Algorithms for the Construction and Analysis of
Systems - 24th International Conference, TACAS 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I, pages
291–308, 2018.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification (preliminary report). In Proceeding of the 1st Sympo-
sium on Logic in Computer Science, LICS’86, pages 332–344. IEEE, 1986.

[VW94] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Informa-
tion and Computation, 115(1):1–37, 1994.

[Wan60] H. Wang. Proving theorems by pattern recognition I. Communications of
the ACM, 3(4):220–234, 1960.

[Yan08] Q. Yan. Lower bounds for complementation of omega-automata via the full
automata technique. Logical Methods in Computer Science, 4(1), 2008.

[Zie87] W. Zielonka. Notes on finite asynchronous automata. RAIRO - Theoreti-
cal Informatics and Applications - Informatique Théorique et Applications,
21(2):99–135, 1987.

	Introduction
	Preliminaries
	Formal Languages
	Decision Problems
	Complexity Classes
	Undecidability Degree
	Tiling Problems

	Automata
	Finite Automata
	-Automata

	Infinite Games
	Simulation
	Extended Simulations
	Static Multi-Letter Simulation
	Dynamic Multi-Letter Simulation
	Multi-Pebble Simulation
	Delay Simulation

	Buffered Simulation
	Simulation with One Buffer
	The Flushing Variant
	Relation to Other Simulations
	Static Multi-Letter Simulation
	Dynamic Multi-Letter Simulation
	Multi-Pebble Simulation
	Delay Simulation

	Simulation with n 1 Buffers
	Expressive Power

	Decidability and Complexity
	Simulation with One Bounded Buffer
	Simulation with n 1 Bounded Buffers
	Simulation with One Unbounded Buffer
	The Flushing Variant
	Lower Bound for Deciding
	Upper Bound for Deciding

	Simulation with n 1 Unbounded Buffers
	01- and 11- Hardness
	01- and 11- Hardness
	B11-Hardness
	Membership in 12 12

	Summary

	Application to Formal Languages
	The Language Inclusion Problem
	Incremental Approximation
	Comparison

	The Trace Closure Inclusion Problem
	Mazurkiewicz Traces
	Incremental Approximation

	Topological Characterisations
	Characterisation of ,…,
	Characterisation of k,…,k
	Cyclic-Path-Connected Automata

	Summary

	Conclusion

