
Hybrid Branching-Time Logics

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

Vorgelegt im
Fachbereich Elektrotechnik/Informatik

der Universität Kassel

von
Daniel Kernberger

Kassel, Juli 2019

Erstgutachter: Prof. Dr. Martin Lange
Zweitgutachter: Prof. Dr. Thomas Schneider
Tag der Disputation: 31.10.2019

ii

Abstract

In formal verification we are interested to prove that a given system works
correctly with respect to some underlying property. This is usually done by
checking if a mathematical model of this system satisfies a logical formula
that specifies this property.
Modal and temporal logics – and especially branching-time logics ranging
from CTL over CTL∗ up to the modal µ-calculus – have become a well-
known logical formalism for this task over the last few decades. Formulas in
branching-time logics like CTL and CTL∗ are easy to understand and to use
and have a well-developed model theory with connections to tree automata.
The latter enables conceptually simple decision procedures. The modal µ-
calculus is more involved and not as easy to understand but makes up for this
with its immense expressive power which even subsumes CTL∗ and many
other branching-time logics and its decision procedures with astonishingly
low complexities.
One reason for their well-developed theory is that all these logics are invari-
ant under bisimulation. This property has enabled many decision procedures
through the use of tree automata for satisfiability checking and model check-
ing. However, it also limits the expressive power of all these branching-time
logics in the same way. For example cycle detection, which is useful to test if
a system can possibly get stuck in an infinite loop, or other similar properties
cannot be tested with these logics.
This has led to numerous extensions of branching-time logics over the years
that enriched these logics with specifically suited operators for the task at
hand. One specific framework to extend such logics – which over the last
one or two decades has been used to extend numerous logics, not only modal
and temporal ones – are hybrid logics. This framework borrows ideas from
first-order logic to enable more precise “structural” reasoning.
The idea for this framework is that some states in a system might be very
important and should be easily identifiable. For example there might be some
point in the system that absolutely needs to be executed in each computation
or there is some point in the system that enables a deadlock and that should
therefore never be reached etc. To highlight or identify such states, hybrid
logics add the possibility to name these states and also identify them. Thus,
essentially constants and variables similar to the same concepts in first-order
logic are added together with a (restricted) way of manipulating them.
Early ideas for such a hybrid framework originated with Prior and Bull in
the 1950’s and 1970’s. But the evolution of the hybrid framework used in
this thesis dates back to the late 1990’s and early 2000’s to a series of papers
by Goranko and has since been used to extend many modal and temporal

iii

but also some other related logics. The hybrid framework has proven to be
quite powerful in its expressive power when added to a logic.
We add this hybrid framework systematically to the branching-time logics
CTL, CTL+, FCTL+, CTL∗ and the modal µ-calculus, study the decision
procedures of these new hybrid branching-time logics and develop their model
theory based on the already well-established model theory of the underlying
branching-time logics. We start in Chapter 3 by defining these new hybrid
logics and giving them a proper semantics. We also discuss various challenges
that arise when adding the hybrid framework to branching-time logics.
Chapter 4 and 5 then deal with the model theory. We introduce a suitable
notion of bisimulation that provides an upper bound for the expressive power
of (most) hybrid logics presented in this thesis and develop several tools
and techniques like Ehrenfeucht-Fräıssé Games that help us to establish and
complete a picture of the relationships between these logics in terms of their
expressive power.
Chapter 6 then deals with the model checking problem, i.e. the problem of
checking if a mathematical model of a system given as a Kripke structure
satisfies a property specified in one of these hybrid logics. We present a
comprehensive analysis of this problem for all introduced hybrid logics with
model checking algorithms and matching lower bounds showing that our
algorithms are optimal. We also identify some fragments with lower model
checking complexities.
The last chapter then deals with the satisfiability problem. Generally speak-
ing, the hybrid framework mostly leads to undecidable satisfiability problems.
We present an alternative undecidability proof that even works for the most
basic hybrid logic considered in this thesis – hybrid CTL, even if the Next-
operator is left our. We then continue to identify some decidable fragments.

iv

Publications

Parts of this thesis have already been published in peer reviewed conference
proceedings or journals. The publications – listed in chronological order –
are:

[53] D. Kernberger and M. Lange. Model checking for the full hybrid compu-
tation tree logic. In Proc. 23rd Int. Symp. on Temporal Representation
and Reasoning, TIME’16, pages 31–40. IEEE Computer Society, 2016.

[54] D. Kernberger and M. Lange. The fully hybrid mu-calculus. In Proc.
24th Int. Symp. on Temporal Representation and Reasoning, TIME’17,
volume 90 of LIPIcs, pages 17:1–17:16. Dagstuhl-Leibniz-Zentrum, 2017.

[55] D. Kernberger and M. Lange. Model checking for hybrid branching-
time logics. Journal of Logical and Algebraic Methods in Programming,
2018.

[56] D. Kernberger and M. Lange. On the expressive power of hybrid
branching-time logics. In 25th International Symposium on Temporal
Representation and Reasoning, TIME 2018, pages 16:1–16:18, 2018.

Also, the following journal version which is due to appear later this year is
also worth mentioning:

[57] D. Kernberger and M. Lange. On the expressive power of hybrid
branching-time logics. Theoretical Computer Science, 2019. Submitted
for publication.

The following account gives a detailed description which parts of this thesis
have already been published in one of the above mentioned papers. Addi-
tionally the main contributions of the co-authors are mentioned.
First of all, all publications cover parts of Chapter 3 which introduces the
hybrid logics that are the main topic of this thesis.

[53]/[55] contain the first results on model checking that can also be found in
Sections 6.1.1-6.1.3 and 6.2.1-6.2.3. However, [55] massively improves
upon these first results by also studying other logics and a more detailed
analysis. The results presented in Sections 6.1.1-6.1.3 have been pub-
lished in [55]. Sections 6.2.1, 6.2.2 and 6.2.3 are also covered in [55] but
have been expanded with more details on the involved constructions.

[54] covers the logic presented and discussed in Section 3.5 as well as the
results from Sections 4.2 and 4.3. Also, as a first application of the
results, Theorem 5.35 was first presented in this publication.

v

[56]/[57] contain in most parts the same results. However [57] corrects some
minor mistakes first made in [56] and features some more in-depth
proofs. Both cover mostly Section 5.2 as well as the definition of the
EF-games in Section 5.1 and Theorem 5.5. Theorem 5.16 has been
slightly rewritten to cover some of the corrections made in [57].

vi

Acknowledgements

First, I would like to thank my supervisor Martin Lange. For the last five
years his guidance and support helped me immensely. He not only gave
me the freedom and time to choose the right topic but also helped a lot
in shaping this thesis. Out of every discussion with him arose new ideas
or alternative perspectives that helped me in solving many problems and –
often more importantly – countless new questions so that the possibilities for
further research never ceased.
Secondly, I want to thank Prof. Dr. Thomas Schneider for agreeing to referee
this thesis.
I would also like to thank my current and former colleagues: Milka Huta-
galung, Lara Yörük and in particular Norbert Hundeshagen and Florian
Bruse. Their doors were always open wide for any questions I had – ei-
ther research or work or otherwise related. And – surprisingly – sometimes
hours of discussions that start at the tiniest detail and lead to completely
unrelated topics can simply help to take the mind off of seemingly unsolvable
problems. I also want to thank Tina Landefeld and Michael Möller for all
their help during my time here at the university.
Further thanks goes to my parents. Without them and their support through-
out the years none of this would have been possible.
And finally, I want to thank my wife Kirsten who took every step of the
journey with me and supported me in every decision I had to make along the
way. She is without a doubt the foundation without which writing this thesis
would not have been possible. Or in other words: “Frodo wouldn’t have got
far without Sam.”

vii

viii

Declaration

I herewith give assurance that I completed this dissertation independently
without prohibited assistance of third parties or aids other than those iden-
tified in this dissertation. All passages that are drawn from published or un-
published writings, either word-for-word or in paraphrase, have been clearly
identified as such. Third parties were not involved in the drafting of the
content of this dissertation; most specifically I did not employ the assistance
of a dissertation advisor. No part of this thesis has been used in another
doctoral or tenure process.

(Daniel Kernberger)

ix

x

Contents

1 Introduction 1

2 Preliminaries 9

2.1 Kripke structures . 9

2.2 Branching-Time Logics . 11

2.3 Linear Temporal Logic . 15

2.4 The Modal µ-calculus . 16

2.5 Syntactic conventions . 23

2.6 Expressiveness & A Branching-Time Hierarchy 25

2.7 Model Checking . 26

2.8 Automata . 28

2.9 Games . 30

2.10 Computational Complexity . 37

2.11 Tiling Problems . 43

3 Hybridisation of Branching-Time Logics 47

3.1 The Main Concepts of Hybrid Logic 48

3.2 Hybridisation of CTL∗ . 51

3.3 A Syntactical Hierarchy and a Unifying Semantics 54

3.4 Hybridisation of CTL, CTL+ and FCTL+ 56

3.5 The Fully Hybrid µ-calculus 58

3.6 The Hybrid Branching-Time Landscape 65

3.7 Hybrid and other extensions of Branching-Time Logics 67

4 The Expressive Power of the Fully Hybrid µ-calculus 77

4.1 The Polyadic µ-calculus and Hµ 78

4.2 Hybrid Bisimulation . 82

4.3 Hµ and Hybrid Bisimulation 86

4.4 A hierarchy for bounded fragments of Hµ 89

xi

5 The Hybrid Branching-Time Hierarchy 93
5.1 Ehrenfeucht-Fräıssé Games . 94
5.2 The Hierarchy on Kripke Structures 106
5.3 The Hierarchy on Tree Structures 124

6 Model-Checking for Hybrid Logics 131
6.1 Lower bounds . 131
6.2 Upper Bounds . 147
6.3 Bounded Variable Fragments 184
6.4 A Complete Picture . 188

7 Satisfiability and Decidable Fragments 191
7.1 Undecidability of the Full Hybrid Logic 192
7.2 Decidable Fragments . 195

8 Conclusion 201

Bibliography 205

xii

Chapter 1

Introduction

Formal Verification and Temporal Logics. Mobile phones, tablets and
computers in general have become important parts of our everyday life. We
rely on our smartphones and its various applications for communication both
in business and in private, for navigation via GPS, for financial services of
our bank or even for basic time management such as using the alarm clock
and many more things. Most of these applications are multi-layered and
themselves rely on other functioning systems or background applications.
Navigation apps, for example, calculate the optimal route to a destination
but rely for the current location on GPS satellites and possibly also other
services that for example provide real-time traffic data.

This means that we are more and more reliant on various electronic systems.
Some of them are only for entertainment, some are important for our ev-
eryday life and some of them may even be safety-critical which means that
malfunctioning of these systems may lead to life-threatening injuries or catas-
trophic environmental harm. A few examples of the latter category are aero-
plane control systems, railway signalling, life-support systems in medicine or
even control systems for nuclear reactors.

Thus it is vital that such systems are “correct” by design. However, for
systems of such complexity it is not always clear what constitutes correct
behaviour. In the navigation app for example it is quite clear what it means
that the current location should be correct, but the optimal route to a des-
tination is ambiguous. Does optimal mean shortest, fastest, nicest or most
eco-friendly? The answer may vary depending on many factors.

Mathematical logics provide a framework to make unambiguous and precise
statements – usually called logical formulas – and thus can often be used to
precisely formulate what it means for a system to function “correctly”. They
are often used in the research area of formal verification which focusses on
proving – beyond any doubt – that a system behaves “correctly” with the help

1

of formal methods like logical formulas. Another side of formal verification
and mathematical logic is that these logical formulas are typically evaluated
on an abstraction or a model of the real physical system. This means that
formal verification can be especially helpful in tracing bugs and errors during
the design process of such a real system.
Over the years a wide variety of logics have evolved to express different kinds
of properties on various types of systems, often highly specialised to express
very specific properties on special types of structures. An important and in
the modern setting especially useful family among these logics are temporal
logics which focus on making logical statements about the ongoing behaviour
of nonterminating and interactive systems.
It is quite self-explanatory why it is especially important nowadays to express
properties about interactive systems. All kinds of applications are governed
by user input or sensor readings etc. and thus these systems need to be able
to change their behaviour based on that input. It is however not self-evident
at first why nonterminating systems are so important: at first, one might
think that systems nowadays are replaced quite frequently by a new version
or a whole new system alltogether. Thus, why would it be useful to design
a system as if it would be running forever? While this may be true, usually
one does not know in advance how long exactly the system needs to function
correctly and thus especially when designing such a system it needs to be
designed as if it would run forever.
Temporal logics can roughly be divided into two subgroups based on the un-
derlying nature of time. First, there are linear temporal logics. These model
time as if each time point has a unique possible future. Consequently, the
models on which these logics are evaluated are linear. Typically this is seen
as modelling a single computation of a system and, hence, linear temporal
logics describe the behaviour of a single computation. A typical task for these
kinds of logics is for example to test whether a specific computation is safe
which means properties like “at no point in time it is the case that the system
enters a critical state” are typical examples. For branching temporal logics
each moment in time may have several possible futures, e.g. depending upon
user input or other interactive controls, the computation might continue in
different forms but of course a system designer needs to consider all possible
behaviours to design a “correct” system. A typical statement might be “On
all possible computations every user request is eventually answered”.
In this work we focus mainly on branching-time logics. Aside from their
branching aspect time is usually seen as moving forward in each step of the
computation and thus typical models for these logics are infinite tree struc-
tures that describe this passing of time in each step as well as the branching
model of time. However, for practical purposes this involves another step

2

of abstraction: not only from the real system to the abstract model of the
system which may have cycles etc., but also from the abstract model to the
set of computations of this model.
Most branching-time logics – especially the ones considered in this thesis
– are designed or have evolved in such a way that this second step of ab-
straction is unnecessary: they simply cannot distinguish between the set of
computations or the model itself and consequently can also be evaluated with
respect to these models directly. In the design and verification process this
has obvious advantages since it eliminates possible errors in the second ab-
straction step and makes these logics easier to use in general. And also from
a theoretical point of view this property – called bisimulation-invariance –
has many advantages. It opens up connections to many other research areas
such as automata theory or game theory and in doing so enables the use of
many decision procedures that are also of practical relevance.
But on the other hand this inherently limits the properties that can be ex-
pressed with these logics. For example, cyclic behaviour or the recurrence of a
single potentially important state of the system can of course not be detected
if the logic cannot distinguish between a cyclic model and its tree-shaped set
of computations.
For this reason several extensions to those branching-time logics have been
proposed that on the one hand try to retain the good properties of branching-
time logics but on the other hand also add to the expressive power. One idea
to overcome specifically the limitations mentioned above is to explicitly give
unique names to the states of a system and a way to identify the name of a
state. Early ideas of naming states have already been proposed in the 50’s
and 70’s by Prior [78] and Bull [19] for precursors of modern branching-time
logics.
Their concept was only picked up again in the late 90’s by Goranko [40, 41,
42, 43] and from there evolved into its current iteration, which features not
only the possibility to have fixed names for states but also to dynamically
name states in the context of a logical formula. Moreover, one can test for
any name and also refer to these named states. Various extensions of logics
that feature these concepts and operators have been studied since then and
are summarised under the name hybrid logics.
The above mentioned limitations like detecting cyclic behaviour are easily
overcome with these principles: We can simply name a specific point in a
computation and then test if it will be seen again later on. If this is the case
then of course we have found a cycle. It turns out that this hybrid framework
is quite powerful but at the same time conceptually nice and easy to use.
The term “hybrid” is used because these concepts are also reminiscent of
similar concepts from first-order logic. Names for states of a system can also

3

be seen as variables or constants in this logic and a limited way to work with
them. Hence, extensions of logics with these hybrid concepts are also seen
as crossover logics that mix features from two worlds.

Outline of this Thesis. In this thesis we discuss a way of extending clas-
sical branching-time logics with hybrid features to overcome the limitations
in terms of their expressive power discussed above and study the effects and
trade-offs in adding this additional expressive power.

The goal of this thesis specifically is to extend the framework of hybrid
logics which features dynamic naming and referencing of states to the well-
known branching-time logics CTL, CTL∗, the modal µ-calculus and some of
their fragments and then study the resulting hybrid branching-time logics.
We are particularly interested in how the hybridisation of these logics affects
their expressive power, the model checking problem and also the satisfiability
problem of these logics. The thesis is structured in the following way.

Chapter 2 introduces various basic concepts, logics and general ideas that
are used throughout the thesis. In particular, we present the branching-time
logics from CTL up to CTL∗ as well as the modal µ-calculus, together with
a short section about the theory of least and greatest fixed points which will
later help to understand the hybridisation of the modal µ-calculus. These
logics form the basis of the hybrid logics studied in later chapters. Addition-
ally, we provide the necessary definitions and background for related research
areas such as Büchi automata, 2-player games and computational complexity
as it is needed for the understanding of the later parts of this thesis.

Chapter 3 then introduces the hybrid branching-time logics which are the
main topic of this thesis. The hybrid operators are discussed and added
to the previously defined branching-time logics. We discuss several possi-
bilities, challenges and effects when adding these operators to the standard
branching-time logics. In the context of branching-time logics like CTL∗ we
obtain several possibilities of how these hybrid operators can be added and in
the context of least and greatest fixed points we discuss challenges in defin-
ing a proper semantics when adding hybrid operators to the µ-calculus. The
chapter finishes with an overview of the obtained logics as well as a short
comparison to other recent extensions of branching-time logics to obtain a
first impression of the capabilities of hybrid logics.

In Chapter 4 and 5 we deal with the expressive power of the obtained hybrid
logics. First, Chapter 4 mainly focusses on the hybrid extension of the modal
µ-calculus. The Hybrid µ-calculus is compared to another well-known exten-
sion of the modal µ-calculus– the polyadic µ-calculus. Then we introduce
a refined bisimulation relation – called k-bisimulation – that is specifically

4

tailored towards hybrid logics and show that this notion in a sense captures
the limit of the expressive power of the hybrid µ-calculus in that no formula
(which uses at most k names) can distinguish structures that are k-bisimilar.
A first application of this then shows that allowing more variables truly in-
creases the expressive power of such hybrid logics.

Chapter 5 then compares all hybrid branching-time logics introduced in this
thesis in terms of their relative expressive power, i.e. which properties can
be expressed by any of these hybrid logics and which cannot be expressed.
We develop and extend several techniques to show the precise relationships
between these logics. This includes several translations between these hy-
brid logics as well as a new kind of Ehrenfeucht-Fräıssé game that helps to
distinguish which properties cannot be expressed by some hybrid logics. In
doing so, we obtain a hierarchy of expressive power. The chapter concludes
with an overview over the obtained relationships and a short excursion to the
semantically restricted logics on trees for which the hierarchy changes quite
a bit.

Chapter 6 is devoted to the model checking problem of all the hybrid logics.
We analyse each logic and provide lower and upper bounds for the complex-
ity of their respective model checking problem. The lower bounds are mostly
obtained by encoding suitable instances of tiling problems, which, once again,
prove to be a very useful tool. For the upper bounds we utilise and com-
bine techniques from various adjacent fields: Simple extensions of non-hybrid
algorithms, game-based approaches, automata constructions and reductions
to the non-hybrid case. Since the complexity of the model checking problem
rises in most cases compared to the non-hybrid logic, we also take a look at
fragments with lower complexity: bounded fragments. These are the logics in
which the number of names for states is restricted. We also show that these
fragments are computationally as hard as the non-hybrid versions. Once
again, the chapter concludes with an overview over the obtained results.

Finally, Chapter 7 touches on the satisfiability problem of hybrid logics.
Generally, this problem is undecidable for hybrid logics – even for the most
basic hybrid modal logic which is subsumed by any hybrid logic considered in
this thesis. For this reason our research mainly focusses on fragments that are
still decidable. We present some of these fragments and in doing so provide a
rough overview over possible future directions for more research in this area.
Since this hybrid framework is so powerful, the decidable fragments are quite
limited in their expressive power. We use some results obtained in the thesis
to slightly extend already known decidable fragments.

The thesis then concludes with a summary of the obtained results and some
remarks about future research in the area of hybrid logics.

5

Related Works. As already mentioned above, first encounters with the
idea of names for states date back to the 50’s and 70’s [78, 19] but the idea
only gained traction in the late 90’s with a series of papers by Goranko
[40, 41, 42, 43] who specifically developed the current framework and added
these concepts first to modal and then also to basic temporal logics.
This sparked a great interest in hybrid logics, predominantly hybridisations
of modal logics and some baisc temporal extensions of these modal logics.
Shortly after the ideas for hybrid modal and temporal logics were also picked
up in [14] and later in [5, 6, 7, 13, 6]. These papers predominantly studied
the complexity of the satisfiability problem for hybrid modal and temporal
logics and many variants and fragments but also developed a model theory
for these logics. It was also first shown that adding dynamic naming of states
to modal logics leads to undecidability even when done in quite restrictive
ways. This result was further sharpened by Marx in [69] who added hybrid
machinery to the description logic ALC – a close relative of modal logics –
and showed that while the added expressive power might be very useful and
desirable, even with only one available name the satisfiability problem for
ALC with self reference becomes undecidable.
In parallel Sattler and Vardi picked up the idea of hybrid machinery and
tried to add them to the modal µ-calculus [80]. However, they only add
static names and references to these names and forego dynamic naming of
states to obtain a still decidable logic. However, they show that even such
an extended µ-calculus has still an ExpTime-complete satisfiability problem
and thus is only as complex as the modal µ-calculus without this hybrid
machinery.
The above mentioned undecidability results in the presence of dynamic nam-
ing immediately started the search for decidable fragments that still feature
some form of dynamic names for states. In [89] a connection between hybrid
formulas without any occurrences of universal modalities in the scope of dy-
namic naming in the scope of another universal modality and the ∀-guarded
fragment of first-order logic [44, 88] which lead to a 2-ExpTime decision
procedure for this fragment. Later [10] extended the ideas to show decid-
ability of a similarly structured fragment of hybrid CTL. At the same time
[38] studies the semantic restriction of hybrid logics on linear structures and
regains decidability but with a nonelementary complexity for the full logic
and also obtains various decidable fragments with complexities ranging from
NP to PSpace depending on the types of temporal and hybrid operators
that are allowed.
Both [89] and [38] also begin to study the model checking problem for these
hybrid logics. Shortly after in [37] a detailed study of the model checking
problem was published. In general hybrid logics with dynamic naming have

6

a PSpace-complete model checking problem while the complexity remains
in P if dynamic naming is forbidden. Lange [62] later improved upon their
techniques and presented a local model checking procedure based on games.
In [96] it was the first time since Goranko’s paper [43] that the branching-
time logic CTL with added hybrid machinery was extensively studied. It
was proven that hybrid CTL interpreted only on tree structures has a 2-
ExpTime-complete satisfiability problem via a connection to alternating
Büchi-automata. This connection to automata theory was further used in
[83] to show that on linear structures the one variable fragment of hybrid
temporal logic has an ExpSpace-complete satisfiability problem and model
checking can be done in P. Later in [52] the same authors also discuss the
hybrid extension of CTL+ and its relationship to hybrid CTL but again, only
interpreted on tree structures.
Lastly, in [74, 70] the authors again look at the satisfiability problem of hybrid
modal logic but this time over transitive frames and frames based on equiva-
lence relations and different combinations of hybrid and temporal operators
to better understand the boundaries of decidability for hybrid logic.

7

8

Chapter 2

Preliminaries

In this chapter we give some basic definitions and notation that will be used
throughout the thesis. This chapter can be roughly partitioned into two
parts.
The first half of this chapter introduces the logical background that is needed
in this thesis. We introduce the relevant branching-time logics ranging from
CTL to CTL∗ that are the foundations for most hybrid logics in this thesis
and also give a comprehensive introduction to fixed points as logical operators
and the modal µ-calculus.
The second part of this chapter then introduces various related topics and
frameworks that will be used throughout this thesis. We begin with a frame-
work for comparing the expressiveness of various logics followed by a short
section about basic terminology for the model checking problem. We then
continue to define Büchi automata and some related automaton models for
ω-regular languages and also present a basic framework and terminology for
2-player games. The chapter concludes with a short section about computa-
tional complexity and tiling problems which are a convenient way to prove
hardness results for certain complexity classes and are used in this thesis to
prove lower bounds for some model checking problems.

2.1 Kripke structures

Let Prop = {p, q, . . .} be a countable set of atomic propositions.

Definition 2.1. A Kripke structure is a tuple K = 〈S,→, L〉 such that S is
a set of states, → ⊆ S × S is a total transition relation, i.e. for every state
s ∈ S there is another state t ∈ S such that s → t and L : Prop → 2S is a
labeling function that assigns to each atomic proposition p a set of states on
which this proposition holds true.

9

If not stated otherwise, we usually assume that for a fixed Kripke structure
L(p) 6= ∅ for only finitely many p. By K we denote the class of all Kripke
structures.

A path π in a Kripke structure K is an infinite sequence of states s0, s1, s2, . . .
such that si → si+1 for every i ∈ N. For a path π we write πi to denote
the i-th state on this path and we refer to the index i as the i-th moment
on a path. Likewise, we denote with πI for some Interval I = [m,n] the
finite sequence of states πm . . . πn and with πI for some half open Interval
I = [m,∞) the subpath πm, πm+1 Moreover, the set of all paths in a
given Kripke structure K is denoted by Paths(K).

Definition 2.2. A Kripke structure K = 〈S,→, L〉 is called finite if S is a
finite set. We denote the class of all finite Kripke structures by F.
The size of a finite Kripke structure |K| is given by |Q|+ | → |.

Definition 2.3. A tree is a Kripke structure T = 〈T,→, L〉 with T ⊆ N∗
such that if w · l ∈ T with w ∈ N∗ and l ∈ N, then w ∈ T . Further, if
w · l ∈ T , then w · l′ ∈ T for all 0 ≤ l′ < l.
ε is called the root of the tree and for all l ∈ N and w ∈ T , w · l ∈ T is called
a child of w. A tree with T ⊆ {0}∗ is called a word structure.
We denote the class of all trees by T and the class of all word structures by
W.

Definition 2.4. Let K = 〈S,→, L〉 be a Kripke structure. We define the
tree-unfolding of K rooted at s ∈ S as TK,s := 〈S∗,→, L∗〉 with S∗ := {π[0,m] |
m ∈ N, π ∈ Paths(K), π0 = s} the set of all finite paths in K, the transition
relation → is induced by the immediate prefix relation on finite paths, i.e.
π[0,m] → π[0,m+1] for all paths π and m ∈ N and the labeling function L∗(p) :=
{π[0,m] | πm ∈ L(p)} simply uses the label of the last state on a finite path.

It is not hard to see that for Kripke structures with a finite branching degree,
i.e. for those where the maximum number of successors of any state is finite,
the tree-unfolding is also a tree with finite branching-degree.
One of the most important notions for Kripke structures in the realm of
branching-time logics is bisimulation. A bisimulation relates states of two
Kripke structures and – as the name suggests – it captures the idea that each
computational step or behaviour in one of the structures can be simulated
by the other structure and vice versa.

Definition 2.5. Let K0 = 〈S0,→0, L0〉, K1 = 〈S1,→1, L1〉 be two Kripke
structures. A bisimulation relation between K0 and K1 is a non-empty binary
relation ∼ ⊆ S0 × S1 such that for all tuples s0 ∼ s1 we have:

10

(prop) For all p ∈ Prop we have s0 ∈ L0(p) if and only if s1 ∈ L1(p).

(zig) For every s′0 ∈ S0 such that s0 →0 s
′
0 there is a s′1 ∈ S1 with s1 →1 s

′
1

such that s′0 ∼ s′1.

(zag) For every s′1 ∈ S1 such that s1 →1 s
′
1 there is a s′0 ∈ S0 with s0 →0 s

′
0

such that s′0 ∼ s′1.

We say that K0 and K1 are bisimilar or bisimulation equivalent or short
K0 ∼ K1 if there exists a nonempty bisimulation relation between K0 and
K1. Moreover, we say that two states s0 ∈ S0 and s1 ∈ S1 are bisimilar or
bisimulation equivalent if there exists a bisimulation relation ∼ between K0

and K1 such that s0 ∼ s1.

Example 2.6. Let K = 〈S,→, L〉 be a Kripke structure and let TK,s be the
tree-unfolding from some state s ∈ S. Then K ∼ TK,s.
The bisimulation relation ∼ relates a state t ∈ S with a finite path π[0,m]

if and only if πm = t. The (prop) clause thus is satisfied easily since the
labelling of π[0,m] is given by its last state which is t. And similarly the (zig)
and (zag) conditions are satisfied as well by the construction of the transition
relation of TK,s.

2.2 Branching-Time Logics

Temporal logics are usually extensions of modal logics that are equipped
with operators to talk about the future behaviour of a system. Both the
behaviour after a finite amount of time as well as properties about a possible
infinite behaviour can typically be expressed. There are two broad categories
of temporal logics: First, there are linear temporal logics like LTL that are
usually used to model the behaviour of a single (possibly infinite) compu-
tation. Their model of time as the name suggests is linear, meaning that
each possible moment in time has a unique possible future. And secondly,
there are branching-time logics. For branching-time logics the underlying
model of time features many possible futures. Thus, any moment in time
may have various different possible futures. These logics are widely used to
state properties about all or some computations of a given system.
As extensions of modal logics both categories strive to retain the good prop-
erties of modal logic like decidability, low computational complexity, finite-
and tree-model properties etc. while also enhancing the quite limited expres-
sive power of modal logics. We will mainly focus on the second category
of temporal logics in this thesis, i.e. branching-time logics. The following
section introduces the relevant branching-time logics.

11

CTL. We begin with the most basic branching-time logic: CTL. Formulas
of CTL are generated by the grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EϕUϕ | AXϕ | AϕUϕ,

where p ∈ Prop. Branching-time formulas are interpreted with respect to a
Kripke structure K = 〈S,→, L〉 and a state s ∈ S. The satisfaction relation
|= is given by mutual induction as follows:

K, s |= p iff s ∈ L(p),

K, s |= ¬ϕ iff K, s 6|= ϕ,

K, s |= ϕ1 ∨ ϕ2 iff K, s |= ϕ1 or K, s |= ϕ2,

K, s |= EXϕ iff there exists a state t with s→ t and K, t |= ϕ,

K, s |= Eϕ1Uϕ2 iff there exists a path π in K with π0 = s and j ∈ N
such that K, πk |= ϕ1 for all k < j and K, πj |= ϕ2,

K, s |= AXϕ iff on all states t with s→ t it holds that K, t |= ϕ,

K, s |= Aϕ1Uϕ2 iff on all paths π in K with π0 = s there is j ∈ N
such that K, πk |= ϕ1 for all k < j and K, πj |= ϕ2.

We will use standard abbreviations like ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2), tt :=
p ∨ ¬p, ff := p ∧ ¬p. Further, we will use standard temporal operators like
EFϕ := EttUϕ, resp. AFϕ := AttUϕ – which characterises reachability on at
least one, resp. all paths, or EGϕ := ¬AF¬ϕ, resp. AGϕ := ¬EF¬ϕ – which
means that ϕ holds everywhere on at least one path, resp. all paths.

Example 2.7. The formula AGEFp states that “on all paths” or “at any
time for any given execution” there is the possibility to reach a state where
the property p holds.

We will refer to the operators E,A as path quantifiers and to the operators
X,U,F,G as temporal operators.

The syntax of CTL is quite restricted. It requires exactly one temporal
operator directly underneath each path quantifier. Relaxing this constraint
will lead us to richer branching-time logics.

To help us in doing so, we rewrite the grammar that produces CTL formulas
and split the use of path quantifiers and temporal operators:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ,

ψ ::= Xϕ | ϕUϕ.

12

Formulas of type ϕ are referred to as state formulas. Formulas of type ψ are
called path formulas. Path formulas can only occur as genuine subformulas
in branching-time formulas.
Extending the grammar for path formulas will lead us to more expressive
branching-time logics.

CTL+. The logic CTL+ extends CTL by also allowing boolean operators
as path formulas. Thus the grammar that produces CTL+ formulas is the
following:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ,

ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xϕ | ϕUϕ.

The satisfaction relation for CTL+ formulas is now twofold: State-formulas
are – as in CTL – interpreted with respect to a Kripke structure K and a
state s.

K, s |= p iff s ∈ L(p),

K, s |= ¬ϕ iff K, s 6|= ϕ,

K, s |= ϕ1 ∨ ϕ2 iff K, s |= ϕ1 or K, s |= ϕ2,

K, s |= Eψ iff there is a path π with π0 = s such that K, π, 0 |= ψ,

K, s |= Aψ iff on all paths π with π0 = s it holds that K, π, 0 |= ψ.

Path-formulas are interpreted with respect to a Kripke structure K, a path
π in K and a moment k on this path:

K, π, k |= ϕ iff K, πk |= ϕ,

K, π, k |= ¬ψ iff K, πk 6|= ψ,

K, π, k |= ψ1 ∨ ψ2 iff K, π, k |= ψ1 or K, π, k |= ψ2,

K, π, k |= Xϕ iff K, π, k + 1 |= ϕ,

K, π, k |= ϕ1Uϕ2 iff there exists j ∈ N with j ≥ k such that

K, π, j |= ϕ2 and for all k ≤ i < j: K, π, i |= ϕ1.

Example 2.8. The CTL+ formula E(Fp1 ∧ Fp2 ∧ . . .∧ Fpn) states that there
is a path on which there are reachable states that satisfy a proposition pi,
1 ≤ i ≤ n.

Despite having boolean connectives as part of the path formulas one can show
that CTL+ is not more expressive than CTL. We will show an extended ver-
sion of this in Section 5.2 that even holds for the hybrid variants of CTL and

13

CTL+. However, one can show that CTL+ formulas can be more succinct.
For example one can show that any CTL formula that expresses the same
property as ϕ in the example above must be at least exponentially larger
than ϕ, c.f. [98, 1, 61].

FCTL+. To truly increase the expressive power we will allow nesting of
path formulas. However, full nesting of path formulas is in many cases too
much. Often “fairness” constraints that are able to express that something
holds infinitely often along some computation are sufficient.
This fairness constraint can naturally be expressed with our temporal opera-
tors by nesting the temporal operators G and F: the formula EGFp intuitively
states that along some path it always holds that after finitely many steps p
is reached, i.e. p holds infinitely often along this path.
The logic Fair CTL+ – or short FCTL+ – is obtained by adding this “infinitely
often” construct as a native operator to CTL+. Thus, the grammar for
FCTL+ is the following:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ,

ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xϕ | ϕUϕ | GFϕ.

The satisfaction relation from CTL+ gets extended to the new operator as
intended:

K, π, k |= GFϕ iff there exist infinitely many j ∈ N with K, π, j |= ϕ.

Fairness properties cannot be expressed by CTL or CTL+ and thus FCTL+

is more expressive than CTL+ [30].

Example 2.9. The formula A(GFrequest → GFanswer) states that on all
paths, if a request is made infinitely often, then there are also infinitely many
answers. Thus, this formula expresses a (weak) fairness constraint that every
request is eventually answered.

CTL∗. CTL∗ now allows full LTL-like nesting of temporal operators on
path formulas and thus increases the expressive power even further. Its
grammar is given by:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ

ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

where p ∈ Prop.

14

State formulas are interpreted as before. The satisfaction relation for path
formulas with respect to a Kripke structure K, a path π and a moment k on
this path is as follows:

K, π, k |= ϕ iff K, πk |= ϕ,

K, π, k |= ¬ψ iff K, πk 6|= ψ,

K, π, k |= ψ1 ∨ ψ2 iff K, π, k |= ψ1 or K, π, k |= ψ2,

K, π, k |= Xψ iff K, π, k + 1 |= ψ,

K, π, k |= ψ1Uψ2 iff there exists j ∈ N with j ≥ k such that

K, π, j |= ψ2 and for all k ≤ i < j: K, π, i |= ψ1.

Example 2.10. The formula AF(p ∧ Xp) states that on all paths there is a
moment such that the next two states both satisfy p. One can show that this
formula cannot be expressed by FCTL+ and thus CTL∗ is more expressive
than FCTL+ [30, 24].

We freely use the usual propositional abbreviations for tt, ff, ∧ as well as
the temporal ones Fψ := ttUψ, Gψ := ¬F¬ψ, ϕRψ := ¬(¬ϕU¬ψ) etc.

2.3 Linear Temporal Logic

The second broad category of temporal logics deals with single computations
and thus the logics in it are usually interpreted over traces of a computational
system or more abstractly infinite words. This thesis does not focus on
single computational traces but rather on the branching side of temporal
logics. However, when dealing with logics like CTL∗ that have LTL more or
less embedded into them as path formulas we sometimes need to deal with
certain concepts used in the well-established theory around LTL as well.
We formally define the logic here, but refer for more details to [77, 24].
Formulas of LTL or linear temporal logic are generated by the grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ.

We already see by its syntactic definition that LTL is subsumed by CTL∗

path formulas.
LTL formulas are usually interpreted relative to an infinite word or a trace
of a computation. In our case, we will only use LTL along paths of a Kripke
structure – which of course can also be seen as infinite words over their
labels. Consequently LTL formulas simply inherit their interpretation from
CTL∗ path formulas.

15

Example 2.11. The LTL formula FGp is satisfied along a path of a Kripke
structure if and only if there is a moment on this path such that from this
moment on every state along this path satisfies p.

Further we say that a state s ∈ S in a Kripke structure K = 〈S,→, L〉
satisfies an LTL formula ϕ, or short K, s |= ϕ, if K, s |= Eϕ, i.e. a state
s satisfies an LTL formula if there is a path starting at s that satisfies the
formula.

Remark 2.12. It is common that the semantics of LTL formulas with respect
to a state in a Kripke structure is given in such a way that a state satisfies an
LTL formula if and only if all paths starting from this state satisfy the for-
mula. However, LTL is closed under negation so this definition is equivalent
to the one we use in this thesis. Moreover, we only use LTL in this thesis
at specific points to handle path formulas of CTL∗. Usually we consider
CTL∗ formulas to be in a normal form that only allows one path quantifier
– the existential one. To better match this normal form we have chosen this
(slightly unusual) semantics to stay consistent in our terminology.

2.4 The Modal µ-calculus

The modal µ-calculus Lµ is a modal logic enhanced with least and greatest
fixed points. Fixed point constructs add a lot of expressive power to the
very basic modal language. For example it has been shown that CTL∗ can
be fully embedded into the µ-calculus [23]. The µ-calculus can also express
properties that CTL∗ cannot. For example reachability in an even number
of steps is easily expressible in the µ-calculus but not in CTL∗. Thus, for
many considerations the µ-calculus has become the branching-time logic in
terms of its expressive power.
Its appeal however is not only founded in its expressiveness. As an extension
of modal logic it inherits many nice properties like bisimulation-invariance
or the tree-model property. Its decision procedures retain a somewhat sur-
prisingly low complexity. Satisfiability is only ExpTime-complete. This
is surprising because satisfiability for CTL∗, which is subsumed by the µ-
calculus, is already 2-ExpTime complete. Also its model checking problem
is known to be in NP ∩ Co-NP [48]. However most practically relevant
model checking algorithms available today – which in most cases solve the
associated model checking parity game which we introduce in Section 2.9.3
– still run in exponential time, c.f. [49, 94, 82, 51, 39].
However, the search for a possible model checking algorithm that runs in
polynomial time on all inputs continues. Recent advances in the area achieved

16

algorithms with a worst-case runtime in quasi-polynomial time, c.f. [20, 50,
34, 68]. However, a recent evaluation of these algorithms [90] suggests that
these new quasi-polynomial algorithms generally still perform worse than the
classical algorithms.
In this section we will introduce the basic concepts and ideas for fixed points
as logical operators and their use in the modal µ-calculus. The theory about
fixed points will also provide a good foundation to understand the hybridis-
ation of the µ-calculus in Section 3.5.

2.4.1 Modal Logic

We first define Basic Modal Logic with second-order variables. For this, let
Var 2 = {X, Y, . . .} be a countable set of second-order variables. Formulas of
basic modal logic are derived from the following grammar:

ϕ := p | X | ¬ϕ | ϕ ∨ ϕ | ♦ϕ

where p ∈ Prop and X ∈ Var 2. The semantics of modal logics – in contrast
to the semantics of branching-time logics – are usually given from a global
perspective. The meaning of a modal logic formula is a set of states – the
set of states in a Kripke structure that satisfy this formula. Formulas of this
logic are thus interpreted with respect to a Kripke structure K = 〈S,→, L〉
and an assignment ρ : Var 2 → 2S for the free second-order variables:

JpKKρ = {s ∈ S | s ∈ L(p)},
JXKKρ = ρ(X),

J¬ϕKKρ = {s ∈ S | s 6∈ JϕKKρ },
Jϕ1 ∨ ϕ2KKρ = Jϕ1KKρ ∪ Jϕ2KKρ ,

J♦ϕKKρ = {s ∈ S | ∃t ∈ S with s→ t such that t ∈ JϕKKρ }.

Standard propositional abbreviations and abbreviations like �ϕ := ¬♦¬ϕ
etc. are freely used. We will write K, s, ρ |= ϕ if s ∈ JϕKKρ . For closed
formulas, i.e. formulas with no free second-order variables, or if ρ is clear
from the context we may simply write K, s |= ϕ.

2.4.2 The Knaster-Tarski Fixed Point Theorem

To understand fixed points in the context of modal logics or later also in the
context of hybrid logics it is helpful to recap a bit of mathematical theory
about fixed points.

17

Definition 2.13. Let L be a set. A partial order on L – often denoted by
≤ – is a binary relation on L that is reflexive, antisymmetric and transitive.
We say that (L,≤) is a partially ordered set.

Definition 2.14. Let (L,≤) be a partially ordered set and S ⊆ L. An upper
bound of S is an element u ∈ L such that s ≤ u for all s ∈ S. An upper
bound u is called the supremum of K or sup(K) if u ≤ x holds for all upper
bounds x of S. Similarly a lower bound of K is an element l ∈ L such that
l ≤ s for all s ∈ S and a lower bound is called the infimum or inf(K) if it is
the greatest upper bound, i.e. x ≤ l for all lower bounds x of K.

Definition 2.15. Let (L,≤) be a partially ordered set and f : L → L a
function. Then s ∈ L is called a fixed point if f(s) = s. In addition s is
called a least (resp. greatest) fixed point if s ≤ t (resp. s ≥ t) for all fixed
points t.

Least and greatest fixed points as well as suprema and infima need not nec-
essarily exist but are unique if they do.

Definition 2.16 (complete lattice). A complete lattice is a partially ordered
set (L,≤) such that every subset of L has a supremum and an infimum.

Example 2.17. Let K = 〈S,→, L〉 be a Kripke structure. Then (2S,⊆)
– the powerset of the state space equipped with the subsetrelation – is a
complete lattice. An illustration of this lattice is shown in Figure 2.1.
Let S ⊆ 2S with S = {S1, . . . , Sm} for some m ∈ N. Then sup(S) =

⋃m
i=1 Si

and inf(S) =
⋂m
i=1 Si.

Definition 2.18. Let f : X → Y be a function between (partially) ordered
sets. Then f is called monotone if for all x, y ∈ X it holds that if x ≤ y then
f(x) ≤ f(y).

Example 2.19. Let ϕ(X) be a modal logic formula with a free second-order
variable X such that X occurs only under the scope of an even number of
negations and let K = 〈S,→, L〉 be a Kripke structure.
Then the function f : 2S → 2S with V 7→ Jϕ(X)KKρ[X→V] that maps a set V

to the evaluation of ϕ(X) when X is interpreted as the set V is a monotone
function.
Thus, every modal formula with a free second-order variable under an even
number of negations induces a monotone function.

The following theorem is the foundation for most fixed point constructions
in mathematical logic and especially in the modal µ-calculus.

18

{s0, . . . , sn}

{s0, . . . , sn−1} {s0, . . . , sn−2, sn} · · · {s1, . . . , sn}

...
...

...
...

...
...

{s0, s1} {s0, s2} · · · {s1, s2} · · · {sn−1, sn}

{s0} {s1} · · · {sn}

∅

Figure 2.1: The powerset lattice over S = {s0, s1, . . . , sn}.

Theorem 2.20 (Knaster-Tarski Fixed Point Theorem, [87]). Let (L,≤) be
a complete lattice and f : L → L be a monotone function. Then the set
P of all fixed points of f is not empty and (P,≤) is a complete lattice. In
particular we have that the least fixed point can be characterised via

lfp(f) =
⋂
{x ∈ L | f(x) ≤ x}

and the greatest fixed point is characterised through

gfp(f) =
⋃
{x ∈ L | x ≤ f(x)}.

In other words, the Knaster-Tarski fixed point theorem guarantees the exis-
tence of least and greatest fixed points of monotone functions on complete
lattices.

2.4.3 Syntax & Semantics of Lµ

We will use the Knaster-Tarski fixed point theorem over the powerset-lattice
of Kripke structures combined with the monotone functions induced by a
formula ϕ(X) to give a well-defined semantics to fixed points in the context
of modal logics.

19

Syntactically the modal µ-calculus – or short Lµ – simply adds least fixed
point constructs to modal logic:

ϕ := p | X | ¬ϕ | ϕ ∨ ϕ | ♦ϕ | µX.ϕ(X).

To ensure a well-defined semantics we need the syntactic restriction that in
fixed point formulas µX.ϕ(X) all free occurences of X must be positive, i.e.
under the scope of an even number of negations in ϕ. In this way ϕ induces
a monotone operator which is guaranteed to have a least fixed point by the
Knaster-Tarski theorem.
Lµ formulas are also interpreted with respect to a Kripke structure K = 〈S,
→, L〉 and an assignment for the free second-order variables ρ : Var 2 → 2S.
The semantics of propositions, boolean connectives and diamonds are as in
modal logic. To give meaning to the least fixed point formulas we use the
characterisation of least fixed points from the Knaster-Tarski theorem:

JµX.ϕ(X)KKρ =
⋂
{T ⊆ S | JϕKKρ[X→T] ⊆ T}.

We say that X ∈ Var 2 occurs free in ϕ ∈ Lµ if there is no fixed point binder
µX.ψ(X) in the syntax tree above X in ϕ. Otherwise X is bound. Further,
ϕ[ψ/X] denotes the simultaneous substitution of every free occurrence of X
by ψ.
Greatest fixed points can then simply be defined as a dual of smallest fixed
points: νX.ϕ(X) := ¬µX.¬ϕ[¬X/X], or equivalently also via the Knaster-
Tarski theorem with the following interpretation:

JνX.ϕ(X)KKρ =
⋃
{T ⊆ S | T ⊆ JϕKKρ[X→T]}.

If not stated otherwise we assume that only the least fixed point constructor
is a native operator in the logic.
We assume that each X ∈ Var 2 is bound at most once by a fixed point
quantifier µ or ν and denote by fpϕ(X) the function mapping each X ∈ Var 2

to its (unique) defining fixed point formula. If fpϕ(X) = µX.ψ(X) we say
that X is of µ-type, otherwise X is of ν-type.

Example 2.21. The formula µX. p ∨ ♦X states that a state labelled p is
reachable and is thus equivalent to the CTL formula EFp.
The formula νY. µX. (p ∧ ♦Y) ∨ ♦X is a bit more involved. It states that
there is a path on which p is seen infinitely often and is thus equivalent to
the FCTL+ formula EGFp.

Definition 2.22. Let ϕ ∈ Lµ. We define X ≥ϕ Y if X has a free occurrence
in fpϕ(Y) and we define >ϕ to denote the strict part of its transitive closure.

20

The alternation depth of a µ-variable X is the maximal length of a chain
X1 ≥ X2 ≥ . . . ≥ Xn where X = X1, X1, X3, . . . are of µ-type and X2, X4, . . .
are of ν-type. The alternation depth of a ν-variable X is defined analogously
with the types of the descending variables in the chain switched.
The alternation depth of ϕ is the maximum of alternation depths of variables
bound in ϕ.
For short we will write adσ(X) or ad(ϕ) to denote the alternation depth of
a variable of type σ or the alternation depth of a formula. If σ is clear from
the context we may also drop the index.

For example ad(µX. p ∨ ♦X) = 1 and ad(νY. µX. (p ∧ ♦Y) ∨ ♦X) = 2.

2.4.4 Approximations

The characterisation of fixed points via Knaster-Tarski has theoretical ap-
peal but is not very helpful in actually calculating the fixed points them-
selves. However, there is another equivalent characterisation of fixed points
by Kleene [58] that gives rise to an iterative algorithm to approximate these
fixed point formulas. Moreover, on certain “well-behaved” structures this
algorithm even calculates the fixed points.

Definition 2.23. Let K = 〈S,→, L〉 be a Kripke structure, ρ an assignment
and µX.ϕ(X) be a fixed point formula. The approximations of the fixed
point with respect to ρ and K are defined as follows:

µX0.ϕ(X) := ∅
µX(α+1).ϕ(X) := Jϕ(X)KKρ[X 7→µXα.ϕ(X)]

for a successor ordinal α and

µXγ.ϕ(X) :=
⋃
α<γ

µXα.ϕ(X)

for limit ordinals γ.
Let τ be the least ordinal such that µXτ .ϕ(X) = µX(τ+1).ϕ(X). Such an
ordinal always exists. It is bounded by the cardinality of the Kripke structure.
Then τ is called the closure ordinal of K and ρ with regard to µX.ϕ(X).

Proposition 2.24. Let K = 〈S,→, L〉 be a Kripke structure, ρ an assign-
ment, µX.ϕ(X) ∈ Lµ and τ the closure ordinal of K and ρ with regard to
µX.ϕ(X). Then it holds that

JµX.ϕ(X)KKρ = µXτ .ϕ(X).

21

This is especially interesting on structures with finite closure ordinals – for
example finite structures – because this opens up the possibility to iteratively
calculate fixed points. We simply begin with the empty set and then evaluate
ϕ(X) with X mapping to the set of the previous iteration until the process
eventually stabilises.

Another advantage of this iterative approach is that it can also help to un-
derstand formulas of the modal µ-calculus much more easily. The concise
presentation of Lµ formulas comes at the cost of an easy-to-read notation.
A syntactic unfolding of fixed point formulas that is based on these approxi-
mations can help to understand formulas much better. Such an unfolding is
based on the following fact:

Proposition 2.25. For all µ-calculus formulas ϕ, ψ it holds that

Jϕ[ψ/X]KKρ = JϕKKρ[X 7→JψKKρ] .

Thus, for finite ordinals α we can also syntactically unfold a fixed point
formula µX.ϕ(X) and represent the approximations by the following chain
of formulas:

ϕ0(X) := ff,

ϕ(α+1)(X) := ϕ[ϕα/X].

A straightforward induction proves that Jϕα(X)KKρ = µXα.ϕ(X).

Example 2.26. Consider the formula µX.p∨♦X. To understand this fixed
point we take a look at its unfoldings:

ϕ0(X) = ff,

ϕ1(X) = p ∨ ♦ff,
ϕ2(X) = p ∨ ♦(p ∨ ♦ff),

ϕ3(X) = p ∨ ♦(p ∨ ♦(p ∨ ♦ff)),

ϕ4(X) = p ∨ ♦(p ∨ ♦(p ∨ ♦(p ∨ ♦ff))),

...

which basically says either p holds now or p holds at a successor or p holds
at a 2-step successor and so on. Thus the formula expresses reachability of
a state that satisfies p.

22

2.5 Syntactic conventions

This section introduces some common terminology in the context of branch-
ing-time logics that will be used throughout this thesis. To give a unified
definition of these basic concepts for every logic – including hybrid logics
which will be defined later in Chapter 3 – we use the term operator as an
abbreviation for any connective used to build formulas. The logics considered
in this thesis exclusively feature unary or binary operators. For example, ∨
is a binary operator and E or ¬ are unary operators.
In order to analyse the computational complexity of these logics and their
decision problems we define two measures of formula size.

Definition 2.27. Let ϕ be any branching-time formula. The set of subfor-
mulas Sub(ϕ) is defined recursively on the structure of ϕ by

Sub(p) := {p},
Sub(O′(ϕ1)) := {O′(ϕ1)} ∪ Sub(ϕ1),

Sub(O(ϕ1, ϕ2)) := {O(ϕ1, ϕ2)} ∪ Sub(ϕ1) ∪ Sub(ϕ2),

for all unary operators O′ and all binary operators O. The size of ϕ is defined
by |ϕ| := |Sub(ϕ)|.

Definition 2.28. The length of a formula ϕ is defined recursively on the
structure of ϕ by

length(p) := 1,

length(O′(ϕ′)) := 1 + length(ϕ′),

length(O(ϕ1, ϕ2)) := 1 + length(ϕ1) + length(ϕ2)

for all unary operators O′ and all binary operators O.

The length of a formula is at least as big as the size of the same formula and
one can show that the length of a formula is at most exponentially longer
than the size of the formula, c.f. [17].
For many proofs it is often easier if the formulas are shaped in a certain way.
We say a formula ϕ ∈ CTL∗ resp. ϕ ∈ Lµ is in negation normal form if
negation only occurs directly in front of atomic propositions. The following
lemma is well-known and easily proven both for CTL∗ as well as Lµ by push-
ing negations inwards and possibly using the dual temporal operators resp.
greatest fixed points as first-class citizens as well as standard equivalences
from propositional logic.

23

Lemma 2.29. For each formula ϕ ∈ CTL∗ an equivalent formula ϕ′ ∈ CTL∗

in negation normal form can be computed in linear time. The same is true
for Lµ.

The next two definitions are especially needed for CTL∗ and its fragments.
Similar concepts exist for Lµ but are not needed in this thesis.
In many situations involving branching-time logics the set of subformulas is
not quite enough. Often we also need to deal with the unraveling of Until-
formulas based on the equivalence ϕ1Uϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ X(ϕ1Uϕ2)) and thus
we need to deal with an extended set of ”subformulas“ that also includes
the formula X(ϕ1Uϕ2). This slightly extended set is often referred to as the
Fischer-Ladner closure [35] and is made precise in the following definition.

Definition 2.30. Let ϕ ∈ CTL∗. The Fischer-Ladner closure of ϕ is the
smallest set Fl(ϕ) such that Sub(ϕ) ⊆ Fl(ϕ) and that is closed under the
following rule:

• For every formula ϕ1Uϕ2 ∈ Fl(ϕ) we also have X(ϕ1Uϕ2) ∈ Fl(ϕ).

It should be clear that the Fischer-Ladner closure of a CTL∗ formula is finite.
Especially its size is at most 2 · |ϕ|.
Another measure of branching-time formulas that is often used when com-
paring the expressive power of certain logics is the nesting depth of temporal
operators.

Definition 2.31. Let ϕ ∈ CTL∗. We define the temporal nesting depth of ϕ
– or short nd(ϕ) – as follows. For state formulas we have

nd(p) := 0,

nd(¬ϕ) := nd(ϕ),

nd(ϕ1 ∨ ϕ2) := max{nd(ϕ1), nd(ϕ2)},
nd(Eψ) := nd(ψ).

And for path formulas we have

nd(¬ψ) := nd(ψ),

nd(ψ1 ∨ ψ2) := max{nd(ψ1), nd(ψ2)},
nd(Xψ) := nd(ψ) + 1,

nd(ψ1Uψ2) := max{nd(ψ1), nd(ψ2)}+ 1.

The temporal nesting depth thus simply counts how many times X- and
U-operators have been nested inside a formula.

24

Remark 2.32. Note, that often the nesting depth of a temporal formula is
used to refer to the nesting depth of an LTL-like formula which in our context
of branching-time logics means to a single path formula without counting
nested state formulas. Our definition also counts the temporal nesting depth
of embedded state formulas towards the temporal nesting depth. Thus, this
definition also covers the case of counting the temporal nesting depth of an
LTL-like formual.
We will need both options in this thesis. The full definition that also counts
nested state formulas towards the nesting depth is especially needed for the
Ehrenfeucht-Fräıssé Games for CTL presented in Section 5.1. The nesting
depth of path formulas without counting nested state formulas is then needed
in Section 5.2.2 where we explicitly introduce and work on ”pure“ path for-
mulas, i.e. path formulas with no nested state formulas other than atomic
ones which by definition have nesting depth 0.

Finally, by ϕ[ψ1/χ1, . . . , ψn/χn] we denote the simultaneous substitution of
all subformulas χi by ψi for all i ∈ {1, . . . , n} with the exception of χi = X
for some X ∈ Var 2, then we only substitute all free occurrences of X by ψi.

2.6 Expressiveness & A Branching-Time Hi-

erarchy

A natural question that arises when studying different logics over the same
type of structures is that of expressive power. What properties can be ex-
pressed in a certain logic? How do different logics relate to one another? Can
one logic express properties that another cannot? And many more similar
questions arise.
In this section we introduce a simple framework to compare the expressive
power of different logics and then recall some important results comparing
the previously introduced branching-time logics.

Definition 2.33. Let ϕ, χ be two branching-time formulas interpreted over
a class C of structures. We say that ϕ and χ are equivalent with respect to
C or short ϕ ≡C χ if for all K ∈ C and states s ∈ S it holds that K, s |= ϕ if
and only if K, s |= χ.
We also say that ϕ ≡ χ if ϕ, χ are equivalent over the class K of all Kripke
structures. Moreover, we say that ϕ ≡fin χ (resp. ϕ ≡tree χ) if ϕ, χ are
equivalent over the classes of finite structures F (resp. the class of all trees
T).

Definition 2.34. Let Ψ,Ω be two logics interpreted over a class of structures
C. We say that Ψ is at least as expressive as Ω – or short Ψ �C Ω – if and

25

only if for all formulas ϕ ∈ Ω there is a formula χ ∈ Ψ such that ϕ ≡C χ.
Moreover, we say that Ψ ≡C Ω if and only if Ψ �C Ω and Ω �C Ψ. Moreover,
we say that Ψ � Ω or Ψ is more expressive than Ω if and only if Ψ � Ω but
Ω 6� Ψ.
And finally we call Ψ and Ω incomparable if neither Ψ � Ω nor Ω � Ψ holds.
In the case of all Kripke structures we usually drop the index K and simply
write Ψ � Ω or Ψ ≡ Ω. Similarly to the previous definition in the case of
finite structures or trees we also use the indices fin or tree.

Example 2.35. The branching-time logics from CTL to CTL∗ form a syn-
tactical hierarchy. Thus, it is obvious by their definition that

CTL � CTL+ � FCTL+ � CTL∗.

However, the other directions and the relationship to Lµ are not so obvious.
However, the following relationships are quite well-known by now:

CTL ≡ CTL+ ≺ FCTL+ ≺ CTL∗ ≺ Lµ.

The equivalence between CTL and CTL+ is usually shown via a translation
from CTL+ to CTL [29]. The main difficulty in this translation are formulas
of the form E(

∧
i∈I ϕiUχi). Such Boolean combinations of until-formulas are

not allowed in CTL. The trick of the translation is to ”guess“ an order in
which all the until formulas are satisfied and then to recreate the path formula
piece by piece. We will show a more general statement in Section 5.2 that
also holds in the case of hybrid CTL and CTL+.
The expressiveness gap between CTL and FCTL+ can be shown by the for-
mula EGFp (c.f. [30]) and the gap to CTL∗ can be shown for example by
the formula AF(p ∧ Xp) which utilises full nesting of path formulas that is
disallowed in all logics below CTL∗ (c.f. [30]). We also show a more general
statement in Section 5.2 that proves that not even the hybrid extension of
FCTL+ can express this CTL∗ formula.
Lastly, it was shown in [23, 24] that Lµ is even more expressive than CTL∗.

2.7 Model Checking

Generally the model checking problem is the following: Given a structure
and a property decide whether this property holds on this structure. If the
property holds, the structure is usually called a model of this particular
property. Hence the term model checking.
In the context of (hybrid) temporal and modal logics there are usually two
versions of this problem. The local model checking problem is the following:

26

Input: a Kripke structure K = 〈S,→, L〉, a state s ∈ S and a (hybrid)
temporal formula ϕ.

Output: Does K, s |= ϕ hold?

And the global model checking problem is the following:

Input: a Kripke structureK = 〈S,→, L〉 and a (hybrid) temporal formula
ϕ.

Output: The set of all states s such that K, s |= ϕ holds.

The complexity of model checking algorithms is usually measured in the
worst-case space or time usage depending on the input size. The input is usu-
ally measured with respect to the Kripke structure and the formula. Hence
the input size is |K|+ |ϕ|.
This may be sufficient for theoretical purposes. However these theoretical
complexity bounds often do not match with the empirical data of practical
applications. Thus, often a more refined analysis that separates both input
sizes is needed. This corresponds to considering one of the input parts as
fixed and measuring the complexity only in terms of either the size of the
Kripke structure or the size of the formula. Such notions are known as data
complexity – when the formula is fixed – and expression complexity – when
the structure is fixed. Measuring the complexity with respect to both the
structure and the formula is then referred to as the combined complexity.

Data complexity is usually important for practical purposes. In scenarios like
evaluating database queries or verification of reactive systems the formula is
often relatively small compared to the structure and one is generally more
interested in the behaviour relative to large systems or databases.

Expression complexity is typically less important for practical scenarios. In-
stead it can be seen as an indicator of how (computationally) powerful a logic
is.

We will often use the connection between data, expression and combined
complexity. It is easy to see that upper bounds on the combined complexity
transfer immediately to data and expression complexity. Also lower bounds
in data or expression complexity also transfer to the combined complexity of
an instance of the model checking problem.

Since the combined complexity is the standard notion for measuring com-
plexity of the model checking problem we will mostly simply refer to it as
the complexity of the model checking problem and explicitly mention when
we refer to the data or expression complexity of a model checking problem.

27

2.8 Automata

Automata are devices that usually accept finite or infinite words or structures
like trees and are often closely related to temporal logics. For example, most
decidability results for branching-time logics are achieved by constructing a
suitable tree automaton that can then be checked for emptiness.
Linear temporal logic and thus also the path formulas in the branching-time
logics introduced earlier more closely relate to automata that accept infinite
words like Büchi automata. We will introduce some of these devices in this
section and present some problems and basic results about these automata
that will be used in this thesis.

Definition 2.36. A (nondeterministic) Büchi automaton – or short NBA–
is a tuple A = (Q,Σ, qI , δ, F) such that

• Q is a finite set,

• Σ is a finite alphabet,

• qI ∈ Q is the initial state,

• δ ⊆ Q× Σ×Q is a transition relation and

• F ⊆ Q are the accepting states.

A run of A on an infinite word w = w0w1w2 . . . ∈ Σω is a sequence ρ = (qi)i∈N
of states such that q0 = qI and for all i ∈ N it holds that (qi, wi, qi+1) ∈ δ.
By Inf(ρ) we denote the set of states q such that q = qi for infinitely many
i ∈ N. A run ρ is accepting if Inf(ρ) ∩ F 6= ∅.
The language of A is defined as the set of words w ∈ Σω such that there
exists an accepting run for w on A.
An NBA A is called deterministic or a DBA if for every q ∈ Q and every
a ∈ Σ there is exactly one state q′ ∈ Q such that (q, a, q′) ∈ δ.

Let K = 〈S,→, L〉 be a Kripke structure over some set of atomic propositions
Prop and let A be a Büchi automaton over Σ = 2Prop . We say that a path
π in K is accepted by A iff A accepts the word (li)i∈N with li := {p ∈ Prop |
πi ∈ L(p)}.

Example 2.37. Let Prop = {p, q} and A be the NBA over Σ = 2Prop de-
picted in Figure 2.2a. It is easy to see thatA accepts all paths that eventually
do not read any more p’s.
Thus, if we look at the structure K in Figure 2.2b we can see that the path
s0(s2)ω is accepted but the path s0(s1)ω is not.

28

A: q0 q1

2Σ

2Σ

{q}, ∅

(a) NBA A.

K: s0

s1

p

s2

q

(b) Kripke Structure K.

Figure 2.2: Structure A and a sketch of Duplicator’s path choice on A.

The existential NBA path problem is the following:

Input: a Kripke structure K = 〈S,→, L〉, a state s ∈ S and a Büchi-
automaton A.

Output: Is there a path π in K starting at s such that A accepts π?

It is known that this problem can be solved efficiently using two nested
depth-first searches.

Proposition 2.38 ([22]). The existential NBA path problem can be solved
in NLogSpace.

Parity Automata. The class of languages accepted by an NBA form the
so called ω-regular word languages. However, sometimes it may be hard to
use Büchi-automata directly and seemingly ”stronger“ acceptance conditions
are easier to use.

Definition 2.39. A (nondeterministic) parity automaton – or short NPA–
is a tuple (Q,Σ, qI , δ,Ω) with Q,Σ, qI , δ defined as for NBA and Ω : Q → N
is a priority function.
We say that a parity automaton P = (Q,Σ, qI , δ,Ω) has index k if |{Ω(q) |
q ∈ Q}| = k.
Runs are defined as for NBA. A run ρ on an NPA is called accepting if and
only if max{Ω(q) | q ∈ Inf(ρ)} is even, i.e. if the maximal priority that occurs
infinitely often on this run is even. Deterministic parity automata or DPA
are defined in the same way as DBA.

It is easily seen that for each NBA there is an equivalent NPA: NBA can be
seen as special parity automata with only two priorities, e.g. Ω(q) = 2 if
q ∈ F and Ω(q) = 1 if q 6∈ F . However, it is also well-known that each NPA
can also be translated into an equivalent NBA [47]. Thus, parity automata

29

and Büchi automata accept the same class of languages, called the ω-regular
languages.

2.9 Games

In the field of modal and temporal logics 2-player games often present a
nice framework that helps to reason about certain aspects of these logics.
Often times decision problems like model checking can be reduced to solving
a 2-player game. A prominent example are the model checking games for
the µ-calculus that we will present in Section 2.9.3. Another example are
Ehrenfeucht-Fräıssé games which are used to reason about the limits of the
expressive power of a logic.

We use this section to introduce a general framework of 2-player games and
to introduce the terminology associated with these games. Special instances
of 2-player games will be used throughout this thesis, especially model check-
ing games and Ehrenfeucht-Fräıssé games. We will also take a look at the
important class of parity games and state some important properties.

2.9.1 A Framework for 2-Player Games

A 2-player game is – as the name suggests – played between two players,
here named 0 and 1, and consists of a game arena, a graph, and a winning
condition. It usually can be thought of as two players pushing a token along
the edges of the game arena and each player naturally tries to win the game.
To better distinguish both players we usually refer to player 0 with female
pronouns and to player 1 with male ones.

Definition 2.40. The game arena of a 2-player game is a tuple (V, V0, V1, E)
where V is a (usually finite) set of states or nodes, E ⊆ V × V is an edge
relation and V0, V1 form a partition of V . We say that a node v ∈ V belongs
to player i if v ∈ Vi.
A finite sequence λ = v0v1v2 . . . vn such that (vi, vi+1) ∈ E for every 0 ≤ i < n
is called a partial play and a partial play λ is called maximal if there is no
partial play λ′ such that λ is a proper prefix of λ′.

A play λ is a maximal partial play or an infinite sequence v0v1v2 . . . such that
(vi, vi+1) ∈ E for every i ∈ N. We will say that λ starts in v0. Further, we
denote the set of all infinite plays by Π and the set of all finite plays by Πfin.

We will usually not strictly differentiate between a partial play and a play.
It should be clear from the context which of the two is meant.

30

v0 v1

Figure 2.3: The game arena for the game G.

Definition 2.41. A 2-player game or simply just a game is a tuple G =
(V, V0, V1, E, vI , F) where (V, V0, V1, E) is a game arena, vI ∈ V is an initial
state and F : Π ∪ Πfin → {0, 1} is a winning condition that assigns a winner
to each play starting at the initial state.
A game is played by pushing a game token along the edges of the game arena
starting at some initial state vI ∈ V . Depending on wether the node that
currently has the token belongs to player 0 or 1 it is this player’s choice
to choose an outgoing edge from this node and move the token along one of
these edges to another node of the arena. The game continues either until the
token gets stuck, i.e. there are no outgoing edges to choose, or it continues
forever. In both cases a play λ is formed. The play is won by player i if and
only if F (λ) = i.

Example 2.42. Take a look at the game G = (V, V0, V1, E, v0, F) whose
game arena is depicted in Figure 2.3. Nodes that belong to player 0 have a
diamond shape while nodes belonging to player 1 have a rectangular shape.
The winning condition F is that a play is won by player 0 if and only if
there is a red node that appears infinitely often in the play. Since the game
arena is total, i.e. there is an outgoing edge on every node we do not need
to consider finite plays.

The winner of a single play is easily obtained by simply checking the winning
condition. However, the basic question when it comes to 2-player games is
usually a bit more general: Can one of the players play in such a way that he
surely wins the game, no matter how the opposing player chooses to play?
This question is often hard to answer since every move needs to consider
all possible choices of the other player. This question is formalised with the
notion of strategies.

Definition 2.43. Let G = (V, V0, V1, E, vI , F) be a game and λ = v0v1 . . . vn
be a finite play on G. We say that λ is owned by player i if vn ∈ Vi. Let
Πpar,i denote the set of all (partial) plays owned by player i.
A strategy for player i is a partial function str : Πpar,i → V which assigns
to every (partial) play v0v1 . . . vn owned by player i a new node w ∈ V
such that (vn, w) ∈ E. We say that a (finite or infinite) play λ = v0v1 . . .

31

conforms to the strategy str if for every j ∈ N with vj ∈ Vi it holds that
vj+1 = str(v0 . . . vj).

A winning strategy for player i is a strategy such that every play that con-
forms to this strategy is won by player i.

Thus, the question if one of the players can surely win a game can be refor-
mulated into: Does a winning strategy for one of the players exist?

We often refer to the decision problem ”Is there a winning strategy for player
0?“ as solving the game.

Example 2.44. Look again at the game G from Example 2.42. If the game
starts at v0 then player 0 has a winning strategy. She simply moves to the
leftmost red-marked state and then continues to go back to v0 where he can
again go to the leftmost state and so on. In this way player 0 surely sees a
red state infinitely often.

On the other hand, if the game starts for example at v1 then player 1 has a
winning strategy. He can simply loop back to v1 and never leave this state
to win the game. In fact, he can also visit the rightmost red state a number
of times because at this state player 0 has no choice but to move the token
back to v1 again. As long as player 1 at some point decides to never leave v1

again he wins.

Keep in mind that these definitions only provide a rough framework and
terminology for 2-player games. We will sometimes deviate slightly from this
framework. For example, we will sometimes not explicitly partition the set
of nodes if the edge relation from some node is deterministic. Or a single
move might involve more than one step in a play. This is for example the
case in the Ehrenfeucht-Fräıssé games described in Section 5.1.

2.9.2 Parity Games & other Regular Games

Parity games, just as parity automata, are a class of 2-player games that is
intensively studied because of their multitude of applications in automata
theory, logic, verification and synthesis. One particular reason is their close
connection to the model checking problem for Lµ.

Definition 2.45. A parity game is a 2-player game G = (V, V0, V1, E, vI ,Ω)
where the winning condition is given via a function Ω : V → N that assigns
a priority to each state.

Typically parity games are assumed to be total, i.e. there is an edge from
every state and thus there are only infinite plays in such a game.

32

A play λ = v0v1 . . . is won by player 0 if and only if max{Ω(v) | v ∈ Inf(λ)}
is even with Inf(λ) denoting the set of all states occurring infinitely often in
λ.
Similar to parity automata we refer to the number of different priorities as
the index of G.

Example 2.46. In fact, the game G presented in Example 2.42 can also
be seen as a parity game. For this, assign the red states the priority 2 and
the other states only priority 1. It is not difficult to see that the winning
condition then matches the previous one.

Parity games have some nice theoretical properties: All parity games deter-
mined, i.e. there is always a winning strategy for one of the players [31].
Moreover, it can be shown that these winning strategies are positional which
means that such a strategy only needs to consider the current state on which
the token lies and not the whole history on how the token got to this place
as it is generally the case for two-player games [31].
Similarly to the connection between NPA and NBA (or other automaton
models for ω-regular languages) it is also possible to reduce 2-player games
in which the winning condition is regular, i.e. it is given by an ω-regular
automaton, to parity games.
We first describe what it means that the winning condition of a 2-player
game is described by an automaton.

Definition 2.47. Let G = (V, V0, V1, E, vI , F) be a 2-player game and Σ be
a finite set of symbolic rule names. A symbolic representation of the game
rules is a function f : E → Σ such that every edge in the game is linked to
a symbolic rule application.
We can thus naturally associate each play λ = v0v1 . . . with its symbolic play
f(λ) := f(vo, v1)f(v1, v2) . . . and denote by f(W0) resp. f(W1) the set of all
symbolic plays won by player 0 resp. 1.
We only consider symbolic representations such that if f(λ) = f(λ′) for two
plays λ, λ′ then λ is won by player 0 if and only if λ′ is won by player 0 and
only consider them for determined games.
We say that the winning condition is regular if there is an ω-regular au-
tomaton A over Σ such that L(A) = f(W0) and refer to games with regular
winning conditions as regular games.

For Σ = E and f the identity function we simply get that the winning
condition is recognised by an ω-regular automaton over the set of edges in
the game. However, using proper symbolic encdings where Σ may be much
smaller than the set of edges in a particular type of game may result in
smaller automata and thus better complexity bounds.

33

Regular games can be reduced to parity games with an easy product construc-
tion enabling the use of one of the many solvers for parity games [39, 90].
However, for this construction it is essential that the winning condition is
given by a deterministic automaton (c.f. [24, Sect. 15.1.7]). This means that
potential nondeterministic automata for the winning conditions need to be
determinised before they can be used. This of course comes at a cost and
needs to be considered.

Proposition 2.48 ([24]). Let G = (V, V0, V1, E, vI ,Ω) be a 2-player game
with n nodes such that its winning condition is recognised by a deterministic
parity automaton with m states and index k. Then there is a parity game
G ′ with at most m · n nodes and index k that is won by player 0 if and only
if G is won by player 0.

Solving parity games is known to be in NP ∩ Co-NP [48], however most
practically used algorithms are still exponential in the number of priorities.
A class of parity games that is easier to solve are 1-player parity games.

Definition 2.49. Let G = (V, V0, V1, E, vI ,Ω) be a parity game. G is called
a 1-player parity game if V0 = V or V1 = V .

1-player parity games are special parity games where all nodes belong to one
of the players and thus this player is the only one determining the outcome.
It is not surprising that these games are very easy to solve since these games
basically boil down to solving a reachability problem.

Proposition 2.50 ([24]). 1-player parity games can be solved in NLog-
Space.

A great example that shows why parity games are particularly useful tools
are the model checking games for the modal µ-calculus.

2.9.3 Model Checking Games for Lµ

Model checking games for the modal µ-calculus [85] are a great way to not
only solve the model checking problem for Lµ but also help to understand
what exactly a possibly convoluted µ-calculus formula expresses because they
unfold a formula step by step. We will present these well-known games and
give a short example. For a more detailed introduction see for example
[85, 16].

Definition 2.51. Let ϕ ∈ Lµ be in negation normal form and K = 〈S,→,
L〉 be a Kripke structure. The Lµ model checking game GLµ

(K, ϕ) is played
between two players V and R called the Verifier and the Refuter.

34

s ` ψ1 ∧ ψ2

s ` ψ1 s ` ψ2
(R)

s ` �ψ
t ` ψ (R : s→ t)

s ` νX.ψ(X)
s ` ψ(X)

(R)

s ` X
s ` fpϕ(X)

s ` p
s ` p
s ` ¬p
s ` ¬p

(V)
s ` ψ1 ∨ ψ2

s ` ψ1 s ` ψ2

(V : s→ t)
s ` ♦ψ
t ` ψ

(V)
s ` µX.ψ(X)
s ` ψ(X)

Figure 2.4: The game rules for the Lµ model checking games.

The game arena is the set of configurations S×Sub(ϕ). We usually denote a
configuration via s ` ψ. The game begins at some position s ` ϕ and evolves
using the rules depicted in Figure 2.4. These rules define the partition of the
game arena into nodes belonging to V and nodes belonging to R as well as
the edge relation between the configurations. For example the rule

s ` �ψ
t ` ψ (R : s→ t)

means that a configuration of the form s ` �ψ belongs to R and he can
choose a successor t of s in the Kripke structure and move the token to the
configuration t ` ψ.
Intuitively V wants to prove that the structure is a model of the formula
while R tries to refute that.
There are two ways a play can go. Either it gets stuck in a configuration
s ` p or it continues to unfold fixed points since these are the only rules that
do not necessarily reduce the formula size in a configuration. For the first
case V wins if K, s |= p and R wins if this is not the case.
The winner of an infinite play that keeps unfolding fixed points is intuitively
determined by the type of the unique largest fixed point with respect to the
dependency order of fixed points >ϕ occurring infinitely often. If it is of type
ν then V wins and if it is of type µ then R wins.
Both cases can easily be formulated as a parity winning condition. For this we
need to assign even priorities to ν-type variables and odd priorities to µ-type
variables and we also need to make sure that if X >ϕ Y then Ω(X) > Ω(Y).
The latter condition can easily be formulated using the notion of alternation
depth.
Further, we assign an even priority to configurations s ` p if s ∈ L(p) and
an odd priority if this is not the case. Note that in these cases the game
is stuck in this configuration and thus the exact value of the priority is not
important. We will simply use priorities 0 and 1.

35

For example, one way to do this is to assign the following priorities to con-
figurations α:

Ω(α) = 2 · bad(X)/2c+ 1, if α = s ` µX.ψ(X),

Ω(α) = 2 · bad(X)/2c, if α = s ` νX.ψ(X),

Ω(α) = 1, if α = s ` p and s 6∈ L(p),

Ω(α) = 1, if α = s ` ¬p and s ∈ L(p),

Ω(α) = 0, if α = s ` p and s ∈ L(p),

Ω(α) = 0, if α = s ` ¬p and s 6∈ L(p),

Ω(α) = 0, otherwise.

The following fact about these model checking games is well-known for Lµ.

Proposition 2.52 ([85]). Player V has a winning strategy in GLµ
(K, ϕ) from

s ` ϕ if and only if K, s |= ϕ.

We will use an example to showcase the use of these model checking games.

Example 2.53. Consider again the formula νY. µX. (p ∧ ♦Y) ∨ ♦X intro-
duced in Example 2.21 and the Kripke structure

K: s t

p

The corresponding model checking game GLµ
(K, νY. µX. (p ∧ ♦Y) ∨ ♦X) is

depicted in Figure 2.5.
Configurations belonging to V are marked grey while configurations belong-
ing to R have marked borders. The numbers depicted in red are the priorities
assigned to these configurations. If a priority is not depicted then it is 0.
We already know that the formula expresses the property that there is a
path on which p occurs infinitely often. This is certainly the case on K with
a path that infinitely often goes through t. Thus, V should have a winning
strategy in this game, regardless of whether the game starts at state s or t.
First, we observe that V has a choice to make at up to six configurations in
the game. However, the configurations t ` ♦X and t ` ♦Y are deterministic
in that there is no real choice. Suppose for a moment that the game starts
at s ` νY. µX. (p ∧ ♦Y) ∨ ♦X. Then the first choice for V happens at
s ` (p ∧ ♦Y) ∨ ♦X. She immediately loses if she chooses to go to R’s
configuration s ` (p ∧ ♦Y) because p does not hold at s. Thus, V chooses
to go to s ` ♦X.

36

s ` νY. µX. (p ∧ ♦Y) ∨ ♦X

2

s ` µX. (p ∧ ♦Y) ∨ ♦X

1

s ` (p ∧ ♦Y) ∨ ♦XV

s ` (p ∧ ♦Y)R

s ` p1 s ` ♦YV

t ` Y

s ` ♦XV

t ` X

t ` νY. µX. (p ∧ ♦Y) ∨ ♦X

2

t ` µX. (p ∧ ♦Y) ∨ ♦X

1

t ` (p ∧ ♦Y) ∨ ♦X V

t ` (p ∧ ♦Y) R

t ` p 0t ` ♦Y V

s ` Y

t ` ♦X V

s ` X

Figure 2.5: The game GLµ
(K, νY. µX. (p ∧ ♦Y) ∨ ♦X).

Next, if she chooses to always go to s ` X at s ` ♦X then the game –
with these two choices only – gets stuck in an infinite loop with the highest
priority 1 by unfolding the fixed point formula of X again and again. Thus,
V chooses the other alternative and goes to t ` X.
The next choice for V is then at t ` (p ∧ ♦Y) ∨ ♦X. Here she can choose
to go to t ` (p∧♦Y) because p holds at t and thus R can only choose to go
to t ` ♦Y if he does not want to lose immediately. This leads the play to go
through s ` νY. µX. (p ∧ ♦Y) ∨ ♦X again and which has priority 2 creating
an infinite loop with the highest priority 2. Her choice at s ` ♦Y is irrelevant
since this configuration will never be reached.
Thus, V wins if she chooses to follow this strategy. If we look at this strategy
carefully, we see that V wins because she forces the game to go through a
state satisfying p infinitely often which is exactly what the formula expresses.

2.10 Computational Complexity

In this section we introduce the basic ideas and concepts of computational
complexity. For a more in-depth introduction to the topic we refer to [76] or
[9].

37

Oftentimes when dealing with logics one is not only interested in their de-
cision problems, i.e. is there a model that satisfies a given formula, or does
this particular system satisfy a given formula, but also in how costly these
decision procedures are.
A standard way of measuring such algorithms is to measure the time and
space that they use relative to the input size and then to classify the algo-
rithms. The standard model of classification are Turing machines. They have
proven to be a very robust mathematical model of computation and are by
the Church-Turing thesis conjectured to be universal, i.e. every computable
function is conjectured to be computable by a Turing machine. So far, this
conjecture seems to hold.
Decision problems such as the model checking problem or the satisfiability
problem of a logic in this context are usually considered as a set – for example
the set of formulas that are satisfiable or the class of structures and formulas
such that the structure is a model of the formula etc.
The basic model of a Turing machine consists of a finite control or a finite
amount of internal states, an input tape which is divided into single cells and
a tape head that is used to read or write on a single cell of the tape. Each
cell contains at most one symbol from a predefined alphabet and the tape is
considered to be infinite in both directions.
The tape is used for the input into the Turing machine, potential output, as
well as a working memory. Given some input on the tape the Turing machine
starts to read the contents of the first cell on the tape and consults its finite
control which consists of a finite set of states and rules that tell it what to
do when reading a specific symbol in a specific state. The machine can only
rewrite the symbol on the tape, change to a different internal state and then
move its head to one of the adjacent cells on the tape. The computation is
finished if the machine (potentially after several computational steps) changes
into a special final state.
Formally, such a machine is defined as follows.

Definition 2.54. A (deterministic) Turing machine is a 5-tuple (Q,Σ, δ, q0,
F) where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ →
Q×Σ×{L,N,R} is a (partial) transition function, q0 ∈ Q is the initial state
and F ⊆ Q is a set of accepting states.
A configuration of a Turing machine is a triple (α1, q, α2) ∈ Σ∗ × Q × Σ∗

where α1α2 is the actual content of the tape and q ∈ Q is the current state
of the Turing machine.
Suppose that the Turing machine is in some configuration (α1, q, α2) and
suppose that α2 = xβ for some x ∈ Σ. The Turing machine operates by
reading x in state q and moving according to δ(q, x). For example, suppose

38

that δ(q, x) = (q′, y, R). Then the machine writes the symbol y into the
tape cell, changes its state to q′ and moves the head to the right, reaching
a configuration (α1y, q

′, β). The machine acts accordingly if the transition
function dictates to move to the left (L) or to stay in the same position (N).
A computation of a Turing machine on some word w ∈ Σ∗ is a (finite or
infinite) sequence of computational steps starting in the initial configuration
(ε, q0, w). If the Turing machine enters a configuration that has no following
state, i.e. δ is undefined for it, then we say that the machine halts. A
computation is called accepting if it is finite and ends with a configuration
(α1, qf , α2) such that qf ∈ F . The language of a Turing machine is the set of
words w ∈ Σ∗ such that there exists an accepting computation for w.
A nondeterministic Turing machine is defined like a deterministic Turing
machine with the exception that we have a transition relation δ ⊆ Q× Σ×
Q×Σ×{L,N,R} and computational steps only need to respect some tuple
in this transition relation.

To classify problems we also need some kind of measure on Turing machines.
This is measured in terms of their time and space usage for their worst-case
acceptance behaviour.
Let M be a deterministic (nondeterministic) Turing machine and let t :
N → N be a function. M is said to be (nondeterministically) t(n)-time
bounded if for every input word of length n the Turing machine M makes
at most t(n) steps before halting. The language of M is then said to be of
(nondeterministic) time complexity t(n).
Likewise, if for every input word of length n the Turing machine visits at most
t(n) distinct cells before it halts, then we say that M is (nondeterministically)
t(n)-space bounded and the language of M is of (nondeterministic) space
complexity t(n).
The family of languages of (nondeterministic) time complexity O(t(n)) is
defined as DTIME(t(n)) (NTIME(t(n))) and the family of languages of
(nondeterministic) space complexity O(t(n)) is defined as DSPACE(t(n))
(NSPACE(t(n))).

Definition 2.55. Let 2n0 := n and 2nm+1 := 22nm . We define the complexity
classes as follows:

NLogSpace := NSPACE(log n),

P := ∪k≥1DTIME(nk),

PSpace := ∪k≥1DSPACE(nk),

NPSpace := ∪k≥1NSPACE(nk),

NP := ∪k≥1NTIME(nk),

39

ExpTime := ∪k≥1DTIME(2n
k

),

NExpTime := ∪k≥1NTIME(2n
k

),

ExpSpace := ∪k≥1DSPACE(2n
k

),

NExpSpace := ∪k≥1NSPACE(2n
k

),

m−ExpTime := ∪k≥1DTIME(2n
k

m),

m−ExpSpace := ∪k≥1DSPACE(2n
k

m),

Elementary := ∪m≥1m−ExpSpace,

Tower := DSPACE(2nn).

The following relationships between these complexity classes are known:

NLogSpace ⊆ P ⊆ NP ⊆ PSpace

⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace.

We also know that P (ExpTime [76]. However, it is not known if any of
the direct subset relationships above are strict. By Savitch’s Theorem [81]
we get that PSpace = NPSpace as well as ExpSpace = NExpSpace.
For any of these complexity classes L we also define Co-L as the set of all
problems whose complement is in L.
Lastly, we also define ∆p

2 = PNP, as the class of all problems solvable by
a deterministic polynomial-time Turing machine with access to a one-step
NP-oracle. We have NP ∪ Co-NP ⊆ ∆p

2 ⊆ PSpace. For a more de-
tailed introduction to this complexity class, Oracle-Turing machines and the
polynomial-time hierarchy, we refer to [86].
To further characterise how difficult a decision problem can be, it is also
useful to compare decision problems relative to each other.

Definition 2.56. Let P ,P ′ ⊆ Σ∗ be decision problems over some alphabet
Σ. We say that P is polynomial-time-reducible (logspace-reducible) to P ′ if
there is a function r : Σ∗ → Σ∗ such that

• for every word x ∈ Σ∗ it holds that x ∈ P if and only if r(x) ∈ P ′ and

• r can be computed in polynomial time (logarithmic space).

In this case r is also called a polynomial-time (logspace-)reduction from P
to P ′.

Definition 2.57. Let P ⊆ Σ∗ be a decision problem and L be a class of
problems. We say that P is L-hard (with respect to polynomial time reduc-
tions) if for every problem P ′ ∈ L there is a polynomial-time reduction r
from P to P ′.

40

Further, if P is L-hard and P ∈ L, then P is said to be L-complete (with
respect to polynomial-time reductions).

Thus, if a problem is hard for a complexity class it can be considered to be
as hard as any problem in this class and if it is complete for this class it can
be considered to be ”the hardest“ problem in this class.

Representations. Turing Machines are an ideal tool to solve problems
that require manipulation of strings. However, it is not quite clear by defi-
nition how Turing machines can be utilised for algorithms that require ma-
nipulation of other mathematical objects like formulas, structures, automata
and so on. For this we need a representation of these objects as strings.
Since these objects typically are finite this is not a problem. Once such a
representation is fixed an algorithm that operates on these objects can easily
be transferred into a Turing machine that decides its corresponding decision
problem.

There is one thing to keep in mind about these representations: Their size
should typically be polynomially related to the mathematical objects they
refer to. Having this in mind, we usually work directly on the mathematical
objects instead of on their representations and describe algorithms on these
objects instead of Turing machines.

Undecidable Problems. A decision problem is said to be decidable if
there is a Turing machine that always halts and that accepts exactly the
positive instances of this problem and it is undecidable if no such Turing
machine exists.

Undecidable problems can also be measured in different ”degrees“ of undecid-
ability. For example a problem might be undecidable but still semi-decidable,
i.e. there exists a Turing machine that halts and accepts at least the positive
instances of a decision problem but may never halt on negative instances, or
it might not even be semi-decidable anymore.

These degrees of undecidability are often classified with respect to a hierar-
chy formed by first- and second-order arithmetic over the natural numbers,
i.e. formulas of first- and second-order logic over the signature with 0, the
successor function, addition, multiplication and equality interpreted over the
natural numbers. We do not formally distinguish between sets of natural
numbers and languages as computed by Turing machines because both mod-
els of computation are equivalent and only different representations.

We assume familiarity with the notions of first- and second-order arithmetic
for the definitions of these hierarchies, c.f. [26].

41

We begin with the arithmetical hierarchy which classifies sets of natural num-
bers defined by first-order formulas and fix the above mentioned signature
for the remainder of this section.

We say that a relation R ⊆ Nk for some k ∈ N is definable by a first-
(or second-)order formula ϕ(x1, . . . , xk) with free variables x1, . . . , xk if it
holds for all tuples (s1, . . . , sk) ∈ Nk that (s1, . . . , sk) ∈ R ⇔ (x1 7→
s1, . . . , xk 7→ sk) |= ϕ.

Definition 2.58. A set S ⊆ Nk for some k ∈ N is in Σ0
0 and Π0

0 if it is
definable by a quantifier free first-order formula.

Moreover, it is in Σ0
n+1 (resp. Π0

n+1) for some n ∈ N if it is definable by a
formula ∃x1. . . .∃xk. ϕ(x1, . . . , xk) (resp. ∀x1. . . .∀xk. ϕ(x1, . . . , xk)) for some
k ∈ N with ϕ ∈ Π0

n (resp. ϕ ∈ Σ0
n).

As it turns out the decidable sets, i.e. the sets computable by a Turing
machine that always halts form the basis of this hierarchy, namely Σ0

0 = Π0
0.

And the above mentioned semi-decidable problems form the class Σ0
1.

Further, it is easy to see that the complements of the problems in Σ0
n form

the class Π0
n. Thus, Π0

1 encompasses all complements of semi-decidable sets.

The connection to Turing machines continues upwards. The class Σ0
n+1 can

also be characterised as the semi-decidable sets with access to an oracle (a
miraculous problem solver that gives a correct answer for the problem in
question in one computational step) that decides a problem in Σ0

n or Π0
n by

Post’s Theorem [58].

The analytical hierarchy extends the arithmetical hierarchy even further and
also accounts for sets definable by second-order arithmetic.

Definition 2.59. A set S ⊆ Nk for some k ∈ N is in Σ1
0 and Π1

0 if it is
definable by a first-order formula, i.e. if it lies somewhere in the arithmetical
hierarchy.

Moreover, it is in Σ1
n+1 (resp. Π1

n+1) for some n ∈ N if it is definable
by a second-order formula ∃X1. . . .∃Xk. ϕ(X1, . . . , Xk) (resp. ∀X1. . . .∀Xk.
ϕ(X1, . . . , Xk)) for some k ∈ N with ϕ ∈ Π1

n (resp. ϕ ∈ Σ1
n).

All problems that lie somewhere in these hierarchies and are not in Σ0
0 = Π0

0

are undecidable. But sets that are higher up in one of these hierarchies are
increasingly ”less decidable“. We say that a problem is highly undecidable
if it lies somewhere in the analytical hierarchy but not in the arithmetical
hierarchy.

42

2.11 Tiling Problems

Tiling Problems are a convenient way to show hardness for certain complexity
classes.

Definition 2.60. A tiling system is a tuple T = (T,H, V) that consists of a
set of tiles T = {t1, . . . , tm} for some m ∈ N together with a horizontal and
a vertical matching relation H,T ⊆ T × T .

A tiling problem now consists of a tiling system T and a region X ⊆ N× N
which has to be tiled in such a way that only tiles respecting the horizontal
matching relation lie adjacent to each other and only tiles that respect the
vertical matching relation lie on top of each other.

Example 2.61. Consider the tiling system T = (T,H, V) with the following
tiles T :

The horizontal and vertical matching relations are given by the colour coding,
i.e. only tiles that have matching colors on their respective sides can be placed
adjacent or on top of each other. For example the combinations

belong to H resp. V , but the combinations

do not. With these tiles it is possible to successfully tile the 4× 4 square:

43

A closer look at the solution shows that in fact the third and fourth row
already repeat the same pattern as the first two rows. Thus, by repeating
this pattern it is also possible to tile the whole 4×N corridor with this tiling
system. And further, we can also repeat this 4 × 4-pattern starting at the
fifth column without violating any of the restrictions so that the whole plane
can be tiled.

We will focus mainly on such corridor tiling problems. Let f : N → N be a
function. The corridor of width f(n) is the subset X of the plane such that
X = N× {0, . . . , f(n)− 1}.

Definition 2.62. Let X be the corridor of width f(n). A valid T -tiling of
the corridor of width f(n) is a function τ : X → T such that

• for all i ∈ N and all j ∈ {0, . . . , f(n)− 2} it holds that (τ(i, j), τ(i, j +
1)) ∈ H,

• for all i ∈ N and all j ∈ {0, . . . , f(n) − 1} it holds that (τ(i, j), τ(i +
1, j)) ∈ V .

Further, there may be initial conditions. We will mainly focus on tiling
problems with an initial tile – say t1 – that is placed at (0, 0).
The f(n)-corridor tiling problem is now the following:

Input: a tiling system T and an n ∈ N in unary encoding

Output: is there a valid T -tiling τ of the corridor of width f(n) with
τ(0, 0) = t1?

The f(n)-corridor T -tiling problem is defined in the same way as the f(n)-
corridor tiling problem with the exception that the tiling system T is fixed
and the single input is n ∈ N.
Especially the corridor tiling problems with linear and k-exponential bounded
functions are of interest to us.

44

Proposition 2.63 ([24]). For every k ≥ 0 the 2nk -corridor tiling problem is
k-ExpSpace-complete.

With 0-fold exponential space we mean polynomial space. Thus the n-
corridor tiling problem is PSpace-complete.
Lower bounds can be shown by an encoding of suitable space-restricted Tur-
ing machines. Due to the presence of universal Turing machines we can even
sharpen these results.

Proposition 2.64. For every k ≥ 0 there is a tiling system Tk such that the
2nk -corridor Tk-tiling problem is k-ExpSpace-complete.

Corridor tiling problems are particularly useful to prove lower bounds for
space-complexity classes. To prove lower bounds for time-complexity classes
we can utilise tiling games – a two player variant of tiling problems. In this
variant one player tries to produce a valid T -tiling of the corridor row by
row from bottom to top and from left to right and the other player can make
this task harder by choosing the tile placed at the beginning of each row. Of
course the other player also has to place his tile in such a way that it does
not violate the vertical matching relation.

Definition 2.65. The f(n)-corridor T -tiling game is played between two
players – Adam and Eve – on a corridor of width f(n).
The game is played as follows. The game starts at the bottom left of the
corridor at (0, 0) with t1 already placed.
Whenever the first tile of a row has been placed it is Eve’s task to complete
this row with tiles that do not violate the horizontal and vertical matching
relations given by T .
Whenever a row is finished, Adam can choose to place the first tile of the
next row also respecting the vertical matching relation.
A player has won if the other player cannot make a move without violating
the horizontal or vertical matching relations. Additionally Eve wins if the
game continues forever.

The f(n)-tiling game problem is now the following:

Input: a tiling system T and an n ∈ N in unary encoding

Output: is there a winning strategy for Eve in the f(n)-corridor T -tiling
game beginning with τ(0, 0) = t1?

Similarly to corridor-tilings, we define f(n)-corridor T -tiling game analo-
gously but with regard to a fixed tiling T and the single input n ∈ N.
The following results about tiling games are also well-known.

45

Proposition 2.66 ([24]). For every k ≥ 0 the 2nk -corridor tiling game prob-
lem is (k + 1)-ExpTime-hard.

Similarly to corridor-tilings and due to the transformation of deterministic
Turing machines into alternating Turing machines that use only logarithmic
space compared to the time constraints of its deterministic Turing machine
[21] we also obtain the following.

Proposition 2.67. For every k ≥ 0 there is a tiling system Tk such that the
2nk -corridor Tk-tiling game is (k + 1)-ExpTime-complete.

Tiling problems do not only help with lower bounds for certain complexity
classes. The unbounded problems also help in differentiating decidable and
undecidable problems.
The unbounded corridor tiling problem is the following:

Input: a tiling system T

Output: is there a valid T -tiling τ of the unbounded corridor, i.e. the
corridor with width N, such that τ(0, 0) = t1?

Proposition 2.68 ([91]). The unbounded corridor tiling problem is undecid-
able.

However, as noted by Harel [46] this unbounded corridor tiling problem is
Co-semi-decidable, i.e. it is in Π0

1 of the arithmetical hierarchy. In fact, it is
Π0

1-complete.
The recurring unbounded corridor tiling problem is another undecidable vari-
ant of these tiling problems:

Input: a tiling system T

Output: is there a valid T -tiling τ of the unbounded corridor, i.e. the
corridor with width N, such that there are infinitely many k ∈ N
with τ(k, 0) = t1?

This problem was shown to be highly undecidable.

Proposition 2.69 ([46]). The recurring unbounded corridor tiling problem
is Σ1

1-complete.

46

Chapter 3

Hybridisation of
Branching-Time Logics

Despite the increase in expressive power from CTL to CTL∗ these logics
still are limited in some ways. For example, they are all invariant under
bisimulation which means that there does not exist a formula in any of these
logics that can distinguish two bisimilar states. Invariance under bisimulation
is the key property for many decision procedures and reasoning methods. It
is the reason why all these logics possess the tree-model property, i.e. any
satisfiable formula is also satisfied in a tree structure. This simply follows
since the tree-unfolding of a structure is bisimilar to the original structure.
Moreover, this enables the use of tree-automata and with them an easy test
for satisfiability by checking emptiness of an equivalent tree-automaton.
Sometimes however it may be necessary to distinguish bisimilar points. For
example if one wants to know if there is a certain state in the system that
loops back to itself, possibly meaning that the computation would repeat this
cycle over and over and get stuck in this state. Such a property cannot be
tested with bisimulation-invariant logics since each structure with a cycle is
bisimilar to its tree-unfolding which, by definition, does not have any cycles.
However, such “structural” properties can naturally be expressed by first-
order logic. For example the formula ∃x.R(x, x) intuitively tests if there
is some state x that has a transition back to itself via some accessibility
relation R. But this expressive power comes at the cost of the loss of many
nice properties. First-order logic is not invariant under bisimulation, does not
have a tree-model or even a finite-model property. Moreover, its satisfiability
problem is generally undecidable.
Hybrid logics are a framework that aims to combine the good properties
of modal and temporal logics with some of the “structural” expressiveness
first-order logic. This is done mostly by adding certain “structural” concepts

47

like unique names for states (or existential quantification over states in other
words) and referencing these names to various kinds of modal and temporal
logics.
Early ideas of adding names for states were already introduced in the 1950s
by [78] and the ’70s by [19]. However, it was only in the ’90s and early 2000s
that the ideas were picked up again and gained traction in a series of papers
by Goranko [40, 41, 42, 43]. Since then, many hybrid extensions of modal and
temporal logics have been studied, see for example [5, 7, 80, 70, 89, 96, 62, 70]
to name just a few.
Most of these research articles focus on hybrid extensions of modal logics and
basic temporal logics. Hybrid logics that are more expressive – like hybrid
extensions of CTL∗ or the µ-calculus – have generally not yet been studied.
The only exceptions are a small comment about the satisfiability problem of
hybrid CTL∗ on trees in [97] and a very restricted “hybrid” extension of the
µ-calculus [80].
This chapter is organised as follows. We will first discuss the basic hy-
brid framework and the ideas behind the hybrid operators considered in this
thesis. Then we will present the hybridisations of CTL∗ and continue to
discuss various fragments that coincide with the hybridisation of well-known
branching-time logics like CTL, CTL+ or FCTL+. After this, we discuss
the difficulties in adding hybrid operators to the µ-calculus and then present
the fully hybrid µ-calculus. We finish the chapter with an overview of all
obtained hybrid logics and their syntactic relationship to each other before
exploring them further in later chapters of this thesis.

3.1 The Main Concepts of Hybrid Logic

Hybrid Logics in their current manifestation feature three types of concepts
that are being added to the branching-time logics discussed in Chapter 2.

Names for States. The first concept are unique names for states which
can be used in combination with the other concepts to identify a single state
up to equality. These come in two different varieties: The first one being
static names for certain important states. These do not change at all during
the investigation. The second variety is of a more dynamic nature: These
names or variables can be bound in the context of a formula with a new kind
of hybrid operator – called the binder (or short ↓) – that names the current
state. Thus, hybrid extensions can name states “on-the-fly”.
To make the distinction between static names and dynamically bound vari-
ables clearer we will explicitly distinguish these two and will refer to static

48

names as nominals and interpret them as part of an (extended) Kripke struc-
ture. Dynamically bound variables will simply be called state variables or
variables.

Identifying Named States. The addition of names – either nominals or
variables – by itself does not really add much without a way to actually
use this new concept. This is achieved via tests that are able identify a
named state. These tests are on the surface very similar to simple atomic
propositions. For example the formula x ∧ EXx states that we are at a state
called x and there is a transition back to itself. Thus it is equivalent to the
first-order formula E(x, x). However, since such names will be unique to a
referenced state this simple test has a lot of impact.
These simple tests are what breaks the bisimulation-invariance of ordinary
branching-time logics. We can distinguish two otherwise bisimilar states
simply by naming one of them and testing for it.
From a first-order perspective nominals can simply be seen as “constants”
and state variables take the role of simple variables. Similarly, the binder
that names a state dynamically in the context of a formula can be seen as
a kind of an existential quantification for a new variable with a distinctly
modal flavor. For example consider the similarities between the formula
↓x.EXx which intuitively states that we name the current state x and then
can transition back to itself and the first-order formula ∃x.E(x, x). The
first-order formula has a more global nature than the hybrid formula but
aside from that both properties are quite similar. From a modal perspective
a named state can simply be seen as a state labeled with a special atomic
proposition x that happens to always hold on a single state only. And the
binder acts as a way to dynamically change these special propositions.

Referencing Names. The concepts of names and tests – while already
adding a lot of expressive power to a logic – are usually not that convenient
because most modal and temporal logics are by design quite local in their
nature which restricts the usage of these concepts a bit. To enhance the use
in a more global manner we also add a way to reference these names via
a new jump operator – or short @x – from anywhere in the structure. For
example the formula p ↔ @x p intuitively states that p holds at the current
state if and only if p holds at the named state x. It opens up a new and more
global way for modal or temporal formulas to transition a structure.

A Plan of Action. We now want to enrich branching-time logics like CTL∗

and later also the modal µ-calculus with these concepts. Remember that

49

branching-time logics like CTL∗ naturally feature state and path formulas.
Thus, for the two new operators jump and binder we have a choice: Both
operators could be allowed as only state formulas or also as path formulas.
Consider the binder first. State formulas are evaluated with regard to a state
in the structure. So we can easily bind a variable to this current state in the
context of a state formula. However, path formulas do also have a current
state since they are evaluated with respect to a path and a moment k on this
path. Thus, we can simply bind a variable to the k-th state on this path.

Now consider the jump operator. Obviously in the context of a state formula
this operator also makes sense. Simply change the current state to the state
referenced by the variable of the jump operator. Is it also possible to have
the jump operator as part of a path formula? This question is a bit trickier.
It turns out that it is possible to allow jump as a path formula – with certain
restrictions on how to use jumps. One way to give a well-defined semantics
makes sure that a jump in the context of a path evaluation also stays on
the same path, i.e. simply jumps back to a previous moment that we have
already seen. In this way we can simply continue the path evaluation with
the same path but at another moment in time. Such a restriction is realised
for example if the variable to which we want to jump is already bound during
the context of the same path formula. Thus, we only allow jumps to variables
that have been bound on the same path formula.

Remark 3.1. In [97] – which mostly studies hybrid extensions of CTL on trees
– there is a minor comment about the complexity of the satisfiability problem
of a hybrid version of CTL∗ where these thoughts about the interaction
between binder, jumps and paths were not considered. In fact the reduction
they use to show a nonelementary lower bound for the satisfiability problem
over trees uses jumps that refer to variables that were placed on another
path. As a consequence we believe that this result about the satisfiability
problem does not transfer to our hybrid extensions of CTL∗.

These considerations lead us to three different kinds of hybridisation for
branching-time logics: One in which both hybrid operators are only allowed
as state formulas, one in which the binder is allowed as a path formula while
the jump is still only allowed as a state formula and one in which both can
be used as path formulas (with a small restriction on jumps as mentioned
above). These three extensions of branching-time logics will be distinguished
by adding different indices to their names: ss, ps and pp indicating that the
binder and jump operator (in this order) are allowed only as a state formula
– indicated by an s – or also as a path formula – indicated by a p.

The “hybridisation” sp in which the binder is only allowed as a state formula
and the jump is allowed as a path formula is not considered because of

50

the already discussed restrictions needed for jumps to give a well-defined
semantics.
In Section 3.5, we will also add these hybrid concepts to the modal µ-calculus.
Syntactically, this is much easier for the µ-calculus since it only features one
type of formulas. However, adding and mixing these hybrid concepts with
least and greatest fixed points on the semantical side is not as straightforward
as for the other branching-time logics. We will discuss some of the unforeseen
consequences in mixing these concepts and how to obtain a well-behaved
semantics later in this chapter.

3.2 Hybridisation of CTL∗

Let Var = {x, y, . . .} and Nom = {n,m, . . .} be countable and disjoint sets
of first-order variables for states in a Kripke structure. We will refer to the
elements of Var as variables and to those of Nom as nominals. The only
difference between Var and Nom is that nominals receive a fixed interpreta-
tion in a Kripke structure, whereas the interpretation of variables can change
dynamically during the evaluation of a formula in a Kripke structure.

Definition 3.2. A hybrid Kripke structure is a K = 〈S,→, L〉 like an ordi-
nary Kripke structure except that L : (Prop → 2S)∪(Nom → S) assigns sets
of states to each atomic proposition and, at the same time, a single state to
nominals.

In what follows we only consider hybrid Kripke structures but will usually
simply refer to them as Kripke structures.

3.2.1 HCTL∗ss

Formulas of the simplest hybridisation – HCTL∗ss– are given by the grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ | n | @n ϕ | x | @x ϕ | ↓x.ϕ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

with p ∈ Prop, n ∈ Nom, x ∈ Var .
To account for the new hybrid operators we extend the interpretation of
branching-time logics by a variable assignment σ : Var → S in order to
give meaning to free variables in the evaluation of formulas. State formulas
are now interpreted with respect to a (hybrid) Kripke structure K = 〈S,→
, L〉, a state s ∈ S and a variable assignment σ : Var → S. Non-hybrid
state formulas and path formulas are interpreted as before – with the added

51

presence of the variable assignment. The new hybrid satisfaction relation |=ss

for the state formulas is then given as follows:

K, s, σ |=ss n iff L(n) = s,

K, s, σ |=ss @n ϕ iff K, L(n), σ |=ss ϕ,

K, s, σ |=ss x iff σ(x) = s,

K, s, σ |=ss ↓x.ϕ iff K, s, σ[x 7→ s] |=ss ϕ,

K, s, σ |=ss @x ϕ iff K, σ(x), σ |=ss ϕ,

where σ[x 7→ s] denotes the update of the variable assignment σ at x, i.e.
σ[x 7→ s](y) = σ(y) for all variables y 6= x and σ[x 7→ s](x) = s.
The operator ↓x.ϕ acts as a variable binder; all occurrences of x in ϕ are
bound and not free. We assume that HCTL∗ss formulas (and all formulas of
the ensuing hybrid logics) are closed, i.e. do not contain free variables. This
is not a restriction at all; a free variable acts like a nominal. Hence, a free
variable x in a formula ϕ can be “removed” by seeing ϕ as a formula over
Var \ {x} and Nom ∪{x}, and renaming all other bound occurrences of x in
ϕ. However, in some proofs we might have to deal with free variables that
occur during evaluations of subformulas. In these cases we refer to the free
variables of a formula ϕ as free(ϕ).

Example 3.3. With hybrid and temporal operators combined we can iden-
tify structural properties that neither CTL∗ nor first-order logic by them-
selves can express. For example, the formula ↓x.EXFx is true in a state s
if and only if there is a cycle (of arbitrary but finite length) starting at the
state it is evaluated at.

3.2.2 HCTL∗ps

The second hybridisation – HCTL∗ps– also allows the binder as a path-formula:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ | n | @n ϕ | x | @x ϕ | ↓x.ϕ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ | ↓x.ψ.

State formulas are interpreted as in HCTL∗ss. Path formulas are now inter-
preted with respect to a Kripke structure K, a path π, a moment k on this
path and a variable assignment σ : Var → S. Non-hybrid path formulas are
also interpreted as before and the new binder is interpreted as follows:

K, π, k, σ |=ps ↓x.ψ iff K, π, k, σ[x 7→ πk] |=ps ψ.

52

We use the suffix ps to indicate that this is the satisfaction relation for
HCTL∗ps.
The interplay between temporal operators on a path formula and the binder
brings considerable expressive power. For example it is easy to see that there
are formulas that are only satisfied on infinite Kripke structures.

Example 3.4. The formula EG ↓x.XG¬x expresses that there is a path such
that all states along this path are never seen again. Thus, this formula can
only be satisfied by an infinite structure because on an infinite path in a
finite structure states are bound to be repeated.

We will show later in Section 5.2 that this property cannot be expressed by
HCTL∗ss.

3.2.3 HCTL∗pp

The final hybridisation – HCTL∗pp– then also allows jumps as path formulas.
The formulas are produced by the grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ | n | @n ϕ | x | @x ϕ | ↓x.ϕ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ | ↓x.ψ | @x ψ.

However, as discussed above, “jumping to the state bound to x and then
evaluating the path formula ψ” as prescribed by @x ψ only makes sense if x
is bound to a moment on that particular path. To ensure that this is the case
we restrict the syntax with respect to the interplay between path quantifiers,
binders and jumps over path formulas: for any x ∈ Var and any subformula
@x ψ in which ψ is not a state formula we require that there is no occurrence
of a path quantifier E (or A) between @x ψ and the smallest ↓x.ψ′ in the
syntax tree above @x ψ.
To give proper meaning to the jump it does not suffice to just store the
state to which we jump because on a path this particular state may occur
more than just once. Thus, we additionally store the moment on the path
to which the jump operator refers and extend the semantics by a function
ϑ : Var → N.
The new satisfaction relation |=pp is then given as follows: State formulas
are interpreted as before. Non-hybrid path formulas are also interpreted as
before – with the added presence of σ and ϑ. Binder and jump as path
formulas are interpreted in the following way:

K, π, k, σ, ϑ |=pp ↓x.ψ iff K, π, k, σ[x→ πk], ϑ[x→ k] |=pp ψ,

K, π, k, σ, ϑ |=pp @x ψ iff K, π, ϑ(x), σ, ϑ |=pp ψ.

53

Example 3.5. The formula A
(
G ↓x.XF

∧n
i=0

∧
p∈Prop(Xip ↔ @x Xip)

)
states

that on all paths every sequence of labels that is observed over n steps along
the path is repeated somewhere later on this path.

Syntactic conventions for branching-time formulas that were introduced in
Section 2.5 can be generalised for hybrid formulas in a straightforward man-
ner.
The notions of subformulas and Fischer-Ladner closure generalise to hybrid
formulas with the addition of the clauses Sub(x) := {x} and Sub(n) := {n}
for x ∈ Var and n ∈ Nom. The notion of operators used in Section 2.5 also
extends to ↓ and @.
Also, the temporal nesting depth of a hybrid formula is extended by the
clauses nd(x) = nd(n) := 0 and nd(↓x.ψ) = nd(@x ψ) := nd(ψ). Thus, we do
not count hybrid operators towards the temporal nesting depth of a formula.
A hybrid branching-time formula ϕ ∈ HCTL∗pp is said to be in negation
normal form if negation only occurs directly in front of an atomic formula
p, x or n.

Lemma 3.6. For each formula ϕ ∈ HCTL∗pp an equivalent formula ϕ′ ∈
HCTL∗pp in negation normal form can be computed in linear time.

Proof. Using the equivalences ¬↓x.ϕ ≡ ↓x.¬ϕ, ¬@x ϕ ≡ @x ¬ϕ as well as
de Morgan’s laws and the usual temporal equivalences that are used to show
Lemma 2.29 we can easily push negations inwards until we obtain a formula
in negation normal form.

3.3 A Syntactical Hierarchy and a Unifying

Semantics

Looking at the grammars for HCTL∗ss, HCTL∗ps and HCTL∗pp it is quite easy
to see that the logics form a syntactical hierarchy with HCTL∗ss being the
smallest and HCTL∗pp being the largest.
A natural question that immediately arises concerns the precise relation of
the expressive power of HCTL∗ss, HCTL∗ps and HCTL∗pp. Note that there exist
subtle differences in their semantics. For instance the semantics of HCTL∗pp is
given with respect to two assignments σ : Var → S and ϑ : Var → N whereas
formulas of HCTL∗ps and HCTL∗ss are only evaluated with respect to one –
σ. For this reason we use |=ss, |=ps and |=pp to distinguish the satisfaction
relations for HCTL∗ss, HCTL∗ps and HCTL∗pp respectively. However, it is not
too difficult to see that these semantics are conservative in the following
sense.

54

Proposition 3.7. Let ϕ ∈ HCTL∗pp be a closed (state) formula, K = 〈S,→
, L〉 a Kripke structure, s ∈ S, σ1, σ2 : Var → S and ϑ1, ϑ2 : Var → N. Then
the following statements hold:

a) If ϕ ∈ HCTL∗ss then K, s, σ1 |=ss ϕ if and only if K, s, σ2 |=ss ϕ.

b) If ϕ ∈ HCTL∗ps then K, s, σ1 |=ps ϕ if and only if K, s, σ2 |=ps ϕ.

c) If ϕ ∈ HCTL∗pp then K, s, σ1, ϑ1 |=pp ϕ if and only if K, s, σ2, ϑ2 |=pp ϕ.

This is easy to see because HCTL∗pp, HCTL∗ps and HCTL∗ss formulas are as-
sumed to be closed and thus their evaluation does not depend on the initial
variable assignment.

Consequently for closed formulas we will often drop σ and ϑ and only write
that K, s |=x ϕ, x ∈ {ss, ps, pp}.

Proposition 3.8. Let ϕ ∈ HCTL∗pp be a closed (state) formula. Let K =
〈S,→, L〉 be a Kripke structure and s ∈ S. Then the following holds:

a) If ϕ ∈ HCTL∗ss then K, s |=ss ϕ if and only if K, s |=ps ϕ.

b) If ϕ ∈ HCTL∗ps then K, s |=ps ϕ if and only if K, s |=pp ϕ.

Proof. The proof of this proposition is also quite simple. We only sketch the
key ideas. For the first statement we only need to consider that the semantics
for HCTL∗ps is simply an extension of HCTL∗ss which only misses the case for
↓ as a path formula. For the second statement, observe that while there is
an additional variable interpretation ϑ : Var → N present in the semantics
of HCTL∗pp, it is never actually used for HCTL∗ps formulas – because there
the case for jumps is missing from path formulas – and thus ϑ is irrelevant
for the satisfaction of an HCTL∗ps formula.

Thus, we will use |=pp as the only satisfaction relation and simply refer to it
as |=. With this now unified semantics of these hybrid logics we can directly
compare them. A first consequence is that the syntactic hierarchy formed by
these logics carries over to a semantic one.

Corollary 3.9. HCTL∗pp � HCTL∗ps � HCTL∗ss.

A detailed discussion about their precise expressive power with separation
and equality results will be presented in Chapter 4 and 5.

55

HCTLss

HCTLps

HCTLppHCTL+
ss

HCTL+
ps

HCTL+
ppHFCTL+

ss

HFCTL+
ps

HFCTL+
ppHCTL∗ss

HCTL∗ps

HCTL∗pp

Figure 3.1: Syntactic relationships of all hybrid branching-time logics. The
edge relation means that the upper logic extends the lower one.

3.4 Hybridisation of CTL, CTL+ and FCTL+

We will also consider hybridisations of CTL, CTL+ and FCTL+. Initially,
as done for CTL∗ there are three hybridisations available for each logic – ss,
ps and pp. They are defined in the same way as the hybridisations for CTL∗.
Equivalently we can also restrict the non-hybrid path formulas in HCTL∗ss,
HCTL∗ps and HCTL∗pp to the restrictions shown in Section 2.2. For example
the grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ | n | @n ϕ | x | @x ϕ | ↓x.ϕ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xϕ | ϕUϕ | GFϕ | ↓x.ψ | @x ψ

which disallows nesting of path formulas, allows boolean combinations of
them, adds the fairness operator GF and with the same syntactic restriction
on path-formulas as for HCTL∗pp defines the formulas of HFCTL+

pp.
Thus, at first we get an additional nine hybridisations based on the logics
CTL, CTL+ and FCTL+. These hybridisations and their syntactic relation-
ships are depicted in Figure 3.1.
However, we will now show that each of these syntactic hierarchies based
on the hybridisations of CTL, CTL+ and FCTL+ does not carry over to

56

a semantic one, i.e. HFCTL+
ss ≡ HFCTL+

ps ≡ HFCTL+
pp and the same for

the hybrid versions of CTL and CTL+. The idea for this collapse result is
quite simple. All we need to do to collapse the hierarchies is to show that
binder and jump as path formulas in combination with the restrictions on
path formulas below CTL∗ do not bring anything new to the table in terms
of expressive power. This can be seen almost on a syntactic level.
We show this collapse exemplary for HFCTL+

pp. The same techniques however
can also be applied to HCTL+ and HCTL.
We start with the jump operator as a path formula. Inspecting the grammar
for path formulas of HFCTL+

pp above we see that the jump as a path formula
cannot occur under any of the temporal operators since they only allow
genuine state formulas underneath them. In addition jumps as part of a path
formula can only happen if the variable in question is previously bound on the
same path. This means that there cannot be any temporal operator between
the binding of the variable and the jump to this variable and consequently
only hybrid formulas of type “↓x.@x ψ” can be built. Thus, we are always
on the exact state that we want to jump to which leaves the jump as a path
formula meaningless.

Theorem 3.10. For each HFCTL+
pp formula ϕ there is an equivalent formula

in HFCTL+
ps of size linear in |ϕ|.

The case for the binder is also quite simple. Due to the syntactic restrictions
that forbid nesting of temporal operators we cannot bind a variable anywhere
else than on the first state of a path. However, it does not make any difference
if a name is given to the state before or after a path quantifier. Thus, with
possible renaming of variables – taking into account that some variables may
also occur free in parts of a path formula – we can simply bind the variable
right before the path formula begins. The detailed procedure to get rid of
the binder is stated in the following lemma and theorem.

Lemma 3.11. Let ψ, ψ′ be two HFCTL+
ps path formulas such that x has no

free occurrences in ψ′. Then the following equivalences are true:

a) ↓x. ↓ y.ψ(x, y) ≡ ↓x.ψ[x/y],

b) ↓x.ψ ∨ ψ′ ≡ ↓x.(ψ ∨ ψ′) and

c) ↓x.ψ ∧ ψ′ ≡ ↓x.(ψ ∧ ψ′).

Additionally, if x appears free in ψ′ and x′ is a new variable that does not
appear free in ψ or ψ′ then the following equivalences are true:

d) ↓x.ψ ∨ ψ′ ≡ ↓x′.(ψ[x′/x] ∨ ψ′),

57

e) ↓x.ψ ∧ ψ′ ≡ ↓x′.(ψ[x′/x] ∧ ψ′)

Theorem 3.12. For each HFCTL+
ps formula with k variables there is an

equivalent HFCTL+
ss formula with at most 2k variables.

Proof. Let ϕ ∈ HFCTL+
ps such that ϕ uses at most k variables, say x1, . . . , xk.

We will describe a procedure to translate ϕ into an HFCTL+
ss formula by

eliminating binder as path formulas. So, w.l.o.g. assume that ϕ = Eψ with
possible binders as part of the path formula ψ. Furthermore, assume that
negations in ψ have already been pushed downwards to the level of maximal
state-subformulas with the usual equivalences and the equivalence ¬↓x.ψ ≡
↓x.¬ψ.
The procedure will at most double the number of used variables. So, let
x′1, . . . , x

′
k be fresh variables not used in ϕ. They will serve as possible re-

placements for the non-primed variables.
Note that due to the restrictions on nesting path formulas, the binder can
only appear on the top level of the syntax-tree of ψ or underneath boolean
connectives. We use the equivalences in Lemma 3.11 to push all variables
upwards over the boolean connectives. Note that by renaming variables we
do not introduce free occurrences of the primed variables. Thus, we never
need to rename the primed variables so that we need at most one replacement
for each variable.
After pushing all variables upwards to the top-level we use the equivalence
E ↓x.ψ′ ≡ ↓x.Eψ′ to remove variables completely from the path formula,
thus obtaining an HFCTL+

ss formula.

Remark 3.13. The translation from HFCTL+
ps to HFCTL+

ss is only linear in
the length of the formula. Due to the renaming of variables the blowup in
size can be exponential. It is still an open question if there is a translation
that involves only a polynomial blowup.

For HCTL the translation is even simpler, since there are not even boolean
combinations allowed underneath a path quantifier. Thus, if a variable is
bound directly underneath a path quantifier we can just push it over the next
path quantifier and achieve a linear translation from HCTLpp to HCTLss in
the size of the formula.

3.5 The Fully Hybrid µ-calculus

Adding hybrid operators to the µ-calculus is – at least syntactically – a lot
more straightforward than for the other branching-time logics. We only have
one type of formula, so we can simply add the three hybrid operators to the

58

µ-calculus. Thus, syntactically the Fully Hybrid µ-Calculus Hµ is given by
the grammar

ϕ := p | n | X | ¬ϕ | ϕ ∨ ϕ | �ϕ | @n ϕ | ↓x.ϕ | µX.ϕ(X)

where p ∈ Prop, n ∈ Var ∪ Nom, x ∈ Var and X ∈ Var 2 and the same
syntactic restrictions for fixed points as in the modal µ-calculus apply to
make sure that the induced operators are still monotone.
However, as we will now see the semantics become quite a bit more involved
when first- and second-order variables are mixed together with least and
greatest fixed points.

3.5.1 A first try at a proper semantics

Sattler and Vardi [80] already considered a hybrid form of the µ-calculus
called the hybrid µ-calculus. However, their version only featured nominals
and jumps and no dynamic naming of states in form of the binder. To
properly distinguish both logics we have named our logic the fully hybrid
µ-calculus.
A näıve attempt to give a proper semantics to the fully hybrid µ-calculus
would be to take theirs and simply enrich it with a variable assignment
for the first-order variables as done in the previous sections for the other
branching-time logics.
Let K = 〈S,→, L〉 be a Kripke structure, ρ : Var 2 → 2S be an assignment
for the second-order variables, σ : Var → S an assignment for the first-order
variables and ϕ ∈ Hµ. We interpret formulas now with respect to K, ρ and
σ. Following [80], we get for nominals n ∈ Nom, that

JnKKρ,σ = L(n) and

J@n ϕKKρ,σ =

{
S if L(n) ∈ JϕKKρ,σ,
∅ otherwise.

A nominal passes its test at the state at which the nominal holds and @n ϕ
is satisfied everywhere if ϕ is satisfied at n.
For variable tests and jumps on variables x ∈ Var we could then simply do
the same but with reference to the assignment σ of the first-order variables
and the binder simply updates the variable assignment:

JxKKρ,σ = σ(x),

J@x ϕKKρ,σ =

{
S if σ(x) ∈ JϕKKρ,σ,
∅ otherwise,

59

J↓x.ϕKKρ,σ = {s ∈ S | s ∈ JϕKKρ,σ[x→s]}.

The semantics is well-defined. One can easily check that the presence of
jumps and binders does not change the monotonicity of the induced function,
i.e. the functions V 7→ J↓x.ϕ(X)KKρ[X 7→V],σ and V 7→ J@x ϕ(X)KKρ[X 7→V],σ are
still monotone if all free occurrences of X are under an even number of
negations. Thus, with Theorem 2.20 least and greatest fixed points over the
power-set lattice still exist.
However, we will now argue that this semantics is not convenient because
there are some unforeseen and undesirable implications.

Example 3.14. Consider for example the formula

µY.(p ∧ ¬x) ∨ ↓x.♦Y.

To illustrate why this first attempt at a proper semantics is not useful we
will evaluate this fixed point on the Kripke structure

s1K: s2 s3

p

and take a look at the approximations of this fixed point.
We evaluate both the syntactic unfoldings as well as the actual approxima-
tions for the variable assignment σ(x) = s3 under the proposed semantics.
We begin with the actual approximations for the fixed points as defined in
Section 2.4.4: We have µY 0.(p ∧ ¬x) ∨ ↓x.♦Y = ∅ by definition and

µY 1.(p ∧ ¬x) ∨ ↓x.♦Y = JµY.(p ∧ ¬x) ∨ ↓x.♦Y KK{X 7→∅,x7→s3} = ∅

since there is no state that satisfies (p ∧ ¬x) or that has a successor in the
emptyset. Thus the empty set is the least fixed point of this formula under
the proposed semantics.
We now evaluate the syntactic unfoldings of this fixed point. To start we
have

J(p ∧ ¬x) ∨ ↓x.♦ffKKx7→s3 = ∅

which evaluates to the same as the first actual approximation. However, the
second syntactic unfolding evaluates to

J(p ∧ ¬x) ∨ ↓x.♦
(
(p ∧ ¬x) ∨ ↓x.♦ff

)
KKx7→s3 = {s2}.

The reason for this is that at first – when x is bound to s3 – there is no state
which satisfies (p ∧ ¬x). However, at s2 we can rebind the variable x to s2

60

and then find a successor (s3) that now satisfies (p ∧ ¬x). To continue we
get for the third syntactic unfolding:

J(p ∧ ¬x) ∨ ↓x.♦
(
(p ∧ ¬x) ∨ ↓x.♦

(
(p ∧ ¬x) ∨ ↓x.♦ff

))
KKx7→s3 = {s2, s1}.

This also stabilises here but obviously differs from the least fixed point cal-
culated above.

Thus, we have that under this semantics in general the equivalence

µY.ϕ(Y) ≡ ϕ(µY.ϕ(Y))

does not hold anymore and with this it also follows that in general

Jϕα(X)KKρ,σ 6= µXα.ϕ(X),

meaning that syntactical unfoldings can in general not be used anymore to
approximate fixed points.
To find the reason why the syntactic unfolding principle does not work any-
more under these semantics, consider again the first syntactic unfolding
(p ∧ ¬x) ∨ ↓x.♦((p ∧ ¬x) ∨ ↓x.♦ff). The second (p ∧ ¬x) gets evaluated
with regard to an updated first-order assignment caused by the outermost
binder ↓ x.
Thus, when evaluating the formula at s2 the second disjunct is satisfied
because we can bind x to s2 with the first binder and then evaluate ♦((p ∧
¬x) ∨ ↓ x.♦ff) which of course evaluates to true because if x is bound to s2

we can transition to s3 which then satisfies (p ∧ ¬x).
On the other hand, under the proposed semantics the actual approximations
are computed with regard to a fixed variable assignment which never changes
– here σ(x) = s3. Thus, we essentially get that the formula µY.(p ∧ ¬x) ∨
↓x.♦Y is equivalent to the formula µY.(p ∧ ¬x) ∨ ♦Y since the binder is
ignored completely in the fixed point calculation.
To make things even worse one can quickly check that for the other variable
assignments σ(x) = s1 and σ(x) = s2 in the example above, the approxi-
mations and syntactical unfoldings do indeed match and calculate the same
fixed point.
Hence, the fully hybrid µ-calculus with the currently proposed semantics
would be a logic with fixed point calculations that may or may not differ from
their intended syntactical unfoldings depending on the variable assignment
and in some cases binding a variable would not even have any effect on the
formula. Thus it would be even harder to properly understand a fixed point
formula.

61

We feel however that the syntactical unfoldings of such a fixed point formula
accurately matches the intention of writing a hybrid fixed point formula
and thus should be reproduced by the semantics. To solve this problem we
propose a different semantics for Hµ in the next section. This semantics will
also build upon the hybrid µ-calculus proposed by Sattler and Vardi in [80]
but also preserves the familiar features and traits known from Lµ.

3.5.2 Hybridisation of the µ-calculus

To solve the inconsistency with the previous semantics we integrate the vari-
able assignment even more and place it on the same level as a state.
The meaning of a formula thus is a set of pairs that consist of a state s and a
variable assignment σ for all state variables. Fixed points will be calculated
on the powerset-lattice over the cartesian product of states and mappings
of state variables and consequently the interpretation of free second-order
variables will also be lifted to the type ρ : Var 2 → 2S×(Var→S).
Formally the semantics of a formula ϕ ∈ Hµ is given with respect to a Kripke
structure K = 〈S,→, L〉 and an assignment ρ : Var 2 → 2S×(Var→S) with
JϕKKρ ⊆ S × (Var → S):

JpKKρ = {(s, σ) | s ∈ L(p)},
JnKKρ = {(s, σ) | s = L(n)},
JxKKρ = {(s, σ) | s = σ(x)},

JXKKρ = ρ(X),

J¬ϕKKρ = {(s, σ) | (s, σ) 6∈ JϕKKρ },
Jϕ1 ∨ ϕ2KKρ = Jϕ1KKρ ∪ Jϕ2KKρ ,

J�ϕKKρ = {(s, σ) | ∀t ∈ S : if s→ t, then (t, σ) ∈ JϕKKρ },
J@x ϕKKρ = {(s, σ) | (σ(x), σ) ∈ JϕKKρ },
J@n ϕKKρ = {(s, σ) | (L(n), σ) ∈ JϕKKρ },
J↓x.ϕKKρ = {(s, σ) | (s, σ[x 7→ s]) ∈ JϕKKρ },

JµX.ϕ(X)KKρ =
⋂
{T ⊆ S × (Var → S) | JϕKKρ[X→T] ⊆ T}

with p ∈ Prop n ∈ Nom, x ∈ Var and X ∈ Var 2. We write K, s, σ, ρ |= ϕ if
(s, σ) ∈ JpKKρ . For closed formulas we also may drop σ and ρ.
Note that for formulas with no state variables we get the same semantics
as the hybrid µ-calculus defined by Sattler and Vardi [80]. Moreover, for
formulas with no state variables and no nominals we simply obtain the usual
semantics of the modal µ-calculus Lµ.

62

With this semantics we can again, as for Lµ show the following result.

Theorem 3.15. Let ϕ(X) be a Hµ formula with free variable X, ψ ∈ Hµ

a closed formula, K be any Kripke structure and ρ a variable assignment as
before. Then

Jϕ[ψ/X]KKρ = Jϕ(X)KKρ[X 7→V]

where V = JψKKρ .

Proof. We can prove this by a straightforward induction on ϕ. The only
interesting case is the binder. So, let ϕ = ↓x.ϕ1(X). Then

Jϕ[ψ/X]KKρ = J↓x.ϕ1[ψ/X]KKρ
= {(s, σ) ∈ S × (Var → S) | (s, σ[x 7→ s]) ∈ Jϕ1[ψ/X]KKρ }
IH
= {(s, σ) ∈ S × (Var → S) | (s, σ[x 7→ s]) ∈ Jϕ1(X)KKρ[X 7→V]}
= J↓x.ϕ1(X)KKρ[X 7→V],

where the first equality is simply the definition of ϕ and the second and
fourth equality are by the semantics of the binder. The third equality uses
the induction hypothesis for ϕ1.

Corollary 3.16. For all formulas ϕ ∈ Hµ and all finite ordinals α it holds
that Jϕα(X)KKρ = µXα.ϕ(X).

In this way we get a well-defined semantics for Hµ that also preserves many
of the basic properties of Lµ.

Example 3.17. We take another look at the formula µY.(p ∧ ¬x) ∨ ↓x.♦Y
and the Kripke structure K from Example 3.14 and re-evaluate it under the
newly proposed semantics.
For the first approximation we get that

µY 0.(p ∧ ¬x) ∨ ↓x.♦Y = {(s3, x 7→ s1), (s3, x 7→ s2)}

because no state has a successor in the empty set and, as before, only if the
variable assignment for x does not point to s3, s3 satisfies (p ∧ ¬x). For the
second approximand we then obtain

µY 1.(p ∧ ¬x) ∨ ↓x.♦Y =µY 0.(p ∧ ¬x) ∨ ↓x.♦Y
∪ {(s2, x 7→ s1), (s2, x 7→ s2), (s2, x 7→ s3)}

63

since we can also start at s2 bind the variable to s2 and then find a successor –
(s3, x 7→ s2) – in ρ(Y). And lastly this is extended for the third approximand
to

µY 2.(p ∧ ¬x) ∨ ↓x.♦Y =µY 1.(p ∧ ¬x) ∨ ↓x.♦Y
∪ {(s1, x 7→ s1), (s1, x 7→ s2), (s1, x 7→ s3)}

with an analogous reasoning.
If we only focus on the fixed point relative to the initial variable assignment
σ(x) = s3 we obtain the same fixed point that was calculated for the syntactic
unfolding in Example 3.14.

Similarly to the case of HCTL∗pp the notions of subformulas, size, length and
negation normal form extend to Hµ. Moreover, similar to Lemma 3.6 we can
also prove the following for Hµ.

Lemma 3.18. For each formula ϕ ∈ Hµ an equivalent formula ϕ′ ∈ Hµ in
negation normal form can be computed in linear time.

3.5.3 Model Checking Games for Hµ

Similar to Lµ, formulas in the fully hybrid µ-calculus are notoriously hard
to understand. Nested fixed points – now with added hybrid operators to
keep in mind – can make it very hard to understand even simple properties.
For this reason we also introduce model checking games for Hµ that build
on the foundation of model checking games for Lµ. These games provide a
framework to reason about satisfaction and dissatisfaction of Hµ formulas
and thus also enable us to better understand Hµ formulas.

Definition 3.19. Let ϕ ∈ Hµ be in negation normal form, i.e. negation only
occurs directly in front of atomic propositions, variables or nominals and let
K = 〈S,→, L〉 be a Kripke structure.
The model checking game G(K, ϕ) is played between the two players V and
R. The game is played on the configuration space S × (Var → S)× Sub(ϕ).
We usually write such a position as s, σ ` ψ.
Intuitively, V tries to show that K, s, σ |= ϕ holds in a position s, σ ` ϕ
while R tries to refute that.
The game begins at some position s, σ ` ϕ and continues using the rules in
Figure 3.2.
The game rules that are annotated by either V or R induce a choice for this
player. For example in a configuration s, σ ` ♦ψ, V can choose on which
successor state t with s→ t she wants to prove that ψ holds. The game then
continues in the configuration t, σ ` ψ.

64

s, σ ` ψ1 ∧ ψ2

s, σ ` ψ1 s, σ ` ψ2
(R)

s, σ ` �ψ
t, σ ` ψ (R : s→ t)

s, σ ` νX.ψ(X)
s, σ ` ψ(X)

(R)

s, σ ` @x ϕ
σ(x), σ ` ϕ
s, σ ` ↓x.ϕ

s, σ[x 7→ s] ` ϕ
s, σ ` X

s, σ ` fpϕ(X)

(V)
s, σ ` ψ1 ∨ ψ2

s, σ ` ψ1 s, σ ` ψ2

(V : s→ t)
s, σ ` ♦ψ
t, σ ` ψ

(V)
s, σ ` µX.ψ(X)
s, σ ` ψ(X)

Figure 3.2: The game rules for the Hµ model checking games.

The winning conditions can mostly be transferred from the model checking
games for Lµ as introduced in Section 2.9.3. In addition, configurations of
the form s, σ ` x belong to player R if s = σ(x) and to V otherwise.

Similarly to the case of Lµ model checking games these games truly charac-
terise the model checking problem for Hµ.

Theorem 3.20. V has a winning strategy in the model checking game
G(K, ϕ) starting at position s, σ ` ϕ if and only if K, s, σ |= ϕ.

We will prove this in Subsection 6.2.4 as a side product of the model checking
algorithm for Hµ.

3.6 The Hybrid Branching-Time Landscape

In the previous chapter we have introduced three ways to hybridise classi-
cal branching-time logics ranging from CTL to CTL∗. Together with the
hybridisation of the modal µ-calculus this leads to thirteen different hybrid
logics. Twelve are based on the logics CTL, CTL+, FCTL+ and CTL∗ and
their syntactic relationships have already been depicted in Figure 3.1.
Generally these three hybridisations form a syntactical hierarchy on top of
the branching-time logics to which they are added. Also, each hybridisation
is subsumed by the same hybridisation on top of a richer branching-time
logic. For example HCTLps is subsumed by HCTL+

ps etc.
Figure 3.3 takes into account that by Theorem 3.10 and 3.12 the syntactic
hierarchies below HCTL∗ss do not carry over to semantic ones, i.e. there is no
increase in expressive power. It gives a first overview of the defined hybrid
branching-time logics in terms of their expressive power. These relationships
are explored in more detail in Chapter 5. Because of the collapse of the
hierarchies below HCTL∗ss, we will mainly focus on the logics depicted in
boldface.

65

HCTLss ≡ HCTLps ≡ HCTLpp

HCTL+
ss ≡ HCTL+

ps ≡ HCTL+
pp

HFCTL+
ss ≡ HFCTL+

ps ≡ HFCTL+
pp

HCTL∗ss

HCTL∗ps

HCTL∗ppHµ

�

�

�

�

�

Figure 3.3: The hybrid branching-time landscape. A first comparison in
terms of expressive power between the introduced hybrid branching-time
logics.

Simply by definition the fully hybrid µ-calculus does not have a clear syntac-
tic or even semantic connection to the other hybrid logics. Although since it
is based on the very expressive modal µ-calculus which subsumes even CTL∗

it stands to reason that it may even be more expressive than many of the
other hybrid logics or at least somewhere high up in this hierarchy. The re-
lationship of Hµ and the other hybrid logics will be discussed in more detail
in Chapter 4 and 5. There we will show that Hµ subsumes HCTL∗ss but is
incomparable to HCTL∗ps.

Fragments of Hybrid Logics. The complexity, expressive power and in
some cases even the decidability of these hybrid logics often seems closely
tied to the number of variables that are used.
For example with n variables it is easy to write a formula that is satisfied if
a state has exactly (n − 1) successors: We can simply mark the state plus
(n − 1) of its successors and require that all successor states are marked by
one of the last (n − 1) variables using ↓, @ and EX to jump back and forth
between the original state and its successors.
However, it is not easy to see if this can also be done with only (n − 1)
variables since then for every variable assignment at least one successor state
is unnamed and can intuitively only be identified up to bisimulation – which
may allow duplicates of said state that are bisimilar.

66

To get a more refined analysis we sometimes use bounded variable fragments
or simply bounded fragments which are the fragments of these hybrid logics
that use at most a certain number of variables. We denote these fragments
with an upper index that indicates the maximum number of allowed variables.

Definition 3.21. The bounded fragments HkCTL, HkCTL+, HkFCTL+,
HkCTL∗ss, HkCTL∗ps, HkCTL∗pp and Hk

µ for any k ∈ N denote the fragments of
the indicated logics that use at most k variables.

Also, we may consider fragments that feature only some of the hybrid op-
erators. We will indicate this by adding the allowed hybrid operators in
parantheses. For example Hµ(↓, x) indicates the fragment of the fully hybrid
µ-calculus that only features ↓ and variable tests but no @.

Of course both fragments can also be combined. For example Hk
µ(↓,@) refers

to the fragment of Hk
µ that disallows variable tests, i.e. only ↓ and @ are

allowed as hybrid operators.

3.7 Hybrid and other extensions of Branch-

ing-Time Logics

As a first showcase of what hybrid logics are capable of we compare them
with some other recent extensions of branching-time logics. We focus mainly
on extensions of CTL∗ and its relatives. A comparison of the fully hybrid
µ-calculus with an extension of Lµ is shown as part of Chapter 4.

This section is only meant to showcase the hybrid branching-time logics and
to get a better grasp of their expressive power. In particular, it is not a
rigorous comparison with the other presented extensions of CTL∗ and its
fragments. Especially smaller details or minor differences either in their
semantics or on a syntactic level will not be highlighted. In particular we
also do not aim to obtain any complexity bounds (upper or lower) via these
connections here. Instead, we will focus more on the similarities to our
hybrid branching-time logics. Nevertheless, we will at least mention some
possibilities to transfer complexity bounds.

Memoryful CTL∗. Memoryful CTL∗– or short mCTL∗ – introduced in
[59] by Kupferman and Vardi is an extension of regular CTL∗ interpreted on
computation trees. It redefines path quantification to full paths, i.e. paths
starting at the root of the tree but the state in which the actual path quan-
tification takes place is remembered as a special state called present.

67

The motivation for this logic originates in the planning over nondeterministic
domains and the desire to have a middle ground between properties that
necessarily need to hold on all possible paths and properties that hold on a
single path as specified by the path quantifiers in CTL∗. Redefining the path
quantification as done above thus also allows to make statements about all
paths (starting at the root) that go through the current state.

Formally, given a tree T = 〈T,→, L〉 and two states s, c ∈ T , the satisfaction
relation for the path quantification in mCTL∗ is defined via

T , s, c |= Eψ iff there is a path π starting at ε and going through s

such that T , π, 0, s |= ψ.

Note that the path evaluation starts at ε and s is only remembered as the
special state present:

T , s, c |= present iff s = c.

This reinterpretation of the path quantification makes it easy to also talk
about past events without necessarily adding explicit past operators.

Example 3.22. The formula AG(grant → EF(req ∧ Fpresent)) states for ex-
ample that each grant is preceeded by a request.

The concept of remembering a state is inherently added by hybrid logics via
variables and nominals and thus we can use the hybrid framework to express
mCTL∗ formulas. For this, let Troot be the extension of a tree T with a single
nominal root located at ε.

Theorem 3.23. For each mCTL∗ formula ϕ there is an HCTL∗ss formula ϕ̂
of size linear in ϕ with only one variable such that T , s |= ϕ if and only if
Troot, s |= ϕ̂.

Proof. The proof is via a simple translation. We use the hybrid operators to
simulate the semantic differences in the path quantification.

An equivalent HCTL∗ss formula can be obtained by replacing each subfor-
mula of type Eψ formula with ↓ present.@root E(Fpresent ∧ ψ). This hybrid
construction binds the variable present to the current state, jumps back to
the root and then defines a path starting at ε that goes through present and
satisfies ψ.

It is clear that this translation is linear in ϕ. Thus, the proposed statement
follows.

68

The added nominal at the root of the tree can also be omitted if the formulas
are only evaluated at the root of the tree by simply placing a variable root
right at the beginning.

mCTL∗ was shown to be only as expressive as CTL∗ [59]. Thus, the em-
bedding into HCTL∗ss also follows via a translation to CTL∗ which is already
syntactic fragment of HCTL∗ss. However, this translation is nonelementary
and thus our direct translation is much more preferable.

Cycle-CTL∗. Another recent extension of CTL∗ features explicit reasoning
about cycles in a Kripke structure – not only trees anymore. Cycle-CTL∗ [36]
extends CTL∗ by adding two new path quantifiers E	 and A	. The operators
can be understood as “there is a cyclic path” and “on all cyclic paths” where
a cyclic path is an infinite path that loops back to its initial state infinitely
often.

Many decision procedures on graph-based tools such as automata reduce
to detecting specific cyclic behaviour. The most prominent ones are possi-
bly non-emptiness checks for Büchi-automata which are essentially a simple
reachability check for an accepting state and a search for a cycle from this ac-
cepting state. Other examples are mentioned in [36] as well. For this reason
a logic to specify such properties may indeed be useful.

Again, it almost seems obvious that Cycle-CTL∗ � HCTL∗ss since we can use
a single variable that marks the first state to test if the path in question is
cyclic.

Theorem 3.24. For each Cycle-CTL∗ formula there is an equivalent formula
in H1CTL∗ss of linear size.

Proof. We only need to discuss how the path quantifier E	 can be simulated
by means of hybrid operators. For this let ϕ ∈ Cycle-CTL∗. We replace
each E	ψ subformula in ϕ with ↓x.E(GFx ∧ ψ). The resulting formula is
only linear in the size of ϕ and it simply simulates the cyclic property at the
relevant path quantifications. The same can be done for A	.

The addition of cyclic path quantifiers truly increases the expressive power
of CTL∗ [36]. Thus, we obtain that CTL∗ ≺ Cycle-CTL∗ � H1CTL∗ss.

Cycle-CTL∗ has a PSpace-complete model checking problem. We will later –
in Chapter 6 – discuss the model checking problem for our hybrid logics and
prove that HCTL∗ss also has a PSpace-complete model checking problem.
Paired with the linear translation above this gives an alternative proof and
an alternative model checking procedure for Cycle-CTL∗.

69

Counting-CTL∗ and Graded CTL∗. Counting-CTL∗ [72] is another exten-
sion of CTL∗ that adds a new operator which is able to count the number of
successors at a state. The formula Dnϕ is satisfied at a state s if and only if
there are n successors of s that satisfy ϕ. A full definition of Counting-CTL∗

is given in Section 5.3.

Counting the number of successors can also be done with variables. For
example the formula D2p for some atomic proposition p ∈ Prop is equiva-
lent to the formula ↓x.EX(p ∧ ↓ y.@x EX(p ∧ ¬y)) which simply marks the
current state and then goes through the successors marking and thereby
counting them one-by-one. This idea can easily be generalised to show that
Counting-CTL∗ � HCTL∗ss.

We do not show the full translation here, but give it later in Section 5.3. For
the moment it suffices to know that the hybrid framework can be used to
count successors.

The idea of counting is taken even further by graded extensions of CTL or
CTL∗. These aim not only to count the number of direct successors but in
general the number of paths starting at the current state that satisfy a path
formula. Syntactically these graded extensions add graded path quantifiers
of the form E≥nψ with the intuitive meaning “there are at least n different
paths satisfying ψ”.

There is however one big difference to simply counting the number of succes-
sors as done above with Counting-CTL∗. Intuitively, one might think that the
formula ϕn := E≥nXp ∧ ¬E≥(n+1)Xp should then also state that there are n
successors satisfying ϕ. However, the precise meaning of this formula depends
in particular on when two (infinite) paths are considered to be different.

The easiest definition that is used for graded logics is to consider two (finite
or infinite) paths π1, π2 as different iff there is some index i ∈ N such that

πi1 6= πi2,

i.e. if they diverge at some point. Formulas of type E≥nψ are thus satisfied
at some state iff there are at least n diverging paths satisfying ψ. We call
this the diverging paths semantics.

Remark 3.25. In this case the formula ϕn above is also satisfied at the root
of the structure

70

p

· · ·

n

since there are n diverging paths, however, at the root there is only one
successor node. Thus with this semantics graded CTL∗ is not an extension of
Counting-CTL∗.

Already for this semantics of different paths it is not obvious how to translate
a formula of the form E≥2ψ to our hybrid logics since this would involve
finding two paths and a specific moment on both paths such that they diverge.
However, it is not clear how to remember two paths at the same time with
hybrid branching-time logics to compare their states.
But at least on special types of structures this is possible. If we only restrict
the logics to be interpreted over trees then this challenge is easily solved
since in trees there is exactly one path to a node in the tree. Hence, two
paths diverge at some point if and only if there is a node on one path that is
not present on the other path. This property can be formulated with hybrid
logics. For example, the formula

↓ root.E(ψ ∧ F ↓x.@root E(ψ ∧ G¬x)

stating that there is a path satisfying ψ and a moment or state x on this
path such that there is another path which never visits x and also satisfies ψ
is over trees equivalent to the graded CTL∗ formula E≥2ψ with the semantics
as described above.
This pattern can also be generalised to simulate the operator E≥nψ as a whole
by employing n variables, one for each new path.

Proposition 3.26. On trees and with the diverging paths semantics we have
that graded CTL∗ � HCTL∗ss.

Remark 3.27. Another notion of “different paths” that more closely resem-
bles the intended meaning of “there exist n different paths” has also been
considered [12, 3] but we will refrain from also comparing this semantics to
our hybrid logics. This particular semantics also involves interpretations of
the temporal operators over finite paths which are not defined in our hybrid

71

x y

x′ y′ (L)ater [x, y] ∼L [x′, y′]

x′ y′ (A)djacent [x, y] ∼A [x′, y′]

x′ y′ (O)verlaps [x, y] ∼O [x′, y′]

x′ y′ (E)nds [x, y] ∼E [x′, y′]

x′ y′ (D)uring [x, y] ∼D [x′, y′]

x′ y′ (B)egins [x, y] ∼B [x′, y′]

Figure 3.4: Allen’s interval relations.

branching-time logics. This makes a rigorous comparison hard since already
the basic temporal operators have slightly different meanings.

However, it is shown in [3] that graded CTL∗ with this semantics on trees is
equivalent in terms of expressive power to Monadic Path Logic. In Section
5.3 we will show that also HCTL∗ss is equivalent to Monadic Path Logic on
trees thus effectively showing that graded CTL∗ ≡tree HCTL∗ss under this finer
semantics.

Interval Temporal Logic. This is a family of logics that was designed
with yet another model of time in mind (besides the linear and branching
time model). As the name suggests it aims to capture properties that happen
at certain time intervals rather than at durationless time instants as it is the
case for all branching-time logics considered in this thesis.

A prominent logic among these interval-based modal and temporal logics
is the Halpern-Shoham logic [45, 73]. This is a multi-modal logic that
features one modality for each of Allen’s interval relations [2] depicted in
Figure 3.4. For example [x, y] ∼A [x′, y′] iff x′ = y and x′ < y′ or [x, y] ∼B
[x′, y′] iff x′ = x and y′ < y. Also it features modalities for the converse
relations, denoted by X for some interval relation X ∈ {L,A,O,E,D,B}
with [x, y] ∼X [x′, y′] if and only [x′, y′] ∼X [x, y].

Usually this logic is interpreted with respect to linear orders, i.e. word struc-
tures with a reflexive, transitive transition relation (antisymmetry is already
encoded in the word structure) and an interval on this structure. Sometimes

72

even uncountable structures or structures that are infinite in both directions
are considered. Labellings are usually defined by assigning atomic proposi-
tions to each interval.
The satisfaction relation is then a straightforward extension of modal logic
with 〈X〉ϕ meaning that there is an interval that stands in relation X (as
depicted in Figure 3.4) with the current interval and that satisfies ϕ.

Example 3.28. The Halpern-Shoham formula 〈A〉[B]ff ∨ [A][B]〈B〉tt –
if satisfied at all states in a linear structure – states that for each interval
there is either an adjacent interval which contains no “smaller” intervals or
each adjacent interval contains infinitely many “smaller” intervals.
It can be shown ([95]) that this formula defines strictness of intervals in the
sense that no “point” intervals [x, x] are allowed.

Of course for our hybrid logics the labelling is defined for single states and not
for intervals and thus we are unable to find a translation in either direction.
But with hybrid logics we can express these basic interval relations.
On linear orders an interval, instead of a set of connected points, can also
be identified with only two points – the start and end point of an interval.
This can be simulated by hybrid logics with two variables – one marking the
beginning of an interval and one that marks the end.
Allen’s interval relations which then consist of only simple relationships be-
tween four points in a structure can then simply be simulated with jumps
and temporal operators. For example [x, y] ∼A [x′, y′] iff x′ = y and x′ < y′.
Thus, we can translate a formula 〈A〉ϕ as follows:

〈A〉ϕ @y ↓x.EX(¬x ∧ ↓ y.ϕ̂).

The first jump and binder simply move the x-variable used to mark the
beginning of an interval to the state marked y and then move on to a later
state which is checked by ¬x and then place y there.
Similar translations are possible for the other interval relations:

〈L〉ϕ @y EX(¬y ∧ ↓x.EX(¬x ∧ EX ↓ y.ϕ̂)),

〈O〉ϕ @x EX((EXy) ∧ ↓x.EX(¬(EXy) ∧ ↓ y.ϕ̂)),

〈E〉ϕ @x EX((EXy) ∧ ↓x.ϕ̂),

〈D〉ϕ @x EX((EXy) ∧ ↓x.EX((EXy) ∧ ↓ y.ϕ̂)),

〈B〉ϕ @x EX((EXy) ∧ ↓ y.ϕ̂).

For the converse relations we have the problem that some of the intervals
actually lie before the current interval. Since we only have future operators
and no past operators we can only simulate them if the structure is rooted,

73

i.e. it is only infinite in the future direction. Then we can place a nominal
at the root and use similar constructions as above with the root helping us
to “jump” back in time.
Thus, we can express Halpern-Shoham formulas that make no use of atomic
propositions, i.e. that have only tt, ff as atomic formulas and no converse
relations. And if the structure is only infinite in the future direction we can
even express Halpern-Shoham formulas with converse relations .

Proposition 3.29. For each Halpern-Shoham formula ϕ with no atomic
propositions and no converse relations there is a formula ϕ̂ ∈ HCTL that is
linear in the size of ϕ such that K, [s, t] |= ϕ if and only if K, s, σ |= ϕ̂ for all
states s ∈ S and all variable assignments σ : Var → S such that σ(x) = s
and σ(y) = t.
On linear orders that are only infinite in the future direction there is a similar
translation available for all Halpern-Shoham formulas (including converse
interval relations) with no atomic propositions.

As shown above in Example 3.28 interval-based logics even without the use of
atomic propositions and thus also hybrid logics can express quite non-trivial
properties.

Quantified CTL∗. This logic – also called QCTL∗– extends CTL∗ with
additional full quantification over atomic propositions [66]. Formally, it adds
the clause ∃p.ϕ to the state formulas which is satisfied in a state s of a Kripke
structure K iff there exists a Kripke structure K′ which only differs in the
labeling of p from K such that K′ satisfies p.
Full quantification over propositions is a powerful tool as it is essentially a
second-order quantifier which can mark sets of states. Thus it is not too
surprising that the expressive power of QCTL∗ coincides – at least on finite
structures and tree structures – with MSO that is restricted to only evaluate
the reachable part of a structure [66]. In fact, already quantified CTL is as
expressive as MSO.
Quantified CTL∗ is also able to express many of the previously shown ex-
amples like cyclic behaviour or counting of successors. In fact, it can quite
simply simulate the binder as a state formula. For example, the formula
∀x.(x→ ϕ) means that for all labelings with a proposition x – in particular
the labeling where x is only bound to the current state – if x holds now then
ϕ must be satisfied. Hence, this formula has the same meaning as ↓x.ϕ.
However, it is not obvious how the jump operator should be mimicked since
QCTL∗ has no similar operator for this. Also, jumps can potentially lead to
states that are not directly reachable anymore with only future operators.

74

For a variable might be placed at the root of a tree at the start but with only
future operators in QCTL∗ it is not possible to go back to the root while this
is easily possible with jumps.
This does not mean that it is not possible, but it is simply not obvious how
to do it. In fact, on trees we will later show that also HCTL∗ss coincides with
Monadic Path Logic which is MSO where the second-order quantification
is restricted to paths in a tree only. Thus, we get that, at least on trees,
HCTL∗ss �tree QCTL∗. For finite structures or general Kripke structures the
precise connection is not yet clear.

75

76

Chapter 4

The Expressive Power of the
Fully Hybrid µ-calculus

Hybridisation of branching-time logics adds considerable expressive power to
them. For example, we know that all temporal logics from CTL up to the µ-
calculus can only express bisimulation-invariant properties. It is easily seen
that hybridisation breaks these limitations. For example simply by naming
one state one can distinguish it from an otherwise bisimilar state. However,
we do not really know what types of properties can be expressed with these
hybrid logics. Furthermore, it is not clear where the limits of these newly
added hybrid operators are or which types of properties cannot be expressed
with these logics.

In this chapter we study these issues. Specifically, we will take a look at the
fully hybrid µ-calculus and try to better understand its expressive power and
the limits of it. Although we only deal with the fully hybrid µ-calculus at
first, the model theoretic results that will be proven in Chapter 5 will transfer
many of our findings in this chapter to the other hybrid branching-time logics
as well.

The remaining chapter is organised as follows. We begin with a comparison
to another well-known extension of the modal µ-calculus – the polyadic µ-
calculus – to get a better impression of what can be expressed with the hybrid
µ-calculus. We then introduce a suitable notion of bisimulation that precisely
captures the expressive power of the hybrid µ-calculus and use it to exhibit
some of the limitations of the hybrid µ-calculus. We finish the chapter with
an observation about the bounded fragments of Hµ that applies some of the
previous results.

77

4.1 The Polyadic µ-calculus and Hµ

The polyadic µ-calculus, or higher-dimensional µ-calculus [4, 75, 64], is an-
other extension of the modal µ-calculus. But rather than specifying proper-
ties that are satisfied at a single state of the structure, the polyadic µ-calculus
is designed to express relational properties between states of a structure.
Consequently, formulas of the polyadic µ-calculus are interpreted in tuples
of states.
Formally the polyadic µ-calculus of arity k – or short Lkµ – is given by the
grammar

ϕ := p(i) | X | ¬ϕ | ϕ ∨ ϕ | �iϕ | µX.ϕ(X) | {i← j}ϕ.

for p ∈ Prop, X ∈ Var 2, i, j ∈ {1, . . . , k}. The usual restrictions on fixed
points apply here in the same way as before.
The semantics are given inductively with respect to a Kripke structure K =
〈S,→, L〉 and an assignment ρ : Var 2 → 2S

k
as follows:

Jp(i)KKρ = {(s1, . . . , sk) ∈ Sk | si ∈ L(p)},
JXKKρ = ρ(X),

J¬ϕKKρ = {(s1, . . . , sk) ∈ Sk | (s1, . . . , sk) 6∈ JϕKKρ },
Jϕ1 ∨ ϕ2KKρ = Jϕ1KKρ ∪ Jϕ2KKρ ,

J�iϕKKρ = {(s1, . . . , sk) ∈ Sk | ∀t ∈ S: if si → t,

then (s1, . . . , si−1, t, si+1, . . . , sk) ∈ JϕKKρ },

JµX.ϕ(X)KKρ =
⋂
{T ⊆ Sk | JϕKKρ[X→T] ⊆ T},

J{i← j}ϕKKρ = {(s1, . . . , sk) ∈ Sk | (s1, . . . , si−1, sj, si+1, . . . , sk) ∈ JϕKKρ }.

The polyadic µ-calculus Lωµ is given by the union of all Lkµ.

Remark 4.1. In [75] or [64], replacements are defined by simultaneously sub-
stituting multiple variables instead of only a single one as defined here. For
example the replacement {1← 2, 2← 1} swaps the variables 1 and 2.
Our definition does not change anything about the expressive power, however,
to express some properties like swapping variables as above we may need an
additional dimension to temporarily store the variables.

The arity of a formula is the largest index i that occurs in the operators
�i, p(i), {i ← j} in this particular formula. Note that a formula of arity k
defines a k-ary relation over the set of states. However it can also be seen
as a relation of higher arity where the (k + 1), (k + 2), etc. components are
unrestricted.

78

We write K, (s1, . . . , sk), ρ |= ϕ if (s1, . . . , sk) ∈ JϕKKρ and may drop ρ for
closed formulas.
The usual modal abbreviations like ♦iψ := ¬�i¬ψ etc. are also used here.

Example 4.2. The polyadic µ-calculus is a very expressive logic. For exam-
ple it is able to express bisimilarity of two states:

νY.

(
(
∧

p∈Prop

p(1)↔ p(2)) ∧ (�1♦2Y) ∧ (�2♦1Y)

)
.

If we compare this formula with the definition of bisimularity in Definition
2.5, it is easy to see that this formula simply simulates all clauses in the
definition of bisimulation: two states agree on all propositions and for every
successor in one structure there is a successor in the other structure such
that both successors are bisimilar which here can be expressed by being a
part of the fixed point again. Thus the formula is satisfied on a pair of states
(s1, s2) if and only if s1 ∼ s2.

Hµ and Lωµ seem closely related. Formulas of Lkµ define k-ary relations, while

formulas of Hk−1
µ define a set of tuples consisting of a state and a variable

interpretation that references k−1 states. This of course can also be regarded
as a k-ary relation. Since both logics build upon the same foundation, namely
Lµ, they share most operators.
In the remainder of this section we will prove that Hµ subsumes the polyadic
µ-calculus and we will also show what is lacking in the polyadic µ-calculus
to achieve the same expressiveness as Hµ, hence, making the inclusion strict.

Theorem 4.3. For every formula ϕ ∈ Lkµ there is a formula ψ ∈ Hk
µ such

that for all Kripke structures K = 〈S,→, L〉, s ∈ S, (s1, . . . , sk) ∈ Sk and all
variable assignments σ : Var → S with σ(xi) = si it holds that

K, (s1, . . . , sk) |= ϕ ⇔ K, s, σ |= ψ.

Proof. We will give a translation from Lkµ to Hk
µ. The idea is simple: we

simulate the k-tuple using k variables. Thus each variable corresponds to an
index in ϕ. The “current” state that is additionally present in Hk

µ together
with the hybrid operators will only be used to simulate temporal steps and
replacements.
Formally, the translation is given inductively as follows:

τ(p(i)) = @xi p,

τ(X) = X,

79

τ(¬ϕ) = ¬τ(ϕ),

τ(ϕ1 ∨ ϕ2) = τ(ϕ1) ∨ τ(ϕ2),

τ(�iϕ) = @xi � ↓xi.τ(ϕ),

τ(µX.ϕ) = µX.τ(ϕ),

τ({i← j}ϕ) = @xj ↓xi.τ(ϕ).

To prove that this translation works, we first need to extend the statement
to account for free second-order variables. Thus, we prove the following
statement.
For every ϕ ∈ Lkµ, every Kripke structureK = 〈S,→, L〉 and every (s1, . . . , sk)

∈ Sk, σ : Var → S, ρ : Var 2 → 2S
k
, ρ′ : Var 2 → S × (Var → S)

such that σ(xi) = si for every i ∈ {1, . . . , k} and ρ′(X) = {(s, σ) | s ∈
S, (σ(x1), . . . , σ(xk)) ∈ ρ(X)} we have that

K, (s1, . . . , sk), ρ |= ϕ ⇔ K, (s, σ), ρ′ |= τ(ϕ).

This can be proven by a straightforward induction on ϕ. The details are
omitted, we give only a brief description on the ideas needed for the actual
proof.
Note that the actual state on which the hybrid formula is evaluated is irrele-
vant by construction of ρ′ and the fact that all translated formulas – except
for boolean combinations or least fixed point constructs – begin with a jump.
Thus, either all states or no state satisfies such a formula. The cases for box
and replacement simply use the “current” state in the evaluation to go to one
of the referenced states and then carry out the actual operation there before
rebinding the variable to the new state. The case for smallest fixed points
can be proven by another induction on the fixed point approximations.

A closer inspection of the translation from Lωµ to Hµ reveals that the trans-

lated formula even falls into Hk
µ(↓,@) – the fragment which does not allow

variable tests. This is not surprising because the hard requirement that
the variable test x is only satisfied at exactly the state σ(x) is what breaks
bisimulation-invariance and the polyadic µ-calculus is still known to respect
bisimulation [75].
Variable tests can be seen as a restricted kind of equality: The current state
of the evaluation needs to be equal to the stored state. We will now show
that a restricted form of “equality” is also the only thing that is missing in
Lωµ to be as expressive as Hµ. Let Lkµ(

.
=) be the logic that is obtained by also

adding the statement i
.
= j for i, j ∈ {1, . . . , k} to the grammar of Lkµ and

Lωµ(
.
=) be the union of all Lkµ(

.
=). Formally, this statement is interpreted as

80

follows:

Ji .= jKKρ = {(s1, . . . , sk) ∈ Sk | si = sj}.

By extending the translation from Theorem 4.3 above by τ(i
.
= j) = @xi xj

we can easily see that Lωµ(
.
=) is still subsumed by Hµ. But for this extended

logics we can now also prove the reverse.

Theorem 4.4. For every formula ϕ ∈ Hk
µ there is a formula ψ ∈ Lk+1

µ (=)
such that for any Kripke structure K = 〈S,→, L〉 and any assignment σ with
σ(xi) = si for all i = 1, . . . , k it holds that

K, s, σ |= ϕ ⇔ K, (s1, . . . , sk, s) |= ψ.

Proof. Again, we give a translation, this time from Hk
µ to Lk+1

µ (
.
=). The idea

is to use the first k components of the Lk+1
µ (

.
=) formula simply to store the

variables and the last component is used to simulate the temporal operators.
Replacements are used to simulate the hybrid operators @ and ↓ and the
new equality statement can be used to simulate variable tests between the
last component and the components that store the states.
Formally, the translation on a Hk

µ formula is given inductively as follows:

τ(p) = p(k + 1)

τ(xi) = ((k + 1)
.
= i)

τ(X) = X

τ(¬ϕ) = ¬τ(ϕ)

τ(ϕ1 ∨ ϕ2) = τ(ϕ1) ∨ τ(ϕ2)

τ(�ϕ) = �k+1τ(ϕ)

τ(@xi ϕ) = {(k + 1)← i}τ(ϕ)

τ(↓xi.ϕ) = {i← (k + 1)}τ(ϕ)

τ(µX.ϕ) = µX.τ(ϕ).

Correctness of the translation can be proven by a straightforward induction
on ϕ similar to the proof of Theorem 4.3. The details are also omitted.

A closer inspection of the translation reveals that the introduced equality is
only used in the case of variable tests. Thus we also get the following result.

Corollary 4.5. Hk
µ(↓,@) � Lk+1

µ

Combining the previous results we obtain the following result about the logics
without restrictions on the number of variables.

81

Corollary 4.6. The polyadic µ-calculus Lωµ and Hµ(↓,@) have the same
expressive power and there are linear translations between both logics.

Using the translation in Theorem 4.3 it is now easy to see that Hµ is for
example able to express bisimilarity of two states.

Example 4.7. The Hµ formula

ϕ∼ := νX.
((∧

p∈Prop

@x p↔ @y p
)
∧ (@x� ↓x.@y ♦ ↓ y.X)

∧ (@y� ↓ y.@x ♦ ↓x.X)
)

“expresses bisimulation” – similar to the L2
µ formula in Example 4.2. To be

more precise it holds that K, s, σ |= ϕ∼ on a Kripke structure K = 〈S,→, L〉
if and only σ(x) ∼ σ(y). This can be seen by either using the translations
from L2

µ to H2
µ in Theorem 4.3 or via a direct proof that utilises the model

checking games for Hµ presented in Section 3.5.3. Observe that strategies in
the model checking game directly correspond to strategies in the bisimulation
game for the respective players.

4.2 Hybrid Bisimulation

Bisimulation is the key notion for many decidability results and decision pro-
cedures with regard to temporal logics. Most temporal logics from CTL up to
the µ-calculus are invariant under bisimulation, i.e. they cannot distinguish
two bisimilar states.
On the other hand, the notion of bisimilarity also characterises the expressive
power of temporal logics in some sense. It gives an upper bound on which
structures can be distinguished with a logic and which structures can be
regarded as equivalent with respect to the logic. Hence, for many reasons
such a notion is very useful.
However, as already stated previously, it is easy to see that this is not the
case anymore for hybrid logics. For example the hybrid modal logic formula
↓x.♦x – which checks if there is a loop – can distinguish a state from its tree
unwinding. Thus the usual bisimulation notion is not fine enough to capture
the expressive power of hybrid logics.
For this reason we recall a finer notion of bisimulation – called k-bisimulation
– which is tailored to capture the expressive power of hybrid logics and was
already introduced in [7] to show that hybrid modal logic with at most k
variables is invariant under this refined form of bisimulation. We will extend
this result and show that the same is true for Hk

µ.

82

Let ∼k ⊆ (S0 × Sk0)× (S1 × Sk1) be a 2k + 2-ary relation over a set of states
S0 and S1. To enhance readability we will denote ∼k as a binary relation
relating tuples (s, s1, . . . , sk) ∈ S0 × Sk0 and (t, t1, . . . , tk) ∈ S1 × Sk1 and will
also denote tuples (s1, . . . , sk) by s if k is clear from the context.

Definition 4.8. Let k ∈ N and let K0 = 〈S0,→0, L0〉, K1 = 〈S1,→1, L1〉 be
two Kripke structures.
A k-bisimulation is a non-empty relation ∼k ⊆ (S0 × Sk0) × (S1 × Sk1) such
that for all (s, s) ∼k (t, t) we have:

(prop) for all p ∈ Prop it holds that s ∈ L0(p) if and only if t ∈ L1(p) and for
all n ∈ Nom it holds that s = L0(n) if and only if t = L1(n),

(var) for all i ≤ k it holds that s = si if and only if t = ti,

(zig) for every s′ ∈ S0 such that s→0 s
′ there is a t′ ∈ S1 with t→1 t

′ such
that (s′, s) ∼k (t′, t),

(zag) for every t′ ∈ S1 such that t→1 t
′ there is a s′ ∈ S0 with s→0 s

′ such
that (s′, s) ∼k (t′, t),

(nom) for every n ∈ Nom it holds that (L0(n), s) ∼k (L1(n), t),

(@) for every i ≤ k it holds that (si, s) ∼k (ti, t) and

(↓) for every i ≤ k it holds that (s, s1, . . . , si−1, s, si+1, . . . , sk) ∼k
(t, t1, . . . , ti−1, t, ti+1, . . . , tk).

We say that s ∼k t iff (s, s, . . . , s) ∼k (t, t, . . . , t) and we say that K0 ∼k K1

iff there are states s, s1, . . . , sk ∈ S0 and states t, t1, . . . , tk ∈ S1 such that
(s, s) ∼k (t, t).

As for the usual bisimulation notion, k-bisimulation can also be thought of
as a game played by two players in which one player tries to distinguish both
structures and the other one tries to show that this is not possible.

Definition 4.9. Let k ∈ N and let K0 = 〈S0,→0, L0〉, K1 = 〈S1,→1, L1〉
be two Kripke structures over the same set of atomic propositions Prop and
nominals Nom.
The k-bisimulation game Gk(K0, s, s,K1, t, t) is played between Spoiler and
Duplicator on the configuration space (S0 × Sk0)× (S1 × Sk1).
The game starts with two active pebbles P 0 and P 1 placed on s and t re-
spectively and 2k passive pebbles P 0

1 , . . . , P
0
k and P 1

1 , . . . , P
1
k placed on the

states s1, . . . , sk in s resp. t1, . . . , tk in t.

83

The state on which a pebble Q lies is referred to as st(Q).
Both players take turns beginning with Spoiler. He begins by choosing one
structure Ki for some i ∈ {0, 1} and then chooses one of the following moves:

• choose a transition st(P i)→i s
′ and move P i from st(P i) to s′.

• choose a passive pebble P i
j , j ∈ {1, . . . , k} and move it to st(P i).

• choose a passive pebble P i
j , j ∈ {1, . . . , k} and move P i to st(P i

j).

• choose a nominal n ∈ Nom that occurs in Ki and move P i to Li(n).

After that Duplicator is forced to make the same kind of move but on the
opposite structure K1−i.
Spoiler wins, if after Duplicator’s move the game is in a position such that:

• there is a p ∈ Prop such that st(P 0) ∈ L0(p) but st(P 1) 6∈ L1(p) or vice
versa,

• there is an n ∈ Nom such that st(P 0) = L0(n) but st(P 1) 6= L1(n) or
vice versa, or

• there is j ∈ {1, . . . , k} such that st(P 0) = st(P 0
j) but st(P 1) 6= st(P 1

j)
or vice versa.

On the other hand, Duplicator only wins if she can successfully match all
the atomic propositions, nominals and pebbles after each of Spoiler’s moves
and the game continues forever.

It is not too difficult to see that Definitions 4.8 and 4.9 lead to the same
notion of k-Bisimulation:

Proposition 4.10. Let k ∈ N and let K0 = 〈S0,→0, L0〉, K1 = 〈S1,→1, L1〉
be two Kripke structures. There is a k-bisimulation between K0 and K1 with
(s, s) ∼k (t, t) if and only if Duplicator wins Gk(K0, s, s,K1, t, t).

Proof. (Sketch) To see this simply note that the moves in the k-Bisimulation
game correspond to the clauses (zig) up to (↓) in Definition 4.8 and the
winning conditions after each round in the game correspond to the remaining
clauses (prop) and (var). With this observation it is easy to construct a
winning strategy for Duplicator in the k-bisimulation game on k-bisimilar
structures given that there is a k-bisimulation between the structures and
vice versa.

84

· · ·
· · ·

· · ·

Figure 4.1: C8 and C∞.

k-Bisimulations can easily be restricted to fit the underlying logic. For ex-
ample, the hybrid µ-calculus introduced by Sattler and Vardi in [80] only
features nominals and jumps but no ↓-operation to dynamically name states.
To get the corresponding bisimulation notion we simply dismiss the (↓) and
(var) clause above or the respective moves in the k-bisimulation game, es-
sentially going back to a binary relation with k = 0. Restricting the clauses
even further and also dismissing (nom) and (@) then simply gives us the
usual bisimulation notion that captures for example the expressive power of
the modal µ-calculus.
To better understand this relation we give an example of k-bisimulation. Let
Ck = 〈Sk,→, L〉 be the complete clique over k states and C∞ = 〈S∞,→, L〉
be the complete clique over N. Figure 4.1 depicts C8 (left) and C∞ (right)
as Kripke structures over Prop = Nom = ∅.

Lemma 4.11. Ck+1 6∼k Cj for all j ∈ {1, . . . , k}.

Proof. We prove this by giving a winning strategy for Spoiler in the k-
bisimulation game on Ck+1 and Cj for some j ≤ k.
We describe Spoiler’s winning strategy starting at a configuration (s, s, . . . , s,
t, t, . . . , t). It is irrelevant which structure Spoiler chooses. In each turn he
simply takes one transition and moves the active pebble to a nonmarked
location. In the following turn he moves one of the previously not used
passive pebbles to his new location. Duplicator will always do the same.
Spoiler does this for 2(j − 1) turns. After that round all states in Cj are
marked with one passive pebble. In this round he simply chooses to move on
Ck+1 and moves to an unmarked location. Since j < k + 1 there is at least
one unmarked state in Ck+1 left. Duplicator then has to move on Cj and
since all states are marked Duplicator has to move to a marked state and
loses the game.

85

Lemma 4.12. Ck+1 ∼k Cj for all j > k + 1. Especially Ck+1 ∼k C∞.

Proof. Let j, k ∈ N such that j > k + 1. We will show the lemma by
describing a winning strategy for Duplicator in the k-bisimulation game on
Ck+1 and Cj.
We call a configuration (s, s1, . . . , sk, t, t1, . . . , tk) consistent if for all i we
have s = si if and only if t = ti. Notice that since no atomic propositions
or nominals are present in Ck+1 and Cj, Spoiler only wins in a configuration
that is not consistent.
This induces a simple winning strategy for Duplicator. She simply needs to
preserve consistency. It should be clear that with such a strategy, any game
starting in a consistent configuration like (s, s, . . . , s, t, t, . . . , t) is then won
by Duplicator and hence, the lemma is proven.
So, let (s, s1, . . . , sk, t, t1, . . . , tk) be a consistent configuration. If Spoiler
moves to one of the passive pebbles, or moves one of the passive pebbles to the
active one, Duplicator simply does the same thing on the second structure.
It is not hard to see that the configuration after Duplicator’s move is again
consistent. So, assume that Spoiler moves the active pebble on, for example,
s to some successor state s′. There are two cases. Either s′ is already
marked with one of the passive pebbles. In this case Duplicator mimics his
move and and moves her active pebble from t to the state marked with the
corresponding passive pebble. Again, this configuration is consistent. Lastly,
suppose s′ is not marked by any passive pebble. In both structures there is
at least one state that is not marked by any passive pebble because both
Ck+1 and Cj have more than k states. Duplicator chooses one such state
t′ on her structure and since both structures are cliques this state is also
reachable from t and she moves her active pebble to t′. Since both states s′

and t′ were not marked, consistency is preserved and thus Duplicator wins
the game starting at a consistent configuration.
The same strategy holds for the case of C∞ since this strategy only requires
at least one unmarked state in each round.

Thus, with k-bisimulations we can intuitively distinguish up to k copies of
otherwise almost identical states. It is easy to see that for usual bisimulation
it already holds that C1 ∼ Ck for every k ∈ N or k = ∞. Hence, k-
bisimulations are much more refined than ordinary bisimulations.

4.3 Hµ and Hybrid Bisimulation

We will now show that k-bisimulation is a good notion that captures the
expressive power of Hµ using k variables, i.e. Hk

µ in the following sense.

86

Theorem 4.13. Let ϕ ∈ Hk
µ be closed and K0 = 〈S0,→0, L0〉, K1 = 〈S1,→1

, L1〉 be two Kripke structures. If s ∈ S0 and t ∈ S1 such that s ∼k t then it
holds that K0, s |= ϕ if and only if K1, t |= ϕ.

Proof. Without loss of generality we assume that ϕ uses variables x1, . . . , xk.
We will prove a stronger statement that also accounts for free first- and
second-order variables:
Let ρ : Var 2 → 2S0×(Var→S0), ρ′ : Var 2 → 2S1×(Var→S1) be such that they re-
spect k-bisimilarity, i.e. for all (s, σ) ∈ 2S0×(Var→S0) and (t, σ′) ∈ 2S1×(Var→S1)

and X ∈ Var 2 it holds that if (s, σ(x1), . . . , σ(xk)) ∼k (t, σ′(x1), . . . , σ′(xk))
then (s, σ(x1), . . . , σ(xk)) ∈ ρ(X) if and only if (t, σ′(x1), . . . , σ′(xk)) ∈ ρ′(X).
We prove that if (s, σ) ∈ 2S0×(Var→S0) and (t, σ′) ∈ 2S1×(Var→S1) such that
(s, σ(x1), . . . , σ(xk)) ∼k (t, σ′(x1), . . . , σ′(xk)) then K0, s, σ, ρ |= ϕ if and only
if K1, t, σ

′, ρ′ |= ϕ.
So, assume that s, t, σ, σ′, ρ, ρ′ are as stated above. We argue with Definition
4.8 in this proof.
For the base cases, observe that the case for ϕ = p follows directly from the
(prop) clause of Definition 4.8 stating that k-bisimilar states agree on all the
atomic propositions. The case for ϕ = x follows directly from the (V ar)
clause. And the case ϕ = X for some X ∈ Var 2 follows with the assumption
on ρ and ρ′ above.
Boolean combinations follow with simple semantical considerations as usual.
The case for ϕ = ♦ψ follows directly from the (zig) and (zag) clauses. The
hybrid cases ϕ = ↓x.ψ resp. ϕ = @x ψ follow immediately with the clauses
(↓), (@).
Lastly, suppose that ϕ = µX.ψ(X). For this case, we prove via transfinite
induction on α, that for all (s, σ) ∼k (t, σ′) and all ρ, ρ′ that satisfy the
condition on second-order variable assignments stated above it holds that
K0, s, σ, ρ |= µXα.ψ(X) if and only if K1, t, σ

′, ρ′ |= µXα.ψ(X).
For the base case α = 0 observe that

K0, s, σ, ρ |= µX0.ψ(X) ⇔ K1, t, σ
′, ρ′ |= µX0.ψ(X)

because µX0.ψ(X) ≡ ff.
First, suppose α is a successor ordinal, hence α = β + 1 for some ordi-
nal β. We have K0, s, σ, ρ |= µXα.ψ(X) if and only if K0, s, σ, ρ[X 7→
µXβ.ψ(X)] |= ψ(X). Now observe, that by the induction hypothesis for
µXβ.ψ(X) we get that ρ[X 7→ µXβ.ψ(X)] and ρ′[X 7→ µXβ.ψ(X)] still re-
spect k-bisimilarity and thus we can use the induction hypothesis for ψ(X)
and get that K1, t, σ

′, ρ′[X 7→ µXβ.ψ(X)] |= ψ(X) and hence K1, t, σ
′, ρ′ |=

µXα.ψ(X).

87

Lastly, suppose that α is a limit ordinal. Thus, µXα.ψ(X) =
⋃
β<α µX

β.ψ(X).

The claim follows since every µXβ.ψ(X) respects the claim by the induction
hypothesis.

In other words, if two states are k-bisimilar then there is no formula with k
variables that is able to distinguish these states. A first application of this
so-called k-bisimulation-invariance is the following.

Corollary 4.14. Again, let Ck = 〈Sk,→, L〉 be the complete clique over k
states and C∞ = 〈S∞,→, L〉 be the complete clique over N. There is no
formula ϕ ∈ Hµ such that Ck |= ϕ for all k ∈ N and C∞ 6|= ϕ.

Proof. For the sake of contradiction, suppose there was such a formula ϕ.
Then ϕ ∈ Hk

µ for some k ∈ N. By Lemma 4.12 we get that Ck+1 ∼k C∞ and
by Theorem 4.13 we get that Ck+1 |= ϕ if and only if C∞ |= ϕ. This is a
contradiction to the assumption on ϕ.

We will come back to these results in Chapter 5 in which we provide a
connection between Hµ and the other hybrid branching-time logics. This
connection will also show which of the other hybrid branching-time logics are
invariant under k-bisimulation. For this reason we will refrain from looking
further into this right now.
There is another interesting connection between Hµ and k-bisimulations. As
we have already seen, H2

µ is able to express bisimilarity or 0-bisimilarity, i.e.
there is a formula with only two variables that is true in a Kripke structure
K = 〈S,→, L〉 if and only if both variables are assigned to bisimilar states.
Using more variables it is also easy to see that Hµ can express k-bisimilarity
for any k ∈ N.
For technical convenience we assume that Nom = ∅ because the usual reduc-
tion from bisimilarity of two states in two Kripke structures to bisimulation
of two states in one Kripke structure involves collapsing both structures into
one. In the presence of nominals that share the same names this would mean
we would have to invest some extra work and possibly rename some of them.

Example 4.15. The formula

ϕk∼ := νX.
(∧
p∈Prop

(@x p↔ @y p) ∧
k∧
i=1

(@x xi ↔ @y yi)

∧ (@x� ↓x.@y ♦ ↓ y.X)

∧ (@y� ↓ y.@x ♦ ↓x.X)

∧
k∧
i=1

(@xi ↓x.@yi ↓ y.X)

88

∧
k∧
i=1

(@x ↓xi.@y ↓ yi.X)
)

over the variables {x, x1, . . . , xk, y, y1, . . . , yk} expresses k-bisimilarity in the
sense that K, s, σ |= ϕk∼ if and only if (σ(x), σ(x1), . . . , σ(xk)) ∼k (σ(y),
σ(y1), . . . , σ(yk)).
To prove this, observe that each conjunct in the fixed point represents one of
the clauses of k-bisimilarity in Definition 4.8 (without the clause for nominals
as stated above).

Theorem 4.16. H2k+2
µ can express k-bisimilarity for any k ≥ 0.

4.4 A hierarchy for bounded fragments of Hµ

In [63] it was shown that the expressive power of the polyadic µ-calculus rises
with increasing arity of the formulas. In particular it was shown, that for
each level m in the fixed point alternation hierarchy and formulas of arity k
– denoted by Lkm – we have Lk+1

m � Lkm.
The connection between Hk

µ and Lkµ that we have proven in Section 4.1 sug-

gests that with an increasing number of variables the expressive power of Hk
µ

may rise as well. This idea is also strengthened by the previous section which
has shown, that while Hk

µ cannot distinguish k-bisimilar states this can be
done using at least 2k + 2 variables.
However, both results are not sharp enough to prove that already each ad-
ditional variable leads to an increase in expressive power, i.e. Hk+1

µ � Hk
µ.

The latter mentioned result only proves that H2k+2
µ � Hk

µ while using the re-
sult about the arity hierarchy in the polyadic µ-calculus and the translations
from Theorems 4.3 and 4.4 only gives us that Hk

µ(↓,@) ≺ Hk+2
µ (↓,@), i.e. the

expressive power of the fragments without variable tests rises when adding
two variables. To see this, note that the translations from Theorems 4.3 and
4.4 imply that Hk

µ(↓,@) � Lk+1
µ � Hk+1

µ (↓,@) � Lk+2
µ � Hk+2

µ (↓,@) and [63]

only implies that Lk+1
µ ≺ Lk+2

µ for every k ∈ N.
To obtain the sharper result we employ the invariance under k-bisimulation
to prove that there is a formula in Hk+1

µ that cannot be expressed by any

formula in Hk
µ. It is already known from Lemma 4.12 that no Hµ formula

with at most k variables can distinguish the full clique Ck+1 with k+1 states
from the full clique Ck+2 with k+ 2 states. Thus, it suffices to find a formula
with k + 1 variables that can.
The idea for this formula is copied from the winning strategy of Duplicator
in the k-bisimulation game on Ck+2 and Ck+1: even if Spoiler marks k + 1

89

states in Ck+2 with his pebbles, then there is always an unmarked state left.
Hence, there are at least k + 2 states.

Lemma 4.17. The formula ϕk+2 ∈ Hk+1
µ with

ϕk+2 := ↓x1.♦ ↓x2.♦ . . .♦ ↓xk+1.(
k∧

i,j=1
i6=j

@xi ¬xj) ∧ ♦(
k∧
i=1

¬xi)

is satisfied at a state s ∈ S if and only if there is a finite path starting at s
on which the first k + 2 nodes are all different.

Corollary 4.18. For every k ∈ N we have that Hk+1
µ � Hk

µ.

Proof. Let k ∈ N and let ϕk+2 ∈ Hk+1
µ be defined as in Lemma 4.17. Ob-

viously, it holds that for every state s in Ck+2 we have that Ck+2, s |= ϕk+2

while on the other hand we also have that Ck+1, t 6|= ϕk+2 for all states t in
Ck+1.
We will show that there is no formula in Hk

µ that is equivalent to ϕk+2. For
the sake of contradiction, suppose that there exists such a formula ϕ. By
Lemma 4.12 we have that Ck+1 ∼k Ck+2. By Theorem 4.13 we then get that
for all states s in Ck+2 and t in Ck+1 we have that Ck+2, s |= ϕ if and only if
Ck+1, t |= ϕ which contradicts the assumption that ϕ ≡ ϕk+2.

To summarise the results of Chapter 4, we have studied the expressive power
of Hµ as well as its connection to the polyadic µ-calculus and have shown that
each bounded fragment Hk

µ is invariant under k-bisimulation. Using these
results we have obtained several relationships between various fragments of
Hµ. These relationships are summarised in Figure 4.2.
Using the invariance under k-bisimulations we have shown that the expres-
sive power of the bounded fragments of Hµ grows with each added variable.
Furthermore, originating in the study of its relationship with the polyadic
µ-calculus, we have obtained that the logics Hk

µ(↓,@) lie somewhere between

Lkµ and Lk+1
µ in terms of their expressive power. Hence, the unbounded logics

Lωµ and Hµ(↓,@) have the same expressive power.

However, it is still an open problem if one or both of the inclusions in Lkµ �
Hk
µ(↓,@) � Lk+1

µ are strict. This also means that the precise relationship

between Hk
µ(↓,@) and Hk+1

µ (↓,@) also remains an open problem. Using the
results from [63] – also depicted in Figure 4.2 as the inclusions in the bottom
line – we can only show that Hk

µ(↓,@) ≺ Hk+2
µ (↓,@) but not the sharper

result that already one additional variable brings more expressive power as
we have shown for the case with added variable tests.

90

H1
µ H2

µ H3
µ · · · Hµ

H1
µ(↓,@) H2

µ(↓,@) H3
µ(↓,@) · · · Hµ(↓,@)

L1
µ L2

µ L3
µ · · · Lωµ

≺ ≺ ≺ ≺

≺ ≺ ≺ ≺

≺ ≺ ≺ ≺

� � � ≡� � �

Figure 4.2: Expressive Power of the bounded fragments inside of Hµ.

91

92

Chapter 5

The Hybrid Branching-Time
Hierarchy

We continue to research the expressive power of hybrid branching-time logics.
In particular we now study the relative expressive power of all previously
introduced hybrid branching-time logics.

We will start by developing Ehrenfeucht-Fräıssé games for the basic hybrid
branching-time logic HCTL and show that the defined games capture the
expressive power of this logic in the sense that there is no HCTL formula of
temporal nesting depth at most n that can distinguish two structures from
one another if and only if Duplicator wins the n round game on these two
structures. These games will help us in separating HCTL from logics higher
up in the syntactic hierarchy.

Then we work towards the main result of this chapter: the hybrid branching-
time hierarchy. We present a comparison of all hybrid logics from HCTL up
to HCTL∗pp as well as the fully hybrid µ-calculus in terms of their expressive
power and establish a semantic hierarchy. Both separation results as well
as translations between some of the hybrid logics are shown. To achieve
these results we develop new model theoretic proof techniques or extend
well-known techniques from the area of branching-time model theory.

As it turns out, hybrid logics can make use of certain structural properties to
simulate at least some parts of the expressive power of the more expressive
branching-time logics and thus the hierarchies on restricted classes of struc-
tures differ from the general picture quite a bit depending on the properties
of the underlying structures. Possibly one of the most important classes of
structures for temporal logics is the class of trees. In the last section of this
chapter we will take a close look at this class of structures and try to also fill
in the remaining gaps in the hierarchy over trees.

93

5.1 Ehrenfeucht-Fräıssé Games

Ehrenfeucht-Fräıssé (EF) Games have proven to be a powerful tool in cap-
turing the expressive power of first-order logic [27] as well as some closely
related logics.

Such games often prove useful when comparing the expressive power of two
logics. They are especially useful to prove that certain properties cannot be
expressed in the logic for which they are designed because they condense
all possibilities of constructing a formula and distinguishing two structures
via such a formula into a single comprehensive framework of a two-player
game. Hence, the proof that a property is not expressible in a given logic is
reduced to finding a winning strategy for one of the players – usually called
the Duplicator – in such a game.

For this reason we define Ehrenfeucht-Fräıssé games for hybrid branching-
time logics. These hybrid logics extend branching-time logics with certain
first-order aspects and thus it is not too surprising that we will find parts of
these games that are similar to certain aspects in the FO variants of these
games.

Also, similarly to EF games for first-order logic, a single instance of an EF
game only captures the expressive power of logical formulas up to a certain
degree. In FO it is usually the quantifier depth, i.e. if Duplicator wins the
m-round EF game then there is no formula of quantifier depth ≤ m that
can distinguish these structures. In our case this limiting factor will be the
nesting depth of temporal operators.

To show that some property cannot be expressed in a certain logic with the
help of EF games it is thus not enough to simply find two structures – one
that satisfies the property and one which does not – such that Duplicator has
a winning strategy in this game. This only shows that there is no formula
up to a certain degree that cannot distinguish these structures. Instead, we
need to find two families of structures – one family of structures that satisfies
the property and one that does not – such that for each degree m ∈ N we
can find a pair of structures, one from each family, such that they cannot be
distinguished by formulas up to degree m.

EF-Games for HCTL. We begin to define the EF-games for HCTL. For
the remainder of this section we fix two Kripke structures K0 = 〈S0,→0, L0〉,
K1 = 〈S1,→1, L1〉 and two states s0 ∈ S0, t0 ∈ S1.

Definition 5.1. The game GmHCTL(K0, s0,K1, t0) is played between two play-
ers – Spoiler and Duplicator on K0 and K1.

94

The game is played for m rounds and begins with a single pebble placed in
each structure on s0 and t0. After each round, a new pair of pebbles gets
placed in K0 and K1. We refer to the pebble placed in K0 in round n as pn0
and the pebble placed in K1 in round n as pn1 beginning with p0

0 placed at s0

and p0
1 placed at t0.

Each round n is played according to the following rules: First, Spoiler can
choose one of the structures Ki, i ∈ {0, 1} and a previously placed pebble
pji in Ki for some j ≤ n. Then he can choose to make one of the following
moves:

(X) He chooses a successor of pji and places a new pebble on this successor.
Duplicator then responds by choosing the pebble pj1−i in K1−i and

also chooses a successor of pj1−i on which she places a new pebble.

(U) Spoiler chooses a path πi starting at pji and a position l on this path.
Then Duplicator chooses a path π1−i starting at pj1−i and a position
l′ on this path. Now Spoiler has two options.

– Either, he places a new pebble on πli, forcing Duplicator to place
her new pebble on πl

′
1−i, or

– he chooses k′ < l′ and places a new pebble on πk
′

1−i on Duplica-
tor’s path. Afterwards, Duplicator can choose k < l and places
a new pebble on πki on Spoiler’s path.

(G) He chooses a path πi starting at pji . Then Duplicator chooses a path
π1−i starting at pj1−i. Now Spoiler chooses l ∈ N and places a new
pebble on πl1−i and after that Duplicator can choose some l′ ∈ N and
place a new pebble on πl

′
i .

It is Duplicator’s task to maintain the following conditions after each round
i:

• For all pairs of pebbles (pj0, p
j
1) it holds that the states marked by these

pebbles agree on all atomic propositions p ∈ Prop and all nominals
n ∈ Nom.

• For all pairs of pebbles (pj0, p
j
1) and (pk0, p

k
1) with 0 ≤ j, k ≤ i it holds

that pj0 = pk0 if and only if pj1 = pk1.

Spoiler wins if Duplicator cannot maintain these conditions after some round.
Duplicator wins if she can survive m rounds.

95

s pK0:

q

ε

p

q

q

q

q

...
...

p

...
...

p

q

...
...

p

...
...

p

q

...
...

p

...
...

p

q

...
...

p

...
...

K1:

Figure 5.1: A Kripke structure K0 and its tree unraveling K1.

Note that the second and third move at first glance seem to be quite similar.
However, the third option uses unbounded paths while the second only uses
finite parts of a path but forces Duplicator to make the choice of where to end
her finite path earlier and thus gives more choices to Spoiler in the second
part of this move.
To illustrate these games we give a few examples.

Example 5.2. First, take a look at the two structures K0,K1 depicted in
Figure 5.1. These depict a simple Kripke structure K0 that consists of only
two states and its tree unraveling K1. As we know, a Kripke structure and
its tree unraveling are bisimilar and thus no CTL, CTL∗ or even Lµ formula
can distinguish between these two structures.
However, it is quite easy to see that Spoiler has a winning strategy already
in G1

HCTL(K0, s,K1, ε). For this he simply makes a single (X) move along the
edge in K1 to the child that is also labelled with p. Duplicator is then forced
to move in K0. She can either move to the state labelled q and lose because
the atomic propositions do not match or she can stay at s and lose because
we have that p0

1 6= p1
1 but also p0

0 = p1
0.

It is also easy to see that the HCTL formula p∧↓x.EX(p∧¬x), which mimics
this strategy, distinguishes both structures.

Example 5.3. For the next example take a look at the structures K2 and

96

p

· · ·
pp

k

K2:

p

pp

· · ·
pp

k + 1

K3:

Figure 5.2: Two Kripke structures.

K3 depicted in Figure 5.2.
Both structures only differ in the number of their successors. K2 has k
successors and K3 has k+ 1 successors for some k ∈ N. It is easy to see that
Spoiler wins the EF game starting at the roots of both trees if the game goes
on for at least k + 1 rounds by starting each move at the root and simply
marking another successor in each round. In round k + 1 he then moves in
K3 to the last non-marked successor. Duplicator cannot mimic this anymore
since all states in K2 have already been marked.
Similarly Duplicator wins if the game only lasts for k or less rounds. If Spoiler
picks a successor (or a path through some successor) that is not marked then
Duplicator does so as well in the other structure and if Spoiler picks an
already marked successor then Duplicator picks the correspondingly marked
successor in the other structure. The moves (U) and (G) can be treated along
the same lines since they are essentially the same as the (X) move in these
two structures.
This strategy is similar to the one used in Lemma 4.12 to show that the
clique with k + 1 and the clique with more than k + 1 states are k-bisimilar.
An HCTL formula that distinguishes both structures can also easily be de-
rived from Spoiler’s winning strategy in the (k + 1)-round game:

↓ root.EX ↓x1.@root EX
(
¬x1 ∧ ↓x2.@root . . . ↓xk.@root EX(

k∧
i=1

¬xi) . . .
)
.

The formula again mimics Spoiler’s strategy in naming each successor and
requiring that they are all different.

Another – slightly more involved – example that also uses the other available
moves aside from (X) will be presented in Theorem 5.16 to show that certain
HCTL∗ss properties cannot be expressed in HCTL.

97

We now prove that these games capture the expressive power of HCTL for-
mulas, i.e. there is a formula in HCTL with nesting depth up to m ∈ N that
can distinguish the two structures in question if and only if Spoiler wins the
m-round EF game on these structures. To prove this we first need a normal
form for HCTL formulas.

Lemma 5.4. Let ϕ ∈ HCTL. Then there is a formula ϕ′ ∈ HCTL with
ϕ ≡ ϕ′ such that nd(ϕ′) = nd(ϕ) and ϕ′ is built using only temporal operators
EX,EU and EG.

Proof. The proof of this Lemma is simply by substituting the other temporal
operators AX,AU via the following equivalences:

AXϕ ≡ ¬EX¬ϕ,
Aϕ1Uϕ2 ≡ ¬EG¬ϕ2 ∧ ¬E(¬ϕ2U(¬ϕ1 ∧ ¬ϕ2)).

Note that both equivalences maintain the temporal nesting depth.

Using this normal form for HCTL formulas we can prove the first direction.

Theorem 5.5. If Duplicator wins GmHCTL(K0, s0,K1, t0) then for all formulas
ϕ ∈ HCTL with nd(ϕ) ≤ m it holds that K0, s0 |= ϕ if and only if K1, t0 |= ϕ.

Proof. We show an extended statement that accounts for pebbles that have
already been placed and free variables in the formula:
Let GmHCTL(K0, s0, s1, . . . , sn−1,K1, t0, t1, . . . , tn−1) be the game where n peb-
bles have already been placed and let σ : Var → S0, σ′ : Var → S1 such that
for all x ∈ Var and 0 ≤ i < n it holds that σ(x) = si if and only if σ′(x) = ti
and especially σ(xj) = sj, resp. σ′(xj) = tj for 0 ≤ j < n. The variables
x0, . . . , xn−1 will be used as free variables in the formula.
We show that if Duplicator wins GmHCTL(K0, s0, s1, . . . , sn−1,K1, t0, t1, . . . , tn−1)
then it holds for all formulas ϕ ∈ HCTL with free variables x0, . . . , xn−1 and
nd(ϕ) ≤ m that for all 0 ≤ i < n we have K0, si, σ |= ϕ if and only if
K1, ti, σ

′ |= ϕ.
It should be clear that the statement of the theorem follows from the above
claim for closed formulas ϕ ∈ HCTL. Moreover, by Lemma 5.4 it suffices to
look at formulas built with only temporal operators EX,EU and EG.
We show this extended statement by an induction on the number of rounds
m and only show the moves where Spoiler decides to move on K0. The other
cases are completely symmetrical.
So, let m = 0 and suppose that Duplicator wins GmHCTL(K0, s0, s1, . . . , sn−1,
K1, t0, t1, . . . , tn−1). We show the statement by a separate induction on for-
mulas ϕ of nesting depth at most 0.

98

• By the first part of the winning conditions for Duplicator it follows that
for all ϕ = p or ϕ = n and all 0 ≤ i < n it holds that K0, si, σ |= ϕ if
and only if K1, ti, σ

′ |= ϕ.

• The case for ϕ = xj for one of the free variables x0, . . . , xn−1 ∈ Var
follows by construction of σ and σ′.

• The cases for boolean connectives follow with simple semantical argu-
ments as usual.

• Suppose that ϕ = ↓x.χ and K0, si, σ |= ϕ for some 0 ≤ i < n. Then
K0, si, σ[x 7→ si] |= χ. By assumption, x 6∈ {x0, . . . , xn−1} (otherwise
x0, . . . , xn−1 would not be free). Note that, since σ and σ′ satisfy the
condition that σ(x) = si iff σ′(x) = ti and σ(xi) = si resp. σ′(xi) = ti
for all i, so do σ[x 7→ si] and σ′[x 7→ ti]. Furthermore, since σ(xi) = si
we also have that K0, si, σ[x 7→ si] |= χ[xi/x] where all free occur-
rences of x have been replaced by xi because x and xi are bound to
the same state si anyways. The formula χ[xi/x] only has free variables
x0, . . . , xn−1 and thus we can use the induction hypothesis to obtain
that K1, ti, σ

′[x 7→ ti] |= χ[xi/x]. With the same argument as before we
then also get that K1, ti, σ

′[x 7→ ti] |= χ and thus also K1, ti, σ
′ |= ↓x.χ.

• Lastly, suppose that ϕ = @xj χ for 0 ≤ j < n and K0, si, σ |= ϕ.
Remember, that ϕ only has free variables x0, . . . , xn−1, thus jumps can
only be to one of those variables. We get that K0, σ(xj), σ |= χ and
with the assumption that σ(xj) = sj we have that K0, sj, σ |= χ. By
the induction hypothesis for χ we get that K1, tj, σ

′ |= χ and again
with tj = σ′(xj) we get that K1, ti, σ

′ |= @xj χ.

This concludes the base case for m = 0.
So, let m ≥ 1 and suppose that the statement already holds for the m − 1
round game. Suppose again that Duplicator wins GmHCTL(K0, s0, s1, . . . , sn−1,
K1, t0, t1, . . . , tn−1) and that nd(ϕ) ≤ m. We show that K0, si, σ |= ϕ if and
only if K1, ti, σ

′ |= ϕ by an induction over the structure of ϕ. Without loss
of generality we can assume that ϕ only uses temporal operators EX,EU,EG.
The cases for atomic formulas, boolean connectives and hybrid operators
can be shown in the same way as for m = 0 with a separate induction over
the structure of HCTL formulas ϕ with nd(ϕ) = m. We show the three
remaining cases for ϕ = EXχ, ϕ = Eχ1Uχ2 and ϕ = EGχ.

• Suppose ϕ = EXχ and K0, si, σ |= ϕ for some 0 ≤ i < n. Then
there is a successor s′i of si in K0 such that K0, s

′
i, σ |= χ. Suppose

that Spoiler chooses to make a successor move on K0 and chooses to

99

move from si to s′i. Since Duplicator wins GmHCTL(K0, s0, s1, . . . , sn−1,
K1, t0, t1, . . . , tn−1), she can choose a successor t′i of ti such that she wins
Gm−1

HCTL(K0, s0, s1, . . . , sn−1, s
′
i,K1, t0, t1, . . . , tn−1, t

′
i). Since K0, s

′
i, σ |= χ

and nd(χ) < m we can use the induction hypothesis to conclude that
K1, t

′
i, σ
′ |= χ1. And since t′i is a successor of ti we get that K1, ti, σ

′ |=
EXχ.

• Suppose ϕ = Eχ1Uχ2 and K0, si, σ |= ϕ for some 0 ≤ i < n. Then
there is a path π0 starting at si and some l such that K0, π

l
0, σ |= χ2

and for all j < l, K0, π
j
0, σ |= χ1. Suppose Spoiler chooses to play π0

and l on K0. Since Duplicator wins, her winning strategy tells her to
choose some path π1 and l′ starting at ti.

Now Spoiler has two choices:

– First, he can choose to place a new pebble on πl0 which forces Du-
plicator to place one on πl

′
1 . Since Duplicator is playing a win-

ning strategy this means she wins from Gm−1
HCTL(K0, s0, s1, . . . , sn−1,

πl0,K1, t0, t1, . . . , tn−1, π
l′
1). Then, sinceK0, π

l
0, σ |= χ2 and nd(χ2) <

m, we can use the induction hypothesis and deduce thatK1, π
l′
1 , σ

′ |=
χ2.

– Secondly, suppose that Spoiler plays some k′ < l′ and places a
new pebble at πk

′
1 . Since Duplicator is winning, she can choose

some k < l and place her pebble on πk0 such that she wins Gm−1
HCTL(

K0, s0, s1, . . . , sn−1, π
k
0 ,K1, t0, t1, . . . , tn−1, π

k′
1). Now, since K0, π

k
0 ,

σ |= χ1 and nd(χ1) < m we can deduce that K1, π
k′
1 , σ

′ |= χ1. In
fact, this is true for every k′ < l′ since it was Spoiler’s choice.

Both cases together give us that there is some l′ on π1 such that
K, πl′1 , σ′ |= χ2 and for all k′ < l′ we have that K, πk′1 , σ

′ |= χ1. Hence,
we get that K1, ti, σ

′ |= Eχ1Uχ2.

• Lastly, suppose that ϕ = EGχ and that K0, si, σ |= ϕ for some 0 ≤
i < n. Then there is a path π0 starting at si such that for all i ∈ N
it holds that K0, π

i
0, σ |= χ. Suppose that Spoiler plays π0. Let π1

be Duplicator’s answer according to her winning strategy. Suppose
further that Spoiler decides to play some l ∈ N and Duplicator’s

1To be precise we would really need new variable assignments that account for the fact
that σ(xn) = s′i and σ′(xn) = t′i so that we can use the induction hypothesis properly.
However, due to the fact that xn is not a free variable in ϕ, the satisfaction of ϕ does not
depend on the assignment of xn and this is just a minor technicality. The same is true for
the assumptions in the case ϕ = Eχ1Uχ2.

100

winning strategy tells her to respond with l′ ∈ N. Then Duplicator
wins Gm−1

HCTL(K0, s0, s1, . . . , sn−1, π
l′
0 ,K1, t0, t1, . . . , tn−1, π

l
1) and it holds

that K0, π
l′
0 , σ |= χ. By the induction assumption we thus have that

K1, π
l
1, σ

′ |= χ. As before this holds for every l ∈ N since it was
Spoiler’s choice. Thus we have that K1, ti, σ

′ |= ϕ.

The reverse direction, i.e. if K1, ti, σ
′ |= ϕ then also K0, si, σ |= ϕ, can be

shown in the same way. This concludes the proof.

The other direction, i.e. if Spoiler wins then there is a formula that distin-
guishes both structures, holds as well – at least for structures with finite
branching-degree. But in order to prove this direction we first need some
technical details.

Definition 5.6. Let m ∈ N, Propfin ⊆ Prop be a finite set of atomic propo-
sitions and {x1, . . . , xn} ⊆ Var be a finite subset of variables.
A formula ϕ ∈ HCTL with nd(ϕ) = m over Propfin and {x1, . . . , xn} is in
hybrid conjunctive normal form of degree m – or short hybrid CNF of degree
m – if it is of the form (∧

i∈I

∨
j∈Ji

Qi,j.li,j
)
,

where all li,j are either of the form p, x, EXχ, Eχ1Uχ2, AXχ or Aχ1Uχ2 with
p ∈ Propfin, x ∈ {x1, . . . , xn} and χ, χ1, χ2 ∈ HCTL or negations thereof
and Qi,j is a sequence of the hybrid operators ↓ and @ over the variables
{x1, . . . , xn}.

Lemma 5.7. For each ϕ ∈ HCTL and nd(ϕ) = m ∈ N, there is a formula
ϕ′ ∈ HCTL in hybrid conjunctive normal form of degree m such that ϕ ≡ ϕ′.

Proof. We shortly describe how to transform a formula ϕ ∈ HCTL with
nd(ϕ) = 0. The transformation for higher temporal nesting depth is essen-
tially the same but only on the top level, above the outermost path quanti-
fiers.
So assume that ϕ ∈ HCTL with temporal nesting depth 0. We start with
the usual propositional equivalences, as well as the equivalences ↓x.(ϕ1 ⊗
ϕ2) ≡ ↓ x.ϕ1 ⊗ ↓ x.ϕ2, @x(ϕ1 ⊗ ϕ2) ≡ @x ϕ1 ⊗ @x ϕ2 with ⊗ ∈ {∧,∨},
¬↓x.ϕ ≡ ↓x.¬ϕ and ¬@x ϕ ≡ @x ¬ϕ to push negations, binders and jumps
inwards until they only occur right in front of atomic propositions.
After this we use the usual distributive laws to achieve a conjunctive normal
form above the hybrid operators.

101

Lemma 5.8. Let m ∈ N, Propfin ⊆ Prop be a finite set of atomic propo-
sitions and {x1, . . . , xn} ⊆ Var be a finite subset of variables. Then there
are only finitely many non-equivalent formulas ϕ ∈ HCTL over Propfin and
{x1, . . . , xn} with nd(ϕ) ≤ m.

Proof. By Lemma 5.7 it suffices to argue that there are only finitely many
non-equivalent formulas in hybrid CNF of degree m. So, let Propfin and
{x1, . . . , xn} be fixed.
We argue the case for m = 0. Formulas ϕ ∈ HCTL in hybrid CNF of
degree 0 are built using only atomic propositions and variable tests (and
their negations) as literals. Thus, for fixed and finite Propfin ⊆ Prop and
{x1, . . . , xn} ⊆ Var there are only finitely many literals available.
Next is the sequence of binders and jumps. Note that there are no other
temporal or boolean constructs in between. Thus, the variables x1, . . . , xn
represent at most n different states and by only jumping and rebinding the
variables at states that already are represented by a variable there are at
most nn possibilities to rearrange these states – most certainly not all of
them are possible using only binders and jumps – and another n possibilities
at which of the n states the formula continues before evaluating the literal
underneath.
Combining both aspects, we obtain that there are at most c := (|Propfin| +
n) · nn · n many different “atomic” formulas at the lowest level of such a
hybrid CNF of degree 0. Hence, there are at most 2c many possible clauses
which can be built using these and thus only 22c many different hybrid CNFs
of degree 0. This proves the case for m = 0.
For m ≥ 1 the argumentation is similar. Note that there are additional
possible literals underneath the sequences of binders and jumps built by
the constructions EXχ, Eχ1Uχ2, AXχ or Aχ1Uχ2 with “smaller” subformu-
las χ, χ1, χ2 and negations thereof. By assumption however, there are only
finitely many non-equivalent formulas χ, χ1, χ2 and thus also only finitely
many additional literals that need to be considered. The remaining argu-
ment is the same as for m = 0.

Definition 5.9. Let K = 〈S,→, L〉 be a Kripke structure, s ∈ S, σ : Var →
S be a variable assignment and {x0, . . . , xn} ⊆ Var be a finite subset of
variables and Propfin ⊆ Prop a finite subset of atomic propositions. We
define the characteristic formula of s and σ up to degree m over Propfin and
{x0, . . . , xn} as

χm,ns,σ :=
∧

ϕ∈HCTL(x0,...,xn)
nd(ϕ)≤m
s,σ|=ϕ

ϕ ∧
∧

ϕ∈HCTL(x0,...,xn)
nd(ϕ)≤m
s,σ 6|=ϕ

¬ϕ,

102

where HCTL(x0, . . . , xn) means all HCTL formulas over Propfin and {x0, . . . ,
xn} including formulas with potentially free variables from {x0, . . . , xn}.

The characteristic formula gathers all facts up to temporal depth m that hold
at a state given a certain variable assignment. Since by Lemma 5.8, there
are only finitely many pairwise non-equivalent such formulas this is indeed a
proper formula. Also, notice that nd(χm,ns,σ) ≤ m.

Lemma 5.10. Let K0,K1 be two Kripke structures over a finite set of atomic
propositions Propfin ⊆ Prop, s ∈ S0, t ∈ S1, σ0 : Var → S0 and σ1 : Var →
S1.
If K0, s, σ0 |= χm,ns,σ0

and K1, t, σ1 |= χm,ns,σ0
then it holds for all ϕ ∈ HCTL

over Propfin and {x0, . . . , xn} (including formulas with potential free variables
from {x0, . . . , xn}) with nd(ϕ) ≤ m that K0, σ0(xi), σ0 |= ϕ if and only if
K1, σ1(xi), σ1 |= ϕ for all 0 ≤ i ≤ n.

Proof. Suppose the contrary for the sake of contradiction. Thus, there is
a formula ϕ ∈ HCTL over Propfin and {x0, . . . , xn} with nd(ϕ) ≤ m and
0 ≤ i ≤ n such that K0, σ0(xi), σ0 |= ϕ but K1, σ1(xi), σ1 6|= ϕ (or vice versa)
and further we have that K0, s, σ0 |= χm,ns,σ0

and K1, t, σ1 |= χm,ns,σ0
.

By the semantics of HCTL we then have thatK0, s, σ0 |= @xi ϕ butK1, t, σ1 6|=
@xi ϕ. However, since nd(@xi ϕ) ≤ m we also know that it must be equivalent
to a conjunct in χm,ns,σ0

and consequently we have that K1, t, σ1 6|= χm,ns,σ0
which

contradicts the assumption.

With this we have all the necessary tools together to prove the other direction.

Theorem 5.11. Let K0,K1 be two Kripke structures over a finite set of
atomic propositions Propfin ⊆ Prop and with finite branching-degree. If it
holds for all formulas ϕ ∈ HCTL with nd(ϕ) ≤ m that K0, s0 |= ϕ if and
only if K1, t0 |= ϕ then Duplicator wins GmHCTL(K0, s0,K1, t0).

Proof. We prove a stronger statement that also accounts for free variables
that may occur throughout the game:
If it holds for all formulas ϕ ∈ HCTL over Propfin and {x0, . . . , xn−1} with
potential free variables from {x0, . . . , xn−1} and nd(ϕ) ≤ m as well as all
variable assignments σ0 : Var → S0, σ1 : Var → S1 with σ0(xi) = si,
σ1(xi) = ti for 0 ≤ i ≤ n− 1 that K0, s0, σ0 |= ϕ if and only if K1, t0, σ1 |= ϕ
then Duplicator wins GmHCTL(K0, s0, . . . , sn−1,K1, t0, . . . , tn−1).
We will prove the statement by an induction over m.
To begin the proof by induction, suppose that m = 0 and that it holds for
all formulas ϕ ∈ HCTL over Propfin and {x0, . . . , xn−1} with potentially free

103

variables from {x0, . . . , xn−1} and all variable assignments σ0 : Var → S0,
σ1 : Var → S1 with σ0(xi) = si, σ1(xi) = ti for 1 ≤ i ≤ n− 1 that

K0, s0, σ0 |= ϕ if and only if K1, t0, σ1 |= ϕ.

Then it especially holds that K0, s0, σ0 |=
∧n−1
i=0 @xi χ

0,n−1
si,σ0

and K1, t0, σ1 |=∧n−1
i=0 @xi χ

0,n−1
si,σ0

.
We claim that Duplicator wins GmHCTL(K0, s0, . . . , sn−1,K1, t0, . . . , tn−1). Sup-
pose for the sake of contradiction that this is not the case. Then by the
winning conditions of these games one of Duplicator’s winning conditions
must be violated. In the first case, suppose some p ∈ Prop or n ∈ Nom
holds at some si but not at ti (or vice versa), so K1, t0, σ1 6|= @xi p or
K1, t0, σ1 6|= @xi n while K1, s0, σ1 |= @xi p or K1, s0, σ1 |= @xi n. This
contradicts the assumption. The second case is similar. Suppose si = sj
but not ti = tj for some 0 ≤ i, j ≤ n − 1. Then K0, s0, σ0 |= @xi xj but
K1, t0, σ1 6|= @xi xj which again is a contradiction. Thus Duplicator wins
G0

HCTL(K0, s0, . . . , sn−1,K1, t0, . . . , tn−1) which concludes the base case.
So, suppose m ≥ 1 and that it holds for all formulas ϕ ∈ HCTL over Propfin

and {x0, . . . , xn−1} with potentially free variables from {x0, . . . , xn−1} and
all variable assignments σ0 : Var → S0, σ1 : Var → S1 with σ0(xi) = si,
σ1(xi) = ti for 1 ≤ i ≤ n− 1 that K0, s0, σ0 |= ϕ if and only if K1, t0, σ1 |= ϕ.
We construct a winning strategy for Duplicator in GmHCTL(K0, s0, . . . , sn−1,
K1, t0, . . . , tn−1) depending on which move Spoiler makes.
Suppose first that Spoiler chooses to make an (X)-move and suppose that
he chooses to move from some si to a successor s′i (the case that Spoiler
moves onK1 is completely symmetrical). Let χm−1,n

s′i,σ0[xn 7→s′i]
be the characteristic

formula of s′i and σ0[xn 7→ s′i] up to degree m − 1. Obviously we have that
K0, s

′
i, σ0[xn 7→ s′i] |= χm−1,n

s′i,σ0[xn 7→s′i]
.

We claim that there exists a successor t′i of ti on K1 such that K1, t
′
i, σ1[xn 7→

t′i] |= χm−1,n
s′i,σ0[xn 7→s′i]

. Suppose this was not the case, then we have thatK1, t0, σ1 6|=
@xi EX ↓xn.χm−1,n

s′i,σ0[xn 7→s′i]
while clearly by construction we have K0, s0, σ0 |=

@xi EX ↓xn.χm−1,n
s′i,σ0[xn 7→s′i]

. And since the formula has a temporal nesting depth

of at most m this contradicts the assumption that (s0, σ0) and (t0, σ1) agree
on all formulas of temporal nesting depth at most m.
Thus, Duplicator can choose to answer Spoiler’s (X)-move with t′i. It re-
mains to be shown that this is a winning strategy for Duplicator.
For this, observe that K1, t

′
i, σ1[xn 7→ t′i] |= χm−1

s′i,σ0[xn 7→s′i]
and K0, s

′
i, σ0[xn 7→

t′i] |= χm−1
s′i,σ0[xn 7→s′i]

. Further, we have that σ0(x0) = s0 and σ1(x0) = t0.

Thus with Lemma 5.10 we get that it holds for all ϕ ∈ HCTL over Propfin

and {x0, . . . , xn} with potential free variables from {x0, . . . , xn} and nd(ϕ) ≤

104

m− 1 that K0, s0, σ0 |= ϕ if and only if K1, t0, σ1 |= ϕ. And with the induc-
tion hypothesis we thus get that Duplicator wins Gm−1

HCTL(K0, s0, . . . , sn−1, s
′
i,

K1, t0, . . . , tn−1, t
′
i).

Suppose now that Spoiler makes a (G)-move and that he chooses a path
π starting from some si. Let χm−1,n

πj ,σ0[xn 7→πj], j ≥ 0 be the characteristic for-

mulas of πj and σ0[xn 7→ πj] up to degree m − 1. It should be clear by
construction that K0, π

j, σ0[xn 7→ πj] |= χm−1,n
πj ,σ0[xn 7→πj] for every j ≥ 0. Let

ψ :=
∨
j≥0 ↓xn.χ

m−1,n
πj ,σ0[xn 7→πj]. By Lemma 5.8, ψ can be considered as finite

(or at least as equivalent to a finite formula).

Consider the tree structure T1 of all finite paths τ1 . . . τn starting at ti such
that K1, τi, σ1 |= ψ for all 0 ≤ i ≤ n where finite paths are connected via the
direct prefix relation, i.e. (τ1, . . . , τn) → (τ1, . . . , τn+1). By assumption, K1

has finite branching-degree and thus T1, which is a thinned out subset of the
tree unfolding of K1, has also finite branching-degree.

We claim that T1 has arbitrarily long finite paths. Suppose for the sake of
contradiction the opposite. Then there would be a distance m from the root,
such that for all paths τ starting at ti we have that K1, τj, σ1 6|= ψ for some
j ≤ m. However, this means that K1, ti, σ1 6|= EGψ which is clearly satisfied
by construction at si on the path π. And since nd(EGψ) ≤ m this contradicts
the assumption.

Using König’s Lemma we can conclude that there is an infinite path τ starting
at ti such that K1, τi, σ1 |= ψ for every i ≥ 0. We construct Duplicator’s
strategy to respond with τ to Spoiler’s move.

Let l′ ∈ N be Spoiler’s choice on τ . Since K1, τl′ , σ1 |= ψ there has to be
some l ≥ 0 such that K1, τl′ , σ1 |= ↓xn.χm−1,n

πl,σ0[xn 7→πl]. Let Duplicator choose

l ∈ N.

Again, it remains to be shown that Duplicator wins Gm−1
HCTL(K0, s0, . . . , sn−1,

πl,K1, t0, . . . , tn−1, τl′). For this, observe thatK1, τl′ , σ1[xn 7→ τl′] |= χm−1,n
πl,σ0[xn 7→πl]

as well as K0, πl, σ0[xn 7→ πl] |= χm−1,n
πl,σ0[xn 7→πl]. The argument that Duplicator

wins this game follows again with Lemma 5.10 along the same lines as above
for the (X)-move.

Suppose lastly that Spoiler makes a (U)-move and that he chooses a path
π starting at some si and l ∈ N. Again, let χm−1,n

πj ,σ0[xn 7→πj], 0 ≤ j ≤ l be the

characteristic formulas of πj and σ0[xn 7→ πj] up to degree m − 1 and let
ψ :=

∨
0≤j<l ↓xn.χ

m−1,n
πj ,σ0[xn 7→πj].

We construct the strategy for Duplicator such that he chooses a path
τ starting at ti and l′ ∈ N with K1, τ

l′ , σ1[xn 7→ τ l
′
] |= χm−1,n

πl,σ0[xn 7→πl] and

K1, τ
k, σ1[xn 7→ τ k] |= ψ for all 0 ≤ k < l′.

We now argue that such a path must exist. First, there must be a state

105

t reachable from ti such that K1, t, σ1[xn 7→ s] |= χm−1,n
πl,σ0[xn 7→πl]. Otherwise,

we would have that K0, s0, σ0 |= @xi EF ↓xn.χm−1,n
πl,σ0[xn 7→πl] but K1, t0, σ0 6|=

@xi EF ↓xn.χm−1,n
πl,σ0[xn 7→πl] which is impossible by assumption.

Secondly, there must be a finite path τ1 . . . τm to such a state t such that
K1, τ

k, σ1[xn 7→ τ k] |= ψ for all 0 ≤ k < m. Suppose for a moment this
was not the case. This would mean that on every finite path τ1 . . . τm such
that K1, τ

m, σ1[xn 7→ τm] |= χm−1,n
πl,σ0[xn 7→πl] there is a moment k < m such

that K1, τ
k, σ1[xn 7→ τ k] 6|= ψ. Thus, we have that K1, t0, σ1 6|= @xi EψU

(↓xn.χm−1,n
πl,σ0[xn 7→πl]) and obviouslyK0, s0, σ0 |= @xi EψU(↓xn.χm−1,n

πl,σ0[xn 7→πl]) which

contradicts the assumption.

The remainder of the (U)-move works in the same way as for the (G)-move,
i.e. for every choice of Spoiler on Duplicator’s path, Duplicator picks
a point on Spoiler’s path that matches the disjunct in ψ that is actually
satisfied. In the case that Spoiler picks the last point of both paths to
continue form, Duplicator has no choice anyway. The argumentation why
Duplicator wins is then also the same as above. This finishes the proof.

Thus, at least on structures with finite branching-degree, we get that these
games exactly characterise the expressive power of HCTL.

However, to prove that there is no formula distinguishing two structures
we only need the first direction (Theorem 5.5) which does not pose any
restrictions on the structures.

5.2 The Hierarchy on Kripke Structures

We will now study the relative expressive power of all hybrid branching-time
logics. This section is loosely divided into the comparisons below the level
of HCTL∗, i.e. HCTL, HCTL+ and HFCTL+ and the comparisons between
all variants of HCTL∗ and the Hybrid µ-calculus.

5.2.1 Below HCTL∗ss

We first show that – similar to the non-hybrid case – HCTL ≡ HCTL+. Thus,
as in the non-hybrid case, adding boolean connectives does not increase the
expressive power. The proof is very similar to the proof in the non-hybrid
case [29] and was already extended to HCTL+ on tree structures in [52].

Theorem 5.12. For each formula ϕ ∈ HCTL+ there is a formula ϕ′ ∈ HCTL
such that ϕ ≡ ϕ′.

106

Proof. We describe how to transform an HCTL+ formula ϕ into an equivalent
HCTL formula. This can be done by rewriting each path formula in ϕ. The
key observation is that the binder only occurs as a state formula in HCTL+

and thus path formulas are essentially non-hybrid in the sense that they are
evaluated relative to a fixed variable interpretation. And fixed variables can
simply be regarded as atomic propositions that happen to hold at a single
state only. For this reason we proceed as in the non-hybrid case ([29]).

First, using the equivalences Aψ ≡ ¬E¬ψ, ¬Xψ ≡ X¬ψ, ¬(ψ1Uψ2) ≡ G¬ψ2∨
(¬ψ2U(¬ψ1∧¬ψ2)) we can rewrite ϕ such that all path formulas are preceded
by an E path-quantifier.

Now path formulas are boolean combinations of state formulas, as well as
X-, U- and G-formulas. Using equivalences from propositional logic we can
rewrite the path formula into a disjunctive normal form.

Then, using the equivalence E(ψ1 ∨ ψ2) ≡ Eψ1 ∨ Eψ2, we can split path for-
mulas and assume that remaining path formulas only consist of conjunctions
of state formulas as well as X-, U- and G-formulas.

We then use Xϕ1 ∧ Xϕ2 ≡ X(ϕ1 ∧ ϕ2) and Gϕ1 ∧ Gϕ2 ≡ G(ϕ1 ∧ ϕ2) to merge
X- and G-formulas and the equivalence E(ϕ ∧ ψ) ≡ ϕ ∧ Eψ for some state
formula ϕ to remove state formulas directly under a path quantifier.

Thus, we can assume that each path formula has the form

E(XΛ1 ∧
∧
i∈I

ϕiUχi ∧ GΛ2)

with suitable state formulas Λ1,Λ2, ϕi, χi.

We then obtain an HCTL formula by guessing the order in which the U-
formulas are satisfied along such a path. This is done by the following for-
mula:

Λ2 ∧
∨
J⊆I

(
∧
j 6∈J

χj) ∧ (
∧
j∈J

ϕj) ∧ EX
(

Λ1∧∨
π∈Perm(J)

E((Λ2 ∧
∧
j∈J

ϕπ(j))U
(
χπ(1)∧

E((Λ2 ∧
∧

j∈J,j 6=1

ϕπ(j))U
(
χπ(2)∧

...

E((Λ2 ∧ ϕπ(|J |))U(χπ(|J |) ∧ EGΛ2))
)
. . .
)

where Perm(J) denotes the set of all permutations over J .

107

Correctness of the construction follows along the same lines of argumentation
as in [29]. Essentially (ignoring Next- and Generally-formulas) the argument
is as follows: If there is a path satisfying the HCTL+ formula then there is a
sequence in which all the Until-formulas are satisfied along this path which
is then guessed by the HCTL formula and vice versa.

In the non-hybrid case, we know that FCTL+ is more expressive than CTL+.
For example in [30] it was shown that the formula EGFp cannot be expressed
by CTL+/CTL. A similar result was already shown for HCTL+ interpreted
only over computation trees in [52]. This of course also gives us a separation
result over general Kripke structures.

Proposition 5.13. There is no formula in HCTL+ that is equivalent to the
HFCTL+ formula EGFp.

Quite interestingly this result does not hold anymore if we restrict the logic
to be interpreted only over finite structures. On finite structures we can
use that an infinite ocurrence of p along some path is equivalent to the
occurrence of p at some state that lies on a (finite) loop in the structure.
This can easily be expressed already in HCTL and consequently we get that
on finite structures the HFCTL+ formula EGFp is equivalent to the HCTL
formula EF ↓x.EF(p ∧ EXEFx).
By generalising this idea and combining it with the translation from HCTL+

to HCTL in Theorem 5.12, we obtain the following result for HFCTL+ on
finite structures.

Theorem 5.14. On finite structures, every HFCTL+ formula is equivalent
to an HCTL formula.

Proof. We begin with the same equivalences as in the proof for Theorem 5.12
to obtain a formula in which all path formulas are of the form

E(XΛ1 ∧
∧
i∈I1

ϕiUψi ∧ GΛ2 ∧ (
∧
i∈I2

GFχi) ∧ (
∧
i∈I3

¬GFξi)) (5.1)

for suitable HFCTL+ formulas ϕi, ψi, χi, ξi. Note that ¬GFξi essentially
means that there is a point from which on ξi is not satisfied anymore.
To transform such formulas into HCTL formulas we again guess the order in
which all Until-formulas are satisfied – ignoring the fairness constraints for
the initial part – and then we guess a point from which on there are cyclic
paths along which the χi are satisfied but no ξi is.
Thus, we get the following translation:

Λ2 ∧
∨
J⊆I1

(
∧
j 6∈J

ψj) ∧ (
∧
j 6∈J

ϕj)∧

108

EX
(

Λ1 ∧
∨

π∈Perm(J)

E((Λ2 ∧
∧
j∈J

ϕπ(j))U
(
ψπ(1)∧

...

E((Λ2 ∧ ϕπ(|J |))U(ψπ(|J |) ∧ ξ)
)
. . .
)

where Perm(J) denotes the set of all permutations over J and

ξ := E(Λ2U(Λ2 ∧ ↓x.
∧
i∈I2

E((Λ2 ∧ (
∧
i∈I3

¬ξi))

U(Λ2 ∧ (
∧
i∈I3

¬ξi) ∧ χi ∧ E((Λ2 ∧ (
∧
i∈I3

¬ξi))Ux))))).

Suppose some state satisfies (5.1) in some finite structure. Then there is
a path π satisfying all conjuncts of (5.1). We only argue correctness of
the translation for the infinite part of the path after all Until-formulas were
satisfied and also ignore that Λ2 is satisfied on every state of the path. Cor-
rectness for the initial part follows along the same lines as the translation
from HCTL+ to HCTL in Theorem 5.12.

Since the structure is finite there has to be some point x occurring infinitely
often along π and also a moment on π such that none of the ξi are satisfied
from this moment on. Furthermore, since every χi is satisfied infinitely often
there has to be a part of the path such that χi is satisfied on some state
between two occurrences of x. Thus, for every i there is a cycle starting
at x in the structure along which χi is satisfied. Hence, ξ is satisfied. The
converse direction follows by a piecewise reconstruction of the whole path
with infinitely many occurrences of each cycle satisfying some χi.

We will use this result to show that already on finite structures HCTL∗ss is
more expressive than HFCTL+. We do this in two steps.

First, using the Ehrenfeucht–Fräıssé games for HCTL, we will prove that
there are two classes of finite structures distinguishable by HCTL∗ss such that
no HCTL formula can distinguish them. Combined with Theorem 5.14 this
will also prove that, already on finite structures, HCTL∗ss is more powerful
than HFCTL+. Of course, as for Proposition 5.13 above, this result then
also generalises to the class of all Kripke structures.

Interestingly, we can use the same CTL∗ formula that shows the expressive-
ness gap between CTL∗ and FCTL+ but since the hybrid versions of both
logics are more expressive we need two more sophisticated classes of struc-
tures to show the same result.

109

s3 pr3

s2 pr2

s1 p

r1 p

t1

s′3p r′3

s′2p r′2

s′1p

t′1

(a) Structure A.

P P ′

k′

k

l = k + 2n−i−1

(b) Sketch of Duplicator’s path choice.
The black path is Spoiler’s choice.

Duplicator’s path is depicted in red.
The blue part means that both paths

have joined.

Figure 5.3: Structure A and a sketch of Duplicator’s path choice on A.

Consider the structureA in Figure 5.3a. Note that despiteA being an infinite
structure as a whole, it is essentially finite from every state because every
path traverses the structure downwards and either ends in t1 or t′1.
In the following, we refer to the index of a state’s name as the level of the
structure and the letter of its name as the type of the state. Also note that
each path that goes from level i to level i− 1 either visits si−1 or s′i−1.

Lemma 5.15. For every i ∈ N we have that

A, si |= AF(p ∧ Xp) and A, ri |= AF(p ∧ Xp),

but

A, s′i 6|= AF(p ∧ Xp) and A, r′i 6|= AF(p ∧ Xp).

Proof. To see this, note that every path starting on the left-hand side of the
structure either ends in the left bottom component, where at s1 and r1 we
have that two p’s hold, or the path changes side at some point going from
some sj to s′j−1 and seeing two p’s there.

110

However, the zig-zag path starting somewhere on the right-hand side of A
that always goes from s′j to r′j and then to s′j−1 etc. until it loops at t′1, never
sees two consecutive p’s.

This lemma gives us a natural partition of A into “substructures” that start
on the left-hand side and “substructures” that start on the right-hand side.
We will now prove that for sufficiently large structures there is no HCTL
formula that can distinguish these structures.

Theorem 5.16. Let n ∈ N and m = 2n+1. Duplicator wins GnHCTL(A, sm,
A, s′m).

Proof. To prove this, we describe a winning strategy for Duplicator. Suppose
that i rounds have been played already. To win, Duplicator maintains the
following invariant throughout the game:

• The pebbles placed by Duplicator are always on the same level and of
the same type as Spoiler’s pebble in the same round.

• There is some k ≥ 2n−i such that each pair of pebbles placed by Spoiler
and Duplicator in the same round on level k or smaller marks exactly
the same state. Furthermore, pairs of pebbles placed above level k are
on opposing sides in the structure.

• The first pair of pebbles placed above level k is at least on level k+2n−i.

It is obvious that if Duplicator can maintain this invariant for n rounds then
she wins.
Furthermore, at the beginning of the game the invariant holds with k = 2n.
Suppose now that i rounds have already been played according to this strat-
egy for some i ≤ n and Spoiler decides to move from some pebble p that
has previously been placed. Let p′ be the corresponding pebble placed in the
same round as p. Since up to now Duplicator has maintained the invariant
above, p′ is on the same level and of the same type as p. Spoiler now has
three types of moves available.
Suppose first that he chooses to make an (X)-move. There are two scenarios.
First, p and p′ may lie above k, thus by the second point of the invariant
one is on the left-hand side of the structure and one is on the right-hand
side. Duplicator then simply picks the unique successor of p′ that matches
Spoiler’s choice in level and type but is on the opposing side of the structure.
Secondly, if p, p′ lie at k or below, then they mark the exact same state and
Duplicator simply mimics Spoiler’s move exactly. In both cases the invariant
is maintained, even with the same k.

111

Suppose now that Spoiler chooses to make a (G)-move. Again, if p, p′ are
below level k, Duplicator can simply mimic Spoiler’s path and also Spoiler’s
pick because p and p′ mark the same state. So, suppose further that p, P ′

are above level k. Thus, p and p′ are on opposite sides of the structure and
by the third point of the invariant then p, p′ are on a level greater than or
equal to k + 2n−i.
Let k′ ≥ k + 2n−i be the lowest level above k such that pebbles are placed
on level k′ and let l := k+ 2n−i−1. After Spoiler chooses his path, Duplicator
chooses her path as follows:

• Up to level l + 1 she simply mimics Spoiler’s path but stays on the
opposite side of the structure.

• At state sl+1 or s′l+1 – which Spoiler’s path necessarily visits and no
matter if Spoiler’s path goes through rl+1 resp. r′l+1 – Duplicator’s path
changes sides to meet up with Spoiler’s path at sl or s′l depending on
which one of these Spoiler’s path visits.

• From then on Duplicator’s path simply follows exactly Spoiler’s path.

A rough illustration of Duplicator’s path is depicted in Figure 5.3b. Spoiler
can now pick some pebble on Duplicator’s path. Note that Duplicator’s
choice after picking her path is entirely dependent on Spoiler’s choice by the
first part of the invariant. Thus we only need to show that the invariant is
preserved, no matter what Spoiler chooses to play. We distinguish two cases:

• First, assume that Spoiler picks some state above l. In this case k stays
the same for the next round and the first pair of pebbles is placed at
least 2n−i−1 + 1 levels above k.

• Secondly, assume that Spoiler picks a state on level l or below. In this
case we pick the new k to be the level on which both new pebbles are
placed. The first pair of pebble above the newly placed ones is on level
k′ and thus at least k′ − l ≥ (k + 2n−i) − (k + 2n−i−1) = 2n−i−1 levels
above the new pebbles.

Suppose lastly that Spoiler makes a (U)-move. Here, Spoiler can also choose
an endpoint on the path and after Duplicator has chosen her path and end-
point, Spoiler can potentially force the game to continue from there. There
are two cases.
First, suppose that Spoiler picks his path and endpoint in such a way that his
endpoint is not at the state rl+1 or r′l+1. Then Duplicator chooses her path
in the same way as described for (G)-moves and her endpoint simply on the

112

same level as Spoiler’s endpoint. No matter which option Spoiler chooses,
the invariant is maintained with the same arguments as for (G)-moves.
So, suppose that Spoiler picks a path from some pebble p with endpoint at
rl+1 or r′l+1. Thus, p lies above level k and there is some pebble p′ on the
opposing side of the structure that is on the same level and marks the same
type of state. In this case Duplicator cannot simply ignore rl+1/r′l+1 and
change sides to meet Spoiler’s path since Spoiler could then force the game
exactly to this point. However, by picking rl+1 or r′l+1 as the endpoint Spoiler
has limited himself for the second part of the (U) move and can only force
the game to stay somewhere above l. Thus Duplicator simply chooses a path
that remains on the opposing side of Spoiler’s path up to level l.
Suppose Spoiler chooses to play the endpoints at rl+1 and r′l+1. Then with
the same k as in the previous round we get that the first pebbles above level k
are at least 2n−i−1 levels above k. And lastly, if Spoiler chooses to play some
level above l + 1 the invariant is also maintained with the same argument.
In any case, Duplicator can maintain the invariant and thus she wins the
game GnHCTL(A, s2n+1 ,A, s′2n+1).

Theorem 5.17. There is no HFCTL+ formula that is logically equivalent to
the CTL∗ formula AF(p ∧ Xp).

Proof. Suppose there was such a formula. By Theorem 5.14 this formula is
equivalent to an HCTL formula ϕ on finite structures. Let nd(ϕ) = n. Then
by Theorems 5.5 and 5.16 the formula ϕ cannot distinguish between the states
s2n+1 and s′2n+1 . However, by Lemma 5.15 we have that A, s2n+1 |= AF(p∧Xp)
but A, s′2n+1 6|= AF(p ∧ Xp).

Thus, we get that CTL∗ and HFCTL+ are incomparable and since HCTL∗ss

is an extension of CTL∗ and HFCTL+ we obtain the following:

Corollary 5.18. Already on finite structures HCTL∗ss is more expressive
than HFCTL+.

Thus, we have established a hierarchy below HCTL∗ss, namely

HCTL ≡ HCTL+ ≺ HFCTL+ ≺ HCTL∗ss

that looks quite similar to the non-hybrid version:

CTL ≡ CTL+ ≺ FCTL+ ≺ CTL∗.

Quite interestingly, the last result which states that HCTL∗ss is more expres-
sive than HFCTL+ does not hold anymore if we restrict our attention only
to trees.

113

Example 5.19. On tree structures we have that the HFCTL+ formula
↓ s.AF(p∧↓ x.@s EF(EXx∧p)) (in fact it is even an HCTL formula) is equiv-
alent to the CTL∗ formula AF(p ∧ Xp).

The HFCTL+ formula exploits the property of trees that each state has a
unique parent node. Thus instead of looking for a state on each path such
that the state itself and its successor both satisfy p the HFCTL+ formula
looks for a state satisfying p such that its unique parent node also satisfies
p. The identification of the parent node can easily be done using hybrid
operators.

It is open whether HCTL∗ss interpreted only on trees is more expressive than
HFCTL+.

5.2.2 HCTL∗ and the Hybrid µ-calculus

In this section we try to establish a connection between the three variants of
HCTL∗ and Hµ. While we know that CTL∗ can be translated into the modal
µ-calculus this is a priori not clear for their hybrid extensions. While both
extensions feature the same additional hybrid operators, their semantical
interpretation differs quite a bit.

The first step in establishing such a connection is to translate HCTL∗ss for-
mulas into Hµ and by doing so we show that Hµ is at least as expressive as
HCTL∗ss.

However, already the translation from CTL∗ to Lµ is non-trivial. It is helpful
to recall the basic ideas of this translation: the key-difference between both
logics is found in the path quantifiers of CTL∗. In branching-time logics it is
possible to quantify over an infinite path and then state conditions that need
to hold on this infinite path. This is not directly possible in Lµ. Instead,
there we have to generate such an infinite behaviour step by step via fixed
points.

Thus, it is not surprising that the main challenge is to translate arbitrarily
nested path formulas. The key-idea for this part is to see that path formulas
in the non-hybrid case can be regarded as LTL formulas with nested CTL∗

state formulas. Ignoring these nested state formulas for the moment, we can
translate the LTL parts of the formula into a Büchi automaton on ω-words
that accepts a path if and only if this path satisfies the LTL formula. This
automaton in turn can then be translated into a µ-calculus formula that
simulates the automaton. The embedded state formulas in the LTL formula
can be handled by a decomposition method as usual for CTL∗.

114

HCTL∗ss and Hµ. We will use a similar approach to translate HCTL∗ss to
Hµ. Inspecting the grammar for HCTL∗ss, we see that the path formulas are
syntactically also only LTL formulas with embedded state formulas. Hybrid
operators in this variant are restricted to state formulas only, which means
that a path formula is evaluated with respect to a fixed variable interpre-
tation. However, these path formulas feature an extended vocabulary. For
example the path formula Fx in the HCTL∗ss formula ↓x.EFx needs to deal
with free variables that may occur on a path formula. And thus, a Büchi au-
tomaton that checks for the occurrence of x along some path in the structure
also needs to take care of these variables in some form.
To get started we first need a few definitions.

Definition 5.20. A path formula ψ is called pure if there are no occurrences
of path quantifiers E,A or hybrid operators ↓,@ in ψ.

Pure path formulas in particular are evaluated with respect to a fixed variable
assignment. Thus, we can simply treat free variables like atomic propositions.
To make this intuition precise we code them into the labeling of a structure.

Definition 5.21. Let K = 〈S,→, L〉 be a Kripke structure and σ : Var → S
be a variable assignment. We define Kσ := 〈S,→, L′〉 with L′ : Prop∪Var →
2S with L′(p) = L(p) for all p ∈ Prop and p ∈ Nom and L′(x) = {σ(x)} for
all x ∈ Var .

Thus, Kσ extends a Kripke structure K with fresh atomic propositions for
each variable and they hold at exactly the states assigned by σ. Since K and
Kσ only differ in their labeling, paths in K can also be regarded as paths in
Kσ and vice versa.
However, not all paths over the extended alphabet Prop ∪ Var do encode a
proper path from such an extended Kripke structure. For example a path
π = s0s1s2 . . . over Prop ∪ Var with s0 6= s1 and L(x) = {s0, s1} obviously
cannot be traced back to an extended Kripke structure since x does not
encode a “hybrid” state variable that only marks a single state.

Definition 5.22. Let π be a path over Prop ∪ Var with states from a set
S and σ : Var → S a variable assignment. We call π consistent with respect
to σ if for all i ∈ N and all x ∈ Var it holds that πi ∈ L(x) if and only if
πi = σ(x).

The following lemma about consistent paths and extended Kripke structures
is easy to see.

Lemma 5.23. Let K = 〈S,→, L〉 be a Kripke structure, σ : Var → S
a variable assignment and π be a path in Kσ. Then π is consistent with
respect to σ.

115

We will now prove a connection between pure HCTL∗ss path formulas and
LTL formulas. Since pure path formulas and LTL formulas are syntactically
the same – aside from the fact that variables may be treated as atomic
propositions – we simply use the index LTL for the satisfaction relation |=,
i.e. |=LTL, to indicate that a pure path formula is interpreted as an LTL
formula.

Lemma 5.24. Let K = 〈S,→, L〉 be a Kripke structure, π a path in K,
σ : Var → S a variable assignment and k ∈ N.
Then for every pure HCTL∗ss path formula ψ over atomic propositions Prop
and variables from Var it holds thatK, π, k, σ |= ψ if and only ifKσ, π[k,∞) |=LTL

ψ.

Proof. We will prove this by a straightforward induction on ψ. For this,
suppose that K, π, k, σ |= ψ.
First, assume that ψ = ϕ for some state formula ϕ ∈ HCTL∗ss. Since ψ is
pure this means that ϕ is a boolean combination of propositions and variables.
And because π – regarded as a path in Kσ – is consistent with σ according to
Lemma 5.23 and all states in Kσ and K agree on their atomic propositions,
we also get that Kσ, π[k,∞) |=LTL ψ.
The claim for negation and disjunction follows immediately. So, suppose
ψ = Xψ′. Then K, π, k+ 1, σ |= ψ′. By the induction hypothesis we then get
that Kσ, π[k+1,∞) |=LTL ψ

′. By the semantics of LTL formulas we also obtain
that Kσ, π[k,∞) |=LTL ψ.
Lastly, suppose that ψ = ψ1Uψ2. Then there is some j ∈ N such thatK, π, k+
j, σ |= ψ2 and for all i = 0, . . . , j− 1 we have that K, π, k+ i, σ |= ψ1. By the
induction hypothesis we get that Kσ, π[k+j,∞) |=LTL ψ2 and Kσ, π[k+i,∞) |=LTL

ψ1 for all 0 ≤ i < j and thus also Kσ, π[k,∞) |=LTL ψ by the semantics of
LTL.

Because we have no past-operators and the jump is not allowed in pure path
formulas there is no way to look back into the past in a pure path formula
and hence when interpreting a pure path formula as an LTL formula we can
restrict the attention to the suffix of a path starting at the current moment.
Furthermore, we can treat pure path formulas – which are evaluated with
respect to a fixed variable interpretation – just like LTL formulas over an
extended structure.
Next we extend the well-known connection between LTL formulas and Büchi-
automata to encompass pure HCTL∗ss path formulas.

Theorem 5.25. For each pure HCTL∗ss path formula ψ of size n over atomic
propositions Prop and variables {x1, . . . , xk} there is a Büchi automaton Aψ
of size O(n · 2n) such that:

116

For all Kripke structures K = 〈S,→, L〉 over Prop ∪ {x1, . . . , xk} and all
paths π over K, the path π is accepted by Aψ if and only if π |=LTL ψ.

Proof. To construct Aψ we first observe that ψ is an LTL formula with
possibly added variable tests. We treat variable tests for the moment like
atomic propositions and construct a Büchi automaton that accepts a path π
if and only if π satisfies ψ (as an LTL formula) [93]. The construction then
immediately yields the size estimation of the automaton as well as the rest
of the statement.

Note that the constructed Büchi-automaton Aψ as well as the (LTL)-formula
ψ in general accept “more” paths than the pure hybrid path formula ψ since
they only check the sequence of propositions and treat variables like any other
proposition. For example, Aψ also accepts paths that are not consistent with
respect to any variable assignment, i.e. paths in which a “proposition” x may
occur at more than one state.
However, on Kripke structures that are extended in a “hybrid” way the
automaton works as intended. We will only use the automaton on such
structures and also only use it as an intermediate step in the translation of
HCTL∗ss into the fully hybrid µ-calculus. The next goal is to translate such
a Büchi-automaton into an Hµ-formula.
It is well-known that each Büchi-automaton can be simulated by an Lµ for-
mula [24]. However, to use this formula we also need to bridge the small gap
between Lµ over an extended “hybrid” vocabulary and Hµ similar to how
LTL and pure path formulas are connected in Lemma 5.24.
Similar to the LTL case we write K, s |=Lµ ϕ to indicate that ϕ is interpreted
as a purely modal µ-calculus formula with free first-order variables regarded
as propositions and assuming that no binders and jumps occur in ϕ.

Lemma 5.26. For each Hµ-formula ϕ without any occurrence of ↓x.ψ or
@x ψ in it, it holds that K, s, σ |= ϕ if and only if Kσ, s |=Lµ ϕ.

Proof. (Sketch) To prove this by induction on ϕ we need to strengthen the hy-
pothesis in order to deal with free second-order variables. Let ϕ(X1, . . . , Xm)
be a formula with free second-order variablesX1, . . . , Xm and ρ : {X1, . . . , Xm}
→ 2S×(Var→S) be an interpretation for them. We define ρ′ : {X1, . . . , Xm} →
2S to be ρ′(X) := {s | (s, σ) ∈ ρ(x)}. We now show by induction on ϕ that
K, s, σ, ρ |= ϕ(X1, . . . , Xm) if and only if Kσ, s, ρ′ |=Lµ ϕ(X1, . . . , Xm).
The case for ϕ = p holds because K and Kσ agree everywhere on all atomic
propositions. The case for ϕ = x holds by construction of Kσ and the case for
ϕ = X follows by construction of ρ′. Boolean combinations as well as modal
operators follow by simple semantical arguments. And finally, for the case of

117

ϕ = µX.ψ(X) we use the characterisation of least fixed points as the union
of its approximations. It is straightforward to show by a separate induction
that the statement holds for all approximations.

Theorem 5.27. For each Büchi automaton A over Prop∪{x1, . . . , xk} of size
m there is an Hµ formula ϕA of size at most O(m ·2m) such that K, s, σ |= ϕA
if and only if there is a path π in Kσ starting at s such that A accepts π.

Proof. It is well-known that for each Büchi automaton A of size m there is an
Lµ-formula ϕ′A in vectorial form such that Kσ, s |=Lµ ϕ

′
A if and only if there

exists a path π starting at s such that A accepts π, c.f. [8]. This formula
ϕ′A is of size O(m). We then transform ϕ′A into an equivalent (non-vectorial)
Lµ-formula ϕA which involves a blowup of size O(m · 2m), c.f. [17].
With Lemma 5.26 and the fact that ϕA does not have any occurrences of ↓ x
or @x because it is an Lµ formula (extended with possible variable tests that
are treated like ordinary propositions) we get that Kσ, s |=Lµ ϕA if and only
if K, s, σ |= ϕA.

We are now ready to show the main result of this section.

Theorem 5.28. For each formula ϕ ∈ HCTL∗ss there is a formula ϕ′ ∈ Hµ

such that K, s, σ |= ϕ if and only if K, s, σ |= ϕ′ for all Kripke structures
K = 〈S,→, L〉, states s ∈ S and variable assignments σ : Var → S.

Proof. First, we will give a translation for HCTL∗ss formulas and then argue
for correctness of the translation.
Suppose ϕ ∈ HCTL∗ss over the variables {x1, . . . , xk}. The cases up to path
formulas are straightforward:

τ(p) := p τ(ϕ ∨ χ) := τ(ϕ) ∨ τ(χ)

τ(x) := x τ(↓x.ϕ) := ↓x.τ(ϕ)

τ(¬ϕ) := ¬τ(ϕ) τ(@x ϕ) := @x τ(ϕ)

For the case of ϕ = Eψ, let {ϕ1, . . . , ϕm} be the maximal state-subformulas
in ψ, i.e. subformulas that start with E,A, ↓x. or @x, and without loss of
generality suppose that ϕ features the variables {x1, . . . , xk}.
We first replace those by fresh atomic propositions pϕi . The resulting formula
is a pure HCTL∗ss path formula over the propositions Prop ∪ {pϕ1 , . . . , pϕm}
and variables {x1, . . . , xk}. Then, according to Theorem 5.25, we construct
a Büchi-automaton Aψ for this formula. Furthermore, according to Theo-
rem 5.27 there is a Hµ formula ϕAψ that simulates this Büchi-automaton and
thus the formula ψ.

118

Finally, we translate the remaining maximal state subformulas {ϕ1, . . . , ϕm}
recursively. Let τ(ϕ1), . . . , τ(ϕm) be their respective translations. We obtain
the final translated formula by replacing the atomic propositions pϕi in ϕAψ
by their respective translations. Thus:

τ(Eψ) := ϕAψ [τ(ϕ1)/pϕ1 , . . . , τ(ϕm)/pϕm] .

It remains to be shown that this translation is correct. For this, let K = 〈S,
→, L〉 be a Kripke structure, s ∈ S and σ : Var → S a variable assignment.
We prove that K, s, σ |= ϕ if and only if K, s, σ |= τ(ϕ) by induction on ϕ.
The only interesting case is ϕ = Eψ. Suppose first that ψ is a pure path
formula and that K, s, σ |= ϕ. Then there is a path π in K, starting at s
such that K, π, 0, σ |= ψ. By Lemma 5.24 we get that Kσ, π |=LTL ψ. By
Theorem 5.25, π is accepted by Aψ. And finally, by Theorem 5.27, we get
that K, s, σ |= ϕAψ .
For the case that ψ is not pure, we additionally need the fact that K, s, σ |=
ϕ [χ/p] ⇔ K′, s, σ |= ϕ where K′ extends K with an atomic proposition p
such that p ∈ L(s) ⇔ K, s, σ |= χ. This can be shown by a straightforward
induction on ϕ, both for HCTL∗ss and Hµ.

To illustrate the translation we give a short example.

Example 5.29. Consider the formula χ := ↓ y.EG (Fy ∧ ↓x.EXFx). The
formula states that there is a path whose starting point is seen infinitely
often along the path and at every point of the path there is another path
that loops back to the current point.
We first begin by extracting the maximal state-subformula ↓x.EXFx which
yields the formula ↓ y.EG (Fy ∧ p).
We then construct a Büchi automaton A for the LTL-formula G (Fy ∧ p) over
the atomic propositions p and y. The automaton has two states only and
simply checks that y is seen infinitely often and p is seen at every moment
along the path:

q0 q1

{p, y} {p}{p, y}

{p}

This Büchi automaton can then be translated into the following µ-calculus
formula:

ϕ :=
[
νY.(p ∧ y ∧ ♦Y) ∨ (p ∧ y ∧ ♦µZ.(p ∧ ♦Z) ∨ (p ∧ ♦Y))

]
∨

119

µZ.(p ∧ ♦Z)∨
(p ∧ ♦νY.(p ∧ y ∧ ♦Y) ∨ (p ∧ y ∧ ♦µZ.(p ∧ ♦Z) ∨ (p ∧ ♦Y)).

We obtain two fixed point variables, one for each state. The first line de-
scribes an accepting run starting at q0 and the second and third line describe
a run starting at q1. We obtain the translation ↓ y.EG (Fy ∧ p) as ↓ y.ϕ.
The same procedure can be applied to the replaced subformula ↓x.EXFx:
Since there are no maximal state-subformulas left we can directly construct
an automaton for the LTL formula XFx and then translate it into a µ-
calculus formula. Putting these together yields the translation of ↓x.EXFx
as ↓x.♦µX.x ∨ ♦X.
To finish the translation we put both translations together and obtain that
τ(χ) = ϕ[(↓x.♦µX.x ∨ ♦X)/p].

To summarise this section we have obtained the following relationship be-
tween HCTL∗ss and Hµ.

Corollary 5.30. HCTL∗ss � Hµ.

A closer look at the translation also reveals that the translation from HCTL∗ss

does not introduce new variables. In fact, the hybrid operators binder and
jump get translated without any change. Thus, the translation of a formula
ϕ ∈ HkCTL∗ss falls into Hk

µ. From this and Theorem 4.13, which states that

Hk
µ is invariant under k-bisimulation, we get the following:

Corollary 5.31. HkCTL∗ss is invariant under k-bisimulation.

The inclusion in terms of expressive power between HCTL∗ss and Hµ immedi-
ately raises the question whether it is strict. Similar results for CTL∗ and Lµ
suggest that this is probably the case. And indeed it is. We will now proceed
to prove an even stronger result: there is a formula in Lµ that cannot even
be expressed in HCTL∗pp and thus neither in HCTL∗ss.
The idea of this strictness proof is quite simple. We will show that the Lµ
formula µX.p ∨ ♦♦X which characterises reachability in an even number of
steps is not expressible in HCTL∗pp. It is well-known that this formula is not
expressible in CTL∗ (c.f. [24]) because CTL∗ essentially lacks an unrestricted
recursion mechanism which is intuitively still the case in HCTL∗pp.
As before we prove the non-expressibility on a restricted class of structures.
The result then transfers to all structures. In this case we choose linear
structures or word structures.

Lemma 5.32. Let K = 〈S,→, L〉 be a word structure and ϕ ∈ HCTL∗pp.
Let ϕ′ be the LTL formula that is obtained by syntactically removing all
path quantifiers A,E from ϕ. Then it holds that K, s, σ |= ϕ if and only if
K, s, σ |= ϕ′.

120

This is a simple observation because on word structures there is exactly
one path through the structure and hence there is no difference between
existential and universal path quanifiers.
Thus, Lemma 5.32 essentially states that, on word structures, HCTL∗pp is as
expressive as hybrid LTL.

Theorem 5.33. There is no HCTL∗pp formula that can express the Hµ prop-
erty µX. p ∨ ♦♦X.

Proof. Suppose for the sake of contradiction that such a formula ϕ exists.
Then by Lemma 5.32 we get that there is a hybrid LTL formula that charac-
terises reachability in an even number of steps on word structures. However,
hybrid LTL can be translated into first-order logic on word structures [38]
which, in turn, cannot express this property, c.f. [25]. Thus, such a formula
cannot exist.

Combined with Corollary 5.30 we obtain that Hµ is strictly more expressive
than HCTL∗ss.

Corollary 5.34. HCTL∗ss ≺ Hµ.

HCTL∗ps and Hµ. Following this, the next question that naturally arises
is: is HCTL∗ps also subsumed by Hµ? The simple trick of interpreting a
path formula with regard to a fixed variable assignment as an LTL formula
does not work anymore since now with the binder we can change variable
assignments along some path.
In fact, we will now show that this enables us to express properties that are
not even expressible in Hµ.

Theorem 5.35. There is no formula ϕ ∈ Hµ such that ϕ is logically equiv-
alent to the HCTL∗ps formula EG ↓x.XG¬x.

Proof. The formula ϕ∞ := EG ↓x.XG¬x expresses that there is a path on
which one can mark any state and then never see this exact state again.
Thus, it is only satisfied on structures that contain an infinite non-looping
path.
Let Ck = 〈Sk,→, L〉 be the complete clique over k states with no propositions
and no nominals and C∞ = 〈S∞,→, L〉 be the complete clique over N. It is
obvious that we have Ck, s 6|= ϕ∞ for any k ∈ N and any state s ∈ Sk and
C∞, t |= ϕ∞ for any state t ∈ S∞.
By Corollary 4.14 we already know that there is no formula in Hµ that can
distinguish all finite cliques from the infinite clique. This is because of the
invariance under k-bisimulations of the bounded fragments. Thus, there
cannot be any formula in Hµ that is equivalent to ϕ∞.

121

This immediately gives us two follow-up results. The first is that HCTL∗ps is
more expressive than HCTL∗ss. This follows by combining Corollary 5.34 and
Theorem 5.35.

Corollary 5.36. HCTL∗ss ≺ HCTL∗ps.

The second observation follows directly from Theorem 5.33 combined with
Theorem 5.35.

Corollary 5.37. Hµ and HCTL∗ps are incomparable in terms of expressive
power.

HCTL∗pp. We finish this section with only a remark about HCTL∗pp. The
precise relationship between HCTL∗pp and HCTL∗ps is still open. On the one
hand jumps on path formulas seem not that powerful since they “only” jump
back to already visited states. But on the other hand we cannot simply
eliminate them either. Before jumping back to an already visited state it is
possible to place new variables. Thus, after jumping back the information we
possess about the path we are looking at has changed compared to before.
One possibility to obtain a clearer picture of their relative expressive power
would be to strengthen the EF games introduced in Section 5.1 for HCTL
with the aim to obtain a game-theoretic characterisation of the expressive
power of HCTL∗ps and potentially also HCTL∗pp. With such a tool it would
possibly be easier to grasp the differences in expressive power between both
logics – if there are any.

5.2.3 The Hierarchy so far

The results on the relative expressive power of all hybrid branching-time
logics are summarised in Figure 5.4a. We see that, especially below HCTL∗ss,
the picture is quite similar to the one for the non-hybrid hierarchy depicted
in Figure 5.4b: the hybrid variant of CTL+ is as expressive as the hybrid
variant of CTL and adding fairness constraints and arbitrary nesting of path
formulas then adds considerable expressive power.
Only above HCTL∗ss and above we see some differences compared to the non-
hybrid hierarchy. Quite surprisingly, we have proven that contrary to the
non-hybrid logics, the fully hybrid µ-calculus is not the ultimate hybrid logic
that subsumes all other logics. Already HCTL∗ps can express properties that
are not expressible in Hµ. The interaction between a predefined infinite path
and a changing variable assignment on this path cannot be simulated by any
combination of variables and fixed points in Hµ.

122

HCTL≡HCTL+

HFCTL+

HCTL∗ss

Hµ HCTL∗ps

HCTL∗pp

≺

≺

≺ ≺

?

(a) The hybrid branching-time
hierarchy.

CTL ≡ CTL+

FCTL+

CTL∗

Lµ

≺

≺

≺

(b) The branching-time hierarchy.

Figure 5.4: The hybrid branching-time hierarchy compared with the
branching-time hierarchy.

On the technical side however, the techniques to prove these results have
become quite a bit more involved because, compared to the proofs for the
non-hybrid logics, we also need to show that the new hybrid operators cannot
mimic certain temporal aspects that are added when going from one level of
the hierarchy to the next.

A vital part in these proofs is to identify the right kind of structures on which
these hybrid operators are limited. Because on certain kinds of structures the
hybrid operators are able to use special structural characteristics to simulate
certain aspects of branching-time logics while on others they cannot. For
example, on finite structures hybrid operators can simulate the temporal
operator GFp already in HCTL by simply looking for a finite cycle along
which p holds. And on trees hybrid operators can even simulate some nesting
of temporal operators.

Thus, identifying structures on which hybrid operators are limited in their
usefulness is a vital part in proving such expressiveness results.

A natural question that arises when seeing that these results do not hold on
all classes of structures is: what do these hierarchies look like on restricted
classes? Especially the class of tree structures and the class of finite structures
are particularly interesting.

Finite structures and tree structures are of particular interest because of
their prominent use in model checking. Thus, having a good understanding

123

HCTL ≡ HCTL+

HFCTL+

HCTL∗ss

Hµ HCTL∗ps

HCTL∗pp

≡

≺

≺ ?

?

(a) The hierarchy on finite structures
(so far).

HCTL ≡ HCTL+

HFCTL+

HCTL∗ss

Hµ HCTL∗ps

HCTL∗pp

≺

?

≺ ?

?

(b) The hierarchy on tree structures
(so far).

Figure 5.5: The hybrid branching-time hierarchy compared with the
branching-time hierarchy.

of what hybrid logics are capable of on these classes of structures may prove
useful for potential applications in this area.

We have summarised the already obtained results on these two classes of
structures in Figure 5.5.

5.3 The Hierarchy on Tree Structures

Theorem 5.35 shows that there are formulas in HCTL∗ps that cannot even be
expressed by Hµ and since HCTL∗ss ≺ Hµ this result also separates HCTL∗ss

and HCTL∗ps. However, this result does not transfer to the class of all trees,
since the proof uses a property on cliques which inherently are not trees.
Even worse, the formula that separates both logics – which states that there
is an infinite path in the structure – is simply always true on a tree structure
and thus does neither help to show an expressiveness gap nor the lack thereof.
Thus we have to start all over again when analysing the relationship between
HCTL∗ss, HCTL∗ps and HCTL∗pp on trees.

Indeed, we show in this section that the previously shown hierarchy from
HCTL∗ss to HCTL∗pp does not carry over to the class of trees. In fact, it
collapses all together. To show this, we use a result by [72] that states that
Monadic Path Logic on trees coincides with an extension of CTL∗ that adds

124

a simple form of counting the number of successors.

Theorem 5.38 ([72]). On trees Counting-CTL∗ ≡ MPL.

To show that the hierarchy collapses we simply show that the following re-
lationships between these logics hold:

Counting-CTL∗ � HCTL∗ss � HCTL∗pp � MPL.

Combined with the result cited above by Moller and Rabinovich we obtain
the collapse of the hierarchy.
The second relationship is obvious by the definition of HCTL∗ss and HCTL∗pp,
so we only need to show the first and third one. But before that, let us
formally introduce Counting-CTL∗ and MPL.

Counting-CTL∗. Counting-CTL∗ extends CTL∗ by adding a new type of
state formula Dnϕ. Thus, its full grammar is given by

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Eψ | Dnϕ,

ψ := ϕ | ¬ψ | ψ ∨ ψ | Xϕ | ϕUϕ.

The semantics of state and path formulas are given exactly as for CTL∗ with
respect to a Kripke structure K = 〈S,→, L〉 and a state s ∈ S resp. a path
π in K and a moment on this path. The semantics of the only new operator
is given as follows:

K, s |= Dnϕ iff there are at least n different states t with

s→ t and K, t |= ϕ.

Thus, Counting-CTL∗ – as the name suggests – can count the number of
successors.

Example 5.39. The formula AG(D2tt∧¬D3tt) states that on all reachable
states there are exactly 2 successor states.

Monadic Path Logic. Formulas of Monadic Path Logic – or short MPL–
are given by the grammar

ϕ := x < y | x = y | p(x) | X(x) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where x, y ∈ Var and X ∈ Var 2.

125

They are interpreted with respect to a tree structure T = 〈S,→, L〉 and
variable assignments σ : Var → S, ρ : Var 2 → 2S for the first- and second-
order variables. The satisfaction relation is given by mutual recursion.

T , σ, ρ |= x < y iff σ(y) is a child of σ(x),

T , σ, ρ |= x = y iff σ(x) = σ(y),

T , σ, ρ |= p(x) iff σ(x) ∈ L(p),

T , σ, ρ |= X(x) iff σ(x) ∈ ρ(X),

T , σ, ρ |= ¬ϕ iff T , σ, ρ 6|= ϕ,

T , σ, ρ |= ϕ1 ∨ ϕ2 iff T , σ, ρ |= ϕ1 or T , σ, ρ |= ϕ2,

T , σ, ρ |= ∃x.ϕ iff there is s ∈ S, such that T , σ[x 7→ s], ρ |= ϕ,

T , σ, ρ |= ∃X.ϕ iff there is T ⊆ S with T = {s0, s1, s2, . . .},
s0 = ε and for all i ∈ N we have that si → si+1,

such that T , σ, ρ[X 7→ T] |= ϕ.

Note that by the semantics we have restricted the second-order quantifier to
only quantify over paths that start at the root of the tree.

Example 5.40. It is well-known that MPL subsumes CTL∗ [72]. For example
the formula ∀X. ∀y.X(y)→ ∃z. y < z ∧X(z) ∧ p(z) states that on all paths
and on all moments on this path there is a later moment that satisfies p.
Hence, the MPL formula states the same property as the CTL∗ formula AGFp
(if it is evaluated at the root of a tree).

Counting-CTL∗, MPL and Hybrid Branching-Time Logics. We will
now show the inclusions Counting-CTL∗ � HCTL∗ss and HCTL∗pp � MPL.
The counting operation from Counting-CTL∗ can easily be expressed with a
number of first-order variables in MPL that are placed on different successors
together with a test that all variables are placed on different states. And thus,
Counting-CTL∗ � MPL. However, since we also have variables in HCTL∗ss this
of course can also be done there.

Theorem 5.41. For every formula ϕ ∈ Counting-CTL∗ there is an equivalent
formula ϕ′ ∈ HCTL∗ss.

Proof. We give a simple translation from Counting-CTL∗ to HCTL∗ss. We only
need to translate the operator Dnϕ. The rest simply remains as it is. The
idea is to simulate Dnϕ by marking different successor states with variables.
So, let Dnϕ ∈ Counting-CTL∗. We simply replace this operator by the follow-
ing formula:

ϕ′ := ↓x.EX ↓x1.
(
τ(ϕ)∧

126

@x EX ↓x2.
(
¬x1 ∧ τ(ϕ)∧

@x EX ↓x3.
(
(¬x1 ∧ ¬x2) ∧ τ(ϕ)∧

...

@x EX ↓xn−1.
(
(
n−2∧
i=1

¬xi) ∧ τ(ϕ)∧

@x EX
(
(
n−1∧
i=1

¬xi) ∧ τ(ϕ)
)
. . .
)
,

where τ(ϕ) describes the formula ϕ in which all subsequent occurrences of a
Dnψ operator have been replaced as well.
ϕ′ states that there are n successors of s that can successively be marked such
that each state differs from the ones before and each state satisfies τ(ϕ). It
should be clear that this formula is satisfied at some state s if and only if
there are at least n successors of s that satisfy τ(ϕ).

Next we show that even HCTL∗pp on trees can be embedded into MPL.

Theorem 5.42. Let ϕ ∈ HCTL∗pp and let z ∈ Var be a variable that does
not occur in ϕ. Then there is a formula ϕ′ ∈ MPL with a free variable z such
that T , s, σ |= ϕ if and only if T , σ[z 7→ s] |= ϕ′.

Proof. To prove this we give a translation from HCTL∗pp to MPL that extends
the standard translation of hybrid modal logic into first-order logic [7].
The translation of state formulas is given relative to a new variable z that
simulates the “current” state in the evaluation of an HCTL∗pp variable. And
the translation for path formulas is also given with respect to a set X that
simulates the path.
Let ϕ ∈ HCTL∗pp. We assume that the variables in ϕ are named x1, . . . , xk
for some k ∈ N and that the variables used to simulate the current state and
the variables occurring in ϕ are mutually disjoint.
The state formulas get translated via

trz(p) := p(z),

trz(n) := n(z),

trz(xi) := (xi = z),

trz(¬ϕ) := ¬trz(ϕ),

trz(ϕ1 ∨ ϕ2) := trz(ϕ1) ∨ trz(ϕ2),

trz(↓xi.ϕ) := ∃xi.xi = z ∧ trz(ϕ),

trz(@xi ϕ) := trxi(ϕ),

127

trz(Eψ) := ∃X.X(z) ∧ trXz (ψ)

and the path formulas via

trXz (ϕ) := trz(ϕ),

trXz (¬ψ) := ¬trXz (ψ),

trXz (ψ1 ∨ ψ2) := trXz (ψ1) ∨ trXz (ψ2),

trXz (Xψ) := ∃y.succ(z, y) ∧X(y) ∧ trXy (ψ),

trXz (ψ1Uψ2) := ∃y.z < y ∧X(y) ∧ trXy (ψ2)∧
∀x.z ≤ x < y ∧X(x)→ trXx (ψ1),

trXz (↓xi.ϕ) := ∃xi.xi = z ∧ trXz (ϕ),

trXz (@xi ϕ) := trXxi(ϕ),

where succ(x, y) := x < y∧¬∃z.x < z∧z < y denotes that y is an immediate
successor of x in the tree.
We now show by induction on ϕ that for every tree T , every state s in T
and every σ : Var → S it holds that T , s, σ |= ϕ if and only if T , σ[z 7→ s] |=
trz(ϕ).
Suppose first that ϕ = p and T , s, σ |= ϕ. Then s ∈ L(p) by the semantics of
HCTL∗pp. By the semantics of MPL and the fact that z 7→ s we also have that
T , σ[z 7→ s] |= p(z). The same arguments show the statement for ϕ = n.
So, suppose that ϕ = xi for a variable xi and T , s, σ |= ϕ. This means that
σ(xi) = s and again, with the fact that z 7→ s we get that T , σ[z 7→ s] |=
(xi = z).
Negation and disjunction follow as usual by simple semantic arguments. The
details are left out. Suppose now that ϕ = ↓xi.ϕ1 and that T , s, σ |= ϕ.
Thus, we have that T , s, σ[xi 7→ s] |= ϕ1. By the induction hypothesis we
get that T , σ[xi 7→ s][z 7→ s] |= trz(ϕ1). And thus, we have that T , σ[z 7→
s] |= ∃xi.xi = s ∧ trz(ϕ1).
Now suppose that ϕ = @xi ϕ1 and that T , s, σ |= ϕ. This means that
T , σ(xi), σ |= ϕ1. By the induction hypothesis we get that T , σ[z 7→ σ(xi)] |=
trz(ϕ1). By renaming all free occurrences of z to xi, since z and xi point to
the same state we get that T , σ[z 7→ σ(xi)] |= trxi(ϕ1). Since we have re-
placed all free occurrences of z its value is not important and we also get
that T , σ[z 7→ s] |= trxi(ϕ1).
For the last case of ϕ = Eψ we first need to prove via a separate induction
over path formulas that the translation holds for path formulas as well.
We prove that for all paths π, k ∈ N and ϑ : Var → N it holds that
T , π, k, ϑ |= ψ if and only if T , σ[z → πk], ρ[X 7→ π] |= trXz (ψ) (with the
same restriction on z as before). Note that since T is a tree, we can uniquely

128

identify a path simply by its stateset and vice versa and thus we do not
distinguish between a path and its set of states and simply write ρ(X) = π
to indicate that X maps to the set of states that uniquely identifies the path
π.
The base case for ψ = ϕ follows from the induction hypothesis on state
formulas from the outer induction. Negation, disjunction, binder and jumps
follow with the same arguments as for state formulas. Note that for jumps,
by the syntactic restriction of HCTL∗pp formulas, we can only jump to states
previously bound on the same path thus, the step which replaces all free z
variables by xi variables still works, even for formulas of the form X(z).
Suppose now that ψ = Xψ1 and that T , π, k, ϑ |= ψ. Thus, T , π, k+1, ϑ |= ψ1.
By the hypothesis we get that T , σ[y → πk+1], ρ[X 7→ π] |= trXy (ψ1) and thus
also T , σ[z 7→ πk], ρ[X 7→ π] |= ∃y.succ(z, y) ∧ X(y) ∧ trXy (ψ1) since πk+1

is a direct successor of πk and πk+1 obviously lies in π. The last case for
ψ = ψ1Uψ2 follows similarly since the translation simply directly states the
semantics of the Until-operator.
To finish the outer induction, suppose that ϕ = Eψ and that T , s, σ |= ϕ.
Then there is a path π starting at s such that T , π, 0, σ |= ψ. By the inner
induction for path formulas we now get that T , σ[z 7→ π0], ρ[X 7→ π] |=
trXz (ψ) and thus T , σ[z 7→ s] |= ∃X.X(z) ∧ trXz (ψ).

By combining Theorems 5.38, 5.41 and 5.42 we get that Counting-CTL∗ �
HCTL∗ss � HCTL∗pp � MPL � Counting-CTL∗ and thus the collapse of the
hierarchy above HCTL∗ss on trees.

Corollary 5.43. On trees we have that HCTL∗ss ≡ HCTL∗pp.

Thus, on trees the hierarchy we obtain is shaped as depicted in Figure 5.6.
Thus, once again we have that the (hybrid) µ-calculus is the top logic in
terms of expressiveness.
It is still open if there is an expressiveness gap between HFCTL+ and HCTL∗ss

on trees. The strategy used to separate those two logics on finite structures
cannot simply be transferred to trees as it relies on paths joining up again as
seen in Theorem 5.16. Also, we have seen in Example 5.19 that at least some
form of nesting of temporal operators can be simulated on trees by exploiting
some special structural properties of tree structures.

129

HCTL ≡ HCTL+

HFCTL+

HCTL∗ss ≡ HCTL∗ps ≡ HCTL∗pp

Hµ

≺

?

≺

Figure 5.6: The expressiveness hierarchy on trees.

130

Chapter 6

Model-Checking for Hybrid
Logics

One of the main tasks in formal verification is to identify with absolute
certainty if a given system satisfies a specified property. This is usually
referred to as model checking. A detailed analysis of the complexity of the
model checking problem is thus necessary to determine possible applications
for all hybrid branching-time logics defined in Chapter 3. In this chapter we
thoroughly investigate their model checking problems.

The chapter is organised as follows. We begin by establishing lower bounds
for the model checking complexities of the various hybrid logics. Most of
these lower bounds are achieved by an encoding of a suitable tiling problem
introduced as in Section 2.11. This unified framework also demonstrates how
the added features of the more powerful logics can be used to encode increas-
ingly complex problems. Afterwards we give model checking algorithms with
matching complexities for each logic. In the last section of this chapter we
identify some rich fragments of our hybrid logics with generally lower model
checking complexities.

6.1 Lower bounds

6.1.1 HCTL to HCTL∗ss

We begin with the simplest hybrid branching-time logic HCTL. Remember
that model checking for CTL is in P [28] which is one of the reasons why CTL
is such a popular temporal logic despite its limited expressive power. Sadly,
when adding hybrid operators, we get a drastic increase in model checking
complexity. The proof follows the ideas of [37].

131

Theorem 6.1. The expression complexity for model checking HCTL is
PSpace-hard.

Proof. We will show this by a reduction from the well-known QBF problem.
Let χ := Q1x1Q2x2 . . . Qkxk. α(x1, . . . , xk) be a quantified boolean formula
with Qi ∈ {∃,∀} and α(x1, . . . , xk) a boolean formula in negation normal
form over the variables x1, . . . , xk. We will construct a (fixed) structure KQBF

and a formula ϕ such that KQBF, home |= ϕ if and only if χ evaluates to tt.
The idea is to simply simulate the values true and false by two states named
tt and ff which are reachable from a third initial state. Existential and uni-
versal quantification can then simply be simulated by placing a new variable
at one or all successors of the initial state through the operators EX and AX.
Evaluation of atomic formulas like x is simulated by a test if the variable is
placed at the state tt.
For this, consider the structure KQBF with the state set and nominals home,
tt, ff interpreted as depicted in the following graph:

homett ff

Now consider the HCTL formula ϕ := τ(χ) obtained by translating χ induc-
tively as follows:

τ(∀x.ψ(x)) := @homeAX ↓ x.τ(ψ) τ(∃x.ψ(x)) := @homeEX ↓ x.τ(ψ)

τ(ψ1 ∨ ψ2) := τ(ψ1) ∨ τ(ψ2) τ(ψ1 ∧ ψ2) := τ(ψ1) ∧ τ(ψ2)

τ(¬x) := @xff τ(x) := @xtt

A standard induction on χ shows that KQBF, home |= ϕ if and only if χ eval-
uates to tt. Moreover KQBF and ϕ can be constructed in time polynomial in
|χ|.

Note that this reduction only uses hybrid operators and the X-operator and
thus the resulting formula is essentially in hybrid modal logic. Thus, already
hybrid modal logic possesses a PSpace-hard model checking problem.
This lower bound also transfers to all of the extensions of HCTL. Most no-
tably the complexities of the model checking problems of HCTL+, HFCTL+

also rise compared to their non-hybrid variants. Note that these are known
to be complete for the second level of the polynomial hierarchy ∆p

2 [67].
Model checking CTL∗ however was already known to be PSpace-complete
[33]. We will later show that adding hybrid operators as state formulas to
CTL∗ does not increase the complexity any further.

Corollary 6.2. The expression complexity of HCTL+ as well as HFCTL+

and HCTL∗ss is PSpace-hard.

132

Corollary 6.3. The combined complexity for model checking HCTL as well
as HCTL+, HFCTL+ and also HCTL∗ss is PSpace-hard.

This indicates that hybrid operators provide a (computationally) quite pow-
erful mechanism even when added only to the quite limited logic CTL. For
practical purposes however data complexity is often times a more useful in-
dicator of how good model checking algorithms may perform. For the data
complexity we can easily prove NLogSpace-hardness and will later see that
this suffices.

Theorem 6.4. The data complexity for model checking HCTL, HCTL+,
HFCTL+ and HCTL∗ss is NLogSpace-hard.

Proof. The proof is by a simple reduction from the classical NLogSpace-
complete problem of directed graph reachability. Since reachability of a state
named target can be expressed by the fixed formula EFtarget in all of these
logics.

6.1.2 HCTL∗ps

Adding binders to path formulas increases both data- and expression com-
plexity. We will first show that already the data complexity rises to PSpace
for HCTL∗ps by a reduction from the n-corridor tiling problem to the model
checking problem of HCTL∗ps and subsequently prove ExpSpace-hardness
for the expression complexity of HCTL∗ps.
To show PSpace-hardness for data complexity, let T = (T,H, V) be a tiling
system with T = {t1, . . . , tm} and n ∈ N. The idea of the reduction is quite
simple. We build a structure KnT over atomic propositions {#, t1, . . . , tm}
with n columns. Each column has a choice of all tiles from T and then
continues on to the next column as depicted in Figure 6.1.
A path from the first to the last column thus gives us a tiling of a single row.
The last row then points back to the first row – separated by a special state
marked # which will make it easier to identify the beginning of the next row.
Thus, an infinite path through this structure has the form

#t0,0t0,1 . . . t0,n−1#t1,0 . . . t1,n−1# . . .

and encodes quite naturally a row by row tiling separated by #’s of the
corridor of width n.

Example 6.5. Let T = ({t1, t2, t3}, H, T with H = {(t1, t2), (t2, t3), (t3, t1)})
and T = {(t1, t3), (t2, t1), (t3, t2)} be a tiling system and n = 3.

133

#

t1

...

tm

t1

...

tm

t1

...

tm

. . .

columns 0, . . . , n− 1

Figure 6.1: The structure KnT used to encode the n-corridor tiling problem.

t1

t1

t1

t1

t2

t2

t2

t2

t3

t3

t3

t3

...
...

...

(a) valid T -tiling.

#

t1

t2

t3

t1

t2

t3

t1

t2

t3

(b) K3
T

Figure 6.2: A valid T -tiling and the structure K3
T .

134

A valid T -tiling is depicted in Figure 6.2a. The structure K3
T used in the

reduction is depicted in Figure 6.2b and the path

#t1t2t3#t3t1t2#t2t3t1#t1t2t3# . . .

through K3
T represents the valid T -tiling depicted in Figure 6.2a.

We now construct a formula ϕT that holds at # if and only if there is also
a valid tiling, i.e. a tiling that does not violate the horizontal and vertical
matching relations and that also starts with t1.
We start with the broad structure of ϕT which requires an infinite path that
satisfies all three above mentioned conditions. Thus, the formula has the
form

ϕT := E (ψinit ∧ ψhor ∧ ψvert) .

The initial condition is easy. Starting at # we just have to check that the
next state on the path is t1. This can be checked with ψinit := Xt1.
Satisfying the horizontal matching relation is also easy. We simply need to
check that everytime we see some tile, the next state is a matching tile from
the horizontal matching relation – or it is the last tile in a row, which can
be identified with the next state being #. This is checked by the following
formula:

ψhor := G

∧
t∈T

t→ X

 ∨
(t,t′)∈H

t′

 ∨#

 .

Lastly, we need to check that also the vertical matching relation is not vi-
olated along the path. To do this properly we first need a way to identify
matching positions in successive rows. An easy solution would be to simply
check that the n-th successor carries a tile not violating the horizontal match-
ing relation. However, then the formula would also depend on the input n
for the tiling problem which does not help in proving data complexity. This
is the part where hybrid operators come into play.
Consider a path through KnT as depicted in Figure 6.3. First, to identify a
position in the next row we simply need to state that there is exactly one
state between now and that position. This can be done with the formula
pattern (. . . ∧ (¬#U(# ∧ X(¬#U . . .)))) where the first dots are “now” and
the second dots symbolise a position in the next row.
This however only helps to identify successive rows. To further identify
matching columns we use hybrid operators. Suppose we are at i-th column
– for example in state 3 in Figure 6.3 and want to identify when the path

135

#

5

. . .

1

2
3

x

4

6

7
8

Figure 6.3: Sketch of how to identify matching columns in KnT along a single
path.

arrives at column i again – meaning state 8 in the example. To do this we
name state 3 – say x and then continue to the next row with the pattern
described above. We can now easily identify column i−1 by checking if there
is a successor state called x. If this is the case we simply continue one step
along the path and are at column i again. This idea is used in the following
path formula to check the vertical matching relation at any moment on this
path:

ψvert := G

¬#→ ↓x.
∧
t∈T

t→
(
¬# U

(
∧ X(¬# U (EXx ∧ X

∨
(t,t′)∈V

t′))
)) .

Notice also that because of the special state # this formula also works for
the first column.
This completes the reduction. The following theorems encapsulate the ideas
above.

Theorem 6.6. KnT ,# |= ϕT if and only if there is a valid T -tiling of the
corridor of width n.

Theorem 6.7. The data complexity for model checking HCTL∗ps is PSpace-
hard.

Proof. First, we observe that in the reduction above only the structure KnT
depends on n and ϕT only depends on the tiling system. Clearly both KnT
and ϕT can be constructed in polynomial time.
Let T0 be the tiling system for k = 0 from Proposition 2.64. With The-
orem 6.6 we get that KnT0 ,# |= ϕT0 if and only if the n-corridor T0-tiling

136

problem has a solution. Thus, since only the structure depends on n we
get PSpace-hardness for the data complexity of HCTL∗ps, in fact even for
H1CTL∗ps already.

The expression complexity of HCTL∗ps is even higher. We will prove Ex-
pSpace-hardness for this problem by a reduction from the 2n-corridor tiling
problem. Contrary to the previous reduction however we now need a fixed
structure and, despite the exponentially larger width of the corridor, a still
polynomially sized formula that encodes this problem.
The basic idea to encode a valid tiling along a single path stays the same, how-
ever we introduce an additional concept to keep the formula small enough:
a counter. Every tile encoded by a state along the path will be preceeded
by a binary enumeration of its column – encoded via a sequence of n bits by
states marked 0 and 1.
The proof is by a reduction from the 2n-corridor tiling problem. Consider
the structure KT

#

0

1 t1

...

tm

over the atomic propositions {#, 0, 1, t1, . . . , tm} as depicted above. We will
also refer to the states using their unique propositions as names. There are
edges from # to both 0 and 1 and from both values there are self-loops as
well as transitions to each other and to all the tiles ti. Additionally, from
each tile ti there are edges back to #.
Paths starting at # followed by n bits 0 or 1 and a tile ti encode a single cell
of a potential tiling. The state # just marks the beginning of the encoding of
a single cell. The n bits encode the column of the cell in binary and the tile
ti describes the tile that is placed in this cell. A path repeating this pattern
2n times with a counter that starts with 0 0 . . . 0 and increases by 1 with each
repetition thus encodes a single row of a potential tiling. An infinite path
repeating the pattern for a single row of a tiling then encodes a T -tiling of
the 2n-corridor.
We will construct an HCTL∗ps formula ϕnT which holds at # if there is a path
of the form

0 0 . . . 0 t0,0 # 1 0 . . . 0 t0,1 # . . .# 1 1 . . . 1 t0,2n−1 # . . .

137

that encodes a valid T -tiling.
The basic structure of the formula will be the same as before with the addition
of a part that requires the counter to behave correctly. Thus, we have

ϕnT := E (ψinit ∧ ψcount ∧ ψhor ∧ ψvert) .

However each formula also needs to take into account the slightly more com-
plex encoding.
ψinit not only states that we begin with tile t1 but also with the counter set to
0 and sets up the general structure of # followed by n bits of 0 or 1 followed
by some tile:

ψinit := X
n−1∧
i=0

Xi0 ∧ Xn+1t1 ∧ G

(
#→ X

n−1∧
i=0

Xi(0 ∨ 1) ∧ Xn+1

m∨
j=1

tj

)
.

The next formula states that the counter behaves correctly, i.e. it increases by
one with each repetition. To understand this formula it is helpful to remem-
ber how binary counters work. Let b := b0b1 . . . bn−1 and b′ := b′0b

′
1 . . . b

′
n−1 be

two binary counter values. b′ is the direct successor of b if and only if the
following two conditions hold:

• b0 6= b′0, i.e. the least significant bit changes, and

• for all i = 1, . . . , n − 1 it holds that bi = b′i if and only if bi−1 ≤ b′i−1,
i.e. the bits at position i only increase if and only if the previous bit
has been flipped from 1 to 0.

The former condition can be formalised by the propositional formula b0 ↔
¬b′0 and the latter by the formula (bi ↔ b′i) ↔ (bi−1 → b′i−1). Notice that
this formula also holds for the case of b = 1 1 . . . 1 and b′ = 0 0 . . . 0.
With this we can build ψcount by checking that successive countervalues after
each # behave in exactly this way:

ψcount := G
(

#→X(0↔ Xn+21)∧
n−1∧
i=1

((Xi1↔ Xn+2+i1)↔ (Xi−11→ Xn+1+i1))
)
.

Notice that by ψinit the n bits after # are forced to be either 0 or 1 so
this formula only works properly in combination with ψinit. The formula
also resets the counter properly, i.e. if the counter is at 1 1 . . . 1, the next
repetition correctly resets to 0 0 . . . 0 creating an infinite loop of increasing
counter values from 0 to 2n − 1 along the path.

138

The next formula simply checks the horizontal matching relation. For every
position on the path we check that if it is a tile then it is either the rightmost
tile in a row – indicated by the next counter being 0 0 . . . 0 – or the tile in
the next cell does not violate the horizontal matching relation.

ψhor := G

∧
t∈T

t→ X2
(

(
n−1∧
i=0

Xi0) ∨ Xn
∨

(t,t′)∈H

t′
) .

The last thing is to check the vertical matching relation. As before at this
point the usual temporal operators do not suffice anymore and hybrid op-
erators come into play. We cannot simply check with the original temporal
operators that tiles placed on top of each other match since the “distance”
along the path between these two positions is too big. However, we can also
not use some neat property of the structure in question as before since the
structure encodes basically no information at all about the sequence of tiles
along the path.
So the idea is to find corresponding counter positions. For each tile we use n
variables to “store” the countervalue and then use them to find the immediate
next position where this exact sequence of n bits is seen again. Thus, the
vertical matching is checked by

ψvert := G

#→ X ↓ x1.X ↓ x2. . . .X ↓ xn.X ↓ x.

F̂
(

∧
n∧
i=1

(Xi0↔ @xi0) ∧
∨

(t,t′)∈V

(Xn+1t′ ∧@xt)
)

with

F̂ (ψ) := ¬ϕpUψ

and

ϕp :=
n∧
i=1

∧
p∈{0,1}

(X ip↔ @xip).

This completes the reduction.

Theorem 6.8. KT ,# |= ϕnT if and only if there is a valid T -tiling of the
2n-corridor tiling problem.

139

To summarise, we get the following two results for expression and combined
complexity of the model checking problem for HCTL∗ps.

Theorem 6.9. The expression complexity for model checking HCTL∗ps is
ExpSpace-hard.

Proof. It is clear that in the reduction above both KT and ϕnT can be con-
structed in polynomial time.
Since KT does not depend on n and by Proposition 2.64 there are fixed
tiling systems for which the 2n-corridor tiling problem is ExpSpace-hard we
obtain ExpSpace-hardness for the expression complexity of HCTL∗ps model
checking.

Corollary 6.10. The combined complexity for the model checking problem
of HCTL∗ps is ExpSpace-hard.

6.1.3 HCTL∗pp

HCTL∗pp now also allows jumps on path formulas – at least if the referenced
variable was bound on the same path.
The lower bound for the data complexity for this logic simply transfers up-
wards from its syntactic fragment HCTL∗ps. We will see in the next section
that this lower bound is tight.

Corollary 6.11. The data complexity for the model checking problem of
HCTL∗pp is PSpace-hard.

In contrast to the data complexity, the expression complexity of the model
checking problem rises dramatically. In the following we will prove hardness
for m-ExpSpace for each m ≥ 0.
We will show this by reductions from the 2nm-corridor tiling problem to
the model checking problem of HCTL∗pp for each m ∈ N. The case for 1-
ExpSpace has already been done in the previous section. The basic idea
of tiles marked by a counter value indicating the column stays the same,
however we need a way to massively scale the counter values before each tile.
First, let us fix a tiling system T = (T,H, V) with T = {t1, . . . , tk} and
n ∈ N for the remainder of the section. And also, let m ∈ N and Propm :=
{$i, 0i, 1i | i = 1, . . . ,m} be a set of atomic propositions.
We first introduce “big counters” that encode the numbers 0, . . . 2nm − 1 in a
uniform manner along the lines of [79].

Definition 6.12. Let |.|m : {0m, 1m}∗ → {0, 1}∗ be the homomorphisms
defined through |0m| = 0 and |1m| = 1 for all m ∈ N. And let binm : N →

140

{0, 1}∗ for m ≥ 1 be the functions that map a natural number to its binary
representation potentially filled up to at least 2nm−1 digits.
For i ∈ {0, . . . , 2n − 1} we define

c1,i := $1b
1
1b

2
1 . . . b

n
1

with b1
1, . . . , b

n
1 ∈ {01, 11} such that |b1

1b
2
1 . . . b

n
1 |1 = bin1(i).

And for m > 1 and i ∈ {0, . . . 2nm − 1} we define

cm,i := $mb
1
mcm−1,0b

2
mcm−1,1 . . . b

2nm−1
m cm−1,2nm−1−1

with b1
m, . . . , b

2nm−1
m ∈ {0m, 1m} such that |b1

mb
2
m . . . b

2nm−1
m |m = binm(i).

Let KmT = 〈S,→, L〉 be the complete clique over the state set S = T ∪{#}∪
Propm and the same atomic propositions such that L(x) = {x} for every
x ∈ S. Thus, each state has a transition to all states, including itself and
every state is labeled only by its name.
We will construct HCTL∗pp formulas ϕT ,n,m for each m ∈ N such that ϕT ,n,m
holds at # on KmT if and only if there is a path of the form

#t0,0cm,0t0,1cm,1 . . . t0,2nm−1cm,2nm−1#t1,0cm,0 . . .

that encodes a valid T -tiling. We use # as a special state to indicate that
a new row begins followed by tiles ti and large counters cm,j indicating the
position of the tile in the row.
Before we start to build ϕT ,n,m we need to do some groundwork. As a general
abbreviation we use

Σ>i :=
m∨

k=i+1

(0i ∨ 1i ∨ $i) ∨# ∨
∨
t∈T

t

to talk about any atomic proposition indexed by at least i + 1. For our
purposes tiles and # are always considered to be of highest possible index.
And we use the path formula

F̂mψ := (¬$m)Uψ

to state that there is some future position between now and the beginning
of the next level-m counter that satisfies ψ.
The next formulas state basic properties of the counter. We begin with the
level-m counter set to zero. For this we use the formula

initm := $m ∧ X((¬1m)U$m)

141

to state that there is no 1m between the beginning of this counter and the
beginning of the next level m counter.
The next set of formulas helps us to identify positions that encode the same
level-m counter. They are built inductively over m with a free variable x and
evaluate to true if and only if the current position and the position that x
refers to are each at the beginning of a counter that encodes the same value
as the other one. For m = 1 this is quite easy to check:

Eq1(x) := X
n−1∧
i=0

(@x Xi11 ↔ Xi11).

Eqm+1 then checks that there are no two points x, y in their respective level
m+ 1 blocks such that x, y represent the same counting position – identified
through the beginning of the same level m countervalue – but disagree in
their own bit:

Eqm+1(x) := ¬
(

XF̂m+1 ↓ y.@x XF̂m+1(X ↓x.@y XEqm(x))

∧ ¬ (1m+1 ↔ @y 1m+1)
)
.

Finally, we also want to identify successive counting position. The formulas
Nextm are also built inductively and only evaluate to true if the current
position is at the beginning of a sequence of states that encodes the direct
successor of the countervalue starting at position x. Again, the formula for
m = 1 is quite easy simply stating how to increase a binary counter similar
to how it is done for the lower bound of HCTL∗ps model checking in Section
6.1.2:

Next1(x) := (@x X11 ↔ X¬11)∧
n∧
i=2

((
Xi11 ↔ (@x Xi11)

)
↔
(
(@x Xi−111)→ Xi−111

))
.

And finally for Nextm+1 we state similarly to Eqm that there are no two
positions x, y representing the same counting position that do not correctly
increase the counter:

Nextm+1(x) := (@x X1m+1 ↔ X¬1m+1)∧

¬
[

XF̂m+1 ↓ y.@x XF̂m+1 ↓x.
(

Eqm(y)∧

¬
[(

(@y F̂m+1(XNextm(y) ∧ 1m+1))↔ (@x F̂m+1(XNextm(x) ∧ 1m+1))
)

↔
(
1m+1 → (@y 1m+1)

)])]
.

142

With this we have enough basics to start building ϕT ,n,m. Again, the basic
structure of the formula stays mostly the same as in the previous reductions.
Thus we get

ϕT ,n,m := E (ψinit ∧ ψmcount ∧ ψhor ∧ ψvert)

where ψinit will check the initial condition of the tiling problem and some
minor conditions for the encoding, ψmcount will check that all counters up to
level m behave correctly and ψhor, ψvert will again check that horizontal and
vertical matching relations are not violated along the path.
We will start by building ψinit which encodes that we begin with # followed
by the initial tile t1. Also, it sets up the basic structure of the path: Two
steps after each # the level-m counter gets (re)initialised and before each
level-m counter, there needs to be exactly one tile:

ψinit := # ∧ Xt1 ∧ G(#↔ XXinitm) ∧ G

((∨
t∈T

t ∧
∧
t′ 6=t

¬t′
)
↔ X$m

)
.

The formula ψmcount sets up the correct behaviour of the (already initialised)
counters. It is built recursively. We start with m = 1:

ψ1
count := (Σ>1U$1) ∧ G

(
$1 →X ↓x.Xn(Σ>1 U ($1 ∧ Next1(x)))

)
.

ψm+1
count then recursively states that the level-m counter behave correctly and

two steps after each $m+1 a level-m counter begins set to zero and each level-
m counter is preceeded by exactly one level-(m+ 1) bit and these bits count
up correctly:

ψm+1
count := ψm ∧ (Σ>m+1U$m+1) ∧ G

(
$m+1 → XXinitm

)
∧

G
(
(0m+1 ∨ 1m+1)→ X$m

)
∧

G
(
$m+1 → ↓x. ((Σ<m ∨ 1m)UΣ>m+1)∨

((Σ<m ∨ 0m ∨ 1m)U (Σ>m+1U($m+1 ∧ Nextm+1(x))))
)
.

To finish the reduction,

ψhor := G

∧
t∈T

t→ (¬
∨
t∈T

t)U(
∨

(t,t′)∈H

t′ ∨#)


and

ψvert := G

∧
t∈T

t→ ↓x.(¬#)U(# ∧ (¬#)U(Eqm(x) ∧
∨

(t,t′)∈V

t′))


143

require that the horizontal and vertical matching relations are fulfilled.
The size of these formulas is easily seen to be only polynomial in n,m.

Theorem 6.13. KmT ,# |= ϕT ,n,m if and only if there is a valid T -tiling of
the 2nm-corridor.

Moreover, KmT does not depend on n. Thus we get the following result.

Theorem 6.14. The expression complexity for model checking HCTL∗pp is
hard for m-ExpSpace for any m ≥ 0.

6.1.4 The Fully Hybrid µ-calculus Hµ

We will now show that Hµ has an ExpTime-hard model checking problem.
We will do this by a reduction from the n-corridor tiling game. Remember
that in a tiling game two players – Adam and Eve – play against each other.
To win, it is Eve’s task to tile the entire corridor apart from the first tile in
each row being picked by Adam first.
Again, we fix a tiling system T = (T,H, V) with tiles T = {t1, . . . , tk}. We
build a structure KT and a formula ϕnT such that KT |= ϕnT if and only if
Eve has a winning strategy in the n-corridor tiling game.
Let KT = 〈S,→, L〉 be the Kripke structure over Prop = {t1, . . . , tk, last}
with S = T ∪{t′1, . . . , t′k}, L(ti) = {ti, t′i} and L(last) = {t′1, . . . , t′k}. Further,
the transition relation for ti, tj ∈ T and t′i, t

′
j ∈ {t′1, . . . , t′k} is given by the

following equivalences:

ti → tj iff (ti, tj) ∈ H,
ti → t′j iff (ti, tj) ∈ H,
t′i → tj for all i, j ∈ {1, . . . , k}.

Thus, KT has two copies of tiles. In the first one, we encode the horizontal
matching relation from the tiling system, meaning that we only can change
states from one tile to another (even to the other copy of tiles) iff both states
do not violate H. The second copy will be used to indicate the last state of a
row after which a new row begins that does not have to satisfy any horizontal
matching relations which means any tile can be chosen as long as it satisfies
the vertical matching relation. This will be checked in the formula ϕnT .

Example 6.15. Let T be the tiling system from Example 6.5. The structure
KT which is used in the reduction is depicted in Figure 6.4. The two copies
of the tiling system are each marked in blue. The black transitions are
simply an encoding of the horizontal matching relation and the possibility to
change into the second copy which will mark the last tiles in a row. The red
transitions then open up all possibilities for the initial tile in the next row.

144

t1

t2t3

t′1
last

t′2
last

t′3
last

Figure 6.4: The Kripke structure KT used in the reduction from the n-
corridor tiling game to the model checking problem for Hµ.

The formula ϕnT then needs to encode the evolution of the tiling game. Since
the game continues forever if Eve can win the game, we employ a greatest
fixpoint to model this behaviour. We use n variables to “store” the previous
row and to check the vertical matching relation. Moreover, the formula is
written from Eve’s perspective. Thus, finding a suitable tile for the next
position is identified by a ♦ while Adam’s picks for the first tile of a row are
done using a � to indicate that, no matter which tile Adam chooses, Eve has
to find a valid answer to his choice. We use the proposition last to control in
which part of the structure the tile is chosen, i.e. to control the transition
relation for the next tile.
We use

vm i :=
∨

(t,t′)∈V

t′ ∧@xit ∧ ¬last,

vm last
i :=

∨
(t,t′)∈V

t′ ∧@xit ∧ last

as shorthands to check the vertical matching relation between the current
state and xi. With this we can define

ϕnT := ↓x0.♦ ↓x1.♦ ↓x2. . . .♦ ↓xn−1.�
(
νY.vm0 →

↓x0.♦(vm1 ∧ ↓x1.♦(vm2 ∧ ↓x2.♦(. . .♦(vm last
n−1 ∧ ↓xn−1.�Y) . . .)))

)
.

145

The following theorem proves correctness of the reduction. To prove this we
utilise the model checking games for Hµ and associate winning strategies in
the model checking game to strategies in the tiling game and vice versa.

Theorem 6.16. KT , t1 |= ϕnT if and only if Eve has a winning strategy in
the n-corridor tiling game.

Proof. Suppose that KT , t1 |= ϕnT . By Theorem 3.20 player V has a winning
strategy in the model checking game G(K, t1, σ, ϕnT) for some σ : Var → S.
Thus, for each ♦ in ϕnT the winning strategy for V can choose a suitable tile.
The rest of the game is either deterministic or is chosen by R – especially to
control whether the tiles satisfy the vertical matching relation and the tile
for the new row after n steps. The choices of tiles by V can immediately be
translated into a winning strategy for Eve in the tiling game. Since all plays
that are played according to this strategy are winning for V , this strategy
translates to a winning strategy for Eve that eventually produces a valid
T -tiling.
Suppose now that Eve has a winning strategy in the tiling game. As before
these choices can immediately be translated into a winning strategy in the
model checking game. Plays according to this strategy are easily seen to be
won by V . Infinite games are won because the only fixed point is of type
ν and finite games are won by V because the tiles chosen by Eve actually
satisfy the vertical matching relation or the tile chosen by Adam violates
it.

Using Proposition 2.67 we get that there is a fixed tiling T0 for which the
n-corridor T0-tiling game is ExpTime-hard. If we put this together with the
observation that the structure KT used in the reduction does not depend on
n, we obtain the following result about the model checking complexity for
Hµ.

Theorem 6.17. The expression complexity – and thus also the combined
complexity – of the model checking problem for Hµ is ExpTime-hard.

The data complexity on the other hand is much simpler. We only show
P-hardness here and give a matching upper bound in Section 6.2.4.

Theorem 6.18. The data complexity of Hµ is P-hard.

Proof. We can see this by a reduction from the alternating graph reachability
problem to the model checking problem of Hµ (in fact even Lµ).
The alternating graph reachability problem is the following: Given are a di-
rected graph and a partition of its nodes into subsets A and B as well as

146

a starting state s and a target state t. Players 1 and 2 now play a game
starting with a pebble placed on s in which they move this pebble across
the graph. If the current state u on which the pebble lies belongs to A then
player 1 can choose a successor and move the pebble there and if u ∈ B then
player 2 can choose a successor. Player 1 wins the game if and only if the
state t is reached. It is well-known that this problem is P-hard [21].
We can model the directed graph as a Kripke structureK and the partitioning
of its states by two atomic propositions a and b. A state v is labeled by a if
and only if v ∈ A and similarly for b. We also label the target state with a
proposition t. Let ϕ := µX.t ∨ (a ∧ ♦X) ∨ (b ∧ �X). It is not hard to see
that K, s |= ϕ if and only if player 1 has a winning strategy, i.e. can force the
game to reach t. Moreover, the formula does not depend on the input.

6.2 Upper Bounds

In the following section we will present model checking algorithms for each
logic that match the lower bounds presented in the previous section.

6.2.1 From HCTL to HCTL∗ss

Remember that already HCTL model checking is PSpace-hard. However,
we will now show that the complexity does not increase further up to HCTL∗ss,
by giving a model checking algorithm for HCTL∗ss that works in polynomial
space.
To understand this procedure it is helpful to recall how CTL∗ model checking
in PSpace can be achieved. The standard argument for this is the following
[33]:

1. Rewrite ϕ using the equivalence Eψ ≡ ¬A¬ψ such that no existential
path quantifiers in ϕ remain.

2. Take ϕ and recursively evaluate all of its maximal subformulas of the
form Aψ. If ψ does not contain any subformulas of this form then ψ is
a pure linear-time formula which can be evaluated using an LTL model
checking procedure. Otherwise, replace all subformulas of the form Aψ
by a new proposition pψ and mark all states in K that satisfy Aψ by
pψ.

The space needed for this procedure is dominated by the space needed by
the LTL model checking algorithm. This problem is known to be in PSpace
[84]. Additionally, we need space of size at most |ϕ|·|K| to label the structure

147

Algorithm 1 Model checking HCTL∗ss.

procedure MCss(K, ϕ, σ) . K = 〈S,→, L〉
case ϕ of
p: {s ∈ S | s ∈ L(p)}
x: {σ(x)}
¬ϕ′: S \MCss(K, ϕ′, σ)
ϕ′ ∨ ϕ′′: MCss(K, ϕ′, σ) ∪MCss(K, ϕ′′, σ)
↓x.ϕ′: {s | s ∈ MCss(K, ϕ′, σ[x 7→ s])
@x ϕ

′: if σ(x) ∈ MCss(K, ϕ′, σ) then S else ∅
Aψ:

let ϕ1, . . . , ϕm be maximal state subformulas of ψ
let p1, . . . , pm be new atomic propositions
for i = 1, . . . ,m do

L := L[pi 7→ MCss(K, ϕi, σ)]
end for
ψ′ ← ϕ[p1/ϕ1, . . . , pm/ϕm]
L← L ∪ σ
LTL-MC(K, ψ′)

end case
end procedure

with the potentially new atomic propositions. Thus, CTL∗ model checking
can also be done in PSpace.

Algorithm 1 now realises a global model checking procedure for HCTL∗ss

inspired by this approach. It takes as arguments a Kripke structure K, an
HCTL∗ss state formula ϕ and a variable assignment σ that maps variables to
states in K. For closed formulas ϕ the variable assignment σ may initially
be empty.

The idea of this model checking procedure is very similar to that of CTL∗.
However, a small conceptual extension compared to CTL∗ is needed. In the
process of evaluating hybrid formulas we need to deal with open formulas,
i.e. formulas with free variables.

Take for example the formula AG ↓x.¬A¬XFx, stating that on any path at
any given moment there is a non-trivial cycle. To evaluate the formula at
some point we need to evaluate the formula A¬XFx which is not closed and
thus cannot simply be evaluated and replaced by a fresh proposition inde-
pendently but needs to take the value of the variable x into account. To
maintain the usual bottom-up algorithm for CTL∗ we could evaluate A¬XFx
with respect to every possible value of x and mark the states accordingly.
This however would clutter the labeling of the structure massively.

148

Instead, we use a top-down approach to find values for the variables first
before evaluating the subformulas. In the worst case this still means that each
subformula may be evaluated for each possible values of its free variables.

Theorem 6.19. For all Kripke structures K = 〈S,→, L〉, s ∈ S and variable
assignments σ : Var → S it holds that K, s, σ |= ϕ if and only if s ∈
MCss(K, ϕ, σ).

Proof. We show this by an induction on ϕ. So, let K = 〈S,→, L〉 be a
Kripke structure, s ∈ S, σ : Var → S and ϕ ∈ HCTL∗ss. For the base cases
we immediately get the result:

ϕ = p: An inspection of the semantics of HCTL∗ss and the first case of the
algorithm gives us K, s, σ |= ϕ⇔ s ∈ L(p)⇔ s ∈ MCss(K, ϕ, σ).

ϕ = x: Inspecting the second case of the algorithm we get K, s, σ |= ϕ⇔ s =
σ(x)⇔ s ∈ MCss(K, ϕ, σ).

Now, assume that the statement already holds for ϕ′, ϕ′′ and assume that ϕ =
¬ϕ′. Then we get K, s, σ |= ϕ ⇔ K, s, σ 6|= ϕ′ by the semantics of HCTL∗ss

and we have K, s, σ 6|= ϕ′ ⇔ s 6∈ MCss(K, ϕ′, σ) by assumption. Finally, we
have s 6∈ MCss(K, ϕ′, σ) ⇔ s ∈ S \MCss(K, ϕ′, σ) ⇔ s ∈ MCss(K, ϕ, σ) by
the negation clause in Algorithm 1.
The cases for ϕ = ϕ′ ∨ ϕ′′, ϕ = ↓x.ϕ′ and ϕ = @x ϕ

′ can be shown in the
same way. And lastly, assume that ϕ = Aψ. Let ϕ1, . . . , ϕm be the maximal
state subformulas of ψ. Let p1, . . . , pm be fresh atomic propositions that do
not occur in ϕ. Since ϕ ∈ HCTL∗ss, the formula ψ̃ := ψ[p1/ϕ1, . . . , pm/ϕm] is
a pure LTL formula over Prop ∪ {p1, . . . , pm} ∪ Var .
Let K′ be the Kripke structure obtained by extending the labeling from K
with L(pi) = MCss(K, ϕi, σ) for i ∈ {1, . . . ,m} and L(x) = {σ(x)}.
By a separate induction on ψ̃ we show that for all paths π ∈ Paths(K) we have

K, π |= ψ if and only if K′, π |= ψ̃. The base cases for ψ̃ = p, pi, x follow by
construction of K′ and the induction hypothesis for ϕi. Negation, disjunction
and temporal operators then follow by simple semantical considerations.
Notice that in the case of Aψ the labeling of the Kripke structure gets up-
dated first with the values for the fresh atomic propositions and second with
the values for the variables as done here. Because of that the LTL model
checker does not need to distinguish between variables and atomic proposi-
tions. Correctness of the algorithm for the case Aψ then follows immediately.
This finishes the proof.

Theorem 6.20. The model checking problem for HCTL∗ss is in PSpace.

149

Proof. The space needed by all operations except for the case of Aψ is at
most linear in |K| + |ϕ|. The space needed for the case Aψ is dominated by
the LTL model checker which can be done in space polynomial in |K|+ |ϕ|.
Lastly, the inputs can be stored in space that is linear in |K|+ |ϕ|. Thus, the
space needed to store all inputs in the recursion is also bounded polynomially
in |K|+ |ϕ|. Thus, Algorithm 1 can be implemented to run in PSpace.

In summary we get the following results for HCTL∗ss and its fragments for
model checking.

Corollary 6.21. Model Checking for HCTL, HCTL+, HFCTL+ and HCTL∗ss

is PSpace-complete, even for expression complexity.

On the other hand, when formulas are fixed, model checking becomes sig-
nificantly easier. In fact, it is NLogSpace-complete. However, with the
template above in Algorithm 1 this is not easily achievable. In the Aψ case
we relabel possibly the whole structure with new atomic propositions for the
maximal state subformulas in a path formula. The space needed for this re-
labelling may be up to linear in the size of the structure and thus Algorithm
1 is in PSpace even for fixed formulas (although its runtime the is still poly-
nomial). Such a bottom-up approach is not optimal for the data-complexity.
The same issue was also observed for the data complexity of CTL∗ for which
an NLogSpace procedure was achieved in [60] via an automata-theoretic
approach that can also be seen as a top-down approach.
We will present a top-down approach that also leads to an NLogSpace-
procedure for HCTL∗ss at the end of Section 6.2.2. For this we will restrict
the model checking games for HCTL∗ps and the associated techniques for
solving them which will be introduced in the next section. We still state the
result here but prove it later.

Corollary 6.22. The data complexity of HCTL, HCTL+, HFCTL+ and
HCTL∗ss is NLogSpace-complete.

6.2.2 HCTL∗ps

As we have seen in Subsection 6.1.2, model checking for HCTL∗ps is signif-
icantly harder than that of HCTL∗ss. The model checking problem is Ex-
pSpace-hard and even the data complexity rose to at least PSpace.
Moreover, the recursive algorithm for HCTL∗ss is not a convenient template
that can easily be expanded to HCTL∗ps. Remember that HCTL∗ps allows
binders to range over arbitrary path formulas. As a consequence, to employ
this template we would basically need a model checking algorithm for LTL

150

with added variables and binders interpreted over paths of arbitrary Kripke
structures.
However, this particular semantics for hybrid LTL seems to be an open prob-
lem. This does not mean that hybrid linear temporal logic and its model
checking problem has not yet been studied. For example the authors of [83]
prove PSpace-completeness for the model checking problem of an LTL-like
logic, but only over linear structures, i.e. infinite words. Hence, their inter-
pretation of binders significantly deviates from ours in that a variable is only
bound to a single moment along the path and not to a state in the struc-
ture which might occur more than once along the path. In [37] the model
checking problem of a logic with LTL syntax is also investigated and PSpace-
completeness for this problem is proven and [62] later improved upon their
techniques by adding a game-based model checking algorithm. However de-
spite the LTL-like syntax, the semantics of the logic in both papers is more
CTL-like and thus also does not fit our problem.
So instead of building upon this recursive algorithm we characterise the model
checking problem of HCTL∗ps by a game-based framework which builds upon
CTL∗ model checking games (cf. [65, 11]) and show how to solve these
games in ExpSpace. The soundness and completeness proofs as well as
the algorithms used to solve these model checking games adapt techniques
presented in [24] which present similar model checking games for CTL∗.

Model Checking Games. Let us fix a Kripke structure K = 〈S,→, L〉,
a state s ∈ S and a variable assignment σ : Var → S and a formula ϕ ∈
HCTL∗ps in negation normal form for the remainder of this section. Since we
then do not have full negation on path formulas and to still have a branching-
time logic that is temporally complete, we instead treat the Release-operator
R – usually defined through ψ1Rψ2 := ¬(¬ψ1U¬ψ2) – as a native operator.

Definition 6.23. The model checking game Gps(K, s, σ, ϕ) is played between
player V and R. Intuitively, V tries to prove that K, s, σ |= ϕ holds while
R tries to refute this.
The game is played on the configuration space S × {E,A} × 2Fl(ϕ)×(Var→S)

and we usually denote a configuration in the form s ` Q([ϕ1]σ1 , . . . , [ϕm]σm)
where s ∈ S, Q ∈ {E,A}, σi : Var → S and ϕi ∈ Fl(ϕ) for i ∈ {1, . . . ,m}.
A play is a sequence of configurations starting with the configuration s `
A([ϕ]σ) and evolving according to the rules depicted in Figure 6.5. The rules
are to be read top-down, i.e. if a play reaches a configuration that matches
the pattern in the upper part of the rule, this induces a choice for the player
annotated on the side of the rule (similar to the model checking games for
Hµ introduced in Section 3.5.3). The choice involves either picking one of the

151

successor configurations depicted in the lower part of the rule or choosing a
successor of the state in the current configuration.
Rules with no player annotated at the side are deterministic and can be
associated with either player.

Note that at any given time in the game more than one rule might be pos-
sible to apply since the rules only need the occurrence of certain formula
types. However, the order in which these rules might be carried out does not
affect the winner of the game as will get clearer when discussing the winning
conditions and soundness and completeness of these games.
The winning condition on these plays is split between finite and infinite plays.
The winning condition for finite plays is determined through its final configu-
ration. However, the winning conditions for infinite plays are more involved
and deal with the unfolding of U and R formulas, since they are the only
rule applications that increase the number of subformulas in a configuration
and thus they are the only ones that can create an infinite play. Intuitively,
in an infinite play V wants to make sure that U-formulas are satisfied after
a finite amount of time while R-formulas can safely be unfolded infinitely
often. However, the type of the configuration also plays a role, e.g. whether
some infinitely regenerating R-formula is enough to show the satisfaction of
a formula or if all infinitely regenerating formulas need to be R-formulas.
The following definitions and lemmas make this intuition precise.

Definition 6.24. Let (si ` QiΓi)i∈N be an infinite play. It is called an E-,
resp. A-play if there is an n ∈ N such that Qi = E resp. Qi = A for all i ≥ n.

Lemma 6.25. Every infinite play is either an E-play or an A-play.

Proof. Let (si ` QiΓi)i∈N be an infinite play and let (ni)i∈N be the sequence
of the sums of all subformulas occurring in Γi in each step of the play, i.e.
ni :=

∑
[ϕ]σ∈Γi

|ϕ|.
First, for the game to be infinite it must be the case that ni > 0 for all
i ∈ N. Otherwise the game would be stuck with no rule applicable. Now,
observe that all rules except for the U- and R-rules strictly decrease ni if
they are applied to si ` QiΓi. Thus, for the play to be infinite there are
infinitely many of the U- and R-rule applications and they are also the only
rule applications that possibly add subformulas to the next configuration.
Secondly, observe that the rules (AQ) and (EQ) strictly decrease the number
of path quantifiers occurring in some configuration and the U- and R-rules
(the only rules that add subformulas to a play) do not generate additional
path-quantifiers. Thus, the rules (AQ) and (EQ) can occur only finitely often
in an infinite play. However, this means that after the last of finitely many

152

s ` E([ϕ1 ∨ ϕ2]σ ,Γ)
s ` E([ϕ1]σ ,Γ) s ` E([ϕ2]σ ,Γ)

V

s ` E([ϕ1 ∧ ϕ2]σ ,Γ)
s ` E([ϕ1]σ , [ϕ2]σ ,Γ)

s ` E([p]σ ,Γ)
s ` E(Γ)

if s ∈ L(p)

s ` E([x]σ ,Γ)
s `σ E(Γ)

if σ(x) = s

(EQ)
s ` E([Qψ]σ ,Γ)

s ` E(Γ) s ` Q([ψ]σ)
R

s ` E([↓ x.ϕ]σ ,Γ)

s ` E([ϕ]σ[x→s] ,Γ)

s ` E([@xϕ]σ ,Γ)
σ(x) ` E([ϕ]σ) s ` E(Γ)

R

s ` A([ϕ1 ∨ ϕ2]σ ,Γ)
s ` A([ϕ1]σ , [ϕ2]σ ,Γ)

s ` A([ϕ1 ∧ ϕ2]σ ,Γ)
s ` A([ϕ1]σ ,Γ) s ` A([ϕ2]σ ,Γ)

R

s ` A([p]σ ,Γ)
s ` A(Γ)

if s 6∈ L(p)

s ` A([x]σ ,Γ)
s `σ AΓ

if σ(x) 6= s

(AQ)
s ` A([Qψ]σ ,Γ)

s ` A(Γ) s ` Q([ψ]σ)
V

s ` A([↓ x.ϕ]σ ,Γ)

s ` A([ϕ]σ[x→s] ,Γ)

s ` A([@xϕ]σ ,Γ)
σ(x) ` A([ϕ]σ) s ` A(Γ)

V

(EX)
s ` E([Xϕ1]σ1 , . . . , [Xϕk]

σk)
t ` E([ϕ1]σ1 , . . . , [ϕk]

σ)
V : s→ t

(AX)
s ` A([Xϕ1]σ1 , . . . , [Xϕk]

σk)
t ` A([ϕ1]σk , . . . , [ϕk]

σk)
R : s→ t

(EU)
s ` E([ϕ1Uϕ2]σ ,Γ)

s ` E([ϕ2]σ ,Γ) s ` E([ϕ1]σ , [X(ϕ1Uϕ2)]σ ,Γ)
V

s ` E([ϕ1Rϕ2]σ ,Γ)
s ` E([ϕ2]σ , [ϕ1]σ ,Γ) s ` E([ϕ2]σ , [X(ϕ1Rϕ2)]σ ,Γ)

V

s ` A([ϕ1Uϕ2]σ ,Γ)
s ` A([ϕ2]σ , [ϕ1]σ ,Γ) s ` A([ϕ2]σ , [X(ϕ1Uϕ2)]σ ,Γ)

R

s ` A([ϕ1Rϕ2]σ ,Γ)
s ` A([ϕ2]σ ,Γ) s ` A([ϕ1]σ , [X(ϕ1Rϕ2)]σ ,Γ)

R

Figure 6.5: The model checking game rules for HCTL∗ps.

153

rule applications of (AQ) or (EQ) the path-quantifier stays the same for the
rest of the play, i.e. making it either an A- or E-play.

Definition 6.26. Let (si ` QiΓi)i∈N be an infinite play and let (ri)i∈N be
the sequence of rule applications between those configurations. We call a
sequence ([ϕi]

σi)i∈N a thread if and only if

• ϕi ∈ Γi for all i ∈ N

and one of the following conditions holds for every pair ([ϕi]
σi , [ϕi+1]σi+1) that

belongs to the sequence of configurations:

• the rule ri replaces [ϕi]
σi with [ϕi+1]σi+1 (and possibly other formulas)

inside the outer path quantifier,

• ϕi = Qϕi+1 and ri is (AQ) or (EQ) for Q ∈ {E,A},

• ϕi = Xϕi+1 and ri is (EX) or (AX) or

• ϕi = ϕi+1 and ri operates on another formula.

We call a thread ([ϕi]
σi)i∈N a µ-, resp. ν-thread if there is a formula ϕ =

ψ1Uψ2, resp. ϕ = ψ1Rψ2 such that ϕ = ϕi for infinitely many i ∈ N.

Lemma 6.27. Every infinite play has at least one thread and every thread
is either a µ-thread or a ν-thread.

Proof. Let (si ` QiΓi)i∈N be an infinite play and let R be the binary relation
described in Definition 6.26 that links two formulas in successive configura-
tions. Then R forms a directed acyclic graph on top of the underlying play
structure. Since every configuration consists of only finitely many formulas
and variable assignments this DAG is finitely branching. Further we have
paths of arbitrary length in this DAG because every formula in every configu-
ration can be traced back via R to a single formula in the initial configuration
of the play. Hence, by König’s Lemma there is also an infinite path in this
DAG, i.e. a thread.
To further prove that every thread is also a µ- or ν-thread, we need to
strengthen an observation made in the proof of Lemma 6.25. We stated that
every infinite play needs infinitely many unfoldings of U- or R-formulas via
the respective game rules. Particularly, this means that there are infinitely
many applications of these rules that apply the rightmost choice, producing
a X(ψ1Uψ2) resp. X(ψ1Rψ2) formula. During the infinite play, these added
subformulas need to be resolved at some point (since there are only finitely
many that can be unfolded) using the rules (EX) or (AX). Thus, every infinite

154

play has also infinitely many applications of the rules (EX) or (AX). However,
when using (EX) or (AX), all formulas have the topmost connective X. Hence,
every infinite thread must contain infinitely many formulas of the type Xψ.
Since (EX) or (AX) strictly decrease the size of the formula on a thread and
again as in Lemma 6.25 the unfolding rules for U and R are the only rules
that may increase the size of a formula on a thread, there also have to be
infinitely many of these rule applications along a thread. Hence, each thread
is at least a µ- or ν-thread.
To see that a thread cannot be a µ- and a ν-thread, observe that to change
from a U-formula to a R-formula (or vice versa) along a thread one has to be
a strict subformula of the other, thus such a change strictly decreases the size
of the formulas along the thread and thus can only occur finitely often.

With these observations we can give the winning conditions for the model
checking games.

Definition 6.28. Let (Ci)i∈I with I = {1, . . . , n} or I = N be a finite or
infinite play of Gps(K, s, σ, ϕ). Then V wins a finite play, if

• Cn = s ` E∅ for some n ≥ 0,

• Cn = s ` A([p]ρ ,Γ) with s ∈ L(p) for some n ≥ 0 or

• Cn = s ` A([x]ρ ,Γ) with ρ(x) = s for some n ≥ 0.

And V wins an infinite play, if

• the play is an E-play and contains no µ-thread or

• the play is an A-play and contains a ν-thread.

On the other hand, R wins in the other cases, namely: R wins a finite play,
if

• Cn = s ` A∅ for some n ≥ 0,

• Cn = s ` E([p]ρ ,Γ) with s 6∈ L(p) for some n ≥ 0 or

• Cn = s ` E([x]ρ ,Γ) with ρ(x) 6= s for some n ≥ 0.

And finally R wins an infinite play, if

• the play is an E-play and contains a µ-thread or

• the play is an A-play and contains no ν-thread.

155

Using Lemmas 6.25 and 6.27 it is easy to see that the winning conditions are
well-defined and each play has a unique winner.

Example 6.29. Consider the formula ϕ := E(↓x.XG¬x ∧ X ↓x.Fx) and the
structure

s0K: s1

The arena of the model checking game Gps(K, s0, σ, ϕ) is depicted in Figure
6.6. To ease notation we have marked the configurations in which player V
has a choice to either unfold a G- or F-operator. Since there is no overlap with
R’s choices this is possible in this particular game instance. Furthermore,
we have neglected some unfoldings of the G-operator that would have ended
in a configuration that is immediately lost by V like the one marked by a
dashed arrow in the top left of Figure 6.6. Since all choices in this game are
made by V we can be sure that these will never be taken anyways.
We can see that there are no finite plays that can be won by V and there
are only two possibilities for infinite plays. Either a play can end up in
the bottom three states s1 ` E([XG¬x]x7→s0), s1 ` E([G¬x]x7→s0) or s1 `
E([¬x]x7→s0 , [XG¬x]x7→s0) in which it then gets trapped, or V can decide to
never unfold [Fx]x7→s1 to [x]x7→s1 . In this case the game cycles indefinitely
somewhere in the states depicted in the middle of Figure 6.6. In particular
the configuration s1 ` E([G¬x]x7→s0 , [Fx]x7→s1) is seen infinitely often.
In both cases the infinite play is an E-play. The first case is won by player
V since the only regenerating formula is a G-formula and thus forming a
ν-thread. Since there is no infinitely regenerating U-formula there is no µ-
thread in this play. The second case however is won by player R since then
the infinite unfolding of the block [Fx]x7→s1 forms a µ-thread.
Since R has no choices in this particular game it is obvious that Duplicator
has a winning strategy. A close inspection of the structure and the formula
also reveals that K, s0 |= ϕ independently of the initial variable assignment.

Soundness and Completeness. The following paragraphs show sound-
ness and completeness of the model checking games for HCTL∗ps.

Definition 6.30. Let C := s ` E(Γ) be a configuration in a model checking
game Gps(K, s, σ, ϕ). We call C true if there is a path π with π0 = s such that
K, π, σ |= χ for every [χ]σ ∈ Γ. Analogously we call a configuration s ` A(Γ)
true if for all paths π with π0 = s there is a [χ]σ ∈ Γ such that K, π, σ |= χ.
A configuration is called false if it is not true.

156

s 0
`

E
([
↓x
.X

G
¬x
∧

X
↓x
.F
x

]σ
)

s 0
`

E
([
↓x
.X

G
¬x

]σ
,[

X
↓x
.F
x

]σ
)

s 0
`

E
([

X
G
¬ x

]x
7→
s 0
,[

X
↓x
.F
x

]σ
)

s 1
`

E
([

G
¬x

]x
7→
s 0
,[
↓x
.F
x

]σ
)
V

s 1
`

E
([
¬x

]x
7→
s 0
,

[f
f
]x
7→
s 0
,[
↓x
.F
x

]σ
)

V

s 1
`

E
([
¬x

]x
7→
s 0
,[

X
G
¬ x

]x
7→
s 0
,[
↓x
.F
x

]σ
)

s 1
`

E
([

X
G
¬x

]x
7→
s 0
,[
↓x
.F
x

]σ
)

s 1
`

E
([

X
G
¬x

]x
7→
s 0
,[

F
x

]x
7→
s 1

)
V

s 1
`

E
([

X
G
¬x

]x
7→
s 0
,[
x

]x
7→
s 1

)

s 1
`

E
([

X
G
¬x

]x
7→
s 0

)
s 1
`

E
([

G
¬x

]x
7→
s 0

)
s 1
`

E
([
¬x

]x
7→
s 0
,[

X
G
¬ x

]x
7→
s 0

)

s 1
`

E
([

X
G
¬x

]x
7→
s 0
,[

X
F
x

]x
7→
s 1

)s 1
`

E
([

G
¬x

]x
7→
s 0
,[

F
x

]x
7→
s 1

)
V

s 1
`

E
([
¬x

]x
7→
s 0
,

[X
G
¬ x

]x
7→
s 0
,[

F
x

]x
7→
s 1

) s 1
`

E
([

G
¬x

]x
7→
s 0
,[
x

]x
7→
s 1

)

s 1
`

E
([

G
¬x

]x
7→
s 0
,[

X
F
x

]x
7→
s 1

)

s 1
`

E
([
¬x

]x
7→
s 0
,

[X
G
¬x

]x
7→
s 0
,[

X
F
x

]x
7→
s 1

)

Figure 6.6: The model checking game Gps(K, s0, σ,E(↓x.XG¬x ∧ X ↓x.Fx))

157

Lemma 6.31. Let C be a configuration in a model checking game Gps(K, s,
σ, ϕ). If C is true then it holds that:

• All deterministic rules yield a successor configuration that is true.

• All rules in which V has to choose have a successor configuration that
is true.

• All successor configurations of rules that belong to R are true.

Analogously, if C is false then

• All deterministic rules yield a successor configuration that is false.

• All rules in which R has to choose have a successor configuration that
is false.

• All successor configurations of rules that belong to V are false.

Proof. The proof is a simple case distinction over all possible rules. We will
only showcase a few examples preserving truth.
Suppose that C = s ` E([ϕ1∧ϕ2]σ,Γ) is a true configuration. Then there is a
path π with π0 = s such that K, π, σ |= ϕ1∧ϕ2. By the semantics of HCTL∗ps

we get that K, π, σ |= ϕ1 and K, π, σ |= ϕ2. Since satisfaction of formulas in
Γ stays the same we get that s ` E([ϕ1]σ, [ϕ2]σ,Γ) is a true configuration as
well.
Suppose now that C = s ` E([ϕ1Uϕ2]σ,Γ) is a true configuration. Thus,
there is a path π with π0 = s such that K, π, σ |= ϕ1Uϕ2. We also know that
ϕ1Uϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ X(ϕ1Uϕ2)). The latter disjunction is V ’s choice in the
game rule (EU). Thus, depending on π either the first or second successor
configuration is true.
Lastly, suppose that C = s ` E([@x ϕ1]σ,Γ) is a true configuration. Thus,
there is a path π with π0 = s such that K, π, σ |= @x ϕ1 and K, π, σ′ |= ϕ′

for every [ϕ′]σ
′ ∈ Γ. By the semantics of HCTL∗ps and since @x ϕ1 is a state

formula we have that K, σ(x), σ |= ϕ1 and thus σ(x) ` E([ϕ1]σ) is a true
configuration. Also s ` E(Γ) is also still a true configuration witnessed by π.
The remaining cases for true configurations and dual cases for false configu-
rations can be shown in a similar fashion.

This lemma forms the basis of a winning strategy for either player in proving
soundness and completeness of the model checking games for HCTL∗ps.

Theorem 6.32. Player V has a winning strategy in Gps(K, s, σ, ϕ) if and
only if K, s, σ |= ϕ.

158

Proof. We will only show the if-direction. The only if-direction is almost
identical because of the duality of true and false configurations and game
rules.
So, suppose that K, s, σ |= ϕ. Then, since ϕ is a state formula we can deduce
that s ` A([ϕ]σ) is a true configuration. We now describe a winning strategy
for V :

• On false configurations V can simply make an arbitrary choice.

• On true configurations V makes a choice that preserves truth according
to Lemma 6.31. If this choice is done with the rule (EU) and both
possible choices preserve truth, then V chooses the first option over the
second, i.e. V tries to satisfy each Until-formula as soon as possible by
unfolding ϕ1Uϕ2 preferably to ϕ2.

Using Lemma 6.31 we deduce that the play starting at s ` A([ϕ]σ) which is
played according to this strategy only visits true configurations. To determine
the winner of this play, notice that for finite games, R only wins at false
configurations. Thus, every finite play according to this strategy is won by
V .
So, suppose that λ := (si ` QiΓi)i∈N is an infinite play in which V plays
according to the strategy above. There are two cases depending on whether
the play is an E-play or an A-play.
Suppose first that λ is an E-play and let Cn = sn ` E(Γn) be the first
configuration such that the defining path quantifier in the configuration does
not change anymore. With the arguments above, Cn is a true configuration.
Thus, there is a path π starting at sn such that K, sn, σ |= ϕ1Uϕ2 for all
[ϕ1Uϕ2]σ ∈ Γn. Since the game is played according to the strategy above,
V follows π with every (EX) rule application (there are infinitely many (EX)
rule applications as discussed in Lemma 6.27). Note further that before
every (EX) rule application all other possible rule applications need to be
performed since (EX) needs all formulas to be underneath an X operator.
Now, let sn+k ` E(Γn+k) be a configuration such that K, π[k,∞), σ |= ϕ2 which
exists since sn ` E(Γn) was a true configuration. Then, before leaving this
configuration with (EX) by the strategy above, V chooses the first option
when applying the rule (EU) to ϕ1Uϕ2. In all following configurations ϕ1Uϕ2

will not appear again. Hence, all Until-formulas in the E-play disappear after
a finite number of steps. Thus, no thread in the play can be a µ-thread and
V wins.
Lastly, suppose that λ is an A-play and again let n be the moment such
that the defining path quantifier in the configurations starting with Cn does
not change anymore. As stated above Cn must be a true configuration. Let

159

π = sn, sn+1, sn+2 . . . be the path that R chooses to play with the rules (AX)
in this play. Since Cn is true there is some [χ]σ ∈ Γn such that K, π, σ |= χ.
Suppose, χ = ϕ1Uϕ2. It is easy to see that then there is a configuration Cn+j

for some j ∈ N such that [ϕ2]σ ∈ Γn+j and K, π[j,∞), σ |= ϕ2 or [ϕ1]σ ∈ Γn+j

and K, π[j,∞), σ |= ϕ1. This is because before each (AX) rule application R
has to unfold [ϕ1Uϕ2]σ with rule (AU). Since K, π, σ |= ϕ1Uϕ2, either ϕ1 or
ϕ2 holds here, so the statement follows if R picks the left alternative. If R
picks the right alternative then he produces [X(ϕ1Uϕ2)]σ which gets unfolded
to [ϕ1Uϕ2]σ after the next (AX) rule. This repeats until at some point ϕ2 is
satisfied along π in which case both alternatives of rule (AU) produce [ϕ2]σ.
Now the key point is that both ϕ1 and ϕ2 are strictly smaller than ϕ1Uϕ2.
Now ϕ1 or ϕ2 can be unfolded again depending on its top connective and so
on. Thus, if χ only contains Until-formulas that successively get unfolded
then at some point in time we end up in a true configuration Cm where m ≥ n
with a propositional literal which contradicts the assumption that we have
an infinite A-play.
Thus, there needs to be some R-formula that gets unfolded via the second
alternative in rule (AR) infinitely often (the first choice in rule (AR) also leads
to strictly smaller formulas as before) since this is the only remaining option
in the game rules that increases the size of the formulas in the configuration
(as opposed to infinitely often reducing the size of the formulas via the rule
(AX)). It is not hard to see that following this R-formula creates a ν-thread
and thus V wins.

Solving Model Checking Games. Having a game-based framework for
model checking does not immediately yield an algorithm to solve these games.
We will now show how to reduce these games to parity games. We can then
simply employ one of the multitude of algorithms solving parity games, cf.
[49, 94, 82, 51, 39, 20], which will yield an ExpSpace model checking algo-
rithm that matches our lower bound. The reduction is achieved by showing
that the winning condition for these model checking games can be equiva-
lently formulated as an ω-regular winning condition, i.e. a winning condition
described by a parity automaton. This then immediately yields the reduc-
tion to parity games via a simple product construction of the game and the
automaton for the winning condition as shown in Proposition 2.48.
We fix a Kripke structure K = 〈S,→, L〉 and a formula ϕ ∈ HCTL∗ps for
the remainder of this section and begin by defining a symbolic alphabet of
rule applications that is designed to model the rule applications throughout
a play in the model checking game as described in Section 2.9.2.

Definition 6.33. Let ϕ ∈ HCTL∗ps. Then we define the alphabet of symbolic

160

rule applications in the game Gps(K, s, σ, ϕ) as

Σϕ,K := {EORd(ϕ1, ϕ2, σ),AOR(ϕ1, ϕ2, σ),

EAND(ϕ1, ϕ2, σ),AANDd(ϕ1, ϕ2, σ),

EUd(ϕ1, ϕ2, σ),AUd(ϕ1, ϕ2, σ),

ERd(ϕ1, ϕ2, σ),ARd(ϕ1, ϕ2, σ) |
ϕ1, ϕ2 ∈ Fl(ϕ), σ : Var → S, d ∈ {lft, rgh}}

∪{EQd([Qψ]σ),AQd([Qψ]σ) | Q ∈ {E,A},Qψ ∈ Fl(ϕ),

σ : Var → S, d ∈ {lft, rgh}}
∪{EX,AX}
∪{ELit([l]σ),ALit([l]σ) | l Literal in Fl(ϕ), σ : Var → S}
∪{EVar([x]σ),AVar([x]σ) | x ∈ Var , σ : Var → S}
∪{EBind([ϕ1]σ),ABind([ϕ1]σ) | ↓x.ϕ1 ∈ Fl(ϕ),

x ∈ Var , σ : Var → S}
∪{EJump([ϕ1]σ),AJump([ϕ1]σ) | @x ϕ1 ∈ Fl(ϕ),

x ∈ Var , σ : Var → S}
∪{WinV ,WinR}.

Note that Σϕ,K is bounded by O((|ϕ| · |K||ϕ|)2), thus the alphabet is expo-
nential in the size of ϕ.

Each alphabet symbol is naturally associated with a rule application in the
model checking game. For instance the symbol EUlft(ϕ1, ϕ2, σ) is associated
with player V ’s choice to play the left option of rule (EU) on the principal
formula [ϕ1Uϕ2]σ. The symbols WinP are used to symbolically encode finite
plays. They indicate that a final configuration was reached in which player
P has won. For example the application of the rule

s ` A([p]σ ,Γ)
s ` E(Γ)

if s ∈ L(p) is associated with WinV .
Each play λ can be represented by the series of symbolic rule applications
and thus as a word wλ ∈ Σω

ϕ,K in which the i-th letter corresponds to the
i-th rule application in the play. We assume that finite plays are encoded as
words ending either with (WinV)ω or (WinR)ω.
Note that we do not encode all information of a play. For instance we do
not remember the state of a configuration in the symbolic representation of
a play. Thus, we cannot uniquely identify a play by its associated word over

161

Σϕ,K. In turn, the automata for the winning condition will not be able to
check if the encoded word truely symbolises a legal play. This however is not
necessary since the automata for the winning conditions will only be used in
a product construction with the game arena which already encodes the legal
moves.

Next, we show that all winning plays for V can be accepted by a parity
automaton. Finite plays are particularly easy since we use winning symbols
for V and R.

Theorem 6.34. There is a deterministic parity automaton Afin
ϕ,K of constant

size that accepts a finite play λ of the model checking game Gps(K, s, σ, ϕ) if
and only if λ is won by player V .

Proof. By the above mentioned convention a symbolic representation of a
finite play is won by player V iff it contains the symbold WinV . This can
easily be tested by a parity automaton with only two states.

Note that we are using the fact that these automata are only supposed to
work on plays. In general these automata accept even more words, especially
some that may not even encode valid plays.

This first automaton only covers finite plays. For infinite plays we have to
distinguish two types of plays, A-plays and E-plays. We will first deal with
A-plays.

Theorem 6.35. There is a nondeterministic parity automaton AA
ϕ,K of size

O((|ϕ|·|K||ϕ|)2) that accepts an A-play λ of the model checking game Gps(K, s,
σ, ϕ) if and only if λ is won by player V .

Proof. Remember that V wins an A-play iff it contains a ν-thread. It is not
hard to construct a nondeterministic parity automaton that simply guesses
such a thread and follows it in its state space verifying that it is indeed a
ν-thread in an A-play.

The automaton has an initial state that can read any finite prefix. It stays
there until it guesses that it sees the last application of the rules (EQ) or
(AQ), entering the infinite part of the A-play where the path-quantifier does
not change anymore. The automaton then enters one component for each Aψ
subformula and each σ depending on which of these subformulas was guessed.
In each component the automaton then simply guesses a thread by following
a particular subformula (together with its variable assignment) up to a point
where it guesses that a χ1Rχ2 subformula will be unfolded infinitely often.
Then it enters a two-state component that simply verifies this.

162

The details of the construction are analogous to [24, Thm. 15.3.30] (with the
added variable assignment that needs to be followed as well) and are omitted
here.

The size of the automaton is dominated by the fact that it consists of at
most O(|ϕ| · |K||ϕ|) many components since |ϕ| · |K||ϕ| is an upper bound on
the number of [Aψ]σ-configurations that might be guessed by the automaton
and each of these guessed configurations is followed by one component of the
automaton that is again bounded by |ϕ| · |K||ϕ|. Also, already the alphabet
Σϕ,K used for this automaton has size O((|ϕ| · |K||ϕ|)2). Combining both
yields the size estimation.

The last automaton then deals with E-plays. The proof is again, analogous
to [24, Thm. 15.3.31] and expands the concepts there by also dealing with
added variable assignments.

Theorem 6.36. There is a deterministic parity automaton AE
ϕ,K of size

O(2|ϕ|·|K|
|ϕ|

) that accepts an E-play λ of the game Gps(K, s, σ, ϕ) if and only
if λ is won by player V .

Proof. The automaton uses as state set {E,A} × 2Fl(ϕ)×(Var→S) × 2U where
U describes the set of all U-subformulas in Fl(ϕ). The first two components
of the state space essentially describe a configuration in the game and are
solely used to track the game. For example in a configuration (A, [ψ ∧ χ]σ , ∅)
and the next letter to be read is AANDrgh([ψ]σ , [χ]σ) then the next state is
(A, [χ]σ , ∅).
The last component of the state space is simply used to track the satisfaction
of all Until formulas. The idea in tracking the satisfaction of Until-formulas
is similar to the Miyano-Hayashi construction [71]. After seeing a rule that
changes the path quantifier, the component is reset to ∅. If the rightmost
component is empty, then after the next transition all Until-formulas which
are present in the current configuration are added to the third component.
Whenever the corresponding Until formula is satisfied through the applica-
tion of the left part of the (EU)-rule then this specific Until-formula is deleted
from the last component.

States in which the third component is ∅ receive priority 2 and all other
states receive priority 1. It should be clear that an E-play is accepted if and
only if each Until-formula is satisfied infinitely often, i.e. if the play does not
contain a µ-thread.

The size estimation follows directly from the size of the state space of the
automaton.

163

We could now simply combine all three automata for the finite and infinite
parts of the winning condition to obtain a nondeterministic parity automaton
of doubly exponential size that accepts all the plays won by V .
However, to use it in a product construction with the actual model checking
game we would need another determinisation process magnifying its state
space by another exponential. The product construction for games with ω-
regular winning conditions described in Proposition 2.48 would then yield
a parity game of size triply exponential for the model checking problem.
Solving this however only yields a 3-ExpTime upper bound which does not
match the ExpSpace lower bound proven in Theorem 6.9.
Instead we propose a more refined use of these automata to obtain an optimal
decision procedure. First, we use a simple product construction for Afin

ϕ,K and
AA
ϕ,K/AE

ϕ,K to obtain two automata for finite plays or E- resp. A-plays.

Corollary 6.37. For each Q ∈ {A,E} there is a deterministic parity au-
tomaton (DPA) AQK,ϕ of size doubly exponential in |ϕ|+ |K| which, given an
ω-sequence λ, accepts λ iff it is a finite play or an infinite Q-play that is won
by player V .

We then use both these automata and ideas from the decomposition method
for CTL∗ model checking to obtain an optimal upper bound.

Theorem 6.38. The model checking problem for HCTL∗ps is in ExpSpace.

Proof. We describe a procedure for solving Gps(K, s, σ, ϕ) that borrows ideas
from the decomposition method for CTL∗ model checking sketched in Section
6.2.1 and uses at most exponential space.
Take the smallest subformulas of ϕ that are of the form Qψ. Note that
configurations which are reached by the rules (EQ) and (AQ) applied to Qψ
are ”entry points” to parts of the game Gps(K, s, σ, ϕ) in which no more
applications of rules (EQ) and (AQ) can be played.
For every s ∈ S and every σ : Var → S we can solve the game Gps(K, s, σ,Qψ)
observing that this is a single-player game of at most doubly exponential
size whose winning condition is defined by the parity automaton AQK,ϕ from
Corollary 6.37 of at most doubly exponential size. Parity games in which
only one player makes choices boil down to (nested) reachability games which
can be solved in NLogSpace (Proposition 2.50), hence in NExpSpace, i.e.
ExpSpace due to Savitch’s Theorem [81] for the games under consideration
here. Furthermore, note that the space needed for the additional overhead
of enumerating all s and all σ is bounded polynomially.
Then for every σ we take a new proposition pQψσ and extend the labelling of
K such that pQψσ holds in all those states s such that V wins Gps(K, s, σ,Qψ).

164

We then proceed with the next larger subformulas of the form Qψ′ as above
but in the game Gps(K, s, σ,Qψ′) we replace every occurrence of [Qψ]σ for
a previously treated subformula Qψ with the atomic proposition pQψσ . This
ensures that these games are single-player games again. This is iterated until
all subformulae of ϕ have been covered.

Putting the lower bounds from Section 6.1.2 and the upper bound together
we obtain completeness.

Corollary 6.39. Model Checking HCTL∗ps is ExpSpace-complete, even for
expression complexity.

And finally, we obtain that the data complexity of HCTL∗ps is still slightly
lower.

Corollary 6.40. The data complexity of model checking HCTL∗ps is complete
for PSpace.

Proof. The lower bound is due to Theorem 6.7. For the upper bound, observe
that the game Gps(K, s, σ, ϕ) has size at most |K| · 2|ϕ|·|K|k where k is the
number of variables used in ϕ. Thus, for a fixed formula, the game has only
exponential size. A similar procedure as in Theorem 6.38 then leads to a
PSpace algorithm since the automata used for the winning conditions also
only have exponential size.

The data complexity of HCTL∗ss. We now come back to the data com-
plexity of HCTL∗ss and with it also the data complexity of HCTL, HCTL+

and HFCTL+. Remember that it is our goal to achieve an NLogSpace
procedure for this problem.
For this we will take another look at the model checking games Gps(K, s, σ, ϕ)
but this time only for ϕ ∈ HCTL∗ss. Remember that in HCTL∗ss the binder
can only occur as a state formula and not as a genuine path formula as
opposed to formulas in HCTL∗ps. To get some use out of this we first need a
new normal form for HCTL∗ss formulas.

Definition 6.41. A formula ϕ ∈ HCTL∗ss is in hybrid normal form (HNF) if
all occurrences of ↓x.ϕ′ and @x ϕ in ϕ occur only as part of a prefix directly
in front of atomic formulas or Eψ resp. Aψ formulas.

For example the formula ↓x.((@y p) ∧ EXq) is not in HNF but the equiva-
lent formula (↓x.@y p) ∧ ↓x.(EXq) is. The following Lemma can be proven
similarly to Lemma 5.7.

165

Lemma 6.42. For each formula ϕ ∈ HCTL∗ss there is an equivalent formula
ϕ′ ∈ HCTL∗ss in HNF of length quadratic in the length of ϕ.

Proof. The proof is easy and straightforward. Since all occurrences of binders
and jumps in an HCTL∗ss formula are only in front of state formulas we can use
the equivalences ↓x.(ϕ1⊗ϕ2) ≡ ↓x.ϕ1⊗↓x.ϕ2, @x(ϕ1⊗ϕ2) ≡ @x ϕ1⊗@x ϕ2

with ⊗ ∈ {∧,∨}, ¬↓x.ϕ ≡ ↓x.¬ϕ and ¬@x ϕ ≡ @x ¬ϕ to push all hybrid
operators downwards over boolean connectives until they are directly over a
path quantifier or an atomic formula.
Each application of one of the equivalences above increases the length of the
formula by at most one. Further, for each ↓ or @ we can apply at most length
of the formula many of those equivalences and there are at most length of the
formula many operators. This immediately gives us the size estimation.

Without loss of generality we will only consider HCTL∗ss formulas in HNF for
the data complexity. Since the formula is considered to be fixed the blowup
in length that happens while constructing such a formula does not matter.
There are now some key observations we can make about the game rules of
the model checking games Gps(K, s, σ, ϕ). First, the rules

s ` E([↓ x.ϕ]σ ,Γ)

s ` E([ϕ]σ[x→s] ,Γ)

s ` A([↓ x.ϕ]σ ,Γ)

s ` A([ϕ]σ[x→s] ,Γ)

are deterministic in the sense that none of the players makes a choice and
thus the application of these rules or the order in which they are applied
does not change the winner of a game. Additionally, those rules are the only
ones that are able to change the variable assignment of a subformula in a
configuration of the game.
Secondly, for formulas in HNF, the binder can only occur in front of atomic
formulas p or x, jumps or subformulas Eψ or Aψ that create a new path. The
game rules associated all three types of formulas – shown here for the case
of an outer E path quantifier

s ` E([p]σ ,Γ)
s ` E(Γ)

if s ∈ L(p)
s ` E([x]σ ,Γ)
s `σ E(Γ)

if σ(x) = s

s ` E([Qψ]σ ,Γ)
s ` E(Γ) s ` Q([ψ]σ)

R
s ` E([@xϕ]σ ,Γ)

σ(x) ` E([ϕ]σ) s ` E(Γ)
R

all work in a similar way: Either the subformula in question is discarded
completely or all other subformulas are discarded completely.
We now combine both observations and restrict the usage of the binder rules
for games Gps(K, s, σ, ϕ) with ϕ in HNF such that they can only be applied

166

directly before one of the four rules above (or the other four rules for the A-
quantifier) is applied – essentially compressing the application of the binder
rules and the application of one of the four rules above into a single turn. As
stated above this change in order does not change the outcome of the game.
However, this means that we only have to deal with a single – global – variable
assignment for the whole configuration and not with multiple variable assign-
ments for each subformula because the only time the variable assignments
is changed with the binder rules happens right before all other subformulas
are discarded or the formula with the “changed” variable assignment gets
discarded – in which case we do not have to memorise it either.

This means that the model checking games for Gps(K, s, σ, ϕ) with ϕ in HNF

can be played on the configuration space S × (Var → S) × {E,A} × 2Fl(ϕ)

and thus their size is at most O(|K|(k+1) · 2|ϕ|) if ϕ has k variables. To ease
the distinction between the normal version and this simplified version we call
these games Gss(K, s, σ, ϕ)

Furthermore, the automaton for the winning condition on infinite A-plays
from Theorem 6.36 then also only needs state space {E,A}×2Fl(ϕ)×2U since
it only tracks the satisfaction of the Until-Formulas which now do not need
their own variable assignment anymore. Thus, AE

ϕ,K for ϕ ∈ HCTL∗ss is only

of size O(2|ϕ|). The automaton AA
ϕ,K from Theorem 6.35 is already only

linear in the size of K. The same product constructions with the automata
for finite plays as in Corollary 6.37 then give us the following result.

Corollary 6.43. Let ϕ ∈ HCTL∗ss be in HNF, let K = 〈S,→, L〉 be a Kripke
structure, s ∈ S and σ : Var → S a variable assignment.

For each Q ∈ {A,E} there is a deterministic parity automaton (DPA) AQK,ϕ
of size exponential in |ϕ| and linear in |K| which, given an ω-sequence λ,
accepts λ iff it is a finite play or an infinite Q-play that is won by player V
in Gss(K, s, σ, ϕ).

We now have a model checking game that is linear in the size of the Kripke
structure as well as automata for the winning conditions that are also only
linear in the size of the Kripke structure. This enables us to give an NLog-
Space procedure for the data complexity of HCTL∗ss model checking.

Theorem 6.44. The data complexity of model checking HCTL∗ss is in NLog-
Space.

Proof. Without loss of generality, let ϕ ∈ HCTL∗ss be in HNF, K = 〈S,→, L〉
be a Kripke structure and let Gss(K, s, σ, ϕ) be the associated model checking
game (simplified as described above).

167

We employ a simple top-down method to solve Gss(K, s, σ, ϕ) with the au-
tomata from Corollary 6.43 combined with a decomposition method similar
to Theorem 6.38.
The lowest parts of the game Gss(K, s, σ, ϕ) in which no more applications
of rules (EQ) and (AQ) can be played, can be solved in NLogSpace (in
the size of K) since they are reachability games and both the game and the
automaton for the winning condition are only linear in the size of K.
Parts of the game that are higher up, i.e. there are configurations reachable
in which a rule (EQ) and (AQ) can be applied, are solved similarly but with
recursive calls to solve the “entry points” to these lower parts of the game.
The recursion depth is bounded by the size of the formula which for data
complexity is considered fixed. Thus, the algorithm can be implemented to
run in NLogSpace.

Combined with Theorem 6.4 we obtain the following result.

Corollary 6.45. The data complexity for model checking HCTL∗ss is NLog-
Space-complete.

6.2.3 HCTL∗pp

We have already seen in Section 6.1.3 that HCTL∗pp does not admit an el-
ementary model checking procedure. With this knowledge we can employ
powerful machinery like first-order logic that also does not admit an elemen-
tary bound.
Again, we will use a decomposition algorithm similar to HCTL∗ss and the only
difficult case is how to evaluate path formulas. These now feature binder and
jump and thus are – at least syntactically – full hybrid LTL formulas. How-
ever, even full hybrid LTL can be translated into first-order logic interpreted
on paths which in turn can then be translated to Büchi-automata. The basic
idea thus is to reduce the model checking problem for HCTL∗pp essentially to
a series of NBA path problems via a translation of path formulas first into
first-order logic and then into Büchi-automata.
However, there is one difficulty that prevents us from simply using the
straightforward translation of hybrid LTL into first-order logic: there are
slight semantical differences in the interpretation of the binder in hybrid
LTL and HCTL∗pp that need to be considered.
Hybrid LTL interpreted on paths usually binds a variable to a moment on
a path, c.f. [15, 83], and variable tests then do not actually test equality
between the stored state and the current one but only test if the current
moment on the path is the same as the stored one. In HCTL∗pp however, we
do both: a variable is bound to a moment and a state. Jumps then refer to

168

the moment on the path while variable tests can still test for the actual state
in question.
A translation from hybrid LTL to first-order logic is simple and straightfor-
ward because variables in first-order logic on infinite paths are – as in hybrid
LTL – only interpreted as moments on some path. But this means that
there is no actual correspondence for variable tests as in HCTL∗pp that try
to test for an actual state rather than the moment. This difference needs to
be considered and addressed when translating HCTL∗pp path formulas into
first-order logic.
We will make these ideas precise by first introducing the notion of nested
existential NBA path problems and will then show how to reduce the model
checking problem for HCTL∗pp to these nested NBA path problems. The
reduction will take a detour over first-order logic addressing the problem
raised above.

Nested NBA path problems.

Definition 6.46. The set of nested existential NBA path problem expressions
– or short nENBA expressions – is the least set that is generated by the
following grammar:

exp := p | exp ∨ exp | ¬exp | ↓x.exp | @x exp | EA

where p ∈ Prop ∪ Var and A is an NBA over Prop ∪ Var and a fresh set
of atomic propositions {pexp1 , . . . , pexpn} where expi ∈ nENBA for all i =
1, . . . , n.

The satisfaction relation is given inductively based on the semantics for hy-
brid branching-time logics coupled with the idea of the decomposition al-
gorithm for HCTL∗ss. Variable assignments are directly encoded into the
Kripke structure so that the Büchi-automaton can check variable tests ex-
actly like normal propositions and will be updated at appropriated steps.
This was already defined in Definition 5.21. Remember that by this defini-
tion Kσ denotes the structure where the labelling L has been extended with
L(x) = {σ(x)} for all x ∈ Var .
Each nENBA expression is evaluated with respect to a Kripke structure K =
〈S,→, L〉 over Prop ∪ Var and a state s ∈ S.

K, s |= p iff s ∈ L(p),

K, s |= exp1 ∨ exp2 iff K, s |= exp1 or K, s |= exp2,

K, s |= ¬exp iff K, s 6|= exp,

K, s |= ↓x.exp iff K′, s |= exp with K′ = K ∪ {σ[x 7→ s]},

169

K, s |= @x exp iff K, sx |= exp where sx is the unique state

with sx ∈ L(x),

K, s |= EA iff there is a path π starting at π0 = s on K′ accepted

by A where K′ = 〈S,→, L′〉 with L′(p) = L(p)

for all propositions p occurring in K and

L(pexpi) = {s ∈ S | K, s |= expi}.

The nested existential NBA problem – or short nENBA problem – is the
following:

Input: a Kripke structure K = 〈S,→, L〉, a state s ∈ S and an nENBA
exp.

Output: Does K, s |= exp hold?

The nested existential NBA problem is a generalisation of the existential
NBA path problem.

Definition 6.47. The size of an nENBA exp or simply |exp| is straightfor-
wardly defined as:

|p| := 1,

|exp1 ∨ exp2| := |exp1|+ |exp2|+ 1,

|¬exp| := |exp|+ 1,

| ↓x.exp| := |exp|+ 1,

|@x exp| := |exp|+ 1,

|EA| := |A|+
n∑
i=1

|expi|

where A is an NBA using atomic propositions pexp1 , . . . , pexpn with expi ∈
nENBA for i = 1, . . . , n.

The following lemma about nested existential NBA problems is easy to see.

Lemma 6.48. The nENBA path problem on a Kripke Structure K and an
nENBA exp is solvable in space O(max{|K|, (log(|exp|))2}).

Proof. nENBA can be solved in the same way as HCTL∗ss formulas with a
decomposition algorithm similar to Algorithm 1 described for HCTL∗ss model
checking. The only difference is how path formulas, or in our case now

170

Büchi automata, are treated. For this we first recursively solve the nENBA-
subexpressions in a Büchi automaton and adjust the labels of the states
accordingly taking space O(|K|). Then, instead of invoking an LTL model
checker we have to solve an existential NBA path problem which according to
Proposition 2.38 can be solved in NLogSpace and therefore in deterministic
space O(log(|exp|)2) [81].

We will reduce the model checking problem of HCTL∗pp to the nENBA path
problem. In essence, nENBA are HCTL∗pp state formulas where the path
formulas have been replaced by (nested) Büchi automata. Thus, we need
to explain how to construct a Büchi-automaton for a path formula Eψ ∈
HCTL∗pp.

We do this in two steps. First, we will translate a path formula into a first-
order formula on ω-words and second, we will construct an equivalent Büchi-
automaton for this FO formula. Depending on the quantifier alternation
this Büchi-automaton may be quite large. This is no suprise, because we
know from Section 6.1.3 already that there cannot be an elementary decision
procedure for HCTL∗pp. Hence, there cannot be an elementary bound for
these Büchi-automata.

The construction of a Büchi-automaton from an FO formula is well-known
[18]. However translating an HCTL∗pp path formula into an equivalent FO for-
mula is not so simple as discussed already at the beginning of this section.

Remember that in HCTL∗pp bound variables along a path essentially have
two meanings:

1. For variable tests x we need to store the actual state to check if the cur-
rent state of the evaluation is actually the same state that was stored,
while

2. for jumps we store the moment of the path so that we can jump back
to this exact moment along the path.

For FO formulas on infinite words, variables are typically interpreted as mo-
ments along an infinite path, hence it is easy to simulate the second part,
i.e. jumps to some moment. However, there is no actual correspondence to
storing the actual states along this infinite path.

Since we are only interested in a procedure for model checking, we can employ
a simple trick. Instead of model checking on the actual structure K we
enhance this structure with fresh nominals for each state of the structure.
These nominals then identify a single state and can then be used to simulate
the variable tests.

171

Definition 6.49. Let K = 〈S,→, L〉 be a Kripke structure and let NomS

be a fresh set of nominals not present in K with |NomS| = |S|. Since there
is exactly one fresh nominal for each state we assume that each state s is
associated with one new nominal and call this nominal ns.
We define KS := 〈S,→, L′〉 as the enhanced Kripke structure such that
L′(p) = L(p) for all p ∈ Prop ∪ Nom present in K and L(ns) = {s} for
every ns ∈ NomS.

Thus, every state in an enhanced Kripke structure is additionally labelled
with its own unique nominal. The following fact about enhanced structures
and formulas that do not use the newly added vocabulary follows immedi-
ately.

Proposition 6.50. Let K = 〈S,→, L〉 be a Kripke structure. For every
HCTL∗pp formula ϕ that does not have any occurrence of nominals from
NomS and every s ∈ S, σ : Var → S it holds that K, s, σ |= ϕ if and
only if KS, s, σ |= ϕ.

We will now introduce FO on infinite paths before giving the translation from
HCTL∗pp path formulas to FO formulas.
Note first that any Kripke structure K = 〈S,→, L〉 can be regarded as a first-
order structure with universe S over the signature τ = 〈R(2),Prop(1)∪Nom(1)〉
with a binary accessibility relation R and unary predicates for each p ∈ Prop
and n ∈ Nom. For enhanced Kripke structures we assume that they are
interpreted over the signature τ = 〈R(2),Prop(1) ∪ Nom(1) ∪ Nom

(1)
S 〉 with

special nominals ns ∈ NomS for each state.
FO formulas over the signature τ are then given by the grammar

ϕ := x < y | R(x, y) | p(x) | n(x) | ns(x) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ

with x, y ∈ Var . The usual abbreviations like x ≤ y := ¬(y < x), ∀x.ϕ :=
¬∃x.¬ϕ etc. are used freely.
Formulas of FO are interpreted over infinite paths in (enhanced) Kripke
structures. So, let K = 〈S,→, L〉 be a Kripke structure, π a path in K and
ϑ : Var → N a variable interpretation. The satisfaction relation is given
inductively:

K, π, ϑ |= x < y iff ϑ(x) < ϑ(y),

K, π, ϑ |= R(x, y) iff πϑ(x) → πϑ(y) in K,
K, π, ϑ |= p(x) iff πϑ(x) ∈ L(p),

K, π, ϑ |= n(x) iff πϑ(x) ∈ L(n),

172

K, π, ϑ |= ¬ϕ iff K, π, ϑ 6|= ϕ,

K, π, ϑ |= ϕ1 ∨ ϕ2 iff K, π, ϑ |= ϕ1 or K, π, ϑ |= ϕ2,

K, π, ϑ |= ∃x.ϕ iff there is k ∈ N such that K, π, ϑ[x 7→ k] |= ϕ.

The usual abbreviations for universal quantification, implications etc. are
freely used.
We will now present the translation from HCTL∗pp path formulas to FO for-
mulas.
Translations from modal, temporal and hybrid logics to first-order logic are
usually given with respect to a free variable z interpreted as the “current
state” in the evaluation of a modal/temporal/hybrid formula. Propositions
p and nominals n are interpreted as unary predicates.
In order to check for the correct states along a path with variable tests our
translation will also be relative to a variable interpretation σ : Var → S.
This helps us to store the states and use the correct (newly added) nominals
ns for a state s ∈ S in case of variable tests as discussed above.
Let ψ, ψ1, ψ2 be HCTL∗pp path formulas such that all maximal state subfor-
mulas are only propositions or nominals. Note that free variables in these
path formulas can be seen as nominals in the context of this path formula
and thus are not considered here. However, there may be variable tests for
variables that have been bound during the context of such a path formula.
The translation of such a path formula ψ is given by mutual recursion on the
structure of ψ:

trσz (p) := p(z),

trσz (n) := n(z),

trσz (x) := (nσ(x))(z),

trσz (¬ψ) := ¬trσz (ψ),

trσz (ψ1 ∨ ψ2) := ¬trσz (ψ1) ∨ trσz (ψ2),

trσz (Xψ) := ∃y.R(z, y) ∧ trσy (ψ),

trσz (ψ1Uψ2) := ∃y.y ≥ z ∧ trσy (ψ2) ∧ ∀x.(y > x ∧ x ≥ z)→ trσx(ψ1),

trσz (↓x.ψ) :=
∧
s∈S

(ns)(z)→ trσ[x7→s]
z (ψ),

trσz (@x ψ) := trσx(ψ),

where x ∈ Var is a variable that was bound beforehand in the context of the
path formula. For a HCTL∗pp path formula ψ the initial variable assignment
σ is irrelevant since it is only used to remember the correct nominals for
variables that get bound on the path anyways. We thus simply write trz(ψ)
for the translation of ψ with regard to the free variable z.

173

Note that as discussed earlier, the binder and variable tests use the newly
introduced nominals in the enhanced structure to store and check the current
state.

Lemma 6.51. Let ψ be a HCTL∗pp path formula, possibly containing free
variables, such that there are only maximal state subformulas of the form
p ∈ Prop, n ∈ Nom, x ∈ Var and let K = 〈S,→, L〉 be a Kripke structure
and KS its enhanced structure. Additionally, let z ∈ Var be a variable that
does not occur in ψ. Then

π, k, σ, ϑ |= ψ if and only if π, ϑ′ |= trσz (ψ),

for all paths π in KS, k ∈ N, σ : Var → S, ϑ : Var → N and ϑ′ : Var → N
with ϑ′(z) = k and ϑ′(y) = ϑ(y) for all y ∈ free(ψ).

Proof. We prove this by induction on the structure of ψ. So, let π be a path
in KS, k ∈ N, σ : Var → S, ϑ, ϑ′ : Var → N with ϑ′(z) = k and ϑ′(y) = ϑ(y)
for all y ∈ free(ψ).
“⇒” Assume that π, k, σ, ϑ |= ψ. For the base cases:

• If ψ = p, then πk ∈ L(p) and since ϑ′(z) = k we also have that
πϑ
′(z) ∈ L(p) and consequently π, ϑ′ |= p(z). The case for nominals is

basically the same.

• If ψ = x, then πk = σ(x) by the semantics of HCTL∗pp formula which
means that πk ∈ L(nσ(x)) since nσ(x) ∈ NomS only holds at state σ(x).
And from this it follows with ϑ′(z) = k that π, ϑ |= nσ(x)(z) .

The cases for ψ = ¬ψ1 and ψ = ψ1 ∨ ψ2 follow immediately. For the other
cases of temporal and hybrid operators consider the following:

• If ψ = Xψ1, then π, k + 1, σ, ϑ |= ψ1. By the induction hypothesis we
get that π, ϑ′′ |= trσy (ψ1) for any ϑ′′ : Var → N such that ϑ′′(y) = k + 1
and ϑ′′(x) = ϑ(x) for all x ∈ free(ψ1). Thus, since free(ψ) = free(ψ1)
and ϑ′(z) = k we get that π, ϑ′ |= ∃y.y = z + 1 ∧ trσy (ψ1).

• If ψ = ψ1Uψ2 and π, k, σ |= ψ, then there is some k′ ≥ k such that
for all k ≤ j < k′ it holds that π, j, σ |= ψ1 and π, k′, σ |= ψ2. By
the induction hypothesis we thus get that π, ϑ′′ |= trσx(ψ1) for all ϑ′′

such that ϑ′′(x) = j and ϑ′′(y) = ϑ(y) for all y ∈ free(ψ1) ⊆ free(ψ).
And we also get that π, ϑ′′′ |= trσy (ψ2) for all ϑ′′′ such that ϑ′′′(y) = k′

and ϑ′′′(x) = ϑ(x) for all x ∈ free(ψ2) ⊆ free(ψ). Thus, it holds that
π, ϑ′ |= ∃y.y ≥ z ∧ trσy (ψ2) ∧ ∀x.(y > x ∧ x ≥ z)→ trσx(ψ1).

174

• If ψ = ↓x.ψ1 then π, k, σ[x 7→ πk] |= ψ1. By the induction hypothesis

we get that π, ϑ′′ |= tr
σ[x7→πk]
z (ψ1) for all ϑ′′ with ϑ′′(z) = k and ϑ′′(x) =

ϑ(x) for all x ∈ free(ψ1). Especially we have that π, ϑ′ |= tr
σ[x7→πk]
z (ψ1).

Let πk = s for some state s ∈ S. Then there is exactly one nominal
ns ∈ NomS such that πk ∈ L(ns), resp. π, ϑ′ |= ns(z). And hence

π, ϑ′ |=
∧
s∈S(ns)(z)→ tr

σ[x7→s]
z (ψ1).

• If ψ = @x ψ1, then π, ϑ(x), σ, ϑ |= ψ1. Thus, by the induction hy-
pothesis we get that π, ϑ′′ |= trσy (ψ1) for any ϑ′′ : Var → N such that
ϑ′′(y) = ϑ(x) and ϑ′′(z) = ϑ(z) for all z ∈ free(ψ1).

We now have two cases. First, suppose that x ∈ free(ψ1). If this
is the case then we have that ϑ′′(y) = ϑ(x) = ϑ′′(x) by combining
both conditions. And since x and y agree on their interpretation in
ϑ′′ we can substitute y by x in trσy (ψ1), thus achieving that π, ϑ′′ |=
trσx(ψ1) = trσy (ψ1)

[
x/y
]
. And since y does not occur anymore in trσx(ψ1),

its assignment in ϑ′′ becomes irrelevant and thus, we also get that
π, ϑ′ |= trσx(ψ1).

Secondly, suppose that x 6∈ free(ψ1) meaning that there are no jumps
or variable tests in ψ1 involving x. Then in trσy (ψ1) the variable x is
not used and we can simply rename y and we get that for all variable
assignments ϑ′′ with ϑ′′(x) = ϑ(x) and ϑ′′(z) = ϑ(z) for all z ∈ free(ψ1)
we have that π, ϑ′′ |= trσx(ψ1). Thus, especially we have that π, ϑ′ |=
trσx(ψ1).

This finishes the “⇒” direction. The reverse direction (“⇐”) follows com-
pletely analogously with the same arguments.

The following fact for closed path formulas follows directly.

Corollary 6.52. Let Eψ ∈ HCTL∗pp such that there are only maximal state
subformulas of the form p ∈ Prop, n ∈ Nom and let K = 〈S,→, L〉 be a
Kripke structure and KS its enhanced structure. Finally, let z ∈ Var be a
variable that does not occur in Eψ. Then

π, k |= ψ if and only if π, ϑ |= trz(ψ),

for all paths π in KS, k ∈ N and ϑ : Var → N such that ϑ(z) = k.

It is well-known that first-order formulas can be translated into Büchi-automata.

Proposition 6.53 ([18]). For each FO formula on infinite paths ϕ of size
n and alternation depth ad(ϕ) = m there is an NBA Aϕ of size at most 2nm
such that for all paths π, π is accepted by Aϕ if and only if π |= ϕ.

175

We now have all the tools together to solve the model checking problem for
HCTL∗pp. We solve this by reducing it to the nENBA path problem.

Theorem 6.54. For each HCTL∗pp formula ϕ, there is an nENBA expression
eϕ such that for all Kripke structuresK = 〈S,→, L〉, states s ∈ S and variable
assignments σ : Var → S it holds that K, s, σ |= ϕ if and only if KSσ , s |= eϕ.

Proof. Let ϕ ∈ HCTL∗pp and K = 〈S,→, L〉 be a Kripke structure. Without
loss of generality we assume that ϕ does not use nominals from NomS. Then
by Proposition 6.50 we get that K, s, σ |= ϕ if and only if KS, s, σ |= ϕ.
We first construct an nENBA expression eϕ inductively on the structure of
ϕ ∈ HCTL∗pp and show correctness of the construction afterwards.
The cases for propositions, boolean combinations and hybrid operators on
state formulas simply remain unchanged since nENBA expressions also feature
these constructs. Thus for state formulas ϕ, ϕ1, ϕ2 ∈ HCTL∗pp we get:

τ(p) = p,

τ(n) = n,

τ(x) = x,

τ(¬ϕ) = ¬τ(ϕ),

τ(ϕ1 ∨ ϕ2) = τ(ϕ1) ∨ τ(ϕ2),

τ(@x ϕ) = @x τ(ϕ),

τ(↓x.ϕ) = ↓x.τ(ϕ).

This only leaves us with the case for Eψ for some path formula ψ. As often
before, let ϕ1, . . . , ϕn be the maximal state-subformulas of ψ for some n ∈
N. We first translate ϕ1, . . . , ϕn recursively into nENBA expressions. Let
e1, . . . , en ∈ nENBA be their respective translations.
Let ψ′ = ψ[pe1/ϕ1, . . . , pen/ϕn] be the formula derived from ψ in which all oc-
currences of ϕi are replaced by atomic propositions pei for i = 1, . . . , n. Using
Corollary 6.52 we first construct an FO formula trz(ψ

′) and with Proposi-
tion 6.53 we then construct a Büchi-automaton Atrz(ψ′) over the additional
atomic propositions pe1 , . . . , pen for the nENBA expressions e1, . . . , en. Then
τ(Eψ) = EAtrz(ψ′).
We then simply use eϕ := τ(ϕ). It remains to show correctness of the con-
struction, i.e. K, s, σ |= ϕ if and only if KSσ , s |= eϕ.
For this, assume that K, s, σ |= ϕ. For ϕ = p we get that KSσ , s |= p since K
and KSσ agree on all atomic propositions. The same holds for ϕ = n for some
n ∈ Nom.
For ϕ = x we get that s = σ(x) from K, s, σ |= x and thus by construction of
KSσ we have that s ∈ L′(x) and thus KSσ , s |= x. The cases for negation and
disjunction follow immediately.

176

For ϕ = @x ϕ1 it follows that K, σ(x), σ |= ϕ1 and thus by assumption we
get that KSσ , σ(x) |= τ(ϕ1). By construction of KSσ , we have that σ(x) is the
unique state with σ(x) ∈ L′(x) and thus KSσ , s |= @x τ(ϕ1).

For ϕ = ↓x.ϕ1 it follows that K, s, σ[x 7→ s] |= ϕ1 and by assumption we
get that KSσ[x7→s], s |= τ(ϕ1) and immediately by the semantics of nENBA

expressions we have that KSσ , s |= ↓x.τ(ϕ1).

Lastly, assume that ϕ = Eψ. By Proposition 6.50 we get that KS, s, σ |=
Eψ. Let (KS)′ be the Kripke structure that extends the labeling of KS
with L(pei) = {s ∈ S | KS, s, σ |= ϕi} for the maximal state-subformulas
ϕ1, . . . , ϕn of ψ.

It can be shown by a straightforward induction that for all ϕ ∈ HCTL∗pp it
holds that KS, s, σ |= ϕ if and only if (KS)′, s, σ |= ϕ[pe1/ϕ1, . . . , pen/ϕn].
Thus, we especially get that (KS)′, s, σ |= Eψ′.

Lastly, we need to deal with the possible free variables in ψ′. As mentioned at
the beginning of Section 3.2.1 we can regard free variables simply as nominals.
As a consequence we have for all formulas ϕ ∈ HCTL∗pp with possible free
variables that K, s, σ |= ϕ if and only if K ∪ {σ}, s |= ϕ. Thus, we especially
get that (KS)′ ∪ {σ}, s |= Eψ′ by simply regarding all free occurrences of
variables as nominals.

By the semantics of HCTL∗pp this means that there is a path π in (KS)′∪{σ}
starting at s such that π, 0 |= ψ′. Using Corollary 6.52 we get that π, ϑ |=
trz(ψ

′) for all ϑ : Var → N with ϑ(z) = 0, i.e. π |= trz(ψ
′). And by

Proposition 6.53 we have that π is accepted by Atrz(ψ′) and thus KSσ , s |=
EAtrz(ψ′) by the semantics of nENBA expressions.

Thus, using Lemma 6.48, we can solve the model checking problem by solving
its equivalent nENBA. The translation from HCTL∗pp formulas to nENBA
expressions is linear except for the case of Eψ formulas. For such formulas,
the translation to FO is linear, however the temporal operator U creates a
nesting of a universal quantifier underneath an existential one. Thus, the
quantifier alternation depth of the resulting FO formula is bounded by 2n
where n is the size of the formula that gets translated. By Proposition 6.53
the Büchi automaton constructed from this formula is bounded by 2n2n and
thus the size of the resulting nENBA is bounded by O(2n2n). With Lemma
6.48 such an nENBA expression can be solved in 2n−ExpSpace.

This estimate shows that the model checking problem for HCTL∗pp formulas
of size n can be solved in 2n-ExpSpace. However, a small example of the
translation from path formulas into FO shows that this is only a very rough
estimation.

177

Example 6.55. Consider the two families of formulas

ϕn := E(p1U(p2U(p3U(· · ·U(pnUpn+1) . . .), and

ϕ′n := E(. . . ((p1Up2)Up3)U . . .)Upn+1).

The difference between these two families is that for ϕn the nesting of the
Until formulas is only on the right-hand side of the Until formulas, while for
ϕ′n the nesting is to the left-hand side of the Until operator.
Now consider the FO translation of the embedded path formulas. For ϕn we
obtain relative to an initial variable z the FO formula

∃y1.y1 ≥ z ∧ ∃y2.y2 ≥ y1 ∧ . . . ∧ ∃yn.yn ≥ yn−1 ∧ pn+1(yn)∧
(∀x.(yn > x ≥ yn−1)→ pn(x))∧
(∀x.(yn−1 > x ≥ yn−2)→ pn−1(x))∧
...

(∀x.(y1 > x ≥ z)→ p1(x)).

Clearly, these formulas have a constant quantifier alternation depth for all
n ∈ N. On the other hand we obtain

∃yn.yn ≥ z ∧ pn+1(yn) ∧
(
∀x.(yn > x ≥ z)→
∃yn−1.yn−1 ≥ x ∧ pn(yn−1)∧(
∀z.(yn−1 > z ≥ x)→ . . .

for the formulas ϕ′n. And as we can see, the quantifier alternation depth of
these formulas is 2(n− 1).
Thus, the Büchi-automata obtained for ϕn are magnitudes smaller than those
obtained for ϕ′n.

To obtain a more precise picture of the complexity for HCTL∗pp model check-
ing we thus present a more precise measure for HCTL∗pp path formulas that
captures the alternation depth of its equivalent FO formula.

Definition 6.56. For all i ∈ N we define the classes Σi,Πi of HCTL∗pp path
formulas as follows:

1. Σ0 = Π0 contains all purely propositional HCTL∗pp path formulas.

2. Πi ∪ Σi ⊆ Σi+1 and Πi ∪ Σi ⊆ Πi+1.

3. If ϕ1, ϕ2 ∈ Σi, then also ϕ1 ∧ϕ2, ϕ1 ∨ϕ2,Xϕ1, ↓x.ϕ1,@x ϕ1 ∈ Σi for all
x ∈ Var . The same is true for Πi.

178

4. If ϕ ∈ Σi then ¬ϕ ∈ Πi and vice versa.

5. If ψ1 ∈ Πj and ψ2 ∈ Σh with j ≤ i and h ≤ i+ 1 then ψ1Uψ2 ∈ Σi+1.

Let ψ be an HCTL∗pp path formula and let i be the smallest index, such that
ψ ∈ Σi. We then say that the alternation depth of ψ is i.

Let ϕ ∈ HCTL∗pp and let i be the biggest quantifier alternation depth of all
its path subformulas. Then the alternation depth of ϕ is i.

Intuitively, Σi captures the HCTL∗pp path formulas whose FO translations
have at most alternation depth i with an existential quantifier as the topmost
quantifier in its syntax tree. Πi captures those with alternation depth i and a
universal quantifier as the topmost one. Notice however that our translation
as introduced above does not introduce universal quantifiers as the topmost
operator in any translation. Hence, the definition above is leaning almost
entirely to the Σi case.

At first glance, the fact that Σi and Πi are closed under X may seem contra-
dictory to the intuition given in the paragraph above because the translation
of a Next-operator introduces a new existential quantifier. Thus, formulas of
the form Xϕ with ϕ ∈ Πi should be in Σi+1 and not in Πi anymore. However,
the translation above is only one possibility to translate the Next-operator,
another being trσz (Xψ) := ∀y.y = z + 1 → trσy (ψ). Switching between both
possibilities at appropriate times enables us to be even more precise when
measuring the complexity.

Finally, notice that the fourth clause of Until-formulas truely covers all cases
(when combined with the second clause). For example, if ψ1 ∈ Σj, then by
the second case ψ1 ∈ Πj+1 and we can use the fourth clause. Notice further
that if ψ1 ∈ Σj, the alternation depth of trσz (ψ1Uψ2) would increase by at
least 2, exactly as it happens here. The same can easily be checked for the
other cases as well. This observation gives us the following fact which can
easily be checked.

Proposition 6.57. Let ψ be an HCTL∗pp path formula with alternation depth
n. Then for any Kripke structure K = 〈S,→, L〉 and any σ : Var → S the
first-order quantifier alternation depth of trσ¸ (ψ) is n.

With this we are now able to give a precise upper bound for the model
checking procedure of HCTL∗pp.

Theorem 6.58. Model Checking for HCTL∗pp formulas with alternation
depth n is in n-ExpSpace.

179

Proof. To show this, notice that the nENBA expression for an HCTL∗pp for-

mula ϕ with alternation depth n is bounded by O(2
|ϕ|
n) since the translation

from HCTL∗pp path formulas to FO is polynomial in the size of the formula
and the alternation depth of the resulting FOformula is n. Thus, by Proposi-
tion 6.53 the resulting Büchi automata are bounded by O(2

|ϕ|
n) and thus the

nENBA expression as well. By Lemma 6.48 the path problem for this nENBA
can be solved in n-ExpSpace.

This upper bound also holds when considering a fixed structure since the
complexity originates from the size of the constructed Büchi automata which
solely depend on the formula.

Corollary 6.59. The expression complexity for HCTL∗pp formulas with quan-
tifier alternation depth n is in n-ExpSpace.

For a fixed formula we get a better complexity. Perhaps surprisingly, the
complexity even drops to the level of HCTL∗ps model checking with a fixed
formula.

Theorem 6.60. The data complexity for HCTL∗pp is PSpace-complete.

Proof. The lower bound can be transferred from HCTL∗ps model checking
in Theorem 6.7. For the upper bound, notice that for a fixed formula, the
NBA constructed in the process are of constant size. Thus, HCTL∗pp model
checking can be reduced to an nENBA path problem with NBA of fixed size.
According to Lemma 6.48 this is solvable in PSpace.

6.2.4 The Fully Hybrid µ-calculus Hµ

As seen in Section 6.1.4, model checking for Hµ is at least ExpTime-hard.
We will now give a matching upper bound by reducing the Hµ model checking
problem to the model checking problem of Lµ with multiple modalities.
The multi-modal µ-calculus is defined in the same way as the µ-calculus in
Section 2.4 with the exception that instead of only ♦ϕ we now have multiple
modalities resulting in formulas 〈a〉ϕ where a is one of finitely many possible
actions. The multi-modal µ-calculus is interpreted over multi-modal Kripke
structures, i.e. a structure K = 〈S, { a→| a ∈ I}, L〉 where I is a finite set
of actions and

a→ is a transition relation for each a ∈ I. And we have
K, s |= 〈a〉ϕ iff there is a successor state s

a→ t with K, t |= ϕ.
For the remainder of this section, let us fix a formula ϕ ∈ Hµ that uses k
variables and a Kripke structure K = 〈S,→, L〉.
The idea of the reduction is quite simple. We use a separate copy of K for
each possible variable assignment and additional transition relations over the

180

actions ↓ x and @x for a variable x that enable us to change copies or jump
on the same copy. A hybrid formula ↓x.ϕ can then simply be simulated by
〈↓x〉ϕ and analogously for jumps. To formalise this reduction we introduce
two translations.

Let •̂ : Hµ → Lµ be the homomorphism such that

♦̂ψ = 〈•〉ψ̂,

@̂x ψ = 〈@x〉ψ̂,

↓̂x.ψ = 〈↓x〉ψ̂

and everything else stays the same.

Let K̂ := 〈S × (Var → S), { a→| a ∈ I}, L̂〉 be the multi-modal Kripke
structure over the set of actions I = {•} ∪ {@x | x ∈ Var} ∪ {↓x | x ∈ Var}
with L̂(p) := {(s, σ) | s ∈ L(p)} for every p ∈ Prop ∪ Nom and L̂(x) =
{(s, σ) | s = σ(x)} for every x ∈ Var . The transition relations are defined
through

• (s, σ)
•−→ (t, σ) if and only if s→ t in K,

• (s, σ)
@x−→ (σ(x), σ) for every x ∈ Var and

• (s, σ)
↓x−→ (s, σ[x 7→ s]) for every x ∈ Var ,

for every s ∈ S and σ : Var → S. The following lemma reduces Hµ model
checking to Lµ model checking.

Lemma 6.61. For all Kripke structures K = 〈S,→, L〉, s ∈ S, σ : Var → S

and for all formulas ϕ ∈ Hµ we have that K, s, σ |= ϕ if and only if K̂, (s, σ) |=
ϕ̂.

Proof. The proof is by a straightforward induction on ϕ. However, we need to
strengthen the induction hypothesis to deal with free second-order variables.
Note that the interpretation of second-order variables in Hµ is a function
ρ : Var 2 → 2S×(Var→S) while the interpretation of the second-order variables
in Lµ is a only a function of type ρ̂ : Var 2 → 2Ŝ. However, for our reduction

Ŝ = S × (Var → S) and thus ρ and ρ̂ are essentially the same function
with the only difference being that ρ points to a tuple (s, σ) consisting of a
state s and a variable assignment σ and ρ̂ points to a state named (s, σ). By
abuse of notation we simply collapse both functions into one and prove the
following statement:

181

For all Kripke structures K = 〈S,→, L〉, s ∈ S, σ : Var → S, ϕ ∈ Hµ and all
assignments ρ : Var 2 → 2S×(Var→S) we have that K, s, σ, ρ |= ϕ if and only if

K̂, (s, σ), ρ |= ϕ̂.
The statement of the lemma then simply follows for closed formulas ϕ ∈ Hµ.

Suppose first that ϕ = p for p ∈ Prop ∪Nom. Then by construction of K̂ we
have that K, s, σ, ρ |= p if and only if K̂, (s, σ), ρ |= p.
Now suppose that ϕ = x for some x ∈ Var . Then K, s, σ, ρ |= x if and

only if s = σ(x). By construction of L̂ we thus have (s, σ) ∈ L̂(x) and thus

K̂, (s, σ), ρ |= x.
Suppose that ϕ = X for X ∈ Var 2. This case follows immediately with the
above comment about the interpretation of second-order variables.
Negation and disjunction also follow immediately.
So, suppose that ϕ = ♦ψ. We have that K, s, σ, ρ |= ♦ψ if and only if
there is a successor s → t with K, t, σ, ρ |= ψ. By assumption we now have

K̂, (t, σ), ρ |= ψ̂ and by construction of
•−→ we have that (s, σ)

•−→ (t, σ). Thus,

we also have K̂, (s, σ), ρ |= 〈•〉ψ̂, i.e. K̂, (s, σ), ρ |= ϕ̂. The reverse direction
can be shown similarly.
Now suppose that ϕ = ↓x.ψ. We have K, s, σ, ρ |= ↓x.ψ if and only if

K, s, σ[x 7→ s], ρ |= ψ and thus by the induction hypothesis K̂, (s, σ[x 7→
s]), ρ |= ψ̂. We also have that (s, σ)

↓x−→ (s, σ[x 7→ s]) by construction of K̂.

Thus, we also have K̂, (s, σ), ρ |= 〈↓x〉ψ̂. The reverse direction and the case
for ϕ = @x ψ follow in the same way.
Lastly, suppose that ϕ = µX.ψ(X). We can show by a separate induction on

α that all approximations µXα.ψ(X) and µXα.ψ̂(X) agree (again by slight
abuse of notation in the same way as for ρ). The statement for the fixed
point then follows immediately.

Lemma 6.61 only realises a polynomial reduction for a fixed number of vari-
ables. In the general case this reduction is exponential and up to now it is
not known that Lµ model checking is in P. However, it is known that Lµ
model checking is in UP ∩Co-UP [48], a subclass of NP ∩Co-NP. Thus,
at first glance we only achieve a NExpTime∩Co-NExpTime upper bound
which is not optimal. However, with a slightly refined analysis we can indeed
achieve an ExpTime upper bound for Hµ model checking.

Theorem 6.62. The model checking problem for Hµ is in ExpTime.

Proof. It is known that Lµ model checking for a Kripke structure K′ and
a formula ψ ∈ Lµ can be done in time O((|K′| · |ψ|)ad(ψ)) [32] where ad(ψ)
denotes the fixed point alternation depth of ψ.

182

Now take a Kripke structure K and a formula ϕ ∈ Hµ with k variables. It

is not hard to see that |K̂| = O(|K|k+1), |ϕ̂| = O(|ϕ|) and ad(ϕ̂) = ad(ϕ).
Thus, model checking Hµ can be performed in time O(|K|k+1 · |ϕ|ad(ϕ)), i.e.
in exponential time.

On a side note we can also prove a similar result for the model checking
games.

Lemma 6.63. Player V wins a position s, σ ` ϕ in G(K, ϕ) if and only if

Player V wins a position (s, σ) ` ϕ̂ in Ĝ(K̂, ϕ̂).

Proof. “⇐” Suppose V has a winning strategy at (s, σ) ` ϕ̂ in Ĝ(K̂, ϕ̂).
Because of positional determinacy for Lµ model checking games [85], we
can assume that χ offers a choice to V at every configuration containing
a disjunction or �-formula. These choices can easily be transferred to a
positional strategy χ′ in G(K, ϕ) via

χ′((s, σ) ` ψ1 ∨ ψ2) =

{
(s, σ) ` ψ1, if χ(s, σ ` ψ̂1 ∨ ψ̂2) = s, σ ` ψ̂1

(s, σ) ` ψ2, otherwise

and

χ′((s, σ) ` ♦ψ) = (t, σ) ` ψ, if χ(s, σ ` 〈•〉ψ̂) = t, σ ` ψ̂.

Note that χ has nominally more choices in Ĝ(K̂, ϕ̂) than χ′ in G(K, ϕ), espe-
cially choices involving 〈↓x〉ψ and 〈@ x〉ψ formulas. However, the underlying

structure of K̂ is deterministic at this point, which means that V ’s only
choice is to follow the transition relation in K̂ which is modelled to mimic
the behaviour of ↓x.ψ and @x ψ. Thus, it is not hard to see that χ′ is winning
if χ is winning because both games have essentially the same structure.
“⇒” This can be proven in the same way by transforming a winning strategy
G(K, ϕ) into one in Ĝ(K̂, ϕ̂).

Putting together Lemma 6.61, Lemma 6.63 and Proposition 2.52 we also ob-
tain Theorem 3.20 stating that the model checking games of Hµ characterise
the model checking problem of Hµ for free.
For a fixed formula the model checking procedure above runs in polynomial
time since the formula, as well as its alternation depth and the number of
variables are fixed. We have already proven a polynomial time lower bound
in Theorem 6.18. Thus, we get the following for the data complexity of Hµ.

Theorem 6.64. The data complexity for Hµ is P-complete.

183

By Theorem 6.17 we also get that already the expression complexity of Hµ

is ExpTime-hard and thus putting this together with the upper bound from
Theorem 6.62 we obtain the following result:

Theorem 6.65. Even the expression complexity of Hµ is ExpTime-complete.

6.3 Bounded Variable Fragments

As we have seen in the previous sections, for many hybrid logics the model
checking complexity rises compared to their non-hybrid counterparts. This
section aims to give a more refined explanation on the source of this rise in
complexity. To be precise, we will study the effect of bounding the number
of variables that can be used in a formula and we will see that in most
cases the unbounded number of variables is the single source of these higher
computational complexities.

HkCTL. We start again on the lowest level with HCTL and work our way
up the hierarchy.

Theorem 6.66. Model Checking for HkCTL is P-complete for every k ∈ N.

Proof. The lower bound simply transfers from non-hybrid CTL model check-
ing.
For the upper bound, consider Algorithm 2. It realises a global model check-
ing procedure for HCTL that extends well-known bottom-up procedures for
CTL.
For every subformula ψ it computes the set of states and variable assignments
that satisfy ψ. Note that for a bounded number of variables k the number
of variable assignments is bounded by |K|k.
Correctness and completeness can be proven by a straightforward induction
on ϕ. The cases not involving hybrid operators are essentially the same as
for CTL while the hybrid cases are similar to the corresponding cases in
Algorithm 1, the decomposition algorithm used for HCTL∗ss.
The algorithm – at least for fixed k – runs in polynomial time if it is imple-
mented using dynamic programming, i.e. not re-computing subformulas that
occur more than once. In this case the algorithm traverses each subformula
exactly once and each clause can be computed in time O(m ·n ·nk) where m
is the number of edges and n is the number of nodes in K.

Thus, for a fixed number of variables we are only polynomially worse than
normal CTL model checking. We will show in the next paragraph that the
same is true for HkCTL+ and HkFCTL+.

184

Algorithm 2 Model checking HkCTL.

procedure MC(K, ϕ) . K = 〈S,→, L〉
case ϕ of
p: {(s, σ) ∈ S × Var → S | s ∈ L(p)}
x: {(s, σ) ∈ S × Var → S | s = σ(x)}
¬ϕ′: S × Var → S \MC(K, ϕ′)
ϕ′ ∨ ϕ′′: MC(K, ϕ′) ∪MC(K, ϕ′′)
↓x.ϕ′: {(s, σ) | (s, σ[x 7→ s]) ∈ MC(K, ϕ′)
@x ϕ

′: {(s, σ) | (σ(x), σ) ∈ MC(K, ϕ′)
EXϕ′: {(s, σ) ∈ S | ∃t ∈ S : (t, σ) ∈ MC(K, ϕ′) ∧ s→ t}
E(ϕ1Uϕ2): MCEU(MC(K, ϕ1),MC(K, ϕ2))
end case

end procedure

procedure MCEU(T1, T2)
T := T2, T

′ := ∅
while T ′ 6= T do

T ′ := T
T := T ∪ (T1 ∩ {(s, σ) ∈ S ×Var → S | ∃t ∈ S : (t, σ) ∈ T ∧ s→ t}

end while
return T

end procedure

HkCTL+ and HkFCTL+. Remember that CTL+ and FCTL+ model check-
ing is complete for ∆p

2 = PNP [67].

Theorem 6.67. HkCTL+ and HkFCTL+ model checking is complete for ∆p
2

for every k ∈ N.

Proof. The lower bound again follows from the lower bound for CTL+ model
checking.
For the upper bound, we give a reduction to the CTL+ model checking
problem borrowing ideas from the reduction of Hµ model checking to Lµ
model checking in Section 6.2.4.
Basically, we build several copies of the original structure, one for each vari-
able assignment. However, since we do not want to go to a multi-modal
branching-time logic, in this case we also introduce an encoding of the ↓
and @ operators with fresh atomic propositions. As we have already seen,
this reduction was in general exponential but for a fixed number of variables
polynomial only.
Let us fix a Kripke structureK = 〈S,→, L〉 and a formula ϕ ∈ HkFCTL+. We

185

will construct a structure K̂ and a formula ϕ̂ ∈ FCTL+ such that K, s, σ |= ϕ

if and only if K̂, (s, σ) |= ϕ̂.

Formally, K̂ := 〈(S× (Var → S))∪ (S× (Var → S)×{@x, ↓x | x ∈ Var}),→
, L̂〉 where the new transition relation is given as follows:

• (s, σ)→ (t, σ) for every σ ∈ Var → S iff s→ t in K.

• (s, σ) → (s, σ, ↓x) and (s, σ, ↓x) → (s, σ[x 7→ s]) for every tuple (s, σ)
and x ∈ Var .

• (s, σ) → (s, σ,@x) and (s, σ,@x) → (σ(x), σ) for every (s, σ) and x ∈
Var .

For the labeling we have L̂(p) := {(s, σ) | s ∈ L(p), σ ∈ Var → S} for all
propositions p occurring in K and L(x) := {(s, σ) | s = σ(x)} for all x ∈ Var .

For the new propositions we have L̂(p↓,x) = {(s, σ, ↓x) | s ∈ S, σ ∈ Var → S}
as well as L̂(p@,x) = {(s, σ,@x) | s ∈ S, σ ∈ Var → S}.
Thus, as in the case of Hµ, we have an additional copy of K for each possible
variable assignment. The labeling on these copies is simply inherited from
the labeling of the original structure and the variable assignment that it
represents. Additionally, we introduce intermediary states (s, σ, ↓x), resp.
(s, σ,@x) labelled with fresh propositions p↓,x or p@,x to model the respective
hybrid operators. For example, ↓x.ϕ at a state s with regard to a variable
assignment σ can be performed by finding the unique path (s, σ) → (s, σ, ↓
x) → (s, σ[x 7→ s]) in K̂. Thus, the formula can be changed to find the
(unique) successor satisfying p↓,x. A similar pattern may be performed to
simulate jumps.
Note that the structure K̂ has (k+ 1) · |K|(k+1) many states and thus is only
polynomially larger than K for fixed k.
The structure K̂ now contains paths that are used to change copies or to
jump back to some state. The formula needs to deal with this and also needs
to simulate the ↓x and @x operators.
Formally, let ϕ 7→ ϕ̂ be the homomorphism such that

↓̂x.ϕ := EX(p↓,x ∧ EXϕ),

@̂x ϕ := EX(p@,x ∧ EXϕ) and

Êψ := E(G(
∧

x∈Var

¬p↓,x ∧ ¬p@,x) ∧ ψ̂).

It is easy to see that ϕ̂ is only polynomially larger than ϕ. A straightforward
induction combined with the ideas above proves that K, s, σ |= ϕ if and only

if K̂, (s, σ) |= ϕ̂.

186

This reduction combined with the ∆p
2 upper bound for FCTL+ model check-

ing also proves a ∆p
2 upper bound for HkFCTL+ model checking.

The same reduction also holds for HkCTL+. Note for this that the reduction
on the formula level does not introduce any GF-operators.

HkCTL∗. For HCTL∗ss the complexity compared to CTL∗ model check-
ing did not rise and it is also known that already CTL∗ model checking is
PSpace-complete. Thus, we obtain the same for the bounded fragment.

Theorem 6.68. HkCTL∗ss model checking is PSpace-complete for every k ∈
N.

Interestingly, however, the complexity for HkCTL∗ps model checking also drops
to PSpace. The lower bound follows directly from the previous result since
HkCTL∗ps is an extension of HkCTL∗ss. The upper bound can be proven sim-
ilarly to Theorem 6.38. Notice that, for a bounded number of variables, the
size of the model checking games is only exponential and a similar decompo-
sition algorithm then leads to a PSpace procedure.

Theorem 6.69. HkCTL∗ps model checking is PSpace-complete for every
k ∈ N.

Lastly, we consider HkCTL∗pp. Here, we need to distinguish the special case
with only one variable which we will show to have an elementary model
checking procedure while the cases with at least two variables are as hard as
the cases with an unbounded number of variables.

Theorem 6.70. HkCTL∗pp model checking for k ≥ 2 is m-ExpSpace hard
for every m ≥ 1 and ExpSpace-hard for k = 1.

Proof. For this, observe that the formula ϕT ,n,m that encodes the 2nm-corridor
tiling problem developed in Section 6.1.3 on levelm = 1 only uses one variable
while the cases for m > 1 use two variables. Thus, we can deduce ExpSpace-
hardness for the one-variable fragment and m-ExpSpace hardness for every
m for the fragments using at least two variables.

Thus, the cases using at least two variables are at least as difficult as the
unbounded case and we do not need to prove another upper bound. For the
case using only one variable we show a matching upper bound.

Theorem 6.71. H1CTL∗pp model checking is in ExpSpace.

187

Model Checking Complexity

combined expression data bounded fragments
k = 1 k ≥ 2

Hµ ExpTime ExpTime P
NP ∩Co-NP

P

HCTL∗pp

Tower Tower
PSpace ExpSpace

Tower
Elementary Elementary Elementary

HCTL∗ps ExpSpace ExpSpace PSpace PSpace

HCTL∗ss PSpace PSpace NLogSpace PSpace

HFCTL+ PSpace PSpace NLogSpace ∆p
2

HCTL+ PSpace PSpace NLogSpace ∆p
2

HCTL PSpace PSpace NLogSpace P

Figure 6.7: The complexities of model checking hybrid branching-time logics.

Proof. We use the same decision procedure as described in Theorem 6.54.
The crucial step that accounts for the complexity is constructing the NBA for
a formula of type Eψ. Notice that Eψ ∈ H1CTL∗pp and thus, ψ is a hybrid LTL
formula with only one variable. Instead of constructing a Büchi-automaton,
we proceed as in [83, Prop 4.5] and build an alternating one-pebble Büchi
automaton that acccepts all the paths satisfying ψ and which is polynomial
in |ψ|. With [83, Thm 3.1] we can then translate this pebble-automaton into
an NBA of size doubly exponential in the size of ψ. The theorem then follows
with Lemma 6.48.

6.4 A Complete Picture

The summary of all results about model checking hybrid branching-time
logics is depicted in Figure 6.7. As a comparison, Figure 6.8 lists the model
checking complexities of the classical branching-time logics. A single entry
means that the problem is complete for the mentioned complexity class. A
multicolumn entry depicts lower and upper bounds.

All model checking problems of hybrid branching-time logics – except those
for HCTL∗pp and the bounded fragments of Hµ– are complete for their re-
spective complexity classes and thus the decision procedures presented in
this chapter are optimal. In the case of HCTL∗pp note that Elementary
does not have complete problems.

188

Model Checking Complexity

Lµ
NP ∩Co-NP

P

CTL∗ PSpace

FCTL+ ∆p
2

CTL+ ∆p
2

CTL P

Figure 6.8: The complexities of model checking branching-time logics.

Generally, for the hybrid logics below HCTL∗ss, the complexity of their model
checking problems has increased compared to their non-hybrid counterparts.
Their model checking problem is now in all cases PSpace-complete. Sur-
prisingly then, HCTL∗ss has also only a PSpace-complete model checking
problem which means that from a complexity theoretic point of view it is
not harder to model check HCTL∗ss formulas than ordinary CTL∗ formulas
despite its vast increase in expressive power between these two logics.

However, in the branching-time hierarchy this is the only case where model
checking is not harder than its non-hybrid counterparts. Going further up
in the hierarchy to HCTL∗ps and HCTL∗pp we have that the computational
cost of model checking then rises dramatically first to ExpSpace and then
to levels that do not admit any elementary bound on the model checking
algorithms. Considering their increased expressive power however this is not
too surprising.

Finally, the fully hybrid µ-calculus has an ExpTime-complete model check-
ing problem. On the one hand this is a clear theoretical increase in complex-
ity for the model checking problem compared to Lµ. But on the other hand,
most algorithms for Lµ model checking only run in exponential time anyways
[39, 90]. Thus, from a practical point of view this increase may not be too
bad.

We have also looked at the data and expression complexities of these model
checking problems. Quite surprisingly, the expression complexity of all logics
is as complex as the combined complexity, showing again that these hybrid
logics are quite expressive even on fixed structures. The data complexity,
which is more important for practical purposes, is significantly lower. The
logics from HCTL to HCTL∗ss are only NLogSpace-complete with respect to
a fixed formula. This suggests that the presented model checking algorithms

189

may even prove to be useful for practical purposes in which formulas are
typically fairly small compared to the size of the system. The data complexity
of Hµ is P-complete and thus also quite low. Only HCTL∗pp and HCTL∗ps are
worse with a PSpace-complete data complexity.
Another indicator that these algorithms may perform reasonably well in prac-
tice can be seen if we look at the bounded fragments of these logics. Here,
we can see that most of the increases in complexity originate from the un-
bounded use of variables.
Bounded fragments, in which the number of variables are bounded, have gen-
erally – with the exception of HCTL∗pp– the same computational complexity
as their non-hybrid counterparts. The increase in complexity for HkCTL∗pp

on the other hand comes from the ability to also store the exact moment on
a path and to reference this moment with jumps which – already with two
variables – enables them to express a limited form of recursion (in terms of
the temporal depth of a formula) on a path between two points. This is no
longer possible with only one variable and thus H1CTL∗pp is only ExpSpace-
comlete with regard to model checking.

190

Chapter 7

Satisfiability and Decidable
Fragments

Satisfiability for hybrid logics – especially in the presence of the binder – is
almost always undecidable, even on the level of hybrid modal logic [5, 7, 69].
Other hybrid concepts like nominals or jumps do not pose such difficult
problems and mostly remain decidable.

This naturally raises the question of decidable fragments. There are usually
two courses of action in regaining decidability. Either one poses syntactic
restrictions on the used operators to possibly obtain an “easier” logic or
one can limit the structures on which the logic is interpreted on. The first
is usually referred to as a syntactic restriction while the second approach
that imposes restrictions on the semantical side is referred to as a semantic
restriction.

In this chapter we will pursue both types of restrictions. After a short sum-
mary of the undecidability proofs for our hybrid logics that show that hybrid
logics on the most basic level are already undecidable we will start our search
for decidable fragments with syntactic restrictions. After this we will also
look at semantic restrictions – hybrid logics on tree structures.

Generally speaking however, these fragments – while still being extensions of
the non-hybrid logics – are quite limited in their expressive power compared
to the full hybrid logics. This is because the hybrid framework is quite
powerful so we need to make strong restrictions to regain decidability. As a
consequence the techniques used to show decidability of these fragments are
also quite rudimentary. So this chapter should be understood as only a first
look at decidability issues for hybrid branching-time logics.

191

7.1 Undecidability of the Full Hybrid Logic

It is known that already hybrid modal logic with binder and jump is unde-
cidable [5, 7, 69]. Thus, since HCTL and all other logics considered in this
thesis are extensions thereof, they are also undecidable.

However, we will give a slightly modified proof for the undecidability of
HCTL and its extensions which does not use the X-operator. We thus show
that even HCTL without the X-operator, i.e. with only U and hybrid opera-
tors, is undecidable. We further show that we only need three variables. This
means that also bounding the number of variables generally does not help
much. Our proof extends previous proofs for the undecidability of hybrid
modal logics and also shows that the undecidability does not originate from
the interplay between the X-operator and hybrid operators.

Theorem 7.1. H3CTL is undecidable.

Proof. We will reduce the unbounded corridor tiling problem to the Satisfi-
ability problem of H3CTL, i.e. given a tiling system T , we will construct a
formula ϕT that is satisfiable if and only if there exists a valid T -tiling of the
unbounded corridor.

For this, let T = (T,H, V) be a tiling system. The formula ϕT consists of
two parts. The first part simply enforces a “grid-like” structure on the model
that is unbounded to the left and to the top. As mentioned above, this proof
does not use the X-operator. Instead, we define an alternative Next-operator
with hybrid operators and Until only:

EX′ϕ := ↓w.E(wU(¬w ∧ ϕ)),

stating that – aside from self-loops that may occur on this state – there is a
direct successor of the current state which is not the current state. Similarly
we can define AX′ϕ := ↓w.A(wU(¬w ∧ ϕ)). Note, that this universally
quantified formula also prohibits self-loops since all paths necessarily need
to leave the current state and in the case of a self-loop there is of course one
path that always loops back to the current state.

After encoding the grid, the second part of the formula then only has to
verify that the tiles are placed in a valid manner on top of this grid.

As before, when encoding tiling systems we use the tiling set T as atomic
propositions. Furthermore, we use four additional atomic propositions {p00,
p10, p01, p11} which help us in encoding the grid-structure.

We begin with the grid-like structure. The grid will be encoded as shown in
Figure 7.1.

192

p00

p01

p00

p10

p11

p10

p00

p01

p00

p10

p11

p10

...
...

...
...

· · ·

· · ·

· · ·

Figure 7.1: The grid as enforced by the formula ϕgrid.

To initialise the grid, we start with p00 and state that there are no cycles –
not even self-loops – in the structure:

ϕinit := p00 ∧ AG ↓x.AX′AG¬x.

Then we need to make sure that on each state exactly one of the pij for
i, j ∈ {0, 1} holds:

ϕ1! := AG
(∨
i,j∈{0,1}

pij ∧
∧

(i′,j′)6=(i,j)

¬pi′j′
)
.

The next formula requires each state to have exactly two successors:

ϕ2! := AG ↓x.EX′(↓ y.@x EX′(¬y ∧ ↓ z.@x AX′(y ∨ z))).

Then we require that both successors are correctly labelled as shown in Figure
7.1. A right neighbor increases the first index modulo 2 while a neighbor on
top increases the second index. This is done via

ϕlab := AG
(∧
i,j∈{0,1}

pij → EX′p(i+1)j ∧ EX′pi(j+1)

)
,

where the indices are all understood to be modulo 2. Note that this formula
relies both on ϕ1! and ϕ2! and does not work independently.

193

Finally, we will use this labelling to enforce a grid-structure:

ϕgr := AG
(∧
i,j∈{0,1}

pij →↓x.EX′
(
p(i+1)j ∧ EX′

(
p(i+1)(j+1)∧

↓ y.@x EX′
(
pi(j+1) ∧ EX′

(
p(i+1)(j+1) ∧ y

)))))
.

Again, all indices are understood modulo 2. The formula states that it does
not matter if we first go to the right and then to the successor on top or first
to the successor on top and then to the right, on both ways we reach the
same state.

We obtain ϕgrid as the conjunction of ϕinit, ϕ1!, ϕ2! and ϕgr. This concludes
the first part of the formula.

The second part now tries to encode a valid T -tiling on this grid. With
the chosen encoding this is particularly easy since horizontal and vertical
matching relations can simply be verified by inspecting both successors. Thus
we get

ϕtiling := t1 ∧ AG
(∨
t∈T

t ∧
∧
t′ 6=t

¬t′
)
∧ ϕhor ∧ ϕver

with

ϕhor := AG
(∧
i,j∈{0,1}

∧
t∈T

pij ∧ t→ AX′
(
p(i+1)j →

∨
(t,t′)∈H

t′
))

ϕver := AG
(∧
i,j∈{0,1}

∧
t∈T

pij ∧ t→ AX′
(
pi(j+1) →

∨
(t,t′)∈V

t′
))
.

We obtain ϕT := ϕgrid ∧ ϕtiling. With the explanations above it should be
clear that ϕT is satisfiable if and only if T admits a valid T -tiling on the
unbounded corridor. And thus, since already the unbounded corridor tiling
problem is undecidable with Proposition 2.68, we also obtain undecidability
of H3CTL and all of its extensions.

This reduction proves hardness for Π0
1 in the arithmetical hierarchy. It is

quite interesting but in the presence of fairness operators not too surprising
to see that already HFCTL+, which is slightly more expressive than HCTL
(see Chapter 5), can be shown to be highly undecidable.

Theorem 7.2. H3FCTL+ is hard for Σ1
1.

194

Proof. We prove this by a reduction from the recurring unbounded corridor
tiling problem which is Σ1

1-complete according to Proposition 2.69.
So, let T = (T,H, V) be a tiling system and t∞ ∈ T a special tile that is
supposed to occur infinitely often in the first column. Define T ′ = (T ∪
{t′∞}, H ′, V ′) with

H ′ := H ∪ {(t′∞, t) | (t∞, t) ∈ H},
V ′ := V ∪ {(t′∞, t) | (t∞, t) ∈ V } ∪ {(t, t′∞) | (t, t∞) ∈ V }.

Thus, T ′ has a second copy of the tile that is supposed to occur infinitely
often. Note that the horizontal matching relation is only extended in such
a way that t′∞ can only be placed in the first column, while the vertical
matching relation is simply extended such that t′∞ and t∞ have the same
possibilities of vertically aligned dominoes.
It is easy to see that there is a recurring T -tiling of the unbounded corridor
in which t∞ occurs infinitely often in the first column if and only if there is
a recurring T ′-tiling of the unbounded corridor in which t′∞ occurs infinitely
often in the first column.
To finish the reduction, we now take the formula ϕT ′ constructed in the
previous proof but instead of t1 at the origin we require that EGFt′∞. With
the previous change to the tiling system it should be clear that if there is a
path on which t′∞ occurs infinitely often then this path needs to cover the
first column of the tiling, since t′∞ can only be placed there.

7.2 Decidable Fragments

A natural question that immediately arises after seeing that already H3CTL
is undecidable is to find fragments of these logics (which obviously should
still extend the non-hybrid logics) that are still decidable.
We begin our search with syntactic fragments, i.e. logics in which the for-
mulas are syntactically restricted, either by disallowing certain operators or
imposing conditions on how these operators can be used. A naive idea to
regain decidability via syntactic restrictions on the logic would be to limit the
use of binders by bounding the number of variables that can be used even
further since we have only proven undecidability for 3 or more variables.
However, it was proven that hybrid modal logic is already undecidable even
if only one nominal and one variable is used [89]. Thus, this approach seems
to not be very promising and is not pursued further.
Another approach seen in [89] to regain decidability on the level of hy-
brid modal logic is to restrict the interplay between the universal modal

195

�-operator and the binder. Intuitively, if a ↓ does not occur under any uni-
versal quantifiers like � or G, then it only gets bound to a single state during
the evaluation and thus the variable can be replaced by a nominal pointing
to this unique state.
Indeed, in [89] it was even shown that the restricted logic, in which formulas
containing the pattern � ↓ �, i.e. a box-operator nested underneath a ↓
nested underneath a box in the syntax tree, are forbidden, is decidable and
even 2-ExpTime complete. The proof is a combination of eliminating binders
with the previous idea and a translation into guarded logic which is known
to be decidable.
However, the translation into guarded logic seems to not be feasible in the
presence of temporal operatos. The guarded fragment of first-order logic
for example is not capable of expressing reachability and thus needs to be
extended to subsume these hybrid branching-time logics. But by adding
least fixed points which would be able to express the temporal operators we
lose the guardedness property in the translation of hybrid branching-time
logics. And of course first-order logic with added least fixed points is in
general undecidable and thus this part of the approach does not help us in
the search for decidable fragments.
In this section we will extend the first part of the approach, binder elimination
of bound variables that are not under universal operators up to the level of
HCTL∗pp and present decidable fragments. This also extends and is similar
to an approach to find decidable fragments for HCTL by [10].
For this we first show that the fragment HCTL∗@ that disallows binders com-
pletely is decidable and then continue to present a richer fragment that allows
a restricted use of the binder and reduce this fragment to HCTL∗@ via binder
elimination. Similarly, the fragment of Hµ in which binder is disallowed is
referred to as Hµ,@.

7.2.1 Hµ,@ and HCTL∗@

By definition Hµ,@ coincides with the hybrid µ-calculus as introduced by
Sattler and Vardi in [80]. They have already shown that Hµ,@ is decidable.

Theorem 7.3 ([80]). Hµ,@ is decidable in ExpTime.

It should be clear that if we disallow the binder completely that the hier-
archy of hybrid logics from HCTL∗ss to HCTL∗pp collapses into a single logic.
The collapse from HCTL∗ps to HCTL∗ss without binders is obvious since they
only differ in the use of the binder, thus their respective fragments with no
binder at all coincide. Similarly, HCTL∗pp only extends HCTL∗ps by the use

196

of jumps underneath a binder on a path formula. Thus, disallowing binders
also disallows these jumps.
We simply refer to the fragment of HCTL∗ss/HCTL∗ps/HCTL∗pp that disallows
binders as HCTL∗@. We can now make use of the connection between HCTL∗ss

and Hµ that was presented in Section 5.2.2 to obtain a simple decision pro-
cedure for HCTL∗@.

Theorem 7.4. HCTL∗@ is decidable in 3-ExpTime.

Proof. By Theorem 5.28 we can translate any HCTL∗ss formula into an equiv-
alent Hµ formula. The blowup involved is doubly-exponential due to the
Büchi-automata involved in translating path formulas. A closer inspection
also shows that during the translation no additional binders are introduced.
Thus, since HCTL∗@ is a fragment of HCTL∗ss, we can use the same proce-
dure to translate an HCTL∗@ formula into an equivalent Hµ,@ formula that is
exponentially larger.
By Theorem 7.3, Hµ,@ is decidable in ExpTime. Putting both observations
together gives us a 3-ExpTime procedure for satisfiability of HCTL∗@.

CTL∗ has a 2-ExpTime-complete satisfiability problem [92] so we get this
lower bound from the fact that CTL∗ ⊆ HCTL∗@. However the exact com-
plexity of satisfiability for HCTL∗@ remains unknown for now.
With this, yet again, we observe that the binder is the most critical operator
when considering the satisfiability problem. Naturally, one can now ask
if there is a restricted way to add the binder such that the logic remains
decidable. One – still quite restrictive – way is shown in the following section.
As previously mentioned this approach generalises a technique by [10] and
the approach of [89].

7.2.2 The Reducible/Existential Fragment of HCTL∗

Take a look at the formula E(pU ↓x.EXx) which states that there is a path
on which p holds up to a point that has a self-loop. Clearly this formula is
satisfiable. For example Figure 7.2a shows a model that satisfies the formula
at s1 where x can be bound to the state s3. But more importantly, we can
observe that the binder in this formula is existential in its nature, i.e. it
is only bound once during the evaluation of this formula. This is because
it only occurs underneath the right-hand part of an Until-formula which is
satisfied in a single state only.
The idea now is that a variable which – for syntactic reasons only – gets
bound at most once can also be treated as a simple nominal. For example
it is quite obvious that the formula E(pU(n ∧ EXn)) is equi-satisfiable to the

197

s1K:

p

s2

p

s3

(a) A model of E(pU ↓x.EXx).

s1K′:

p

s2

p

s3

n

(b) A model of E(pU(n ∧ EXn)).

Figure 7.2: Correlation of models when eliminating existential occurrences
of the binder.

previous one. A model is shown in Figure 7.2b. It is also not too difficult to
see that the models of both formulas share a close connection: a model of the
first formula can simply be translated into a model of the second formula by
naming the state on which the variable would be bound. And if a structure
does not satisfy the first formula then there is also no way to place a nominal
on it such that the second formula is satisfied.
However, the second formula falls into the category of HCTL∗@ which was
shown to be decidable above.
In the remainder of this section we generalise this idea. We begin by defining
what it means for an occurrence of a binder in a formula to be existential or
universal.
For this, remember that every HCTL∗pp formula admits a negation normal
form in which negation only occurs in front of atomic formulas but which
features not only X and U as native operators, but also G. The latter operator
is introduced when pushing negation inside the Until operator, for example
¬(pUq) ≡ (G¬q) ∨ (¬qU(¬p ∧ ¬q)).

Definition 7.5. Let ϕ ∈ HCTL∗pp in negation normal form. We say that
an occurrence ↓x.ψ ∈ Sub(ϕ) is universal with respect to ϕ if it occurs
underneath an A path-quantifier, underneath a G-operator or underneath
the left-hand side of an U-operator in the syntax tree of ϕ. Otherwise, this
occurrence is called existential.
A formula ϕ ∈ HCTL∗pp is called existential if all subformulas of the form
↓x.χ ∈ Sub(ϕ) are existential. Otherwise the formula is universal.
The existential fragment of HCTL∗pp is the set of all HCTL∗pp formulas whose
negation normal form is existential.

The existential fragment of HCTL∗pp is a superset of the reducible fragment
of HCTL introduced in [10]. Similar to the reducible fragment it is not closed
under negation.

Example 7.6. The formula E(pU ↓x.EXx) belongs to the existential frag-
ment, since the binder only occurs under an existential path quantifier and is

198

on the right-hand side of the Until in the formula. In fact, it already belongs
to the reducible fragment of HCTL. However, the formula ¬E(pU ↓x.EXx) ≡
A((G ↓x.AX¬x) ∨ ((↓x.AX¬x)U¬p)) does not belong to the existential frag-
ment.

Theorem 7.7. Satisfiability for the existential fragment of HCTL∗pp is de-
cidable in 3-ExpTime.

Proof. First, we describe a polynomial procedure that eliminates all exis-
tential occurrences of the binder in an HCTL∗pp formula while preserving
satisfiability.
For this, let ϕ be a formula in the existential fragment. W.l.o.g. we assume
that ϕ is in negation normal form and we assume that each variable in ϕ
gets bound at most once and these variables are named x1, . . . , xk for some
k ∈ N. Then

ϕ′ := ϕ
[
(n1 ∧ ϕ1(n1))/(↓x1.ϕ1(x1)), . . . (nk ∧ ϕk(nk))/(↓xk.ϕk(xk))

]
,

where n1, . . . , nk are fresh nominals that did not occur in ϕ, and ϕi(ni)
indicates that every free occurrence of xi in ϕi is replaced by ni.
One can prove by a straightforward induction on ϕ that ϕ is satisfiable if and
only if ϕ′ is satisfiable. The key ingredient is that each subformula ↓xi.ϕi
that gets replaced can only occur underneath E-path quantifiers, X-operators
and underneath the right-hand side of U. Thus, if ϕ is satisfied then xi gets
bound to a single state during the evaluation of ϕ. Thus, models of ϕ can
simply be translated to a model of ϕ′ by picking this unique state for the
newly introduced nominals. The reverse direction holds as well. For more
details, cf. [10, Thm 4.3] which can easily be adapted to our case.
Finally, observe that ϕ′ ∈ HCTL∗@ which is decidable in 3-ExpTime by
Theorem 7.4.

7.2.3 Hybrid Branching-Time Logic on Trees

So as we have seen, on the side of syntactic restrictions we can regain decid-
ability by restraining the use of the binder heavily.
On the other side, it is often also interesting to only look at certain classes
of Kripke structures. Such restrictions are often referred to as semantic re-
strictions of the logic. As we have already seen in Chapter 5 the expressive
power of hybrid logic can vary depending on the class of structures in ques-
tion. One very important class of structures are computation trees which are
often used to model the possible step-by-step behaviour of reactive systems.

199

With the previous work on HCTL∗pp on trees in Section 5.3 it is easy to see
that for hybrid branching-time logics interpreted only on trees decidability
is immediately regained.

Theorem 7.8. HCTL∗pp on trees is deciable in Tower.

Proof. We have already seen in Theorem 5.42 that HCTL∗pp on trees can be
translated into MPL which in turn is a fragment of MSO.
It is also known that MSO on trees is decidable (cf. [47]). This result
is obtained by a translation to parity tree automata for which emptiness
can easily be checked. However, negation in the formulas is handled by
complementing the corresponding automaton which involves an exponential
blowup. Thus, this procedure has no elementary bound.

Because the complexity originates in negation rather than the temporal or
hybrid operators this sadly does not drop if we only consider the fragments
CTL, CTL+, FCTL+, HCTL∗ss or HCTL∗ps.

200

Chapter 8

Conclusion

We conclude this thesis with some general thoughts about hybrid branching-
time logics as well as some ideas for further research in this area.

General Thoughts on Hybrid Branching-Time Logics. The hybrid
framework in general has proven to be a very versatile and highly expressive
addition to classical branching-time logics. Many “structural” properties
that cannot be expressed by standard branching-time logics are expressible
through the addition of this framework. This also includes many extensions
of branching-time logics proposed over the years. A connection to some of
these extensions has been shown in Section 3.7.
Generally speaking, the additional expressive power provided by the hy-
brid operators is orthogonal to the expressive power achieved via classical
branching-time features. This means that in general hybrid operators can-
not be used to simulate fairness-constraints or nesting of path formulas. We
have shown this in Chapter 5. The former result was already proven on trees
by [52]. To show the latter result we have developed Ehrenfeucht-Fräıssé
games that helped us to capture the expressive power of HCTL. We have
proven that HCTL on finite structures coincides with HFCTL+ and thus sep-
arating HCTL from HCTL∗ss on finite structures also showed that HFCTL+

is less expressive than HCTL∗ss.
We have also shown that HCTL∗ss can be translated into the hybrid µ-calculus.
In doing so we have also established that the bounded fragments of HCTL∗ss

are invariant under k-bisimulations. This was already shown in Chapter
4 for the bounded fragments of Hµ. And finally, since HCTL∗ps can express
properties that are not invariant under k-bisimulations we have also obtained
that allowing changes to the variable assignment along the evaluation of a
path truly increases the expressive power.
This picture changes quite a bit if the class of structures is restricted. At least

201

on some restricted classes of structures the hybrid framework can be used
to simulate fairness constraints or nesting of path formulas. For example on
finite structures we can use that for something to occur infinitely often along
some path it has to occur on a (finite) cycle. Hence, even HCTL is able to
express fairness properties on finite structures. And on trees we can use the
fact that each state has a unique parent to simulate some nesting of path
formulas. Thus we can express some exclusive CTL∗ properties already in
HCTL+ and thus also in HCTL on trees.

This additional expressive power however comes at a price. We have seen
and discussed in Chapter 7 that even the most basic hybrid branching-time
logic, in fact even hybrid modal logics, are undecidable as soon as the binder
is added. We have discussed some possibilities to regain decidablity but the
restrictions needed seem to be quite harsh and frankly not very useful. One
line of research in this direction would be to consider fragments in which
the binder can be completely eliminated. Our translation to the hybrid µ-
calculus then provides a way to use the decidability results for the hybrid
µ-calculus without binders by Sattler and Vardi. Another is to consider only
the class of trees which regains decidability automatically since all hybrid
branching-time logics on trees can be translated into Monadic Second-Order
logic. However, we only achieve a nonelementary complexity in this case.

For model checking the picture we have obtained in Chapter 6 is not quite
so bleak. The model checking problem for all hybrid branching-time logics is
still decidable. However, compared to the classical branching-time logics we
generally have a slight increase in computational complexity.

We have shown that already HCTL is PSpace-complete. Thus, model check-
ing the hybrid version is considerably harder than CTL which is known to be
in P. However, quite surprisingly, this increase in complexity does not con-
tinue for the next logics. All hybrid logics up to HCTL∗ss remain in PSpace
and have no further increase in complexity. Thus, HCTL∗ss is not harder to
model check than CTL∗ which is also known to be PSpace-complete.

Above HCTL∗ss we see an increase in complexity again. While HCTL∗ps is
ExpSpace-complete, HCTL∗pp has no elementary bound whatsoever. And
finally Hµ is ExpTime-complete.

This general increase in complexity aside from the case for HCTL∗ss may look
worse than it actually is. Further analysis has revealed that this increase
mainly comes from the unbounded number of variables. For the bounded
fragments model checking is only polynomially worse than the non-hybrid
logics. Thus, especially for small formulas with only few variables model
checking in practice might still be somewhat viable.

202

Further Research. Finally, we want to discuss some open questions and
possibilities for further research in the field of hybrid branching-time logics.
We have presented a detailed analysis of the model checking problem for
all hybrid branching-time logics. The model checking algorithms are fairly
straightforward and conceptually easy extensions to the ones for classical
branching-time logics. Our research also suggests that the increase in com-
putational complexity might not be too bad in practice where the formulas
tend to be quite small. An implementation of these algorithms and an eval-
uation of their performance would be a good next step.
The biggest open question concerning the analysis of the relative expressive
power of these new hybrid branching-time logics is the logic HCTL∗pp. We
have not yet been able to establish a precise connection to its fragments,
especially with HCTL∗ps other than the syntactic relationship that is clear by
definition of these logics. An idea for future research might be to extend the
Ehrenfeucht-Fräıssé games established for HCTL in Section 5.1 to HCTL∗ps

and HCTL∗pp to have a better framework for reasoning about their expressive
power. Another idea which might help in separating both logics might be to
find a suitable notion of bisimulation for HCTL∗ps. We know that the notion
of k-bisimulations introduced in Section 4.2 is not enough but have not yet
looked at suitable alternatives for HCTL∗ps.
Also, there are many connections to other recent extensions of CTL∗, the
modal µ-calculus and its fragments. We have briefly looked at some loose
connections in Section 3.7 but have not yet studied these connections in more
detail. Some of those more expressive connections like QCTL∗ could poten-
tially also be of use to better understand the relationship between HCTL∗pp

and HCTL∗ps.
Another open field of research within hybrid branching-time logics (and hy-
brid logics in general) is the search for fragments with a decidable satis-
fiability problem or even one step further, a satisfiability problem with a
reasonable computional complexity. Frankly, almost all proposed decidable
fragments impose such harsh restrictions on the binder specifically that its
presence feels almost negligibile or trivial. Thus, finding more meaningful
decidable fragments in which the binder still has some use would be quite
interesting.
And finally, we have established some rather loose connections to other ex-
tensions of branching-time logics in Section 3.7 and 4.1. One could evaluate
those connections and see if they can be used to transfer some of the obtained
results like lower or upper bounds or the model theory to other connected
fields of research.

203

204

Bibliography

[1] M. Adler and N. Immerman. An n! lower bound on formula size. ACM
Trans. Comput. Logic, 4(3):296–314, July 2003.

[2] J. F. Allen. Maintaining knowledge about temporal intervals. Commun.
ACM, 26(11):832–843, 1983.

[3] B. Aminof, A. Murano, and S. Rubin. CTL* with graded path modali-
ties. Inf. Comput., 262(Part):1–21, 2018.

[4] H. R. Andersen. A polyadic modal µ-calculus. Technical Report ID-TR:
1994-195, Dept. of Computer Science, Technical University of Denmark,
Copenhagen, 1994.

[5] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for
hybrid logics. In J. Flum and M. Rodriguez-Artalejo, editors, Computer
Science Logic, volume 1683 of Lecture Notes in Computer Science, pages
307–321. Springer Berlin Heidelberg, 1999.

[6] C. Areces, P. Blackburn, and M. Marx. The computational complexity
of hybrid temporal logics. Logic J. of the IGPL, 8(5):653–679, 2000.

[7] C. Areces, P. Blackburn, and M. Marx. Hybrid logics: Characterization,
interpolation and complexity. The J. of Symbolic Logic, 66(3):pp. 977–
1010, 2001.

[8] A. Arnold and D. Niwiński. Rudiments of µ-calculus, volume 146 of
Studies in Logic and the Foundations of Mathematics. North-Holland,
2001.

[9] S. Arora and B. Barak. Computational Complexity - A Modern Ap-
proach. Cambridge University Press, 2009.

[10] M. R. F. Benevides and L. M. Schechter. Decidability of a syntactic
fragment of the hybrid computation tree logic with the ↓ operator. 2008.

205

[11] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model
checking for CTL∗. In Proc. 10th Symp. on Logic in Computer Science,
LICS’95, pages 388–397, San Diego, CA, USA, 1995. IEEE.

[12] A. Bianco, F. Mogavero, and A. Murano. Graded computation tree
logic. ACM Trans. Comput. Logic, 13(3), 2012.

[13] P. Blackburn. Representation, reasoning, and relational structures: A
hybrid logic manifesto. Logic J. of the IGPL, 8(3):339–365, 2000.

[14] P. Blackburn and M. Tzakova. Hybrid languages and temporal logic.
Logic J. IGPL, 1999.

[15] L. Bozzelli and R. Lanotte. Complexity and succinctness issues for
linear-time hybrid logics. Theor. Comput. Sci, 411(2):454–469, 2010.

[16] J. Bradfield and I. Walukiewicz. The mu-calculus and Model Checking,
pages 871–919. Springer International Publishing, Cham, 2018.

[17] F. Bruse, O. Friedmann, and M. Lange. On guarded transformation in
the modal µ-calculus. Logic Journal of the IGPL, 23(2):194–216, 2015.

[18] J. R. Büchi. On a decision method in restricted second order arithmetic.
In Proc. Congress on Logic, Method, and Philosophy of Science, pages
1–12, Stanford, CA, USA, 1962. Stanford University Press.

[19] R. A. Bull. An approach to tense logic. Theoria, 36(3):282–300, 1970.

[20] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding
parity games in quasipolynomial time. In Proceedings of the 49th An-
nual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 252–263, 2017.

[21] A. K. Chandra, D. C. Kozen, and L.J. Stockmeyer. Alternation. J.
ACM, 28(1):114–133, January 1981.

[22] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Mem-
ory efficient algorithms for the verification of temporal properties. In
Proc. 2nd Conf. on Computer Aided Verification, CAV’90, volume 531
of LNCS, pages 233–242. Springer, 1991.

[23] M. Dam. CTL∗ and ECTL∗ as fragments of the modal µ-calculus. TCS,
126(1):77–96, 1994.

206

[24] S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer
Science, volume I – Finite State Systems of Cambridge Tracts in Theor.
Comp. Sc. Cambridge Univ. Press, 2016.

[25] H. D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in
Math. Logic. Springer, Berlin, 1995.

[26] H. D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Un-
dergraduate Texts in Mathematics. Springer New York, 1996.

[27] A. Ehrenfeucht. An application of games to the completeness problem
for formalized theories. Fundamenta Mathematicae, 49:129–141, 1961.

[28] E. A. Emerson and E. M. Clarke. Using branching time temporal logic
to synthesize synchronization skeletons. Science of Computer Program-
ming, 2(3):241–266, 1982.

[29] E. A. Emerson and J. Y. Halpern. Decision procedures and expressive-
ness in the temporal logic of branching time. J. of Comp. and Sys. Sc.,
30:1–24, 1985.

[30] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revis-
ited: On branching versus linear time temporal logic. J. of the ACM,
33(1):151–178, 1986.

[31] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and de-
terminacy. In Proceedings 32nd Annual Symposium of Foundations of
Computer Science, pages 368–377, 1991.

[32] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for frag-
ments of µ-calculus. In Proc. 5th Conf. on Computer Aided Verification,
CAV’93, volume 697 of LNCS, pages 385–396. Springer, 1993.

[33] E. A. Emerson and C. L. Lei. Modalities for model checking: branching
time logic strikes back. Science of Computer Programming, 8(3):275 –
306, 1987.

[34] J. Fearnley, S. Jain, S. Schewe, F. Stephan, and D. Wojtczak. An ordered
approach to solving parity games in quasi polynomial time and quasi
linear space. In Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, SPIN 2017, pages
112–121. ACM, 2017.

[35] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and system sciences, 18:194–211, 1979.

207

[36] G. Fontaine, F. Mogavero, A. Murano, G. Perelli, and L. Sorrentino. Cy-
cle detection in computation tree logic. In Domenico Cantone and Gior-
gio Delzanno, editors, Proceedings of the Seventh International Sympo-
sium on Games, Automata, Logics and Formal Verification, GandALF
2016, volume 226 of EPTCS, pages 164–177, 2016.

[37] M. Franceschet and M. de Rijke. Model checking hybrid logics (with an
application to semistructured data). Journal of Applied Logic, 4(3):279
– 304, 2006. Methods for Modalities 3 (M4M-3)Methods for Modalities
Workshop 3 (M4M-3).

[38] M. Franceschet, M. de Rijke, and B.-H. Schlingloff. Hybrid logics on lin-
ear structures: Expressivity and complexity. In Proc. 10th Int. Symp. on
Temporal Representation and Reasoning, TIME’03, and 4th Int. Conf.
on Temporal Logic, ICTL’03, pages 166–173. IEEE, 2003.

[39] O. Friedmann and M. Lange. Solving parity games in practice. In
Automated Technology for Verification and Analysis, 7th International
Symposium, ATVA 2009, Proceedings, pages 182–196, 2009.

[40] G. Gargov and V. Goranko. Modal logic with names. Journal of Philo-
sophical Logic, 22(6):607–636, 1993.

[41] V. Goranko. Temporal logic with reference pointers. In Dov M. Gab-
bay and Hans Jürgen Ohlbach, editors, Temporal Logic, pages 133–148,
Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[42] V. Goranko. Hierarchies of modal and temporal logics with reference
pointers. Journal of Logic, Language and Information, 5(1):1–24, 1996.

[43] V. Goranko. Temporal logics with reference pointers and computation
tree logics. Journal of Applied Non-Classical Logics, 10(3-4):221–242,
2000.

[44] E. Grädel. On the restraining power of guards. Journal of Symbolic
Logic, 64:1719–1742, 1998.

[45] J. Y. Halpern and Y. Shoham. A propositional model logic of time
intervals. In Proceedings of the Symposium on Logic in Computer Science
(LICS ’86), pages 279–292, 1986.

[46] D. Harel. Recurring dominoes: making the highly undecidable highly
understandable. In Marek Karpinski, editor, Foundations of computa-
tion theory: proceedings of the 1983 Inernational FCT-Conference, vol-

208

ume 158 of Lecture notes in computer science, Borgholm, Sweden, 1983.
Springer-Verlag.

[47] M. Hofmann and M. Lange. Automatentheorie und Logik. eXamen.press.
Springer, 2011.

[48] M. Jurdziński. Deciding the winner in parity games is in UP∩co-UP .
IPL: Information Processing Letters, 68(3):119–124, 1998.

[49] M. Jurdzinski. Small progress measures for solving parity games. In
STACS 2000, 17th Annual Symposium on Theoretical Aspects of Com-
puter Science, Proceedings, pages 290–301, 2000.

[50] M. Jurdzinski and R. Lazic. Succinct progress measures for solving par-
ity games. In Proceedings of the Thirty second Annual IEEE Symposium
on Logic in Computer Science (LICS 2017), pages 1–9. IEEE Computer
Society Press, June 2017.

[51] M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponen-
tial algorithm for solving parity games. SIAM J. Comput., 38(4):1519–
1532, 2008.

[52] A. Kara, V. Weber, M. Lange, and T. Schwentick. On the hybrid exten-
sion of CTL and CTL+. In Rastislav Královič and Damian Niwiński,
editors, Mathematical Foundations of Computer Science 2009, volume
5734 of Lecture Notes in Computer Science, pages 427–438. Springer
Berlin Heidelberg, 2009.

[53] D. Kernberger and M. Lange. Model checking for the full hybrid compu-
tation tree logic. In Proc. 23rd Int. Symp. on Temporal Representation
and Reasoning, TIME’16, pages 31–40. IEEE Computer Society, 2016.

[54] D. Kernberger and M. Lange. The fully hybrid mu-calculus. In Proc.
24th Int. Symp. on Temporal Representation and Reasoning, TIME’17,
volume 90 of LIPIcs, pages 17:1–17:16. Dagstuhl-Leibniz-Zentrum, 2017.

[55] D. Kernberger and M. Lange. Model checking for hybrid branching-time
logics. Journal of Logical and Algebraic Methods in Programming, 2018.

[56] D. Kernberger and M. Lange. On the expressive power of hybrid
branching-time logics. In 25th International Symposium on Temporal
Representation and Reasoning, TIME 2018, pages 16:1–16:18, 2018.

209

[57] D. Kernberger and M. Lange. On the expressive power of hybrid
branching-time logics. Theoretical Computer Science, 2019. Submitted
for publication.

[58] S. C. Kleene. Introduction to metamathematics. 1952.

[59] O. Kupferman and M. Y. Vardi. Memoryful branching-time logic. In
21st Annual IEEE Symposium on Logic in Computer Science (LICS’06),
pages 265–274, 2006.

[60] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic
approach to branching-time model checking. J. ACM, 47(2), 2000.

[61] M. Lange. A purely model-theoretic proof of the exponential succinct-
ness gap between CTL+ and CTL. Information Processing Letters,
108(5):308 – 312, 2008.

[62] M. Lange. Model checking for hybrid logic. Journal of Logic, Language
and Information, 18(4):465–491, 2009.

[63] M. Lange. The arity hierarchy in the polyadic µ-calculus. In Proceedings
Tenth International Workshop on Fixed Points in Computer Science,
FICS 2015, pages 105–116, 2015.

[64] M. Lange and E. Lozes. Model checking the higher-dimensional modal
µ-calculus. In Proc. 8th Workshop on Fixpoints in Computer Science,
FICS’12, volume 77 of Electr. Proc. in Theor. Comp. Sc., pages 39–46,
2012.

[65] M. Lange and C. Stirling. Model checking games for branching time
logics. Journal of Logic and Computation, 12(4):623–639, 2002.

[66] F. Laroussinie and N. Markey. Quantified CTL: Expressiveness and
complexity. Logical Methods in Computer Science, 10, 2014.

[67] F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking CTL+

and FCTL is hard. In Proc. 4th Int. Conf. on Foundations of Soft-
ware Science and Computation Structures, FoSSaCS’01, volume 2030 of
LNCS, pages 318–331. Springer, 2001.

[68] K. Lehtinen. A modal µ perspective on solving parity games in quasi-
polynomial time. In Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS ’18, pages 639–648. ACM,
2018.

210

[69] M. Marx. Narcissists, stepmothers and spies. In Ian Horrocks and Sergio
Tessaris, editors, Proceedings of the 2002 International Workshop on
Description Logics (DL2002), volume 53. CEUR-WS.org, 2002.

[70] A. Meier, M. Mundhenk, T. Schneider, M. Thomas, V. Weber, and
F. Weiss. The complexity of satisfiability for fragments of hybrid logic
– part I. J. Applied Logic, 8(4):409–421, 2010.

[71] S. Miyano and T. Hayashi. Alternating finite automata on -words. The-
oretical Computer Science, 32(3):321 – 330, 1984.

[72] F. Moller and A. Rabinovich. Counting on CTL*: on the expressive
power of monadic path logic. Information and Computation, 184(1):147
– 159, 2003.

[73] D. D. Monica, V. Goranko, A. Montanari, and G. Sciavicco. Interval
temporal logics: a journey. Bulletin of the EATCS, 105:73–99, 2011.

[74] M. Mundhenk, T. Schneider, T. Schwentick, and V. Weber. Complexity
of hybrid logics over transitive frames. J. Applied Logic, 8(4):422–440,
2010.

[75] M. Otto. Bisimulation-invariant PTIME and higher-dimensional µ-
calculus. Theor. Comput. Sci., 224(1–2):237–265, 1999.

[76] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, New
York, 1994.

[77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, SFCS ’77,
pages 46–57, Washington, DC, USA, 1977. IEEE Computer Society.

[78] A. N. Prior. Modality and quantification in S5. The Journal of Symbolic
Logic, 21(1):60–62, 1956.

[79] K. Reinhardt. The complexity of translating logic to finite automata. In
Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors, Automata
Logics, and Infinite Games: A Guide to Current Research, pages 231–
238. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

[80] U. Sattler and M. Y. Vardi. The hybrid µ-calculus. In Proc. 1st Int.
Joint Conf. on Automated Reasoning, IJCAR’01, volume 2083 of LNCS,
pages 76–91. Springer, 2001.

211

[81] W. J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. J. of Comp. and Sys. Sc., 4:177–192, 1970.

[82] S. Schewe. Solving parity games in big steps. In FSTTCS 2007: Foun-
dations of Software Technology and Theoretical Computer Science, Pro-
ceedings, pages 449–460, 2007.

[83] T. Schwentick and V. Weber. Bounded-variable fragments of hybrid
logics. In Proc. 24th Annual Symp. on Theoretical Aspects of Computer
Science, STACS’07, volume 4393 of LNCS, pages 561–572. Springer,
2007.

[84] A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics. J. of the ACM, 32(3):733–749, 1985.

[85] C. Stirling. Local model checking games. In Proc. 6th Conf. on Concur-
rency Theory, CONCUR’95, volume 962 of LNCS, pages 1–11. Springer,
1995.

[86] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3(1):1 – 22, 1976.

[87] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific J. Mathematics, 5(2):285–309, June 1955.

[88] B. ten Cate and M. Franceschet. Guarded fragments with constants.
Journal of Logic, Language and Information, 14(3):281–288, 2005.

[89] B. ten Cate and M. Franceschet. On the complexity of hybrid logics
with binders. In Luke Ong, editor, Computer Science Logic, volume
3634 of Lecture Notes in Computer Science, pages 339–354. Springer
Berlin Heidelberg, 2005.

[90] T. van Dijk. Oink: An implementation and evaluation of modern parity
game solvers. In D. Beyer and M. Huisman, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 291–308.
Springer International Publishing, 2018.

[91] P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor,
Complexity, Logic, and Recursion Theory, volume 187 of Lecture notes
in pure and applied mathematics, pages 331–363. Marcel Dekker, Inc.,
1997.

212

[92] M. Y. Vardi and L. J. Stockmeyer. Improved upper and lower bounds
for modal logics of programs: Preliminary report. In Robert Sedgewick,
editor, Proceedings of the 17th Annual ACM Symposium on Theory of
Computing, pages 240–251. ACM, 1985.

[93] M. Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification (preliminary report). In Proc. 1st Symp. on
Logic in Computer Science, LICS’86, pages 332–344. IEEE, Washing-
ton, DC, 1986.

[94] J. Vöge and M. Jurdzinski. A discrete strategy improvement algorithm
for solving parity games. In Computer Aided Verification, 12th Interna-
tional Conference, CAV , Proceedings, pages 202–215, 2000.

[95] P. A. Walega. On expressiveness of Halpern-Shoham logic and its horn
fragments. In 24th International Symposium on Temporal Representa-
tion and Reasoning, TIME 2017, 2017.

[96] V. Weber. Hybrid branching-time logics. CoRR, abs/0708.1723, 2007.

[97] V. Weber. Branching-time logics repeatedly referring to states. Journal
of Logic, Language and Information, 18(4):593–624, 2009.

[98] T. Wilke. CTL+ is exponentially more succinct than CTL. In C. Pandu
Rangan, V. Raman, and R. Ramanujam, editors, Foundations of Soft-
ware Technology and Theoretical Computer Science, pages 110–121,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

213

	Introduction
	Preliminaries
	Kripke structures
	Branching-Time Logics
	Linear Temporal Logic
	The Modal µ-calculus
	Syntactic conventions
	Expressiveness & A Branching-Time Hierarchy
	Model Checking
	Automata
	Games
	Computational Complexity
	Tiling Problems

	Hybridisation of Branching-Time Logics
	The Main Concepts of Hybrid Logic
	Hybridisation of CTL*
	A Syntactical Hierarchy and a Unifying Semantics
	Hybridisation of CTL, CTL+ and FCTL+
	The Fully Hybrid µ-calculus
	The Hybrid Branching-Time Landscape
	Hybrid and other extensions of Branching-Time Logics

	The Expressive Power of the Fully Hybrid µ-calculus
	The Polyadic µ-calculus and Hµ
	Hybrid Bisimulation
	Hµ and Hybrid Bisimulation
	A hierarchy for bounded fragments of Hµ

	The Hybrid Branching-Time Hierarchy
	Ehrenfeucht-Fraïssé Games
	The Hierarchy on Kripke Structures
	The Hierarchy on Tree Structures

	Model-Checking for Hybrid Logics
	Lower bounds
	Upper Bounds
	Bounded Variable Fragments
	A Complete Picture

	Satisfiability and Decidable Fragments
	Undecidability of the Full Hybrid Logic
	Decidable Fragments

	Conclusion
	Bibliography

