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Abstract

Engineering structures are in general exposed to cyclic or stochastic mechani-

cal loading. Exhibiting incipient cracks, particularly light‐weight shell and

plate structures, suffer from fatigue crack growth, limiting the life time of the

structure and supplying the risk of a fatal failure. Due to the uncertainty of

loading boundary conditions and the geometrical complexity of many engi-

neering structures, numerical predictions of fatigue crack growth rates and

residual strength are not reliable. Most experimental monitoring techniques,

nowadays, are based on the principle of wave scattering at the free surfaces

of cracks. Many of them are working well, supplying information about the

position of cracks. One disadvantage is that those methods do not provide

any information on the loading of the crack tip. In this work, the development

of a concept for the detection of straight and simply kinked notches or cracks

in finite plate structures under mixed mode loading conditions is presented.

In this approach, the distributed dislocation technique is applied to model

the direct problem, and a genetic algorithm is used to solve the inverse prob-

lem. Solving the inverse problem, eg, with a genetic algorithm, this allows

the identification of external loading, crack or notch position parameters, such

as length, location or angles, and the calculation of stress intensity factors, as

long as the shapes and the number of the cracks are a priori known. Experi-

ments are performed using plates with notches under tensile loading.
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1 | INTRODUCTION

The dislocation method has mostly been restricted to calculate the stress intensity factor (SIF) in infinite and semi‐
infinite plate structures. A few works on modelling finite bodies by continuous distributions of dislocations are reported.
Sheng1 has combined the boundary element method with the dislocation technique. Dai2 has modelled cracks in finite
bodies by distributed dislocation dipoles. Han and Dhanasekar3 have modelled cracks in arbitrarily shaped finite bodies
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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by distributions of dislocations using complex functions. Zhang et al4 have calculated the elastic fields of a finite plate
containing a circular inclusion by the distributed dislocation method.

As an approach, different from the finite element method (FEM), cracks are modelled by a collocation of discrete
dislocations. Within a continuum mechanics framework, these dislocations are no lattice defects but displacement dis-
continuities describing the local crack opening displacement. Thus, it is not necessary to discretize the domain around
the crack, considerably saving computation time and data, which is crucial for an efficient solution of the inverse prob-
lem. The power of this method further lies in the efficiency to accurately model the singularity at the crack tip. Another
advantage is that the solutions for the stress field created by a dislocation are available in a closed form for a wide range
of geometries.5 The solution for a dislocation in a half‐plane can be found by a suitable choice of elastic constants from
the solution for two bonded half‐planes.6

The goal of our work is the development of a monitoring concept supplying both the information on the actual crack
position and length and the SIF in a plate structure during operation of a system. This enables a more comprehensive
and reliable survey of structures, based on both the knowledge of the actual crack position and a numerical prediction
of further crack development from crack tip loading parameters. The concept, however, requires the a priori knowledge
of crack numbers and shapes. Straight cracks are favourable for the investigations, coming along with the least number
of unknowns to identify. Curved cracks can be approximated by a polygonal arrangement of shorter straight cracks,
whereupon the most simple case is addressed here in terms of a simply kinked crack.

In Bäcker,7 a related goal is pursued interpreting electric signals from a polymeric piezoelectric foil attached to the
surface of the structure. There, the crack tip near field is used for crack parameter identification. Maheshwari et al8 have
investigated a health monitoring of structures using multiple smart materials. In Boukellif and Ricoeur,9 a sensor con-
cept was realized numerically and experimentally, applying the body force method to infinite and semi‐infinite plate
structures with single cracks and exploiting strain data far from the crack. The inverse problem was solved applying
the particle swarm optimization (PSO) algorithm. The number of unknowns to be determined, however, was compara-
bly small, unless restricting to the simple case of a Griffith crack. There are also several works on crack detection using
the XFEM to solve the direct problem and, eg, the genetic algorithm for solving the inverse problem in the sense of a
parameter optimization.10-13 In Gadala and McCullough,14 the solution of the direct problem is realized by using the
FEM. The method of proper orthogonal decomposition (POD) has also been used to solve inverse crack problems.15-
17 In all these works, cracks are detected, but information about SIF and external loads are not provided. Furthermore,
the application of spatial discretisation schemes for solving the crack problems is expensive from the computational
point of view and is not very flexible due to sophisticated requirements of crack tip meshing.
2 | THEORETICAL BACKGROUND

The dislocation method is a current approach to determine the SIF for plane cracks under arbitrary load. In this
method, the cracks are modeled as distributed dislocation densities along the line of the crack.

The stresses at a field point (x,y) in an elastic plane, induced by an infinitesimal single dislocation with components
bx and by of the Burgers vector located at the source point (ξ, η), can be written in global coordinates as

σDxx x; yð Þ
σDyy x; yð Þ
σDxy x; yð Þ

2664
3775 ¼ 2μ

π κþ 1ð Þ

Gxxx x; y; ξ; ηð Þ Gyxx x; y; ξ; ηð Þ
Gxyy x; y; ξ; ηð Þ Gyyy x; y; ξ; ηð Þ
Gxxy x; y; ξ; ηð Þ Gyxy x; y; ξ; ηð Þ

264
375 bx ξ; ηð Þ

by ξ; ηð Þ

" #
; (1)

where the Kolosov's constant κ is related to Poisson's ratio ν as κ = (3 − ν)/(1+ν) for plane stress and κ = (3 − 4ν) for
plane stain and μ is the shear modulus. The dislocation influence functions Gijk

5,18 describe stresses at a field point (x,y)
with a unit Burgers vector acting at (ξ, η). The first index i = x,y in the influence functions indicates the direction of dis-
locations, whereas the second and third jk = xx,yy,xy denote the components of induced stresses. In general, the influ-
ence function can be split into two parts as follows:

Gijk x; y; ξ; ηð Þ ¼ Gs
ijk x; y; ξ; ηð Þ þ Gr

ijk x; y; ξ; ηð Þ; (2)

where Gs
ijk x; y; ξ; ηð Þ denote the singular part or Green's function, containing the Cauchy kernel in the integral equa-

tion. These functions are used to calculate the induced stresses in an infinite medium, see Figure 1.



FIGURE 1 Contours of arising stress fields σDij x; yð Þ; ij ¼ xx; yy; xyð Þ due to an infinitesimal single dislocation with coordinates

bx = by = 10−4mm located at (ξ, η) = (0,0) and assuming plane stress conditions with Young's modulus E = 72 000 MPa and Poisson's

ratio ν = 0.3
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The part Gr
ijk x; y; ξ; ηð Þ denotes the regular functions, accounting for any boundaries or free surfaces. The relation-

ship between the infinitesimal dislocation and the dislocation density B bξ� �
is defined as

d bb!¼ dbbx dbby� �
¼

Bbx bξ� �
dbξ

Bby bξ� �
dbξ

0B@
1CA; (3)

where B bξ� �
dbξ represents the number of dislocations in the interval bξ;bξ þ dbξh i

.

Considering Equation (1), replacing the dislocations bx and by by dbx and dby and accounting for Equation (3), the
stresses induced by continuously distributed dislocations along the crack line in local coordinates bx;byð Þ are calculated
as follows:

σbxbxD bx;byð Þ
σbybyD bx;byð Þ
σbxbyD bx;byð Þ

26664
37775 ¼ 2μ

π κþ 1ð Þ ∫
a

−a

Gbxbxbx bx;by;bξ� �
Gbybxbx bx;by;bξ� �

Gbxbyby bx;by;bξ� �
Gbybyby bx;by;bξ� �

Gbxbxby bx;by;bξ� �
Gbybxby bx;by;bξ� �

266664
377775

Bbx bξ� �
Bby bξ� �

264
375dbξ: (4)
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Equation (4) gives a set of singular integral equations with Cauchy kernels, which can be solved using Gauss‐

Chebyshev numerical quadrature. The dislocation densities Bk
bξ� �

are determined accounting for boundary conditions.

The first condition is that the crack surfaces are traction free. Secondly, the stresses on the external boundaries are equal
to the subjected boundary loads. Finally, the displacement jumps at the crack tips are equal to zero, and the gradient

fields at this points are singular. Once having computed Bk
bξ� �

, the strain at arbitrary points is calculated assuming

plane stress conditions.
A rectangular plate is introduced as a cut‐out from an infinite elastic domain, with dislocations distributed along the

intended boundary. The additional equation for the corners is that the values of the dislocation densities are equal for
both edges involved.
3 | KINKED CRACK AND NOTCH DETECTION AND PARAMETER
IDENTIFICATION
3.1 | Numerical verifications

First verifications have been carried out numerically. The strain εij(Pm) is “measured” at points Pm representing the posi-
tions of virtual strain gauges aligned along the edges of a rectangle with corner coordinates x; yð Þ and ex ;eyð Þ.

The first example is a finite plate (30 mm × 30 mm) with kinked crack and the strain εij(Pm) emerging from the dis-

tributed dislocation technique at Pm(m = 1,…, 12) measuring points, x að Þ; y að Þ
� �

¼ 1; 29ð Þ mm, ex að Þ; ey að Þ
� �

¼ 29; 1ð Þ
mm, as shown in Figure 2 (left). The second example is a finite plate (200 mm × 200 mm) with two notches. The strain

εij(Pm) of the direct problem emerges from the FEM at Pm(m = 1,…, 12) measuring points, x bð Þ; y bð Þ
� �

¼ 25; 154ð Þ mm,

ex bð Þ; ey bð Þ
� �

¼ 175; 46ð Þ mm, as shown in Figure 2 (right). The inverse problem in both cases is solved based on the dis-

location technique.
The “unknown” parameters from the inverse problem solution based on a genetic algorithm19 are given in Table 1.

The nine parameters have successfully been determined by the solution of the inverse problem assuming a kinked
crack, see Table 1 (left) and two notches, see Table 1 (right) in a finite plate. The SIFs KI and KII have been calculated
subsequently based on the identified parameters.
FIGURE 2 Left: Finite plate 30 mm × 30 mm with kinked crack under boundary loads σij; ij ¼ xx; yy; xy ;Pm(m = 1,…, 12) measuring

points and x að Þ; y að Þ
� �

¼ 1; 29ð Þ mm, ex að Þ; ey að Þ
� �

¼ 29; 1ð Þ mm; right: finite plate 200 mm × 200 mm with two notches under boundary

load σyy ;Pm(m = 1,…, 12) measuring points and x bð Þ; y bð Þ
� �

¼ 25; 154ð Þ mm, ex bð Þ; ey bð Þ
� �

¼ 175; 46ð Þ mm



TABLE 1 Left: Results of the crack detection and parameter identification, see Figure 2 (left), FI;II ¼ KI;II= σyy
ffiffiffiffiffiffiffiffi
πa1

p� �
; right: results of the

notch detection and parameter identification, see Figure 2 (right)

Parameters Given Identified Parameters Given Identified

σxx MPa½ � 30 30.00 σyy MPa½ � 20 20

σyy MPa½ � 90 90.00 a1[mm] 30 30.45

σxy MPa½ � 20 19.99 a2[mm] 20 20.07

a1[mm] 2 2.02 x1[mm] 90 90.45

a2[mm] 3 3.01 y1[mm] 120 120.09

x1[mm] 15 15.00 x2[mm] 120 119.5

y1[mm] 10 9.99 y2[mm] 80 79.99

α1[°] 30 30.34 α1[°] 40 40.13

α2[°] 45 44.15 α2[°] 20 19.63

F I(+) 0.4305 0.4306

F I(−) 0.8598 0.8593

F II(+) 0.1920 0.2051

F II(−) 0.3931 0.3998

FIGURE 3 Plate 200 mm × 200 mm × 8 mm (AL‐7075) with a notch under boundary load σyy and 12 strain gauges

TABLE 2 Results of the notch detection and parameter identification, see Figure 3

Parameters Given Identified

σyy MPa½ � 18.57 20.44

a [mm] 15 13.72

x [mm] 80 77.24

y [mm] 80 77.28

α [°] 40 36.79
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3.2 | Experimental verifications

Besides numerical simulations, real hardware experiments have been performed. Here, loading σyy, notch length 2a,
notch inclination α, and the position of the notch (x; y) are used as testing parameters. We consider a notch in an
Al‐7075‐plate as shown in Figure 3. The strain εij(Pm) is measured using strain gauges at points Pm(m = 1,…, 12). The
positions of the strain gauges are given in Figure 2 (right). Table 2 shows the obtained experimental results.

4 | CONCLUSIONS

In this work, the concept of distributed dislocations is applied for the detection of cracks or notches and the calculation
of SIFs in finite plate structures, where shapes and numbers of cracks have to be known a priori. The method was ver-
ified numerically for a finite plate with kinked crack and a finite plate with notches, and experimentally for a plate with
a notch. The cracks or notches and loading parameters could be successfully determined by the solution of the inverse
problem. In the numerical verification, the input strain data to solve the inverse problem for a finite plate with a kinked
crack emerge from the distributed dislocation technique whereas for the finite plate with two notches, the strain data
emerge from the FEM. In the real experiment, strain gauges are used to measure the strain at the surface of a plate
made of Al‐7075.
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