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Abstract

A Laurent-Puiseux series

∞∑
n=n0

an(z − z0)n/k (an ∈ K, k ∈ N, n0 ∈ Z), (1)

where k denotes the corresponding Puiseux number and K an infinite computable field 1, is
mainly characterized by the general coefficient an. We consider the case where an is a term of
an m-fold hypergeometric sequence. That is an+m = r(n)an, for all sufficiently large integers n,
r(n) is a rational function over K, and m is a positive integer. A Laurent-Puiseux series with
an m-fold hypergeometric sequence as general coefficient is said to be of hypergeometric type,
with type m. We call hypergeometric type function any expression (mostly meromorphic) that
can be written as a hypergeometric type series.

To find the general coefficient in (1) of a given hypergeometric type function, three key steps
are to be considered [Koepf, 1992]. Given an expression f ,

1. find a holonomic differential equation (DE) satisfied by f ;

2. deduce a holonomic recurrence equation (RE) satisfied by the Taylor coefficients of f ;

3. find all m-fold hypergeometric term solutions of the obtained RE.

Last but not least, the series representation is handled by determining the linear combina-
tion of all the resulting hypergeometric type series provided some initial values using Taylor
approximation of suitable order.

The understanding of these three steps is essential for our work. In [Koepf, 1992], Koepf
described the first two steps for getting holonomic recurrence equations of any given hypergeo-
metric type function. But the third step was not complete as he considered three sub-families of
hypergeometric type functions: exp-like functions, rational functions, and the functions whose
recurrence equation obtained in step 2 is a two-term recurrence relation. In this thesis, we
clearly solve the third step and develop a complete algorithm to compute power series of linear
combinations of hypergeometric type functions by using a new algorithm which finds all m-fold

1Mostly K := Q(α1, . . . , αn) is the field of rational functions in several variables
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hypergeometric term solutions of holonomic recurrence equations. Also, we investigate an
algorithm to represent power series of non-holonomic and non-hypergeometric type functions
like tan(z), 1−tan(z)

1+tan(z)
, z

exp(z)−1
, arctan(z)

1+z
, exp(z2 + z), etc.

In addition, we confirm the asymptotically fast behavior of an algorithm based on holonomic
recurrence equations to compute Taylor expansions of holonomic functions (see [Koepf, 2006,
Chapter 10]), and present some interesting results for the automatic proof of certain identities
that are generally difficult to prove (see [Koepf, 2006, Chapter 9]) like

1 + tan(z)

1− tan(z)
= exp

(
2 arctanh

(
sin(2z)

1 + cos(2z)

))
by characterizing non-holonomic functions with non-linear recurrence equations and some initial
values.

Our implementations are done in the computer algebra system (CAS) Maxima 5.37.2
[Schelter, 2013], and regrouped in our package FPS. The CAS Maple is also used for com-
parison in order to show the improvement given by our algorithms and their implementations.
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Chapter 1

Introduction

The applicability of complex analysis is essentially restricted to analytic functions, since it
easily allows both differentiation and integration. These functions are represented by power
series with positive radius of convergence. Power series are used to represent orthogonal
polynomials [Koepf and Schmersau, 1998]; in combinatorics, generating functions are power
series [Stanley, 2011]; in dynamical systems, algebraic properties of power series involve most of
the constructions (see [Lubin, 1994]); we can also enumerate commutative algebra and algebraic
geometry ([Brewer, 2014], [Zariski and Samuel, 1960, Chapter VII]). It is therefore important
to know the exact general coefficient or formula of a power series. There is no algorithm which
computes the power series of any given analytic function. We classify series with a certain
common property, and build an algorithm which will always find the power series representation
from an analytic expression, whenever possible. It is important to notice the word "expression",
because we are not considering complex functions as abstract objects defined in a certain domain
and its range, but instead as a differentiable object that we can manipulate symbolically to
characterize its Taylor coefficients by a certain type of linear recurrence equation. Moreover, by
the unique power series characterization, this approach does not only lead to the verification of
known identities, but also to the discovery of new ones.

Let K be a field of characteristic zero and (an)n∈Z, an ∈ K, be an m-fold hypergeometric
sequence such that

an+m = r(n)an, ∀n > n0, n0 ∈ Z, (1.1)

where r(n) denotes a rational function in K(n), m ∈ N, and n0 is the first non-zero term
index. m-fold hypergeometric sequences are very useful in summation theory ([Koepf, 2014],
[Koepf and Masjed-Jamei, 2018]). Our first interest is to describe an algorithm which computes
power series (Puiseux series) of the form

∞∑
n=n0

an(z − z0)n/k (an ∈ K, k ∈ N, n0 ∈ Z), (1.2)

such that an is an m-fold hypergeometric term.

1



2 Introduction

In 1992, Koepf published an algorithmic approach for computing power series [Koepf, 1992].
The algorithm was implemented in the computer algebra systems (CAS) Maple [Heck, 2003]
and Mathematica [Wolfram, 2003]. In his original approach, Koepf considered three types of
functions: two-term recurrence relation type which corresponds to expressions leading to a linear
recurrence equation equivalent to (1.1). That is

Qnan+m + Pnan = 0, n ∈ Z, (1.3)

where Qn, Pn are polynomials in K[n]. The second type called exp-like, corresponding to
expressions leading to linear recurrence equations with constant coefficients in K. And the third
type with a completely different approach based on partial fraction decomposition corresponding
to rational functions in K(z). All gathered in the Maple and Mathematica packages FPS could
already recover the power series formulas of a wide family of analytic functions.

Note that in the rational function case, the algorithm can still find a linear recurrence equation
satisfied by the general coefficient sought, but the issue was in solving that equation. Furthermore,
it turns out that the general coefficient found for each type used in Koepf’s approach is always
a linear combination of m-fold hypergeometric terms. Therefore, if we could find all m-fold
hypergeometric term solutions of a linear homogeneous recurrence equation, then we could
considerably increase the family of power series computed automatically.

Marko Petkovšek later published an algorithm which finds all hypergeometric (m = 1)
term solutions of linear recurrences [Petkovšek, 1992]. This algorithm was implemented in
Maple by Koepf and in Mathematica by Petkovšek. Petkovšek brilliantly used tools involved in
Gosper’s algorithm (see Chapter 5 in [Koepf, 2014]) in his approach. However, the complexity
of Petkovšek’s algorithm can be very high depending on the degree of polynomial coefficients of
the equation.

In 1999, Mark van Hoeij used a different approach and got a much more efficient algorithm
for the same purpose. Indeed, he considered the local behavior of solution terms, which naturally
decreases the complexity by reducing the number of candidates since hypergeometric term
solutions are built from some factors of the leading and the trailing polynomial coefficients
[Van Hoeij, 1999]. Van Hoeij implemented his algorithm in Maple as LREtools[hypergeomsols].

Note, however, that the Petkovšek and van Hoeij algorithms might only find hypergeometric
term solutions in an extension field of Q, which in certain cases, for m > 1, can be equivalent to
m-fold hypergeometric term solutions in Q. Indeed, the algorithm is implemented to find all
hypergeometric term solutions in Q(α), where α ∈ C\Q; since α is not always explicitly known
in advance, we will often replace extension fields of Q by C. But this has some disadvantages of
simplicity. If we consider the power series of the cosine function at z0 = 0 given by

cos(z) =
∞∑
n=0

(−1)n

(2n)!
z2n, (1.4)

then we observe that its general coefficient satisfies the recurrence equation

(1 + n) (2 + n) an+2 + an = 0. (1.5)
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Using Koepf’s algorithm, the type m = 2 is detected and the formula (1.4) is obtained as a
linear combination of the two 2-fold hypergeometric series involved, provided the initial values
a0 = 1 and a1 = 0.

Using van Hoeij’s algorithm implemented in Maple 2018, with the same initial values, we
find the hypergeometric solution

in

2Γ(n+ 1)
+

(−i)n

2Γ(n+ 1)
, i ∈ C, i2 = −1 (1.6)

which gives the expansion

cos(z) =
∞∑
n=0

(−i)n + in

2Γ(n+ 1)
zn. (1.7)

Therefore thanks to Koepf’s algorithm, Maple treats the cosine case well in Q since the
recurrence equation obtained is a two-term recurrence relation. In general, an issue occurs
with unnecessary algebraic extensions of Q when van Hoeij’s algorithm is used, because it
only looks for hypergeometric term solutions. For example, any linear combination of cos(z)

or sin(z) with an expression having a hypergeometric general coefficient will have a formula
involving (1.6).

> convert(cos(z)+exp(z),FPS);

∞∑
k=0

(
1 + ik

2
+ (−i)k

2

)
zk

k!

> convert(log(1+z)+sin(z),FPS);
∞∑
k=0

(
−(−1)k+1

k + 1
− i · ik+1

2(k + 1)!
+

i · (−i)k+1

2(k + 1)!

)
zk+1

Note, however, that the aim of this thesis is not to find the power series formula with a
simple hypergeometric general coefficient, but to find the formula with the simplest m-fold
hypergeometric general coefficients. Simple here means that the coefficients are not taken
in an extension field of Q whenever there exists an m-fold equivalent over Q. We should
highlight m-fold hypergeometric, because up to now there is no implemented algorithm
able to find such solutions of a linear recurrence equation. And it is worth to have such an
algorithm since in many cases, Maple’s convert1 command fails to find power series of this
type.

> convert(arcsin(z)+cos(z),FPS);

arcsin(z) + cos(z)

> convert(exp(z^2)+log(1+z^3),FPS);

ez
2

+ ln(1 + z3)

1Maple’s convert command uses Koepf’s original approach followed by an invocation of van Hoeij’s algorithm.
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The above Maple failures rely on the incapacity of van Hoeij’s algorithm to detect m-fold
(m > 1) hypergeometric term solutions of so called holonomic recurrence equations, that is
homogeneous linear recurrence equations with polynomial coefficients. Indeed, by using the
Maple package FormalPowerSeries we get the following holonomic recurrence equations.

> RE1:=SimpleRE(arcsin(z)+cos(z),z,a(n));

RE1 :=−n(n3−10n2+21n−22)a(n)+(n−4)2a(n−4)+(n−2)(n3−11n2+39n−41)a(n−2)

+ 2(n+ 1)(n+ 2)(n2 + 4n− 1)a(n+ 2)− 2(n+ 1)(n+ 2)(n+ 3)(n+ 4)a(n+ 4) = 0

> RE2:=SimpleRE(exp(z^2)+log(1+z^3),z,a(n));

RE2 :=− 4(n− 9)2a(n− 9) + 2(n− 13)(n− 7)2a(n− 7)− 4(n− 6)(2n− 15)a(n− 6)

+ 2(n− 7)(n− 5)2a(n− 5) + 2(n− 4)(2n2− 28n+ 107)a(n− 4)− 4(n− 3)(n− 6)a(n− 3)

+(n−2)(n−4)(n−17)a(n−2)+2(n−1)(n−4)2a(n−1)−(n−1)(n−2)(n+1)a(n+1) = 0

Applying van Hoeij’s algorithm to these two recurrence equations yields

> LREtools[hypergeomsols](RE1,a(n),{},output=basis);[
(−i)n

Γ(n+ 1)
,

in

Γ(n+ 1)

]

> LREtools[hypergeomsols](RE2,a(n),{},output=basis);(−1)n

n
,

(
1
2
− i
√

3
2

)n
n

,

(
1
2

+ i
√

3
2

)n
n


which show that the general coefficients of arcsin(z) in RE1 and the one of exp(z2) in RE2 are
missed.

Although some algorithms for computing m-fold hypergeometric term solutions of holo-
nomic recurrence equations have been described, none of them is implemented. For example,
in [Cluzeau and van Hoeij, 2006] and [Van Hoeij, 1999] an algorithm using linear operators is
developed, but the described approach needs non-commutative factorization for its implementa-
tion. In our approach however, non-commutative algebra is not needed. We will use a different
view of holonomic recurrence equations and develop a new algorithm to detect all their m-fold
hypergeometric term solutions. Thus with the Maxima implementation of this thesis, the issue
with m-fold hypergeometric term solutions of holonomic recurrence equations is completely
solved as the use of our Maxima package demonstrates below.

(%i1) RE1:FindRE(asin(z)+cos(z),z,a[n]);
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(%o1) − 2 · (1 + n) · (2 + n) · (3 + n) · (4 + n) · an+4 + 2 · (1 + n) · (2 + n) ·(
−1 + 4 · n+ n2

)
· an+2 − n ·

(
−22 + 21 · n− 10 · n2 + n3

)
· an

+ (n− 2) ·
(
−41 + 39 · n− 11 · n2 + n3

)
· an−2 + (n− 4)2 · an−4 = 0

(%i2) mfoldHyper(RE1,a[n]);

(%o2)

[[
2,

{
(−1)n

(2 · n)!
,

4n · n!2

n2 · (2 · n)!

}]]
(%i3) RE2:FindRE(exp(z^2)+log(1+z^3),z,a[n]);

(%o3) − (n− 2) · (n− 1) · (1 + n) · an+1 + 2 · (n− 4)2 · (n− 1) · an−1

+ (n− 17) · (n− 4) · (n− 2) · an−2 − 4 · (n− 6) · (n− 3) · an−3

+ 2 · (n− 4) ·
(
107− 28 · n+ 2 · n2

)
· an−4 + 2 · (n− 7) · (n− 5)2 · an−5

− 4 · (n− 6) · (2 · n− 15) · an−6 + 2 · (n− 13) · (n− 7)2 · an−7

− 4 · (n− 9)2 · an−9 = 0

(%i4) mfoldHyper(RE2,a[n]);

(%o4)

[[
1,

{
(−1)n

n

}]
,

[
2,

{
1

n!

}]
,

[
3,

{
(−1)n

n

}]]
(%i5) FPS(asin(z)+cos(z),z,n);

(%o5)

(
∞∑
n=0

(2 · n)! · z1+2·n

(2 · n+ 1) · 4n · n!2

)
+
∞∑
n=0

(−1)n · z2·n

(2 · n)!

(%i6) FPS(exp(z^2)+log(1+z^3),z,n);

(%o6)

(
∞∑
n=0

(−1)n · z3·(1+n)

n+ 1

)
+
∞∑
n=0

z2·n

n!

Another important issue that we solve is the step which consists in deducing, when it exists,
the correct linear combination of m-fold hypergeometric term solutions of a holonomic recur-
rence equation. Let P0(z), P1(z), . . . , Pd(z) be d+ 1 polynomials in K(z), and f1(z), . . . , fd(z)

some analytic expressions that have m-fold hypergeometric term coefficients in their power
series expansions. More generally, our algorithm handles formal series formulas of expressions
of the form

P0(z) +
d∑
j=1

Pj(z)fj(z). (1.8)

The output of such an input is of course a linear combination of hypergeometric type
series, plus a polynomial which might be zero. If the correct linear combination of m-fold
hypergeometric term solutions of the corresponding linear recurrence equation is not found,
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then the output might be missed. This happens sometimes with Maple for the hypergeometric
(m = 1) case. For example, Maple gives

> convert((z+z^2+1)*exp(z)+(z^3+3)*log(1+z),FPS);

(z + z2 + 1)ez + (z3 + 3) ln(z + 1)

> convert(1+z+z^2+z^3*arctan(z),FPS);

1 + z + z2 + z3 · arctan(z)

whereas our algorithm yields correctly

(%i7) FPS((z+z^2+1)*exp(z)+(z^3+3)*log(1+z),z,n);

(%o7)
8 · z3

3
+ z2 + 5 · z + 1

+

( ∞∑
n=0

−
(
−68− 117 · n− 61 · n2 − 13 · n3 − n4 − (−1)n · (4 + n)! + 2 · n · (−1)n · (4 + n)!

)
· z4+n

(n+ 1) · (n+ 4) · (4 + n)!

)
(1.9)

(%i8) FPS(1+z+z^2+z^3*atan(z),z,n);

(%o8)

(
∞∑
n=0

(−1)n · z2·n

2 · n− 3

)
+ z +

4

3

Note that for these two latter examples van Hoeij’s algorithm finds the corresponding
hypergeometric terms

> LREtools[hypergeomsols](SimpleRE((z^2+z+1)*exp(z)+(z^3+3)
> *log(1+z),z,a(n)),a(n),{},output=basis);[

(−1)n(2n− 9)

(n− 3)n
,

(n2 + 1)

Γ(n+ 1)

]
> LREtools[hypergeomsols](SimpleRE(1+z+z^2+z^3*arctan(z),
> z,a(n)),a(n),{},output=basis);[

in

n− 3
,

(−1)n

n− 3

]

but the power series terms are missed by the Maple command convert. We mention that this
issue is not related to an argument of convert which has to be specified, in particular the order of
the differential equations involved in the computations. Indeed the default value used for the
upper bound of the differential equations sought for power series computations is 4. However,
using our Maxima procedure HolonomicDE which also implements the same Koepf’s algorithm
to compute holonomic differential equations, one finds the following differential equations of
order less than 4.
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(%i9) HolonomicDE((z+z^2+1)*exp(z)+(z^3+3)*log(1+z),F(z));

(%o9) (1 + z) ·
(
63 + 99 · z − 18 · z2 − 84 · z3 − 9 · z4 + 33 · z5 + 4 · z6 − 2 · z7 + z8 + z9

)
·
(
d3

d z3
· F (z)

)
−
(
36 + 27 · z − 171 · z2 − 222 · z3 + 54 · z4 + 147 · z5 + 39 · z6 + 14 · z8 + 9 · z9

+ z10
)
·
(
d2

d z2
· F (z)

)
+
(
− 162− 441 · z − 441 · z2 − 15 · z3 + 186 · z4 + 42 · z5 − 8 · z6

+ 51 · z7 + 35 · z8 + 5 · z9
)
·
(
d

d z
· F (z)

)
− 3 ·

(
−1− z + z2

)
·
(
− 42− 42 · z

+ 18 · z2 + 55 · z3 + 52 · z4 + 22 · z5 + 3 · z6
)
· F (z) = 0

(%i10) HolonomicDE(1+z+z^2+z^3*atan(z),F(z));

(%o10) z ·
(
1 + z2

)
·
(
3 + 2 · z + 4 · z2 + 2 · z3

)
·
(
d2

d z2
· F (z)

)
− 2 ·

(
3 + 3 · z + 8 · z2 + 6 · z3 + 4 · z4 + 3 · z5

)
·
(
d

d z
· F (z)

)
+ 6 ·

(
1 + z + 2 · z2 + z4

)
· F (z) = 0

Therefore we can say that the reason why Maple’s command convert cannot find the power
series formulas of (1 + z+ z2) exp(z) + (z3 + 3) log(z) and 1 + z+ z2 + z3 arctan(z) is that the
linear combinations of hypergeometric term solutions of the corresponding holonomic recurrence
equations are missed.

As observed with the previous computations, our implementation is written in the CAS
Maxima whose internal command powerseries dedicated to power series computations is rather
limited. Indeed, this command is based on a pattern matching instead of algorithmic model. The
syntax is powerseries(expr,z,z0) that calculates the power series formula of expr with respect to
the variable z at the point of development z0. Below are some examples showing certain arising
issues with the command powerseries that are solved by our implementation.

• Power series written as a square of a power series.

(%i11) powerseries(asin(z)^2,z,0);

(%o11)

(
∞∑

i1=0

genfact (2 · i1 − 1, i1 , 2) · z1+2·i1

(2 · i1 + 1) · genfact (2 · i1 , i1 , 2)

)2

(%i12) FPS(asin(z)^2,z,n);

(%o12)
∞∑
n=0

4n · n!2 · z2+2·n

(n+ 1) · (1 + 2 · n)!

• Non-classical power series not detected.



8 Introduction

(%i13) powerseries((1-sqrt(1-4*z))/2,z,0);

(%o13) powerseries

(
1−
√

1− 4 · z
2

, z, 0

)
(%i14) FPS((1-sqrt(1-4*z))/2,z,n);

(%o14)
∞∑
n=0

(2 · n)! · z1+n

(n+ 1) · n!2

(%i15) powerseries(asech(z),z,0);

(%o15)
∞∑

i1=0

zi1 ·
(

di1

d zi1
· asech (z)

∣∣∣
z=0

)
i1 !

(%i16) FPS(asech(z),z,n);

(%o16)

(
∞∑
n=0

−4−1−n · (1 + 2 · n)! · z2+2·n

(1 + n)2 · n!2

)
− log (z) + log (2)

Observe that despite the general rule used for this latter example, the output given by
powerseries is wrong since the logarithmic term log(z) does not allow the computations
of derivatives at 0.

• Power series written as multiplication of two power series.

(%i17) powerseries(exp(z)*cos(z),z,0);

(%o17)

(
∞∑

i4=0

zi4

i4 !

)
·
∞∑

i4=0

(−1)i4 · z2·i4

(2 · i4 )!

(%i18) FPS(exp(z)*cos(z),z,n);

(%o18)

(
∞∑
n=0

− (−1)n · 4n · z3+4·n(
1
4

)
n
·
(

3
4

)
n
· (2 · n+ 1) · (4 · n+ 1) · (4 · n+ 3) · 64n · (2 · n)!

)

+

(
∞∑
n=0

(−1)n · 4n · z1+4·n(
1
4

)
n
·
(

3
4

)
n
· (4 · n+ 1) · 64n · (2 · n)!

)

+
∞∑
n=0

(−1)n · 4n · z4·n(
1
4

)
n
·
(

3
4

)
n
· 64n · (2 · n)!

• A bug due to the involvement of complex numbers in the expansion.

(%i19) powerseries(log(1+z+z^2),z,0);

sign: argument cannot be imaginary; found %i

– an error. To debug this try: debugmode(true);
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(%i20) FPS(log(1+z+z^2),z,n);

(%o20)
∞∑
n=0

−
2 · cos

(
2·π·(1+n)

3

)
· z1+n

n+ 1

In this example the general coefficient is deduced as the real part of a hypergeometric
term solution in C (extension field of Q involving i and some irrational numbers) of the
corresponding linear recurrence equation.

On the other hand, some expressions like tan(z), sec(z), csc(z), etc. do not lead to linear
recurrence equations, although they are analytic in certain domains. Therefore, we should
investigate their power series computation. For that purpose, in this dissertation we consider two
approaches.

Our second approach is to follow the same procedure as Koepf, but this time, instead of
looking for a linear differential equation, we look for quadratic ones. For example, for the tangent
function, one can find the homogeneous differential equation

d2

d z2
· F (z)− 2 · F (z) ·

(
d

d z
· F (z)

)
= 0, (1.10)

which after the use of the Cauchy product rule, will lead to the recurrence equation

(1 + n) · (2 + n) · an+2 − 2 ·
n∑

k=0

(k + 1) · ak+1 · an−k = 0 (1.11)

for the corresponding Taylor coefficients. And finally, the power series can be given by a formula
depending on two initial values.

Note, however, that this approach often gives rather complicated outputs. For example in the
sec(z) case, we will find the recurrence equation

−
n∑
k=0

((
2− 2 · k2

)
· ak+1 + (2 · k + 2) · ak+1 · n

)
· an−k+1

+
(
ak +

(
−k2 − 3 · k − 2

)
· ak+2

)
· an−k = 0 (1.12)

The best thing to do would definitely be to "solve" the recurrence equation, but despite the fact
that solutions can still be unpractical for computing power series, we intend to algorithmically
find simple recursive formulas for the general coefficient. Observe that the formulas

tan(z) =
∞∑
n= 1

(−1)n−1 22n (22n − 1)B2n z
2n−1

(2n)!
, (1.13)

sec(z) =
∞∑
n=0

(−1)nE2nz
2n

(2n)!
, (1.14)

are not explicit because of the unknowns Bn and En which represent, respectively, Bernoulli and
Euler numbers. Those numbers themselves satisfy rather complicated non-holonomic recurrence
equations.
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In our third approach, we extend our algorithm of m-fold hypergeometric (hypergeometric
type) series. Here we consider reciprocals of formal power series and build an algorithm which
can compute reciprocals of power series of some analytic expressions. Using Cauchy’s product
rule, some other power series are also deduced.

(%i21) FPS(tan(z),z,n);

(%o21)

[
∞∑
n=0

(
n∑
k=0

Ak · (−1)n−k

(1− 2 · k + 2 · n)!

)
· z1+2·n, Ak =

k∑
j=1

−(−1)j · Ak−j
(2 · j)!

, A0 = 1

]
(%i22) FPS(sec(z),z,n);

(%o22)

[
∞∑
n=0

An · z2·n, An =
n∑
k=1

−(−1)k · An−k
(2 · k)!

, A0 = 1

]
Furthermore, besides our main results, there are some other interesting ones involved in this

work. Indeed, we have got some improvement toward the decision making on the equality of two
analytic functions in a certain neighborhood, and the importance of such a study is well-known
in computer algebra [Petkovšek et al., 1996]. Using our approach based on finding quadratic
differential equations to represent the power series of non-holonomic functions, we are able to
automatically prove identities like

1 + tan(z)

1− tan(z)
= exp

(
2 · arctanh

(
sin(2z)

1 + cos(2z)

))
, |z| < 1, (1.15)

which cannot be recognized without using non-trivial transformations (see [Koepf, 2006, Chapter
9]). Indeed, computing quadratic differential equations for both sides yields two compatible2

differential equations as shown below.

(%i23) DE1:QDE((1+tan(z))/(1-tan(z)),F(z),Inhomogeneous);

(%o23)
d

d z
· F (z)− F (z)2 − 1 = 0

(%i24) DE2:QDE(exp(2*atanh(sin(2*z)/(1+cos(2*z)))),F(z));

(%o24) F (z)·
(
d3

d z3
· F (z)

)
−3·

(
d

d z
· F (z)

)
·
(
d2

d z2
· F (z)

)
+4·F (z)·

(
d

d z
· F (z)

)
= 0

(%i25) CompatibleDE(DE1,DE2,F(z));

The two differential equations are compatible

(%o25) true

Moreover, our FPS algorithm simplifies the difference to zero in a neighborhood of 0.

(%i26) FPS((1+tan(z))/(1-tan(z))

-exp(2*atanh(sin(2*z)/(1+cos(2*z)))),z,n);

(%o26) 0

2Two differential equations are said to be compatible if every solution of the lower order DE is solution of the
other.
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We have also obtained an algorithm for asymptotically fast computation of Taylor expansions
of large order for holonomic functions. This is a result already observed in [Koepf, 2006],
Section 10.27. We have implemented a Maxima function named Taylor with the same syntax
as taylor(f,z,z0,d) which computes the Taylor expansion of order d of f(z). And it turns out as
expected that our Taylor command is clearly asymptotically faster than taylor for holonomic
functions. As an example we have:

(%i27) taylor(sin(z)^2,z,0,10);

(%o27)/T/z2 − z4

3
+

2 · z6

45
− z8

315
+

2 · z10

14175
+ · · ·

(%i28) Taylor(sin(z)^2,z,0,10);

(%o28)
2 · z10

14175
− z8

315
+

2 · z6

45
− z4

3
+ z2

that illustrates the coincidence between both outputs. Testing the efficiency for large order gives:

(%i29) taylor(sin(z)^2,z,0,1000)$

Evaluation took 15.8500 seconds (19.6100 elapsed)

(%i30) Taylor(sin(z)^2,z,0,1000)$

Evaluation took 1.8300 seconds (1.8900 elapsed)

which shows that, asymptotically, our Taylor command takes just about a fraction of Maxima’s
internal taylor computation timing for sin(z)2.

The next chapters are organized as follows.

In the second chapter, we give some basic notions about power series followed by the
mathematics that governs the algorithmic development for the computation of power series in
computer algebra.

The third chapter is devoted to some symbolic computations with Maxima, which will allow
us to introduce those Maxima commands needed toward the implementation of our algorithms.

Chapter 4 describes the two first steps in Koepf’s algorithm: computing holonomic differential
equations and holonomic recurrence equations. In this chapter, we add some linear algebra tricks
in order to gain more efficiency in the process of getting holonomic differential equations. This
chapter ends with the description of our asymptotically fast algorithm for computing Taylor
expansions of holonomic functions.

The fifth chapter focuses on the original Petkovšek algorithm, which is essential for the two
following chapters.

In Chapter 6, we discuss van Hoeij’s algorithm and present a version similar to his approach.
As we will see, the efficiency obtained is the same, and moreover our algorithm gives outputs
without Γ symbols, which is an advantage for the computation of power series.
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Chapter 7 is devoted to our most important result, which is to present a complete algorithm
to find all m-fold hypergeometric term solutions of linear recurrence equations with polynomial
coefficients.

Finally, in Chapter 8, we complete Koepf’s algorithm with our m-fold hypergeometric
procedure. We will see in this chapter how our algorithm handles the Puiseux representation
(1.2) for a given expression. We also present an extension to asymptotic expansions that is
unfortunately reduced by the capabilities of Maxima in computing limits. Nevertheless, some
known examples are well computed.
We will also present some algorithmic approaches that extend our algorithm to the computation
of power series whose representations are close to those of hypergeometric expressions.
Furthermore, in Chapter 8 we will generalize Koepf’s algorithm to quadratic differential equations
in order to represent non-holonomic functions. This part is another main contribution of our
work.

All the algorithms are implemented in our Maxima package FPS which is an essential part of
this thesis.



Chapter 2

Power Series

Algebraically speaking, power series are a particular case of formal power series. This refers
to the essence of series as a sequence of numbers in a certain field [Droste and Kuich, 2009,
Semirings and formal power series, pages 3-28]. Hence the ignorance of any notion about
convergence while regarding series as abstract objects that characterize a ring. This means that
they can be manipulated algebraically without even existing analytically. And this is not our
concern since we intend to use differentiability of expressions in a suitable field. That is the
reason why the field C of complex numbers is chosen as the main field of our study, though most
of the series expansions have their general coefficients as rational functions over extension fields
of Q. In this chapter, we present the analytic view of power series and their huge gathering in
the generalized hypergeometric series for the need of automatic computing.

2.1 Power Series in Complex Analysis

This section is based on the books [Lelong-Ferrand and Arnaudiès, 1993] (see the Chapters
VII-IX), [Stewart and Tall, 2018].

Definition 2.1. A power series of the variable z (complex in general) is a series whose general

term is of the form anz
n, n ∈ N where (an) denotes a given sequence of complex numbers.

Precisely an is the (n + 1)th coefficient, or coefficient of order n. The first term a0 is usually

called constant term.

Having the definition of a power series, we can look at its convergence.

Lemma 2.1 (Abel’s Lemma). Let z0 ∈ C such that the sequence (anz
n
0 ) is bounded (which is

the case when in particular the series
∑
anz

n
0 is convergent). Then, for all z ∈ C such that

|z| < |z0|, the series
∑
anz

n is absolutely convergent; and this series is normally convergent1 in

the open disc D(0, k|z0|), 0 6 k < 1.

1A series
∑
un(z) is said to be normally convergent if there exists a real series

∑
vn such that ∀n ∈ N,∀z ∈ C,

‖un(z)‖ 6 vn

13
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Thus we can talk about the set of values where we have the convergence for any power series
which by Lemma 2.1 is a disc.

Definition 2.2 (Radius of Convergence). The radius of convergence of a power series
∑
anz

n

is the supremum in R+ of the set of positive real numbers r satisfying that (anr
n) is bounded.

Theorem 2.1. Let R be the radius of convergence of the power series
∑
anz

n, (0 6 R 6∞)

1. If R = 0, this series converges only for z = 0.

2. If R =∞, this series converges absolutely for any z ∈ C. And this convergence is normal,

so uniform in any bounded subset of C.

3. If 0 < R <∞, the series is absolutely convergent for |z| < R, and divergent for |z| > R.

Moreover this series converges normally (so uniformly) in any disc D(0, r), for any r < R.

For R 6= 0, the open disc D(0, R) is called disc of convergence of the series.

Proposition 2.1 (Hadamard Formula). The radius of convergence of the power series
∑
anz

n is

the real number R defined by

R =
1

lim sup
n−→∞

|an|1/n
. (2.1)

In practice, we often use the following D’Alembert approach.

Proposition 2.2. Given a power series
∑
anz

n and assuming that the sequence
∣∣∣∣an+1

an

∣∣∣∣ is

convergent, then we have the radius of convergence R verifying

R =
1

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ . (2.2)

Example 2.1. Whatever the polynomial P ∈ C[z] \ {0}, the radius of convergence of the power

series
∑
P (n)zn is equal to 1 since P (n+1)

P (n)
tends to 1 when n→∞.

It is easy to compute the derivative of a power series in its disc of convergence termwise.
Moreover its derivative is also a power series.

Definition 2.3. Let
∑
anz

n be a power series whose radius of convergence R is not 0. Then the

sum
∑∞

n=0 anz
n is a holomorphic function (differentiable in C) of z in its disc of convergence,

and in that disc, we have

f ′(z) =
∞∑
n=1

nanz
n−1. (2.3)

Proof. A part of the proof is to show that (2.3) holds (see [Lelong-Ferrand and Arnaudiès, 1993,
Chapter IV]). We assume it to be true and we show that the radii of convergence coincide. If we
denote by R, R′ the radius of convergence of the series

∑
anz

n and
∑
nanz

n−1, then we have

R′ =
1

lim sup
n→∞

|nan|1/n
=

1

lim sup
n→∞

|an|1/n
= R,
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since (n1/n) −→ 1 as n→∞.

The sum and the product of two power series gives power series with radius of convergence
at least equal to the smallest of their radii of convergence. Moreover, one can construct the ring
of power series (hence the computation of the reciprocal of some power series). Other used
operations for power series is the composition and the integration of power series.

The case of product of power series leads to some important formulas. Considering two
power series

∑
anz

n and
∑
bnz

n, the resulting product has the general term

cnz
n =

(
n∑
k=0

akbn−k

)
zn. (2.4)

This relation helps to compute many cases of power series. For instance, let |z| < 1, we know
that

1

1− z
=
∞∑
n=0

zn, (2.5)

we can deduce

1

(1− z)2
=
∞∑
n=0

(
n∑
k=0

1

)
zn =

∞∑
n=0

(n+ 1)zn =
∞∑
n=0

(
n+ 1

1

)
zn,

1

(1− z)3
=
∞∑
n=0

(
n∑
k=0

(k + 1)

)
zn =

∞∑
n=0

(n+ 1)(n+ 2)

2
zn =

∞∑
n=0

(
n+ 2

2

)
zn.

We can even generalize for any power p ∈ N by using Pascal’s triangle. And then we obtain

1

(1− z)p
=
∞∑
n=0

(
n+ p− 1

p− 1

)
zn. (2.6)

This formula is generalized for any real α ∈ R as

(1 + z)α =
∞∑
n=0

(
α

n

)
zn. (2.7)

We will like to emphasize the above example to mention how the power series of rational
functions are computed in general. A common tool used to find their expansions is the partial
fraction decomposition. Indeed, since C is an algebraically closed field, we can always split
any polynomial in the denominator and use (2.5) with initial values to compute a valid power
series. Remark that this is already an algorithmic procedure for rational functions, which is also
incorporated in the Maple command convert. Nevertheless, although C is an algebraically closed
field, it is not generally possible to factorize polynomial expressions in Computer Algebra over
C. Moreover, even when the factorization is available, in some cases the obtained factors can
really be inappropriate for computing power series. More details about this issue will be given in
Chapter 7.

Definition 2.4 (Analytic Function). Let U ⊂ C [resp. U ⊂ R] be an open set. A map

f : U −→ C is said to be analytic in U if for any point z0 ∈ U , the map u 7→ f(z0 + u) can be

expressed as a power series in a neighborhood of the origin in C [resp. R].
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In other words, f is analytic in U if any point z0 ∈ U has a neighborhood in which f(z) can
be expressed as convergent power series of the variable u = z − z0. This expansion coincides
with the Taylor series of f at z0. Moreover we can see that a power series can be identified by its
coefficients as a unique analytic function defined in its disc of convergence.

Proposition 2.3. Let U be an open set of C [resp. R] and f an analytic function in U . Then f is

indefinitely differentiable in U , and around any point z0 ∈ U the representation

f(z) =
∞∑
n=0

1

n!
f (n)(z0)(z − z0)n (2.8)

converges.

From this proposition about analytic functions, one can deduce that Taylor expansions are
convergent power series. Some well known examples are the following.

Example 2.2. (Some Power Series Expansions) Around z0 = 0 we have the following convergent

representations where R denotes the radius of convergence:

ez =
∞∑
n=0

zn

n!
, (R =∞) (2.9)

cos z =
∞∑
n=0

(−1)n
z2n

(2n)!
, (R =∞) (2.10)

sin z =
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
, (R =∞) (2.11)

cosh z =
∞∑
n=0

z2n

(2n)!
, (R =∞) (2.12)

sinh z =
∞∑
n=0

z2n+1

(2n+ 1)!
, (R =∞) (2.13)

(1 + z)α =
∞∑
n=0

α(α− 1) · · · (α− n+ 1)

n!
zn =

∞∑
n=0

(
α

n

)
zn, (R = 1) (2.14)

ln(1 + z) =
∞∑
n=0

(−1)n
zn+1

n+ 1
, (R = 1) (2.15)

arctan z =
∞∑
n=0

(−1)n
z2n+1

2n+ 1
, (R = 1) (2.16)

arctanh z =
∞∑
n=0

z2n+1

2n+ 1
, (R = 1) (2.17)

arcsin z =
∞∑
n=0

(2n)!

22n(n!)2(2n+ 1)
z2n+1, (R = 1), (2.18)

arcsinh z =
∞∑
n=0

(−1)n
(2n)!

22n(n!)2(2n+ 1)
z2n+1, (R = 1). (2.19)
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Next, let us move on to Laurent series.

We have seen that if f is differentiable in a domain D, and z0 ∈ D, then we can write

f(z) =
∞∑
n=0

an(z − z0)n, (2.20)

for suitable coefficients an, and for z such that |z−z0| < R, for someR > 0. The idea of Laurent
series is to generalize (2.20) to allow negative powers of (z − z0). Observe that, given two
convergent power series f1(z) =

∑∞
n=0 an(z − z0)n and f2(z) =

∑∞
n=n0

bn(z − z0)n, n0 ∈ N>0

such that an0 6= 0, the series

g(z) =
f1(z)

f2(z)
=

1

zn0

∑∞
n=0 an(z − z0)n∑∞

n=0 bn+n0(z − z0)n+n0
, (2.21)

is well defined. Indeed, considering the ring of convergent power series, one can define the
quotient field of it, which turns out to be the field of Laurent series.

Definition 2.5 (Laurent Series). A Laurent series is a series of the form

∞∑
n=−∞

an(z − z0)n. (2.22)

For the convergence, we split (2.22) in two parts and write

∞∑
n=1

a−n(z − z0)−n +
∞∑
n=0

an(z − z0)n = S1 + S2. (2.23)

We have convergence only if S1 and S2 converge. Being familiar with S2, we can say that S2

converges for |z − z0| < R2 for some R2 > 0, where R2 is the radius of convergence of S2. S1

can be recognized as a power series in 1
z−z0 , which has a radius of convergence 1

R1
> 0. In other

words S2 converges when |z − z0| > R1.
Combining these, we see that if 0 6 R1 < R2 6∞, then we have convergence in the annulus

{z ∈ C | R1 < |z − z0| < R2}. (2.24)

Theorem 2.2 (Laurent’s Theorem). Suppose that f is holomorphic in the annulus A = {z ∈ C |
R1 < |z − z0| < R2}, where 0 6 R1 < R2 6∞. Then we can write f as a Laurent series

f(z) =
∞∑
n=1

a−n(z − z0)−n +
∞∑
n=0

an(z − z0)n, ∀z ∈ A. (2.25)

Note that from this theorem we do not know that f is differentiable at z0, because it might
not be. S1 in (2.23) is called the principal part of the Laurent series, and it is unique.

Definition 2.6.

• A singularity of a function f(z) is a point z0 at which f(z) is not differentiable.
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• If there exists a punctured disc 0 < |z − z0| < R such that f is differentiable on this

punctured disc then we say that z0 is an isolated singularity of f . This is an annulus with

R1 = 0.

Here we are interested in isolated singularities where Laurent expansion is valid for 0 <

|z − z0| < R. Depending on the form of the principal part, we define the notion of singularity.

Definition 2.7 (Removable Singularities). Suppose that f has an isolated singularity at z0 and

that the principal part of the Laurent series has no terms. In this case, for 0 < |z − z0| < R we

have

f(z) = a0 + a1(z − z0) + · · ·+ an(z − z0)n + · · · . (2.26)

The radius of convergence of this power series is at least R, and so f(z) extends to a function

that is differentiable at z0.

Example 2.3. As example, for expansions at z0 = 0 one could cite

1

sin(z)
− 1

z
=

z

6
+

7z3

360
+

31z5

15120
+ . . . = 2

∞∑
n=0

(−1)n (22n+1 − 1)B2n+2

(2(n+ 1))!
z2n+1,(2.27)

arcsin (
√
z)√

z
= 1 +

1

6
z +

3

40
z2 + . . . =

∞∑
n=0

(2n)!·
(2n+ 1) 4nn!2

zn, (2.28)

z

exp(z)− 1
= 1− 1

2
z +

1

12
z2 − 1

720
z4 + . . .

=
∞∑
n=0

Anz
n, An =

n∑
k=1

− An−k
(k + 1)!

, A0 = 1 (2.29)

=
∞∑
n=0

Bn

n!
zn, (2.30)

where Bn denotes the nth Bernoulli number.

Definition 2.8 (Poles). Suppose that f has an isolated singularity at z0 and that the principal

part of the Laurent series has finitely many terms. In this case, for 0 < |z − z0| < R, we can

write

f(z) =
a−n0

(z − z0)n0
+ · · ·+ a−1

(z − z0)
+
∞∑
n=0

an(z − z0)n (2.31)

where a−n0 6= 0. And we say that f has a pole of order n0 at z0.
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Example 2.4.

arctan(z)

z4
=

1

z3
− 1

3z
+
z

5
− z3

7
+ . . . =

∞∑
n=0

(−1)n

2n+ 1
z2n−3 (2.32)

cot(z) =
1

z
− z

3
− z3

45
+ . . . =

∞∑
n=0

(−1)n22nB2n

(2n)!
z2n−1 (2.33)

csc(z) =
1

z
+
z

6
+

7 · z3

360
+ . . .

=
∞∑
n=0

Anz
2n−1, An =

n∑
k=1

−(−1)kAn−k
(2k + 1)!

, A0 = 1 (2.34)

= 2
∞∑
n=0

(−1)n−1 (22n−1 − 1)B2n

(2n)!
z2n−1 (2.35)

Functions with removable singularities or poles having a representation of type (2.31) are
gathered in a class of functions called meromorphic functions, that corresponds to analytic
functions having additionally finitely many poles.

Definition 2.9 (Essential Singularities). Suppose that f has an isolated singularity at z0 and

that the principal part of the Laurent series has infinitely many terms. In this case we say that f

has an essential singularity.

A classical example with an essential singularity at z0 = 0 is exp(1/z). The Laurent series is
defined on the annulus {z, 0 < |z| <∞}, and we write

exp

(
1

z

)
= 1 +

1

z
+

1

2z2
+

1

6z3
+ · · · =

∞∑
n=0

1

n!zn
. (2.36)

When there is an essential singularity, the manipulation of power series is quite critic. We will be
dealing with some of them for asymptotic expansions. These particular power series converge
only if the corresponding function is analytic at the point of expansion in a certain region (see
[[Malham, 2005], [Copley, 2015]]). However, divergent asymptotic series have more interest
as they provide meaningful information on the expanded functions [Boyd, 1999]. We will only
consider asymptotic series on the real axis, essentially for expansions at∞. The formal definition
of asymptotic series can be stated as follows (see [Malham, 2005, Section 3.2]).

Definition 2.10 (Asymptotic Sequence). A sequence of scale (sometimes called gauge) functions

(εn(x)), n = 0, 1, . . . is said to form an asymptotic sequence as x→∞, if for all n,

εn+1(x) = o(εn(x)), that is lim
n→∞

εn+1(x)

εn(x)
= 0, (2.37)

as x→∞.

Example 2.5. x−n/k, k ∈ N.
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Definition 2.11 (Asymptotic Expansion). If (εn(x)) is an asymptotic sequence of functions as

x→∞, we say that
∞∑
n=0

anεn(x) (2.38)

where the an are constants, is an asymptotic expansion of f(x) as x→∞ if for each N

f(x) =
N∑
n=0

anεn(x) + o(εN(x)), (2.39)

as x→∞. And we write

f(x) ∼
∞∑
n=0

anεn(x) (x→∞). (2.40)

The coefficients of an asymptotic expansion are uniquely determined by the formulas

a0 = lim
x→∞

f(x)

ε0(x)
(2.41)

aN = lim
x→∞

f(x)−
∑N−1

j=0 ajεi(x)

εN(x)
, N = 1, 2, . . . (2.42)

Among the well known divergent asymptotic expansions, we can cite

x exp(−x)Ei(x) ∼
∞∑
n=0

n!

xn
(x→∞), (2.43)

where Ei(x) :=
∫ x
−∞

exp(−t)
t

dt denotes the exponential integral function;

√
π exp(x)

(
1− erf(

√
x)
)
∼

∞∑
n=0

(−1)n(2n)!

4nn!x1/2+n
(x→∞), (2.44)

where erf(x) := 2√
(π)

∫ x
0

exp(−t2) dt denotes the error function.

Further examples for the convergent case at infinity are

exp

(
1

x

)
=
∞∑
n=0

1

n!xn
, (2.45)

arctan (x) =
π

2
−
∞∑
n=0

(−1)n

(2n+ 1)x2n+1
. (2.46)

A special thing with asymptotic expansions is that a given function can only have one asymp-
totic series. However, knowledge of an asymptotic series does not determine a corresponding
function since different functions can generate the same asymptotic series. That is the case for
exp

(
1
z

)
and exp

(
1
z

)
+ exp (−z) at∞.

Finally let us say some few words about Puiseux series, more details can be found in
([Casas-Alvero, 2000, Newton-Puiseux algorithm, pages 15-38], [Nowak, 2000]). Referring to
the so called Newton-Puiseux theorem, the Puiseux series come as roots of Laurent polynomials
of two variables. In fact, the set of Puiseux series is the algebraic closure of the field of convergent
Laurent series.
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Definition 2.12 (Puiseux Series). A Puiseux series is a series of the form

∞∑
n=n0

an(z − z0)n/k =
∞∑

n=n0

an
k
√

(z − z0)n, (2.47)

where k is a positive integer, and n0 any integer.

In other words, Puiseux series differ from Laurent series in that they allow fractional ex-
ponents of the indeterminate, as long as these fractional exponents have bounded denominator
(here k).

Observe that if f is analytic at z0 ∈ C, then we could have a Laurent series from f by shifting
its power series expansion at z0, say, zn0 ; and we could also have a Puiseux series by substituting
the indeterminate by a fixed fractional power of it, say, z1/k. The two transformations lead to a
Laurent-Puiseux or Puiseux expansion which corresponds to the series expansion of zn0f(z1/k).
Therefore, one sees that our duty of computing a power series expansion, which mainly relies
on the determination of a formula for the general coefficient, is first of all related to convergent
power series. Secondly, the general shifted or fractional power has to be deduced implicitly.

Example 2.6. At z0 = 0 we have

sin(z1/2)

z3
=

∞∑
n=0

(−1)n

(2n+ 1)!
z

2·n−5
2 (2.48)

=
1

z
5
2

− 1

6 · z 3
2

+
1

120 ·
√
z
−
√
z

5040
+

z
3
2

362880
+ . . . (2.49)

sin(z1/2) + cos(z1/4) =
∞∑
n=0

(−1)n

(2n+ 1)!
z

1+2·n
2 +

∞∑
n=0

(−1)n

(2n)!
z
n
2 (2.50)

= 1 +

√
z

2
+

z

24
− 121z

3
2

720
+

z2

40320
+ . . . (2.51)

2.2 Power Series in Computer Algebra

As ended in the previous section, one sees that the Laurent-Puiseux series are mainly charac-
terized by their general coefficients, which can be deduced using changes on the summation
variable and the general power of the indeterminate. It is therefore important to first understand
the case where n0 = 0 and k = 1 in (2.47), as the goal of finding the general coefficient of
a Laurent-Puiseux series can always be reduced to this case. Nevertheless, we will see that
all the properties proved in this section hold for any Laurent-Puiseux series, and in Chapter
8, we will explain how by these properties the Puiseux number and the general coefficient are
algorithmically found. For more details about this section, see [Koepf, 1992]. Without loss of
generality we assume that z0 = 0, and start with a power series of the form

f(z) =
∞∑
n=0

anz
n, an ∈ K, (2.52)
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where K is a field of characteristic zero. The idea of the power series computation is based on
the knowledge about the generalized hypergeometric series [Koepf, 2014].

pFq

(
a1 a2 · · · ap

b1 b2 · · · bq

∣∣∣∣ z
)

:=
∞∑
n=0

(a1)n · (a2)n · · · (ap)n
(b1)n · (b2)n · · · (bq)nn!

zn =
∞∑
n=0

Anz
n. (2.53)

Here (a)n denotes the shifted factorial of a, also called Pochhammer symbol of a, defined as

(a)n :=

 1 if n = 0

a · (a+ 1) · · · (a+ n− 1) if n ∈ N∗
. (2.54)

The coefficients are

An :=
(a1)n · (a2)n · · · (ap)n

(b1)n · (b2)n · · · (bq)nn!
, n = 0, 1, 2, . . . , (2.55)

where the denominator factors are chosen in such a way that they can never be zero. We have

A0 =
(a1)0 · (a2)0 · · · (ap)0

(b1)0 · (b2)0 · · · (bq)00!
= 1, (2.56)

and for n > 0, using the fact that (a)n+1 = (a)n(a+ n) and (n+ 1)! = (n+ 1)n! we have

An+1

An
=

(a1)n(n+ a1) · (a2)n(n+ a2) · · · (ap)n(n+ ap)

(b1)n(n+ b1) · (b2)n(n+ b2) · · · (bq)n(n+ bq)(n+ 1)n!
× (b1)n · (b2)n · · · (bq)nn!

(a1)n · (a2)n · · · (ap)n
,

which gives
An+1

An
=

(n+ a1)(n+ a2) · · · (n+ ap)

(n+ b1)(n+ b2) · · · (n+ bq)(n+ 1)
. (2.57)

When one of the numerator parameters ai is a negative integer, there exists n ∈ N, ai+n = 0,

so the generalized hypergeometric function will have a finite number of coefficients which is
nothing but a polynomial in z (Section 1.4 in [Koekoek et al., 2010]). Otherwise, the radius of
convergence R of the generalized hypergeometric series is given by

R = lim
n→∞

An
An+1

= lim
n→∞

nq+1

np
=


∞ if p < q + 1

1 if p = q + 1

0 if p > q + 1

. (2.58)

Of course the most interesting cases are the cases where R 6= 0.
For the case where R = 1 we have the following examples:

1F0

(
−a
_

∣∣∣∣ − z
)

= 2F1

(
−a b

b

∣∣∣∣ − z
)

=
∞∑
n=0

(−a)n(b)n
(b)nn!

(−z)n

=
∞∑
n=0

(−1)2na · (a− 1) · · · (a− n+ 1)

n!
zn

=
∞∑
n=0

a · (a− 1) · · · (a− n+ 1)

n!
zn

= (1 + z)a. (2.59)
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By remarking that (1)n = 1(1+1) · · · (1+n−1) = n! and (2)n = 2 ·3 · · · (2+n−1) = (n+1)!,
we have

z 2F1

(
1 1

2

∣∣∣∣ − z
)

= z ·
∞∑
n=0

(1)n(1)n
(2)nn!

(−z)n

=
∞∑
n=0

n!n!

(n+ 1)!n!
(−1)nzn+1

=
∞∑
n=0

(−1)n
zn+1

n+ 1

= ln(1 + z). (2.60)

We also have (
1
2

)
n(

3
2

)
n

=
1
2
·
(

1
2

+ 1
)
· · ·
(

1
2

+ n− 1
)

3
2
·
(

3
2

+ 1
)
· · ·
(

3
2

+ n− 1
)

=
1
2
·
(

3
2

) (
3
2

+ 1
)
· · ·
(

3
2

+ n− 2
)

3
2
·
(

3
2

+ 1
)
· · ·
(

3
2

+ n− 2
)
·
(

3
2

+ n− 1
) =

1

2n+ 1
(2.61)

and (
1

2

)
n

=
1

2
·
(

1

2
+ 1

)
· · ·
(

1

2
+ n− 1

)
=

∏n−1
j=0 (2j + 1)

2n
=

∏n−1
j=0 (2j + 1)(2(j + 1))

2n
∏n−1

j=0 2(j + 1)
=

(2n)!

22nn!
(2.62)

which lead to

z 2F1

(
1/2 1/2

3/2

∣∣∣∣ z2

)
= z ·

∞∑
n=0

(
1
2

)
n

(
1
2

)
n(

3
2

)
n
n!

z2n

=
∞∑
n=0

(2n)!

22n(n!)2(2n+ 1)
z2n+1

= arcsin z. (2.63)

One can also show that

z 2F1

(
1/2 1

3/2

∣∣∣∣ − z2

)
= arctan z. (2.64)

For R =∞, we have:

0F0

(
_
_

∣∣∣∣ z
)

= ez, (2.65)

z · 0F1

(
_

3/2

∣∣∣∣ − z2

4

)
= z ·

∞∑
n=0

1(
3
2

)
n
n!

(
−z

2

4

)n
=
∞∑
n=0

(−1)n

4n
(

3
2

)
n
n!
z2n+1

and using the same reasoning as we did for
(

1
2

)
n
, we find that(

3

2

)
n

=
(2n+ 1)!

4nn!
, (2.66)
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which leads to

z · 0F1

(
_

3/2

∣∣∣∣ − z2

4

)
=
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 = sin z. (2.67)

In the same way

0F1

(
_

1/2

∣∣∣∣ − z2

4

)
=
∞∑
n=0

(−1)n

(2n)!
z2n = cos z, (2.68)

and

0F1

(
_

1/2

∣∣∣∣ z2

4

)
=
∞∑
n=0

1

(2n)!
z2n = cosh z. (2.69)

It follows clearly that all the examples given in Example 2.2 can be expressed in generalized
hypergeometric form. Thus one can see that many analytic functions can be written as generalized
hypergeometric series.

The recurrence relation (2.57) is the Recurrence Equation (RE) that characterizes the gen-

eralized hypergeometric series f(z) =
∑∞

n=0 Anz
n. Note that

An+1

An
is a rational function in n.

Generally, having a rational function r(n) =
An+1

An
connects the corresponding function with a

hypergeometric series. Indeed r(n) can be factorized over the algebraic closure of K as

r(n) =
α(n+ a1)(n+ a2) · · · (n+ ap)

β(n+ b1)(n+ b2) · · · (n+ bq)(n+ bq+1)

= c
(n+ a1)(n+ a2) · · · (n+ ap)

(n+ b1)(n+ b2) · · · (n+ bq)(n+ bq+1)
, c =

α

β
,

where the complex numbers α and β (αβ 6= 0) are, respectively, the leading coefficients of
the numerator and the denominator, −bi, i ∈ J1, q + 1K2 are the poles of r and −ai, i ∈ J1, pK
are the zeros of r. If there is some bi = −1 (bq+1 = −1), then the function corresponds to a
hypergeometric series evaluated at some point cz (c being the quotient of the leading coefficients
of the numerator and the denominator of r). Whereas if there is no such bi, the extra factor
(n+ 1) can be compensated by one of the factors (n+ ai) in the numerator by taking ap+1 = −1.

Theorem 2.3. Let

f(z) = pFq

(
a1 a2 · · · ap

b1 b2 · · · bq

∣∣∣∣ z
)

=
∞∑
n=0

Anz
n,

and the differential operators D =
d

dz
and θ = z

d

dz
= zD. Then f satisfies the differential

equation

θ(θ + b1 − 1) · · · (θ + bq − 1)f = z(θ + a1) · · · (θ + ap)f. (2.70)

Proof.

2For l, k ∈ N, l < k we define Jl, kK := {l, l + 1, . . . , k}
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To see how (2.70) is obtained we first remark that

θ(f(z)) = zD

(
∞∑
n=0

Anz
n

)
= z

∞∑
n=1

nAnz
n−1 =

∞∑
n=0

nAnz
n

and for j > 1, assuming θj(f(z)) =
∑∞

n=0 n
jAnz

n implies

θj+1(f(z)) = zD

(∑
n>0

njAnz
n

)
= z

∞∑
n=1

nj+1Anz
n−1 =

∞∑
n=0

nj+1Anz
n.

So by induction we have

θj(f(z)) =
∞∑
n=0

njAnz
n, j ∈ N. (2.71)

Thus for any polynomial T we can state by linearity that

T (θ)(f(z)) =
∞∑
n=0

T (n)Anz
n. (2.72)

From the recurrence relation of the generalized hypergeometric series (2.57) we have

An+1Q(n) = AnP (n), n ∈ N>0 (2.73)

where

Q(n) = (b1 + n) · · · (bq + n)(n+ 1), and P (n) = (a1 + n) · · · (ap + n), (2.74)

and therefore,
∞∑
n=0

An+1(b1 + n) · · · (bq + n)(n+ 1)zn+1 =
∞∑
n=0

(a1 + n) · · · (ap + n)Anz
n+1. (2.75)

We first work on the left hand side. Setting j = n+ 1, this is equivalent to

∞∑
n=0

An+1(b1 + n) · · · (bq + n)(n+ 1)zn+1 =
∞∑
j=1

Aj(j + b1 − 1) · · · (j + bq − 1)jzj,

and according to (2.74), each coefficient gives

Aj(j + b1 − 1) · · · (j + bq − 1)j = Q(j − 1)Ajz
j.

Thus,
∞∑
j=1

Aj(j + b1 − 1) · · · (j + bq − 1)j =
∞∑
j=1

Q(j − 1)Ajz
j

= Q(θ − 1) (f(z)− A0) from (2.72)

= θ(θ + b1 − 1) · · · (θ + bq − 1)f(z),

where the last line comes from the substitution of n by θ − 1 in Q(n) in (2.74). Notice that
Q(θ − 1)A0 = 0 since Q is a polynomial whose lowest monomial degree is 1 and θ(A0) = 0.
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With a similar reasoning for the right hand side of (2.75) we get

z

(
∞∑
n=0

(n+ a1) · · · (n+ ap)Anz
n

)
= z

(
∞∑
n=0

P (n)Anz
n

)
= zP (θ)(f(z))

= z(θ + a1) · · · (θ + ap)f(z).

Hence, we come up with the differential equation

θ(θ + b1 − 1) · · · (θ + bq − 1)f = z(θ + a1) · · · (θ + ap)f,

as expected.

Furthermore, if we expand (2.70) in terms of the derivatives Djf =
djf

dzj
of f , then we will

obtain a differential equation of the form (M := max(p, q) + 1, cj,l ∈ C)

M∑
j=0

Tj(z)Djf =
M∑
j=0

M∑
l=0

cj,lz
lDjf = 0, . (2.76)

Definition 2.13 (Holonomic Differential Equation [Koepf, 2014]). A holonomic differential

equation is a linear homogeneous ordinary differential equation with polynomial coefficients

Tn(z)Dnf(z) + · · ·+ T1(z)Df(z) + T0(z)f(z) = 0, (2.77)

Tn, . . . , T1, T0 ∈ K[z].

A function satisfying a holonomic differential equation is called holonomic function. In
particular, the generalized hypergeometric function is holonomic.

Proposition 2.4. Any Laurent-Puiseux series

f(z) =
∞∑

n=n0

Anz
n/k, n0 ∈ Z, k ∈ N, (2.78)

with general coefficient An satisfying (2.57) for all integers n > n0, is holonomic.

Proof.

Let θk = kz
d

dz
.

By induction, one easily proves that

θjk(f(z)) =
∞∑
n=0

njAnz
n/k, j ∈ N. (2.79)

and therefore for any polynomial T ∈ K[z]

T (θk) (f(z)) =
∞∑

n=n0

T (n)Anz
n/k. (2.80)
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From (2.57), we have

An+1 = r(n)An,∀n ∈ Z>n0 , r(n) =
(n+ a1)(n+ a2) · · · (n+ ap)

(n+ b1)(n+ b2) · · · (n+ bq)(n+ 1)
,

therefore

An+k =
k−1∏
j=0

r(n+ j)An = R(n)An, (2.81)

which gives another representation of f(z).

Without loss of generality, we assume that R(n) =
P (n)

Q(n)
, where

Q(n) = (n− n0 + 1) · · · (n− n0 + k)
k−1∏
j=0

(b1 + n+ j) · · · (bq + n+ j)(n+ 1 + j) (2.82)

and

P (n) = (n− n0 + 1) · · · (n− n0 + k)
k−1∏
j=0

(a1 + n+ j) · · · (ap + n+ j). (2.83)

(2.81) is equivalent to

Q(n)An+k = P (n)An. (2.84)

From (2.82), (2.80) and (2.84) we get

Q(θk − k) (f(z)) =
∞∑

n=n0

Q(n− k)Anz
n/k by (2.80) as Q is a polynomial

=
∞∑

n=n0+k

Q(n− k)Anz
n/k as Q(n0 − 1) = · · · = Q(n0 − k) = 0 by (2.82)

=
∞∑

n=n0

Q(n)An+kz
(n+k)/k by an index shift

= z

∞∑
n=n0

P (n)Anz
n/k by (2.84)

= zP (θk) (f(z)) by (2.80) again.

Therefore f(z) satisfies the differential equation

(θk−n0+1) · · · (θk−n0+k)
k−1∏
j=0

Qj(θk)f = z(θk−n0+1) · · · (θk−n0+k)
k−1∏
j=0

Pj(θk)f, (2.85)

where Pj(n) = (b1 +n+j) · · · (bq+n+j)(n+1+j) and Qj(n) = (a1 +n+j) · · · (ap+n+j),
j = 0, . . . , k − 1.

After expansion of (2.85) in terms of the derivatives Djf of f we obtain a holonomic
differential equation.
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Hence Laurent-Puiseux series of representation (2.78) with hypergeometric general coeffi-
cient are holonomic. Nevertheless, for more specificity about the kind of function that we will be
dealing with, we introduce the following more general definition.

Definition 2.14 (Series of Hypergeometric Type [Koepf, 1992]). A Laurent-Puiseux series (LPS)

f :=
∑∞

n=n0
an(z−z0)n/k, k ∈ N is said to be of hypergeometric type if its coefficients an satisfy

an RE of the form

an+m = r(n)an for n > n0

an = In for n = n0, n0 + 1, · · · , n0 +m− 1 (2.86)

for some m ∈ N, In ∈ C (n = n0, n0 + 1, · · · , n0 +m− 1), In0 ∈ C \ {0}, and some rational

function r. The number m is then called symmetry number of (the given representation) of f . A

RE of this type is also called to be of hypergeometric type.

Remark Each Laurent-Puiseux series with symmetry number m can be represented as the sum
of m-fold symmetric functions as follows

f(z) =
m−1∑
j=0

∞∑
n=0

In0+jr(j+n0+m)r(j+n0+2m) · · · r(j+n0+mn)(z−z0)(n0+mn+j)/k. (2.87)

For example the general coefficient of the power series of f(z) = sin z + cos z satisfies the
holonomic recurrence equation

(1 + n) · (2 + n) · an+2 + an = 0, (2.88)

which for m = 1, does not have generalized hypergeometric term solutions in Q(n). But for
m = 2, we find

a2n =
(−1)nz2n

(2n)!
, and a2n+1 =

(−1)n

(2n+ 1)!
. (2.89)

Therefore, using the initial values a0 = 1, a1 = 1 (remember that we assumed z0 = 0), by
writing the sum of the corresponding m-fold symmetric functions we obtain

cos z + sin z =
∞∑
n=0

(−1)nz2n

(2n)!
+
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
. (2.90)

Thus f(z) might not directly be deduced to be of generalized hypergeometric form. We say that
f(z) is a hypergeometric type function with type 2. A function is said to be of hypergeometric
type with type m ∈ N if it can be expanded as a Laurent-Puiseux series with symmetry number
m. This designation will often be used and the symmetry number or the type will be specified if
needed.

The following lemma gives some transformations on power series that preserve the hyperge-
ometric type.
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Lemma 2.2. [Lemma 2.1 in [Koepf, 1992]] Let f be a power series of hypergeometric type.

Then

(a) zsf (s ∈ Z), (b) f(zt) (t ∈ Q), (c) f(Cz) (C ∈ C),

(d)
∫
f (e)

f(z)± f(−z)

2
, (f) f ′,

are of hypergeometric type, too. If f has symmetry number m, then f(zn) has symmetry number

nm, and
f(z)± f(−z)

2
has symmetry number 2m as odd or even part of f .

To deal with functions of hypergeometric type in our development, it is essential that they
satisfy a holonomic DE.

Theorem 2.4 (Theorem 8.1 in [Koepf, 1992]). Each LPS of hypergeometric type satisfies a

holonomic DE.

Proof. The proof is similar to the one of Proposition 2.4, see [Koepf, 1993, Page 200].





Chapter 3

Symbolic Computation with Maxima

Maxima is a computer algebra system (CAS) developed in Lisp [McCarthy and Levin, 1965]. A
CAS is a software which has the capability to automatically manipulate abstract objects in the
traditional manner of mathematicians, and also allows numerical calculations. On the other hand,
CAS is also used for programming in such a way that mathematicians can elaborate algorithms
as a sequence of steps to achieve a certain goal. And these algorithms might be seen as proofs in
the sense that knowledge about inputs and outputs allow to establish formulas and identities or
show their non-existence.

Maxima is among the most popular CAS in the world. The Maxima source code can be
compiled on many systems, including Windows, Linux, and MacOS X. The source code for all
systems and precompiled binaries for Windows and Linux are available at the SourceForge file
manager.

Maxima is a descendant of Macsyma, the legendary computer algebra system developed in
the late 1960s at the Massachusetts Institute of Technology. It is the only system based on that
effort still publicly available and with an active user community, thanks to its open source nature.
Macsyma was revolutionary in its days, and many later systems, such as Maple and Mathematica,
were inspired by it [Maxima’s developers, 2019].

All the usual arithmetic operations: addition (+), subtraction (-), multiplication (*), division
(/), exponentiation ( ˆ ), modulo (mod), etc. are similarly usable symbolically and numerically
(one can use float(x) to get the real approximation of x) in Maxima. The commands floor(x) and
ceiling(x) are, respectively, used to return the largest integer less than or equal to x and the least
integer greater or equal to x.

wxMaxima is a user-friendly graphical front-end where a user can test Maxima commands,
visualize the results and save them in worksheets. In our case, we write programs (or codes) in a
file with the extension .mac or .max, and put it in the Maxima directory of our computer. For
use, we load the file with the Maxima command batchload("name_of_the_file"). Let us move to
some computations and Maxima programming on wxMaxima.

(%i1) number:1+2*3/4+5^2;

31
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(%o1)
55

2

(%i2) float(number);

(%o2) 27.5

(%i3) floor(number);

(%o3) 27

(%i4) ceiling(number);

(%o4) 28

(%i5) mod(number,2);

(%o5)
3

2

Rational numbers are recognized in Maxima by the boolean function numberp(x) which
returns true if x is rational and false otherwise. A more general function is constantp which
recognizes all the Maxima constants. These commands are useful for restriction of computations
in the field of rational numbers or its algebraic extensions.

The conditional evaluation, the for-loop and the while-loop work in Maxima as follows.

(%i6) number:1+2*3/4+5^2;

(%o6)
55

2

(%i7) if %pi<%e or numberp(%pi)

then ( print(%pi, "is rational"), number2:%pi*%e*%i*number)

elseif constantp(number+%pi+%i+%e) and numberp(number)

then number2:2*number

else number2:number+%pi+%i+%e;

(%o7) 55

(%i8) for i:1 thru number2 step 2 do number: number-1;

(%o8) done

(%i9) while 2*number<number2 do number:number+1/2;

(%o9) done
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(%i10) is(2*number=number2);

(%o10) true

where %pi, %i and %e denotes, respectively, the well known constants π, the imaginary number
i and the Euler constant exp(1) = e. The Maxima commands print is for displaying expressions,
and is is used to evaluate boolean expressions. Note that when there are more than one sub-
instruction in a conditional evaluation, a for-loop or a while loop, the instructions are separated
by commas and gathered in parenthesis.

Maxima calculates integers and rational numbers with an arbitrary precision.

(%i11) 50!;

(%o1) 30414093201713378043612608166064768844377641568960512000000000000

The factorial command or the sign ! will often be seen in the outputs of our algorithms. Let
us see some manipulations.

(%i12) (n+1)!;

(%o2) (1 + n)!

(%i13) n!;

(%o3) n!

(%i14) minfactorial((n+1)!/%);

(%o4) n+ 1

(%i15) makegamma((n+1)!);

(%o5) Γ (n+ 2)

(%i16) pochhammer(1,n);

(%o6) n!

(%i17) pochhammer(2,n);

(%o7) (2)n

(%i18) makefact(makegamma(pochhammer(2,n)));

(%o8) (1 + n)!

Note that the use of % in the input (%i14) above means use of the previous output, here
(%o13).
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One of the main mathematical objects used in CAS are polynomials. The Maxima command
expand expands a polynomial expression, whereas the factor command succeeds in factor-
izing any multivariate polynomial over Q (see [Koepf, 1995c]). We can see the timings of
computations by setting the Maxima global boolean variable showtime to true.

(%i19) showtime:true$

Evaluation took 0.0000 seconds (0.0000 elapsed)

(%i20) f:expand(product(product(j*z-y^k,k,1,3),j,1,2));

Evaluation took 0.0000 seconds (0.0000 elapsed)

(%o20) y12 − 3 · z · y11 + 2 · z2 · y10 − 3 · z · y10 + 9 · z2 · y9 − 3 · z · y9

−6·z3·y8+11·z2·y8−12·z3·y7+9·z2·y7+4·z4·y6−27·z3·y6+2·z2·y6+18·z4·y5−12·z3·y5+

22 · z4 · y4− 6 · z3 · y4− 12 · z5 · y3 + 18 · z4 · y3− 12 · z5 · y2 + 4 · z4 · y2− 12 · z5 · y+ 8 · z6

(%i21) factor(f);

Evaluation took 0.0100 seconds (0.0100 elapsed)

(%o21) (y − 2 · z) · (y − z) ·
(
y2 − 2 · z

)
·
(
y2 − z

)
·
(
y3 − 2 · z

)
·
(
y3 − z

)
The dollar sign at the end of a statement hides the output. This is often used at the end of our

Maxima functions, so that there is no code printed out when we load our package.
We can also factorize rational expressions, and compute their partial fraction decompositions.

(%i22) g: factor((6+21*z+21*z^2+6*z^3)/(-2*z-4*z^2+6*z^3));

(%o22)
3 · (1 + z) · (2 + z) · (1 + 2 · z)

2 · (z − 1) · z · (3 · z + 1)

(%i23) partfrac(g,z);

(%o23)
5

4 · (3 · z + 1)
− 3

z
+

27

4 · (z − 1)
+ 1

As there are algorithms to do so, one can solve linear systems of equations, as well as
polynomial equations of order at most 4.

(%i24) e1: x + z = y$

(%i25) e2: 2*a*x - y = 2*a^2$

(%i26) e3: y - 2*z = 2$

(%i27) linsolve ([e1, e2, e3], [x, y, z]);

(%o4) [x = a+ 1, y = 2 · a, z = a− 1]

(%i28) solve(z^3+a*z^2-a*z=1,z);

(%o28) [z = −1 + a+
√
a2 + 2 · a− 3

2
, z =

−1− a+
√
a2 + 2 · a− 3

2
, z = 1]
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Besides the algebraic capabilities there are also analytic ones. We can calculate derivatives,
limits and Taylor expansions of a certain order.

(%i29) f:atan(z)*sin(z);

(%o29) atan (z) · sin (z)

(%i30) diff(f,z);

(%o30)
sin (z)

z2 + 1
+ atan (z) · cos (z)

(%i31) diff(f,z,2);

(%o31) − atan (z) · sin (z)− 2 · z · sin (z)

(1 + z2)2 +
2 · cos (z)

z2 + 1

(%i32) limit(f,z,%pi/2);

(%o32) atan
(π

2

)
(%i33) taylor(f,z,0,8);

(%o33)/T/z2 − z4

2
+

19 · z6

72
− 43 · z8

240
+ . . .

(%i34) DE:(1+z^2)^2*(2+2*z^2+z^4)*(’diff(F(z),z,4))

+4*z*(1+z^2)*(3+2*z^2+z^4)*(’diff(F(z),z,3))

+2*(6+16*z^2+9*z^4+4*z^6+z^8)*(’diff(F(z),z,2))

+4*z*(1+z^2)*(3+2*z^2+z^4)*(’diff(F(z),z,1))

+(10+26*z^2+11*z^4+4*z^6+z^8)*F(z);

(%o34)
(
1 + z2

)2 ·
(
2 + 2 · z2 + z4

)
·
(
d4

d z4
· F (z)

)
+ 4 · z ·

(
1 + z2

)
·
(
3 + 2 · z2 + z4

)
·
(
d3

d z3
· F (z)

)
+ 2 ·

(
6 + 16 · z2 + 9 · z4 + 4 · z6 + z8

)
·
(
d2

d z2
· F (z)

)
+4·z·

(
1 + z2

)
·
(
3 + 2 · z2 + z4

)
·
(
d

d z
· F (z)

)
+
(
10 + 26 · z2 + 11 · z4 + 4 · z6 + z8

)
·F (z)

(%i35) ratsimp(ev(DE,F(z)=f,diff));

(%o35) 0

We have used ev to evaluate the differential equation DE for F(z)=f, and ratsimp to simplify
the computations. Some other commands used for simplifications are rat, radcan, trigsimp,

trigexpand, trigreduce, etc; where of course those starting with trig correspond to trigonometric
functions.

As we will be dealing with linear recurrence equations, let us see their writing in Maxima.
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(%i36) RE:2*(1+n)*(2+n)*a[n+2]+(1+n)*(1+3*n)*a[n+1]

+(-3-3*n+n^2)*a[n]-n*a[n-1]=0;

(%o36) 2·(1 + n)·(2 + n)·an+2+(1 + n)·(1 + 3 · n)·an+1+
(
−3− 3 · n+ n2

)
·an−n·an−1 = 0

Remark the use of square bracket for sequence indices. We can take the left hand side (lhs)
and collect the coefficients as follows

(%i37) L:args(lhs(RE));

(%o37) [2·(n+ 1)·(n+ 2)·an+2, (n+ 1)·(3 · n+ 1)·an+1,
(
n2 − 3 · n− 3

)
·an,−n·an−1]

(%i38) term:L[1];

(%o38) 2 · (n+ 1) · (n+ 2) · an+2

(%i39) coeff(term,a[n+2]);

(%o39) 2 · (n+ 1) · (n+ 2)

we use args to split an expression depending on the main operator (op(expr)) in it, here +.
The output is a list, which is a very useful object. Connected with this Maxima object are the
functions map, sublist, makelist, append, lreduce etc. Let us collect all the coefficients of the RE
in (%o1) above.

(%i40) aterm:map(lambda([v], if op(v)="*" then args(v)

else args(-v)),L);

(%o40) [[2, n+ 1, n+ 2, an+2], [n+ 1, 3 · n+ 1, an+1], [n2 − 3 · n− 3, an], [n, an−1]]

(%i41) aterm:map(lambda([v], sublist(v,lambda([v1],

not freeof(a,v1)))),aterm);

(%o41) [[an+2], [an+1], [an], [an−1]]

(%i42) aterm:lreduce(append,aterm);

(%o42) [an+2, an+1, an, an−1]

(%i43) makelist(coeff(L[i],aterm[i]),i,1,length(L));

(%o43) [2 · (n+ 1) · (n+ 2) , (n+ 1) · (3 · n+ 1) , n2 − 3 · n− 3,−n]

As one can see, the lambda command allows to define simple functions of one variable,
usually for a single use. freeof(a,expr) returns a boolean value (true or false) depending on
whether the variable a explicitly appears in expr or not.

Since 2014, the Maxima command solve_rec implements the Petkovšek algorithm to find
hypergeometric term solutions of homogeneous linear recurrences. In case of hypergeometric
term solutions, the output is a linear combination of them.
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(%i44) load(solve_rec);

(%o44) /usr/share/maxima/5.37.2/share/solve_rec/solve_rec.mac

(%i45) showtime:true$

Evaluation took 0.0000 seconds (0.0000 elapsed)

(%i46) solve_rec(RE,a[n]);

WARNING: found some hypergeometrical solutions!

Evaluation took 0.4700 seconds (0.6300 elapsed)

(%o11) an =
%k 1

n!
+ %k 2 · (−1)n

solve_rec implements four algorithms for recurrence equation with polynomial coefficients,
namely, Abramov’s algorithm for rational solutions, a similar approach than Koepf’s to solve
recurrence equations with constant coefficients [Gruntz and Koepf, 1995], and Petkovšek’s algo-
rithm Hyper [Petkovšek, 1992]. As we mentioned earlier, this is not necessary since they are all
hypergeometric terms and this will be shown in Chapter 7. Though all its procedures are incorpo-
rated in the command solve_rec(RE,a[n]), this package contains commands like solve_rec_poly,
solve_rec_rat, solve_rec_hyper that can be used in specific cases (see [Vodopivec, 2014]). Some
of these commands will be used for comparison in the next chapter. For more details on the use
of solve_rec, one can type ? solve_rec, the ? in front is used to ask for help. When two question
marks are used instead, Maxima provides all its functions and variables that contain the specified
word. Once all these commands are displayed, one can then select what is needed and ask for a
specific help. This is very practical to get familiar with Maxima’s commands. For example if
one is looking for a particular solver, then one may type the following.

(%i47) ??solve;

0: Functions and Variables for solve_rec
1: Functions and Variables for to_poly_solve
2: Introduction to solve_rec
3: desolve (Functions and Variables for Differential Equations)
4: fast_linsolve (Functions and Variables for Affine)
5: funcsolve (Functions and Variables for Equations)
6: globalsolve (Functions and Variables for Equations)
7: linear_solver (Functions and Variables for zeilberger)
8: linsolve (Functions and Variables for Equations)
9: linsolvewarn (Functions and Variables for Equations)
10: linsolve_params (Functions and Variables for Equations)
11: minpack_solve (Functions and Variables for minpack)
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12: modular_linear_solver (Functions and Variables for zeilberger)
13: solve (Functions and Variables for Equations)
14: solvedecomposes (Functions and Variables for Equations)
15: solveexplicit (Functions and Variables for Equations)
16: solvefactors (Functions and Variables for Equations)
17: solvenullwarn (Functions and Variables for Equations)
18: solveradcan (Functions and Variables for Equations)
19: solvetrigwarn (Functions and Variables for Equations)
20: solve_rec (Functions and Variables for solve_rec)
21: solve_rec_rat (Functions and Variables for solve_rec)
22: to_poly_solve (Functions and Variables for to_poly_solve)

Enter space-separated numbers, ‘all’ or ‘none’: none;

(%o12) true

Thus details on a particular command containing the word "solve" can be viewed by typing
its corresponding number above (during run-time), or typing none and use one question mark ?

and the spelling of a chosen command to get its details. Another Maxima function in the same
direction is apropos whose syntax is apropos("word"); it returns a list of Maxima’s and user’s
(in the opened session) functions and variables containing the specified word.

The command that we use to print out a power series is sum(expression, variable, first, last)

which sums expression for variable=first up to variable=last. Whenever last - first is a positive
integer, Maxima’s sum command always simplifies the output. For the other cases, one can set
the global boolean variable simpsum to true in order to get some closed forms if available. But
we are not interested in such computations. Note moreover that the Maxima sum command may
behave differently from the user thought [Koepf, 1995c].

(%i46) f:n^2;

(%o48) n2

(%i49) k:n;

(%o49) n

(%i50) sum(f,k,1,10);

(%o50) 10 · n2

(%i51) sum(subst(j,k,f),j,1,10);

(%o51) 385
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This is important because it shows which type of behavior we can have if an atomic variable
is given as input (here n). The point is that the second argument is not evaluated, and in particular
when dealing with infinite sums, the variable j has to be substituted by k again.

We have already seen that the Maxima command powerseries is limited in its computation of
power series, since it uses a pattern matching model. Its procedure can be seen as follows: for
powerseries(f ,z,z0),

• Maxima tries to expand f in the variable z − z0 by using some additional knowledge on f ,

• logarithms log f are handled by the rule
∫

f ′

f
,

• for rational functions a real partial fraction decomposition is used,

• the power series expansions of the standard elementary functions with point of development
z0 = 0 are incorporated.

Some disadvantages of this procedure are its failures

• in finding the result for all rational functions like 1
z2+z+1

, which is worse than the Maple
case since it only uses real partial fraction decompositions,

(%i52) powerseries(1/(z^2+z+1),z,0);

sign: argument cannot be imaginary; found %i

– an error. To debug this try: debugmode(true);

• to get the power series of exp(z) · exp(z0) for z0 6= 0 as the internal simplifier changes the
input into exp(z + y) before processing,

(%i53) powerseries(exp(z)*exp(1),z,0);

(%o53)

(
∞∑

i1=0

1

i1 !

)
·
∞∑

i1=0

zi1

i1 !

(%i54) powerseries(exp(z+1),z,0);

(%o54)

(
∞∑

i2=0

1

i2 !

)
·
∞∑

i2=0

zi2

i2 !

and the outputs are quite confusing,

• to get the power series of arctan(z + z0) for z0 6= 0 by the lack of an addition formula of
the inverse tangent function,

(%i56) powerseries(atan(z+1),z,0);

(%o56) powerseries (atan (z + 1) , z, 0)
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(%i57) powerseries(atan(z),z,1);

(%o57) powerseries (atan (z) , z, 1)

• to solve the problem for products correctly. Usually a product of power series is returned
rather than the power series of the product as requested. The Cauchy product rule is not
applied.

(%i58) cauchysum:true$

/* Maxima’s boolean variable to allow Cauchy product */;
(%i59) powerseries(exp(z)*cos(z),z,0);

(%o59)

(
∞∑

i3=0

zi3

i3 !

)
·
∞∑

i3=0

(−1)i3 · z2·i3

(2 · i3 )!

(%i60) powerseries(exp(z)*log(1+z),z,0);

(%o60) −

(
∞∑

i4=1

(−1)i4 · zi4

i4

)
·
∞∑

i4=0

zi4

i4 !



Chapter 4

Computing Holonomic Differential
Equations and Holonomic Recurrence

Equations

Let f(z) = exp(z) + cos(z). We intend to find a holonomic differential equation (DE) with
coefficients in Q[z] satisfied by f(z) and deduce a holonomic recurrence equation (RE) with
coefficients in Q[n] satisfied by the Taylor coefficients an of f [Koepf, 1992].

Searching for a holonomic DE: f ′(z) = exp(z)− sin(z), and therefore there is no A0(z) ∈

Q(z) such that f ′(z) +A0(z)f(z) = 0 because A0(z) should be − exp(z)− sin(z)

exp(z) + cos(z)
which is not

rational. Therefore we move to the second order. We search for A0(z), A1(z) ∈ Q(z) such that

f ′′(z) + A1(z)f ′(z) + A0(z)f(z) = 0.

We write the sum in terms of linearly independent parts and we obtain

(1 + A0(z) + A1(z)) exp(z) + (A0(z)− 1) cos(z)− A1(z) sin(z) = 0,

and we get the linear system 
A0(z)− 1 = 0

A1(z) = 0

A0(z) + A1(z) + 1 = 0

,

which has no solution. However, for the third order, the relation

f (3)(z) + A2(z)f (2)(z) + A1(z)f (1)(z) + A0(z)f(z) = 0,

with f (3)(z) = exp(z) + sin(z), leads to a solvable system. By writing the sum in terms of
linearly independent parts, we get

(1 + A0(z) + A1(z) + A2(z)) exp(z) + (A0(z)− A2(z)) cos(z) + (1− A1(z)) sin(z) = 0,

(4.1)

41
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so 
1− A1(z) = 0

A0(z)− A2(z) = 0

1 + A0(z) + A1(z) + A2(z) = 0

⇐⇒

A0(z) = A2(z) = −1

A1(z) = 1
. (4.2)

Hence the corresponding holonomic DE

d3

d z3
· F (z)− d2

d z2
· F (z) +

d

d z
· F (z)− F (z) = 0. (4.3)

for f(z) is valid.
Notice that if some of the coefficients found in (4.2) did have polynomials different from 1

as their denominators, then a further step would be the multiplication of the resulting holonomic
DE with the least common multiple of the denominators.

Transformation of (4.3) into its corresponding RE: We set

f(z) =
∞∑
n=0

anz
n,

so

f ′(z) =
∞∑
n=1

nanz
n−1 =

∞∑
n=0

(n+ 1)an+1z
n, (4.4)

f ′′(z) =
∞∑
n=2

n(n− 1)anz
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2z
n, (4.5)

f (3)(z) =
∞∑
n=3

n(n− 1)(n− 2)anz
n−3 =

∞∑
n=0

(n+ 3)(n+ 2)(n+ 1)an+3z
n. (4.6)

By substitution of these identities in (4.3) for f , we get

0 = f (3)(z)− f ′′(z) + f ′(z) + f(z)

=
∞∑
n=0

(n+ 3)(n+ 2)(n+ 1)an+3z
n −

∞∑
n=0

(n+ 2)(n+ 1)an+2z
n

+
∞∑
n=0

(n+ 1)an+1z
n −

∞∑
n=0

anz
n

=
∞∑
n=0

[(n+ 3)(n+ 2)(n+ 1)an+3 − (n+ 2)(n+ 1)an+2 + (n+ 1)an+1 − an] zn,

hence by equating the coefficients we find the holonomic RE

(n+3)(n+2)(n+1)an+3−(n+2)(n+1)an+2 +(n+1)an+1−an = 0, n = 0, 1, 2, . . . . (4.7)

for an.
We have just described how the two first steps of Koepf’s algorithm in [Koepf, 1992] apply

to exp(z) + cos(z). Throughout this chapter, we describe these two steps in the general case.
The second step looks identical to its initial description in [Koepf, 1992], however, for the first
step, we will use a slightly more efficient algorithm compared to its original version.
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4.1 Computing Holonomic Differential Equations

We have a holonomic function f given, and we search for a DE for f of the form (2.76). There
are several equations of this type. Indeed, the fact of having a DE allows to get other ones by
differentiation. And adding two DE gives another one. For example, if we consider the case of
the cosine function f(z) = cos(z) we have the holonomic DE

f ′′(z) + f(z) = 0, (4.8)

which corresponds to the RE (n+ 2)(n+ 1)an+2 + an = 0. And by differentiation of (4.8) we
also have f (3)(z) + f ′(z) = 0 which leads to the same series coefficients but adding the two
equations we get f (3)(z) + f ′′(z) + f ′(z) + f(z) = 0 which is a DE essentially different as it is
equivalent to the RE

(n+ 1)(n+ 2)(n+ 3)an+3 + (n+ 1)(n+ 2)an+2 + (n+ 1)an+1 + an = 0. (4.9)

The algorithm we present here often finds the holonomic DE of lowest order.

4.1.1 Koepf’s original algorithm to find holonomic DE

Here we give and prove the initial algorithm as done in ([Koepf, 1992], [Gruntz and Koepf, 1995]).
Let K be a field of characteristic zero.

Algorithm 1 Searching for a holonomic DE of a holonomic function f

Input: A holonomic expression f(z).
Output: Find a holonomic DE with coefficients in K(z) of least order satisfied by f(z).

1. If f = 0 then the DE is found and we stop.

2. f 6= 0, compute A0(z) =
Df(z)

f(z)
,

(1-a) if A0(z) ∈ K(z) i.e A0(z) =
P (z)

Q(z)
where P and Q are polynomials, then we have

found a holonomic DE satisfied by f :

Q(z)Df(z)− P (z)f(z) = 0.

(1-b) If A0(z) /∈ K(z), then go to 3.

3. Fix a number Nmax ∈ N, the maximal order of the DE searched for; a suitable value is
Nmax := 5.

(3-a) set N := 2;
(3-b) compute DNf ;
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Algorithm 1 Searching for a holonomic DE of a holonomic function f

(3-c) expand the expression

DNf(z) + AN−1D
N−1f(z) + · · ·+ A0f(z) =

E∑
i=0

Si,

in elementary summands with AN , AN−1, . . . , A0 as unknowns. E > N is the total
number of summands Si obtained after expansion.

(3-d) For each pair of summands Si and Sj (0 6 i 6= j 6 E), group them additively together
if there exists r(z) = Si(z)

Sj(z)
∈ K(z). If the number of groups is N then we have N

linearly independent expressions. In that case, there exists a solution which can be
found by equating each group to zero. The resulting system is linear for the unknowns
A0, A1, . . . , AN−1. Solving this system gives rational functions in z, and the solution
is unique since we normalized AN = 1. After multiplication by the the least common
multiple of the denominators of A0(z), A1(z), . . . AN−1(z) we get the holonomic DE
searched for. If otherwise the number of groups is larger than N , then there is no solution
and the step is not successful.

(3-e) If (3-d) is not successful, then increment N , and go back to (3-b), until N = Nmax.

Assuming that the first step of searching the holonomic DE has failed, we have to show for
any integer N > 2 of the algorithm searching for a holonomic DE

DNf(z) + AN−1D
N−1f(z) + · · ·+ A0f(z) = 0 (4.10)

for f , that either

1. the number of linearly independent summands of (4.10) equals N and the linear system
that we get by setting the coefficients of the linearly independent terms to zero, has a
unique solution (A0(z), A1(z), . . . AN−1(z)) ∈ K(z)N .

2. or the number of linearly independent summands of (4.10) is larger than N , and there is
no solution.

Proof. Since the first step has failed, the number of linearly independent terms is at least 2, and
we must proceed with 2 6 N 6 Nmax.

Now, for 2 6 N 6 Nmax, if we assume that the algorithm searching for a holonomic DE
(4.10) has failed until N , then the number of linearly independent terms is at least N + 1, and we
must proceed with N + 1. In that case, suppose now the number of linearly independent terms
is less than or equal to N + 1. Then we are able to find a solution vector (A0, A1, · · · , AN) ∈
K(z)N , and it remains to show that the solution is unique. Indeed, if we have another solution
(B0, B1, . . . , BN) then f verifies

DN+1f + AND
Nf + · · ·+ A0f(z) = DN+1f +BND

Nf + · · ·+B0f = 0
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which implies that the DE

(AN −BN)DNf + (AN−1 −BN−1)DN−1f + · · · (A0 −B0)f = 0

is also valid for f . This new DE is of order N but we know from our hypothesis that this is not
possible. Hence we must have AN = BN , AN−1 = BN−1, . . . A0 = B0.

Therefore by induction we have shown our statement.

Nevertheless, the above algorithm can be seen in a different way. Indeed, if we consider
f(z) = cos(z) + sin(z), it is clear that the differential equation that the algorithm will find is a
null linear combination of the derivatives of f(z) expanded in the basis (cos(z), sin(z)). Thus,
we can save the time spent by computing all the derivatives up to N in step 3 of Algorithm 1,
by trying to write each derivative in the same basis.

4.1.2 Second method for computing holonomic DE

Let (A0, A1, . . . , AN−1) ∈ K(z)N , N ∈ N such that an analytic expression f satisfies

F
(
f, f ′, . . . , f (N−1), f (N)

)
= f (N) + AN−1 · f (N−1) + · · ·+ A1 · f + A0f = 0. (4.11)

We consider a basis (e1, e2, . . . , el) of the linear span of all linearly independent summands
over K(z) that appear in the complete expansions of the derivatives f, f ′, . . . , fN . For example,
assume for 0 6 i 6= j 6 N , that

f (i) = ei,1 + · · ·+ ei,ki ,

f (j) = ej,1 + · · ·+ ej,kj ,

for some positive integers ki and kj , such that ei,u
ei,v

/∈ K(z) for all u, v ∈ J1, kiK and ej,u
ej,v

/∈
K(z) for all u, v ∈ J1, kjK. Then for f (i) and f (j) we consider a basis of the linear span of
{ei,1, . . . , ei,ki , ej,1, . . . , ej,kj} which may have less elements since some ei,u, u ∈ J1, kiK and
ej,v, v ∈ J1, kjK can be linearly dependent.

Thus each derivative f (j), j ∈ N>0

(
f (0) = f

)
can be seen as a vector in the linear space

〈e1, e2, . . . , el〉.
Since

F
(
f, f ′, . . . , f (N−1), f (N)

)
= 0 ⇐⇒ −f (N) = A0 ·f +A1 ·f ′+ · · ·+AN−1 ·f (N−1), (4.12)

we can write in a matrix representation

− f (N) =
[
f, f ′, . . . , f (N−1)

]
(e1,e2,...,el)

(A0, A1, . . . , AN−1)T . (4.13)

Therefore, one sees that seeking for a holonomic DE of orderN satisfied by a given expression
f(z) is equivalent to find a basis in a K(z)-linear space where the system(

f (N)(z), f (N−1)(z), . . . , f ′(z), f(z)
)
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is linearly dependent. The idea of the method described in this section is to construct such a
basis while computing each derivative of f(z) and their components. Thus, in each iteration N ,
if all the N + 1 derivatives are expanded in the same basis, then we try to solve the resulting
linear system.

Now let us present what is done in general. Consider an expression f(z) which is not
identically zero with l0 linearly independent sub-terms over K(z). Then we can write

f(z) = f1(z) + f2(z) + · · ·+ fl0(z) (4.14)

with fi(z)
fj(z)

/∈ K(z), 1 6 i 6= j 6 l0. f(z) is seen as a vector in the basis E0 = (e1, e2, . . . , el0)

where ei = fi. Then we compute the first derivative of f(z), and we get the following two
possibilities:

• either f ′(z) is expanded in E0, which means that there exist α1,i = α1,i(z) ∈ K(z), i =

1, . . . , l0 such that

f ′(z) = α1,1e1 + α1,2e2 + . . .+ α1,l0el0 . (4.15)

Here in the worst case, f ′(z) and f(z) are linearly independent, but from there we know
that all the derivatives can be expanded in E0.

• Or f ′(z) is not expanded in E0, which means that E0 has to be augmented and there exist
α1,i ∈ K(z), i = 1, . . . , l0 and an integer l1 > l0 such that

f ′(z) = α1,1e1 + α1,2e2 + . . .+ α1,l0el0 + el0+1 + . . .+ el1 . (4.16)

Observe here that the new basis is E1 = (e1, . . . , el1) with el0+1, . . . , el1 corresponding to
independent terms brought by f ′(z). And also α1,i, i 6 l0 could be zero.

Actually in the first case we may find the DE sought, but in order to present a general
overview of the algorithm, let us assume that f(z) satisfies a DE of order N > 1. It is clear that
the process will lead to the following representation

f(z) = e1 + . . .+ el0 (4.17)

f ′(z) = α1,1e1 + · · ·+ α1,l0el0 + el0+1 + · · ·+ el1 (4.18)

f ′′(z) = α2,1e1 + · · ·+ α2,l0el0 + α2,l0+1el0+1 + · · ·+ α2,l1el1 + el1+1 + . . .+ el2 (4.19)

· · · (4.20)

f (N−1)(z) = αN−1,1e1 + · · ·+ αN−1,lN−2
elN−2

+ elN−2+1 + · · ·+ elN−1
(4.21)

f (N) = αN,1e1 + · · ·+ αN,lN−1
elN−1

, (4.22)

with positive integers l0 6 l1 6 . . . 6 lN−1, and αi,j ∈ K(z), i = 1, . . . , N, j = 1, . . . , li−1.

Note, however, that only f (N)(z) is computed by differentiating f (N−1)(z). In each step, the
algorithm keeps the coefficients αN,i, the augmented basis and the current derivative.
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It is straightforward to see that the final basis considered is EN−1 =
(
e1, . . . , elN−1

)
. The

algorithm keeps information in a matrix form, say H , and at this step we have

H =



1 · · · 1 0 · · · 0 0 · · · · · · 0 · · · 0

α1,1 · · · α1,l0 1 · · · 1 0 · · · · · · 0 · · · 0

α2,1 · · · α2,l0 · · · · · · α2,l1 1 · · · · · · 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...

αN−1,1 · · · · · · · · · · · · · · · · · · · · · αN−1,lN−2
1 · · · 1

αN,1 · · · · · · · · · · · · · · · · · · · · · αN,lN−2
αN,lN−2+1 · · · αN,lN−1


.

(4.23)

H is a (N + 1) × lN−1 matrix in K(z), and it contains all information that we need to find
the holonomic DE sought. Indeed, one can observe that the coefficients Ai(z) ∈ K(z), i =

0, . . . , N − 1 in Algorithm 1 constitute the rational components of the unique vector solution of
the matrix system

Av = b, (4.24)

with

A =



1 α1,1 α2,1 . . . αN−1,1

...
...

...
...

...
1 α1,l0 α2,l0 . . . αN−1,l0

0 1 α2,l0+1 . . . αN−1,l0+1

...
...

...
...

...
0 0 0 . . . 1


(4.25)

and

b = −


αN,1

αN,2
...

αN,lN−1

 . (4.26)

Observe that b is the negative (note the minus in front) of the transpose of the last row of H ,
and A is the transpose of H deprived of its last row. The above linear system has lN−1 linear
equations and N unknowns.

Example 4.1.

• f(z) = sin(z) + z cos(z). We have two linearly independent terms over Q(z), and we can

write

f(z) = e1 + e2,

with e1 = sin(z) and e2 = z cos(z). Computing the first derivative, we get

f ′(z) = −z sin(z) + 2 cos(z) = −z · e1 +
2

z
· e2.
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At this step we have

H =

[
1 1

−z 2
z

]
,

and we get the system

[
1

1

]
v =

[
z

−2
z

]
, which has no solution v ∈ Q(z) (seen as a one

dimensional vector space). Now we compute the second derivative, and we get

f ′′(z) = −3 sin(z)− z cos(z) = −3 · e1 − e2.

H becomes

H =

 1 1

−z 2
z

−3 −1

 ,
which gives the system [

1 −z
1 2

z

]
v =

[
3

1

]
, v ∈ Q(z)2,

and we get the solution {(
z2 + 6

z2 + 2
,
−2z

z2 + 2

)}
. (4.27)

The differential equation sought is therefore

(2 + z2)f ′′(z)− 2zf ′(z) + (6 + z2)f = 0. (4.28)

• f(z) = arctan(z). We have only one term so e1 = arctan(z). For the first derivative

f ′(z) =
1

1 + z2
= 0 · e1 + e2,

where e2 = 1
1+z2

. Since the basis has been augmented there is no system to be solved, and

at this step we have

H =

[
1 0

0 1

]
.

The second derivative gives

f ′′(z) = − 2z

(1 + z2)2
= 0 · e1 −

2z

1 + z2
· e2,

and we get

H =

1 0

0 1

0 − 2z
1+z2


which produces the system [

1 0

0 1

]
v =

[
0
2z

1+z2

]
, v ∈ Q(z)2.

We get v =
(
0, 2z

1+z2

)
, hence the holonomic DE

(z2 + 1)f ′′(z) + 2zf ′(z) = 0. (4.29)
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• f(z) = exp(z) + log(1 + z) = e1 + e2, with e1 = exp(z) and e2 = log(1 + z). The first

derivative yields

f ′(z) = exp(z) +
1

1 + z
= e1 + 0 · e2 + e3,

with e3 =
1

1 + z
. Since a new term is added to the basis, the next step is to compute the

second derivative

f ′′(z) = exp(z)− 1

(1 + z)2
= e1 + 0 · e2 −

1

(1 + z)
· e3.

No term is added to the basis. We try to solve the resulting system. At this stage

H =

1 1 0

1 0 1

1 0 − 1
1+z

 ,
and we get the system 1 1

1 0

0 1

 v =

−1

0
1

1+z

 , v ∈ Q(z)2,

which has no solution. We move on and compute the third derivative

f (3)(z) = exp(z) +
2

(1 + z)3
= e1 + 0 · e2 +

2

(1 + z)2
· e3.

Thus

H =


1 1 0

1 0 1

1 0 − 1
1+z

1 0 2
(1+z)2

 ,
and we obtain the system 1 1 1

1 0 0

0 1 − 1
1+z

 v =

 −1

0

− 2
(1+z)2

 ,
whose solution in Q(z)3 is{(

0,− z + 3

(z + 1)(z + 2)
,− z2 + 2z − 1

(z + 1)(z + 2)

)}
. (4.30)

Therefore we get the holonomic DE

(z + 1)(z + 2)f (3)(z)− (z2 + 2z − 1)f
′′
(z)− (z + 3)f ′(z) = 0. (4.31)

In our package FPS, we implemented the second method in Maxima as HolonomicDE(f,F(z))

to compute a holonomic DE with the indeterminate F(z) for an expression f of the variable z.
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Here are some examples. The package contains a global variable Nmax which can be changed in
order to look for higher order differential equations.

(%i1) HolonomicDE(asin(z),F(z));

Evaluation took 0.0000 seconds (0.0100 elapsed)

(%o1) (z − 1) · (1 + z) ·
(
d2

d z2
· F (z)

)
+ z ·

(
d

d z
· F (z)

)
= 0

(%i2) HolonomicDE(cos(z)+exp(z),F(z));

Evaluation took 0.0100 seconds (0.0100 elapsed)

(%o2)
d3

d z3
· F (z)− d2

d z2
· F (z) +

d

d z
· F (z)− F (z) = 0

(%i3) HolonomicDE(atan(z),F(z));

Evaluation took 0.0000 seconds (0.0100 elapsed)

(%o3)
(
1 + z2

)
·
(
d2

d z2
· F (z)

)
+ 2 · z ·

(
d

d z
· F (z)

)
= 0

(%i4) HolonomicDE(exp(asin(z)),F(z));

Evaluation took 0.0100 seconds (0.0100 elapsed)

(%o4) (z − 1) · (1 + z) ·
(
d2

d z2
· F (z)

)
+ z ·

(
d

d z
· F (z)

)
+ F (z) = 0

(%i5) HolonomicDE(asin(z)+cos(z),F(z));

Evaluation took 0.0400 seconds (0.0500 elapsed)

(%o5) (z − 1)·(1 + z)·
(
2 + z4

)
·
(
d4

d z4
· F (z)

)
+z ·

(
10 + 4 · z2 + z4

)
·
(
d3

d z3
· F (z)

)
+ (z − 1) · (1 + z) ·

(
2 + z4

)
·
(
d2

d z2
· F (z)

)
+ z ·

(
10 + 4 · z2 + z4

)
·
(
d

d z
· F (z)

)
= 0

(%i6) HolonomicDE(cos(z)*log(1+z),F(z));

Evaluation took 0.0500 seconds (0.0700 elapsed)

(%o6) (1 + z)2 · (1 + 2 · z) · (3 + 2 · z) ·
(
d4

d z4
· F (z)

)
+4·(1 + z)·

(
1 + 4 · z + 2 · z2

)
·
(
d3

d z3
· F (z)

)
+2·z·(2 + z)·

(
5 + 8 · z + 4 · z2

)
·
(
d2

d z2
· F (z)

)
+4·(1 + z)·

(
1 + 4 · z + 2 · z2

)
·
(
d

d z
· F (z)

)
+
(
−3 + 6 · z + 19 · z2 + 16 · z3 + 4 · z4

)
·F (z) = 0
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(%i7) HolonomicDE(sin(z)^4*asin(z),F(z));

Evaluation took 0.5700 seconds (0.6600 elapsed)

(%o7) false

(%i8) Nmax:10$

Evaluation took 0.0000 seconds (0.0000 elapsed)

(%i9) HolonomicDE(sin(z)^4*asin(z),F(z))$

Evaluation took 4.2000 seconds (5.0500 elapsed)

The latter is a big differential equation of order 10 >Nmax, that is why the value of Nmax

was changed to 10. Our first Maxima implementation which was using the first method takes
about 7 seconds in this example. The timings of both algorithms get closer as Nmax becomes
large. This is due to the use of memory for the second algorithm, and it also depends on the
given expression. However the second approach is more efficient for our goal of computing
power series as we have fixed the maximum order of differential equations sought Nmax to 5.
One could increase Nmax as wanted, but generally this is not needed.

4.2 Computing Holonomic Recurrence Equations

We have seen in Theorem 2.4 that any hypergeometric type series

g(z) =
∞∑

n=n0

anz
n/k, (4.32)

satisfies a homogeneous differential equation with polynomial coefficients. So after substituting
the power series representation of g(z), the general power of the indeterminate z is shifted by an
integer power. Therefore the operations used to compute the recurrence equation of the general
coefficient an from a given holonomic differential equation are identical to those used for the
power series

f(z) =
∞∑
n=0

anz
n. (4.33)

In this section, we establish the rewrite rule to compute a holonomic recurrence equation
from a holonomic differential equation by assuming f(z) as in (4.33). We will see in Chapter 8
that applying this rule for g(z) in (4.32) implicitly gives candidates for the Puiseux number k,
which is an important step to compute Puiseux series.

Let f(z) be as in (4.33), we can find a map which allows us to go from each term of the
expansion of a DE to the term of the RE (see [Koepf, 1992, Section 6]). Firstly it is easy to see
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that

(anz
n)(j) = n(n− 1) · · · (n− j + 1)anz

n−j (4.34)

= (n+ 1− j)j · anzn−j, (4.35)

hence if we multiply by zl, we obtain

zl (anz
n)(j) = (n+ 1− j)j · anzn−j+l. (4.36)

Shifting the index by setting i = n− j + l⇒ n = k + j − l, we obtain the correspondence

zl (anz
n)(j) −→ (i+ 1− l)j · ai+j−lzi, (4.37)

which allows us to consider the following rewrite rule between the summands of a DE and those
of its corresponding RE

zlf (j) −→ (n+ 1− l)j · an+j−l. (4.38)

For example in the case of f(z) = arccos(z), our Maxima procedure HolonomicDE gives

(%i1) HolonomicDE(acos(z),F(z));

(%o1) (z − 1) · (1 + z) ·
(
d2

d z2
· F (z)

)
+ z ·

(
d

d z
· F (z)

)
= 0,

which after expansion can also be written as

f ′′(z)− z2f ′′(z)− zf ′(z) = 0.

Thus,

f ′′ = z0f (2) −→ (n+ 1− 0)2 · an+2−0 = (n+ 1)(n+ 2)an+2 (4.39)

z2f (2) −→ (n+ 1− 2)2 · an+2−2 = (n− 1)nan (4.40)

zf (1) −→ (n+ 1− 1)1 · an+1−1 = nan. (4.41)

Finally taking the linear combination we get the holonomic recurrence equation

n2 · an − (1 + n) · (2 + n) · an+2 = 0. (4.42)

The following algorithm combines these steps in the general case.
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Algorithm 2 From a holonomic DE to its Recurrence Equation.
Input: A holonomic differential equation DE.
Output: Conversion of DE into a holonomic recurrence equation.

(a) Expand the DE to write it in the form

s∑
j=0

s∑
l=0

cj,lz
lDjf = 0 (4.43)

where s ∈ N and cj,l are some constants.

(b) Use the rewrite rule
zlDjf −→ (n+ 1− l)j · an+j−l. (4.44)

to substitute each term. Therefore we get

s∑
j=0

s∑
j=0

cj,l(n+ 1− l)j · an+j−l = 0, (4.45)

and finally the holonomic RE can be brought in a particularly nice form after factorizing
the coefficients.

Our package contains the function DEtoRE(DE,F(z),a[n]) which converts the holonomic
differential equation DE depending on the variable z into its corresponding recurrence equation
for the coefficients a[n].

rectermfun(term,F,a):=block([z,n,j,mterm,zpow,coef],

z: first(F),

n: first(a),

j: derivdegree(term,F,z),

mterm: xthru(term/’diff(F,z,j)),

zpow: hipow(mterm,z),

coef: coeff(mterm,z,zpow),

coef*pochhammer(n+1-zpow, j)*subst(n+j-zpow,n,a)

)$

DEtoRE(DE,F,a):= block([de,terms,re,RE,aterm,i],

de: lhs(expand(DE)),

if(freeof("+",de)) then terms: [de]

else terms: args(de),

rec: map(lambda([v],rectermfun(v,F,a)),terms),

RE: apply("+",rec),

aterm: sublist(listofvars(RE), lambda([v], not atom(v))),

aterm: sort(sublist(aterm, lambda([v], is(equal(op(a),op(v)))))),

if(length(rec)<2) then RE=0

else (
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for i: 1 thru length(aterm) do RE: map(factor, \

collectterms(RE,aterm[i])),

RE=0

)

)$

Example 4.2.

(%i2) DE:HolonomicDE(asin(z),F(z));

(%o2) (z − 1) · (1 + z) ·
(
d2

d z2
· F (z)

)
+ z ·

(
d

d z
· F (z)

)
= 0

(%i3) DEtoRE(DE,F(z),a[n]);

(%o3) n2 · an − (1 + n) · (2 + n) · an+2 = 0

(%i4) DE:HolonomicDE(exp(z)+log(1+z),F(z));

(%o4) (1 + z) · (2 + z) ·
(
d3

d z3
· F (z)

)
−
(
−1 + 2 · z + z2

)
·
(
d2

d z2
· F (z)

)
− (3 + z) ·

(
d

d z
· F (z)

)
= 0

(%i5) DEtoRE(DE,F(z),a[n]);

(%o5) 2 · (1 + n) · (2 + n) · (3 + n) · an+3 + (1 + n) · (2 + n) · (1 + 3 · n) · an+2

+ (1 + n) ·
(
−3− 3 · n+ n2

)
· an+1 − n2 · an = 0

Our package contains another Maxima function FindRE(f,z,a[n]) which calls our functions
HolonomicDE(f,F(z)) and DEtoRE(DE,z,n) to produce a recurrence equation for the Taylor
coefficients an of a given holonomic expression f .

(%i6) FindRE(cos(z)+sin(z),z,a[n]);

(%o6) (1 + n) · (2 + n) · an+2 + an = 0

(%i7) FindRE(exp(z)+atan(z),z,a[n]);

(%o7) (1 + n) · (2 + n) · (3 + n) · an+3 + (n− 3) · (1 + n) · (2 + n) · an+2

+ (1 + n) ·
(
2 + 2 · n+ n2

)
· an+1 + (n− 3) · n · (1 + n) · an − (n− 1) · n · an−1 = 0
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(%i8) FindRE(cosh(z)^2+log(1+z),z,a[n]);

(%o8) (1 + n)·(2 + n)·(3 + n)·(4 + n)·an+4+(1 + n)·(2 + n)·(3 + n)·(5 · n− 1)·an+3

+ 2 · (n− 1) · (1 + n) · (2 + n) · (2 + 3 · n) ·an+2 + 2 · (1 + n) ·
(
2− 9 · n− 2 · n2 + n3

)
·an+1

− 8 · n · (3 · n− 1) · an − 8 · (n− 1)2 · an−1 = 0

(%i9) FindRE(exp(z^(1/3)),z,a[n]);

(%o9) 3 · (1 + n) · (1 + 3 · n) · (2 + 3 · n) · an+1 − an = 0

4.3 Fast Computation of Taylor Expansions of

Holonomic Functions

Hypergeometric type functions are strictly contained in the family of holonomic functions.
Indeed, it is proved that linear combinations and products of holonomic functions are also
holonomic ([Koepf, 1997], [Stanley, 1980]). Although power series expansions of linear com-
binations of hypergeometric type functions remain accessible through the use of an algorithm
that finds all m-fold hypergeometric term solutions of a holonomic RE, it is not generally the
case with their products. Thus, it is clear that our m-fold hypergeometric algorithm cannot find
explicit formulas for the coefficients of power series expansions of certain holonomic functions.
Nevertheless, as we are able to find recurrence equations for the general coefficients, the use of
enough initial values coupled with their corresponding holonomic RE’s uniquely characterizes
their Taylor coefficients in a certain neighborhood. It is thanks to this observation that Koepf
proceeded in computing Taylor polynomials of holonomic expressions by using the output of
Algorithm 2 (see [Koepf, 2006, Chapter 10]). In this section, using FindRE, we develop an
algorithm to compute Taylor polynomials of holonomic functions and compare the result with
Maxima’s internal command taylor. First, we give some particular normal forms for holonomic
functions.

4.3.1 On Normal Forms of Holonomic Functions

By an application of the well known Cauchy-Lipschitz (also called Picard-Lindelöf) theorem (see
[Teschl, 2012, Theorem 2.2]) for uniqueness, the holonomic differential equation of lowest order
and enough initial values corresponding to a holonomic function can be used for identification
purposes. Therefore, such a representation constitutes a normal form (see [Geddes et al., 1992,
Chapter 3]).

Thus for example, one can use the differential equation
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(%i1) HolonomicDE(log(1+z),F(z));

(%o1) (1 + z) ·
(
d2

d z2
· F (z)

)
+

d

d z
· F (z) = 0

for |z − 1| < 1, and the initial values F (0) = 0,
(
d
d z
· F (z)

)
(0) = 1 to define the logarithm

function. Note that the use of Algorithm 1 reduces this normal form definition of functions to
expressions, because it might happen that equivalent expressions have two different representa-
tions. This is for example the case with the Chebyshev polynomials. For |x| < 1, the following
two differential equations define the same function.

(%i2) HolonomicDE(cos(4*acos(x)),F(x));

(%o2) (x− 1) · (1 + x) ·
(
d2

d x2
· F (x)

)
+ x ·

(
d

d x
· F (x)

)
− 16 · F (x) = 0

(%i3) HolonomicDE(8*x^4-8*x^2+1,F(x));

(%o3)
(
1− 8 · x2 + 8 · x4

)
·
(
d

d x
· F (x)

)
− 16 · x ·

(
2 · x2 − 1

)
· F (x) = 0

Note that this happens because HolonomicDE does not use simplifications on its input
expressions. However, one can easily prove that these two differential equations are compatible
by substituting the lower order differential equation into the larger one. The following sequence
of Maxima instructions demonstrates their compatibility1.

--> /* Computatations of the holonomic DEs */

(%i4) DE1: HolonomicDE(cos(4*acos(x)),F(x))$

(%i5) DE2: HolonomicDE(8*x^4-8*x^2+1,F(x))$

--> /* Writing the first derivative diff(F(x),x)

in terms of F(x) */;

(%i6) subst_rule1: solve(DE2,diff(F(x),x))[1];

(%o6)
d

d x
· F (x) =

(32 · x3 − 16 · x) · F (x)

8 · x4 − 8 · x2 + 1

--> /* Differentiating the obtained relation

to find a relation for the second derivative*/;

(%i7) subst_rule2: diff(subst_rule1,x);

(%o7)
d2

d x2
· F (x) =

(32 · x3 − 16 · x) ·
(
d
d x
· F (x)

)
8 · x4 − 8 · x2 + 1

+
(96 · x2 − 16) · F (x)

8 · x4 − 8 · x2 + 1
− (32 · x3 − 16 · x)

2 · F (x)

(1− 8 · x2 + 8 · x4)2

1Two differential equations are said to be compatible if every solution of the lower order DE is solution of the
other.
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--> /* Use the second relation as a rule for

substitution in DE1 */;

(%i8) DE: subst(subst_rule2,lhs(DE1));

(%o8) (x− 1) · (1 + x) ·
(
− (32 · x3 − 16 · x)

2 · F (x)

(1− 8 · x2 + 8 · x4)2 +
(96 · x2 − 16) · F (x)

8 · x4 − 8 · x2 + 1

+
(32 · x3 − 16 · x) ·

(
d
d x
· F (x)

)
8 · x4 − 8 · x2 + 1

)
+ x ·

(
d

d x
· F (x)

)
− 16 · F (x)

--> /* Use the first relation as a rule for

substitution in DE */;

(%i9) DE: subst(subst_rule1,DE);

(%o9)
x · (32 · x3 − 16 · x) · F (x)

8 · x4 − 8 · x2 + 1
+

(x− 1) · (1 + x) · (96 · x2 − 16) · F (x)

8 · x4 − 8 · x2 + 1
− 16 ·F (x)

--> /* Finally, normalizing DE yields 0. We only have

to factorize the coefficient of F(x) in DE*/;

(%i10) factor(coeff(DE,F(x)));

(%o10) 0

This process of deciding whether two holonomic differential equations are compatible can
be generalized. Our package contains the function CompatibleDE(DE1,DE2,F(z)) that can be
use for this purpose.

It is remarkable that, as we will see how our algorithm works in the general case, such
identities were already recovered by Koepf’s original FPS implementation in Maple!

On the other hand, by Proposition 2.3 we can also use power series representations of the
form

∑∞
n=n0

an(z − z0)n with a recursive definition of the general coefficient an to identify
analytic holonomic functions. Thus, given an analytic expression f(z) at z0 whose Taylor
coefficients satisfy a holonomic recurrence equation of the form

Td(n) · an+d + Td−1(n) · an+d−1 + · · ·+ T0(n) · an = 0, n ∈ Z, d ∈ N (4.46)

with T0(n) · Td(n) 6= 0,∀n > n0, f(z) is identified to

∞∑
n=0

an+n0(z−z0)n+n0 , with


an+d =

Td−1(n) · an+d−1 + . . .+ T0(n) · an
Td(n)

, n > n0

aj = limz→z0

(
dj

d zj
· f
)

(z)

j!
, j = n0, n0 + 1, . . . , n0 + d− 1

.

(4.47)
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The value of n0 is deduced by the property T0(n) · Td(n) 6= 0,∀n > n0, that is

n0 = 1 + max{n ∈ Z, T0(n) · Td(n) = 0}. (4.48)

Notice that n0 is computed before any cancellation of common factors in (4.46), which guaranties
that n0 does exist in general for any holonomic RE output of FindRE of order d > 1. Indeed,
the rewrite rule (4.44) allows to remark that the differential equation terms with derivative order
greater than 1 lead to recurrence equation terms with non constant polynomial coefficients. The
determination of n0 is crucial to extract parts in the series expansion that are not involved in the
summation formula. Much details about the computation of power series extra parts are given in
Section 7.1.

Let us consider the logarithm function log(1 + z). It can be seen in the neighborhood of zero
as
∑∞

n=0 anz
n, where an satisfies

(%i11) FindRE(log(1+z),z,a[n]);

(%o11) (1 + n) · (2 + n) · an+2 + (1 + n)2 · an+1 = 0,

with a0 = 0, a1 = 1. By shifting the order so that the equation writes in the form (4.46), we
obtain n0 = 1 and therefore,

log(1 + z) =
∞∑
n=0

an+1z
n+1, with

an+1 =
n

(n+ 1)
· an, n > 1

a1 = 1
, |z| < 1. (4.49)

This representation allows to generate any number of Taylor coefficients as desired.

4.3.2 Taylor Expansions of Holonomic Functions

Let f(z) be a holonomic function. The Taylor expansion of f(z) at z0 is computed as the one of
g(z) = f(z + z0) at 0 if z0 is a constant, of g(z) = f

(
−1
z

)
if z0 = −∞, and of g(z) = f

(
1
z

)
if

z0 =∞. This algorithm is an immediate use of (4.47) whose the steps are as follows.

Algorithm 3 Computing Taylor Polynomials of Holonomic Functions at z0 ∈ C ∪ {−∞,∞}
Input: A holonomic expression f(z), a point z0, and an integer N .
Output: Taylor polynomial of order N of f(z).

1. If z0 ∈ C, set g(z) := f(z + z0), else if z0 = −∞, set g(z) := f
(
−1
z

)
, else set

g(z) := f
(

1
z

)
.

2. Use FindRE to compute a holonomic recurrence equation satisfied by the Taylor
coefficients of g(z) and write it in the form

Td(n) · an+d + Td−1(n) · an+d−1 + · · ·+ T0(n) · an = 0, n ∈ Z, d ∈ N. (4.50)
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Algorithm 3 Computing Taylor Polynomials of Holonomic Functions at z0 ∈ C ∪ {−∞,∞}

3. If d = 0 then return the Taylor expansion of order N with the internal command of
Taylor expansions, say taylor(f(z), z0, N).

4. Compute
n0 = 1 + max{n ∈ Z, T0(n) · Td(n) = 0}. (4.51)

5. If N 6 n0 + d− 1 then stop and return taylor(f(z), z0, N).

6. If N > n0 + d− 1 then

T := taylor(f(z), z0, n0 + d− 1). (4.52)

1-1-1 If z0 ∈ C then compute

aj := coeff (T, z − z0, j) , j = n0, n0 + 1, . . . , n0 + d− 1, (4.53)

where coeff(T, z − z0, j) collects the coefficient of (z − z0)j in T . The Maxima
syntax is adopted.

1-1-2 For j = n0, n0 + 1, . . . , N − d, compute

aj+d =
Td−1(j) · aj+d−1 + . . .+ T0(j) · aj

Td(j)
(4.54)

T = T + aj+d · (z − z0)j+d (4.55)

1-2-1 If |z0| =∞ then compute

aj := coeff (T, 1/z, j) , j = n0, n0 + 1, . . . , n0 + d− 1, (4.56)

1-2-2 For j = n0, n0 + 1, . . . , N − d, compute

aj+d =
Td−1(j) · aj+d−1 + . . .+ T0(j) · aj

Td(j)
(4.57)

T = T + aj+d ·
(

1

z

)j+d
(4.58)

• Return T .

Remark

• The relation (4.54) shows that the Taylor coefficients are computed in the same finite
number of operations. Therefore the complexity is linear.

• As we are interested by the asymptotic complexity of this algorithm, there is no issue
of comparison when the internal command is called in step 1 and 1. And moreover, the
Maxima’s taylor(f(z), z0, N) is generally either 0 or a term not analytic at the point of
expansion involved in the power series expansion of f(z). An example is arcsech(z)

whose Maxima’s command taylor gives the following expansion of order 4 at 0.
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(%i12) taylor(asech(z),z,0,4);

(%o12)/T/− log (z) + log (2) + · · · − z2

4
− 3 · z4

32
+ · · ·

• In order to treat certain interesting non analytic cases like arcsech(z) in Maxima, instead
of the limit command which can generate error due to singularities, the internal Maxima
command taylor is used. The initial values are then the coefficients of (z − z0)j, j =

n0, . . . , n0 + d− 1.

Our Maxima package FPS contains an implementation of Algorithm 3 named Taylor with
the same syntax as the internal command taylor. The following Maxima program can be used to
collect polynomial coefficients as in (4.50) of a recurrence equation found by FindRE.

allcoeffsBound(P,n,t,M):= block([exP,c,j],

c: [],

exP: expand(P),

for j:t thru M do (c : cons(coeff(P,n,j),c)),

c

)$

Example 4.3.

(%i13)RE:FindRE(cos(z),z,a[n]);

(%o13) (1 + n) · (2 + n) · an+2 + an = 0

(%i14)REcoeff(RE,a[n]);

(%o14) [1, 0, (n+ 1) · (n+ 2)]

(%i15)RE:FindRE(sin(z)+exp(z),z,a[n]);

(%o15) (1 + n) · (2 + n) · (3 + n) ·an+3− (1 + n) · (2 + n) ·an+2 + (1 + n) ·an+1−an = 0

(%i16)REcoeff(RE,a[n]);

(%o16) [−1, n+ 1,− (1 + n) · (2 + n) , (n+ 1) · (n+ 2) · (n+ 3)]

The code REcoeff will often be used to collect polynomial coefficients.

Finally, our Taylor code is given by
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Taylor(f,z,z0,N):=catch(block([g,limitz0,RE,d,C,Sn0,n0,T,I,rec,a,j],

if(z0=inf or z0=-inf) then g: subst(Sign(z0)*1/z,z,f)

else g: subst(z+z0,z,f),

assume(z>0),

errormsg: false,

limitz0: errcatch(taylor(g,z,0,lopow(f,z))),

if(length(limitz0)<1) then (

print("Not analytic at", z0),

throw(f)

),

errormsg: true,

RE: FindRE(g,z,a[n]),

if(RE=false) then throw(false),

C: REcoeff(RE,a[n]),

d: length(C)-1,

if(d>0) then Sn0: map(rhs, solve(first(C)*last(C),n))

else throw(ratdisrep(taylor(f,z,z0,N))),

Sn0: sublist(Sn0, integerp),

n0: lmax(Sn0)+1,

if(N<=n0+d-1) then throw(ratdisrep(taylor(f,z,z0,N))),

if(z0=inf or z0=-inf) then (

T: ratdisrep(taylor(f,z,z0,n0+d-1)),

I: makelist(a[j]=coeff(T,1/z,j),j,n0,n0+d-1),

rec: a[n+d]=-sum(C[j]*a[n+j-1],j,1,d)/C[d+1],

for j:n0 thru N-d do

I: endcons(radcan(subst(I,subst(j,n,rec))),I),

T + sum(rhs(I[j])*(1/z)^(n0+j-1),j,d+1,N+1-n0)

)

else(

T: ratdisrep(taylor(f,z,z0,n0+d-1)),

I: makelist(a[j]=coeff(T,z-z0,j),j,n0,n0+d-1),

rec: a[n+d]=-sum(C[j]*a[n+j-1],j,1,d)/C[d+1],

for j:n0 thru N-d do

I: endcons(radcan(subst(I,subst(j,n,rec))),I),

T + sum(rhs(I[j])*(z-z0)^(n0+j-1),j,d+1,N+1-n0)

)

))$

Example 4.4.

(%i17)Taylor(asech(z),z,0,7);

(%o17) − log (z)− 5 · z6

96
− 3 · z4

32
− z2

4
+ log (2)



62 Computing Holonomic Differential Equations and Holonomic Recurrence Equations

(%i18)Taylor(atan(z),z,0,7);

(%o18) − z7

7
+
z5

5
− z3

3
+ z

(%i19)Taylor(cos(z),z,0,8);

(%o19)
z8

40320
− z6

720
+
z4

24
− z2

2
+ 1

(%i20)Taylor(log(1+z)+sin(z),z,1,7);

(%o20)
(1 + 2 · cos (1)) · (z − 1)

2
− (8 · cos (1)− 45) · (z − 1)7

40320

− (15 + 8 · sin (1)) · (z − 1)6

5760
+

(3 + 4 · cos (1)) · (z − 1)5

480
+

(8 · sin (1)− 3) · (z − 1)4

192

− (4 · cos (1)− 1) · (z − 1)3

24
− (1 + 4 · sin (1)) · (z − 1)2

8
+ log (2) + sin (1)

(%i21)Taylor(atan(z),z,inf,7);

(%o21) − 1

z
+

1

3 · z3
− 1

5 · z5
+

1

7 · z7
+
π

2

Let us now evaluate the timings for larger order. We mention that when the given expression
is a classical one like sin(z), arctan(z), exp(z), etc, Maxima seems to use the power series
formula and has good asymptotic timings. Therefore, for tests we rather use expressions for
which the internal Maxima command powerseries cannot find the power series formulas.

(%i22)Taylor(exp(z)*cos(z),z,0,300)$

Evaluation took 0.2400 seconds (0.2700 elapsed)

(%i23)taylor(exp(z)*cos(z),z,0,300)$

Evaluation took 0.4500 seconds (0.4900 elapsed)

(%i24)Taylor(atan(z)*exp(z),z,0,300)$

Evaluation took 0.5200 seconds (0.6200 elapsed)

(%i25)taylor(atan(z)*exp(z),z,0,300)$

Evaluation took 2.9000 seconds (3.0900 elapsed)

We have used N = 300 but note that the time gap between the two computations increases

as N →∞.

(%i26)Taylor(atan(z)*exp(z),z,0,1000)$

Evaluation took 7.7100 seconds (11.3600 elapsed)
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(%i27)taylor(atan(z)*exp(z),z,0,1000)$

Evaluation took 186.0100 seconds (191.2100 elapsed)
Hence the fast computation of Taylor expansions of holonomic expressions using the output

of FindRE.





Chapter 5

Petkovšek’s Algorithm

When the recurrence equation obtained using FindRE is a two-term recurrence relation of order
d ∈ N, then one finds a hypergeometric term representation for the Taylor coefficients of the
holonomic function considered using d initial values. However, in many cases the recurrence
equation found is not of lowest order possible. And this does not happen only when the given
holonomic function is a linear combination of hypergeometric type functions, but also when it
has a single type in its power series expansion. For example

(%i1) FindRE(sqrt(1+z)+1/sqrt(1+z),z,a[n]);

(%o1) 4 · (1 + n) · an+1 + 6 · n · an + (2 · n− 3) · an−1 = 0

is the recurrence equation found for the hypergeometric type series
∞∑
n=0

2 · (n− 1) · (−1)n · (2 · n)! · zn

(2 · n− 1) · 4n · n!2
(5.1)

whose general coefficient clearly satisfies a two-term recurrence relation of order 1. This figures
out the connection between power series computation and hypergeometric and further m-fold
hypergeometric term solutions of holonomic recurrence equations. Marko Petkovšek developed
an algorithm (see [Petkovšek, 1992]) which finds all hypergeometric term solutions of such
equations. The understanding of this algorithm is essential for the remaining part of this thesis.
We consider the holonomic recurrence equation

Pd(n)an+d + Pd−1(n)an+d−1 + · · ·P1(n)an+1 + P0(n)an = 0, (5.2)

where Pj(n) ∈ K[n], 0 6 j 6 d and d ∈ N is the order. We denote by the maximum degree of
the polynomial coefficients

M = max{deg (Pj) , 0 6 j 6 d}, (5.3)

the degree of the holonomic recurrence equation (5.2). Note that substituting polynomials by
rational functions in (5.2) does not affect the procedure, because for the recurrence

rd(n)an+d + rd−1(n)an+d−1 + · · · r1(n)an+1 + r0(n)an = 0, (5.4)

65
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where rj(n) =
Pj(n)

Qj(n)
, 0 6 j 6 d, for polynomials Pj(n) and Qj(n) 6= 0, multiplying both

sides of (5.4) by lcm(Q0(n), . . . , Qd(n)) leads to an equivalent recurrence equation which is
holonomic.

Petkovšek’s algorithm comes as a decision procedure to find hypergeometric term solutions
of any holonomic recurrence equation. The algorithm has two parts:

• In the first step, Petkovšek gives an algorithm to find all polynomial solutions of a given
holonomic recurrence equation.

• In the second part, this sub-algorithm is used to determine the hypergeometric term
solutions of a given holonomic recurrence equation.

5.1 Polynomial Solutions of Holonomic Recurrence

Equations

Let K be a field of characteristic zero. In this section, we describe an algorithm which finds
polynomial solutions an ∈ K[n] of (5.2). Abramov has independently proposed a similar
algorithm in [Abramov, 1989] which uses the difference operators of linear recurrences to
compute their polynomial solutions. Petkovšek’s approach is slightly more different.

As we want to compute polynomial solutions of (5.2) in K[n], the purpose can be reduced
by computing the degrees of those polynomials so that for each computed degree N , we can
substitute a generic polynomial of degree N for an in the recurrence equation and solve the
resulting system of linear equations by equating the coefficients. Moreover, consider two integers
N1 and N2 as the degrees of two polynomial solutions of (5.2), say P1 and P2, respectively. If
we assume N2 > N1, then the linear system obtained by substituting a generic polynomial of
degree N2 in (5.2) also gives solutions for which P1 is a particular case. That are polynomials
whose monomial terms of degrees N1 + 1, . . . , N2 are zero. Therefore, it is natural to think of an
upper bound N for the possible degrees of polynomial solutions of (5.2).

Note that information on the degree bound of polynomial solutions of holonomic recurrence
equations may appear hidden from their orders and degrees. Consider for example the holonomic
recurrence equation of the general coefficient of the power series of 1

(1−z)k , k ∈ N. Using FindRE

we get the holonomic RE

(%i1) FindRE(1/(1-z)^k,z,a[n]);

(%o1) (k + n) · an − (1 + n) · an+1 = 0

of degree and order equal 1 whose polynomial solutions are multiples of
(
n+k−1
k−1

)
which is a

polynomial of degree k as seen in (2.6).
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Petkovšek’s main observation is that information on the bound of the degree of polynomial
solutions of (5.2) can be found by using the binomial theorem in the expansion of

Pd(n)
(
αN(n+ d)N + · · ·+ α0

)
+ Pd−1(n)

(
αN(n+ d− 1)N + · · ·+ α0

)
+ · · ·

+ P1(n)
(
αN(n+ 1)N + · · ·+ α0

)
+ P0(n)

(
αNn

N + · · ·+ α0

)
, (5.5)

which is the result of the substitution of a generic polynomial of arbitrary orderN in the left-hand
side of (5.2).

For the sake of simplicity, we follow the convention 00 = 1.
(5.5) is a polynomial of degree at most N + M whose leading coefficient can be written

in terms of N since (n + j)N =
∑N

k=0

(
N
j

)
nkjn−k, 0 6 k 6 d, is expanded in terms of N .

The idea is then to compute starting from degree N +M , the first non-zero coefficient of that
polynomial which is necessarily a polynomial of the variable N and find its maximal positive
integer root.

Once we have found a bound for the degree of polynomial solutions, if there are non-zero
solutions of the obtained linear system, then they must depend on certain multiplicative constants
since any multiple of a polynomial solution of a holonomic RE is another one. Thus, the output of
Petkovšek’s algorithm Poly is a linear space that we will represent as a general linear combination
of a basis of all polynomial solutions of the given input RE.

The algorithm works as follows.

Algorithm 4 Algorithm Poly for holonomic recurrence equation of order d ∈ N
Input: Polynomials

Pi(n) :=
M∑
j=0

ci,jn
M−j, 0 6 i 6 d, (5.6)

where ci,j ∈ K such that at least one of ci,0, 0 6 i 6 d, is non-zero.
Output: A linear combination L for the space of polynomial solutions over K of (5.2).

1: Set t := min(M − d, 0) and ci,M−j = 0 for t 6 j < 0.
2: Initialize s := −1.
3: repeat s = s+ 1; for 0 6 j 6 s, compute

b
(s)
j :=

d∑
i=0

ijci,s−j (5.7)

4: until ∃j ∈ {0, . . . , s} such that b(s)
j 6= 0

5: Let D be the set of non-negative integer roots N of the polynomial

D(N) :=
s∑
j=0

(
N

j

)
bsj . (5.8)

6: if D = ∅ then L = 0
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7: else
N0 := maxD;
find a linear combination L for the space of polynomial solutions of (5.2) over K of

degree at most N0, by solving the linear system obtained by plugging in (5.2) an arbitrary
polynomial of degree N0.

8: end if
9: return L.

The correctness of the algorithm Poly relies on the proof of the following items.

• The loop in step 3 terminates.

• The set D is step 5 is a a finite set.

• The set D is the set of degrees of any polynomial solution of (5.2).

These facts are established by the next three lemmas.

Lemma 5.1. In algorithm Poly, s 6 d at all iterations.

Proof. Assume that at some point s = s0. Then b(s)
j = 0 for 0 6 j 6 s < s0. In particular,

b
(s)
s = 0 for 0 6 s < s0. If s0 > d this implies that for 0 6 s 6 d,

b(s)
s =

d∑
i=0

isci,0 = 0 ⇐⇒ (is)di,s=0 ·
(
(ci,0)di=0

)T
= 0

⇐⇒ (ci,0)di=0 = (0)di=0,

since |(is)di,s=0| is the non-zero Vandermonde determinant V (0, 1, . . . , d). However, the ci,0,
0 6 i 6 d are the coefficients of nM in the input polynomials of the algorithm, and by assumption
we know that at least one of them is non-zero, therefore we have a contradiction.

Thus, from this lemma we know that the number of iterations in step 3 is at most d+ 1.

Observe that if t 6= 0 then b(s)
j = 0 for s− j > M . The advantage of adding the variable t in

the algorithm is that it permits to fix the maximum number of coefficients ci,j that the algorithm
will need to find the non-zero b(s)

j . This is helpful for the implementation, because it gives the
exact number of zero coefficients ci,j , j > M that have to be taken into consideration. Indeed if
M < d, then after M iterations, the non-zero b(s)

j may not yet be found. And since s 6 d, the
remaining number of iterations is at most d −M = t. For example, consider the recurrence
equation

an+3 − 3 · an+2 + 3 · an+1 − an = 0. (5.9)

Then we haveM = 0, d = 3, and at the first iteration in step 3 we get b(0)
0 = 0. So s increments to

1, and the algorithm has to compute the obvious zero b(1)
0 and ends at b(1)

1 = −1+3−2 ·3+3 ·1 =

−1.

Lemma 5.2. In algorithm Poly, D is a finite set.
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This is straightforward from Lemma 5.1 since it implies that D(N) in (5.8) is a non-zero
polynomial.

Lemma 5.3. Let s0 be the value of s obtained at the last iteration in step 3 of Algorithm 4. Let

an =

N0∑
k=0

αkn
k, αN0 6= 0 (5.10)

be a polynomial solution of (5.2). Then

s0∑
j=0

(
N0

j

)
bs0j = 0 (5.11)

where b(s)
j is as in (5.7).

For the proof of this lemma, one can use the binomial theorem for a general expansion of
(5.5) and deduce the relation (5.11) by equating the general monomial coefficient to zero. This
will show that if a polynomial of degree N0 is a solution of (5.2) then N0 is a solution of the
polynomial equation (5.8).

For a Maxima implementation of this algorithm, we first need a function to collect the
polynomial coefficients, this is done by our REcoeff procedure presented in Section 4.3.2. After
that, once t is fixed we collect the coefficients ci,j for t 6 j 6 m, 0 6 i 6 d. Thus, from step 3,
the implementation of the algorithm is immediate.

The following Maxima program can be used to collect the coefficients of a polynomial.

allcoeffsBound(P,n,t,M):= block([exP,c,j],

c: [],

exP: expand(P),

for j:t thru M do (c : cons(coeff(P,n,j),c)),

c

)$

The syntax is allcoefBound(P,n,t,M) which returns a list of coefficients of the given polyno-
mial P for the integer powers t 6 j 6 M of the indeterminate n. Below we give an example.

(%i1) P:sum(i*n^i,i,-2,5);

(%o2) 5 · n5 + 4 · n4 + 3 · n3 + 2 · n2 + n− 1

n
− 2

n2

(%i2) allcoeffsBound(P,n,-3,6);

(%o3) [0, 5, 4, 3, 2, 1, 0,−1,−2, 0]

Let us take some examples and compare the results of our implementation with the those given
commands in Maxima’s package solve_rec. Our implementation has the syntax PolyPetkov(RE,a[n]),
for a given holonomic recurrence equation RE of the indeterminate sequence a[n].
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Example 5.1.

(%i3) RE: -a[n]+3*a[n+1]-3*a[n+2]+a[n+3]=0;

(%o3) an+3 − 3 · an+2 + 3 · an+1 − an = 0

(%i5) PolyPetkov(RE,a[n]);

Evaluation took 0.0000 seconds (0.0000 elapsed)

(%o5) %r1 · n2 + %r2 · n+ %r3

(%i6) solve_rec(RE,a[n]);

Evaluation took 0.0200 seconds (0.0500 elapsed)

(%o6) an = %k 3 · n2 + %k 2 · n+ %k 1

(%i7) RE:n*(n+1)*a[n+2]-2*n*(n+10)*a[n+1]+(n+9)*(n+10)*a[n]=0;

(%o7) n · (1 + n) · an+2 − 2 · n · (10 + n) · an+1 + (9 + n) · (10 + n) · an = 0

(%i8) PolyPetkov(RE,a[n]);

Evaluation took 0.0200 seconds (0.0100 elapsed)

(%o8) %r 4·(n− 36)·n·(1 + n)·(2 + n)·(3 + n)·(4 + n)·(5 + n)·(6 + n)·(7 + n)·(8 + n)

+ %r 5 · n · (1 + n) · (2 + n) · (3 + n) · (4 + n) · (5 + n) · (6 + n) · (7 + n) · (8 + n)

(%i9) solve_rec(RE,a[n]);

Evaluation took 0.1800 seconds (0.2000 elapsed)

(%o9) an = %k 1·(n− 36)·n·(1 + n)·(2 + n)·(3 + n)·(4 + n)·(5 + n)·(6 + n)·(7 + n)·(8 + n)

+ %k 2 · n · (1 + n) · (2 + n) · (3 + n) · (4 + n) · (5 + n) · (6 + n) · (7 + n) · (8 + n)

As one can see the outputs are given as the sum of factorized linearly independent polynomi-
als.

(%i10)RE:n*(n+1)*a[n+2]-2*n*(n+100)*a[n+1]+(n+99)*(n+100)*a[n]=0;

(%o10) n · (1 + n) · an+2 − 2 · n · (100 + n) · an+1 + (99 + n) · (100 + n) · an = 0

(%i11)P:PolyPetkov(RE,a[n])$

Evaluation took 40.0300 seconds (40.2800 elapsed)
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(%i12)factor(P)$

Evaluation took 0.0100 seconds (0.0100 elapsed)
(%o12) n · (n+ 1) · (n+ 2) · (n+ 3) · (n+ 4) · (n+ 5) · (n+ 6) · (n+ 7) · (n+ 8) · (n+ 9)

·(n+ 10)·(n+ 11)·(n+ 12)·(n+ 13)·(n+ 14)·(n+ 15)·(n+ 16)·(n+ 17)·(n+ 18)·(n+ 19)

·(n+ 20)·(n+ 21)·(n+ 22)·(n+ 23)·(n+ 24)·(n+ 25)·(n+ 26)·(n+ 27)·(n+ 28)·(n+ 29)

·(n+ 30)·(n+ 31)·(n+ 32)·(n+ 33)·(n+ 34)·(n+ 35)·(n+ 36)·(n+ 37)·(n+ 38)·(n+ 39)

·(n+ 40)·(n+ 41)·(n+ 42)·(n+ 43)·(n+ 44)·(n+ 45)·(n+ 46)·(n+ 47)·(n+ 48)·(n+ 49)

·(n+ 50)·(n+ 51)·(n+ 52)·(n+ 53)·(n+ 54)·(n+ 55)·(n+ 56)·(n+ 57)·(n+ 58)·(n+ 59)

·(n+ 60)·(n+ 61)·(n+ 62)·(n+ 63)·(n+ 64)·(n+ 65)·(n+ 66)·(n+ 67)·(n+ 68)·(n+ 69)

·(n+ 70)·(n+ 71)·(n+ 72)·(n+ 73)·(n+ 74)·(n+ 75)·(n+ 76)·(n+ 77)·(n+ 78)·(n+ 79)

·(n+ 80)·(n+ 81)·(n+ 82)·(n+ 83)·(n+ 84)·(n+ 85)·(n+ 86)·(n+ 87)·(n+ 88)·(n+ 89)

· (n+ 90) · (n+ 91) · (n+ 92) · (n+ 93) · (n+ 94) · (n+ 95) · (n+ 96) · (n+ 97) · (n+ 98)

· (%r6 · n+ %r7 − 4851 ·%r6 )

(%i13)solve_rec(RE,a[n])$

Evaluation took 41.7900 seconds (42.2400 elapsed)

We hide the output in this example to save space because the corresponding polynomial
solutions are linear combinations of (n)99 and (n)100 that are polynomials of degree 99 and 100,
respectively.

(%i14)RE:(11323+22134*n+15924*n^2+4992*n^3+576*n^4)*a[n+2]

-4*(10718+18741*n+11706*n^2+3072*n^3+288*n^4)*a[n+1]+

(54949+71262*n+34356*n^2+7296*n^3+576*n^4)*a[n]=0;

(%o14)
(
11323 + 22134 · n+ 15924 · n2 + 4992 · n3 + 576 · n4

)
· an+2

− 4 ·
(
10718 + 18741 · n+ 11706 · n2 + 3072 · n3 + 288 · n4

)
· an+1

+
(
54949 + 71262 · n+ 34356 · n2 + 7296 · n3 + 576 · n4

)
· an = 0

(%i15)PolyPetkov(RE,a[n]);

Evaluation took 0.0100 seconds (0.0100 elapsed)

(%o15) %r 8 ·
(
−1771− 1596 · n+ 192 · n3

)
+ %r 9 · (5 + 3 · n)2

(%i16)solve_rec(RE,a[n]);

Evaluation took 0.1900 seconds (0.2400 elapsed)

(%o16) an = %k 1 · (5 + 3 · n)2 + %k 2 ·
(
−1771− 1596 · n+ 192 · n3

)
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From (2.6) we know that the general coefficient of 1
(1−z)k , k ∈ N, is a polynomial. Therefore,

one can generate interesting examples using FindRE as follows.

(%i17)RE:FindRE(exp(z)+1/(1-z)^2,z,a[n]);

(%o18) −(1 + n)·(2 + n)·an+2+5·(1 + n)·an+1+
(
−4 + n+ n2

)
·an−(1 + n)·an−1 = 0

(%i19)PolyPetkov(RE,a[n]);

Evaluation took 0.0000 seconds (0.0100 elapsed)

(%o19) %r1 · (n+ 1)

(%i20)solve_rec(RE,a[n]);

WARNING: found some hypergeometrical solutions!

Evaluation took 0.1700 seconds (0.1900 elapsed)

(%o20) an =
%k 1

n!
+ %k 2 · (1 + n)

The warning message appears because the given recurrence equation has less hypergeometric
term solutions than its order. One sees that solve_rec prioritizes hypergeometric term solutions.
This is always the case when the given holonomic recurrence equation is of order greater than
1. For the next example we use solve_rec_poly instead, which is also an implementation of
Petkovšek’s algorithm Poly though it does not seem to be made accessible to users.
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(%i21)RE:FindRE(exp(z)+log(1+z^2)+1/(1-z)^20,z,a[n]);

(%o21) 201 · (1 + n) · (2 + n) · (3 + n) · an+3 − 2 · (1 + n) · (2 + n) · (2305 + 107 · n) · an+2

+ (1 + n) ·
(
4409− 879 · n+ 866 · n2

)
· an+1 − n ·

(
−9016 + 6193 · n+ 2596 · n2

)
· an

+ (n− 1) ·
(
77139− 54494 · n+ 11241 · n2

)
· an−1 − (n− 2) ·

(
443220− 278709 · n+ 43558

·n2
)
·an−2+2·(n− 3)·

(
1264406− 590388 · n+ 69039 · n2

)
·an−3−2·(n− 4)·

(
4846109−1873600·n

+ 181243 · n2
)
· an−4 + (n− 5) ·

(
29279246− 9636913 · n+ 795675 · n2

)
· an−5 − 12 · (n− 6)

·
(
5954765− 1712600 · n+ 123717 · n2

)
· an−6 + 253 · (n− 7) ·

(
573365− 146607 · n+ 9424 · n2

)
· an−7 − 437 · (n− 8) ·

(
572314− 131727 · n+ 7626 · n2

)
· an−8 + 437 · (n− 9)

·
(
852511− 178150 · n+ 9367 · n2

)
· an−9− 7429 · (n− 10) ·

(
65466− 12493 · n+ 600 · n2

)
· an−10

+ 29716 · (n− 11) ·
(
18945− 3315 · n+ 146 · n2

)
· an−11 − 29716 · (n− 12) ·

(
19620− 3159 · n

+128 ·n2
)
·an−12+7429 ·(n− 13) ·

(
73138− 10879 · n+ 407 · n2

)
·an−13−1748 ·(n− 14) ·

(
261176

− 36075 · n+ 1252 · n2
)
· an−14 + 437 · (n− 15) ·

(
789293− 101879 · n+ 3300 · n2

)
· an−15

− 253 · (n− 16) ·
(
918910− 111615 · n+ 3398 · n2

)
· an−16 + 253 · (n− 17) ·

(
545395

− 62772 · n+ 1809 · n2
)
· an−17 − 253 · (n− 18) ·

(
280006− 30733 · n+ 844 · n2

)
· an−18

+ 46 · (n− 19) ·
(
668757− 70415 · n+ 1854 · n2

)
· an−19 − 2 · (n− 20) ·

(
5494632

− 558381 · n+ 14180 · n2
)
· an−20 + (n− 21) ·

(
3114660− 307785 · n+ 7591 · n2

)
· an−21

−2·(n− 22)·
(
332476− 32323 · n+ 782 · n2

)
·an−22+(n− 23)·

(
97967− 9597 · n+ 232 · n2

)
·an−23

− (n− 24) ·
(
8182− 869 · n+ 22 · n2

)
·an−24+(n− 25)2 · (n− 5) ·an−25− (n− 26)2 ·an−26 = 0

(5.12)

(%i22)PolyPetkov(RE,a[n]);

Evaluation took 2.4400 seconds (2.5600 elapsed)

(%o22) %r10 ·(n+ 1)·(n+ 2)·(n+ 3)·(n+ 4)·(n+ 5)·(n+ 6)·(n+ 7)·(n+ 8)·(n+ 9)

·(n+ 10)·(n+ 11)·(n+ 12)·(n+ 13)·(n+ 14)·(n+ 15)·(n+ 16)·(n+ 17)·(n+ 18)·(n+ 19)

(%i23)solve_rec_poly(RE,a[n]);

Evaluation took 2.7300 seconds (2.8400 elapsed)

(%o23) an = %k 20 · n19 + 190 ·%k 20 · n18 + 16815 ·%k 20 · n17 + 920550 ·%k 20 · n16

+34916946·%k 20·n15+973941900·%k 20·n14+20692933630·%k 20·n13+342252511900·%k 20·n12

+ 4465226757381 ·%k 20 · n11 + 46280647751910 ·%k 20 · n10 + 381922055502195 ·%k 20 · n9

+2503858755467550·%k 20·n8+12953636989943896·%k 20·n7+52260903362512720·%k 20·n6

+161429736530118960·%k 20·n5+371384787345228000·%k 20·n4+610116075740491776·%k 20·n3

+668609730341153280·%k 20·n2+431565146817638400·%k 20·n+121645100408832000·%k 20
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(%i24)factor(%o23);

Evaluation took 0.0100 seconds (0.2000 elapsed)

(%o24) an = %k 20·(n+ 1)·(n+ 2)·(n+ 3)·(n+ 4)·(n+ 5)·(n+ 6)·(n+ 7)·(n+ 8)·(n+ 9)

·(n+ 10)·(n+ 11)·(n+ 12)·(n+ 13)·(n+ 14)·(n+ 15)·(n+ 16)·(n+ 17)·(n+ 18)·(n+ 19)

Note that this output can also be obtained using solve_rec_rat which implements Abramov’s
algorithm [Abramov, 1989].

(%i25)solve_rec_rat(RE,a[n]);

Evaluation took 3.3200 seconds (3.7700 elapsed)

(%o25) an = %k 21·(n+ 1)·(n+ 2)·(n+ 3)·(n+ 4)·(n+ 5)·(n+ 6)·(n+ 7)·(n+ 8)·(n+ 9)

·(n+ 10)·(n+ 11)·(n+ 12)·(n+ 13)·(n+ 14)·(n+ 15)·(n+ 16)·(n+ 17)·(n+ 18)·(n+ 19)

For this latter example the command solve_rec crashes after about 2 minutes.

(%i26)solve_rec(RE,a[n]);

SERVER: Lost socket connection ...

Trying to restart Maxima.

We will give more details about what happened in the next section where we describe the
Petkovšek algorithm Hyper.

5.2 Hypergeometric Term Solutions of Holonomic

Recurrence Equations

We gave a general definition of hypergeometric terms in Chapter 2 (see p. 28). In this sec-
tion, we consider the case where the symmetry number is 1. Petkovšek’s algorithm Hyper
[Petkovšek, 1992] is a direct use of the normal form of rational functions described in Lemma
5.4 below.

Lemma 5.4 (A normal form of rational functions). Let K be a field of characteristic zero and

r(n) a non-zero rational function over K. Then there exists a non-zero constant Z ∈ K and

monic polynomials (leading coefficient is 1) A(n), B(n), and C(n) over K such that

r(n) = Z
A(n)

B(n)

C(n+ 1)

C(n)
, (5.13)

where

(L1) gcd(A(n), B(n+ k)) = 1 for all k ∈ N>0,
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(L2) gcd(A(n), C(n)) = 1,

(L3) gcd(B(n), C(n+ 1)) = 1.

Proof. Proving this lemma needs existence and uniqueness. Showing the existence is equivalent
to give an algorithm which finds the form (5.13) for a given rational function. For that purpose
one can use the Gosper rewriting procedure in a specific way (see [Koepf, 2014, Lemma 9.7]).
Below we prove the uniqueness of this form.

Let r(n) be a rational function such that

r(n) = Z
A(n)

B(n)

C(n+ 1)

C(n)
= z

a(n)

b(n)

c(n+ 1)

c(n)
, (5.14)

where A,B,C, a, b, c are monic polynomials satisfying (L1), (L2) and (L3) of Lemma 5.4.
Since all these polynomials are monic, we have Z = z. Now from (5.14) we can write

A(n)b(n)c(n)C(n+ 1) = a(n)B(n)C(n)c(n+ 1). (5.15)

We are going to show that c(n) must be equal to C(n).
If we denote by

δ(n) := gcd(c(n), C(n)), (5.16)

c′(n) := c(n)/δ(n), (5.17)

C ′(n) := C(n)/δ(n), (5.18)

then
gcd(c′(n), C ′(n)) = 1 since δ(n) = δ(n) gcd(c′(n), C ′(n));

gcd(a(n), c′(n)) = gcd

(
a(n),

c(n)

δ(n)

)
= 1 by (L2);

and in the same way
gcd(b(n), c′(n+ 1)) = 1 by (L3).

(5.15)⇒ A(n)b(n)c′(n)C ′(n+ 1)δ(n)δ(n+ 1) = a(n)B(n)c′(n+ 1)C ′(n)δ(n+ 1)δ(n),

so A(n)b(n)c′(n)C ′(n+ 1) = a(n)B(n)c′(n+ 1)C ′(n) and therefore, for k ∈ N

c′(n)|B(n)c′(n+ 1) ⇐⇒ c′(n)|B(n+ k − 1)c′(n+ k),

c′(n+ 1)|A(n)c′(n) ⇐⇒ c′(n)|A(n− k)c′(n− k).

Since K has characteristic zero gcd(c′(n), c′(n + k)) = gcd(c′(n), c′(n − k)) = 1, for all
large enough k. Thus, c′(n)|B(n + k − 1) and c′(n)|A(n − k) but from (L1) we know that
1 = gcd(A(n), B(n+ k)) = gcd(A(n), B(n+ k+ k− 1)) = gcd(A(n− k), B(n+ k− 1)) so
c′(n) = c′ which is nothing but 1 since we are dealing with monic polynomials.

Hence by (5.17) and (5.18) we obtain

δ(n) = c(n)⇒ c(n)|C(n).
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By changing the roles of c(n) and C(n) we also get C(n)|c(n), therefore since they are monic
polynomials we finally get c(n) = C(n).

Thus from (5.15) it remains A(n)b(n) = a(n)B(n). By (L1), a(n)|A(n) and vice versa, so
a(n) = A(n) and similar for b(n) and B(n).

We have just shown that two equal representations of the normal form (5.13) have identical
data and this proves the uniqueness of that normal form.

We move on to our main problem of finding the hypergeometric term solutions of a given
holonomic recurrence equation. Proving the algorithm is equivalent to show how each of its steps
works. So let us consider a hypergeometric sequence an. Then there exists a rational function
r(n) ∈ K(n) such that

r(n) =
an+1

an
. (5.19)

Substituting an+1 = r(n)an in (5.2) and dividing by an gives

Pd(n)
d−1∏
j=0

r(n+ j) + Pd−1(n)
d−2∏
j=0

r(n+ j) + · · ·+ P1(n)r(n) + P0(n) = 0. (5.20)

Using the normal form (5.13) for r(n) yields for 1 6 i 6 d

i−1∏
j=0

r(n+ j) = Zi

(
i−1∏
j=0

A(n+ j)

B(n+ j)

)
C(n+ i)

C(n)
. (5.21)

We substitute this in (5.20) and we multiply the result by C(n)
∏d−1

j=0 B(n+ j). The resulting
equation has the form

ZdQd(n)C(n+ d) +Zd−1Qd−1(n)C(n+ d− 1) + · · ·+ZQ1(n)C(n+ 1) +Q0(n)C(n) = 0,

(5.22)
where Qi(n) = Pi

∏i−1
j=0A(n+ j)

∏d−1
j=i B(n+ j).

We remark that A(n) appears as a factor of all the first d terms. Using properties (L1) and
(L2) of Lemma 5.4, we deduce thatA(n) must be a monic factor of P0(n). SimilarlyB(n+d−1)

is a monic factor of Pd(n). Thus, we have a finite set of candidates for A(n) and B(n) from the
RE (5.2). Candidates for Z are roots of the equation

d∑
i=0

liZ
i = 0, (5.23)

where li, 0 6 i 6 d is the coefficient of nM in Qi in (5.22), where

M = max{deg(Qi), 0 6 i 6 d}. (5.24)

Therefore for fixed choice of A(n), B(n) and Z, (5.22) is a holonomic RE for C(n). And
finally it remains to find non-zero polynomial solutions of that recurrence equation. For this
purpose one can use the Algorithm 4. If there are polynomial solutions, then an exists and we
have the normal form of its characteristic rational function. On the other hand, if for all monic
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factors A(n) of P0(n) and B(n) of Pd(n− d+ 1) none rational function is found, then there is
no hypergeometric term solution.

Note that the general expression of each hypergeometric term solution has to be deduced
from the relation an+1 = r(n)an, by using the hypergeometric formula as defined in (2.53). But
we leave that step for the next chapter. In our work, Petkovšek’s algorithm is somewhat like a
lantern for our approach of van Hoeij’s algorithm whose hypergeometric terms in the outputs are
given in a "simple" formula form.

Remarks

• Observe that shifting A(n) and B(n) by an integer k in the normal form (5.13) does not
change the hypergeometric term solution candidate, but however, in this case, A(n) and
B(n) have to be monic factors of, respectively, P0(n− k) and Pd(n− d+ 1− k). k = 1

is the case that we use for our implementation.

• Sometimes extension fields have to be considered. Indeed the choice of the monic factors
A(n) and B(n) depends on the field where the factorization of P0(n − 1) · Pd(n − d)

is done. It should be mentioned that the algorithm needs complete factorizations to try
all the possible combinations. However, algorithmically we can only have factorizations
over Q or some of its extension fields when some roots of the involved polynomials are
computable.

• The candidates for Z also depend on the considered field since they represent the roots of
the polynomial (5.23).

• Depending on the degree of the leading and trailing polynomial coefficients of a given
holonomic recurrence equation, the complexity of Petkovšek’s algorithm can be quite
high, because in this case many factors have to be checked over the considered field. And
moreover if the degrees of the other polynomial coefficients are also high, then the search
for polynomial solutions of (5.22) can also increase the timing.

Observe, however, that for two given monic factors A(n) and B(n) in Petkovšek’s al-
gorithm, the coefficients of the equation (5.23) which determines Z depend only on the
difference D(A,B) := deg(A(n)) − deg(B(n)) and not on A(n) and B(n) themselves.
Therefore it is advantageous to test pairs of factors A(n), B(n) according to the value
of D(A,B) [Petkovšek, 1992, Remark 4.1]. Moreover, it is important to take into ac-
count that the recurrence equation (5.2) cannot have more than d linearly independent
hypergeometric term solutions.

Let us practice the algorithm on the recurrence equation

4 · (2 + n) · an+2 + 6 · (1 + n) · an+1 + (2 · n− 1) · an = 0 (5.25)

of the Taylor coefficients of
√

1 + z +
1√

1 + z
.



78 Petkovšek’s Algorithm

1. The leading and trailing polynomial coefficients are, respectively, P2(n) = 4(n+ 2) and
P0(n) = (2n− 1). To build the normal form (5.13) of a hypergeometric term solution of
(5.25), we need monic factors A(n) of P0(n− 1) and B(n) of P2(n− 2). Thus we have
A(n) ∈ {1, (n− 3

2
)} and B(n) ∈ {1, n}.

2. For each A(n) and B(n), we set

Q2(n) =
P2(n) · A(n+ 1)

B(n+ 1)
, (5.26)

Q1(n) = P1(n), (5.27)

Q0(n) =
P0(n) ·B(n)

A(n)
, (5.28)

M = max{deg(Q0), deg(Q1), deg(Q2)}, (5.29)

li = coeff(Qi, n,M). (5.30)

By Petkovšek algorithm (see (5.22)), a hypergeometric term solution of (5.25) with the
normal form of its characteristic ratio (5.13) (where A(n) and B(n) are substituted by
A(n+ 1) and B(n+ 1)), exists if and only if there exists a number Z such that

l2Z
2 + l1Z + l0 = 0, (5.31)

and the holonomic RE

Z2Q2(n)C(n+ 2) + ZQ1(n)C(n+ 1) +Q0(n)C(n) = 0 (5.32)

has non-zero polynomial solutions.

3. Taking A(n) = B(n) = 1 leads to Z = −1
2

or Z = −1; however there is no non-zero
polynomial solutions of the auxiliary holonomic recurrence equations.

4. If exactly one of A(n), B(n) is equal to 1, the equation for Z is either 4Z2 = 0 or
contradictory.

5. Finally the choice A(n) = n− 3
2

and B(n) = n leads to Z = −1
2

or Z = −1 again. For
Z = −1

2
there is no non-zero polynomial solution of the corresponding auxiliary RE;

however for Z = −1 we get the recurrence equation

(2 + n) ·(2 · n− 1) ·(1 + 2 · n) ·C (n+ 2)−3 ·(1 + n) ·(2 + n) ·(2 · n− 1) ·C (n+ 1)

+ (1 + n) · (2 + n) · (2 · n− 1) · C (n) = 0 (5.33)

whose polynomial solutions are multiples of (n− 1) as our implementation of Algorithm
4 shows below.

(%i1) RE:(n+2)*(2*n-1)*(2*n+1)*a[n+2]-3*(1+n)*(2+n)

*(2*n-1)*a[n+1] + (n+1)*(n+2)*(2*n-1)*a[n]=0$
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(%i2) PolyPetkov(RE,a[n]);

(%o2) %r1 · (n− 1)

6. Hence the unique hypergeometric term solution of (5.25) has the characteristic ratio

− n · (2 · n− 1)

2 · (n− 1) · (n+ 1)
. (5.34)

From this previous example one sees how Petkovšek’s algorithm applies to the particular
case of holonomic recurrence equations of order d = 2. More generally the Petkovšek algorithm
Hyper works as follows.

Algorithm 5 Algorithm Hyper for holonomic recurrence equation of order d ∈ N
Input: Polynomials Pi(n), i = 0, . . . , d over a field of characteristic zero K. K might be

specified by the user.
Output: Set of term ratios of all hypergeometric term solutions over K of (5.2).

1: SetH = {}.
2: For all monic factors A(n) of P0(n− 1) and B(n) of Pd(n− d) over K compute:

2− 1 Qi(n) = Pi
∏i−1

j=0 A(n+ j)
∏d−1

j=i B(n+ j), for i = 0, . . . , d;

2− 2 M = max{deg(Qi), 0 6 i 6 d};
2− 3 li = coeff(Qi, n,M);

2− 4 For all non-zero Z satisfying
∑d

i=0 liZ
i = 0 do:

2− 4− 1 Apply Algorithm 4 to the recurrence equation

d∑
i=0

ZiQi(n)C(n+ i) = 0 (5.35)

to find all its non-zero polynomial solutions C(n). If there is a polynomial solution
C(n), then add the term ratio

Z
A(n+ 1)

B(n+ 1)

C(n+ 1)

C(n)

toH.

3: ReturnH.

We implemented Petkovšek’s algorithm as HyperPetkov(RE,a[n],[K]), where RE is the input
holonomic recurrence with the unknown a[n]. The output is a set of ratios of all hypergeometric
term solutions. The optional variable K with default value Q for solutions over the field of
rational numbers can be changed to C in order to consider algebraic extension fields of Q.

Now, we present some examples. We start with the last example of the previous section.

(%i3) RE:FindRE(exp(z)+log(1+z^2)+1/(1-z)^20,z,a[n])$
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(%i4) HyperPetkov(RE,a[n]);

Evaluation took 339.0600 seconds (342.2200 elapsed)

(%o4)

{
20 + n

n+ 1
,

1

n+ 1

}
After about 5 minutes, we get the ratios of the general coefficient of the power series

representations of 1
(1−z)20 and exp(z) at 0. The following Maxima code can be used to compute

ratios of expressions involving factorials, Pochhammer or Γ symbols.

ratio(term,n):=block([r],

r: subst(n+1,n,term)/term,

factor(ratsimp(minfactorial(makefact(makegamma(r)))))

)$

(%i5) term1:1/n!;

(%o5)
1

n!

(%i6) term2:binomial(n+19,9);

(%o6)
(11 + n) · (12 + n) · (13 + n) · (14 + n) · (15 + n) · (16 + n) · (17 + n)

362880

· (18 + n) · (19 + n)

(%i7) ratio(term1,n);

(%o7)
1

n+ 1

(%i8) ratio(term2,n);

(%o8)
20 + n

n+ 11

In order to get the ratio of the general coefficient for the power series representation of
log(1 + z2), we need to allow extension fields of Q.

(%i9) HyperPetkov(RE,a[n],C);

Evaluation took 342.2400 seconds (347.8800 elapsed)

(%o9)

{
20 + n

n+ 1
,

1

n+ 1
,− i · n

n+ 1
,
i · n
n+ 1

}
Observe that

log(1 + z2) =
∞∑
n=0

(−1)n

n+ 1
z2n+2 = −

∞∑
n=0

in+1 + (−i)n+1

2(n+ 1)
zn+1, (5.36)
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hence the result found by our implementation. Nevertheless, with ourm-fold algorithm presented
in Chapter 7, the 2-fold and the 1-fold hypergeometric term solutions will correctly be found
over Q.

As we now have described Petkovšek’s algorithm to find hypergeometric term solutions
of holonomic recurrence equations, we can analyze the source code of solve_rec and ex-
plain why it crashes for some examples, in particular (5.12). The source code is available
at [Vodopivec, 2014]. Examining each step of the implementation of Hyper in solve_rec, we
found that the origin of the problem is related to the fact that a polynomial equation of degree
25 for Z corresponding to the normal form (5.13) was not solved by the Maxima command
solve which has returned the equation as output. That equation is used in the remaining part
of the algorithm and the crash raises up when the polynomial coefficients of the corresponding
holonomic recurrence equation for C(n) in (5.22) are simplified and expanded. We added the
Maxima commands throw/catch inside a copy of the package solve_rec to leave the running
program when a polynomial is given as a possible value for Z and we obtained the following.

(%i10) RE:FindRE(exp(z)+log(1+z^2)+1/(1-z)^20,z,a[n])$

(%i11) solve_rec(RE,a[n]);

[
− i, i, 1, 0, 201 ·%z 25 − 13 ·%z 24 + 652 ·%z 23 − 1730 ·%z 22 + 8846 ·%z 21

− 32330 ·%z 20 + 95172 ·%z 19 − 226138 ·%z 18 + 442035 ·%z 17 − 721259 ·%z 16

+ 994840 ·%z 15 − 1174428 ·%z 14 + 1202852 ·%z 13 − 1085280 ·%z 12 + 875976 ·%z 11

− 639540 ·%z 10 + 422807 ·%z 9 − 250173 ·%z 8 + 129580 ·%z 7 − 57134 ·%z 6

+ 20790 ·%z 5 − 6028 ·%z 4 + 1332 ·%z 3 − 210 ·%z 2 + 21 ·%z − 1
]

We get a list of four complex numbers and the corresponding polynomial. Note that due to
the lack of an algorithm for complete factorization over the complex field C, Maxima’s command
solve cannot find all complex roots of many polynomials and this is a general situation in all
computer algebra systems. When solve does not find any root of a given polynomial, this latter is
returned. Despite the fact that this can be seen as an algebraic number in a suitable extension
field, such a situation should be avoided according to the expected output. The polynomial
whose roots are element of the above list is obtained twice with the recurrence equation (5.12)

but the problem occurs in the second case where higher degrees are involved. One can solve this
issue by adding a step to filter the values found for Z in order to only take values that belong to
the considered field. After having done that in our copy of solve_rec, we finally get the same
hypergeometric terms as HyperPetkov did.

(%i12) solve_rec(RE,a[n]);

WARNING: found some hypergeometrical solutions!
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Evaluation took 323.8400 seconds (329.3000 elapsed)

(%o12) an =
%k 1

n!
− i ·%k 2 · (−1)

3·n
2

n
− i ·%k 3 · (−1)

n
2

n

+ %k 4 · (1 + n) · (2 + n) · (3 + n) · (4 + n) · (5 + n) · (6 + n) · (7 + n) · (8 + n) · (9 + n)

·(10 + n)·(11 + n)·(12 + n)·(13 + n)·(14 + n)·(15 + n)·(16 + n)·(17 + n)·(18 + n)·(19 + n)

We will now use this particular updated version of the package solve_rec for our next
examples.

(%i13) RE:FindRE(sin(3*z)+z*cos(z),z,a[n]);

(%o13) − 3 · (1 + n) · (2 + n) · (3 + n) · (4 + n) · an+4

+2·(1 + n)·(2 + n)·
(
−3− 24 · n+ 8 · n2

)
·an+2+

(
189− 448 · n+ 160 · n2

)
·an+144·an−2 = 0

(%i14) HyperPetkov(RE,a[n],C);

(%o14)

{
− i
n
,
i

n
,− 3 · i

n+ 1
,

3 · i
n+ 1

}
(%i15) solve_rec(RE,a[n]);

WARNING: found some hypergeometrical solutions!
Evaluation took 0.4200 seconds (0.4600 elapsed)

(%o15) an = −%k 1 · 3n · (−1)
3·n
2

n!
+

%k 2 · (−1)
n
2 · 3n

n!
− i ·%k 3 · (−1)

3·n
2

(n− 1)!
− i ·%k 4 · (−1)

n
2

(n− 1)!



5.2. Hypergeometric Term Solutions of Holonomic Recurrence Equations 83

(%i16) RE: FindRE(z/(1-z)^4+5*z^3*exp(z)

+(1+7*z^2)*log(1+z)+(2+z)/sqrt(1+z),z,a[n])

(%o16) − 5280 · (1 + n) · (2 + n) · (3 + n) · (4 + n) · an+4

− 2640 · (1 + n) · (2 + n) · (3 + n) · (5 · n− 8) · an+3

+ 24 · (1 + n) · (2 + n) ·
(
−93− 658 · n+ 1631 · n2

)
· an+2

+ 6 · (1 + n) ·
(
−10138 + 83737 · n− 92168 · n2 + 19487 · n3

)
· an+1

−
(
−31248− 34967726 · n+ 36618923 · n2 − 12131065 · n3 + 1282474 · n4

)
· an

− 2 ·
(
221079135− 380139783 · n+ 195296872 · n2 − 38772534 · n3 + 2574866 · n4

)
· an−1

−
(
3712130260− 3767615216 · n+ 1256567953 · n2 − 164084872 · n3 + 6852934 · n4

)
·an−2

−
(
14107137708− 10084423479 · n+ 2378149452 · n2 − 209132861 · n3 + 4800640 · n4

)
·an−3

−
(
35157222828− 19558483362 · n+ 3594516098 · n2 − 239400297 · n3 + 3470080 · n4

)
·an−4

+
(
−45621140674 + 19519960278 · n− 2558764947 · n2 + 84771027 · n3 + 2203084 · n4

)
·an−5

+
(
−5734417752− 4013264964 · n+ 2087281998 · n2 − 278988169 · n3 + 11499176 · n4

)
·an−6

+
(
25381011810− 15595818800 · n+ 3270465181 · n2 − 283827079 · n3 + 8685320 · n4

)
·an−7

−
(
22497576024− 7539646356 · n+ 939204722 · n2 − 53297847 · n3 + 1227622 · n4

)
· an−8

− 6 ·
(
5082246416− 1762890103 · n+ 227898928 · n2 − 13053535 · n3 + 280578 · n4

)
· an−9

+
(
31901663148− 10946543180 · n+ 1404565623 · n2 − 79902790 · n3 + 1700970 · n4

)
·an−10

+
(
26218208116− 7915623153 · n+ 886891990 · n2 − 43658973 · n3 + 795448 · n4

)
· an−11

−
(
14887498140− 4406091486 · n+ 488721582 · n2 − 24089215 · n3 + 445364 · n4

)
· an−12

−
(
10525830534− 2722517874 · n+ 261550075 · n2 − 11048019 · n3 + 172844 · n4

)
· an−13

+ 7 ·
(
296448016− 80163176 · n+ 8106388 · n2 − 363487 · n3 + 6100 · n4

)
· an−14

+ 7 ·
(
268434654− 61319032 · n+ 5216245 · n2 − 195709 · n3 + 2730 · n4

)
· an−15

+ 147 · (n− 18) ·
(
−116184 + 17111 · n− 808 · n2 + 12 · n3

)
· an−16

− 882 · (n− 19)2 · (2 · n− 35) · an−17 = 0 (5.37)

(%i17) HyperPetkov(RE,a[n]);

Evaluation took 53.9300 seconds (55.2500 elapsed)

(%o17)

{
1

n− 2
,−n− 2

n− 1
,
3 + n

n
,−2 · n− 1

2 · n
,− n · (2 · n− 1)

2 · (n− 1) · (n+ 1)

,− (n− 2) · n · (3 + 4 · n)

(n− 1) · (n+ 1) · (4 · n− 1)

}
Observe that the algorithm Hyper does not consider linear dependence of hypergeometric

term solutions. In this example, the given output is the set of ratios corresponding to each
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summand in the expression

5z3exp(z) + log (z + 1) + 7z2log (z + 1) +
2√
z + 1

+
z√
z + 1

+
z

(1− z)4 . (5.38)

Note that using van Hoeij’s approach in the next chapter, we will get outputs which form a basis
of all hypergeometric term solutions.

With solve_rec, however, linear dependence is tested by means of the Casoratian determinant
as explained in [Petkovšek and Salvy, 1993, Section 5.].

(%i18) solve_rec(RE,a[n]);

WARNING: found some hypergeometrical solutions!
Evaluation took 53.9400 seconds (55.3400 elapsed)

(%o18) an = −
%k 1 · (n− 1) · (−1)n · Γ

(
2·n−1

2

)
√
π · n!

+
%k 2

(n− 3)!

+
%k 3 · (4 · n− 1) · (−1)n

(n− 2) · n
+ %k 4 · n · (1 + n) · (2 + n)

(%i19) RE:(8*n-56)*a[n-3]+(-8*n+24)*a[n-1]+(n+1)*a[n+1] = 0;

(%o19) (1 + n) · an+1 + (24− 8 · n) · an−1 + (8 · n− 56) · an−3 = 0

(%i20) HyperPetkov(RE,a[n],C);

Evaluation took 0.1000 seconds (0.4100 elapsed)

(%o20)

{
−

√
2 ·
√√

2 + 2 · (n− 4) · n ·
(

2 + 2
5
2 − 3 · n− 2

3
2 · n+ n2

)
(n+ 1) ·

(
n3 − 2

3
2 · n2 − 6 · n2 + 2

7
2 · n+ 11 · n− 3 · 2 3

2 − 6
) ,

√
2 ·
√√

2 + 2 · (n− 4) · n ·
(

2 + 2
5
2 − 3 · n− 2

3
2 · n+ n2

)
(n+ 1) ·

(
n3 − 2

3
2 · n2 − 6 · n2 + 2

7
2 · n+ 11 · n− 3 · 2 3

2 − 6
) ,

−

√
2−
√

2 ·
√

2 · (n− 4) · n ·
(

2− 2
5
2 − 3 · n+ 2

3
2 · n+ n2

)
(n+ 1) ·

(
n3 + 2

3
2 · n2 − 6 · n2 − 2

7
2 · n+ 11 · n+ 3 · 2 3

2 − 6
) ,

√
2−
√

2 ·
√

2 · (n− 4) · n ·
(

2− 2
5
2 − 3 · n+ 2

3
2 · n+ n2

)
(n+ 1) ·

(
n3 + 2

3
2 · n2 − 6 · n2 − 2

7
2 · n+ 11 · n+ 3 · 2 3

2 − 6
)}

For this example, solve_rec crashes by trying to find "simple" formulas of the corresponding
hypergeometric term solutions. Indeed, some considerations should be taken into account while
looking for a "simple" formula. This will be explained in Section 6.1.
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(%i21) RE:FindRE((1+z)^k+asin(sqrt(z))/sqrt(z),z,a[n]);

(%o22) 2 · (6 · k − 1) · (1 + n) · (2 + n) · (5 + 2 · n) · an+2

+ (1 + n) · (3 + 2 · n) ·
(
3 + 20 · k − 20 · k2 − 4 · n− 12 · k · n+ 8 · k2 · n

)
· an+1

− (1 + 2 · n) ·
(
19 · k − 10 · k2 − 9 · n+ 10 · k · n− 52 · k2 · n+ 8 · k3 · n+ 20 · k · n2

+8·k2 ·n2
)
·an−(2 · n− 1)·

(
1+4·k+6·k2+12·k3+3·n+12·k ·n+4·k2 ·n−16·k3 ·n−4·n2

− 12 · k · n2 + 8 · k2 · n2
)
· an−1 + (1 + 2 · k)2 · (−2− k + n) · (2 · n− 3)2 · an−2 = 0

(%i23) HyperPetkov(RE,a[n]);

Evaluation took 0.9400 seconds (0.9600 elapsed)

(%o23)

{
−n− k
n+ 1

,
(1 + 2 · n)2

2 · (n+ 1) · (2 · n+ 3)

}

(%i24) solve_rec(RE,a[n]);

WARNING: found some hypergeometrical solutions!
Evaluation took 4.7700 seconds (4.8900 elapsed)

(%o24) an =
%k 1 · Γ

(
1+2·n

2

)
√
π · (2 · n+ 1) · n!

− %k 2 · (−1)n · (−1− k + n)!

(−1− k)! · n!

5.3 Holonomic Recurrence Equations of Linearly

Independent Hypergeometric Terms

This section is motivated by the aim of generating more examples of holonomic recurrence
equations having non-empty sets of hypergeometric term solutions. In particular, this can
be used to show the lack of efficiency of Petkovšek’s algorithm when the hypergeometric
terms considered lead to holonomic recurrence equations with higher degrees for their leading
and trailing coefficients, because such equations cannot always be found by playing with
analytic holonomic functions. A general algorithm which deals with the algebra of holonomic
recurrence equations satisfied by linear combinations of hypergeometric terms appeared in
([Koepf, 2006, Section 10.9, Section 10.16], [Koepf, 1997], [Stanley, 1980]). However, we
describe an algorithm for the particular case of generating holonomic recurrence equations
satisfied by a given linear combination of linearly independent hypergeometric terms, which is
enough for our purpose.

The algorithm that we present is just the generalization of the case of two given linearly
independent hypergeometric terms. Thus, we treat this particular case and by simple analogy we
give the general approach for a given set of linearly independent hypergeometric terms, and we
end with a Maxima implementation.
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Let K be a field of characteristic zero, and an and bn be two linearly independent hypergeo-
metric terms over K such that

an+1 = r1(n)an and bn+1 = r2(n)bn, (5.39)

where r1 and r2 are rational functions in K(n). As we consider two terms, the order of the RE
sought is 2, so we are looking for a recurrence equation of the form

P2(n)sn+2 + P1(n)sn+1 + P0(n)sn = 0, (5.40)

where P0, P1, P2 are polynomials over K, satisfied by an and bn. We must assume that P0 ·P2 6= 0,
otherwise the recurrence equation can be reduced to a first order recurrence relation. Thus finding
(5.40) is equivalent to searching for rational functions R2 and R1 such that

R2(n)sn+2 +R1(n)sn+1 + sn = 0. (5.41)

Using (5.39), we have

an+2 = r1(n+ 1)an+1 and bn+2 = r2(n+ 1)bn+1. (5.42)

By substitution, an and bn satisfy (5.41) if and only if
r1(n+ 1)R2 +R1 = − 1

r1(n)

r2(n+ 1)R2 +R1 = − 1
r2(n)

, (5.43)

which is a linear system of two equations with two unknowns in K(n). Furthermore, a solution
exists and is unique since the determinant of the system

ra(n+ 1)− rb(n+ 1) 6= 0 (5.44)

by assumption. As a linear system of two equations, the exact solution is easy to compute, that is

R1(n) =
r2(n+ 1)r2(n)− r1(n+ 1)r1(n)

r1(n)r2(n)(r1(n+ 1)− r2(n+ 1))
, (5.45)

R2(n) =
r1(n)− r2(n)

r1(n)r2(n)(r1(n+ 1)− r2(n+ 1))
. (5.46)

Finally, the holonomic recurrence equation sought is found by multiplying the equation
(5.41) by the least common multiple of the denominators of R1(n) and R2(n) and canceling the
common factors.

In the general case, let a[i]
n , i = 1, . . . , d (d > 1) be d given linearly independent hypergeo-

metric terms over K such that

a
[i]
n+1 = ri(n)a[i]

n , i = 1, . . . , d, (5.47)

for some rational functions ri. The vectors (R1(n), R2(n), . . . , Rd(n))T ∈ K(n)d of rational
coefficients of the recurrence equation

Rd(n)sn+d +Rd−1(n)sn+d−1 + . . .+R1(n)sn+1 + sn = 0 (5.48)
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satisfied by each hypergeometric term a
[i]
n , is the unique vector solution v ∈ K(n)d of the matrix

system [
j−1∏
k=1

ri(n+ k)

]
i,j=1,...,d

· v = −
(

1

ri(n)

)T
i=1,...,d

. (5.49)

The following Maxima program computes a holonomic recurrence equation of order d for a
given set of d hypergeometric terms.

sumhyperRE(H,a):=catch(block([n,term,R,d,k,i,j,M,b,Vcomp,V,aterm,RE],

if( (not listp(H)) or atom(a)) then (

print("wrong input(s)"),

throw(false)

),

n: first(a),

R: map(lambda([term], ratio(term,n)),H),

d: length(H),

R: sublist(R, lambda([term], ratfunp(term,[n]))),

if(length(R)<d) then (

print("There are some non hypergeometric terms in Q"),

print(false)

),

M: apply(’matrix, makelist(makelist(prod(subst(n+k,n,R[i])

,k,1,j-1),j,1,d),i,1,d)),

b: apply(’matrix, makelist([-1/R[i]],i,1,d)),

Vcomp: makelist(concat(’%v,i),i,1,d),

V: transpose(matrix(Vcomp)),

linsolvewarn:false,

V: factor(linsolve(xreduce(’append,args(M.V-b)),Vcomp)),

linsolvewarn:true,

if(length(%rnum_list)>0) then V:subst(map(lambda([v],v=0),

%rnum_list),V),

V: map(rhs, V),

aterm: makelist(subst(n+i,n,a),i,0,d),

RE: num(factor(aterm[1] + sum(V[i]*aterm[i+1],i,1,d))),

for i: 1 thru d+1 do RE: map(factor, collectterms(RE, aterm[i])),

RE=0

))$

Of course, to use this Maxima function, our function ratio has to be available. Nevertheless
all these Maxima functions are available in our package FPS. We mention that this algorithm
can also be used to find holonomic recurrence equations for polynomials since they are also
hypergeometric.
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Let us apply this algorithm to some examples. We start with the example given in [Koepf, 2014,
Section 9.14] for generating a time consuming holonomic RE for Petkovšek’s algorithm.

(%i1) term1:(pochhammer(1/2,n)^5*pochhammer(1,n))

/(pochhammer(3/4,n)^3*pochhammer(1/3,n));

(%o1)

(
1
2

)
n

5 · n!(
1
3

)
n
·
(

3
4

)
n

3

(%i2) term2:pochhammer(1/4,n)

/(pochhammer(1,n)^3*pochhammer(1/3,n)^4);

(%o2)

(
1
4

)
n(

1
3

)
n

4 · n!3

(%i3) RE:sumhyperRE([term1,term2],a[n]);

Evaluation took 0.0700 seconds (0.0800 elapsed)

(%o3) 4 · (2 + n)3 · (1 + 3 · n) · (4 + 3 · n)4 · (7 + 4 · n)3 ·
(
−721−5648 ·n−13640 ·n2

− 5416 · n3 + 42024 · n4 + 141288 · n5 + 292648 · n6 + 437960 · n7 + 469808 · n8

+ 352192 · n9 + 175104 · n10 + 51840 · n11 + 6912 · n12

)
· an+2 − 3 · (1 + 3 · n) ·

(−17831097 + 132123312 · n+ 5524092864 · n2 + 59712834816 · n3 + 393755684352 · n4

+ 1877330292224 · n5 + 6904026511616 · n6 + 20215755160896 · n7 + 48035486487104 · n8

+93817776256832·n9+151961459800128·n10+205363007155392·n11+232395627484608·n12

+220546391942592·n13+175425566746048·n14+116634920972032·n15+64488148739328·n16

+ 29413823444992 ·n17 + 10937158309888 ·n18 + 3259238326272 ·n19 + 759170949120 ·n20

+ 133078892544 · n21 + 16502538240 · n22 + 1289945088 · n23 + 47775744 · n24) · an+1

+ 486 · (1 + n) · (1 + 2 · n)5 · (1 + 4 · n) · (1944351 + 14979384 · n+ 52242624 · n2

+ 109737216 · n3 + 155030016 · n4 + 155330368 · n5 + 113205728 · n6 + 60469320 · n7

+ 23494256 · n8 + 6475072 · n9 + 1201536 · n10 + 134784 · n11 + 6912 · n12) · an = 0

(5.50)

Of course, we obtain the same equation found in [Koepf, 2014, Section 9.14], as expected.
Despite the fact that we are not using Maple and that the computers used do not have the same
capacities (RAM memory and processor speed), let us run our implementation of Petkovšek’s
algorithm for this example as well.

(%i4) HyperPetkov(RE,a[n]);

Evaluation took 17.7400 seconds (18.4800 elapsed)

(%o4)

{
81 · (1 + 4 · n)

4 · (1 + n)3 · (1 + 3 · n)4 ,
6 · (1 + n) · (1 + 2 · n)5

(3 · n+ 1) · (3 + 4 · n)3

}
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The solutions can be checked by computing the ratios of the two given hypergeometric terms
as follows.

(%i5) ratio(term1,n);

(%o5)
6 · (1 + n) · (1 + 2 · n)5

(3 · n+ 1) · (3 + 4 · n)3

(%i6) ratio(term2,n);

(%o6)
81 · (1 + 4 · n)

4 · (1 + n)3 · (1 + 3 · n)4

The obtained timing is lower than the one in [Koepf, 2014, Section 9.14]. This is because
the implementation used in that book did not consider the impact of the difference of the degrees
of monic factors of the leading and trailing polynomial coefficients. The Maxima command
solve_rec uses this remark as well, and for this example we get the following output which this
time is given without a warning message since the order of the holonomic RE equals the number
of linearly independent hypergeometric term solutions.

(%i7) solve_rec(RE,a[n]);

Evaluation took 97.1700 seconds (98.1100 elapsed)

(%o7) an =
Γ
(

1
3

)
· Γ
(

3
4

)3 ·%k 1 · 6n · 25·n · n! · Γ
(

1+2·n
2

)5

π
5
2 · 43·n · 3n · Γ

(
1+3·n

3

)
· Γ
(

3+4·n
4

)3

+
Γ
(

1
3

)4 ·%k 2 · 81n · Γ
(

1+4·n
4

)
Γ
(

1
4

)
· 34·n · n!3 · Γ

(
1+3·n

3

)4

(%i8) ratio((gamma(1/3)*gamma(3/4)^3*%k[1]*6^n*2^(5*n)*n!

*gamma((1+2*n)/2)^5)/(%pi^(5/2)*4^(3*n)*3^n

*gamma((1+3*n)/3)*gamma((3+4*n)/4)^3),n);

(%o8)
6 · (1 + n) · (1 + 2 · n)5

(3 · n+ 1) · (3 + 4 · n)3

(%i9) ratio((gamma(1/3)^4*%k[2]*81^n*gamma((1+4*n)/4))

/(gamma(1/4)*3^(4*n)*n!^3*gamma((1+3*n)/3)^4),n);

(%o9)
81 · (1 + 4 · n)

4 · (1 + n)3 · (1 + 3 · n)4

Let us consider one last example. We add another hypergeometric term to look for a more
complicated holonomic RE of third order.

(%i10) term3:pochhammer(1/5,n)^2/(pochhammer(1/7,n)

*pochhammer(2,n));

(%o10)

(
1
5

)
n

2(
1
7

)
n
· (2)n
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(%i11) RE:sumhyperRE([term1,term2,term3],a[n])$

Evaluation took 0.7200 seconds (1.0400 elapsed)
This time we do not display the corresponding recurrence equation since it is very big.

HyperPetkov finds the corresponding solution ratios after about 20 minutes as presented below.

(%i12) HyperPetkov(RE,a[n]);

Evaluation took 1220.5300 seconds (1223.7700 elapsed)

(%o11)

{
81 · (1 + 4 · n)

4 · (1 + n)3 · (1 + 3 · n)4 ,
6 · (1 + n) · (1 + 2 · n)5

(3 · n+ 1) · (3 + 4 · n)3 ,
7 · (1 + 5 · n)2

25 · (n+ 2) · (7 · n+ 1)

}

After about 6 hours, the command solve_rec keeps running.

At the end of this chapter a clear understanding of Petkovšek’s algorithm is obtained. We can
deduce from the presented examples, in particular (5.50), that our implementation of Algorithm
5 presents some gain of efficiency through the use of a heuristic filter on the difference of the
degrees of monic factors of the leading and trailing coefficients for a given holonomic recurrence
equation [Petkovšek, 1992, Remark 4.1]. Compared to the Maxima package solve_rec, we have
seen that the latter package has some unstable behaviors that could be corrected easily even
though in terms of efficiency our implementation seems to win. Nevertheless, although robust, it
is helpful to move on to an algorithm which reduces the computation timing in the worst-case
time complexity. In the following chapter we will discuss a much more efficient algorithm for
finding hypergeometric term solutions of holonomic REs. We will also show how to get "simple"
formulas of hypergeometric terms by means of Pochhammer and factorial symbols.



Chapter 6

A Variant of van Hoeij’s Algorithm

"The first role of imagination for a mathematician is to create mental images."

Alain Connes.

Compared to Petkovšek’s approach which uses familiar algebra tools in summation theory
to compute hypergeometric term solutions of holonomic recurrence equations, Mark van Hoeij
introduced some other notions like finite singularities and valuation growths in his algorithm.
Nevertheless, one could see van Hoeij’s approach as a fast improved version of the one of
Petkovšek. Indeed, for the question "which are the hypergeometric term solutions of a holonomic
recurrence equation?", Petkovšek’s algorithm tells us that the normal forms (5.4) of their
ratios can be built from the monic polynomial factors of the recurrence equation’s leading
and trailing terms; whereas van Hoeij’s algorithm reduces that set modulo certain properties.
One needs to focus on notions about apparent and semi-apparent singularities, linear operators
and the Newton polygon algorithm to get what the algorithm really does ([Van Hoeij, 1999],
[Cluzeau and van Hoeij, 2006]). However, this is not what we will do, rather, also by considering
local behaviors of hypergeometric term solutions of holonomic REs, without any explicit use
of the Newton polygon algorithm, we similarly construct these solution terms as van Hoeij’s
algorithm does.

This chapter is divided into two sections. In the first part, we give an algorithm to compute
"simple" formulas of hypergeometric terms by mean of factorials and Pochhammer symbols,
and the second section is devoted to our variant of van Hoeij’s algorithm which incorporates the
algorithm of the first section as one of its steps.

6.1 Computing A "Simple" Formula of A

Hypergeometric Term

In this section, we explain how the general coefficient of a hypergeometric type power series
is computed. The corresponding algorithm works together with our description of van Hoeij’s
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approach in computing hypergeometric term solutions of holonomic REs in the next section,
which indeed reduces the rational functions to be considered here to a particular case. A
similar algorithm is described in [Koepf, 2014, Algorithm 2.8] but with the goal of finding the
hypergeometric representations. Here, however, we give more emphasizes on the computations of
formulas as in [Koepf, 1995b] and we assume that the given ratios are related to hypergeometric
or hypergeometric type terms. Our goal is to compute "simple" formulas as much as we can by
using factorial and Pochhammer symbols.

We mention that the definition of a "simple" formula cannot be properly stated. The desire
is to reduce unfamiliar objects and avoid complicated representations. We could say that a
formula is considered to be "simple" when it presents more familiar objects from mathematical
dictionaries in a reduced form. In the sense of computing formulas of hypergeometric terms,
this consists in simplifying as much as possible, Pochhammer symbols to rational multiples of
factorials with integer-linear arguments.

We consider a rational function

r(k) :=
P (k)

Q(k)
, P (k), Q(k) ∈ K[k], Q(k) 6= 0 for integers k > 0 (6.1)

such that P and Q do not have non-negative integer roots. Observe that, if there are non-
negative integer zeros of P and Q, then r may be shifted to r(k + kM), where kM = max{k ∈
N>0 : Q(k) · P (k) = 0}. However, our approach ensures that all rational functions used in
this section for the computations of "simple" formulas of hypergeometric terms do not have
non-negative integer zeros and poles.

The hypergeometric terms are taken with the representation

ak+1 = r(k)ak, for integer k > 0. (6.2)

Computing a "simple" formula of such terms is to find their general expressions an for a positive
integer n provided that their corresponding initial values a0 are given. That is the result of the
product

n−1∏
k=0

r(k). (6.3)

For that purpose, the first step is to factorize r in the form of linear factors as follows

r(k) = C
(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)
, (6.4)

where p and q are, respectively, the degrees of P and Q, C is a constant, and the −ai and −bi
are the zeros and poles of r, respectively. From the Pochhammer symbol definition, using (6.4)

one can see that
n−1∏
k=0

r(k) = Cn (a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

. (6.5)

Now, we are going to use a property of the Gamma function (see Chapter 1 in [Koepf, 2014]).
The Pochhammer symbol of a constant x can also be given by

(x)n =
Γ(x+ n)

Γ(x)
, (6.6)
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and as Γ(1) = 1 we have Γ(n) = (n− 1)! for any positive integer. Thus in our algorithm, the
Pochhammer symbols in (6.5) can be converted into factorial symbols by using the Gamma
transformation. However, this conversion can bring inconvenient results. In Maxima when
(x)n is replaced by Γ(x+n)

Γ(x)
, Γ(x) is immediately computed since the knowledge that n ∈ Z is

disregarded. For example

(%i1) makefact(makegamma(pochhammer(3/2,n)));

(%o1)
2 ·
(

1
2

+ n
)
!

√
π

(6.7)

cannot be used to replace (3
2
)n due to the computation of Γ(3

2
). The function makefact() only

reacted on Γ(n + 3
2
) and the obtained result is not as simple as we want. Therefore we must

describe an algorithmic approach to simplify some individual Pochhammer symbols.

Let α be a constant representing any of the ai and bi in (6.4). We compute (α)n according to
the following cases.

1. If α /∈ Q, then generally (α)n cannot be simplified, in this case no simplification is done.

2. Else if α ∈ Q then

• if α > 0 then

– if α ∈ N, then

(α)n = α · (α + 1) · · · (α + n− 1)

=
(α + n− 1)!

(α− 1)!
(6.8)

– Else if α has a denominator equal to 2, then let s ∈ N such that α = s
2

(see
similar computations in [Koepf, 1995b, Page 19]. s is necessarily an odd integer
since α /∈ N. We set s = 2t+ 1, t ∈ N, then it follows that

(α)n =
(s

2

)
n

=
s

2
·
(s

2
+ 1
)
· · ·
(s

2
+ n− 1

)
=

s · (s+ 2) · (s+ 2 · 2) · · · (s+ 2 · (n− 1))

2n

=
(2t+ 1) · (2(t+ 1) + 1) · (2(t+ 2) + 1) · · · (2(t+ n− 1) + 1)

2n

=
(2 (t+ n))!

(2t)! · (2t+ 2) · (2(t+ 1) + 2) · · · (2(t+ n− 1) + 2) · 2n

=
(2 (t+ n))!

(2t)! · (t+ 1) · (t+ 2) · · · (t+ n) · 4n

=
(2(t+ n))!

(2t)!4n
(
t+n
n

)
n!
. (6.9)

– Else α is a rational number with denominator not equal to 2. In this case (α)n is
kept again since simplifications might carry out more complicated formulas.
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• Else α is a negative rational number which is not an integer since r is assumed to not
have non-negative integer zeros and poles. Then let u be the least positive integer
such that α + u > 0. In fact u = −bαc, that is the negative of the floor of α. Indeed,
since α is not an integer,(
bαc < α 6 0 and α < bαc+ 1

)
⇒
(

0 < α− bαc < 1, with − bαc ∈ N
)
.

Whence we can write

(α)n = α · · · (α + u− 1) · (α + u) · · · (α + n− 1)

=
(α)u · (α + u)n

(α + n) · · · (α + n+ u− 1)

=
(α)u

(α + n)u
· (α + u)n. (6.10)

Therefore the process is repeated for α + u which is a positive rational number, and
the final result is multiplied by (α)u

(α+n)u
which is already simplified since u is well

known.

In a nutshell we have the following algorithm.

Algorithm 6 Pochhammersimp(α, n): Simplification of (α)n

Input: A constant α and a variable n.
Output: A simplification of (α)n (that could be itself).

1. If α /∈ Q then return (α)n.

2. If α ∈ Q and α > 0 then

(a) if α ∈ N then return
(α + n− 1)!

(α− 1)!
, (6.11)

(b) else if α ∈ Q with denominator equal to 2, then set t = bαc and return

(2(t+ n))!

(2t)!4n
(
t+n
t

)
n!
, (6.12)

(c) else return (α)n.

3. Else set u = −bαc and return

(α)u
(α + n)u

· Pochhammersimp(α + u, n). (6.13)

The following Maxima code simplifies a Pochhammer symbol according to the above
description.
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pochhammersimp(alpha,n):= block([q,u,t],

if(not (constantp(alpha) and atom(n)

and not(constantp(n)))) then false,

if(not ratnump(alpha)) then pochhammer(alpha,n)

elseif(alpha>0) then (

if(integerp(alpha)) then (alpha+n-1)!/(\alpha-1)!

else (

q: denom(alpha),

if(q#2) then pochhammer(alpha,n)

else(

t: floor(alpha),

minfactorial(makefact((2*(t+n))!/((2*t)!

*binomial(t+n,n)*n!*4^n)))

)

)

)

else(

u: ceiling(abs(alpha)),

pochhammersimp(alpha+u,n)

*pochhammer(alpha,u)/pochhammer(alpha+n,u)

)

)$

Example 6.1.

(%i2) pochhammersimp(3/2,n);

(%o2)
(2 · (1 + n))!

2 · (n+ 1) · 4n · n!

Observe that this is another representation of (6.7).

(%i3) pochhammersimp(1/2,n);

(%o3)
(2 · n)!

4n · n!

(%i4) pochhammersimp(-9/2,n);

(%o4) − 945 · 4−2−n · (2 · n)!

2 ·
(
n− 9

2

)
·
(
n− 7

2

)
·
(
n− 5

2

)
·
(
n− 3

2

)
·
(
n− 1

2

)
· n!

(%i5) pochhammersimp(-7/4,n);

(%o5)
21 ·

(
1
4

)
n

16 ·
(
n− 7

4

)
·
(
n− 3

4

)
(%i6) pochhammersimp(4,n);

(%o6)
(3 + n)!

6
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Thus we get quite nice representations of certain Pochhammer symbols through Algorithm 6.
On the other hand, if we consider two numbers x and y such that x− y = j ∈ N, then we

have

(y)n
(x)n

=

Γ(y + n)

Γ(x+ n)

Γ(y)

Γ(x)

=

(y − 1 + n)!

(x− 1 + n)!

(y − 1)!

(x− 1)!

=

(y − 1 + n)!

(y + j − 1 + n)!

(y − 1)!

(y + j − 1)!

=
y(y + 1) · · · (y + j − 1)

(y + n)(y + n+ 1) · · · (y + n+ j − 1)

=
(y)j

(y + n)j
. (6.14)

Example 6.2. Since 3
2
− 1

2
= 1, then(

1
2

)
n(

3
2

)
n

=

(
1
2

)
1(

1
2

+ n
)

1

=
1

2n+ 1
,

Generally for any numbers x and y such that x− y = j ∈ Z, we have

(y)n
(x)n

=


(y)j

(y + n)j
if j > 0

(x+ n)−j
(x)−j

if j < 0

. (6.15)

This shows that differences between the zeros and the poles of r in (6.4) should be checked
before applications of Algorithm 6 in order to apply (6.15) which can simplify two Pochhammer
symbols at the same time. Such computations are given in detail in [Koepf, 2014, Algorithm 2.2]
which decides the rationality of the ratio of consecutive terms of a given expression involving
Pochhammer, factorial or Gamma symbols. Fortunately, these nice computations can be done by
Maxima when we combine makegamma(), makefact(), minfactorial() and factor() as below.

(%i8) r1:pochhammer(7/3,n)/pochhammer(1/3,n);

r2:pochhammer(3/5,n)/pochhammer(13/5,n);

(%o7)

(
7
3

)
n(

1
3

)
n

(%o8)

(
3
5

)
n(

13
5

)
n

(%i9) factor(minfactorial(makefact(makegamma(r1))));

(%o9)
(1 + 3 · n) · (4 + 3 · n)

4
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(%i10) factor(minfactorial(makefact(makegamma(r2))));

(%o10)
24

(5 · n+ 3) · (5 · n+ 8)

More generally, one can find a "simple" formula of a hypergeometric term having a charac-
teristic ratio with non-negative integer roots and poles by applying the following algorithm.

Algorithm 7 Pochfactosimp(r, n): computing
∏n−1

k=1 r(k)

Input: A rational function r := r(n) and a variable n.
Output: A formula of

∏n−1
k=1 r(k) in terms of factorial and Pochhammer symbols.

1. Factorize r and write it in terms of linear factors and set

h := r = C
(n+ a1)(n+ a2) · · · (n+ ap)

(n+ b1)(n+ b2) · · · (n+ bq)
. (6.16)

2. Substitute C by Cn in h.

3. For each ai, i = 1, . . . , p do

(a) if there is bj, j ∈ J1, qK in h such that ai − bj ∈ Z then substitute n+ai
n+bi

by
(ai)bj−ai

(ai + n)bj−ai
if ai − bj < 0

(bj + n)ai−bj
(bj)ai−bj

if ai − bj > 0

, (6.17)

(b) else substitute (n+ ai) by Pochhammersimp(ai, n) (see Algorithm (6)) in h.

4. Substitute the remaining bj, j ∈ J1, qK (if there are some) in h by
Pochhammersimp(bj, n).

5. Return h.

This algorithm is implemented in our package as pochfactorsimp(r,n). Below we give some
examples of computations.

Example 6.3.

(%i11)pochfactorsimp(-1/(2*(n+1)*(2*n+1)),n);

(%o11)
(−1)n

(2 · n)!

(%i12)pochfactorsimp((2*n+3)^2/((n+1)*(2*n+1)),n);

(%o12)
(1 + 2 · n) · 2n−1 · (2 · (1 + n))!

(n+ 1) · 4n · n!2

(%i13)pochfactorsimp(((2*n-%i)*(%i+2*n))/(2*(n+1)*(2*n+1)),n);

(%o13)

(
− i

2

)
n
·
(
i
2

)
n
· 4n

(2 · n)!
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The algorithm can also be used to compute "simple" formulas of certain ratios obtained by

using our implementation of Petkovšek’s algorithm.

(%i14)H:HyperPetkov(FindRE(exp(z)+log(1+z)/z,z,a[n]),a[n]);

(%o14)

{
1

n+ 1
,−1 + n

n+ 2

}
(%i15)map(lambda([r],pochfactorsimp(r,n)),H);

(%o15)

{
(−1)n

n+ 1
,

1

n!

}
(%i16)H:HyperPetkov(FindRE(sin(z)+sqrt(1+z),z,a[n]),a[n],C);

(%o16)

{
− 2 · n− 1

2 · (n+ 1)
,− i

n+ 1
,

i

n+ 1

}
(%i17)map(lambda([r],pochfactorsimp(r,n)),H);

(%o17)

{
(−i)n

n!
,
(−1)

n
2

n!
,− (−1)n · (2 · n)!

(2 · n− 1) · 4n · n!2

}

Now that we have described an algorithm for computing "simple" formulas of hypergeometric
terms given their ratios with no non-negative integer zeros and poles, let us move to the main
algorithm of this chapter where such rational functions are computed.

6.2 Computing Hypergeometric Term Solutions of

Holonomic Recurrence Equations

Let us consider the recurrence equation

Pd(n)an+d + Pd−1(n)an+d−1 + · · ·P1(n)an+1 + P0(n)an = 0, (6.18)

with polynomials Pi(n) ∈ K[n], i = 0, . . . , d such that P0(n) · Pd(n) 6= 0. K is a field of
characteristic zero.

Remember in ((5.49), on p. 87) we have seen how to compute a holonomic recurrence
equation of lowest order for a given number of linearly independent hypergeometric terms. Any
computed hypergeometric term solution of such a holonomic RE is a linear combination of these
linearly independent hypergeometric terms considered. The algorithm of this section is a kind of
reverse process which for a given holonomic recurrence equation (6.18) computes a basis of at
most d hypergeometric terms of the set of all hypergeometric term solutions of (6.18).

In the sequel, we would like to present a variant of van Hoeij’s algorithm that finds a basis of
all hypergeometric term solutions of (6.18). In particular, this will give every solution of (6.18)

as a linear combination of hypergeometric terms.
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In the first place, we look for a particular representation of a hypergeometric term. Let
an, n ∈ N>0, be a hypergeometric sequence such that

r(n) =
an+1

an
∈ K(n). (6.19)

Then we have
a1

a0

= r(0),
a2

a1

= r(1), . . . ,
an
an−1

= r(n− 1), n > 1,

and therefore
an
a0

=
n−1∏
k=0

ak+1

ak
=

n−1∏
k=0

r(k)⇒ an = a0

n−1∏
k=0

r(k). (6.20)

Factorizing r(n) over K gives

r(n) = C

∏I
i=1(n− αi)∏J
j=1(n− βj)

, (6.21)

where C is a constant representing the ratio of the leading coefficients of the numerator and the
denominator of r. Note that some αi and βj may coincide in (6.21). Thus combining (6.20) and
(6.21) we obtain

an = a0 · Cn ·
n−1∏
k=0

∏I
i=1(k − αi)∏J
j=1(k − βj)

. (6.22)

Since −αi(−αi + 1) · · · (−αi + n− 1) = (−αi)n (see (2.54)) occurs, (6.22) can be rewritten as

an =
(−α1)n(−α2)n · · · (−αI)n
(−β1)n(−β2)n · · · (−βJ)n

· a0 · Cn. (6.23)

Observe moreover that each Pochhammer symbol can be seen modulo Z in a certain real interval.
That is to say that the real parts of the arguments of Pochhammer terms can be chosen belonging
to an interval of amplitude 1. This is one of the interesting observations made by van Hoeij. In
our case, we choose to rewrite the Pochhammer symbols modulo Z in [−1, 0). Each Pochhammer
symbol is then substituted by a polynomial times another Pochhammer term whose argument
differs by an integer u. Precisely, let y be a real number (for the case of complex numbers,
the computations are applied on their real parts), then its corresponding value in [−1, 0) is
u = y − byc − 1 and we have

(y)n =
(u)n · (u+ n) · · · (y + n− 1)

u · (u+ 1) · · · (y − 1)

= (u)n ·
(u+ n)y−u

(u)y−u
(6.24)

= (y − byc − 1)n ·
(n+ y − byc − 1)byc+1

(y − byc − 1)byc+1

. (6.25)

After applying (6.25) to each Pochhammer symbol in (6.23), the remaining expression will have
Pochhammer terms having arguments with real parts in [−1, 0). These terms may have more
coincidence than the (−αi)n and (−βj)n in (6.23) since all Pochhammer terms in (6.23) whose
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arguments differ by an integer give the same Pochhammer term modulo Z after substitution.
Therefore there exists a rational function R(n) ∈ K(n) and some constant numbers α̃1, . . . , α̃I ,
β̃1, . . . , β̃J , with real parts in [−1, 0), such that

an = R(n) · Cn · (−α̃1)n(−α̃2)n · · · (−α̃I)n
(−β̃1)n(−β̃2)n · · · (−β̃J)n

. (6.26)

The constant a0 is neglected by linearity since we will look for a basis of hypergeometric term
solutions of (6.18).

Considering multiplicities ek over Z \ {0} and replacing −α̃i and −β̃j , i ∈ J1, IK, j ∈ J1, JK,
by θk, we get the general form

an = R(n) · Cn ·
K∏
k=1

(θk)
ek
n (−θk ∈ K, with real part in [−1, 0)), (6.27)

K 6 I + J . This time all the involved data are uniquely determined. The ratio r(n) can be
rewritten as

r(n) =
an+1

an
=
R(n+ 1)

R(n)
· C ·

K∏
k=1

(n+ θk)
ek ∈ K(n). (6.28)

Mark van Hoeij uses Gamma representations in (6.27) and denotes it singularity structure
of an (see Chapter 9 in [Koepf, 2014]). This representation can be seen as the end point of the
algorithm when it computes an element of the basis of hypergeometric terms looked for. In fact,
the goal of computing a basis of all hypergeometric term solutions of (6.18) is equivalent to
finding all possible structures (6.27) of solutions of (6.18).

As Petkovšek’s algorithm proved, hypergeometric term solutions of (6.18) are built from the
monic factors of its leading and its trailing polynomial coefficients Pd(n − d) and P0(n − 1).
Thus van Hoeij’s approach must also consider these factors modulo Z. Remark that the fact of
taking monic factors modulo Z makes that the shifts Pd(n)→ Pd(n−d) and P0(n)→ P0(n−1)

are not necessary. Let us take an example. We reuse the holonomic recurrence equation (5.37).

(%i1) RE:FindRE(z/(1-z)^4+5*z^3*exp(z)

+(1+7*z^2)*log(1+z)+(2+z)/sqrt(1+z),z,a[n])$

The leading term is

(%i2) first(lhs(RE));

(%o2) − 5280 · (1 + n) · (2 + n) · (3 + n) · (4 + n) · an+4

and the trailing term is

(%i3) last(lhs(RE));

(%o3) − 882 · (n− 19)2 · (2 · n− 35) · an−17.

Taking the factorization modulo Z with roots in [−1, 0) gives the monic factors

(n+ 1)e, 0 6 e 6 4,
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for the leading polynomial coefficient, and(
n+

1

2

)e1
(n+ 1)e2 for 0 6 e1 6 1, 0 6 e2 6 2,

for the trailing one. Therefore the possible ratios of Pochhammer parts in the form (6.27) of
hypergeometric term solutions are

1, n+
1

2
, n+ 1,

(
n+

1

2

)
· (n+ 1) ,

1

(1 + n)4 ,
1
2

+ n

(1 + n)4 ,
1

(1 + n)3 ,

1
2

+ n

(1 + n)3 ,
1

(1 + n)2 ,
1
2

+ n

(1 + n)2 ,
1

n+ 1
,

1
2

+ n

n+ 1
, (1 + n)2,

(
n+

1

2

)
· (1 + n)2. (6.29)

Observe that none of these ratios has a non-negative integer zero or pole, hence the type
of rational function that we treat with Algorithm 7. This is made possible by the fact that we
consider factorization modulo Z in [−1, 0).

At this stage one can already see an advantage of van Hoeij’s approach. Indeed, in the
worst-case complexity we only have 14 choices for the possible hypergeometric term solutions
as listed in (6.29) while with Petkovšek’s algorithm one has 2 · 2 · 2 · 2 · 3 · 2 = 96 choices that
correspond to the number of combinations of monic factors of the trailing and the leading terms.

Moreover, not all the ratios in (6.29) should be considered because the exponents of each lin-
ear factor appearing in the possible ratios of hypergeometric term solutions can be bounded from
the given holonomic recurrence equation. For this purpose van Hoeij’s algorithm uses the notion
of valuation growth or local types of difference operators at finite singularities [Van Hoeij, 1999,
Definition 9]. A point α + Z, α ∈ K is called finite singularity of (6.18) if there exists τ ∈ Z
such that α + τ is a root of the polynomial Pd(n − d) · P0(n) [Cluzeau and van Hoeij, 2006,
Definition 8]. Such a point is simply a root modulo Z of the trailing or the leading polynomial
coefficient of (6.18) as we considered.

Since we are already computing ratios of Pochhammer parts of hypergeometric term so-
lutions, we proceed in a slightly different way than the one described in ([Van Hoeij, 1999],
[Cluzeau and van Hoeij, 2006]) for the computation of the exponent bounds at a finite singu-
larity. To determine the valuation growths of finite singularities, we have to use the minimum
exponent (or valuation) taken by the corresponding factors modulo Z in the trailing and the
leading polynomial coefficients as lower bounds.

Thus if we come back to our previous example, for the leading term, the monic factors
modulo Z in [−1, 0) to be considered reduce to

(n+ 1)e, e = 1, 2, 3, 4, (6.30)

and for the trailing term we get(
n+

1

2

)e1
· (n+ 1)e2 , e1 = 1, e2 = 2. (6.31)

This second consideration on monic factors of the leading and the trailing polynomial
coefficients does not decrease the number of candidates in this example though, because of the
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fact that the leading and trailing polynomial coefficients share the same singularity from the
factor (n+1), which makes this example relatively less simple. Nevertheless, with the remaining
part of the algorithm we will see that the gain of efficiency compare to Algorithm 5 is even better.

Once the ratios of Pochhammer parts in the form (6.27) of hypergeometric term solutions
of (6.18) are found, Algorithm 7 is used to compute these Pochhammer parts (Cn included).
And thus the representations of the form (6.27) are obtained after the computations of the
corresponding rational functions R whose numerators and denominators are deduced from the
holonomic RE and the ratios of the corresponding Pochhammer parts.

Furthermore, van Hoeij’s algorithm goes even further. Below we give an example whose
three iterations with Petkovšek’s algorithm represent only a single iteration in the van Hoeij
approach. Let us consider the three following hypergeometric terms.

(%i4) term1:(1+n)/n!;

(%o4)
1 + n

n!

(%i5) term2:(1+n+n^2)/n!;

(%o5)
1 + n+ n2

n!

(%i6) term3:(1+n+n^2+n^3)/n!;

(%o6)
1 + n+ n2 + n3

n!

We use sumhyperRE to compute a holonomic recurrence equation valid for all linear combi-
nations of these hypergeometric terms.

(%i7) RE:sumhyperRE([term1,term2,term3],a[n]);

(%o7) − (1 + n) · (2 + n) · (3 + n) ·
(
2 + 8 · n+ 6 · n2 + n3

)
· an+3

+3·(1 + n)·(2 + n)·
(
3 + 11 · n+ 7 · n2 + n3

)
·an+2−3·(1 + n)·

(
6 + 16 · n+ 8 · n2 + n3

)
·an+1

+
(
17 + 23 · n+ 9 · n2 + n3

)
· an = 0 (6.32)

Looking for hypergeometric term solutions over Q, considering the possible exponents, the
possible ratios for their Pochhammer parts are only

1,
1

n+ 1
,

1

(1 + n)2 ,
1

(1 + n)3 . (6.33)

As one can observe, a basis for these three hypergeometric terms is{
1 + n

n!
,
n2

n!
,
n3

n!

}
. (6.34)

Each element of this basis is a multiple of 1
n!

over Q(n). That is why in van Hoeij’s approach the
only ratio used for the computation of hypergeometric term solutions of (6.32) is 1

n+1
. Indeed,
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whereas Petkovšek’s algorithm tries to compute the ratio of hypergeometric term solutions with
all monic factors of the leading and the trailing terms of a given holonomic recurrence equation,
that is 32 cases with (6.32) if we only consider the field of rational numbers, van Hoeij’s approach
does not only reduce the number of cases modulo Z with their corresponding possible exponents,
but it also filters the set of ratio terms of Pochhammer parts of hypergeometric term solutions
of that equation by using a characteristic property of its hypergeometric term solutions. Next,
we explain what this characteristic property of hypergeometric term solutions of holonomic
recurrence equations is about.

It is a study of the behavior of the ratio r(n) at infinity. Indeed at∞ we can write

r(n) = c · nν ·
(

1 +
b

n
+O

(
1

n2

))
, (6.35)

with the unique triple (ν, c, b) called the local type of an at∞. Without ambiguity, we will more
often use the word local type instead of local type at infinity.

Theorem 6.1 (Fuchs Relations). Let R(n) = N(n)
U(n)

with N(n), U(n) ∈ K[n]. The following

relations between the local type of a hypergeometric term an given by (6.27) hold:

i. ν =
∑K

k=1 ek,

ii. b =
∑K

k=1 θk ek + deg(N(n))− deg(U(n)),

iii. c = C,

where (ν, c, b) denotes the local type of an at∞.

Proof. From (6.28) we know that

r(n) =
an+1

an
= C ·

(
R(n+ 1)

R(n)
·
K∏
k=1

(n+ θk)
ek

)
. (6.36)

We would like to compute a truncated asymptotic expansion of (6.36). This can be seen as the
result of the product of asymptotic expansions of the form (6.35) of R(n+1)

R(n)
and

∏K
k=1(n+ θk)

ek

times C. Since R(n) = N(n)
U(n)

, the highest degree of n in its asymptotic expansion is δ =

deg(N(n))− deg(U(n)). Hence we read as

R(n) = cR · nδ ·
(

1 +
bR
n

+O

(
1

n2

))
, (6.37)
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for some constants cR, bR. Let us now deduce a truncated asymptotic expansion of R(n+ 1).

R(n+ 1) = cR · (n+ 1)δ ·
(

1 +
bR

n+ 1
+O

(
1

n2

))

= cR · nδ
(

1 +
1

n

)δ
·

1 +
bR

n

(
1 +

1

n

) +O

(
1

n2

)
= cR · nδ

(
1 +

δ

n
+

δ∑
j=2

(
δ

j

)(
1

n

)j)
·
(

1 +
bR
n

+O

(
1

n2

))
= cR · nδ

(
1 +

bR + δ

n
+O

(
1

n2

))
. (6.38)

Thus from (6.37) and (6.38) the first order asymptotic expansion of R(n+1)
R(n)

yields

R(n+ 1)

R(n)
=

1 +
bR + δ

n
+O

(
1

n2

)
1 +

bR
n

+O

(
1

n2

)
=

(
1 +

bR + δ

n
+O

(
1

n2

))
·
(

1− bR
n

+O

(
1

n2

))
= 1 +

δ

n
+O

(
1

n2

)
= 1 +

deg(N(n))− deg(U(n))

n
+O

(
1

n2

)
. (6.39)

On the other hand

(n+ θk)
ek = nek ·

(
1 +

θk
n

)ek
= nek ·

(
1 +

θkek
n

+

ek∑
j=2

(
ek
j

)(
θk
n

)j)

= nek ·
(

1 +
θkek
n

+O

(
1

n2

))
, (6.40)

therefore
K∏
k=1

(n+ θk)
ek = n

∑K
k=1 ek ·

(
1 +

∑K
k=1 θkek
n

+O

(
1

n2

))
. (6.41)

Finally according to (6.36), the expansion searched for is obtained by the product of (6.39) and
(6.41) times C. That is

r(n) = C · n
∑K
k=1 ek ·

(
1 +

∑K
k=1 θkek
n

+O

(
1

n2

))

·
(

1 +
deg(N(n))− deg(U(n))

n
+O

(
1

n2

))
= C · n

∑K
k=1 ek

(
1 +

∑K
k=1 θkek + deg(N(n))− deg(U(n))

n
+O

(
1

n2

))
,(6.42)

from which one easily read off the data of the theorem.
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The first two relations in this theorem tell us that for the local type (ν, c, b) of a hypergeometric
term an, ν and b can be found directly from the ratios that represent its Pochammer part. Indeed,
observe that modulo Z, the second relation of the theorem reads as

b =
K∑
k=1

θk ek. (6.43)

The third relation cannot be considered for the moment since the rational function candidates
for the Pochhammer parts of hypergeometric term solutions of a holonomic RE are all monic.

In the case of factorization in Q, the following Maxima code gives b modulo Z and ν for a
given ratio candidate of the Pochhammer part of a hypergeometric term [Koepf, 2014, Section
9.7].

check_localtype(term,n):=block([Rn,nuRn,t,tayRn,cRn,bRn],

Rn: ratsimp(term),

nuRn: hipow(num(Rn),n) - hipow(denom(Rn),n),

Rn: ratsimp(subst(1/t,n,ratsimp(Rn/n^nuRn))),

tayRn: ratdisrep(taylor(Rn,t,0,2)),

bRn: coeff(tayRn,t,1),

[nuRn,bRn-floor(bRn)-1]

)$

As mentioned earlier, the map y 7→ y − byc − 1 is used to find the correspondence of y modulo
Z in [−1, 0).

Let us compute the local type for some ratios from (??).

(%i8) term:(n+1/2)/(n+1)$

(%i9) check_localtype(term,n);

(%o9) [0,−1

2
]

(%i10) term:(n+1)^2$

(%i11) check_localtype(term,n);

(%o11) [2,−1]

And for the holonomic RE (6.32) we have

(%i12) map(lambda([r], check_localtype(r,n)),

makelist(1/(n+1)^e,e,0,3));

(%o12) [[0,−1], [−1,−1], [−2,−1], [−3,−1]]

As indicated by its name, this Maxima function is only used for verification purposes. Indeed
it is used to check whether the local type computed from a ratio candidate of the Pochammer
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part of a hypergeometric term solution of a given holonomic RE, has its ν and b modulo Z
of Theorem 6.1 equal to those of a hypergeometric term solution of that RE. Thus in the next
paragraph, we explain how the local types of hypergeometric term solutions of the holonomic
recurrence equation (6.18) are computed.

Note that this step must be considered with the highest priority in the algorithm, because if
the set of local types of hypergeometric term solutions of a given holonomic recurrence equation
is empty, then there is no hypergeometric term solution. This again shows a main advantage
of van Hoeij’s approach compared to the one of Petkovšek which does not have a quick test to
know when a holonomic RE does not have hypergeometric term solutions.

For this step, van Hoeij’s algorithm uses the Newton polygon of the difference operator of
the given holonomic RE [Van Hoeij, 1999, Section 3]. However, we proceed differently. Our
idea is to substitute (6.35) in (5.20) and compute the asymptotic expansion of the left hand side
of the given holonomic recurrence equation and find equations for the local types by equating
the result to 0. Let us write the recurrence equation as

d∑
i=0

Pian+i = 0, (6.44)

for polynomial coefficients Pi ∈ K[n], P0 · Pd 6= 0. Let an be a hypergeometric term solution of
this equation such that an+1 = r(n)an for a rational function r. (6.44) can then be written for
r(n) as

d∑
i=0

Pi

i−1∏
j=0

r(n+ i) = 0. (6.45)

We consider
r(n) = c · nν ·

(
1 +O

(
1

n

))
(6.46)

and we substitute this in (6.45). Similarly as we did in the proof of Theorem 6.1, we make
computations that yield the possible values of ν and c. If such values are found, say (νcand, ccand),
then we rewrite r(n) as

ccand · nνcand ·
(

1 +
b

n
+O

(
1

n2

))
(6.47)

and we make new computations to find b.
Summarized, our procedure to find the local types (ν, c, b) of hypergeometric term solutions

of a given holonomic RE consists in the following items:

1. we compute the possible values for ν;

2. for each value of ν,

2-a we compute possible values for c,

2-b for each value found for c, we use ν and c to compute the possible values for b;

2-c for each value found for b, (ν, c, b) constitutes a local type of a hypergeometric term
solution of (6.44).
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Let us now explain how each value is computed.

• Computing ν:

Substitute (6.46) in (6.45) gives the following terms on the left-hand side

ci · ni·ν · Pi ·
(

1 +O

(
1

n

))
, (0 6 i 6 d) (6.48)

which is equivalent to

li · ci · ni·ν+deg(Pi) ·
(

1 +O

(
1

n

))
, (0 6 i 6 d) (6.49)

where li denotes the leading coefficient of Pi. Since we are dealing with a solution of an
equation of the right-hand side 0, the terms having the highest power of n in the asymptotic
expansion of the left-hand side of the equation must be zero. However this is only possible
if a term of the form (6.49) has the same power of n with some other terms such that they
add to 0. Therefore we deduce that the possible candidates for ν are integer solutions of
linear equations coming from equalities of powers of n for two different terms of the form
(6.49). That is for 0 6 i 6= j 6 d, we have the equation

i · ν + deg(Pi) = j · ν + deg(Pj) (6.50)

and therefore a possible value for ν is

νi,j =
deg(Pj)− deg(Pi)

i− j
, (6.51)

if the computed value is an integer.

We then compute
(
d
2

)
such values for the equation (6.44) and keep those that are integers.

Note that two different couples of terms may give the same value for ν, meaning that the
addition to zero involves all the corresponding terms, which is the point of the next item.

• Computing c:

Assume that we have found a value νi,j ∈ Z corresponding to k terms in the equation
(6.45) with indices 0 6 u1 6= u2 6= . . . 6= uk 6 d. Then from representation (6.49) it is
straightforward to see that a valid candidate for c is a solution of the polynomial equation

lu1 · cu1 + lu2 · cu2 + · · ·+ luk · cuk = 0. (6.52)

In fact, since the corresponding terms must add to zero in the asymptotic expansion, their
leading coefficients must equal zero.

Thus, each value ci,j ∈ K which is a zero of (6.52) for a given νi,j , (νi,j, ci,j) is already a
possible couple to be completed for the local type of a hypergeometric term solution of
(6.44).
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• Computing b:

For a computed couple (νi,j, ci,j) as explained above, we rewrite r(n) as

ci,j · nνi,j ·
(

1 +
b

n
+O

(
1

n2

))
, (6.53)

with unknown b.

After substituting (6.53) in (6.45) and computing again the asymptotic expansion, the
terms with the highest power of n add to zero, and therefore the left-hand side of the
resulting equation must have a leading term with a coefficient as a polynomial in the
variable b. Since that polynomial must be zero, the possible values for b are its roots.
To get the leading coefficient of the asymptotic expansion of the left-hand side of the
equation, one computes the first non-zero term of its Taylor expansion at infinity and solve
its coefficient equal to zero for the unknown b. Finally if we find values for b ∈ K then we
have found for each b a local type (ν, c, b) of a hypergeometric term solution of (6.44).

Hence we get the following algorithm.

Algorithm 8 Computing the local types of all hypergeometric term solutions of a given holo-
nomic RE
Input: Polynomials

Pi(n) ∈ K[n], i = 0, . . . , d | Pd(n) · P0(n) 6= 0

Output: The set of all local types of hypergeometric term solutions of the holonomic RE

d∑
i=0

Pi(n)an+i = 0. (6.54)

1. Set L = {}.
2. For all pairs {i, j} ∈ {0, 1, . . . , d}, compute

νi,j =
deg(Pj)− deg(Pi)

i− j
. (6.55)

3. For each integer νi,j computed in (6.55), compute the set of solutions in K, say Sc,i,j ,
of the polynomial equation

lu1 · cu1 + lu2 · cu2 + · · ·+ luj · cuk = 0, (6.56)

where lu1 , lu2 , . . . , luk are the leading coefficients of the polynomials Pu1 , Pu2 , . . . , Puk ,
0 6 u1 6= u2 6= . . . 6= uk 6 d satisfying (6.55) for the same integer νi,j .

(a) For each element ci,j of Sc,i,j set

r(n) = ci,j · nνi,j ·
(

1 +
b

n

)
. (6.57)
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Algorithm 8 Computing the local types of all hypergeometric term solutions of a given holo-
nomic RE

3. (b) Compute the coefficient Ti,j(b) of the first non-zero term of the Taylor expansion
of

d∑
i=0

Pi

i−1∏
j=0

r(n+ i) (6.58)

at infinity.
(c) Solve Ti,j(b) = 0 in K for the unknown b and define Sb,i,j to be the set of solutions.
(d) For each element bi,j ∈ Sb,i,j, add the triple (νi,j, ci,j, b) to L.

4. Return L.

Theorem 6.2. Algorithm 8 finds all the local types (ν, c, b) of all hypergeometric term solutions

of the holonomic recurrence equation (6.18).

We mention that for a given holonomic recurrence equation, the computations of Algorithm
8 can be used to reduce the number of iterations in the algorithm. The important point to notice
is that when two linearly independent hypergeometric term solutions have the same local type,
Algorithm 8 compute it at least twice and this fact can be used in such a way that local types
computed should be collected as a list instead of a set so that when a basis of hypergeometric
term corresponding to a particular local type is found, the latter is discarded from the list of
local types. Thus any ratio candidates whose local type is not in the list of local types should
not be used in further computation steps. This is a very useful tool to reduce the number of
iterations to the number of computed local types in particular when computing the general
coefficient of power series whose the holonomic recurrence equations computed using Algorithm
1 and Algorithm 2 are very often of order greater than the corresponding number of linearly
independent hypergeometric term solutions. However this tool can only be used when the number
of local types computed (with repeated values) is less than the order of the given holonomic RE.

We implemented a Maxima function localtype(L,n) which takes the polynomial coefficients
of a holonomic RE in L with the indeterminate n. Note that the values found for b are taken
modulo Z. Let us see what the local types involved in the previous computed REs of this section
are.

(%i13) RE:FindRE(z/(1-z)^4+5*z^3*exp(z)

+(1+7*z^2)*log(1+z)+(2+z)/sqrt(1+z),z,a[n])$

/* collection of polynomial coefficients (here expanded) */;

(%i14) L:expand(REcoeff(RE,a[n]))$

(%i15) setify(localtype(L,n));

(%o15)

{
[−1, 1,−1], [0,−1,−1], [0,−1,−1

2
], [0, 1,−1]

}
We use the Maxima command setify to remove double elements because in this example the

number of local types computed with repeated values (here 31) is greater than the order of the
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holonomic RE (here 21). Therefore for this example the number of iterations in the algorithm is
the number of ratio candidates whose local types are represented in the above set.

According to the Fuchs relations of Theorem 6.1, the local types obtained with check_localtype

on the ratios of possible Pochhammer parts of hypergeometric term solutions can be compared.
We remind that we only compare the value of b and ν, where b is considered modulo Z as in
(6.43). This permits to eliminate some ratios in (6.29). The remaining ratios are therefore

1,
1

n+ 1
,
n+ 1

2

n+ 1
. (6.59)

Note, however, that this corresponds to at most 6 iterations considering the values found for c in
the different local types.

For the second example (6.32) the set of local types is

{[−1, 1,−1]} , (6.60)

which allows to reduce the number of ratios of possible Pochhammer parts of hypergeometric
term solutions to 1. And as we mentioned earlier, the only ratio found for this case is 1

n+1
.

The algorithm goes again further, indeed, once we have found all those better candidates for
ratios of Pochammer parts of hypergeometric term solutions, we need to use again the second
Fuchs relation from Theorem 6.1 in order to find δ = deg(N(n)) − deg(U(n)), where N(n)

and U(n) are the numerator and the denominator of R in (6.28). In fact, since we have found
values for b and its possible ratio candidates, which means that we can compute

∑K
k=1 θk · ek,

we therefore deduce that these candidates are valid if and only if they satisfy

δ = b−
K∑
k=1

θk · ek ∈ Z. (6.61)

However, this relation can be used in the algorithm only if b is not computed modulo Z. In this
case the verification of ratios of Pochhammer parts of hypergeometric term solutions for the
value of b should consist in checking if the difference b −

∑K
k=1 θk · ek is an integer.

Another approach is to use again asymptotic expansion. Since now we have the ratio terms
with the value c of the local type of a hypergeometric term solution, according to (6.28) we can
write

r(n) =
R(n+ 1)

R(n)
· c ·RPochhammer(n), (6.62)

where RPochhammer(n) denotes one of the remaining ratio candidates of hypergeometric term
solutions. Since

R(n+ 1)

R(n)
= 1 +

δ

n
+O

(
1

n2

)
, (6.63)

where δ is the difference between the degree of the numerator and the denominator of R, the
leading term in the asymptotic expansion of

d∑
i=0

Pi

i−1∏
j=0

r(n+ i), (6.64)
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where Pi, i = 0, . . . , d are the polynomial coefficients of the given holonomic RE, must have a
polynomial coefficient in the variable δ. Therefore the values of δ are integer roots (if there are
some) of that polynomial. If they do not exist, then the rational function c ·RPochhammer(n) is not
involved in the ratio of a hypergeometric term solution of (6.18).

This latter approach is the one that we adopt as it allows to join the value c of the local type
to the ratios for the Pochhammer parts of hypergeometric term solutions.

Most often after this step the number of ratio candidates of Pochhammer parts of hyper-
geometric term solution of (6.18) is considerably reduced or equal to the exact number of
hypergeometric term solutions.

It only remains to find the rational function R in (6.27) whose holonomic recurrence equa-
tion can be easily computed. Let c · RPochhammer(n) be one of the remaining ratios times its
corresponding c for the local type. Then the recurrence equation

d∑
i=0

Pi ·R(n+ i) · cn+i ·RPochhammer(n+ i) = 0, (6.65)

is an equation for the unknown rational function R(n) that we can modify to a holonomic RE
after multiplication by the least common multiple of the denominators of the corresponding
rational coefficients. Assume that we obtain the holonomic recurrence equation

d∑
i=0

Ai(n) ·R(n+ i) = 0, (6.66)

with A0(n), . . . , Ad(n) ∈ K[n], A0(n) · Ad(n) 6= 0.

Observe, however, that there is no need to use a complete algorithm for computing rational
solutions of holonomic recurrence equations. Indeed, since we already have the possible
difference between the degrees of the numerators and the denominators of rational solutions
of (6.66), it is enough to use an algorithm that computes a universal denominator1 U(n) of
all rational solutions of (6.66) and use the maximum value δmax of the difference between the
degrees of the numerators and the denominators to compute a degree bound δmax + deg(U(n))

for the degrees of the corresponding numerators. Substituting
N(n)

U(n)
in (6.66) where N(n) is an

arbitrary polynomial of degree δmax + deg(U(n)) and U(n) the computed universal denominator
results in a linear system in the coefficients of the arbitrary polynomial N(n). Finally solving

that system gives a basis of all the rational functions R(n) =
N(n)

U(n)
searched for.

Since the computations of numerators of rational solutions R(n) of (6.66) is straightforward
after the computation of a universal denominator of rational solutions of (6.66), the only re-
maining important step to be described in order to finish the explanations of our variant of van
Hoeij’s algorithm is the one for the computation of a universal denominator of a given holonomic
recurrence equation. Below we give the original Abramov algorithm for computing the universal

1A universal denominator of rational solutions of a holonomic RE is a polynomial that is divisible by all the
denominators of rational solutions of that holonomic RE [Abramov, 1999].
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denominator of a given holonomic RE (see ( [Abramov and Barkatou, 1998], [Abramov, 1999],
[Abramov et al., 2011] )).

Algorithm 9 Computing the universal denominator of rational solutions of a holonomic RE

Input: The leading and the trailing polynomial coefficients A0(n) and Ad(n) (A0(n) ·Ad(n) 6=
0)

Output: A universal denominator U(n) of all rational solutions of a holonomic recurrence
equation having A0(n) and Ad(n) as trailing and leading coefficients, respectively.

1. Set U(n) = 1, V (n) := Ad(n− d), W (n) := A0(n).

2. Compute the dispersion set D

D := ds(V (n),W (n)) := {h ∈ N : deg (gcd(V (n),W (n+ h))) > 0} (6.67)

3. If D = ∅, then stop and return U(n).

4. Change D as a list and sort it in decreasing order, say D = [h1, h2, . . . , hm] such that
h1 > h2 > . . . > hm.

5. For j = 1, . . . ,m, do

– P (n) = gcd (V (n),W (n+ hj));
– V (n) = V (n)/P (n);
– W (n) = W (n)/P (n− hj);

– U(n) = U(n)
∏hj

k=0 P (n− k).

6. Return U(n).

The set ds(V (n),W (n)) can be computed as the set of all non-negative integer roots of
the resultant polynomial of V (n) and W (n + h) in the variable h. Note, however, that this
way of calculating the dispersion set is not efficient, particularly because the variable h that is
used makes the problem a two-variable problem even though the dispersion set only contains
information about polynomials of one variable. And we recall that the degree of the resultant of
two polynomials is the product of their degrees (see [Koepf, 2014, Chapter 5]).

However the dispersion set can also be obtained from the full factorization of V (n) and
W (n). Indeed, for given irreducible factors w(n), v(n) of W (n) and V (n), respectively, such
that deg(w(n)) = deg(v(n)) = m, one can easily recognize whether or not there exists h ∈ Z
verifying w(n+ h) = v(n); precisely, if

w(n) = nm + wm−1n
m−1 + · · · ,

v(n) = nm + vm−1n
m−1 + · · · ,

then w(n+ h) = nm + (wm−1 + nh)nm−1 + · · · and the only candidate for h is

vm−1 − wm−1

m
, (6.68)

if this value is an integer. Using this approach makes the computation faster and this is the
one we use. For more details about the computation of the dispersion set see ([Koepf, 2014,
Algorithm 5.2], [Man and Wright, 1994]).
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On the other hand, this step of computing the universal denominator can still be improved
for sake of efficiency. Indeed, as explained in [Abramov et al., 2011], Algorithm 9 is not the
best existing version of Abramov’s algorithm for computing a universal denominator of linear
recurrences. The reason is that the gcd computations made in the algorithm do not use previous
informations on the factorization of V (n) and W (n).

Note, however, that this is a common situation in Computer Algebra: ". . . Several algorithms
in symbolic computation depend on a subroutine for finding the rational solutions of ordinary lin-
ear difference equations and several algorithms are known for implementing such subroutines. . . "
([Gheffar and Abramov, 2011], [Kauers and Schneider, 2010]).

Our package contains the function Udenom(A0,Ad,d,n) which computes a universal denom-
inator of rational solutions of holonomic recurrence equations having A0 as the polynomial
coefficient of its trailing term and Ad as the one of its leading term in the variable n. Let us give
an example.

Using sumhyperRE, we generate a holonomic RE for linear combinations of the rational

functions
n+ 1

(n+ 2)(n+ 3)
and

1

(n+ 4)(n+ 5)
.

(%i16) RE:sumhyperRE([(n+1)/(n+2)/(n+3),1/(n+4)/(n+5)],a[n]);

(%o16) (5 + n) · (7 + n) ·
(
8 + 4 · n+ n2

)
· an+2 − 2 ·

(
178 + 178 · n+ 73 · n2

+ 14 · n3 + n4
)
· an+1 + (2 + n) · (4 + n) ·

(
13 + 6 · n+ n2

)
· an = 0

(%i17) Coeffs:REcoeff(RE,a[n])$

(%i18) A0:first(Coeffs);

(%o18) (n+ 2) · (n+ 4) ·
(
n2 + 6 · n+ 13

)
(%i18) A2:last(Coeffs);

(%o19) (n+ 5) · (n+ 7) ·
(
n2 + 4 · n+ 8

)
(%i19) Udenom(A0,A2,2,n);

(%o19) (n+ 2) · (n+ 3) · (n+ 4) · (n+ 5)

We think that this step of computing the rational functionR(n) of the representation (6.26) of
hypergeometric term solutions of holonomic REs, is the only one that could make a difference of
efficiency between our variant of van Hoeij’s algorithm and its original version. In his approach,
van Hoeij uses a special algorithm from his idea of finite singularities for computing rational
solutions of holonomic RE (see [Van Hoeij, 1998]) to find R. Though we have mentioned
that a complete algorithm to compute rational solutions of holonomic REs is not necessary,
the algorithm described in [Van Hoeij, 1998] can well be adapted with computations done in
[Van Hoeij, 1999]. However, it has been proved in [Abramov et al., 2011] that the improved
version of Abramov’s algorithm, named A′U , for computing rational solutions of a given linear
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recurrence generally gives the best efficiency. This algorithm computes a universal denomina-
tor as in Algorithm 9 by avoiding unnecessary computations particularly involved in the gcd

computations.
Nevertheless most often in our direction of computing hypergeometric type series, for the

kind of recurrence equations that we are dealing with, both algorithms perform the same time
complexity for the computations of corresponding hypergeometric term solutions.

One last thing to be mention is the avoidance of splitting fields. In our case this does not
constitute a real issue since we are more interested in the field of rationals and some of its
extensions. These computable ones do not generally slow down the algorithm.

We can now present the complete algorithm of this chapter.

Algorithm 10 A variant of van Hoeij’s algorithm
Input: Polynomials

Pi(n) ∈ K(n), i = 0, . . . , d, | Pd(n) · P0(n) 6= 0.

Output: A basis for all hypergeometric term solutions of the holonomic recurrence equation

d∑
i=0

Pi(n)an+i = 0 (6.69)

over K.

1. Set H = {}.
2. Use Algorithm 8 to compute the set L of all local types at infinity of hypergeometric

term solutions of (6.69).

3. If L = ∅, then stop and return H .

4. Construct the set of couple numerator-denominator for ratio candidates of the Pochham-
mer parts of hypergeometric term solutions

P :=

{
(p(n), q(n)) ∈ K[n]2 : p(n) and q(n) are monic factors modulo Z

of P0(n− 1) and Pd(n− d) respectively
}
. (6.70)

5. Remove from P all couple whose p(n) exponents are less than the minimum mul-
tiplicity of the corresponding root modulo Z in the trailing polynomial coefficient
P0(n). Similarly, clear P by the same consideration for q(n) exponents and the leading
polynomial coefficient Pd(n). Finally substitute each remaining couple (p(n), q(n)) in
P by p(n)

q(n)
.
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Algorithm 10 A variant of van Hoeij’s algorithm

6. Construct the set F1 of c · r, r ∈ P such that c · r has its local type at infinity as an
element of L.

F1 :=

{
c · r : r = nνr

(
1 +

br
n

+O

(
1

n2

))
∈ P and (νr, c, bn) ∈ L

}
. (6.71)

7. Set F2 := {}. For each element f(n) of F1

(a) Compute a recurrence equation, say Ef with the coefficients

Pi ·
i∏

j=0

f(n+ i), i = 0, . . . , d, (6.72)

for the rational function R(n) in (6.28) of the possible hypergeometric terms
solutions.

(b) Substitute the terms R(n+ i) by (1 + δ
n+i

), i = 0, . . . , d, in Ef and compute the
coefficient of the leading term of the asymptotic expansion of the left hand side of
Ef , say Qf (δ).

(c) Compute the set Sδf of integer roots of Qf (δ).
(d) If Sδf = ∅ then f(n) is discarded.
(e) Else set δf := max(Sf ), modify Ef to holonomic form and add (f(n), δf , Ef ) in

F2.

8. If F2 = ∅ then stop and return H .

9. For each (f(n), δf , Ef ) ∈ F2

(a) Use Algorithm 9 to compute the universal denominator Uf (n) of rational solutions
of Ef .

(b) Update Ef as E ′f with Uf (n) to get a holonomic RE for the numerators of rational
solutions of Ef .

(c) Set dNf := deg(Uf (n))+ δf , and find a basis of all polynomial solutions of degree
at most dNf of E ′f .

(d) Use Algorithm 7 to compute hf (n) =
∏n−1

k=0 f(k).

(e) For each Nf (n) ∈ SNf add Nf (n)

Uf (n)
· hf (n) to H .

10. Return H

Remark

• The steps 4 and 5 of Algorithm 10 can easily be combined in an algorithm which builds
ratios of possible Pochhammer parts of hypergeometric term solutions of a given holonomic
RE from its leading and trailing polynomial coefficients.

• Algebraic extension fields are considered in the same way as with our description of
Petkovšek’s algorithm. According to the users and the computer algebra systems used
for implementation, finding the zeros for the values of c in the local type algorithm
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(Algorithm 8) or factorizing the leading and the trailing polynomial coefficients may need
the specification of the field where the computations of certain hypergeometric terms can
be done. By default, we consider the field of rationals, its computable extensions are just
taken as the collection of the common operations, the field of rationals, and the needed
irrational numbers computed in the field of complex numbers.

Our package contains the function HypervanHoeij(RE,a[n],[K]) which implements Algo-
rithm 10, with the default value Q for K representing the field of computations. As for our
implementation of Petkovšek’s algorithm, one uses C to allow computations in extension fields
of Q.

Note that HypervanHoeij may need extension fields when HyperPetkov does not. Indeed,
for a given holonomic RE, the monic factors computed in van Hoeij’s algorithm are used to
determine the possible ratios of Pochhammer parts of hypergeometric term solutions of that RE.
However, it may happen that a "simple" formula of a hypergeometric term needs an extension
field of Q whereas its ratio is a rational function over Q. Let us present an example.

The differential equation

(%i20) DE:z*F(z)+z^2*F(z)+z^3*diff(F(z),z)+z^4*diff(F(z),z,2)=0;

(%o20) z4 ·
(
d2

d z2
· F (z)

)
+ z3 ·

(
d

d z
· F (z)

)
+ z2 · F (z) + z · F (z) = 0 (6.73)

leads to the holonomic recurrence equation

(%i21) RE:DEtoRE(DE,F(z),a[n]);

(%o21) an−1 +
(
5− 4 · n+ n2

)
· an−2 = 0. (6.74)

Using our implementations of Petkovšek’s and van Hoeij’s algorithms yields

(%i22) HypervanHoeij(RE,a[n]);

(%o22) {}

(%i23) HyperPetkov(RE,a[n]);

(%o23)
{
−
(
n2 + 1

)}
However, allowing computations in extension fields for HypervanHoeij, we get

(%i24) Hyp:HypervanHoeij(RE,a[n],C);

(%o24)

{
(1− i)n · (i+ 1)n · (−1)n

n2 + 1

}
Of course after computing the ratio of this hypergeometric term we get the same result as
HyperPetkov.
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(%i25) map(lambda([r], ratio(r,n)),Hyp);

(%o25) −
(
1 + n2

)
Note that this simplification holds because ratio uses the Maxima command ratsimp which
replaces i2 by −1 before the factorization over the field of rational numbers. As we have
mentioned earlier, factorization in linear factors is not always feasible in Computer Algebra.
Therefore this lack of algorithms for complete factorization over algebraically closed fields
may sometimes hide hypergeometric term solutions of holonomic REs if they are searched in
a "simple" formula form. This is one of the reasons why we prefer to use our implementation
of Petkovšek’s algorithm for the computation of ratios of hypergeometric term solutions of
holonomic REs.

However, for the computation of "simple" formulas of hypergeometric terms which is our
need for power series computations, sometimes integer shifts have to be considered in order
to apply Algorithm 7. This situation is clearly avoided with Algorithm 10 which only calls
Algorithm 7 for rational functions having poles and zeros with negative real parts. A simple
example is the recurrence equation of log(1 + z) below.

(%i26) RE:FindRE(log(1+z),z,a[n]);

(%o26) (1 + n) · (2 + n) · an+2 + (1 + n)2 · an+1 = 0

(%i27) HyperPetkov(RE,a[n]);

(%o27)

{
− n

n+ 1

}
Since 0 is a root of the obtained ratio’s numerator, application of Algorithm 7 after shifting
the indeterminate by 1 leads to the formula (−1)n+1

n+1
for computations starting from 0. Using

HypervanHoeij we obtain

(%i28) HypervanHoeij(RE,a[n]);

(%o28)

{
(−1)n

n

}
for computations starting from 1. The starting value in the second case can be directly deduced
from the recurrence equation. We give more details about such computations in Chapter 7. Note
that the situation might become more complicated to deal with when the output of HyperPetkov

contains linearly dependent hypergeometric term ratios.

Let us now compute more examples and evaluate the improvement of the time complexity
compared to Petkovšek’s algorithm.

We start with (6.32) and see which basis HypervanHoeij finds for its hypergeometric term
solutions.

(%i29) term1:(1+n)/n!$
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(%i30) term2:(1+n+n^2)/n!$

(%i31) term3:(1+n+n^2+n^3)/n!$

(%i32) RE:sumhyperRE([term1,term2,term3],a[n])$

(%i33) HypervanHoeij(RE,a[n]);

Evaluation took 0.0200 seconds (0.0300 elapsed)

(%o33)

{
1 + n

n!
,
n2

n!
,
n3

n!

}
We obtained exactly the expected basis of hypergeometric term solutions (6.34). For this example,
our implementation of Petkovšek’s algorithm get

(%i34) HyperPetkov(RE,a[n]);

Evaluation took 0.0400 seconds (0.0500 elapsed)

(%o34)

{
1 + n

n2
,

1 + n

(n− 1) · n
,

2 + n

(1 + n)2 ,
(1 + n)2

n3

}
whose some ratios correspond to linearly dependent hypergeometric terms. One sees that the
computation of basis of hypergeometric term solutions using Petkovšek’s algorithm needs some
other considerations. The Maxima package solve_rec gives

(%i35) solve_rec(RE,a[n]);

Evaluation took 0.3800 seconds (0.5500 elapsed)

(%o35) an =
%k 1 · n2

(n− 1)!
+

%k 2 · (n− 1) · n
(n− 1)!

+
%k 3 · n
(n− 1)!

which is an incorrect result since the given linearly independent hypergeometric terms cannot be
used to compute 1+n

n!
, n

2

n!
and n3

n!
at the same time.

(%i36) RE:FindRE(sqrt(1+z)+1/sqrt(1+z),z,a[n])$

(%i37) HypervanHoeij(RE,a[n]);

Evaluation took 0.0200 seconds (0.0200 elapsed)

(%o37)

{
(n− 1) · (−1)n · (2 · n)!

(2 · n− 1) · 4n · n!2

}
This gives exactly the general coefficient as in (5.1) page 65.

(%i38) RE:FindRE(exp(z)+log(1+z^2)+1/(1-z)^20,z,a[n])$

(%i39) HypervanHoeij(RE,a[n],C);



6.2. Computing Hypergeometric Term Solutions of Holonomic Recurrence Equations 119

Evaluation took 6.5500 seconds (6.6800 elapsed)

(%o39)

{
(−i)n

n
, (n+ 1) · (n+ 2) · (n+ 3) · (n+ 4)

· (n+ 5) · (n+ 6) · (n+ 7) · (n+ 8) · (n+ 9) · (n+ 10) · (n+ 11) · (n+ 12) · (n+ 13) · (n+ 14)

· (n+ 15) · (n+ 16) · (n+ 17) · (n+ 18) · (n+ 19) ,
(−1)

n
2

n
,

1

n!

}
We have seen on page 80 that for this example HyperPetkov takes 339.06 seconds to compute all
the hypergeometric term solutions. Therefore the result above shows a large improvement of the
time complexity with HypervanHoeij which only takes about 4 seconds to compute the same
hypergeometric term solutions.

(%i40) RE:FindRE(z/(1-z)^4+5*z^3*exp(z)

+(1+7*z^2)*log(1+z)+(2+z)/sqrt(1+z),z,a[n])$

(%i41) HypervanHoeij(RE,a[n]);

Evaluation took 5.5200 seconds (5.6800 elapsed)

(%o41)

{
n · (1 + n) · (2 + n)

216
,
(4 · n− 1) · (−1)n

864 · (n− 2) · n
,
(n− 2) · (n− 1) · n

n!
,

(n− 1) · (−1)n · (2 · n)!

6 · (2 · n− 1) · 4n · n!2

}
For this example we have seen on page 83 that HyperPetkov takes about 54 seconds.

Let use sumhyperRE to generate the complicated example used at the end of the previous
chapter.

(%i42) term1:(pochhammer(1/2,n)^5*pochhammer(1,n))

/(pochhammer(3/4,n)^3*pochhammer(1/3,n));

(%o42)

(
1
2

)
n

5 · n!(
1
3

)
n
·
(

3
4

)
n

3

(%i43) term2:pochhammer(1/4,n)/

(pochhammer(1,n)^3*pochhammer(1/3,n)^4);

(%o43)

(
1
4

)
n(

1
3

)
n

4 · n!3

(%i44) term3:pochhammer(1/5,n)^2/

(pochhammer(1/7,n)*pochhammer(2,n));

(%o44)

(
1
5

)
n

2(
1
7

)
n
· (2)n

(%i45) RE:sumhyperRE([term1,term2],a[n])$

(%i46) HypervanHoeij(RE,a[n]);
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Evaluation took 0.2600 seconds (0.2800 elapsed)

(%o46)

{ (
1
4

)
n(

1
3

)
n

4 · n!3
,

(2 · n)!5(
1
3

)
n
·
(

3
4

)
n

3 · 45·n · n!4

}

Here we get a fraction of a second compare to the 17.74 obtained in page 88.

(%i47) RE:sumhyperRE([term1,term2,term3],a[n])$

(%i48) HypervanHoeij(RE,a[n]);

Evaluation took 4.1700 seconds (4.4700 elapsed)

(%o48)

{ (
1
4

)
n(

1
3

)
n

4 · n!3
,

(
1
5

)
n

2

2 ·
(

1
7

)
n
· (n+ 1) · n!

,
(2 · n)!5(

1
3

)
n
·
(

3
4

)
n

3 · 45·n · n!4

}

And again, we obtain a much better timing compared to the 20 minutes obtained using Hyper-

Petkov.

Mark van Hoeij’s algorithm constitutes the current state-of the-art algorithm for finding
hypergeometric term solutions of holonomic recurrence equations. More details about this
algorithm can be found in [Cluzeau and van Hoeij, 2006]. With our implementation, Maxima
reaches Maple’s level in computing hypergeometric term solutions of holonomic RE. Van
Hoeij implemented his algorithm in Maple as LREtools[hypergeomsols]. This Maple command
seems to be slightly more efficient than our HypervanHoeij since it uses more "tricks" to
detect the possible Pochhammer parts of hypergeometric term solutions of holonomic REs (see
[Cluzeau and van Hoeij, 2006, Remark 3, Page 95]). Let us apply van Hoeij’s implementation
on our previous example. We use Maple’s gfun and Koepf’s hsum17 packages to compute the
same holonomic recurrence equation and we apply LREtools[hypergeomsols] to find a basis of
the corresponding hypergeometric term solutions (see [Koepf, 2014, Section 9.14]).

> term1:=(pochhammer(1/2,n)^5*pochhammer(1,n))
> /(pochhammer(3/4,n)^3*pochhammer(1/3,n)):
> term2:= pochhammer(1/4,n)/(pochhammer(1,n)^3
> *pochhammer(1/3,n)^4):
> term3:=pochhammer(1/5,n)^2
> /(pochhammer(1/7+n)*pochhammer(2+n)):
> HolonomicRE:=proc(term,sk)
> local s,k,r;
> s:=op(0,sk) : k:=op(1,sk):
> r:=ratio(term,k);
> denom(r)*s(k+1)-numer(r)*s(k)=0;
> end proc:

> read "hsum17.mpl":

> with(gfun):

> RE1:=HolonomicRE(term1,s(n)):

> RE2:=HolonomicRE(term2,s(n)):



6.2. Computing Hypergeometric Term Solutions of Holonomic Recurrence Equations 121

> tmp:=gfun["rec+rec"](RE1,RE2,s(n)):

> if type(tmp,set) then tmp:=select(has,tmp,n)[1] end if:

> RE:=map(factor,tmp):

> RE3:=HolonomicRE(term3,s(n)):

> RE:=map(factor,gfun["rec+rec"](RE,RE3,s(n))):
> TIME:=time():LREtools[hypergeomsols](RE,s(n)
> ,{},output=basis);time()-TIME;[

Γ
(
n+ 1

5

)2

Γ
(
n+ 1

7

)
· Γ (n+ 2)

,
Γ
(
n+ 1

2

)5 · Γ (n+ 1)

Γ
(
n+ 1

3

)
· Γ
(
n+ 3

4

)3 ,
(1 + n) · Γ

(
n+ 1

4

)
Γ
(
n+ 1

3

)4 · Γ (n+ 1)2 · Γ (n+ 2)

]

2.381

As one can see, the timing is close to the one we obtained with our implementation for this
example. Of course we should not forget to mention that in terms of timing, Maple is more
efficient than Maxima essentially because it is a more optimized CAS.

Note that given a field K, if Petkovšek’s or van Hoeij’s algorithm does not find hypergeometric
term solutions of a given holonomic recurrence equation over K, then we can say that the given
holonomic RE has no hypergeometric term solutions over K. For example, this is the case with
the holonomic RE

(%i49) RE:FindRE(sin(z^3)^3,z,a[n]);

(%o49) (n− 8)·(n− 5)·(n− 2)·(1 + n)·an+1+90·(n− 8)·(n− 5)·an−5+729·an−11 = 0

(6.75)
for which using HyperPetkov and HypervanHoeij with allowance of computations in extension
fields of Q yields

(%i50) HyperPetkov(RE,a[n],C);

Evaluation took 0.0500 seconds (0.0600 elapsed)

(%o50)
{ }

(%i51) HypervanHoeij(RE,a[n],C);

Evaluation took 0.0300 seconds (0.0300 elapsed)

(%o51)
{ }

However, remember, that we introduced a more general concept about hypergeometric terms
in Definition 2.14, page 28. The holonomic RE (6.75) has m-fold hypergeometric term solutions
that could not be detected by neither Petkovšek’s nor van Hoeij’s algorithm over C. Next, we
move to this general situation about solutions of holonomic recurrence equations for which
hypergeometric terms are just a particular case.





Chapter 7

m−fold Hypergeometric Term
Solutions of Holonomic Recurrence

Equations

"I was always an optimizer, I wanted the best for the least effort."

Alessio Figalli

"To invent is to think on the side."

Albert Einstein

In this chapter, we present the most important result of this thesis. That is a new algorithm
for the computation of m-fold hypergeometric term solutions of holonomic recurrence equations.
This subject appears as the essential element for the completeness of power series generation
as it allows to compute all the needed m-fold hypergeometric term solutions of holonomic REs
satisfied by the Taylor coefficients of linear combinations of hypergeometric type functions. On
the other hand, this subject has an impact in the theory of hypergeometric summation. Indeed, it
is important to notice the scope of our algorithm in this research area because some concepts
used for power series representation come from there. To introduce m-fold hypergeometric
terms, we would like to recall some important results of the hypergeometric summation theory
as presented in the book [Koepf, 2014, Chapter 4 to Chapter 9] before continuing with power
series generation.

7.1 m-fold Hypergeometric Terms in Hypergeometric

Summation

The computation of infinite series was connected to holonomic REs by Celine Fasenmyer. To
find hypergeometric term representations of hypergeometric series, she proposed the following
approach:

123
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Given a sum
∑n

k=0 F (n, k), write1

sn =
∞∑

k=−∞

F (n, k), (7.1)

and search for polynomials pi,j = pi,j(n), i = 0, . . . , b, j = 0, . . . , d with respect to n and do
not depend on k, such that

b∑
i=0

d∑
j=0

pi,jF (n+ j, k + i) = 0. (7.2)

If such polynomials are found, then one deduces a holonomic recurrence equation of order at
most d for sn as follows

0 =
∞∑

k=−∞

b∑
i=0

d∑
j=0

pi,jF (n+ j, k + i)

=
b∑
i=0

d∑
j=0

pi,j ·

(
∞∑

k=−∞

F (n+ j, k + i)

)

=
b∑
i=0

d∑
j=0

pi,jsn+j

=
d∑
j=0

(
b∑
i=0

pi,j

)
sn+j,

where of course we use the fact that pi,j does not depend on k and the advantage of working with
bilateral sums: their value is invariant with respect to shifts of the summation variable. In the
1940s, Fasenmyer’s method could be used to compute explicit formulas of hypergeometric series
only when the obtained holonomic RE was of first order or a two-term recurrence relation.

Example 7.1. Applied to sn =
∑n

k=0 k
(
n
k

)
, Fasenmyer’s method leads to the recurrence equation

nsn+1 − 2(n+ 1)sn = 0,

which after use of the initial value s1 =
∑1

k=0 k
(

1
k

)
= 1, yields sn = n2n−1.

For the definite summation case, Gosper proposed an algorithm which deals with the question
of how to find a (forward) anti-difference sk for a given ak, that is a sequence sk such that

ak = ∆sk = sk+1 − sk, (7.3)

in the particular case that sk is a hypergeometric term. Thus, once a hypergeometric anti-
difference sk of ak is computed, by telescoping definite summation yields

n∑
k=n0

ak = (sn+1 − sn) + (sn − sn−1) + · · ·+ (sn0+1 − sn0) = sn+1 − sn0 ,

1The sum is taken over Z because the summation term vanishes outside a finite set, we say that it has a finite
support.
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by an evaluation at the limits of summation. Gosper’s idea is based on the representation

ak+1

ak
=
pk+1

pk
· qk+1

rk+1

, (7.4)

with the property
gcd(qk, rk+j) = 1, ∀j ∈ N>0 (7.5)

that can be algorithmically generated (see [Koepf, 2014, Lemma 5.1 and Algorithm]). Using
(7.4) and (7.5), one proves that the function

fk :=
sk+1

ak+1

· pk+1

rk+1

(7.6)

must be a polynomial for a hypergeometric term anti-difference ak to exist. Thus using (7.3),
(7.6) and (7.4) it follows that fk satisfies the inhomogeneous recurrence equation

pk = qk+1fk+1 − rkfk−1. (7.7)

Gosper gives an upper bound for the degree of fk in terms of pk, qk, and rk which yields a method
for calculating fk by introducing the appropriate arbitrary polynomial, equating coefficients, and
solving the corresponding linear system so that we finally find

sk =
rk
pk
fk−1ak. (7.8)

Gosper implemented his algorithm in Maxima as nusum with the same syntax as the Maxima
sum command.

Example 7.2.

(%i1) nusum(k*k!,k,0,n);

solve: dependent equations eliminated: (1)

(%o1) (1 + n)!− 1

(%i2) nusum(k^3,k,0,n);

(%o2)
n2 · (1 + n)2

4

Gosper’s algorithm is the essential tool of the so called Wilf-Zeilberger (often named WZ)
method. That is a clever application of Gosper’s algorithm to prove identities of the form

sn :=
∞∑

k=−∞

F (n, k) = 1 (7.9)

where F (n, k) is a hypergeometric term with respect to both n and k with finite support. For this
purpose, one applies Gosper’s algorithm to the expression

ak := F (n+ 1, k)− F (n, k) (7.10)
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with respect to the variable k. If successful, this generates G(n, k) with

ak = F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k), (7.11)

and summing over Z yields

sn+1 − sn =
∞∑

k=−∞

F (n+ 1, k)− F (n, k) =
∞∑

k=−∞

G(n, k + 1)−G(n, k) = 0 (7.12)

since the right-hand side is telescoping. Therefore, sn is constant, sn = s0, and it only remains
to prove that s0 = 1. In practice, once the function G(n, k) is computed one uses the rational
function

R(n, k) :=
G(n, k)

F (n, k)
(7.13)

called the WZ certificate of F (n, k), to establish (7.9) by proving the rational identity

F (n+ 1, k)

F (n, k)
− 1 +R(n, k)−R(n, k + 1)

F (n, k + 1)

F (n, k)
= 0 (7.14)

which is deduced from (7.12) after division by F (n, k).

Example 7.3. For sn :=
∑n

k=0 F (n, k) =
∑n

k=0

1

2n
(
n
k

)
= 1, the WZ certificate is

R(n, k) = − k

2(n+ 1− k)
.

Therefore the corresponding left hand side of identity (7.14) is

n+ 1

2(n+ 1− k)
− 1− k

2(n+ 1− k)
+

k + 1

(2(n− k))
· n− k
k + 1

which trivially yields zero.

Although Gosper’s algorithm applies to finite summation, it constitutes a useful tool in
discovering a method for infinite sums. This is observable in Zeilberger’s algorithm. Zeilberger
brings back the computation of a holonomic recurrence equation for sn :=

∑∞
k=−∞ F (n, k). The

idea is to apply Gosper’s algorithm in the following way: For suitable d = 1, 2, . . . set

ak := F (n, k) +
d∑
j=1

σj(n)F (n+ j, k) (7.15)

where σj is supposed to be a rational function depending on n and not on k. Zeilberger’s main
observation is that the computation of the polynomial fk defined in (7.6) yields a linear system
not only for the unknown coefficients of fk, but also for the rational functions σj, j = 1, . . . , d.

Thus in a successful case, one obtains an anti-difference G(n, k) of ak and rational functions
σj(n), j = 1, . . . , d such that

ak = G(n, k + 1)−G(n, k) = F (n, k) +
d∑
j=1

σj(n)F (n+ j, k). (7.16)
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Hence, by summation

0 =
∞∑

k=−∞

G(n, k + 1)−G(n, k) =
∞∑

k=−∞

(
F (n, k) +

d∑
j=1

σj(n)F (n+ j, k)

)

= sn +
d∑
j=1

σj(n)sn+j. (7.17)

After multiplication by the common denominator one gets the holonomic recurrence equation
sought.

Zeilberger’s algorithm gives a much better possibility of computing identities since it com-
putes holonomic recurrence equations generally of lowest order (iteration on the order d) for a
given hypergeometric series. Moreover, this approach is also used to show the coincidence of
two sums provided their initial values. This constitutes a normal form again, as we have seen in
Section 4.3.1 (see [Geddes et al., 1992, Chapter 3]).

Example 7.4. The sums
∑n

k=0

(
n
k

)3 and
∑n

k=0

(
n
k

)2(2k
n

)
are proved to coincide by Zeilberger’s

algorithm as they lead to the same holonomic recurrence equation

− (n+ 2)2sn+2 + (7n2 + 21n+ 16)sn+1 + 8(n+ 1)2sn = 0, (7.18)

and have the same initial values∑0
k=0

(
0
k

)3
=
∑0

k=0

(
0
k

)2(2k
0

)
= 1 and

∑1
k=0

(
1
k

)3
=
∑1

k=0

(
1
k

)2(2k
1

)
= 2.

Note, however, that Fasenmyer’s, Gosper’s, Wilf-Zeilberger’s and Zeilberger’s methods
are only reduced to the hypergeometric case. To use Gosper’s algorithm, one has to check
whether the given ak is a hypergeometric term with respect to the variable k. When this is
not the case, Gosper’s, WZ’s and Zeilberger’s methods cannot be applied. From his algorithm
[Koepf, 2014, Algorithm 2.2], Koepf observed that Gosper’s method could miss some results
when rational-linear Γ inputs are considered rather than only integer-linear ones. It turns out that
this observation constitutes the connection to the general case of m-fold hypergeometric terms
(see [Koepf, 1995a] and [Koepf, 2014, Chapter 8]).

Example 7.5. To the Watson’s function

3F2

(
−n b c
−n+b+1

2
2c

∣∣∣∣ 1

)
,

Zeilberger’s algorithm does not apply directly. However, using Koepf’s extended version yields

the recurrence equation

(b− 2c− n− 1)(n+ 1)an − (b− n− 1)(2c+ n+ 1)an+2 = 0. (7.19)

Note that the computation of this holonomic RE is made possible after application of [Koepf, 2014,

Algorithm 8.4] for finding the corresponding m to use. In this example one finds m = 2.
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The value of the computation of m-fold hypergeometric term solutions of holonomic re-
currence equations could not easily be seen from the known hypergeometric database (see
[Koepf, 2014, Chapter 3]). This might be linked to the influence of the combinatorial inter-
pretation often present in the use of hypergeometric summations in the last century. From
this point of view, the m-fold hypergeometric case (m ∈ N>2) is particularly hidden and Zeil-
berger’s, Petkovšek’s and van Hoeij’s algorithms or their modifications for any hypergeometric
situation (multivariate for example) remain the best approach possible. However, as pointed
out in [Koepf, 1995a], the general m-fold hypergeometric case might be the source of a wider
family of hypergeometric identities. This is shown in particular in the computation of power
series where some computed holonomic recurrence equations do not have hypergeometric term
solutions but only m-fold hypergeometric ones (m ∈ N>2). Note that for the definite summation
case the availability of an algorithm which computes m-fold hypergeometric term solutions of
holonomic REs can be combined with Koepf’s extension of Zeilberger’s algorithm to generate
new identities. We will not deal with definite summation, instead as the importance of m-fold
hypergeometric terms for hypergeometric series is already shown, we would like to come back
to power series computations where the need of such terms is essential for the goal of this
thesis. Before going to the description of our algorithm in the next section, in order to show the
importance of the algorithm of this chapter we will give some examples of expressions where
the implementations of van Hoeij’s and Koepf’s algorithms in Maple cannot detect the desired
power series representations.

7.2 Limits of the Current Computation of Power

Series

In this section, we consider expressions representing hypergeometric type functions whose Taylor
coefficients satisfy recurrence equations that do not have easily computable solutions. These are
holonomic REs with more than two terms and which do not have hypergeometric term solutions
over the field of rationals.

Firstly, we consider examples for which the current Maple FPS command gives results that
are more complicated than necessary. This happens in general when a hypergeometric term
computed over an extension field of Q is used whereas anm-fold hypergeometric term equivalent
over Q exists, or when the linear combination of hypergeometric terms computed is not easily
manageable and Maple’s FPS command tries to use another approach, in particular the algorithm
for power series computation of rational functions described in [Koepf, 1993].

Our Maxima implementations yields

(%i1) RE: FindRE(atan(z)+exp(z),z,a[n]);

(%o1) (1 + n) · (2 + n) · (3 + n) · an+3 + (n− 3) · (1 + n) · (2 + n) · an+2

+ (1 + n) ·
(
2 + 2 · n+ n2

)
· an+1 + (n− 3) · n · (1 + n) · an − (n− 1) · n · an−1 = 0
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(%i2) HypervanHoeij(RE,a[n],C);

(%o2)

{
(−i)n

n
,
(−1)

n
2

n
,

1

n!

}
Of course, we allow computations over extension fields of Q since otherwise we may not

get all the hypergeometric terms needed to compute the corresponding power series. Maple
combines the above results and gives therefore the following representation

> bind(FormalPowerSeries);

FPS, HolonomicDE, SimpleRE, convert/RESol

> FPS(arctan(z)+exp(z),z,n);
∞∑
n=0

(
1

(n+ 1)!
− i · in

2(n+ 1)
+− i · (−i)n

2(n+ 1)

)
zn+1

which could be simplified further if the 2-fold hypergeometric term corresponding to arctan(z)

would be computed. Note, moreover, that this representation is not correct because the first term
of the Taylor expansion of arctan(z) + exp(z) is not zero as shown below.

(%i3) taylor(atan(z)+exp(z),z,0,0);

(%o3)/T/ 1 + . . .

Our FPS command gives the following correct and further simplified output.

(%i4) FPS(atan(z)+exp(z),z,n);

(%o4)

(
∞∑
n=0

(−1)n · z1+2·n

2 · n+ 1

)
+
∞∑
n=0

zn

n!

The issue of initial value and the computation of linear combinations of m-fold hypergeo-
metric terms will be treated in the next chapter. For the moment, we would like to focus on the
summands used to represent power series. Let us move to another example of the same kind.

Our Maxima implementations yields

(%i5) RE:FindRE(log(1+z+z^2)+cos(z),z,a[n]);
(%o5)−3·(1 + n)·(2 + n)·(3 + n)·(4 + n)·an+4−(1 + n)·(2 + n)·(3 + n)·(7 + 5 · n)·an+3

+ (1 + n) · (2 + n) ·
(
−3− 56 · n+ 8 · n2

)
· an+2 + (1 + n) ·

(
− 7 + 74 · n− 102 · n2 + 23

· n3
)
· an+1 + 2 · n ·

(
−86 + 121 · n− 74 · n2 + 15 · n3

)
· an + (n− 1) ·

(
− 409 + 412 · n

− 150 · n2 + 19 · n3
)
· an−1 + (n− 2) ·

(
−406 + 317 · n− 78 · n2 + 7 · n3

)
· an−2 + (n− 3)

·
(
−255 + 149 · n− 28 · n2 + 2 · n3

)
·an−3+(n− 4)·(7 · n− 29)·an−4+2·(n− 5)2·an−5 = 0

(%i6) HypervanHoeij(RE,a[n],C);

(%o6)


(
−1−

√
3·i

2

)n
n

,

(√
3·i−1
2

)n
n

,
(−i)n

n!
,
(−1)

n
2

n!


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Maple’s FPS command combines these hypergeometric terms and gives

> FPS(log(1+z+z^2)+cos(z),z,n);

∞∑
n=0

((
1
10

+ i
5

)
(i
√

3 + 2
√

3 + 3− 6i)(−i)n+1

(i
√

3 + 3)(n+ 1)!
+

i(−3i +
√

3)in+1

2(i
√

3 + 3)(n+ 1)!

+

(
−2

5
+ i

5

)
(i
√

3 + 2
√

3− 1 + 2i)
√

3
(
−1

2
+ i
√

3
2

)n+1

(i
√

3 + 3)(n+ 1)
−

(
−1

2
− i
√

3
2

)n+1

n+ 1

)
zn+1

Evidently, the result can be further simplified if one uses the 2-fold hypergeometric term of
the expansion of cos(z). After the writing of the hypergeometric term over C corresponding to
the general coefficient of log(1 + z+ z2) in its algebraic form, our Maxima FPS command yields

(%i7) FPS(log(1+z+z^2)+cos(z),z,n);

(%o7)

 ∞∑
n=0

−
2 · cos

(
2·π·(1+n)

3

)
· z1+n

n+ 1

+
∞∑
n=0

(−1)n · z2·n

(2 · n)!

Observe that here again the first term of the expansion corresponding to log(1 + 0) + cos(0) = 1

is missing on Maple’s FPS output. This shows in a certain sense how difficult the managing of
hypergeometric terms over extension fields for power series representations is. Next, we consider
examples for which Maple’s FPS command uses another approach to represent power series and
whose results are again more complicated than necessary.

We start with the tangent analogue of the Chebyshev polynomials tan(k arctan(z)) which
are rational functions. Note that these functions are not identified as holonomic in Maxima and
Maple because of the implementation of the tangent function. Therefore in order to compute
their corresponding holonomic recurrence equations using FindRE some simplifications are to be
applied. This is done with our Maxima function HolonomicDE only when after all the iterations
up to Nmax= 5 no holonomic differential equation is found. Then the code applies Maxima’s
commands trigsimp and trigexpand to the given expression so that if the ratio of the obtained
expression and the given one does not give 1 then HolonomicDE is called a second time.

Our Maxima implementations yields

(%i8) RE:FindRE(tan(5*atan(z)),z,a[n]);

(%o8) 5 · (n− 1) · an − 20 · (3 · n− 5) · an−2 + 6 · (21 · n− 89) · an−4

− 20 · (3 · n− 17) · an−6 + 5 · (n− 9) · an−8 = 0

(%i9) HypervanHoeij(RE,a[n],C);

(%o9)

{(
5− 2 ·

√
5
)n

2
,
(

5 + 2 ·
√

5
)n

2
,

(
−
√

2 ·
√

5 + 5

)n}
However, these computed hypergeometric terms will not be used in Maple’s FPS repre-

sentation. Koepf’s algorithm for rational functions is used instead. Indeed, by partial fraction
decomposition one has
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(%i10) r:trigexpand(tan(5*atan(z)));

(%o10)
5 · z − 10 · z3 + z5

5 · z4 − 10 · z2 + 1

(%i11) partfrac(r,z);

(%o11)
z

5
− 40 · z3 − 24 · z

5 · (5 · z4 − 10 · z2 + 1)

hence the following Maple FPS result.

> FPS(tan(5*arctan(z)),z,n);

z

5
+

 ∞∑
n=0

 ∑
_α=RootOf(5_Z4−10_Z2+1)

_α2 + 1

5_αn+1

 zn


We mention that tan(k arctan(z)), k = 2, 3, 4, 5 are hypergeometric type functions of type 2.
Using our Maxima FPS command for this previous example yields the following hypergeometric
type series.

(%i12) FPS(tan(5*atan(z)),z,n);

(%o12)
z

5
+ ∞∑

n=0

4 ·
(
3 ·
(
5− 2 ·

√
5
)n − (5− 2 ·

√
5
)n · √5 + 3 ·

(
5 + 2 ·

√
5
)n

+
√
5 ·
(
5 + 2 ·

√
5
)n) · z1+2·n

5



The computation of the corresponding 2-fold hypergeometric terms will be presented in
the next section. Similarly to this example is the reciprocal of the Chebyshev polynomial
cos(4 arccos(z)) that we present next.

Our Maxima FindRE yields the following RE.

(%i13) RE:FindRE(1/cos(4*acos(z)),z,a[n]);

(%o13) (1 + n) · an+1 − 8 · (1 + n) · an−1 + 8 · (1 + n) · an−3 = 0

We present directly the Maple FPS representation since the corresponding hypergeometric terms
are not used.

> FPS(1/cos(4*arccos(z)),z,n);

∞∑
n=0

 ∑
_α=RootOf (8 _Z 4−8 _Z 2+1)

−_α (4 _α2 − 3)

4 _αn+1

 zn

With these two latter power series representations one can maybe find further simplified
formulas since the roots of the polynomials 5z4 − 10z2 + 1 and 8z4 − 8z2 + 1 can easily be
computed. However, even when the poles of a given rational expression are more explicit, the
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partial fraction decomposition approach used to represent power series typically gives more
complicated outputs. This is shown by the following last example of this first list of examples.

We consider the function 1
(q1−z2)(q2−z3)

for some constants q1 and q2. Using our Maxima
command FindRE one gets the following RE.

(%i14) declare(q1,constant)$

(%i15) declare(q2,constant)$

(%i16) RE:FindRE(1/((q1-z^2)*(q2-z^3)),z,a[n]);

(%o16) q1 · q2 · (1 + n) ·an+1− q2 · (1 + n) ·an−1− q1 · (1 + n) ·an−2 + (1 + n) ·an−4 = 0

The obtained holonomic RE is of order 6 and its hypergeometric term solutions cannot easily
be used. Maple’s FPS command gives

> FPS(1/((q1-z^2)*(q2-z^3)),z,n);
∞∑
n=0

(1/2)(−2
√
(q1)n(−

√
(q1))n(q21/3)n((−1)2/3q21/3)nq2(4/3)(−1)2/3q1+4

√
(q1)n(−

√
(q1))n

(q21/3)n((−1)2/3q21/3)nq22/3(−1)2/3q12 + 2(−(−1)1/3q21/3)n
√

(q1)n(−
√

(q1))n((−1)2/3q21/3)n

q22/3(−1)1/3q12+2(−(−1)1/3q21/3)n
√

(q1)n(−
√

(q1))n(q21/3)nq2(4/3)(−1)2/3q1−(−(−1)1/3q21/3)n√
(q1)n(q21/3)n((−1)2/3q21/3)n(−1)2/3q13/2q2+(−(−1)1/3q21/3)n(−

√
(q1))n(q21/3)n((−1)2/3q21/3)n

(−1)2/3q13/2q2+(−(−1)1/3q21/3)n
√

(q1)n(q21/3)n((−1)2/3q21/3)n(−1)1/3q13/2q2−(−(−1)1/3q21/3)n

(−
√

(q1))n(q21/3)n((−1)2/3q21/3)n(−1)1/3q13/2q2−2(−(−1)1/3q21/3)n
√

(q1)n(−
√

(q1))n(q21/3)n

q22/3(−1)2/3q12−2(−(−1)1/3q21/3)n
√
(q1)n(−

√
(q1))n((−1)2/3q21/3)nq22/3(−1)2/3q12−2

√
(q1)n

(−
√

(q1))n(q21/3)n((−1)2/3q21/3)nq22/3(−1)1/3q12 + 2(−(−1)1/3q21/3)n
√

(q1)n(−
√

(q1))n

((−1)2/3q21/3)nq2(4/3)q1−2
√

(q1)n(−
√
(q1))n(q21/3)n((−1)2/3q21/3)nq2(4/3)q1−2

√
(q1)n(−

√
(q1))n

(q21/3)n((−1)2/3q21/3)n(−1)2/3q13 + 2
√
(q1)n(−

√
(q1))n(q21/3)n((−1)2/3q21/3)n

(−1)1/3q13−2(−(−1)1/3q21/3)n
√
(q1)n(−

√
(q1))n(q21/3)nq22/3q12−2(−(−1)1/3q21/3)n(−

√
(q1))n

(q21/3)n((−1)2/3q21/3)nq13/2q2 + (−(−1)1/3q21/3)n
√

(q1)n(q21/3)n((−1)2/3q21/3)n

q22(−1)2/3+(−(−1)1/3q21/3)n(−
√

(q1))n(q21/3)n((−1)2/3q21/3)nq22(−1)2/3− (−(−1)1/3q21/3)n√
(q1)n(q21/3)n((−1)2/3q21/3)nq22(−1)1/3−(−(−1)1/3q21/3)n(−

√
(q1))n(q21/3)n((−1)2/3q21/3)n

q22(−1)1/3+2(−(−1)1/3q21/3)n
√

(q1)n(q21/3)n((−1)2/3q21/3)nq13/2q2+2
√

(q1)n(−
√

(q1))n(q21/3)n

((−1)2/3q21/3)nq22/3q12+2(−(−1)1/3q21/3)n
√

(q1)n(−
√

(q1))n((−1)2/3q21/3)nq13+2(−(−1)1/3q21/3)n√
(q1)n(−

√
(q1))n(q21/3)nq13 − 2(−(−1)1/3q21/3)n

√
(q1)n(q21/3)n((−1)2/3q21/3)n

q22 − 2(−(−1)1/3q21/3)n(−
√

(q1))n(q21/3)n((−1)2/3q21/3)nq22)zn/(((−1)2/3q21/3)n(q21/3)n

((−1)2/3−1)(−
√

(q1))n((−1)2/3q21/3 +
√
(q1))(

√
(q1)+ q21/3)

√
(q1)nq1((−1)2/3q21/3−

√
(q1))

(−
√

(q1)+q21/3)(−(−1)1/3q21/3)n(−
√
(q1)+(−1)1/3q21/3)(

√
(q1)+(−1)1/3q21/3)((−1)1/3+1)q2)

(7.20)

which is a too complicated output to be of essential help. However using our Maxima FPS
command one gets the much simpler representation below.
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(%i17) FPS(1/((q1-z^2)*(q2-z^3)),z,n);

(%o17)

(
∞∑
n=0

−q1 · q2−1−n · z2+3·n

q2 2 − q1 3

)
+

(
∞∑
n=0

− z1+3·n(
q2 2 − q1 3

)
· q2 n

)

+

(
∞∑
n=0

z1+2·n(
q2 2 − q1 3

)
· q1 n

)
+

(
∞∑
n=0

−q1 2 · q2−1−n · z3·n

q2 2 − q1 3

)
+
∞∑
n=0

q2 · q1−1−n · z2·n

q2 2 − q1 3

Next we consider examples for which van Hoeij’s algorithm does not find any solution and
therefore Maple’s FPS command gives no result. For each example: we compute the corre-
sponding holonomic recurrence equations with our Maxima command FindRE, then we use our
Maxima command HypervanHoeij to show that the computed RE does not have hypergeometric
term solutions, and we give Maple’s FPS result followed by our Maxima FPS one.

1. exp(z2) + cos(z2):

(%i18) RE:FindRE(exp(z^2)+cos(z^2),z,a[n]);

(%o18) (n− 3) · (n− 1) · (1 + n) · an+1 − 2 · (n− 3) · (n− 1) · an−1

+ 4 · (n− 3) · an−3 − 8 · an−5 = 0

(%i19) HypervanHoeij(RE,a[n],C);

(%o19) {}
> FPS(exp(z^2)+cos(z^2),z,n);

FPS(ez
2

+ cos(z2), z, n)

(%i20) FPS(exp(z^2)+cos(z^2),z,n);

(%o20)

(
∞∑
n=0

(−1)n · z4·n

(2 · n)!

)
+
∞∑
n=0

z2·n

n!

2. cosh(z3) + sin(z2):

(%i21) RE:FindRE(cosh(z^3)+sin(z^2),z,a[n]);

(%o21) − 4 · (n− 3) · (n− 2) · (n− 1) · (1 + n) · an+1 − 36 · (n− 7) · (n− 4)

· (n− 3) · (n− 1) · an−1 + 16 · (n− 6) · (n− 3) ·
(
58− 16 · n+ n2

)
· an−3

+ 36 · (n− 9) · (n− 7) ·
(
141− 38 · n+ 2 · n2

)
· an−5

+ (n− 7) ·
(
− 159562 + 38863 · n− 3078 · n2 + 81 · n3

)
· an−7

+ 144 ·
(
158− 26 · n+ n2

)
· an−9 − 324 ·

(
68− 19 · n+ n2

)
· an−11

− 9 ·
(
15859− 2268 · n+ 81 · n2

)
· an−13 − 2592 · an−15 − 2916 · an−17 = 0
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(%i22) HypervanHoeij(RE,a[n],C);

(%o22) {}
> FPS(cosh(z^3)+sin(z^2),z,n);

FPS(cosh(z3) + sin(z2), z, n)

(%i23) FPS(cosh(z^3)+sin(z^2), z, n);

(%o23)

(
∞∑
n=0

z3+6·n

(2 · n+ 1) · (2 · n)!

)
+

(
∞∑
n=0

(−1)n · z2+4·n

(2 · n+ 1) · (2 · n)!

)
+
∞∑
n=0

(−1)n · z3·n

n!

3. arcsin(z2)2 + arccos(z) :

(%i24) RE:FindRE(asin(z^2)^2+acos(z),z,a[n]);

(%o24) − 3 · (n− 1) · (1 + n) · (2 + n) · (3 + n) · an+3

+(n− 3)·(n− 1)·(1 + n)·(5 · n− 1)·an+1+(n− 1)·
(
96− 87 · n+ 22 · n2 + n3

)
·an−1

− (n− 3)3 · (5 · n− 1) · an−3 + 2 · (n− 5)3 · (n− 3) · an−5 = 0

(%i25) HypervanHoeij(RE,a[n],C);

(%o25) {}
> FPS(arcsin(z^2)^2+arccos(z),z,n);

FPS(arcsin(z2)2 + arccos(z), z, n)

(%i26) FPS(asin(z^2)^2+acos(z), z, n);

(%o26)

(
∞∑
n=0

− (2 · n)! · z1+2·n

(2 · n+ 1) · 4n · n!2

)
+

(
∞∑
n=0

2 · 4n · (1 + n)!2 · z4·(1+n)

(1 + n)2 · (2 · (1 + n))!

)
+
π

2

4.
√√

8 · z3 + 1− 1 +
√

13 · z4 + 7:

(%i27) RE:FindRE(sqrt(sqrt(8*z^3+1)-1)

+sqrt(13*z^4+7),z,a[n]);

(%o27) − 3087 · (n− 2) · (1 + n) · (2 · n− 1) · an+1

+ 6370 · (n− 4) · n · (2 · n− 3) · an − 3087 · (n− 2) · (4 · n− 11) · (4 · n− 5) · an−2

+637 ·
(
−35100 + 24417 · n− 5315 · n2 + 362 · n3

)
·an−3 +4732 ·(n− 4) ·(2 · n− 11)

· (3 · n− 11) · an−4 + 637 · (4 · n− 27) · (4 · n− 21) · (101 · n− 1100) · an−6

+1183 ·
(
−256630 + 96761 · n− 12247 · n2 + 522 · n3

)
·an−7 +4394 ·(n− 10) ·(n− 8)

·(2 · n− 19)·an−8+65065·(3 · n− 34)·(4 · n− 43)·(4 · n− 37)·an−10+2197·(n− 13)

·
(
21580− 3523 · n+ 142 · n2

)
·an−11+120835·(n− 16)·(4 · n− 59)·(4 · n− 53)·an−14 = 0
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(%i28) HypervanHoeij(RE,a[n],C);

(%o28) {}
> FPS(sqrt(sqrt(8*z^3+1)-1)+sqrt(13*z^4+7),z,n);

FPS(

√√
8z3 + 1− 1 +

√
13z4 + 7, z, n)

(%i29) FPS(sqrt(sqrt(8*z^3+1)-1)+sqrt(13*z^4+7),z,n);

(%o29)

(
∞∑
n=0

2 ·
(

1
4

)
n
·
(

3
4

)
n
· (−8)n · 4n · z 6+12·n

4

(2 · n+ 1) · (2 · n)!

)
+
∞∑
n=0

−7
1
2
−n · (−13)n · (2 · n)! · z4·n

(2 · n− 1) · 4n · n!2

5. exp(arcsin(z)) + exp(arcsinh(z)) :

(%i30) RE:FindRE(exp(asin(z))+exp(asinh(z)),z,a[n]);

(%o30) 2·(n− 2)·(n− 1)·(1 + n)·(2 + n)·an+2−(n− 1)·
(
−4 + 26 · n− 9 · n2 + n3

)
·an

−2·(n− 3)·
(
5 + 2 · n− 3 · n2 + n3

)
·an−2+(n− 5)·(n− 3)·

(
17− 8 · n+ n2

)
·an−4 = 0

(%i31) HypervanHoeij(RE,a[n],C);

(%o31) {}
> FPS(exp(arcsin(z))+exp(arcsinh(z)),z,n);

FPS(exp(arcsin(z)) + z +
√
z2 + 1, z, n)

Note that here Maple immediately simplifies exp(arcsinh(z)) to z +
√
z2 + 1.

(%i32) FPS(exp(asin(z))+exp(asinh(z)),z,n);

(%o32)

(
∞∑
n=0

(−1)n · (2 · n)! · z2+2·n

2 · (n+ 1) · 4n · n!2

)
+

(
∞∑
n=0

(
− i−1

2

)
n
·
(

1+i
2

)
n
· 4n · z1+2·n

(1 + 2 · n)!

)

+

(
∞∑
n=0

(
− i

2

)
n
·
(
i
2

)
n
· 4n · z2·n

(2 · n)!

)
+ z + 1

6. sin(8 arcsinh(z)) +
√

1 + z4:

(%i33) RE:FindRE(sin(8*asinh(z))+sqrt(1+z^4),z,a[n]);

(%o33) 32 ·(1 + n) ·(2 + n) ·(3 + n) ·an+3 +5 ·(1 + n) ·
(
416 + 11 · n+ 7 · n2

)
·an+1

+
(
−1345 + 1553 · n− 695 · n2 + 103 · n3

)
· an−1 + 2 ·

(
− 13954 + 4863 · n− 511 · n2

+52·n3
)
·an−3+2·

(
−13373 + 6453 · n− 1013 · n2 + 53 · n3

)
·an−5+

(
−96554+23617·n

− 2302 · n2 + 103 · n3
)
· an−7 + 5 · (n− 11) · (n− 9) · (7 · n− 83) · an−9

+ 34 · (n− 13) ·
(
185− 22 · n+ n2

)
· an−11 = 0
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(%i34) HypervanHoeij(RE,a[n],C);

(%o34) {}
> FPS(sin(8*arcsinh(z))+sqrt(1+z^4),z,n);

FPS(sin(8 arcsinh(z)) +
√
z4 + 1, z, n)

(%i35) FPS(sin(8*asinh(z))+sqrt(1+z^4),z,n);

(%o35)

(
∞∑
n=0

(−1)n · (2 · n)! · z4+4·n

2 · (n+ 1) · 4n · n!2

)
+

(
∞∑
n=0

2 ·
(
−8·i−1

2

)
n
·
(

1+8·i
2

)
n
· (−1)n · 41+n · z1+2·n

(1 + 2 · n)!

)
+1

More generally, linear combinations of Laurent-Puiseux series of hypergeometric type cannot
be represented by the current Maple FPS command. The m-fold hypergeometric term solutions
of all the above holonomic recurrence equations will be computed in the next section.

7.3 Algorithm mfoldHyper

Let K be a field of characteristic zero. As usual, let us consider the generic holonomic recurrence
equation

Pd(n)an+d + Pd−1(n)an+d−1 + · · ·+ P0(n)an = 0, (7.21)

Pd(n), . . . , P0(n) ∈ K[n], Pd(n) · P0(n) 6= 0.

By definition, a sequence an is said to be m-fold hypergeometric, m ∈ N, if there exists a
fixed rational function r(n) ∈ K(n) such that

r(n) =
an+m

an
. (7.22)

Numbers of proposals have been given to compute m-fold hypergeometric term solutions
of holonomic recurrence equations. Among the most recent work in this direction one could
cite [Horn et al., 2012], which is a revisited and improved approach of the one described in
[Petkovšek and Salvy, 1993]. In the latter, a key step of the proposed algorithm relies on the
determination of the linear operator’s right factors of the given holonomic RE. Such a factor-
ization is not unique in general because the factors do not commute. In [Horn et al., 2012], the
authors adapted van Hoeij’s approach as explained in [Cluzeau and van Hoeij, 2006] and define
a concept like the m-Newton polygon for m-fold hypergeometric term solutions of a given
holonomic RE. This approach computes special types of right factors corresponding to m-fold
hypergeometric term solutions using the shift operator of order m with the hypothesis that no
rational solution exists.

Having considered all these developments, we propose to approach the problem from another
point of view. In the first glance, one should remark that m-fold hypergeometric sequences have
rational functions as the ratio of terms with index difference equal to m. Consequently, if we
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can find a way to transform this property to the simple one of hypergeometric sequence then
iteratively up to the order of the given holonomic RE by van Hoeij’s algorithm we have done.

From the characterization (7.22) one can deduce that for 0 6 j 6 m − 1 the following is
valid

r(m · n+ j) =
am·(n+1)+j

am·n+j

. (7.23)

Therefore instead of considering the representation (7.22) one could rather see an m-fold hyper-
geometric term with m related rational functions as defined in (7.23). This latter representation
is the one used to find the "simple" formula of an m-fold hypergeometric term. Moreover, for
fixed m ∈ N and j ∈ N>0, if we compute an m-fold hypergeometric term solution of (7.21) with
ratio r(m ·n+ j) for some rational function r, then this gives the information that there are m−1

other similar m-fold hypergeometric term solutions of (7.21). Thus for any positive integer
m, the computation of an m-fold hypergeometric term solution of (7.21) with representation
(7.22) reduces to the computation of an m-fold hypergeometric term solution of (7.21) with
representation (7.23) for a fixed j ∈ J0,m− 1K since the other representations can be similarly
computed. By default in our algorithm we choose j = 0.

In certain cases, depending on the field K or the index variable subset of Z, holonomic
recurrence equations can have m-fold hypergeometric term solutions that cannot be computed
over K, but need an extension field.. This situation occurs with the power series of exp(z) sin(z)

for K = Q. Our implementation HolonomicDE(f,F(z),[destep]) has an optional variable destep

whose default value is 1. This number represents the minimum positive difference possible
between the derivatives of F(z) in the holonomic differential equation sought. Our program
FindRE is also adapted for such computations. This particular tool turns out to be important in
few cases. Let us now examine the situation with exp(z) sin(z).

(%i1) DE1:HolonomicDE(exp(z)*sin(z),F(z));

(%o1)
d2

d z2
· F (z)− 2 ·

(
d

d z
· F (z)

)
+ 2 · F (z) = 0

(%i29) DE2:HolonomicDE(exp(z)*sin(z),F(z),2);

(%o2)
d4

d z4
· F (z) + 4 · F (z) = 0

The compatibility of these two differential equations is shown below (see Section 4.3.1 on
page 55).

(%i3) CompatibleDE(DE1,DE2,F(z));

The two differential equations are compatible
(%o3) true

Let us now compute the corresponding holonomic REs.

(%i31) RE1:FindRE(exp(z)*sin(z),z,a[n]);

(%o4) (1 + n) · (2 + n) · an+2 − 2 · (1 + n) · an+1 + 2 · an = 0
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(%i5) RE2: FindRE(exp(z)*sin(z),z,a[n],2);

(%o5) (1 + n) · (2 + n) · (3 + n) · (4 + n) · an+4 + 4 · an = 0

Observe that for every solution of RE2 no relationship can be deduced between two of
its terms whose index difference is not a multiple of 4. Therefore considering indices in
4N = {0, 4, 8, . . .} might be more appropriate. On the other hand, it is trivial that RE2 is a
characteristic holonomic recurrence equation of a 4-fold hypergeometric term. However, this
4-fold hypergeometric term is completely hidden in RE1 when looking for solutions over Q.
Indeed, since the corresponding four 4-fold symmetric terms are linearly independent over Q, a
substitution in the left-hand side of RE1 could never yield zero. Note, however, that RE1 and
RE2 have hypergeometric term solutions over C.

(%i6) HypervanHoeij(RE1,a[n],C);

(%o6)

{
(1− i)n

n!
,
(1 + i)n

n!

}
(%i7) HypervanHoeij(RE2,a[n],C);

(%o7)


(
−(−1)

1
4 ·
√

2
)n

n!
,

(
(−1)

1
4 ·
√

2
)n

n!
,

(
−(−1)

1
4 ·
√

2 · i
)n

n!
,

(
(−1)

1
4 ·
√

2 · i
)n

n!


The basis of hypergeometric term solutions of RE1 spans a sub-space of the space of solutions

of RE2. The corresponding 4-fold hypergeometric term solutions over Q can be written as a
linear combination over C of the above bases of hypergeometric terms. The main thing that
we point out from this example is that our approach to compute m-fold hypergeometric term
solutions of a given holonomic RE depends on the shifts between summands in that RE and the
field considered.

Next, we would like to give some properties and definitions that clarify this situation and
help to compute m-fold hypergeometric term solutions of (7.21) in a given field K which we
want to be the smallest algebraic extension field possible of Q in terms of inclusion.

The following lemma gives a condition on the order of a given holonomic RE for its m-fold
hypergeometric term solutions to be computable over a given field K.

Lemma 7.1. Let hn be an m-fold hypergeometric term, m ∈ N. Assume

∀u ∈ N, u < m, there is no rational function ru(n) ∈ K(n) : hu+n = ru(n)hn. (7.24)

Then there is no holonomic recurrence equation over K of order less than m satisfied by hn.

Proof. Let hn be an m-fold hypergeometric term such that

hn+m = r(n) · hn ⇐⇒ Qm(n) · hn+m +Q0(n) · hn = 0, (7.25)

where Qm(n), Q0(n) ∈ K[n] and r(n) = − Q0(n)
Qm(n)

∈ K(n).
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Suppose that hn satisfies a holonomic recurrence equation of order less than m. Then there
exists an equation of the form

Pm−1an+m−1 + Pm−2an+m−2 + · · ·+ P1an+1 + P0an = 0, (7.26)

with polynomials Pj = Pj(n) ∈ K[n], j ∈ J0,m− 1K, and P0(n) 6= 0, satisfied by hn.

• If P0 is the only non-zero polynomial in the equation then hn must be zero, which is a
contradiction by definition.

• We assume that at least one other polynomial factor in the equation is non-zero. Then hn
satisfying (7.26) yields the following equation after substitution of n by m · n

Pm−1(mn)hmn+m−1 + Pm−2(mn)hmn+m−2 + · · ·+ P1(mn)hmn+1 + P0(mn)hmn = 0.

(7.27)
By assumption (7.24), we know that ∀u ∈ N, u < m, hn is not a u-fold hypergeometric
term. So the holonomic recurrence equation of lowest order over K satisfied by hn is

Qm(n) · an+m +Q0(n) · an = 0,

which is a two-term recurrence relation whose subspace of m-fold hypergeometric term
(m is fixed) solutions can be represented by the basis

(hmn+m−1, hmn+m−2, . . . , hmn+1, hmn) (7.28)

according to (7.25). Thus (7.27) cannot hold since the left-hand side is a linear com-
bination of linearly independent terms with respect to K(n), which implies that all the
polynomial coefficients must be zero. Therefore we get a contradiction.

Remark. Observe that the linear independence with respect to K(n) of the elements of the
basis (7.28) used in the proof of Lemma 7.1 can be interpreted in the following different way.
Since hn 6= 0, hn satisfying (7.26) yields the following identity after dividing (7.26) by hn

− P0 = Pm−1
hn+m−1

hn
+ Pm−2

hn+m−2

hn
+ . . .+ P1

hn+1

hn
. (7.29)

By assumption (7.24), we know that ∀u ∈ N, u < m, the ratio hn+u
hn

is not a rational function
over K(n). So, each non-zero term on the right-hand side of (7.29) is not rational over K. This
does not necessarily implies the non-rationality of the whole right-hand side. However by the
linear independence of the elements of the basis (7.28) we can assume that this holds. Therefore
for simplicity we can consider the equality between an irrational and a rational (P0(n)) terms
with respect to K(n) to conclude the proof. And this is what we will do in the proof of Theorem
7.1 where the situation is more sophisticated.

More generally, any shift of a holonomic recurrence equation of order less than m does not
have m-fold hypergeometric term solutions.
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Remark that checking the hypothesis of Lemma 7.1 is an important task for the algorithm.
Fortunately, this can be done iteratively. Once the field K is fixed, if we have already looked for
u-fold hypergeometric term solutions of a given holonomic RE for integers u < m, then we can
safely proceed to the computation of m-fold hypergeometric term solutions knowing that m is
less than the order of that recurrence equation.

Thus, we now know that all the m-fold hypergeometric term solutions of (7.21) have m 6 d.
Furthermore, we can extend this view of m-fold hypergeometric sequences in order to determine
which type of terms can appear in a holonomic recurrence equation that they satisfy. For that
purpose, let us first introduce the following definition.

Definition 7.1 (m-fold Holonomic Recurrence Equation). A holonomic recurrence equation is

said to be m-fold holonomic, m ∈ N, if it has at least two non-zero polynomial coefficients and

the difference between indices of two appearing terms of the indeterminate sequence in that

equation is a multiple of m. Choosing 0 as the trailing term order gives the general form

Pd(n) · an+md + Pd−1(n) · an+m(d−1) + · · ·+ P1(n) · an+m + P0(n) · an = 0, . (7.30)

so that Pd · P0 6= 0.

Obviously, every m-fold holonomic recurrence equation, m ∈ N, is a 1-holonomic RE.
Assume anm-fold holonomic RE with representation (7.30) is given. We are going to present

how to compute a basis of all m-fold hypergeometric term solutions of (7.30) with representation
(7.23) for j = 0. And by a similar reasoning we will show how to deduce the other bases of
m-fold hypergeometric solutions for j ∈ J0,m− 1K.

Observe that if we have an m-fold hypergeometric sequence an starting with a0 (by shift
it is always possible to define the initial term by a0 ), then using the representation (7.22) the
next term which can be computed from a0 is am, and afterwards a2m . . . ,akm, . . .. Thus if we set
sn = amn then all terms computed from s0 have their indices corresponding to multiples of m for
an. Moreover, since am·(n+1)

am·n
= sn+1

sn
∈ K(n), sn is a hypergeometric term whose general formula

is the one of the m-fold hypergeometric term amn. Therefore we can update (7.30) accordingly
so that Algorithm 10 on p. 114 can be applied to compute a basis of all hypergeometric term
solution sn of the updated (7.30) which is nothing else but the basis of all m-fold hypergeometric
term solutions of (7.30) with representation (7.23) for j = 0.

This view of m-fold hypergeometric terms is our main idea. As explained, a basis of all
m-fold hypergeometric term solutions of the m-fold holonomic RE (7.30) can be found by van
Hoeij’s algorithm provided the following crucial change of variable is done:m · k = n

sk = am·k
. (7.31)

This leads to a 1-fold holonomic RE for sk which has a hypergeometric term solution because
sk+1

sk
=
amk+m

amk
= r(mk). (7.32)
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The resulting RE is

Pd(mk) · sk+d + Pd−1(mk) · sk+(d−1) + · · ·+ P1(mk) · sk+1 + P0(mk) · sk = 0. (7.33)

In the general case of j ∈ J0,m− 1K, the bases of all m-fold hypergeometric term solutions
of (7.30) with representation (7.23) are computed by Algorithm 10 after the application of the
change of variable m · k + j = n,

sk = am·k+j

(0 6 j 6 m− 1). (7.34)

This is because in (7.23), them-fold hypergeometric term indices can always be seen asm ·n+j,
j ∈ J0,m− 1K.

Let us apply this to an example. We consider the two-term recurrence relation of the Taylor
coefficient of exp(z) sin(z) which is a 4-fold holonomic RE, so we are going to compute 4-fold
hypergeometric term solutions.

(%i8) RE:FindRE(exp(z)*sin(z),z,a[n],2);

(%o8) (1 + n) · (2 + n) · (3 + n) · (4 + n) · an+4 + 4 · an = 0 (7.35)

(%i9) RE:subst(4*n,n,RE);

(%o9) (1 + 4 · n) · (2 + 4 · n) · (3 + 4 · n) · (4 + 4 · n) · a4·n+4 + 4 · a4·n = 0

(%i10) RE:subst([a[4*n]=s[n],a[4*n+4]=s[n+1]],RE);

(%o10) (1 + 4 · n) · (2 + 4 · n) · (3 + 4 · n) · (4 + 4 · n) · sn+1 + 4 · sn = 0

(%i11) HypervanHoeij(RE,s[n]);

(%o11)

{
(−1)n · 4n(

1
4

)
n
·
(

3
4

)
n
· 64n · (2 · n)!

}
This set is a basis of all 4-fold hypergeometric term solutions (7.35) for j = 0 in the representa-
tion (7.23). Similarly for the case j = 3 we get the analogous basis

(%i12) RE:FindRE(exp(z)*sin(z),z,a[n],2)$

(%i13) RE:subst(4*n+3,n,RE);

(%o13) (4 + 4 · n) · (5 + 4 · n) · (6 + 4 · n) · (7 + 4 · n) · a4·n+7 + 4 · a4·n+3 = 0

(%i14) RE:subst([a[4*n+3]=s[n],a[4*n+7]=s[n+1]],RE);

(%o14) (4 + 4 · n) · (5 + 4 · n) · (6 + 4 · n) · (7 + 4 · n) · sn+1 + 4 · sn = 0

(%i15) HypervanHoeij(RE,s[n]);

(%o15)

{
(−1)n · 4n(

1
4

)
n
·
(

3
4

)
n
· (32 · n3 + 48 · n2 + 22 · n+ 3) · 64n · (2 · n)!

}
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On the other hand, note that the m-fold holonomic RE case is the easiest part for the whole
algorithm. Indeed, we know that a given holonomic recurrence equation is not necessarily
m-fold holonomic, m ∈ N>2. Such a recurrence equation could have m1-fold and m2-fold
hypergeometric term solutions with positive integers m1 6= m2. Therefore we should define
what to do in the more general case.

Observe that without the shift that transforms an m-fold holonomic recurrence equation in
the form (7.30), its general representation is given by

Pdan+k+md + Pd−1an+k+m(d−1) + · · ·+ P0an+k = 0, (7.36)

where k ∈ J0,m− 1K.
Let us consider the three following 3-fold holonomic REs

RE1 : P1,3 · an+7 + P1,2 · an+4 + P1,1 · an+1 = 0,

RE2 : P2,4 · an+11 + P2,3 · an+8 + P2,2 · an+5 + P2,1 · an+2 = 0,

RE3 : P3,4 · an+13 + P3,3 · an+10 + P3,2 · an+7 + P3,1 · an+4 = 0. (7.37)

• The difference between the order of a summand in RE1 and the one of a summand in RE2

is always not a multiple of 3. In this case we say that RE1 and RE2 are 3-fold distinct.

• The difference between the order of a summand in RE1 and the one of a summand in RE3

is always a multiple of 3. In this case we say that RE1 and RE3 are 3-fold equivalent

More generally we have the following definitions.

Definition 7.2. Let m ∈ N,

RE1 : Pd1an+k1+md1 + Pd1−1an+k1+m(d1−1) + · · ·+ P01an+k1 = 0, (7.38)

and

RE2 : Pd2an+k2+md2 + Pd2−1an+k2+m(d2−1) + · · ·+ P02an+k2 = 0 (7.39)

be two m-fold holonomic recurrence equations.

• We say that RE1 and RE2 are m-fold distinct holonomic equations if k2 − k1 is not

divisible by m.

• We say thatRE1 andRE2 arem-fold equivalent holonomic equations if k2−k1 is divisible

by m.

An immediate consequence of these definitions is that linear combinations of m-fold equiva-
lent holonomic REs always give m-fold holonomic recurrence equations whereas linear combi-
nations of m-fold distinct holonomic REs are never m-fold holonomic. For example, let us sum
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RE1 and RE3 from (7.37). This yields the following 3-fold holonomic RE

RE1+RE3 : P3,4·an+13+P3,3·an+10+(P1,3 + P3,2)·an+7+(P1,2 + P3,1)·an+4+P1,1·an+1 = 0.

(7.40)

The whole algorithm is based on the following fundamental theorem from which the general
approach to compute m-fold hypergeometric term solutions of any given holonomic recurrence
equation is deduced.

Theorem 7.1 (Structure of Holonomic REs Having m-fold Hypergeometric Term Solutions).
Let m ∈ N, K a field of characteristic zero, and hn be an m-fold hypergeometric term which

is not u-fold hypergeometric over K for all positive integers u < m. Then hn is a solution

of a given holonomic recurrence equation, say RE, if that equation can be written as a linear

combination of m-fold holonomic recurrence equations. When this is the case, hn is moreover a

solution of each m-fold distinct holonomic recurrence equations of that linear combination.

Proof. Let us assume that hn is an m-fold hypergeometric term solution of the recurrence
equation

Pdan+d + Pd−1an+d−1 + · · ·+ P0an = 0, d > m, Pd · P0 6= 0. (7.41)

It suffices to show that for any non-zero term Pjan+j in (7.41), there exists another summand,
say Pian+i, such that m divides j − i. Indeed, this is because when summing m-fold holonomic
REs, given that each of them has at least two non-zero polynomial coefficients by definition,
therefore we are sure that for each summand appearing on the left-hand side of the sum of these
m-fold holonomic REs there must exist another summand whose index differs from the one of
that summand by a multiple of m.

We proceed by contradiction. Assume there exists a non-zero term Pjan+j in (7.41) such that
any other summand Pian+i, i 6= j does not verify that m divides j − i. Since hn is a non-zero
solution, we can divide the equation by hn+j and write

− Pj =
d∑
i=0
i6=j

Pi ·
hn+i

hn+j

. (7.42)

The situation is now two-fold:

• For i verifying |i− j| < m, for each corresponding summand Pi · hn+ihn+j
on the right-hand

side of (7.42), the fact that m does not divide j − i implies that hn+i
hn+j

/∈ K(n) since by
assumption hn is an m-fold hypergeometric term over K that is not u-fold hypergeometric
for all integers u < m. Therefore the whole term Pi · hn+ihn+j

/∈ K(n) (see (7.29)).

• For i verifying |i− j| > m, for each corresponding summand Pi · hn+ihn+j
on the right-hand

side of (7.42), we have two possibilities:

– either hn+i
hn+j

/∈ K(n) and we have the same conclusion as in the previous case;
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– or hn+i
hn+j
∈ K(n), but in this case since m does not divide j − i, this implies that hn is

not an m-fold hypergeometric term and we get a contradiction.

Thus the identity (7.42) is valid only if all the summands on its right-hand side do not belong to
K(n). Therefore (7.42) holds if and only if

d∑
i=0
i6=j

Pi ·
hn+i

hn+j

/∈ K(n),

however the left-hand side Pj(n) ∈ K[n] ⊂ K(n). Hence we obtain a contradiction.
Let us now prove the second part of the theorem. Since the multiplication of a holonomic

recurrence equation by a polynomial does not affect the computation of itsm-fold hypergeometric
term solutions, the linear combination of m-fold holonomic REs can always be considered as a
sum of m-fold holonomic REs. Therefore it is enough to show that an m-fold hypergeometric
term solution of a sum of m-fold holonomic recurrence equations is a solution of each of the
involved m-fold distinct holonomic recurrences.

The sum of M m-fold holonomic recurrence equations, M ∈ N, can be written as
M∑
j=1

REj(an) =
M∑
j=1

(
Pdjan+kj+mdj + Pdj−1an+kj+m(dj−1) + · · ·+ P0jan+kj

)
= 0, (7.43)

where kj ∈ J0,m− 1K, and Pdj · P0j 6= 0, j ∈ J1,MK.
If M = 1, then (7.43) is an m-fold holonomic recurrence equation and hn is an m-fold

hypergeometric term solution of it.
We assume now that M > 2 and that there are at least two m-fold distinct holonomic

recurrence equations in (7.43). Note that if the M m-fold holonomic REs are m-fold equivalent
then the situation is similar to the case M = 1 since every linear combination of m-fold
equivalent holonomic RE is an m-fold holonomic RE.

Now suppose that hn is not solution of REj1 in (7.43), j1 ∈ J1,MK, then given that∑M
j=1 REj(hn) = 0, there must be at least one second m-fold holonomic recurrence equa-

tion REj2 , j2 ∈ J1,MK, m-fold distinct with REj1 such that REj2(hn) 6= 0. Without loss of
generality, we consider that REj2 is the only second m-fold holonomic RE with these properties.
Of course, if REj1(hn) 6= 0 and REj1(hn) +REj2(hn) = 0 then REj2(hn) 6= 0. Thus, we have

REj1(hn) 6= 0

REj2(hn) 6= 0

REj1(hn) +REj2(hn) = 0

. (7.44)

The fact that the m-fold holonomic recurrence equations REj1 and REj2 are m-fold distinct
implies that kj1 − kj2 is not a multiple of m.

Using (7.44), after substitution of hn in the sum of the equations and division by hn+kj1+dj1m
,

we deduce that

− Pdj1 =

dj1−1∑
ej1=0j1

Pej1
hn+kj1+ej1m

hn+kj1+dj1m

+

dj2∑
ej2=0j2

Pej2
hn+kj2+ej2m

hn+kj1+dj1m

= Sj1 + Sj1,j2 , (7.45)
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which is equivalent to
− Pdj1 − Sj1 = Sj1,j2 . (7.46)

All the summands of Sj1 belong to K(n) since hn is an m-fold hypergeometric sequence and the
corresponding index differences

n+ kj1 + ej1m− (n+ kj1 + dj1m) = m · (ej1 − dj1)

are multiples of m. However, for Sj1,j2 the index differences

n+ kj2 + ej2m− (n+ kj1 + dj1m) = kj2 − kj1 +m · (ej2 − dj1)

are not multiples of m. Therefore by the same argument used in the first part of the proof
we deduce that Sj1,j2 /∈ K(n). Thus (7.46) holds if and only if −Pdj1 − Sj1 ∈ K(n) and
Sj1,j2 /∈ K(n). Therefore we get a contradiction.

From this theorem, given m ∈ N, we are now sure to compute a basis of all m-fold
hypergeometric term solutions of a given holonomic recurrence equation by splitting it into the
sum of m-fold distinct holonomic recurrence equations and use Algorithm 10 to solve these
holonomic REs provided the change of variable (7.34). Note that since we compute m-fold
hypergeometric terms as element of a basis of all m-fold hypergeometric term solutions of
holonomic REs, an m-fold hypergeometric term is solution of two given holonomic REs if it is
linearly dependent to an element of the basis of all m-fold hypergeometric term solutions of each
of these holonomic RE. Therefore, the solutions sought are built by all the linearly dependent
m-fold hypergeometric term solutions of each involved m-fold distinct holonomic RE. Note that
the computation of m-fold hypergeometric term solutions with representation (7.23) for j = 0

of each m-fold holonomic RE

Pdian+ki+mdi + Pdi−1an+ki+m(di−1) + · · ·+ P0ian+ki = 0, (7.47)

is done after writing it in the form (7.30). Thus (7.47) is transformed as

Pdi(n− ki)an+mdi + Pdi−1(n− ki)an+m(di−1) + · · ·+ P0i(n− ki)an = 0. (7.48)

Let us take as an example the holonomic RE satisfied by the Taylor coefficients of
exp(z) + cos(z).

(%i16) FindRE(cos(z)+exp(z),z,a[n]);

(%o16) (1 + n) · (2 + n) · (3 + n) · an+3 − (1 + n) · (2 + n) · an+2 + (1 + n) · an+1 − an = 0

This is a linear combination of two 2-fold distinct holonomic REs, namely

RE1 : (1 + n) · (2 + n) · (3 + n) · an+3 + (1 + n) · an+1 = 0,

and
RE2 : (−1− n) · (2 + n) · an+2 − an = 0.
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Only RE1 has to be transformed as its trailing term is not of order 0. This yields

RE11 : n · (1 + n) · (2 + n) · an+2 + n · an = 0.

From this one easily sees that the given holonomic RE has 2-fold hypergeometric term solutions
since we get two two-term recurrence relations that are linearly dependent:

−n ·RE2 = RE11.

Remember that there is no need to use all the m changes of variable of (7.34) because as
we explained earlier, once one succeeds in computing a basis of m-fold hypergeometric term
solutions corresponding to the representation (7.23) for a fixed j ∈ J0,m− 1K, the other ones
can be computed in a similar way. This will be used for power series computations in order to
consider all possible linear combinations of hypergeometric type series of type m.

This result is a consequence of observing m-fold hypergeometric terms as sequences whose
indices are taken in m · Z + j, j ∈ J0,m − 1K. Commonly this notion is used according to
its definition for the set of integers Z which is generally the chosen set of indices. In this case
two terms of a sequence are said to be consecutive if their index difference is 1 or −1. Such
a definition is more useful for hypergeometric terms since it allows Algorithm 10 to look for
hypergeometric term solutions of holonomic REs in such a way that the ratio of two consecutive
terms is a rational function over the considered field. For the m-fold case, however, one rather
needs to consider mZ as the set of indices so that the computation of m-fold hypergeometric
term (m > 2) solutions of holonomic REs is done analogically to the one of hypergeometric
terms. In this situation one could say that two terms of an m-fold sequence are consecutive
if the difference of their indices is m or −m. The other sequences with indices m · Z + j,

j ∈ J0,m− 1K can be seen as other representations of the same family of sequences.
To compute the basis of all m-fold hypergeometric term solutions of a given holonomic

RE, the algorithm proceeds by iteration up to the order of the RE. Nevertheless more often the
number of cases to be considered is much smaller than the order of the given RE. For example,
let us use the holonomic RE (6.75) on p. 121 which does not have hypergeometric term solutions
over C as we saw at the end of the previous chapter.

(%i17) RE:FindRE(sin(z^3)^3,z,a[n]);

(%o17) (n− 8)·(n− 5)·(n− 2)·(1 + n)·an+1+90·(n− 8)·(n− 5)·an−5+729·an−11 = 0

Observe that the obtained recurrence equation is a 2-fold, 3-fold and 6-fold holonomic RE of
order 12. It is straightforward to see that all the other cases do not lead to a solution since the
recurrence equation cannot be written as a sum of their type of m-fold holonomic REs. Indeed,
in the other cases it occurs holonomic REs that are not m-fold since they only have one non-zero
polynomial coefficient. That is why in this example the algorithm only does computations for
m-fold hypergeometric term solutions having m ∈ {1, 2, 3, 6}.

Our algorithm to compute m-fold hypergeometric term solutions of a given holonomic RE,
called mfoldHyper, is given as follows.
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Algorithm 11 mfoldHyper: m-fold hypergeometric term solutions of holonomic recurrence
equation of order d ∈ N
Input: A holonomic recurrence equation

Pdan+d + Pd−1an+d−1 + · · ·+ P0an = 0, d > m, Pd · P0 6= 0 (7.49)

Output: A basis of all m-fold hypergeometric term solutions of (7.49).

1. Set H = {}.
2. Use Algorithm 10 to find the basis, say H1, of all hypergeometric term solutions of

(7.49). If H1 6= ∅, then add [1, H1] to H .

3. For 2 6 m 6 d do:

3. (a) Extract the followingm holonomic recurrence equations from (7.49) and construct
the system

P0(n) · an + Pm(n) · an+m + · · ·+ Pm·b d
m
c(n) · an+m·b d

m
c = 0

P1(n) · an+1 + Pm+1(n) · an+m+1 + · · ·+ Pm·b d
m
c+1(n) · an+m·b d

m
c+1 = 0

. . .

Pm−1(n) · an+m−1 + P2m−1(n) · an+2m−1 + · · ·+ Pm·b d
m
c+m−1(n) · an+m·b d

m
c+m−1 = 0

,

(7.50)
assuming Pj(n) = 0 for j > d.

(b) If there exist a holonomic RE with only one non-zero polynomial coefficient in
(7.50), then stop and go back to step 3.(a) for m+ 1.

(c) Shift all the m-fold holonomic recurrence equations in (7.50) so that the order of
the trailing term equals 0.

(d) Apply the change of variable (7.31) for each m-fold holonomic recurrence equa-
tion.

(e) Compute a basis of all hypergeometric term solutions sk as defined in (7.31) for
(7.33) of each resulting holonomic recurrence equation with Algorithm 10.

(f) Construct the set Hm of hypergeometric terms which are each linearly dependent
to one term in each of the m computed bases in step 3-(d).

(g) If Hm 6= ∅ then add [m,Hm] in H .

4. Return H .

Remark. Note that for step 3.(f) none of the computed bases in step 3.(f) should be empty.
When this is the case, two m-fold hypergeometric terms are recognized to be linearly dependent
if the characteristic ratio of one is an integer shift of the other (the shift might be zero).

We implemented mfoldHyper in Maxima as mfoldHyper(RE,a[n],[m,j]), by default [m,j]

is an empty sequence. And in that case each list of m-fold hypergeometric term solutions,
say [m, [h1,m, h2,m, . . .]], contains "simple" formulas of hypergeometric terms corresponding to
j = 0 in (7.23). Once we know that there are some m-fold hypergeometric term solutions for
particular m ∈ N, the algorithm can be called as mfoldHyper(RE,a[n],m,j) for 0 6 j < m to get
the solutions in their other representations (the case m · n+ j in (7.23) for j not necessarily 0).
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Let us now apply the algorithm to the examples of the previous section.

(%i18) RE:FindRE(atan(z)+exp(z),z,a[n])$

(%i19) mfoldHyper(RE,a[n]);

(%o19)

[[
1,

{
1

n!

}]
,

[
2,

{
(−1)n

n

}]]
As expected, the needed "simple" formulas are computed without the need of extension fields

of Q. However, for the next example one needs to allow algebraic extensions for the general
coefficient of log(1 + z + z2).

For computation over algebraic extension fields of Q, the syntax is mfoldHyper(RE,a[n],[K])

for the two possible value K=C or K=Q (default value). To ask for specific m-fold hypergeomet-
ric term solutions the syntax is mfoldHyper(RE,a[n],[K,m,j]).

(%i20) RE:FindRE(log(1+z+z^2)+cos(z),z,a[n])$

(%i21) mfoldHyper(RE,a[n],C);

(%o21)

1,


(
−1−

√
3·i

2

)n
n

,

(√
3·i−1
2

)n
n

,
(−i)n

n!
,
(−1)

n
2

n!


 , [2,{ (−1)n

(2 · n)!

}]
The obtained 2-fold hypergeometric term solution is the one used for the hypergeometric type
series related to cos(z) instead of the corresponding hypergeometric term over C as Maple’s FPS
command does.

(%i22) RE:FindRE(tan(5*atan(z)),z,a[n])$

(%i23) mfoldHyper(RE,a[n],C);

(%o23)
[ [

1,

{(
5− 2 ·

√
5
)n

2
,
(

5 + 2 ·
√

5
)n

2
,

(
−
√

2 ·
√

5 + 5

)n}]
,[

2,
{(

5− 2 ·
√

5
)n
,
(

5 + 2 ·
√

5
)n}] ]

Similarly for this example the 2-fold hypergeometric term is the one used for the power series
representation.

(%i24) RE:FindRE(1/cos(4*acos(z)),z,a[n])$

(%i25) mfoldHyper(RE,a[n],C);

(%o25)

[[
1,

{(
4− 2

3
2

)n
2
,
(

4 + 2
3
2

)n
2
,

(
−
√

2
3
2 + 4

)n}]
,
[
2,
{(

4− 2
3
2

)n
,
(

4 + 2
3
2

)n}]]

(%i26) declare(q1,constant)$

(%i27) declare(q2,constant)$

(%i28) RE:FindRE(1/((q1-z^2)*(q2-z^3)),z,a[n])$
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(%i29) mfoldHyper(RE,a[n],C);

(%o29)

[1,


(
−
√

1

q1

)n
,

(
1

q1

)n
2

,


√

3 · i ·
(

1
q2

) 1
3 −

(
1
q2

) 1
3

2


n

,

(
1

q2

)n
3


 ,

[
2,

{(
1

q1

)n}]
,

[
3,

{(
1

q2

)n}]]
We would like to point out that the m-fold hypergeometric terms computed, m > 2, in the

three latter examples fit well with the computations of Taylor expansions of the given expressions.
Indeed, generally if an expression represents a hypergeometric type function of type m then the
indeterminate in its Taylor expansion has only powers of the form m · n + j, j ∈ J0,m − 1K.
This fact is not easily taken into account when we only consider hypergeometric terms. This
could explain why Maple’s FPS command could not use the hypergeometric term solutions of
the three previous examples to compute the requested power series.

Let us now compute the m-fold hypergeometric term solutions for the examples that we have
shown to be out of Maple’s current FPS command capabilities.

(%i30) RE:FindRE(exp(z^2)+cos(z^2),z,a[n])$

(%i31) mfoldHyper(RE,a[n]);

(%o31)

[[
2,

{
1

n!

}]
,

[
4,

{
(−1)n

(2 · n)!

}]]
(%i32) RE:FindRE(cosh(z^3)+sin(z^2),z,a[n])$

(%i33) mfoldHyper(RE,a[n]);

(%o33)

[[
3,

{
1

n!
,
(−1)n

n!

}]
,

[
4,

{
(−1)n

(2 · n)!

}]
,

[
6,

{
1

(2 · n)!

}]]
(%i34) RE:FindRE(asin(z^2)^2+acos(z),z,a[n])$

(%i35) mfoldHyper(RE,a[n]);

(%o35)

[[
2,

{
4n · n!2

n2 · (2 · n)!

}]
,

[
4,

{
4n · n!2

n2 · (2 · n)!

}]]
(%i36) RE:FindRE(sqrt(sqrt(8*z^3+1)-1)+sqrt(7+13*z^4),z,a[n])$

(%i37) mfoldHyper(RE,a[n]);

(%o37)

[[
3,

{(
1
4

)
n
·
(

3
4

)
n
· (−8)n · 4n

(4 · n− 1) · (2 · n)!

}]
,

[
4,

{
4−4−n · (−13)n · (2 · n)!

(2 · n− 1) · 7n · n!2

}]]
(%i38) RE:FindRE(exp(asin(z))+exp(asinh(z)),z,a[n])$

(%i39) mfoldHyper(RE,a[n],C);

(%o39)

[[
2,

{(
− i−2

2

)
n
·
(

2+i
2

)
n
· 43+n

(4 · n2 + 1) · (2 · n)!
,
2 · 41−n · (−1)n · (2 · n)!

(2 · n− 1) · n!2

}]]
(%i40) RE:FindRE(sin(8*asinh(z))+sqrt(1+z^4),z,a[n])$
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(%i41) mfoldHyper(RE,a[n],C);

(%o41)

[ [
2,

{
(1− 4 · i)n · (4 · i+ 1)n · (−1)n · 43+n

(n2 + 16) · (2 · n)!

}]
,[

4,

{
98 · 44−n · (−1)n · (2 · n)!

(2 · n− 1) · n!2

}]]
For (6.75) we get

(%i42) RE:FindRE(sin(z^3)^3,z,a[n])$

(%i43) mfoldHyper(RE,a[n]);

(%o43)

[[
6,

{
(−9)n

(2 · n)!
,

(−1)n

(2 · n)!

}]]
One can therefore see the improvement given by the use of mfoldHyper.

Let us now use our implementation for the computation of a specific m-fold hypergeometric
term solutions. In this case the user has to give a value for m and j with j ∈ J0,m− 1K.

(%i44) RE:FindRE(asin(z)^2+log(1+z^5),z,a[n])

(%o71) − 2 · (1 + n) · (2 + n) · (3 + n) · an+3 + 2 ·n · (1 + n) · (2 + n) · an+2 + 2 · (1 + n)

·(1 + 3 · n)·an+1−2·n·
(
48− 57 · n+ 10 · n2

)
·an+2·(n− 1)·

(
115− 77 · n+ 10 · n2

)
·an−1

+(n− 2)·
(
399− 204 · n+ 19 · n2

)
·an−2−(n− 3)·

(
622− 242 · n+ 19 · n2

)
·an−3−(n− 4)

· (3 · n− 79) · an−4 − (n− 5) ·
(
−368− 18 · n+ 15 · n2

)
· an−5

+ (n− 6) ·
(
−335− 48 · n+ 15 · n2

)
· an−6 + (n− 7) ·

(
115− 150 · n+ 19 · n2

)
· an−7

− (n− 8) ·
(
284− 188 · n+ 19 · n2

)
· an−8 − (n− 9) · (9 · n− 77) · an−9

+ (n− 10) ·
(
464− 96 · n+ 5 · n2

)
· an−10 − (n− 11) ·

(
565− 106 · n+ 5 · n2

)
· an−11

− 2 · (n− 12)3 · an−12 + 2 · (n− 13)3 · an−13 = 0

(%i45) mfoldHyper(RE,a[n],5,0);

(%o45)

{
(−1)n

2 · n

}
(%i46) mfoldHyper(RE,a[n],5,3);

(%o46)

{
(−1)n

2 · (5 · n+ 3)

}
(%i47) mfoldHyper(RE,a[n],2,1);

(%o47)

{
(2 · n)!

(2 · n+ 1) · 4n · n!2

}

On the other hand, we mentioned earlier that exp-like and rational functions are hypergeomet-
ric type functions, i.e their power series expansions can always be written as linear combinations
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of power series having m-fold hypergeometric terms as coefficients. As we intend to use our
algorithm to compute a much larger family of power series than the currently used algorithms
for that, we shall ensure that mfoldHyper finds the coefficients of exp-like and rational functions
since they have special algorithms described in [Koepf, 1992]. This is shown as a consequence
of the next two theorems.

Theorem 7.2. Let K be an algebraically closed field. The power series coefficients of every

rational function in K(z) are linear combinations of hypergeometric terms over K.

Proof. Observe that the power series expansions of every rational functions P (z)
Q(z)

∈ K(z),
Q(z) 6= 0 can be found by computing the one of 1

Q(z)
and multiply the result by P (z). Then one

obtains a linear combination of power series, whose coefficients are the ones of the polynomial
P (z), and the general powers of the indeterminate of these power series are shifted according to
the degrees of the monomials in P (z). Therefore the general coefficients of rational functions in
K(z) are essentially resulting from the computations of the power series general coefficients of
the reciprocal of their denominators. Thus we consider 1

Q(z)
, Q(z) ∈ K[z]\{0} for the following

part of the proof.
Since K is algebraically closed, there exist unique zk ∈ K \ {0}, ek ∈ N, k = 1, . . . , q,

e0 ∈ N>0(z0 = 0) such that

1

Q(z)
=

1

ze0 · (z − z1)e1 · (z − z2)e2 · · · (z − zq)eq
. (7.51)

By partial fraction decomposition this leads to

1

Q(z)
=

q∑
k=0

(
ck,1

(z − zk)
+

ck,2
(z − zk)2

+ · · ·+ ck,ek
(z − zk)ek

)
(7.52)

=

q∑
k=0

ek∑
i=1

ck,i
(z − zk)i

=

e0∑
i=1

c0,i

zi
+

q∑
k=1

ek∑
i=1

ck,i(−1)i

zik

(
1− z

zk

)i , (7.53)

for some constants ck,i ∈ K, i = 0, . . . , ek, k = 0, . . . , q.
We are interested in the power series coefficients of the summands in (7.53) that have zk 6= 0

since the other terms constitute the principal part of the corresponding Laurent expansion. Using
(2.6) from p. 15 for the variable z

zk
we get

ck,i(−1)i

zik

(
1− z

zk

)i =
∞∑
n=0

ck,i(−1)i

zi+nk

(
n+ i− 1

i− 1

)
zn. (7.54)

Therefore the power series of 1
Q(z)

has the general coefficient

q∑
k=1

ek∑
i=1

ck,i(−1)i

zi+nk

(
n+ i− 1

i− 1

)
, (7.55)
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which is a linear combination of the hypergeometric terms 1

zi+nk

(
n+i−1
i−1

)
, i = 1, . . . , ek, k = 1, . . . q,

whose ratios are
i+ n

zk · (n+ 1)
∈ K(n). (7.56)

This theorem shows that with the availability of an algorithm for complete factorization over
C, the Petkovšek and van Hoeij algorithms can be used to find the coefficients of all rational
functions in C(z) since holonomic recurrence equations satisfied by their coefficients can be
computed using FindRE (see [Koepf, 1992]). Unfortunately the missing of such an algorithmic
factorization limits the Petkovšek and van Hoeij algorithms in many cases as we have seen in
Section 7.2.

However, the nice advantage of using mfoldHyper is that it does not only recover the
hypergeometric terms that Petkovšek’s and van Hoeij’s algorithms can compute, but moreover
mfoldHyper does not necessarily need a full factorization. This explains why for the example
(7.20) our Maxima FPS algorithm gives a much simpler result than Maple’s FPS because
mfoldHyper looks for m-fold hypergeometric terms that fit to all the possible factorizations that
can be handled by the computer algebra system used.

Similarly, for exp-like function we have the following theorem.

Theorem 7.3. Let K be an algebraically closed field. The power series coefficients of every

exp-like function over K are linear combinations of hypergeometric terms over K.

Proof. From [Koepf, 1992, Algorithm 7.1] we know that the coefficients of the power series
expansions of exp-like functions over K have the form

an :=
1

n!

q∑
k=1

ek∑
i=1

ck,in
i−1λnk , (7.57)

ck,i, λk ∈ K, i = 1, . . . , ek, k = 1, . . . , q. The computation of the constants λk (pairwise
different) with multiplicities ek is ensured by the algebraic closure of K (see [Walter, 1985]).

Obviously, (7.57) is a linear combination of the hypergeometric terms ni−1λnk
n!

, i = 1, . . . , ek,

k = 1, . . . , q, whose ratios are
(n+ 1)i−2λk

ni−1
∈ K(n) (7.58)

As a consequence of this theorem, mfoldHyper can compute the coefficients of exp-like

functions without necessarily looking for the exact λk in (7.57) but rather their pairwise different
powers λjk, j ∈ N>0.

Furthermore, whereas in [Koepf, 1992] a necessary condition to compute power series of exp-

like functions is to have differential equations with constant coefficients, mfoldHyper rather finds
the corresponding power series coefficients without the satisfaction of this condition. An example
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of this type is (1 + z) exp(z) which satisfies the constant coefficient DE F ′′ − 2F ′ + F = 0 but
HolonomicDE computes the first order DE (1 + z)F ′ − (2 + z)F = 0. Our Maxima FPS yields

(%i48) FPS((1+z)*exp(z),z,n);

(%o48)
∞∑
n=0

(1 + n) · zn

n!

Note that compared to the rational function case where the algorithm in [Koepf, 1992] sometimes
gives coefficients that cannot be found by Petkovšek’s and van Hoeij’s algorithms, in the exp-

like case the use of these algorithms rather leads to all the results that can be computed using
[Koepf, 1992, Algorithm 5.1]. Indeed, these exp-like functions are linear combinations of
exp(az) cos(bz), exp(az) sin(bz), and exp(az), for constants a, b, which all have power series
with hypergeometric term coefficients. And of course, mfoldHyper covers all these cases as
expected.

Eventually, note that the existence of m-fold hypergeometric term solutions of a holonomic
recurrence equation satisfied by the Taylor coefficients of a given expression does not neces-
sarily guarantee that this expression represents a hypergeometric type function. For example,
sin(
√
z + z3) has a Taylor expansion with fractional powers as one can see below.

(%i49) taylor(sin(sqrt(z+z^3)),z,0,5);

(%o49)/T/
√
z − z

3
2

6
+

61 · z 5
2

120
− 1261 · z 7

2

5040
− 37799 · z 9

2

362880
+ . . .

Using FindRE, we get the holonomic RE

(%i50) RE:FindRE(sin(sqrt(z+z^3)),z,a[n]);

(%o50) 2 · (1 + n) · (1 + 2 · n) · an+1 + an + 4 · (n− 1) · (4 · n− 11) · an−1 + 9 · an−2

+ 6 · (n− 3) · (2 · n− 9) · an−3 + 27 · an−4 + 27 · an−6 = 0

which has the following 2-fold hypergeometric term solution.

(%i51) mfoldHyper(RE,a[n]);

(%o51)

[[
2,

{ (
1
4

)
n
· (−1)n(

3
4

)
n
· (4 · n− 3)

}]]
The interpretation of such results for power series representations remains to be explored.

Nevertheless, having described an algorithm to compute a basis of all m-fold hypergeometric
term solutions of holonomic recurrence equations, a very wide possibility of Laurent-Puiseux
series representations is accessible. Let us move to the chapter dedicated to achieving this goal.





Chapter 8

Computing Power Series

"The ultimate goal of mathematics is to eliminate any need for intelligent thought."

Alfred N. Whitehead

According to the general algorithm described in [Koepf, 1992], we are now at the final step
of the power series computation procedure. Let us first recall what these steps are. For a given
expression f , we compute its power series in the following way:

1. Find a holonomic differential equation for f using our variant of Algorithm 1 described in
Section 4.1.2, on p. 43;

2. Convert that holonomic DE into a holonomic recurrence equation satisfied by the Taylor
coefficients of f using Algorithm 2, p. 53;

3. Solve the obtained holonomic RE which in our case reduces to compute a basis of all the
m-fold hypergeometric term solutions of that RE using Algorithm 11, p. 147;

4. If there are solutions, use initial values to find the linear combination of the resulting
hypergeometric type power series that corresponds to the power series expansion of f , if
such a linear combination is valid.

To take into account the Puiseux series case, we will consider an intermediate step between
the second and the third step above to determine the involved Puiseux number, say k; then use
the substitution h(z) = f(zk) to bring the situation to the Laurent series one, and finally divide
the general power of the indeterminate z in the obtained power series representation of h(z) by
k to get the expansion sought. This was first developed in [Gruntz and Koepf, 1995, Section 5]
for the two-term holonomic recurrence relation case.

Let K be a field of characteristic zero. For the calculations in the last step to work we will
need to find starting points at which initial values can be computed from all the involved m-fold
hypergeometric terms. This will allow us to extract parts of series expansions that cannot easily
be obtained (they can be represented by a disturbing Laurent polynomial or a term which is not
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differentiable at the point of development like a logarithmic term) using corresponding m-fold
hypergeometric terms like for the case of arcsech(z) (see Example 4.3.2 on p. 60) or generally
the sum of sums of polynomials times log(z) powers and hypergeometric type functions. Indeed,
our goal is to compute a representation of the form

f(z) = T (z) + F (z), (8.1)

where T (z) ∈ K[log(z)][z, 1
z
] is a Laurent polynomial in the variable z with coefficients in

K[log(z)], and F (z) is a linear combination of hypergeometric type series. We mention that
T (z) is not uniquely determined but its determination will be made more precise by Lemma 8.1

and Algorithm 12. We will call the power series representation of such functions generalized
hypergeometric type series.

Thus with the four steps mentioned above we will be able to compute a very wide family
of linear combinations of hypergeometric type series in an efficient way since we extended van
Hoeij’s algorithm [Van Hoeij, 1999] to the m-fold hypergeometric case. Actually, whereas the
Maple FPS implementation is clearly not linear, we have now developed a linear algorithm which
detects every linear combination of m-fold hypergeometric terms.

On the other hand, we will also extend our algorithm for the computation of some asymptotic
series. As presented in (2.42), on p. 2.42, this computation needs a good implementation of an al-
gorithm to compute limits, in particular those of exp-log functions (see [Gruntz and Gonnet, 1992]).
Indeed, the current state of the art algorithm in limit computation was developed by Dominik
Gruntz in his Ph.D. thesis [Gruntz, 1996] with implementation in Maple supervised by Gaston
H. Gonnet, and the described algorithm gave birth to important results for computing asymptotic
expansions as presented in ([Gruntz, 1993], [Richardson et al., 1996]). Of course, using our
result of the previous chapter these computations can be extended to asymptotic series as was
shown in [Koepf, 1993] for the two-term recurrence relation case. Despite the fact that Maxima’s
commands taylor and limit are limited in computing asymptotic expansions and limits, using the
formula of asymptotic coefficients (2.42) on p. 20 we will show how our extension recovers all
the examples given on page 20.

We will end this thesis by considering some non-hypergeometric situations, namely, holo-
nomic expressions that are not of hypergeometric type and non-holonomic expressions. For
the first case corresponding to holonomic expressions, we will use well known formulas for
hypergeometric type series having only a single summation term. These are the Cauchy product
rule for products of power series, the reciprocal to compute the reciprocal of a power series, the
rational powers formula to compute a rational power of a power series. When these formulas are
not manageable, we give a recursive definition of the Taylor coefficients using the holonomic
recurrence equation computed by Algorithm 2. For the non-holonomic case, we will use an
extended version of Algorithm 1 to compute a quadratic differential equation for the given ex-
pression and, if successful, by the use of the Cauchy product rule deduce a non-linear recurrence
equation for the corresponding Taylor coefficients from which we give a recursive representation
of the power series sought.
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8.1 Finding the Puiseux Number

Let us assume that we are looking for a representation of the form

f(z) = T (z) + F (z) := T (z) +
I∑
i=1

∞∑
n=0

sinz
(mi·n+ji)/ki (8.2)

where mi, ki ∈ N, ji ∈ J0,mi − 1K, sin is an mi-fold hypergeometric term corresponding to
j = ji in the representation (7.23), on p. 137, and T (z) is an extra term whose computation will
be explained in the section. In this section we also show how the determination of the positive
integers ki is done.

Without loss of generality, we suppose that F (z) in (8.2) is the sum of two hypergeometric
type series of type m1 and m2. We have

F (z) :=
∞∑
n=0

s1nz
(m1·n+j1)/k1 +

∞∑
n=0

s2nz
(m2·n+j2)/k2 , (8.3)

with the same definitions in (8.2) for I = 2. For simplicity, we also assume that k1 and k2 are
co-prime1. This is to avoid the use of more variables since in particular this assumption implies
that the least common multiple of k1 and k2 is lcm(k1, k2) = k1 · k2. Substituting z by zlcm(k1,k2)

in (8.3) gives

F (zlcm(k1,k2)) =
∞∑
n=0

s1nz
(m1·n+j1)·k2 +

∞∑
n=0

s2nz
(m2·n+j2)·k1 (8.4)

=
∑

n∈k2·(m1·N>0+j1)

a1 n
k2

zn +
∑

n∈k1·(m2·N>0+j2)

a2 n
k1

zn, (8.5)

where ain is obtained from sin by the change of variable (7.34), on p.141, i ∈ {1, 2}.
Observe that in (8.4) the powers of the indeterminate z are integers. In general, the right-hand

side of (8.2) always gives a representation with integer powers when we substitute z by zµ, for
any positive multiple µ of lcm(k1, k2). Power series with integer powers are dealt with in other
sections of this chapter. Thus our aim of determining the positive integers ki, i ∈ J1, IK in (8.2)

can be reduced in finding a positive multiple µ of lcm(k1, . . . , kI) so that we can compute the
power series of f(zµ) and substitute z by z1/µ in the obtained representation to get the one of
f(z). This idea was initiated in [Gruntz and Koepf, 1995] for the two-term holonomic RE case.

By the general representation (7.22) of an m-fold hypergeometric term, we know that there
exist rational functions r1(n) and r2(n) such that

a1n+m1
= r1(n) · a1n and a2n+m2

= r2(n) · a2n ,

for the coefficients in (8.5). Therefore we can write

a1 n
k2

+m1
= r1

(
n

k2

)
· a1 n

k2

and a2 n
k1

+m2
= r2

(
n

k1

)
· a2 n

k1

. (8.6)

1Two integers are said to be co-prime if the only positive factor that they have in common is 1.
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where n
k1

and n
k2

are not necessarily integers.
To compute the holonomic recurrence equation of smallest order for the m1-fold and the

m2-fold hypergeometric terms a1 n
k2

and a2 n
k1

, we need to use the smallest integer k such that
k · n

k2
∈ N>0 and k · n

k1
∈ N>0. Thus k = lcm(k1, k2) and the obtained holonomic RE is of course

compatible with the one computed using Algorithm 2 for the input expression F (z). From (8.6),
substituting n by lcm(k1, k2) · n = k1 · k2 · n yields

a1k1·n+m1
= r1 (k1 · n) · a1k1·n

and a2k2·n+m2
= r2 (k2 · n) · a2k2·n

. (8.7)

Since a1k1·n+m1
and a2k2·n+m2

are, respectively, m1-fold and m2-fold hypergeometric term
solutions of a holonomic recurrence equation satisfied by the Taylor coefficients of f(z), by
mfoldHyper we know how such terms are computed using an algorithm to compute the equivalent
hypergeometric terms sin such that

sin+1

sin
=
ain+mi
ain

= ri(ki · n), i ∈ {1, 2}.

By Petkovšek’s algorithm we know that ratios of hypergeometric term solutions of holonomic
REs are built from monic factors of the corresponding trailing and leading polynomial coefficients.
This implies in particular that some zeros and poles of ri(ki · n) are the trailing and leading
polynomial coefficient roots of the holonomic recurrence equation computed by Algorithm 2 for
the Taylor coefficients of f(z), i ∈ {1, 2}. Therefore by computing the least common multiple
of all the trailing and leading polynomial coefficient rational root denominators of that RE we
must obtain a multiple of lcm(k1, k2).

This ends the procedure due to the determination of Puiseux numbers involved in the power
series expansion of a given hypergeometric type function. The following Maxima program
implements this procedure provided the leading and trailing polynomial coefficients P0(n), Pd(n)

of a holonomic recurrence equation satisfied by the Taylor coefficients of a hypergeometric type
expression, and the index variable.

Puiseuxnbrfun(P0,Pd,n):=block([L,k],

L: append(map(rhs, solve(Pd,n)), map(rhs, solve(P0,n))),

L: sublist(L, numberp),

k: 1,

if(length(L)>0) then k: lreduce(lcm, map(denom,L)),

k

)$

Example 8.1.

We consider the expression f(z) = exp(z3/4) + sin(
√
z).

(%i1) f:exp(z^(3/4)) + sin(sqrt(z))$
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(%i1) RE:FindRE(f,z,a[n]);

(%o1) − 17920 · (1 + n) · (2 + n) · (1 + 2 · n) · (3 + 2 · n) · (4 · n− 1) · (5 + 4 · n) · an+2

−8960·(n− 1)·(1 + n)·(2 · n− 1)·(1 + 2 · n)·(4 · n− 5)·(1 + 4 · n)·an+1−896·n·(2 · n− 3)

· (4 · n− 9) · (4 · n− 3) ·
(
1268− 2947 · n+ 842 · n2

)
· an + 128 ·

(
22077440− 68216910 · n

+83470449·n2−51845440·n3+17242620·n4−2907840·n5+193856·n6
)
·an−1−32·

(
116467183

−225724547·n+177451566·n2−72252320·n3+16016512·n4−1824768·n5+82944·n6
)
·an−2

+1296 ·
(
53607386−71522380 ·n+39130073 ·n2−11247312 ·n3 +1792828 ·n4−150336 ·n5

+ 5184 ·n6
)
·an−3 + 648 ·

(
1595875−1279535 ·n+ 392722 ·n2−53136 ·n3 + 2592 ·n4

)
·an−4

+ 648 ·
(
22243− 12312 · n+ 1296 · n2

)
· an−5 − 13122 ·

(
6302− 2025 · n+ 162 · n2

)
· an−6

− 531441 · an−7 = 0

(%i2) CoeffsRE: REcoeff(RE,a[n])$

The corresponding leading polynomial coefficient is

(%i3) last(CoeffsRE);

(%o3) − 17920 · (8 + n) · (9 + n) · (15 + 2 · n) · (17 + 2 · n) · (27 + 4 · n) · (33 + 4 · n)

and the trailing one is

(%i4) first(CoeffsRE);

(%o4) − 531441

Using Puiseuxnbrfun one finds

(%i5) Puiseuxnbrfun(first(CoeffsRE),last(CoeffsRE),n);

(%o5) 4

which for this example represents exactly lcm(1, 2, 4, 4) = 4. Indeed the factors (8 + n) and
(9+n) have both denominator roots equal to 1, (15+2 ·n) and (17+2 ·n) have both denominator
roots equal to 2, and (27 + 4 · n) and (33 + 4 · n) have both denominator roots equal to 4. After
substitution the new holonomic RE to consider is

(%i6) RE:FindRE(subst(z^4,z,f),z,a[n]);

(%o6) −4·(n− 3)·(n− 2)·(n− 1)·(1 + n)·an+1−36·(n− 7)·(n− 4)·(n− 3)·(n− 1)·an−1

+ 16 · (n− 6) · (n− 3) ·
(
58− 16 · n+ n2

)
· an−3 + 36 · (n− 9) · (n− 7) ·

(
141− 38 · n

+ 2 · n2
)
· an−5 + (n− 7) ·

(
−159562 + 38863 · n− 3078 · n2 + 81 · n3

)
· an−7 + 144 ·

(
158

−26 ·n+n2
)
·an−9−324 ·

(
68− 19 · n+ n2

)
·an−11−9 ·

(
15859− 2268 · n+ 81 · n2

)
·an−13

− 2592 · an−15 − 2916 · an−17 = 0
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whose Puiseux numbers are all equal to 1 as the use of Puiseuxnbrfun demonstrates below.

(%i7) CoeffsRE:REcoeff(RE,a[n])$

(%i8) Puiseuxnbrfun(first(CoeffsRE),last(CoeffsRE),n);

(%o8) 1

As we now know how to reduce the computation of Puiseux series to the one of Laurent
series, in the next sections we will assume all the Puiseux numbers to be 1.

8.2 Computation of Hypergeometric Type Series

Starting Points

In Section 7.2 we saw that Maple’s FPS command wrongly represents the power series of
arctan(z) + exp(z) due to the constant term missing. In this section we show how to avoid
such a situation by explaining how to deduce exact starting points of hypergeometric type series
from the holonomic recurrence equations of their general coefficients. By trying many examples
of sums of polynomials and hypergeometric series with Maple’s FPS command, one sees that
such computation is not well managed in the implemented algorithm. A simple example is the
following.

Maple’s FPS gives

> FPS(z + z^2 * exp(z),z,n);

FPS(z + z2ez, z, n)

whereas our Maxima FPS implementation yields correctly

(%i1) FPS(z+z^2*exp(z),z,n);

(%o1)

(
∞∑
n=0

z2+n

n!

)
+ z

which is the sum of the hypergeometric series of z2 · exp(z) whose starting point is n = 2 plus
the polynomial z. All this informations can be deduced from the corresponding holonomic
recurrence equation. Let us now explain how this can be done.

Again, we consider the general representation (assuming Puiseux numbers all equal to 1)

f(z) := T (z) + F (z) (8.8)

where F (z) is a sum of hypergeometric type series and T (z) ∈ K[log(z)][z, 1
z
] is an extra term to

be determined while computing the starting point for F (z). Note that T (z) can be given explicitly
in the input expression, but also implicitly like for the expressions arcsech(z), arccosh(z) and
exp(z) + log(1 + z).
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First, we focus on the case where T (z) is a Laurent polynomial in K[z, 1
z
]. For this purpose

we need to understand what it means for a Laurent polynomial that its coefficients are solution
of a holonomic recurrence equation.

The following Maxima code generates a Laurent polynomial with degree between −M =

−10 and N = 10, with integer coefficient in J−100, 100K.

randompoly(z):=block([N,M,P],

N: random(11),

M: -random(11),

P:0,

for i:M thru N do

P: P+(-random(2)*random(101)+random(2)*random(101))*z^i,

P

)$

Let us compute the holonomic recurrence equation for an unknown Laurent polynomial and
figure out some properties of its coefficients from that RE.

(%i1) FindRE(randompoly(z),z,a[n]);

(%o1) − 3 (5 + n) an − 10 (3 + n) an−1 + 3 (n− 1) an−3 − 7 (n− 5) an−5

− (n− 7) an−6 + 26 (n− 11) an−8 = 0. (8.9)

Since all polynomials are rational functions, HolonomicDE always computes a holonomic
differential equation of first order for a given polynomial. Following Algorithm 1, if

T (z) :=
N∑
i=M

ciz
i =

∑
i∈Z

ciz
i ∈ K(z), (8.10)

for M,N ∈ Z,M 6 N where ci = 0 for i ∈ Z\ JM,NK, and c−M · cN 6= 0, then the differential
equation found is

N∑
i=−M

ciz
i · F ′(z)−

N∑
i=−M

ciiz
i−1 · F (z) = 0. (8.11)

Therefore using the rewrite rule (4.38) we obtain the recurrence equation

N∑
i=M

ci(n+ 1− i) · an+1−i −
N∑
i=M

cii · an−(i−1) =
N∑
i=M

ci(n+ 1− 2i) · an+1−i = 0.

Hence the holonomic RE found by FindRE of a Laurent polynomial with representation (8.10)

is given by
N∑
i=M

ci(n+ 1− 2i) · an+1−i = 0, (8.12)
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or equivalently
N∑
i=M

ci(n+N − 2i) · an+N−i = 0, (8.13)

after substitution of n by n+N for normalization.

Thus, without even using initial values a polynomial whose coefficients satisfy the holonomic
RE (8.9) can easily be found by equating terms of (8.12) and (8.9) to find the unknown coef-
ficients ci, using FindRE to compute a holonomic RE for the resulting polynomial and check
whether the REs are identical. We obtain the Laurent polynomial

− 26 · z3 + z − 3

z2
+

10

z4
+

3

z5
+ 7. (8.14)

Of course this is not enough because there might be other solutions. And moreover, when the
input expression is of the form (8.8), the situation is more complicated since F (z) needs initial
values in order to be computed. Therefore, we have to find the maximum degree N ∈ Z of T (z)

so that F (z) starts at N + 1 and T (z) is computed by a generalized Taylor expansion of order N
of f(z).

Observe for each non-zero coefficient ci, i ∈ JM,NK of T (z), that 2i−N is the root of one
polynomial coefficient in (8.13). In particular, N is the trailing polynomial coefficient root and
M is the root of the leading polynomial coefficient shifted by N −M . These two properties of
the degrees of a potential Laurent polynomial whose coefficients satisfy a holonomic recurrence
equation is preserved in the general case. This is established by the following lemma.

Lemma 8.1. Let K be a field of characteristic zero, N,M ∈ Z, N > M , T (z) ∈ K[z, 1
z
] be a

Laurent polynomial of degree N and lowest non-zero monomial degree M . The coefficients of

T (z) satisfy the holonomic recurrence equation

Pdan+d + Pd−1an+d−1 + . . .+ P0an = 0, (8.15)

d ∈ N, Pj ∈ K[n], j ∈ J0, dK, Pd · P0 6= 0, if N is a root of P0 and M is a root of Pd(n− d).

Proof. Suppose that the coefficients of T (z) satisfy (8.15). Since T (z) has finitely many non-
zero coefficients we can write

T (z) =
∑
i∈Z

cnz
n,

where cn = 0 for n ∈ Z\JM,NK. Saying that the coefficients of T (z) satisfy (8.15) is equivalent
to say that the sequence (cn)n∈Z is a sequence solution of (8.15). Given that (8.15) is valid for
all integers, observe that substituting an by cn in (8.15) for sufficiently large positive or negative
integers vanishes all the summands on the left-hand side of (8.15).

Furthermore, we can make a substitution such that either the trailing or the leading term does
not necessarily give zero. Indeed, since cn = 0 for n ∈ Z \ JM,NK, substituting an by cn in
(8.15) for n = N yields

P0(N)cN = 0,
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and therefore using the assumption cN 6= 0 we deduce that P0(N) = 0. Similarly, substituting
an by cn in (8.15) for n = M − d gives

Pd(M − d)cM = 0,

and therefore as cM 6= 0 by assumption, it follows that Pd(M − d) = 0.

Remark. Note that generally when T (z) = 0 and F (z) starts at 0, N = M = 0 and 0 is not
necessarily a root of the trailing polynomial coefficient. This might be interpreted from the
fact that the zero function is always solution of any holonomic RE and moreover takes 0 at 0.
Therefore as T (z) does not play a disturbing role, we rather say in this case that it does not exist.
This is the case with

(%i2) FindRE(exp(z),z,a[n]);

(%o2) (1 + n) · an+1 − an = 0

whose trailing polynomial coefficient does not have any root. T (z) in this case is 0 or is said
to not exist. However, note that in this example M = 0 is a root of the leading polynomial
coefficient which represents the starting point of the series expansion of exp(z). In general, the
computation of M is always possible from all the REs computed by FindRE, and represents
moreover the starting point of the generalized Taylor expansion of the given f(z). Indeed, the
fact that FindRE does not simplify the common factors after application of the rewrite rule (4.38)

on p. 52 is essential for our computations of starting points. These factors contain necessary
information to determine the first non-zero coefficient of the series expansion sought. Let for
example

(%i3) FindRE(z/(1-z),z,a[n]);

(%o3) (n− 1) · an−1 − (n− 1) · an = 0

for which the simplification of the common factor (n− 1) (or n after normalization) would hide
the starting point N + 1 = 1 (N = 0 is the root of the trailing polynomial coefficient).

Observe that using this lemma we can now affirm that any Laurent polynomial whose
sequence of coefficients satisfy the holonomic RE (8.9) is a constant multiple of the polynomial
(8.14). Indeed, the leading and the trailing polynomial coefficients of (8.9) have only one integer
root each which are the degree bounds of (8.14).

Lemma 8.1 extends to Laurent polynomials in K[log(z)][z, 1
z
]. The point is that in symbolic

computation of generalized Taylor expansions or power series (see [Kauers and Paule, 2011,
Section 7.3], the formal log(z) behaves as presented below.

(%i4) taylor(log(z),z,0,-1);

(%o4)/T/ 0 + . . .
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(%i5) taylor(log(z),z,0,0);

(%o5)/T/ log (z) + . . .

(%i6) taylor(z*log(z),z,0,1);

(%o6)/T/ (log (z) + . . .) · z + . . .

(%i7) taylor(z*log(z),z,0,0);

(%o7)/T/ 0 + . . .

This is exactly the behavior of any constant when we avoid the canonical representation. In the
generalized hypergeometric type case, the impact of the formal log(z) in a recurrence equation
computed by FindRE appears as a multiple integer root of the trailing or leading polynomial
coefficient.

(%i8) FindRE(log(z)*exp(z),z,a[n]);

(%o8) (1 + n)2 · an+1 − (1 + 2 · n) · an + an−1 = 0

(%i9) FindRE(log(z)^2*z^2,z,a[n]);

(%o9) (n− 2)3 · an = 0

Without going into much details, one can state that the computation of degree bounds for
T (z) in (8.8) remains unchanged if T (z) is a Laurent polynomial in ∈ K[log(z)][z, 1

z
].

Algorithmically, we proceed as follows.

Algorithm 12 Computation of T (z) and the starting point of F (z) for a given hypergeometric
type expression f with representation (8.8)

Input: An expression f whose Taylor coefficients satisfy the holonomic recurrence equation

Pdan+d + Pd−1an+d−1 + . . .+ P0an = 0, (8.16)

d ∈ N, Pj ∈ K[n], j ∈ J0, dK, Pd · P0 6= 0,
Output: T (z) and a starting point N0 for F (z) for the representation (8.8) of f .

1. Compute the minimum integer roots M of Pd(n− d) and the maximum integer root N
of P0(n).

2. If N does not exist then set T (z) := 0 and set N0 := M .

3. If N does exist then set T (z) := Taylor(f(z), z, 0, N) and set N0 := N + 1.

4. Return [T (z), N0].

The following Maxima code implements this procedure for any hypergeometric type function
f(z) and gives outputs as a list containing the corresponding T (z) and the starting point for
F (z).
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LPolyPart(f,z):=block([RE,N,M],

RE: FindRE(f,z,a[n]),

if(RE#false) then(

RE: REcoeff(RE,a[n]),

d: length(RE)-1,

M: map(rhs, solve(subst(n-d,n,last(RE)),n)),

M: lmin(sublist(M, integerp)),

N: sublist(map(rhs, solve(first(RE),n)),integerp),

if(length(N)<1) then [0, M]

else (

N: lmax(N),

[ratdisrep(taylor(f,z,0,N)), N+1]

)

)

)$

Let us apply this procedure to some examples.

(%i10) LPolyPart(log(1+z),z);

(%o10) [0, 1]

(%i11) LPolyPart(asech(z),z);

(%o11) [log (2)− log (z) , 1]

(%i12) LPolyPart(exp(z)+log(1+z),z);

(%o12) [1, 1]

(%i13) LPolyPart(sin(z)/z^5,z);

(%o13) [0,−5]

(%i14) LPolyPart(atan(z)+exp(z),z);

(%o14) [1, 1]

Observe in this latter example that T (z) is found to be 1 but the representation given by our
Maxima FPS implementation does not contain this extra term. The reason is that N + 1 is not
necessarily the exact starting point but rather its maximum value possible. This shows that the
exact T (z) is not uniquely determined but only the polynomial from which it can always be
subtracted. Nevertheless, it is safe to have such a value since it does not affect the correctness
of the result and moreover, some terms can always be subtracted from the obtained T (z) when
F (z) can be used to compute these. Therefore our algorithm tries to subtract certain terms from
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T (z) after having found the linear combination needed for F (z). For the latter example, it turns
out that T (z) is obtained as z0

0!
from one of the obtained hypergeometric type series.

As last example let us take the case of the Chebyshev polynomial cos(4 arccos(z)).

(%i14) LPolyPart(cos(4*acos(z)),z);

(%o14) [8 · z4 − 8 · z2 + 1, 5]

Thus, the starting point to compute the linear combination for F (z) is 5. This example leads
to a two-term holonomic recurrence equation. We will see in the next section that the linear
combination of the corresponding hypergeometric type series yields 0 so that one finally gets the
known result cos(4 arccos(z)) = T (z) = 8 · z4 − 8 · z2 + 1.

8.3 The Two-Term Holonomic RE Case

One may ask why do we need such an algorithm since it is already generalized with Algorithm 11

(mfoldHyper), on p. 147. This could be answered by the following example whose corresponding
two-term holonomic recurrence relation has hypergeometric and 2-fold hypergeometric term
solutions over Q.

(%i1) RE:FindRE(cosh(z),z,a[n]);

(%o1) (1 + n) · (2 + n) · an+2 − an = 0

(%i2) mfoldHyper(RE,a[n]);

(%o2)

[[
1,

{
1

n!
,
(−1)n

n!

}]
,

[
2,

{
1

(2 · n)!

}]]
(%i3) mfoldHyper(RE,a[n],2,1);

(%o3)
1

(2 · n+ 1) · (2 · n)!

Thus we get four terms for a recurrence equation of order 2 and the coefficients of the linear
combination sought are solutions of a linear system of two equations with 4 unknowns. This
leads to a solution with two arbitrary constants that are set to zero. In our case these are the
constant coefficients of the involved hypergeometric type series of type 2. Therefore we obtain
a power series representation with a linear combination of hypergeometric terms as general
coefficient. That is

cosh(z) :=
∞∑
n=0

1 + (−1)n

2n!
zn, (8.17)

which is not the representation we want as it computes infinitely many zero coefficients for odd
powers of the indeterminate z. Note that this situation could be avoided by some considerations
on the involved holonomic RE order and the linear system to be solved. But we will not do
so as the situation could be inappropriate in the general case when there are more m-fold
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hypergeometric term solutions of the computed holonomic RE. Moreover, since in the two-term
holonomic RE case the corresponding m-fold hypergeometric term ratio is easily computable,
the m computed formulas using Algorithm 7 are either rational functions or ratios of products of
factorials with linear arguments and Pochhammer symbols. This is a nicer simplification than
what we obtain using mfoldHyper (see (%o3) above) for which returned formulas are either
rational functions or products of a rational function times ratios of products of factorials with
linear arguments and Pochhammer symbols. The appearing multiplicative rational functions are
computed when Algorithm 9 from p. 112 is used in mfoldHyper’s calls of Algorithm 10. Other
advantages of particularly considering the two-term holonomic RE case will be given at the end
of this section.

Let us sketch the two-term holonomic RE algorithm for our introductory example. The
recurrence equation found for cosh(z) is

(1 + n) · (2 + n) · an+2 − an = 0.

We immediately get the symmetry numberm = 2. Therefore the corresponding 2-fold symmetric
ratios are

a2(n+1)

a2n

=
1

(2 · n+ 1) · (2 · n+ 2)
and

a2(n+1)+1

a2n+1

=
1

(2 · n+ 2) · (2 · n+ 3)
. (8.18)

We can now apply Algorithm 7.

(%i4) r0:1/((2*n+1)*(2*n+2))$

(%i5) r1:1/((2*n+2)*(2*n+3))$

(%i6) pochfactorsimp(r0,n);

(%o6)
1

(2 · n)!

(%i7) pochfactorsimp(r1,n);

(%o7)
1

(1 + 2 · n)!

Note that in the general case before using Algorithm 7 we have to make sure that the given
ratios do not have non-negative integer roots. This is ensured by an integer shift of the starting
point to the ratio of the trailing and the leading polynomial coefficients. In this example the
starting point is 0.

We now write

I(z) := α0 ·
0∑

n=0

z2·n

(2 · n)!
+ α1 ·

0∑
n=0

z2·n+1

(2 · n+ 1)!
,

and use 2 initial values n = 0 = 2 · 0 and n = 1 = 2 · 0 + 1 to find the unknown constants α0

and α1. We have

(%i8) taylor(cosh(z),z,0,1);

(%o8)/T/ 1 + . . .
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therefore α0 + α1 · z = 1, hence α0 = 1 and α1 = 0. And finally we obtain the power series
representation

cosh(z) =
∞∑
n=0

z2·n

(2 · n)!
, (8.19)

as expected.
For cos(4 · arccos(z)), FindRE gives the recurrence equation

(%i9) RE:FindRE(cos(4*acos(z)),z,a[n]);

(%o9) (n− 4) · (4 + n) · an − (1 + n) · (2 + n) · an+2 = 0

As computed in the previous section, the starting point for the corresponding hypergeometric
type series part is 5. Shifting the ratio of the trailing and the leading polynomial coefficients by 5

yields

−(1 + n) · (9 + n)

(n+ 6) · (n+ 7)
.

Therefore the corresponding 2-fold symmetric ratios are

r0 = −(1 + 2 · n) · (9 + 2 · n)

(2 · n+ 6) · (2 · n+ 7)
and r1 = −(2 + 2 · n) · (10 + 2 · n)

(2 · n+ 7) · (2 · n+ 8)
(8.20)

which after applying Algorithm 7 lead to the "simple" formulas

(%i10) h0:pochfactorsimp(r0,n);

(%o10)
2 · (7 + 2 · n) · (−1)n · (2 · n)!

7 · (n+ 1) · (n+ 2) · 4n · n!2

(%i11) h1:pochfactorsimp(r1,n);

(%o11)
15 · (1 + n) · (2 + n) · (4 + n) · (−1)n · 4n · n!2

(5 + 2 · n)!

We have to use 2 initial values corresponding to n = 2 · 0 + 5 and n = 2 · 0 + 1 + 5. First,
we define

(%i12) I:alpha[0]*subst(0,n,h0)*z^5 + alpha[1]*subst(0,n,h1)*z^6

+ Taylor(cos(4*acos(z)),z,0,4);

(%o12) α1 · z6 + α0 · z5 + 8 · z4 − 8 · z2 + 1

for the unknown constants α0 and α1. Remember that Taylor(cos(4 arccos(z)), z, 0, 4) = T (z)

for the representation (8.8) of cos(4 arccos(z)). To find the values of α0 and α1, we just have to
solve the trivial identity

(%i13) I-Taylor(cos(4*acos(z)),z,0,6)=0;

(%o13) α1 · z6 + α0 · z5 = 0

We thus obtain α0 = α1 = 0 and therefore

cos(4 · arccos(z)) = 1− 8 · z2 + 8 · z4. (8.21)
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In a nutshell the algorithm presents as follows.

Algorithm 13 Power series representations of hypergeometric type functions whose FindRE
computes two-term holonomic REs for their Taylor coefficients.
Input: A holonomic expression f and a holonomic RE

Q(n)an+m − P (n)an = 0, (8.22)

P,Q ∈ K[n], P ·Q 6= 0, computed by FindRE for the Taylor coefficient of f .
Output: The power series representation of f at 0.

1. Use Algorithm 12 to compute the corresponding T (z) and a starting point N0 for the
representation (8.8) of f .

2. Set r(n) = P (n+N0)
Q(n+N0)

.

3. Compute the m symmetric ratios

rj(n) := r(m · n+ j), j = 0, . . . ,m− 1. (8.23)

4. Use Algorithm 7 to compute hj(n) :=
∏n−1

i=0 rj(i), for j = 0, . . . ,m− 1.

5. Set I(z) := T (z) +
∑m−1

j=0 αj ·hj(0) · zj+N0 , where αj, j = 0, . . . ,m− 1 are unknown
constants.

6. Find the constant values αj by equating the coefficient of the Laurent polynomial

Taylor(f(z), z, 0, N0 +m− 1)− I(z) (8.24)

to zero.

7. Return T (z) +
∑m−1

j=0 αj ·
∑∞

n=0 hj(n) · zm·n+j+N0

This algorithm is a variant of the one in [Koepf, 1992] for hypergeometric type functions
leading to two-term holonomic REs. At this stage we can already compute many power series
representations of meromorphic functions. This algorithm is incorporated in our Maxima FPS
implementation.

(%i14) FPS(sin(z)/z^1000,z,n);

(%o14)
∞∑
n=0

(−1)n · z2·n−999

(1 + 2 · n)!

(%i15) FPS(exp(z)*z^1000,z,n);

(%o15)
∞∑
n=0

z1000+n

n!

(%i16) FPS((sqrt(sqrt(z)+1)-sqrt(1-sqrt(z)))

/(sqrt(2)*sqrt(z)),z,n);

(%o16)
∞∑
n=0

(
1
4

)
n
·
(

3
4

)
n
· 4n · zn

√
2 · (1 + 2 · n)!
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Observe in this two-term holonomic RE case that the computation of the linear combination
sought is made easier by the following facts:

1. the Taylor expansion of order N0 +m− 1 of f(z) suffices to determine the linear combi-
nation sought;

2. the obtained linear system to compute the coefficients of the linear combination sought is
trivial (with an identity matrix) and has a unique solution;

3. the starting point computed by Algorithm 12 yields starting points for all the involved
m-fold symmetric terms.

All this facts do not hold in the general case since we have to deal with m-fold symmetric
terms with different values of m. For example, suppose we have the input sin(z)

z3
+ exp(z), then

Algorithm 12 finds

(%i17) LPolyPart(sin(z)/z^3+exp(z),z);

(%o17) [0,−3]

However, by prior knowledge we know that the power series of exp(z) starts at 0. This shows
that in the general case the starting point could not similarly be used as in Algorithm 13 step 5.
We move on to this more complicated situation.

8.4 The General Hypergeometric Type Series Case

As previously we consider an expression f(z) related to a hypergeometric type function and we
want to compute the representation

f(z) := T (z) + F (z), (8.25)

where T (z) is generally a Laurent polynomial in K[log(z)][z, 1
z
] (in practice K = C), and F (z)

is a sum of hypergeometric type series. We have already shown how to compute T (z) and a
starting point for F (z).

Unlike the two-term holonomic RE case where the starting point computed by Algorithm 12

can always easily be used for all the m-fold symmetric terms to consider, in the general case
one has to take into account all the involved m-fold hypergeometric terms. Indeed, we have to
avoid negative arguments for the evaluation of m-fold hypergeometric terms which are supposed
to start at least at 0 according to Algorithm 7. When there are many different types involved
in F (z) as we saw with the example of arctan(z) + exp(z), the exact starting point is in fact
the minimal one among those of the hypergeometric type series in F (z). We only have to make
sure that this value is positive in order to avoid any division by 0 or factorial of negative integers
when evaluating m-fold hypergeometric terms.
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In practice, we use

N1 =

max{N0, 0}, if N0 < 0

N0 if N0 > 0
> 0, (8.26)

from which all necessary m-fold hypergeometric terms can be evaluated for initial conditions.
Once the linear combination sought is found, if possible we subtract terms from the corresponding
T (z) for the indices n ∈ JN0, N1K. Note that T (z) should also be modified accordingly. We set

T1(z) := Taylor(f(z), z, 0, N1 − 1). (8.27)

By these measures, the final representation gives a normal form after shifting the power of the
indeterminate by the first non-zero term index in each hypergeometric type series.

Let us now find a representation (8.25) of f(z) for a computed T1(z) and a starting point N1

knowing that we can make further computations to subtract terms in T1(z) that can be deduced
from F (z).

To ease the understanding of the general case, we first describe the details for the situation
where

H = [[2, {h2n}] , [3, {h3n}]] , (8.28)

represent the obtained basis of m-fold hypergeometric term solutions of the holonomic RE
given by FindRE for the Taylor coefficients of f(z). Let us also assume for simplicity that
N1 = T1(z) = 0, then the general form for the corresponding F (z) can be written as

F (z) = α2,0 ·
∞∑
n=0

h2nz
2n + α2,1 ·

∞∑
n=0

h2n+1z
2n+1 + α3,0 ·

∞∑
n=0

h3nz
3n

+ α3,1 ·
∞∑
n=0

h3n+1z
3n+1 + α3,2 ·

∞∑
n=0

h3n+2z
3n+2, (8.29)

α2,i, α3,j ∈ K, i = 0, 1, j = 0, 1, 2. Hence we have five unknowns to determine. Observe
that computing a Taylor expansion of order 4 of f(z) could not be enough. Indeed, the Taylor
expansion of order 4 would give five linear equations for the unknown constants but it turns out
that the obtained linear system is not sufficient to determine these. Assume

Taylor(f(z), z, 0, 4) = t0 + t1z + t2z
2 + t3z

3 + t4z
4, (8.30)

then equating the coefficients with their correspondents in (8.29) yields the linear system

α2,0 · h2n(0) + α3,0 · h3n(0) = t0

α2,1 · h2n+1(0) + α3,1 · h3n+1(0) = t1

α2,0 · h2n(1) + α3,2 · h3n+2(0) = t2

α2,1 · h2n+1(1) + α3,0 · h3n(1) = t3

α2,1 · h2n+1(2) + α3,1 · h3n+1(1) = t4

(8.31)
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from which a value for α2,0 cannot be deduced because it appears in three equations with three
other different unknown constants.

What we need is to use the Taylor expansion of order p ∈ N of f(z) in such a way that there
exists q ∈ N, q 6 p, so that there are at least q linear equations with q unknowns each in the
resulting linear system. The minimal value of such a p in this particular example is 2 ·x2 = 3 ·x3

where x2 and x3 are the minimal positive integers verifying 2 · x2 = 3 · x3, hence x2 = 3, x3 = 2

and p = 6 = lcm(2, 3). Indeed, a Taylor expansion of order 6 gives two linear equations for α2,0

and α3,0 and this allows to find their values and deduce those of the other constants. If moreover
there were a hypergeometric term in (8.28), then 6 linear equations could not be enough. In this
case the minimal value for p would be 2 · 6 = 12 in order to have at least three equations for
α2,0, α3,0 and the unknown constant related to the hypergeometric term.

We now move to the general case.
Let

H :=

[
[1, {hn,1, hn,2, . . . , hn,l1}] , . . . ,

[
m1,

{
hm1n,1, hm1n,2, . . . , hm1n,lm1

}]
, . . . ,

[
mµ,

{
hmµn,1, hmµn,2, . . . , hmµn,lmµ

}] ]
(8.32)

=
[
[1, S1,0] , . . . , [m1, Sm1,0] , . . . ,

[
mµ, Smµ,0

]]
(8.33)

for integers 1 < m1 < · · · < mµ be the non-empty basis of all m-fold hypergeometric term
solutions of a holonomic recurrence equation satisfied by the Taylor coefficients of f(z). mµ

is the maximum symmetry number, lm is the number of m-fold hypergeometric terms in H
m ∈ {m1, . . . ,mµ} ∪ {1}. The computation of F (z) for f(z) follows the following steps.

Algorithm 14 Computation of F (z) in the representation (8.25) of a given hypergeometric type
expression f

Input: f(z), the recurrence equation, say RE computed by FindRE, the basis of all m-fold
hypergeometric term solutions of RE, say H, computed by mfoldHyper, T (z) and N0

computed by Algorithm 12.
Output: F (z) in the representation (8.25) of f .

1. Find the other m-fold symmetric terms associated to each m-fold hypergeometric
term in H for m ∈ {m1, . . . ,mµ}. For that purpose one calls Algorithm 11 as
mfoldHyper(RE,a[n],m,j) for j = 1, . . . ,m − 1, m ∈ {m1, . . . ,mµ}. This allows to
build the sets

Sm := {Sm,0, Sm,1 . . . , Sm,m−1} , (8.34)

for m ∈ {m1, . . . ,mµ}, where

Sm,j := {hmn+j,1, hmn+j,2, . . . , hmn+j,lm} , 0 6 j 6 m− 1. (8.35)

2. Set N1 = max{0, N0} and T1(z) := Taylor(f(z), z, 0, N1 − 1).
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Algorithm 14 Computation of F (z) the representation (8.25) of a given hypergeometric type
expression f

3. Compute im,j =
⌈
N1−j
m

⌉
for j = 0, . . . ,m− 1, m ∈ {m1, . . . ,mµ}.

4. Set

N = N1 +

l1 +
∑

m∈{m1,...,mµ}

lm − 1

 · lcm(m1, . . . , ·mµ) (8.36)

5. Compute pm,j =
⌊N−j

m

⌋
, j = 0, . . . ,m− 1, m ∈ {m1, . . . ,mµ}.

6. Let αm,j,k ∈ K, m ∈ {m1, . . . ,mµ}, j = 0, . . . ,m − 1, k = 1, . . . , lm be some
unknown constants and define

I(z) :=
∑

m∈{m1,...,mµ}

m−1∑
j=0

lm∑
k=1

αm,j,k

pm,j∑
n=im,j

hmn+j,kz
mn+j. (8.37)

7. Solve the linear system resulting from the equality

I(z) + T1(z)− Taylor(f(z), z, 0,N ) = 0, (8.38)

for the unknown (αm,j,k)
T
m∈{m1,...,mµ}, 06j6m−1, 16k6lm

∈ Kl1+
∑
m∈{m1,...,mµ}

lm·m.

8. If there is no solution then stop and return FALSE. No linear combination exists in this
case.

9. If there is a solution then set all parameters of dependency to 0 (if there are some). This
gives the choice of the linear combination. We denote by α′m,j,k the resulting value
found for αm,j,k, m ∈ {m1, . . . ,mµ}, j = 0, . . . ,m− 1, k = 1, . . . , lm.

10. For each Sm,m ∈ {m1, . . . ,mµ} construct the term

S ′m :=
∑

Sm,j∈Sm

 ∑
hmn+j,k∈Sm,j

α′m,j,khmn+j,k

 zmn+j−im,j (8.39)

:=
m−1∑
j=0

(
lm∑
k=1

α′m,j,khmn+j,k

)
zmn+j−im,j (8.40)

11. For each S ′m, m ∈ {m1, . . . ,mµ}, make evaluations for n ∈ JN0, N1K to subtract terms
in T1(z) that can be computed from S ′m and shift the initial index im,j accordingly.
(This step could also be done before step 10 to get more suitable values for starting
points).

12. Return T1(z) +
∑

m∈{m1,...,mµ}
∑∞

n=0 S
′
m.

The correctness of this algorithm depends on whether the solution of the linear system in step
7 has enough equations to determine the possible coefficients of the linear combination sought.
Indeed, as we saw in the particular example for (8.28) that we need a linear system for which
each unknown has enough equations to be determined. This is established by the following
lemma.



174 Computing Power Series

Lemma 8.2. In Algorithm (14),N in (8.36) is the minimal integer for which the Taylor expansion

of order N of f(z) allows to determine the linear combination sought.

Proof. The computation is the similar for any integer N1, therefore we assume that N1 = 0. The
number of unknowns in each equation is q = l1 +

∑
m∈{m1,...,mµ} lm. The aim is to find N such

that Taylor(f(z), z, 0,N ) in Algorithm 7 step 7 yields a linear system with at least q equations
with the same q unknowns each. Of course, the minimal value of N is an integer that verifies

N = m1 · x1 = m2 · x2 = · · · = mµ · xµ,

for some positive integers x1, x2, . . . , xµ, since we have to find q equations that correspond to
the q first coincidences of

zm1·n, zm2·n, . . . , zmµ·n.

The second coincidence is reached at the expansion of order lcm(m1, . . . ,mµ), therefore by
induction we deduce that for any positive integer p, the pth coincidence is reached at the expansion
of order (p− 1) · lcm(m1, . . . ,mµ). Hence we finally get

N = (q − 1) · lcm(m1, . . . ,mµ) =

l1 +
∑

m∈{m1,...,mµ}

lm − 1

 · lcm(m1, . . . , ·mµ),

as expected.

Illustrations and Remark.

• Let us consider sin(z)
z5

+ exp(z). The m-fold hypergeometric terms are

(%i1) mfoldHyper(FindRE(sin(z)/z^5+exp(z),z,a[n]),a[n]);

(%o1)

[ [
1,

{
1

n!

}]
,

[
2,

{
(−1)n

(n+ 1) · (n+ 2) · (2 · n+ 1) · (2 · n+ 3) · (2 · n+ 5) · (2 · n)!

}]]
Further factorizations are used to get a much simpler representation of the 2-fold hyperge-
ometric term. The computation of the linear combination starts at N1 = max{−5, 0} = 0

since we cannot compute factorials of negative arguments in the hypergeometric term 1
n!

.
The corresponding T1(z) is

T1(z) =
1

z4
− 1

6 · z2
.

A Taylor expansion of order N = (1 + 1 − 1) · 2 = 2 is computed to determine the
coefficients of the linear combination sought. Observe that this expansion allows to find
the coefficients of the hypergeometric series and the even (z2n powers) hypergeometric
type series of type 2. The value of the coefficient of the odd hypergeometric type series of
type 2 is deduced from the linear equation of two variables whose second one corresponds
to the coefficient of the hypergeometric series.
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• In this example the subtraction of terms from T1(z) is correctly handled. That is why our
Maxima implementation yields the following "simplest" power series representation of
sin(z)
z5

+ exp(z)

(%i2) FPS(sin(z)/z^5+exp(z),z,n);

(%o2)

(
∞∑
n=0

zn

n!

)
+
∞∑
n=0

(−1)n · z2·(n−2)

(1 + 2 · n)!

Note, however, that this subtraction of terms is not always possible. For example the
function cos(z) + sin(z)

z3
turns out to be a hypergeometric type series of type 2 (not the sum

of hypergeometric type series of type 2, but is itself of this type).

(%i3) FPS(cos(z)+sin(z)/z^3,z,n);

(%o3)

(
∞∑
n=0

(−1)n · ((3 + 2 · n)!− (2 · n)!) · z2·n

(2 · n)! · (3 + 2 · n)!

)
+

1

z2

Indeed, the obtained general coefficient is hypergeometric as the use of our Maxima
function ratio below shows.

(%i4) ratio(((-1)^n*((3+2*n)!-(2*n)!))/((2*n)!*(3+2*n)!),n);

(%o4) − 59 + 94 · n+ 48 · n2 + 8 · n3

2 · (n+ 2) · (2 · n+ 5) · (8 · n3 + 24 · n2 + 22 · n+ 5)

If one uses an algorithm that computes power series representations of each summand
in the input then the result would be different. However such an approach is not recom-
mended as it does not follow the algorithmic idea of discovering new identities and new
hypergeometric terms as above.

• Algorithm 14 step 7: parameters of dependency appear when there are some m-fold
hypergeometric terms represented many times as we explained with the example of
cosh(z) in the previous section.

As already used many times, the command FPS(f(z),z,n,[z_0]) of our FPS package computes
the power series representation of f(z) at the point of expansion z0 ∈ C (if given or 0 otherwise)
with the index variable n by combining FindRE, mfoldHyper, Puiseuxnbrfun and our implemen-
tations of Algorithms 12 and 13 if the computed holonomic RE is a two-term holonomic RE or
Algorithm 14, if f(z) is a generalized hypergeometric type function.

Example 8.2.

(%i5) Nmax:7$

(%i6) FPS(sin(z)^2+cos(z)^3,z,n);

(%o6)

(
∞∑
n=0

−(−(−9)n − 3 · (−1)n + 2 · (−1)n · 4n) · z2·n

4 · (2 · n)!

)
+

1

2
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Note that in this example we set Nmax to 7 because the given expression satisfies a holonomic
differential equation of order 7.

(%i7) FPS(sinh(z)+asinh(z),z,n);

(%o7)

(
∞∑
n=0

(−1)n · (2 · n)! · z1+2·n

(2 · n+ 1) · 4n · n!2

)
+

(
∞∑
n=0

− z2·n

(2 · n)!

)
+
∞∑
n=0

zn

n!

(%i8) FPS(sin(z^(1/3))+ cos(z^(1/2)),z,n);

(%o8)

(
∞∑
n=0

(−1)n · z 1+2·n
3

(2 · n+ 1) · (2 · n)!

)
+
∞∑
n=0

(−1)n · zn

(2 · n)!

(%i4) FPS(acos(z^(1/2))+exp(z^2),z,n);

(%o9)

(
∞∑
n=0

− (2 · n)! · z 1+2·n
2

(2 · n+ 1) · 4n · n!2

)
+

(
∞∑
n=0

z2·n

n!

)
+

2 + π

2
− 1

(%i10)FPS(exp(asinh(z^2))+1/(1-z^(2/3)),z,n);

(%o10)

(
∞∑
n=0

−z
1+2·n

3

)
+

(
∞∑
n=0

−(−1)n · (2 · n)! · z4·n

(2 · n− 1) · 4n · n!2

)
+

(
∞∑
n=0

z
n
3

)
+ z2

(%i11)FPS(log(1+sqrt(z))+atan(z^(1/3)),z,n);

(%o11)

(
∞∑
n=0

(−1)n · z2+4·n

2 · n+ 1

)
+
∞∑
n=0

(−1)n · z3+3·n

n+ 1

(%i12)FPS(z*log(z)^2+asin(z),z,n);

(%o12)

(
∞∑
n=0

4−1−n · (2 · (1 + n))! · z3+2·n

(1 + n)2 · (2 · n+ 3) · n!2

)
+ z ·

(
1 + log (z)2)

Observe that despite the presence of the term z log(z)2, the power series representation is still
found. This is one nice advantage of using Algorithm 12.

Let us use other points of expansions.

(%i13)FPS(sin(2*z)+cos(z),z,n,%pi/2);

(%o13) −
∞∑
n=0

(−1)n · (1 + 2 · 4n) ·
(
z − π

2

)1+2·n

(2 · n+ 1) · (2 · n)!

(%i14)FPS(exp(z)+log(1+z),z,n,%e);

(%o14)

 ∞∑
n=0

(
ee + e1+e + ee · n+ e1+e · n+ (−1)n·(1+n)!

(1+e)n

)
· (z − e)1+n

(e+ 1) · (n+ 1) · (1 + n)!

+log (e+ 1)+ee

This power series is wrongly represented by Maple’s FPS command due to the missing of the
term log (e+ 1) +ee.

We end our series of examples with a funny one. We use the algorithm to recover a random
polynomial generated by randompoly(z).
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(%i15)FPS(randompoly(z)+exp(z),z,n);

(%o15)

(
∞∑
n=0

zn

n!

)
− 19 · z4 + 19 · z2 + 2 · z +

7

z
− 26

z2
+

7

z3
+

1

z4
− 15

z6
− 23

z9
+

4

z10

Note that the current Maple FPS command cannot find the power series representations of
most of the above examples.

We have now fully described our algorithm for the computation of linear combinations of
generalized Laurent-Puiseux series of hypergeometric type which is the essential goal of this
thesis. Next, we move to some extensions of our computations.

8.5 Asymptotic Series

With the explanations given up to now we are already able to compute convergent asymptotic
series. Indeed, the computation of a power series representation of f(z) at infinity is handled
as the one of f(1

z
) at 0 after the substitution of z by 1

z
(see [Koepf, 1993, Section 7]). Let us

compute the examples of this type from page 20.

(%i1) FPS(atan(x),x,n,inf);

(%o1)

(
∞∑
n=0

−(−1)n · x−1−2·n

2 · n+ 1

)
+
π

2

(%i2) FPS(exp(1/x),x,n,inf);

(%o2)
∞∑
n=0

1

n! · xn

However, none of our described algorithms can be used to represent the power series of
x exp(−x)Ei(x) or

√
π exp(x)(1− erf(x)) in Maxima as its command taylor does not have a

good implementation for asymptotic expansions.

(%i3) f1:x*exp(-x)*expintegral_ei(x)$

(%i4) f2:sqrt(%pi)*exp(x)*(1-erf(sqrt(x)))$

(%i5) taylor(f1,x,inf,0);

taylor: encountered an unfamiliar singularity in:

expintegral_ei (x) – an error. To debug this try: debugmode(true);

(%i6) taylor(f2,x,inf,0);

taylor: encountered an unfamiliar singularity in:

erf
(√

x
)

– an error. To debug this try: debugmode(true);
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(%i7) taylor(subst(1/x,x,f1),[x,0,0,’asymp]);

taylor: encountered an unfamiliar singularity in:

expintegral_ei

(
1

x

)
– an error. To debug this try: debugmode(true);

(%i8) taylor(subst(1/x,x,f2),[x,0,0,’asymp]);

taylor: encountered an unfamiliar singularity in:

erf

(
1√
x

)
– an error. To debug this try: debugmode(true);

If we rather use the limit command, then we get the desired limits.

(%i9) limit(f1,x,inf);

(%o9) 1

(%i10) limit(f2,x,inf);

(%o10) 0

However, we should also be aware of some inconvenient behaviors. Indeed, the results might be
useless if one computes an equivalent limit after a change of variable ( 1

x
by x or vice versa).

(%i11) limit(subst(1/x,x,f1),x,0);

(%o11) lim
x→0

expintegral_ei
(

1
x

)
· e− 1

x

x

(%i12) limit(subst(1/x,x,f2),x,0);

(%o12) 0

Note, however, that since these expressions are holonomic, we are able to compute their
corresponding holonomic recurrence equations using FindRE. Moreover, we can also compute a
basis of all m-fold hypergeometric term solutions of these using mfoldHyper. However, we do
not use these algorithms as previously. We only consider specific cases in order to show that
our results can be used for such computations provided good implementations of asymptotic
approximations.

Assume we want to compute an asymptotic series of an expression f(x). Since Maxima’s
command limit can sometimes compute asymptotic limits, we first look for an asymptotic
expansion whose scale (see Definition 2.10 on p. 19) is x−n with a non-zero initial coefficient.
That is

a0 := lim
x→∞

f(x) 6= 0. (8.41)
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Thus, if the corresponding holonomic RE computed by FindRE for f
(

1
x

)
has a single hypergeo-

metric term solution computed with HypervanHoeij, say h(n), a Puiseux number equal to 1 and
a starting point N0 = 0, then the asymptotic series sought is

∞∑
n=0

a0 · h(n)x−n. (8.42)

This is how we handle asymptotic series like x exp(−x)Ei(x).

Suppose now that the initial coefficient is zero as for
√
π exp(x)(1−erf(x)). Observe that the

asymptotic sequence to be considered can be of the form x−n/k, k ∈ N since x0/k = 1, ∀k ∈ N.
We find a value for k by computing the Puiseux number using Puiseuxnbrfun (see Section 8.1).
However, we only consider the case where k = 2 in order to use the limit computation only once
again. The main reason why we choose the case k = 2 is because this turns out to be the only
need to handle the representation of asymptotic series like

√
π exp(x)(1− erf(x)) in Maxima

since

(%i13) limit(x^(1/2)*f2,x,inf);

(%o13) 1

and for a given f(x) this corresponds to the second coefficient

a1 := lim
x→∞

f(x)− a0

x−1/2
= lim

x→∞
x1/2 · f(x) (8.43)

for the asymptotic sequence x−n/2, and the initial coefficient a0 = 0. In this case, we look for
2-fold hypergeometric term solutions of the holonomic RE of f

(
1
x2

)
computed by FindRE using

mfoldHyper as mfoldHyper(RE,a[n],2,1). If there is only one solution, say h(2n+ 1), then the
asymptotic series sought is

∞∑
n=0

a1 · h(2n+ 1)x−
2n+1

2 =
∞∑
n=0

a1 · h(2n+ 1)x−n−
1
2 , (8.44)

since a0 = 0.

On the other hand, we also consider the case of hypergeometric type asymptotic series that
can be viewed as hypergeometric asymptotic series with only one summation whose general
coefficient is a hypergeometric term. These are expressions like f(xm) where f(x) has a hyper-
geometric series representation. We then compute a possible value for m from the holonomic
recurrence equation of f(x) computed by FindRE and substitute x by x1/m in the input expres-
sion to proceed as explained previously for the 1-fold or 2-fold hypergeometric case. Finally one
gets the corresponding hypergeometric type series of type m after substitution of x by xm in the
resulting representation. To determine m, we use mfoldHyper and if there is only one m-fold
hypergeometric term, then the corresponding m is the one used in the substitution. One could
use the least common multiple of the different hypergeometric types, but we avoid this since
we only want a minimal computation algorithm for asymptotic series expansions in Maxima.
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We use this approach to depend on Maxima’s command limit as little as possible and compute
the maximum hypergeometric type asymptotic series that can be obtained by the two methods
described above. Other hypergeometric type asymptotic series cannot be computed with our
Maxima FPS command.

A procedure for asymptotic computation implementing the above methods is used by our
Maxima FPS function when the internal command taylor generates an error after computing
the first initial coefficient. Nevertheless, with this tricky approach we are able to recover the
non-convergent asymptotic series given on page 20 and some related ones.

(%i14) FPS(f1,x,n,inf);

(%o14)
∞∑
n=0

n!

xn

(%i15) FPS(f2,x,n,inf);

(%o15)
∞∑
n=0

(−1)n · (2 · n)! · x− 1
2
−n

4n · n!

(%i16) FPS(x*subst(x^2,x,f2),x,n,inf);

(%o16)
∞∑
n=0

(−1)n · (2 · n)!

4n · n! · x2·n

(%i17) FPS(subst(1/x,x,f1),x,n,0);

(%o17)
∞∑
n=0

n! · xn

(%i18) FPS((expintegral_e1(1/x)*%e^(1/x))/x,x,n,0);

Not computable at 0

(%o18)
expintegral_e1

(
1
x

)
· e 1

x

x

For the latter example, neither the command taylor nor the limit one can compute the needed
limit in Maxima. This ends our Maxima implementation for asymptotic series. We now come
back to convergent power series, but the non-hypergeometric cases.

8.6 Non-Hypergeometric Type Series

In this section, we give approaches to represent the power series of expressions that are either not
holonomic, or holonomic but not of hypergeometric type. Computing "simple" representations
as for hypergeometric type functions for such expressions is still an open problem. The known
formulas in these cases generally include other definitions to simplify their representations as for
tan(z), sec(z), 1

exp(z)−1
, etc., where Bernoulli and Euler numbers are used. Similarly, we will

give such representations with all the needed data for evaluation.
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In the first place we analyze the given expression to see whether a representation can be
deduced from some particular hypergeometric type series. In this direction, we only deal with hy-
pergeometric type series that have a single infinite summation term like those of sin(z), arccos(z),

etc. Indeed, we know that generally for two given hypergeometric type expressions f and g, 1
f

,
f · g, f t, t ∈ Q are not of hypergeometric type. However, there are known formulas to compute
these when the power series representation of f and g have a single infinite summation term each.
Therefore, if our default FPS algorithm does not find a hypergeometric type series representation
then the following procedures are applied next.

8.6.1 Cauchy Product of Hypergeometric Type Series

Let f and g be two hypergeometric type series with representations

f(z) =
∞∑
n=0

anz
m1·n+N1

k1 =
∞∑
n=0

f1(n), g(z) =
∞∑
n=0

bnz
m2·n+N2

k2 =
∞∑
n=0

g1(n). (8.45)

Applying the Cauchy product rule for the infinite series
∑∞

n=0 f1(n) and
∑∞

n=0 g1(n) yields

f(z) · g(z) =
∞∑
n=0

n∑
j=0

f1(j) · g1(n− j). (8.46)

Therefore

f(z) · g(z) =
∞∑
n=0

n∑
j=0

ajz
m1·j+N1

k1 · bn−jz
m2·(n−j)+N2

k2

=
∞∑
n=0

n∑
j=0

aj · bn−j · z
(m1·k2−m2·k1)·j+N1·k2+N2·k1+m2·n

k1·k2 . (8.47)

Remark that if
m1 · k2 −m2 · k1 = 0 (8.48)

then (8.47) reads

f(z) · g(z) =
∞∑
n=0

(
n∑
j=0

aj · bn−j

)
· z

m2·n+N1·k2+N2·k1
k1·k2

=
∞∑
n=0

(
n∑
j=0

aj · bn−j

)
· z

m·n+N
k , (8.49)

m = m2, N = N1 · k2 + N2 · k1, k = k1 · k2. The latter representation shows which possible
non-zero coefficients there are and gives a formula to compute them. In our implementation,
when the given non-hypergeometric type expression is the product of hypergeometric type series
with representations of the form (8.45), then (8.49) is used to represent its power series provided
that the condition (8.48) holds.

Note that the product of hypergeometric type functions is holonomic. Thus we can compute
a holonomic RE satisfied by the Taylor coefficients of the given f · g and then deduce the Puiseux
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number k = lcm(k1, k2). This shows that in our implementation the condition (8.48) is applied
to hypergeometric type expressions whose Puiseux numbers are equal to 1 since a substitution of
z by zk is made before the computations.

Let us give some examples.

Example 8.3.

(%i1) FPS(asin(z)*cos(z),z,n);

(%o1)
∞∑
n=0

(
n∑
k=0

(2 · k)! · (−1)n−k

(2 · k + 1) · 4k · k!2 · (2 · (n− k))!

)
· z1+2·n

(%i2) FPS(atan(z)*log(1+z^2),z,n);

(%o2)
∞∑
n=0

(−1)n ·

(
n∑
k=0

1

(2 · k + 1) · (n− k + 1)

)
· z3+2·n

(%i3) FPS(exp(z^(3/2))*asin(z^(3/4)),z,n);

(%o3)
∞∑
n=0

(
n∑
k=0

4k−n · (2 · (n− k))!

k! · (2 · n− 2 · k + 1) · (n− k)!2

)
· z

3+6·n
4

Remark Note that the holonomic recurrence equation of each of the above examples hasm-fold
hypergeometric term solutions that do not lead to a valid linear combination for a hypergeometric
type series representation. We have observed that sometimes the recurrence equation computed
for the Taylor coefficients of a given product of hypergeometric type expressions f · g is
satisfied by the coefficient of the power series of f or the one of g. For example the case of
arctan(z) · log(1 + z2) yields the 2-fold hypergeometric term

(%i4) RE: FindRE(atan(z)*log(1+z^2),z,a[n]);

(%o4) − 3 · (1 + n) · (2 + n) · (3 + n) · (4 + n) · an+4 − (1 + n) · (2 + n) ·
(
18 + 27 · n

+ 5 · n2
)
· an+2 − n ·

(
2 + 7 · n+ 18 · n2 + n3

)
· an + (n− 2)2 · (n− 1)2 · an−2 = 0

(%i5) mfoldHyper(RE,a[n]);

(%o5)

[[
2,

(−1)n

n

]]
which of course could not lead to the general coefficient sought. For this example the linear
system obtained in Algorithm 14 step 7 has no solution. However, observe that one could apply
Koepf’s extension of Zeilberger’s algorithm [Koepf, 1995a] to search for a holonomic recurrence
equation for the definite series

n∑
k=0

1

(2 · k + 1) · (n− k + 1)
, (8.50)

since the summand is trivially shown to be hypergeometric with respect to n and k. But given
that mfoldHyper did not find any m-fold hypergeometric term solutions that represent (8.50),
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no holonomic RE can be found. Indeed, our algorithm proves that all the general coefficients
computed in Example 8.3 do not represent m-fold hypergeometric terms.

8.6.2 Rational Powers of Hypergeometric Series

For any t ∈ Q, and a hypergeometric series f(z) =
∑∞

n=0 anz
n, a0 > 0, we have the formula

f(z)t =

(
∞∑
n=0

anz
n

)t

=
∞∑
n=0

Anz
n,

A0 = at0

An =
1

n · a0

∑n−1
j=0 [(n− j) · t− j] an−j · Aj

.

(8.51)
For more details about this formula see [Von Holdt, 1965]. When our default FPS algorithm
does not find a hypergeometric type representation of the rational power of a given expression,
this formula is used if that expression can be written as

∑∞
n=0 anz

n+N , where N ∈ N>0 and an is
a hypergeometric term such that a0 > 0. In this case, our implementation yields a representation
of the form[

∞∑
n=0

1

n · a0

n−1∑
j=0

[(n− j) · t− j] an−j · Aj · zn+N + A0 · zN , A0 = at0

]
. (8.52)

The hypergeometric term specification is due to the fact that the formula can only be used
if the power of the indeterminate z is an integer shift of n in the representation of the given
expression. Therefore we rather use Algorithm 10 to reduce the computation of solutions of
corresponding holonomic REs to hypergeometric term solutions.

Example 8.4.

(%i6) FPS(log(1+z)^5,z,n);

(%o6)

[(
∞∑
n=1

n−1∑
k=0

Ak · (5 · n− 6 · k) · (−1)n−k · z5+n

n · (n− k + 1)

)
+ z5, A0 = 1

]
(%i7) FPS(atan(z)^(2/3),z,n);

(%o7)


 ∞∑

n=1

(∑n−1
k=0

Ak·(2·n−5·k)·cos(π·(n−k)2 )
n−k+1

)
· z 2

3
+n

3 · n

+ z
2
3 , A0 = 1


In this example the general coefficient of arctan(z) is computed as a hypergeometric term over
C and Maxima’s command rectform is used to simplify it in algebraic form.

(%i8) FPS(atan(z)^2,z,n);

(%o8)
∞∑
n=0

(−1)n ·

(
n∑
k=0

1

(2 · k + 1) · (2 · n− 2 · k + 1)

)
· z2+2·n

Here our procedure for the Cauchy product is applied since the corresponding power is 2.
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8.6.3 Holonomic Laurent-Puiseux Series

The two previous procedures have holonomic expressions as input. This even constitutes a
necessary condition for the application of the two previous procedures. However, if the condition
(8.48) is not satisfied or the given expression is not a rational power of a hypergeometric series,
then the computed holonomic RE is used to give a recursive definition of the corresponding
Taylor coefficients with some initial values. Note that this approach works for all holonomic
functions because the recurrence equation and the initial values represents a normal form of their
power series as we explained earlier in Section 4.3.2 on p. 58. Moreover, one could still use the
algorithm presented in Section 8.1 to determine Puiseux numbers. Indeed, one could extend the
explanations in Section 8.1 to the ones of holonomic functions. Furthermore using Algorithm 12

the representation of holonomic expressions that have no linear combination of hypergeometric
type functions follows immediately.

Example 8.5.

(%i9) FPS(exp(z+z^2),z,n);

(%o9)

[
∞∑
n=0

An · zn, An+2 =
2 · An + An+1

n+ 2
, n >= 0, [A0 = 1, A1 = 1]

]
(%i10)FPS(1+exp(sqrt(z)+z^(3/2)),z,n);

(%o10)

[(
∞∑
n=0

An · z
1+n
2

)
+ 2, An+5 =

9 · n · An + (6 · n+ 12) · An+2

n2 + 9 · n+ 20

+
(−3 · n2 − 9 · n) · An+3 + (n+ 4) · An+4

n2 + 9 · n+ 20
, n >= 0,[

A0 = 1, A1 =
1

2
, A2 =

7

6
, A3 =

25

24
, A4 =

61

120

]]
Since such a representation always exists for holonomic functions, we have also implemented

the Maxima function HoloRep(f,z,n,[z0]) only dedicated to this recursive representation of their
power series. The function is available in our package and can sometimes be used together
with our Maxima FPS command to get more information about the power series of a holonomic
expression power series.

(%i11) FPS(exp(z)*(cos(z)+sin(z)),z,n);

(%o11)

(
∞∑
n=0

(−1)n · 4n · z2+4·n(
1
4

)
n
·
(

3
4

)
n
· (2 · n+ 1) · (4 · n+ 1) · 64n · (2 · n)!

)

+

(
∞∑
n=0

2 · (−1)n · 4n · z1+4·n(
1
4

)
n
·
(

3
4

)
n
· (4 · n+ 1) · 64n · (2 · n)!

)
+
∞∑
n=0

(−1)n · 4n · z4·n(
1
4

)
n
·
(

3
4

)
n
· 64n · (2 · n)!

(%i12) HoloRep(exp(z)*(cos(z)+sin(z)),z,n);

(%o12)

[
∞∑
n=0

An · zn, An+2 =
(2 · n+ 2) · An+1 − 2 · An

n2 + 3 · n+ 2
, n >= 0, [A0 = 1, A1 = 2]

]
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8.6.4 Reciprocal of a Hypergeometric Type Series

This procedure is our first approach to represent non-holonomic expressions. Indeed, the
reciprocal of a holonomic function is generally not holonomic. This extension of our algorithm
was motivated by the secant function sec(z) and the generating function of Bernoulli numbers

z
exp(z)−1

whose reciprocals are the following quite simple hypergeometric type series.

(%i13) FPS(1/sec(z),z,n);

(%o13)
∞∑
n=0

(−1)n · z2·n

(2 · n)!

(%i14) FPS((exp(z)-1)/z,z,n);

(%o14)
∞∑
n=0

zn

(1 + n)!

Let f be a hypergeometric type expression with the power series representation

f(z) :=
∞∑
n=0

anz
n. (8.53)

We are interested in finding a representation for 1
f

. Let

g(z) =
∞∑
n=0

Anz
n, (8.54)

such that g(z) · f(z) = 1. Then we have

∞∑
n=0

anz
n ·

∞∑
n=0

Anz
n = 1. (8.55)

Using the Cauchy product rule, we obtain

∞∑
n=0

(
n∑
k=0

An−kak

)
zn = 1. (8.56)

which is equivalent to 
A0b0 = 1,∑n

k=0An−kak = 0, ∀n ∈ N
, (8.57)

and therefore we have 
A0 = 1

a0
,

An = −A0

∑n
k=1An−kak, ∀n ∈ N

. (8.58)

Note that a0 6= 0 since it is a hypergeometric type expression whose a0 is the first non-zero
coefficient of its Taylor expansion.
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Now suppose that f has the representation

f(z) :=
∞∑
n=0

anz
n+N . (8.59)

We omit the Puiseux number since it is computed before the procedure. Note that any power
series with non-zero general term am·n · zm·n can always be seen as a power series with the
general term an · zn in such a way that an = 0, for all integers n that are not multiples of m. We
have

1

f(z)
=

1

zN · (
∑∞

n=0 anz
n)

=
z−N

(
∑∞

n=0 anz
n)
, (8.60)

therefore the power of the indeterminate in the power series representation of 1
f

has to be shifted
by −N . Furthermore, if f has the general term an · zm·n or am·nzn then it is easy to see that the
only non-zero coefficients computed for 1

f
in (8.58) are those with indices of the form m · n.

This yields an approach for hypergeometric type series having a single m-fold hypergeometric
term as general coefficient.

Let us now compute some examples.

Example 8.6.

(%i15)FPS(sec(sqrt(z)),z,n);

(%o15)

[
∞∑
n=0

An · zn, An =
n∑
k=1

−(−1)k · An−k
(2 · k)!

, A0 = 1

]
(%i16)FPS(z/(exp(z)-1),z,n);

(%o16)

[
∞∑
n=0

An · zn, An =
n∑
k=1

− An−k
(1 + k)!

, A0 = 1

]
Observe in the latter example that setting Bn = n!An yields the well known recurrence formula
of the Bernoulli numbers. Indeed,

Bn

n!
= −

n∑
k=1

Bn−k

(k + 1)!(n− k)!
⇐⇒

n∑
k=0

Bn−k

(k + 1)!(n− k)!
= 0

⇐⇒
n∑
k=0

Bk

(n− k + 1)!k!
= 0

⇐⇒
n∑
k=0

(n+ 1)!

(n− k + 1)!k!
Bk = 0, multiplication by (n+ 1)!

⇐⇒
n∑
k=0

(
n+ 1

k

)
Bk = 0. (8.61)

(%i17)FPS(csc(z),z,n);

(%o17)

[
∞∑
n=0

An · z2·n−1, An =
n∑
k=1

−(−1)k · An−k
(1 + 2 · k)!

, A0 = 1

]
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(%i18)FPS(tanh(z),z,n);

(%o18)

[
∞∑
n=0

(
n∑
k=0

Ak
(1− 2 · k + 2 · n)!

)
· z1+2·n, Ak =

k∑
j=1

− Ak−j
(2 · j)!

, A0 = 1

]
In this example the Cauchy product rule is applied after the computation of the reciprocal of
cosh(z).

Our last procedure is rather more general and we are going to describe it in a new section.

8.7 An Approach Based on the Computation of

Quadratic Differential Equations

As we defined a procedure to compute the power series representation of every holonomic
expression, in this paragraph we give an approach to represent the power series of expressions
that satisfy homogeneous quadratic differential equations. For a given expression f , the procedure
follows the following steps:

1. compute a quadratic differential equation satisfied by f ;

2. use the Cauchy product rule to convert that quadratic differential equation to a recurrence
equation satisfied by the Taylor coefficients of f ;

3. use the obtained recurrence equation to define a recursive formula for the power series
coefficients of f .

Unlike the holonomic case where we know how to compute the Puiseux number and the starting
point, in this approach the two last steps are only treated for Laurent series. However, the first
step is a more general approach. Indeed, our algorithm for the first step constitutes an important
result of this thesis: that is a similar algorithm than Koepf’s algorithm for computing holonomic
differential equations to compute quadratic DEs. Gathering all these steps together we are able to
define a normal form representation of power series of this type. Let us move to the description
of each step.

8.7.1 Computing Quadratic Differential Equations

Let f be an expression, Algorithm 1 searches for a holonomic differential equation for f by
iteration on the order of derivatives of f . Depending on the algebraic simplification of ratios of
these derivatives, the algorithm finds a holonomic DE of lowest order satisfied by f . Our idea in
computing homogeneous quadratic differential equation is to define a "natural" order between
the product of derivatives of f so that by iteration on this order a quadratic differential equation
satisfied by f is sought.
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Note that a quadratic differential equation is a DE that has at most one product of derivatives
in one of its summands. However, for a good definition of the order that we are looking for, we
first consider the general non-linear case.

We also mention that any product of derivatives increases the degree by 1 and therefore
the degree of a non-linear differential equation is the maximum number of product among its
summands plus 1. In particular, linear differential equations are of degree 1.

Let f(z) be given functions. By observing the product rule when applying the derivative
operator d

dz

(a)
d

dz

(
f(z)2

)
= 2 · f(z) · d

dz
f(z), (b)

d

dz

(
1

f(z)

)
=
− d
dz
f(z)

f(z)2
, (8.62)

one can assume that the maximum degree for f(z) in a non-linear differential equation involving

f(z) and
d

dz
f(z) is 2.

Now, differentiating the right-hand sides of (a) and (b) in (8.62) yields (c) and (d), respec-
tively, as below.

(c) 2 · f(z) · d

dz2
f(z) + 2 ·

(
d

dz
f(z)

)2

, (d)
2 ·
(
d

dz
f(z)

)2

f(z)3
−

d2

dz2
f(z)

f(z)2
. (8.63)

Thus one can assume that the maximum degrees for f(z) and
d

dz
f(z) in a non-linear differential

equation involving f(z),
d

dz
f(z) and

d2

dz2
f(z) are, respectively, 3 and 2.

Using this process recursively we can state that

• f(z)4,

(
d

dz
f(z)

)3

and
(
d2

dz2
f(z)

)2

are the maximum degrees for a non-linear DE of

order 3;

• f(z)5,

(
d

dz
f(z)

)4

,
(
d2

dz2
f(z)

)3

and
(
d2

dz2
f(z)

)2

are the maximum degrees for a non-

linear DE of order 4;

• . . .

However, since we are only interested in computing quadratic differential equations, we
modify the above process by avoiding degrees that are greater than 2. Thus, we can order
quadratic derivatives of f as follows

(1) 1,

(2) f, (3) f 2,

(4) f ′, (5) f ′f, (6) f ′2,

(7) f ′′, (8) f ′′f, (9) f ′′f ′, (10)f ′′2,

(11) f ′′′, (12) f ′′′f, (13) f ′′′f ′, (14) f ′′′f ′′, (15)f ′′′2,

. . .

(8.64)
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We define
d−1

dz
= f (−1) = 1, and

d0

dz
= f (0) = f. (8.65)

Observe in (8.64) that for every derivative of order n of f , n ∈ N>0, we compute the product
of f (n) and all the derivatives of order less than or equal to n before computing the next derivative.
We are going to define a derivative operator, say δ(k)

2,zf , k ∈ N whose numbers in parenthesis in
(8.64) represent the orders. This operator computes the product of two derivatives of f according
to the order given in (8.64).

Looking at (8.64) as an infinite lower triangular matrix reduces the definition of δ2,z to the
one of a bijective map ν between positive integers and the corresponding subspace of N× N:
(i, j)i,j∈N, i 6 j. This can be done by counting the couple (i, j) in (8.64) from up to down, from
the left to the right. We obtain

ν(k) = (i, j) =

(l, l) if N = k

(l + 1, k −N) oherwise
,

where l =

⌊√
2k +

1

4
− 1

2

⌋
, and N =

l(l + 1)

2
. (8.66)

It remains to define a correspondence between the couple (i, j) = ν(k), k ∈ N and the quadratic
products in (8.64). This is straightforward since we have defined (8.65). We get

δk2,z(f) =
di−2

dzj−2
f · d

j−2

dzi−2
, where (i, j) = ν(k). (8.67)

We implemented this operator in our package as delta2diff(f,z,k). Let us use it to recover the
products of derivatives in (8.64).

Example 8.7.

(%i1) delta2diff(F(z),z,1);
(%o1) 1

(%i2) delta2diff(F(z),z,2);
(%o2) F (z)

(%i3) delta2diff(F(z),z,3);
(%o3) F (z)2

(%i4) delta2diff(F(z),z,4);
(%o4)

d

d z
· F (z)

(%i5) delta2diff(F(z),z,5);
(%o5) F (z) ·

(
d

d z
· F (z)

)
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(%i6) delta2diff(F(z),z,6);

(%o6)

(
d

d z
· F (z)

)2

(%i7) delta2diff(F(z),z,7);

(%o7)
d2

d z2
· F (z)

(%i8) delta2diff(F(z),z,8);

(%o8) F (z) ·
(
d2

d z2
· F (z)

)

(%i9) delta2diff(F(z),z,14);

(%o9)

(
d2

d z2
· F (z)

)
·
(
d3

d z3
· F (z)

)
Using δ2,z instead of

d

dz
in Algorithm 1 from p. 43 yields a procedure to compute quadratic

differential equations generally of lowest order satisfied by a given expression f(z). This adapted
version of that algorithm is given below.

Algorithm 15 Computing a quadratic DE satisfied by an expression f

Input: An expression f(z).
Output: A quadratic differential equation over K of least order satisfied by f(z).

1. If f = 0 then the DE is found and we stop.

2. f 6= 0, compute A0(z) =
δ3

2,zf(z)

f(z)
,

(1-a) if A0(z) ∈ K(z) i.e A0(z) =
P (z)

Q(z)
where P and Q are polynomials, then we have

found a quadratic DE satisfied by f :

Q(z)F (z)2 − P (z)F (z) = 0.

(1-b) If A0(z) /∈ K(z), then go to 3.

3. Fix a number QNmax ∈ N, the maximal order of the DE searched for; a suitable value
is QNmax := 19 which corresponds to the maximum δ2,z-order for having a quadratic
differential equation of forth order.

(3-a) set N := 2;
(3-b) compute δN+2

2,z f ;

(3-c) expand the expression

δN+2
2,z f(z) + AN−1δ

N+1
2,z f(z) + · · ·+ A0f(z) =

E∑
i=0

Si,

in elementary summands with AN , AN−1, . . . , A0 as unknowns. E > N is the total
number of summands Si obtained after expansion.
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Algorithm 15 Computing a quadratic DE satisfied by an expression f

(3-d) Proceed as in Algorithm 1 step (3-d) to determine the unknowns AN , AN−1, . . . , A0 over
K

(3-e) If (3-d) is not successful, then increment N , and go back to (3-b), until N = QNmax.

Note that an algorithm for computing non-linear differential equation can be defined similarly
provided a suitable substitution of the derivative operator used.

Our package has an implementation of Algorithm 15 with the syntax QDE(f(z),F(z),[Type]).
The argument Type is either I to allow the search for inhomogeneous quadratic DE, or H by
default to look for homogeneous ones. We have also implemented the general homogeneous
non-linear case as NLDE(f(z),F(z)).

Example 8.8.

(%i11)QDE(tan(z),F(z));

(%o11)
d2

d z2
· F (z)− 2 · F (z) ·

(
d

d z
· F (z)

)
= 0

(%i12)QDE(tan(z),F(z),Inhomogeneous);

(%o12)
d

d z
· F (z)− F (z)2 − 1 = 0

(%i13)QDE(sec(z),F(z));

(%o13) − F (z) ·
(
d2

d z2
· F (z)

)
+ 2 ·

(
d

d z
· F (z)

)2

+ F (z)2 = 0

(%i14)QDE(z/(exp(z)-1),F(z));

(%o14) z ·
(
d

d z
· F (z)

)
+ F (z)2 + (z − 1) · F (z) = 0

(%i15)QDE(log(1+sin(z)),F(z));

(%o15)
d3

d z3
· F (z) +

(
d

d z
· F (z)

)
·
(
d2

d z2
· F (z)

)
= 0

(%i16)QDE(sec(z)^k,F(z));

(%o16) k · F (z) ·
(
d2

d z2
· F (z)

)
+ (−1− k) ·

(
d

d z
· F (z)

)2

− k2 · F (z)2 = 0

(%i17)QDE((z/(exp(z)-1))^k,F(z));

(%o17) k · z · F (z) ·
(
d2

d z2
· F (z)

)
− (1 + k) · z ·

(
d

d z
· F (z)

)2

− k · (z − 2) · F (z) ·
(
d

d z
· F (z)

)
+ k2 · F (z)2 = 0
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(%i18)QDE(tan(z)^k,F(z));

(%o17) k2 ·F (z)·
(
d4

d z4
· F (z)

)
−2·

(
2 · k2 − 3

)
·
(
d

d z
· F (z)

)
·
(
d3

d z3
· F (z)

)
+3·(k − 2)

· (2 + k) ·
(
d2

d z2
· F (z)

)2

+ 4 · k2 ·F (z) ·
(
d2

d z2
· F (z)

)
+ 4 ·

(
5 · k2 − 6

)
·
(
d

d z
· F (z)

)2

= 0

Using NLDE in the latter example yields a non-linear equation that does not depend on the
exponent k.

(%i18)NLDE(tan(z)^k,F(z));

(%o18) F (z) ·
(
d

d z
· F (z)

)
·
(
d3

d z3
· F (z)

)
− 2 · F (z) ·

(
d2

d z2
· F (z)

)2

+

(
d

d z
· F (z)

)2

·
(
d2

d z2
· F (z)

)
− 4 · F (z) ·

(
d

d z
· F (z)

)2

= 0

Compared to QDE, generally NLDE generates differential equations of lower order but of
higher degree. However, in terms of timings the code for quadratic differential equations is faster,
and moreover the computed differential equations give much simpler recurrence equations than
those related to the outputs of NLDE. On the other hand, NLDE will turn out to be very useful
for proving identities.

Observe that unlike the holonomic case where the existence and uniqueness of a solution to
the Cauchy problem is quite immediate, in the non-linear case one needs to take into account
other important facts since the computed differential equations are not always explicit. However,
thanks to the well known implicit function theorem, the existence and uniqueness can locally be
stated. The following simple version of the implicit function theorem guaranties the correctness
of locally defining normal forms by the use of some initial values and the differential equations
computed using QDE or NLDE.

Theorem 8.1. [The Implicit Function Theorem (see [Krantz and Parks, 2012])]

Let F : Rn+1 −→ R be a continuously differentiable function, and let Rn+1 have coordinates

(x, y) = (x1, . . . , xn, y). Fix a point (α, β) = (α1, . . . , αn, β) with

F(α, β) = 0. (8.68)

If
∂F
∂y

(α, β) 6= 0, (8.69)

then there exists an open set U ∈ Rn containing α such that there exists a unique continuously

differentiable function f : U −→ R such that

f(α) = β and F (α, f(α)) = 0 ∀α ∈ U . (8.70)
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Furthermore, for k = 1, . . . , n,
∂f

∂xk
(x) = −

∂F
∂xk

(x)
∂F
∂y

(x)
. (8.71)

In most of the implicit differential equations that we compute, this theorem can be applied
quite simply. Let us take for example the last differential equation in Example 8.8. We have the
DE

F (z) ·
(
d

d z
· F (z)

)
·
(
d3

d z3
· F (z)

)
− 2 · F (z) ·

(
d2

d z2
· F (z)

)2

+

(
d

d z
· F (z)

)2

·
(
d2

d z2
· F (z)

)
− 4 · F (z) ·

(
d

d z
· F (z)

)2

= 0,

therefore setting x1 = F(z), x2 = d
d z

F(z), x3 = d2

d z2
F(z), y = d3

d z3
F(z), a corresponding F can

be written as

F(x1, x2, x3, y) = x1 · x2 · y − 2 · x1 · x2
3 + x2

2 · x3 − 4 · x1 · x2
2, (8.72)

which, as a polynomial, is trivially continuously differentiable. What we need is to find a point
(α, β) = (α1, α2, α3, β) ∈ R4 such that (8.68) and (8.69) hold. To do so, we solve F = 0 for y
and we fix a value for β by choosing suitable arbitrary values for α1, α2, and α3 to substitute
x1, x2, and x3, respectively.

Solving F = 0 for y gives

y =
4 · x1 · x2

2 − x2
2 · x3 + 2 · x1 · x2

3

x1 · x2

. (8.73)

We choose α1 = α2 = α3 = 1
4

and we get β = 5
4
.

We now check the condition of Theorem 8.1. We have

F
(

1

4
,
1

4
,
1

4
,
5

4

)
= 0,

and
∂F(x1, x2, x3, y)

∂y
|( 1

4
, 1
4
, 1
4
, 5
4)= x1 · x2 |( 1

4
, 1
4
, 1
4
, 5
4)=

1

16
6= 0,

hence the existence and uniqueness of the function f as stated in Theorem 8.1.
Finally, the classical existence and uniqueness theorem [Teschl, 2012, Theorem 2.2] can be

applied to uniquely determine the solution of the given differential equation by using f for a well
chosen initial value problem.

Next, we move on to the computation of recurrence equations.

8.7.2 Converting Quadratic Differential Equations to Recurrence
Equations

We need a rewrite rule similar to (4.44) for every term in the expansion of a quadratic differential
equation. Let f(z) be a power series with representation

f(z) =
∞∑
n=0

anz
n.
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It suffices to find a recurrence equation term that corresponds to the quadratic differential equation
term

zp · f(z)(i) · f(z)(j), i, j, p ∈ N>0. (8.74)

As seen on page 52, we have

f(z)(k) =
∞∑
n=0

(n+ 1)k · an+k · zn,∀k ∈ N>,

therefore

f(z)(i) · f(z)(j) =

(
∞∑
n=0

(n+ 1)i · an+i · zn
)
·

(
∞∑
n=0

(n+ 1)j · an+j · zn
)

=
∞∑
n=0

(
n∑
k=0

(k + 1)i · ak+i · (n− k + 1)j · an−k+j

)
· zn, (8.75)

by application of the Cauchy product rule. Finally multiplying (8.75) by zp yields the formula

zp · f(z)(i) · f(z)(j) =
∞∑
n=0

(
n−p∑
k=0

(k + 1)i · (n− p− k + 1)j · ak+i · an−p−k+j

)
· zn, (8.76)

and the corresponding rewrite rule

zp · f(z)(i) · f(z)(j) −→

(
n−p∑
k=0

(k + 1)i · (n− p− k + 1)j · ak+i · an−p−k+j

)
. (8.77)

Observe that (8.77) is a rewrite rule for the summand of the power series representation of
the given expression f . When dealing with inhomogeneous DEs, the constant term has to be
considered differently. This is the main reason why we prefer to work with homogeneous DEs.

Similarly to Algorithm 2, a procedure to convert quadratic differential equations to recurrence
equations follows immediately. Our package contains the function FindQRE(f,z,a[n]) as analogue
of FindRE for the quadratic case. Let us now show some examples.

Example 8.9.

(%i19)FindQRE(tan(z),z,a[n]);

(%o19) (1 + n) · (2 + n) · an+2 − 2 ·
n∑
k=0

(k + 1) · ak+1 · an−k = 0

(%i20)FindQRE(z/(exp(z)-1),z,a[n]);

(%o20)

(
n∑
k=0

ak · an−k

)
+ (n− 1) · an + an−1 = 0

(%i21)FindQRE(log(1+sin(z)),z,a[n]);
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(%o21)

(
n∑
k=0

(k + 1) · (k + 2) · ak+2 · (n− k + 1) · an−k+1

)
+ (1 + n) · (2 + n) · (3 + n) · an+3 = 0

When there are many summation terms, we try to contract them in order to get a more
simplified recurrence equation. This is the case for

(%i22)FindQRE(exp(exp(z)-1),z,a[n]);

(%o22)
n∑
k=0

(k + 1) ·
(

((1− k) · ak+1 + ak+1 · n) · an−k+1

+ (ak+1 + (−k − 2) · ak+2) · an−k
)

= 0

8.7.3 A Normal Form for Non-Holonomic Power Series

As we did for the general case of holonomic power series, one can use the recurrence equation
computed by FindQRE to define a power series representation of a given holonomic or non-
holonomic expression. However, as we mentioned earlier, we do not consider Puiseux series
since a method to determine Puiseux numbers from recurrence equations generated by FindQRE

is not yet described. This could be a topic for further studies on non-holonomic Puiseux series.
The reasoning is similar to the one that we presented for holonomic expressions (see Section

4.3.2 on p. 58). For a given recurrence equation computed using FindQRE, we write the highest
order term in terms of the others. And evaluating the recurrence equations at some integers
allows to determine the necessary initial values of the representation.

Note that to get the highest order term when there are terms with symbolic sums in the
recurrence equation, we remove parts corresponding to the minimum and the maximum value of
the summation variable and substitute the initial conditions until we get a non-zero expression
from which the highest order term can be obtained. For example, to get the highest order term of
the recurrence equation of z

exp(z)−1(
n∑
k=0

ak · an−k

)
+ (n− 1) · an + an−1 = 0, (8.78)

we remove those parts of the symbolic sum corresponding to k = 0 and k = n. This gives(
n−1∑
k=1

ak · an−k

)
+ 2 · a0 · an + (n− 1) · an + an−1 = 0. (8.79)

Then we substitute the value of a0 and write the resulting highest order term in terms of the other
summands of the equation. In this example an is necessarily the highest order term to be used
since the part of the equation that has no sum always depends on an after substitution of the
value of a0.

Observe that this process of determining the highest order term can quite easily be managed in
the quadratic case because every term in the computed recurrence equation has at most one sum.
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In the non-linear case we generally have a more complicated situation where some summands of
the equation are products of Cauchy products. Our representation coming from the computation
of non-linear DEs conserves the recurrence equations as it is computed and adds the necessary
initial values.

Our FPS command combines all the procedures of this section as a last method to determine
the power series representation of a given expression. Therefore if the given input is a very
complicated one then the computation may take some time. Nevertheless, our package contains
the function QNF(f,z,n,[z0]) which represents power series using only the procedures described
in this section.

Example 8.10.

(%i23)QNF(log(1+sin(z)),z,n);

(%o23)

[
∞∑
n=0

An · zn, An+4 =
(n+ 2) · An+2 − (2 + n) · (3 + n) · An+3

(n+ 2) · (n+ 3) · (n+ 4)

−
∑n

k=1 (k + 1) · (k + 2) · Ak+2 · (n− k + 2) · An−k+2

(n+ 2) · (n+ 3) · (n+ 4)
, n >= 0,[

A0 = 0, A1 = 1, A2 = −1

2
, A3 =

1

6

]]

(%i24)QNF(tan(z),z,n);

(%o24)

[
∞∑
n=0

An · zn, An+3 =
2 · An+1 + 2 ·

∑n
k=1 (k + 1) · Ak+1 · An−k+1

(n+ 2) · (n+ 3)
, n >= 0,

[A0 = 0, A1 = 1, A2 = 0]

]

(%i25)QNF(1/(1+sin(z)),z,n);

(%o25)

[
∞∑
n=0

An · zn, An+2 =
5 · An + 3 ·

∑n−1
k=1 Ak · An−k

(n+ 1) · (n+ 2)
, n >= 0,

[A0 = 1, A1 = −1]

]

On the other hand, this representation gives a method for computing Taylor polynomials. We
implemented it as QTaylor(f(z),z,z0,N). However, due to the presence of summation terms the
quadratic time complexity cannot be avoided and hence the code is generally slower than the
built-in Maxima command taylor. Nevertheless one can use a remembering program so that
many calls of close orders of the same function require a timing only for the first call. This
function is available in our Maxima FPS package.
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Example 8.11.

(%i26)taylor(tan(z),z,0,8);

Evaluation took 0.0000 seconds (0.0000 elapsed)

(%o26)/T/z +
z3

3
+

2 · z5

15
+

17 · z7

315
+ ...

(%i27)QTaylor(tan(z),z,0,8);

Evaluation took 0.1200 seconds (0.1500 elapsed)

(%o27)
17 · z7

315
+

2 · z5

15
+
z3

3
+ z

(%i28)taylor(log(1+sin(z)),z,0,10);

Evaluation took 0.0000 seconds (0.0000 elapsed)

(%o28)/T/z − z2

2
+
z3

6
− z4

12
+
z5

24
− z6

45
+

61 · z7

5040
− 17 · z8

2520
+

277 · z9

72576
− 31 · z10

14175
+ ...

(%i29)QTaylor(log(1+sin(z)),z,0,10);

Evaluation took 0.4700 seconds (0.4800 elapsed)

(%o29) − 31 · z10

14175
+

277 · z9

72576
− 17 · z8

2520
+

61 · z7

5040
− z6

45
+
z5

24
− z4

12
+
z3

6
− z2

2
+ z

(%i30)taylor(log(1+sin(z)),z,0,300)$

Evaluation took 5.3500 seconds (6.5000 elapsed)

(%i31)QTaylor(log(1+sin(z)),z,0,300)$

Evaluation took 82.1400 seconds (83.1400 elapsed)

(%i32)taylor(log(1+sin(z)),z,0,200)$

Evaluation took 1.1800 seconds (1.2000 elapsed)

(%i33)QTaylor(log(1+sin(z)),z,0,200)$

Evaluation took 0.0100 seconds (0.0200 elapsed)

Note that our computations of recurrence equations and Taylor polynomials from quadratic
differential equations prove again without the use of Theorem 8.1 the existence and uniqueness
of the solutions of these differential equations. Therefore, our normal forms are well defined.

8.8 The Algorithms as Simplifiers

One of the main questions in Computer Algebra is to decide whether an expression is equivalent
to zero or not. Marko Petkovšek, Herbert Wilf and Doron Zeilberger wrote the book "A=B"
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in that direction [Petkovšek et al., 1996]. The book is about identities in general, and hyperge-
ometric identities in particular, with emphasis on computer methods of discovery and proof.
Our developments follow this same idea of making progress in science by giving algorithmic
approaches that make the computer work as an expert system to prove identities. What some
people could see as "genius" thoughts are gradually being transformed to methods that the
computer can understand.

Note that these algorithmic developments do not only verify the identity "A=B", but also
answer the question "What is A?" as it was the case in all the examples that we have presented.
We generally get the output as a normal form representation of the power series of a given
expression and if that output

• is a polynomial then the input expression has been simplified;

• equals to the representation of another expression, then the algorithm has proved that both
expressions are identical.

As we are dealing with series expansions, we mention that the given outputs of our FPS algorithm
are essentially valid in a neighborhood of the point of expansion. In this section, we will mainly
consider non-holonomic expressions as the most difficult identities to be proved algorithmically
belong to that family. The holonomic case is well treated in [Koepf, 2006, Chapter 9].

As first example, the expression

log
(

tan
(x

2

)
+ sec

(x
2

))
− arcsinh

(
sin(x)

1 + cos(x)

)
, − 1 6 x 6 1 (8.80)

from [Geddes et al., 1992, Section 3.3] (see also [Koepf, 2006, Exercise 9.8]) is known to be
difficult to prove equal to zero. One needs non-trivial transformations to simplify this to zero.
However, using our normal form algorithm based on the computation of quadratic differential
equations yields the same power series representation for

(%i1) f:log(tan(z/2)+sec(z/2));

(%o1) log
(

tan
(z

2

)
+ sec

(z
2

))
and

(%i2) g:asinh(sin(z)/(cos(z)+1));

(%o2) asinh

(
sin (z)

cos (z) + 1

)
as shown below.
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(%i3) QNF(f,z,n);

(%o3)

[
∞∑
n=0

An · zn, An+5 =
(3+n)·An+3

2
+
(∑n+1

k=1 (k + 1) · Ak+1 · (n− k + 3) · An−k+3

)
2 · (n+ 3) · (n+ 4) · (n+ 5)

+
−4 ·

(∑n+1
k=1 (k + 1) · (k + 2) · (k + 3) · Ak+3 · (n− k + 3) · An−k+3

)
2 · (n+ 3) · (n+ 4) · (n+ 5)

+
8 ·
∑n+1

k=1 (k + 1) · (k + 2) · Ak+2 · (n− k + 3) · (n− k + 4) · An−k+4

2 · (n+ 3) · (n+ 4) · (n+ 5)
, n >= 0,[

A0 = 0, A1 =
1

2
, A2 = 0, A3 =

1

48

]]

(%i4) QNF(g,z,n);

(%o4)

[
∞∑
n=0

An · zn, An+5 =
(3+n)·An+3

2
+
(∑n+1

k=1 (k + 1) · Ak+1 · (n− k + 3) · An−k+3

)
2 · (n+ 3) · (n+ 4) · (n+ 5)

+
−4 ·

(∑n+1
k=1 (k + 1) · (k + 2) · (k + 3) · Ak+3 · (n− k + 3) · An−k+3

)
2 · (n+ 3) · (n+ 4) · (n+ 5)

+
8 ·
∑n+1

k=1 (k + 1) · (k + 2) · Ak+2 · (n− k + 3) · (n− k + 4) · An−k+4

2 · (n+ 3) · (n+ 4) · (n+ 5)
, n >= 0,[

A0 = 0, A1 =
1

2
, A2 = 0, A3 =

1

48

]]

Hence f − g = log
(
tan
(
z
2

+ sec
(
z
2

)))
− arcsinh

(
sin(z)

1+cos(z)

)
= 0 in a neighborhood of 0.

However, since our algorithm does not find a quadratic differential equation of order at most 4

satisfied by f − g, our implementation cannot compute a power series representation of (8.80)

directly.

Let us now consider

(%i5) f:tanh(z);

(%o5) tanh (z)

and

(%i6) g:exponentialize(f);

(%o6)
ez − e−z

ez + e−z

Clearly, the two expressions are identical since g is obtained after application of the Euler
formula to sinh(z) and cosh(z). QNF computes the same power series representation for these
two expressions and verifies this.
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(%i7) QNF(f,z,n);

(%o7)

[
∞∑
n=0

An · zn, An+3 =
−2 · An+1 − 2 ·

∑n
k=1 (k + 1) · Ak+1 · An−k+1

(n+ 2) · (n+ 3)
, n >= 0,

[A0 = 0, A1 = 1, A2 = 0]

]

(%i8) QNF(g,z,n);

(%o8)

[
∞∑
n=0

An · zn, An+3 =
−2 · An+1 − 2 ·

∑n
k=1 (k + 1) · Ak+1 · An−k+1

(n+ 2) · (n+ 3)
, n >= 0,

[A0 = 0, A1 = 1, A2 = 0]

]
Notice that f − g does not generate the same quadratic differential equation without use

of simplifications. There might be a higher order differential equation for f − g but using the
default value QNmax = 19, QNF cannot find a differential equation of at most forth order.

(%i9) QNF(f-g,z,n);

(%o9) false

Nevertheless, using our general algorithm for computing non-linear differential equations we get
the following non-quadratic DE.

(%i10) NLDE(f-g,F(z));

(%o10) − 2 · F (z) ·
(
d2

d z2
· F (z)

)
+ 3 ·

(
d

d z
· F (z)

)2

+ F (z)4 − 4 · F (z)2 = 0

Our package contains a boolean variable called NLDEflag whose default value is false. If set to
true, then the code QNF will use NLDE instead of QDE in its next call. And obviously, this will
be enough to prove our second zero equivalence in another approach since the above differential
equation is internally computed.

(%i11) NLDEflag:true$

(%i12) QNF(f-g,z,n);

(%o12) 0

Well, to make good comparisons of our implementation with the one available in Maple for
the same goal, we found it necessary to sometimes use internal simplifications as it was the case
for tangent analogues of Chebyshev polynomials. Below we give a sequence of instructions to
mimic detections of new identities.

Assume we have f and g as given below but with ignorance on whether they represent the
same function in a certain domain.
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(%i13) f:tan(5*atan(z))$

(%i14) g:trigsimp(trigexpand(f));

(%o14)
5 · z − 10 · z3 + z5

5 · z4 − 10 · z2 + 1

Using QNF we compute representations of their power series.

(%i15) QNF(f,z,n);

(%o15)

[
∞∑
n=0

An · zn, An+3 =
50 · An+1 − (1 + n) · (2 + n) · An+1

(n+ 2) · (n+ 3)

+
10 ·

∑n
k=1 (k + 1) · Ak+1 · An−k+1

(n+ 2) · (n+ 3)
, n >= 0,

[A0 = 0, A1 = 5, A2 = 0]

]

(%i16) QNF(g,z,n);

(%o16)

[
∞∑
n=0

An · zn, An+8 =
−49 · An+4 + 90 · An+6 − 5 ·

(∑n+3
k=2 Ak · An−k+5

)
5

+
10 ·

(∑n+5
k=2 Ak · An−k+7

)
−
∑n+7

k=2 Ak · An−k+9

5
, n >= 0

[A0 = 0, A1 = 5, A2 = 0, A3 = 40, A4 = 0, A5 = 376, A6 = 0, A7 = 3560]

]
Observing the initial values gives some interest on the progression of both expressions Taylor
expansions.

(%i17) QTaylor(f,z,0,7);

(%o20) 3560 · z7 + 376 · z5 + 40 · z3 + 5 · z

One sees that both expressions have the same Taylor coefficients up to order 7. Therefore since a
representation of the power series of both expressions is handled by QNF, we may wish to find a
representation for their difference which hopefully satisfies a quadratic differential equation of
suitable order computable by use of algebraic operations. This is the case, since we get

(%i19) QDE(f-g,F(z));

(%o19)
(
1 + z2

)
·
(
1− 10 · z2 + 5 · z4

)
·
(
d

d z
· F (z)

)
−5 ·

(
1− 10 · z2 + 5 · z4

)
·F (z)2

− 10 · z ·
(
5− 10 · z2 + z4

)
· F (z) = 0

Observe that no prior knowledge on both expressions is used, otherwise the computed DE
should be F (z) = 0. The above quadratic differential equation is obtained only by algebraic
computations.
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Finally, we check the coincidence by computing the corresponding normal form of the power
series expansion of f − g which yields 0 as expected.

(%i18) QNF(f-g,z,n);

(%o18) 0

Hence f = g.

We finish with these non-holonomic cases by our introductory example taken from
[Koepf, 2006, Section 9.1], that is

1 + tan(z)

1− tan(z)
= exp

(
2 arctanh

(
sin(2z)

1 + cos(2z)

))
. (8.81)

This is another situation where we get compatible but not identical power series representations
with same initial values.

(%i19) f:(1+tan(z))/(1-tan(z))$

(%i20) g:exp(2*atanh(sin(2*z)/(1+cos(2*z))))$

(%i21) QNF(f,z,n);

(%o21)

[
∞∑
n=0

An · zn, An+3 =
4 · An+1 + 2 · (n+ 2) · An+2

(n+ 2) · (n+ 3)

+
2 ·
∑n

k=1 (k + 1) · Ak+1 · An−k+1

(n+ 2) · (n+ 3)
, n >= 0,

[A0 = 1, A1 = 2, A2 = 2]

]

(%i22) QNF(g,z,n);

(%o22)

[
∞∑
n=0

An·zn, An+5 =
−24 · An+2 + 8 · (n+ 3) · An+3 + 6 · (n+ 3) · (n+ 4) · An+4

(n+ 3) · (n+ 4) · (n+ 5)

+
−4 ·

(∑n+1
k=1 (k + 1) · Ak+1 · An−k+2

)
−
(∑n+1

k=1 (k + 1) · (k + 2) · (k + 3) · Ak+3 · An−k+2

)
(n+ 3) · (n+ 4) · (n+ 5)

+
3 ·
∑n+1

k=1 (k + 1) · (k + 2) · Ak+2 · (n− k + 3) · An−k+3

(n+ 3) · (n+ 4) · (n+ 5)
, n >= 0,[

A0 = 1, A1 = 2, A2 = 2, A3 =
8

3
, A4 =

10

3

]]

As we mentioned earlier the difference is proved to be zero by our algorithm.

(%i23) QNF(f-g,z,n);

(%o23) 0

This is due to the fact that f − g satisfies the same quadratic differential equation computed for g.
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(%i24) QDE(f-g,F(z));

(%o24) F (z)·
(
d3

d z3
· F (z)

)
−3·

(
d

d z
· F (z)

)
·
(
d2

d z2
· F (z)

)
+4·F (z)·

(
d

d z
· F (z)

)
= 0

(%i25) QDE(g,F(z));

(%o25) F (z)·
(
d3

d z3
· F (z)

)
−3·

(
d

d z
· F (z)

)
·
(
d2

d z2
· F (z)

)
+4·F (z)·

(
d

d z
· F (z)

)
= 0

There is a theorem however which sets some boundaries about algorithmically provable
identities.

Theorem 8.2 (Richardson). (see ([Geddes et al., 1992], [Petkovšek et al., 1996], [Koepf, 2006,

Theorem 9.10])) LetR consist of the class of expressions generated by

1. the rational numbers and the two real number π and log(2),

2. the variable x,

3. the operations of addition, multiplication, and composition, and

4. the sine, exponential, and absolute value functions.

If E ∈ R, the predicate ”E = 0” is recursively undecidable.

For hypergeometric type power series, our algorithm generates a normal form so that 0 or
generally Laurent polynomials can be detected. Below we give an example of two expressions
whose power series are best simplified using our FPS command and whose difference is a
Laurent polynomial which can be detected by our algorithm but which cannot be easily observed
otherwise.

Let

(%i26) f:-(((2+2^(5/4))*(2*z-2^(3/4)))

/(2^(13/4)*(z^2-2^(3/4)*z+sqrt(2)))

+((2^(5/4)-2)*(2^(3/4)+2*z))

/(2^(13/4)*(z^2+2^(3/4)*z+sqrt(2)))

-1/(2*((2*z-2^(3/4))^2/2^(3/2)+1))

-1/(2*((2^(3/4)+2*z)^2/2^(3/2)+1)))/2;

(%o26)

−
(

2+2
5
4

)
·
(

2·z−2
3
4

)
2
13
4 ·
(
z2−2

3
4 ·z+

√
2
) −

(
2
5
4−2

)
·
(

2
3
4 +2·z

)
2
13
4 ·
(
z2+2

3
4 ·z+

√
2
) + 1

2·


(
2·z−2

3
4

)2

2
3
2

+1


+ 1

2·


(
2
3
4 +2·z

)2

2
3
2

+1


2

and
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(%i27) g:(1+z)/(z^5+2*z);

(%o27)
1 + z

z5 + 2 · z

Using our FPS command to compute their power series yields

(%i28) FPS(f,z,n);

(%o28)

(
∞∑
n=0

−2−2−n · (−1)n · z3+4·n

)
+
∞∑
n=0

2−1−n · (−1)n · z4·n

(%i29) FPS(g,z,n);

(%o29)

(
∞∑
n=0

2−1−n · (−1)n · z4·n

)
+
∞∑
n=0

2−1−n · (−1)n · z3+4·(n−1)

One can see a similarity, or a shift between the two obtained power series representations. Now
computing the power series of f − g gives

(%i30) FPS(f-g,z,n);

(%o30) − 1

2 · z
which shows that a nicer expression equivalent to f (which does not look nice at all) is given by

f(z) = − 1

2 · z
+ g(z) = − z3 − 2

2 · (z4 + 2)
, (8.82)

which is also the simplification obtained after combining Maxima commands factor and ratsimp

to f .

(%i31) factor(ratsimp(f));

(%o31) − z3 − 2

2 · (z4 + 2)

This ends our little presentation about the scope of this thesis results and itself.



Chapter 9

Conclusion

We have developed and implemented a new algorithm (mfoldHyper) which computes a basis
of all m-fold hypergeometric term solutions of a given holonomic recurrence equation. The
algorithm is presented in Chapter 7 and is fundamentally based on Theorem 7.1 on p. 143 that we
have established. As a linear algorithm, our Maxima implementation of mfoldHyper recovers hy-
pergeometric terms that could not be detected using Petkovšek’s algorithm [Petkovšek, 1992] pre-
sented in Chapter 5 or van Hoeij’s algorithm [Van Hoeij, 1999], [Cluzeau and van Hoeij, 2006],
implemented in the CAS Maple and a variant of which was presented in Chapter 6. This algo-
rithm led us to the development and the implementation of a complete algorithm (see Chapter 8)
to represent linear combinations of power series with m-fold hypergeometric term coefficients
in computer algebra. Indeed, using mfoldHyper, Lemma 8.1 and 8.2 on pages 162 and 174, the
algorithms of Chapter 8 extend Koepf’s algorithm [Koepf, 1992] to a much general situation of
functions of hypergeometric type. Consequently, our Maxima FPS command computes the power
series expansions of a much larger family of expressions compared to the one of Maple. These
expressions represent linear combinations over K(z), for a variable z and a field of characteristic
zero K (practically used as an extension field of the field of rationals), of hypergeometric type
functions.

As a byproduct of our algorithm for computing power series we have extended our compu-
tations to some particular cases related to hypergeometric type functions. We first described
some methods to compute hypergeometric asymptotic series in Maxima. Secondly for two
hypergeometric type expressions f and g whose power series have only one summation term,
we presented how our algorithm yields representations for the power series of 1

f
, f t, t ∈ Q,

f · g, and f
g
. The holonomic expressions that do not fit into these representations are represented

by recursive formulas defined from holonomic recurrence equations satisfied by their Taylor
coefficients.

Furthermore we described a similar approach than the one in [Koepf, 1992] using quadratic
differential equations to represent the power series of non-holonomic functions. The recurrence
equations are computed applying the Cauchy product rule to the summands of the expanded
corresponding quadratic differential equations. Adding necessary initial conditions, the computed
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recurrence equations are used to represent power series in normal forms. By this approach we
have been able to prove some zero-equivalences, which is a major topic in symbolic computations.

All our implementations are available in our Maxima package FPS. Compared to the imple-
mented algorithms for computing power series in all computer algebra systems we realized, that
all of these algorithms fail in many of the examples that we tested. We think that we have filled a
gap with our algorithms and expect that they will soon be implemented in other systems.



Appendix A

The Thesis Maxima Package FPS

As presented throughout our dissertation, we have implemented many Maxima functions to
achieve our goals. Below we give the available syntaxes to use the main functions of our package
FPS.

• HolonomicDE(f,F(z),[destep]): Computes a holonomic differential equation (DE) of order
at most destep · Nmax with respect to F(z) satisfied by a given expression f of the variable
z. destep is an optional argument with default value equal to 1, which allows to search
for holonomic DEs whose appearing derivatives have destep as the minimum difference
between their orders.

• Nmax: is a global variable with default value equal to 6, which represents the upper bound
for the order of holonomic DEs computed by HolonomicDE. This value can be increased
by the user to search for holonomic DEs of higher order. This number also represents the
maximum number of iterations to search for a holonomic DE.

• CompatibleDE(DE1,DE2,F(z)): verifies the compatibility of the differential equations
DE1 and DE2 with respect to F(z).

• DEtoRE(DE,F(z),a[n]): converts a holonomic differential equation DE with respect to
F(z) into a corresponding holonomic recurrence equation (RE) with respect to a[n].

• FindRE(f,z,a[n],[destep]): combines HolonomicDE and DEtoRE to compute a holonomic
RE with respect to a[n] for the Taylor coefficient of a given expression f.

• Taylor(f,z,z0,d): computes a Taylor polynomial of order d of a given holonomic expression
f of the variable z at the point of expansion z0.

• PolyPetkov(RE,a[n]): computes a basis of all polynomial solutions of a given holonomic
recurrence equation RE with respect to a[n] using Petkovšek’s algorithm Poly. The output
is given as a generic linear combination.

207



208 The Thesis Maxima Package FPS

• HyperPetkov(RE,a[n],[F]): computes all hypergeometric term solutions over Q or its alge-
braic extensions, of a given holonomic recurrence equation RE with respect to a[n] using
Petkovšek’s algorithm Hyper. Setting the optional variable F to C allows computations
over algebraic extension fields of Q.

• sumhyperRE(L,a[n]): computes a holonomic RE with respect to a[n] satisfied by linear
combinations of hypergeometric terms in a given list L.

• HypervanHoeij(RE,a[n],[F]): computes a basis of all hypergeometric term solutions over
Q or its algebraic extensions, of a given holonomic recurrence equation RE with respect to
a[n] using our variant of van Hoeij’s algorithm.

• mfoldHyper(RE,a[n],[F]): computes a basis of all m-fold hypergeometric term solutions
over Q or its algebraic extensions, of a given holonomic recurrence equation RE with
respect to a[n].

• mfoldHyper(RE,a[n],m,j,[F]): computes m-fold hypergeometric term solutions of the
general form hm·n+j, j ∈ J0,m − 1K over Q or its algebraic extensions, of a given
holonomic recurrence equation RE with respect to a[n].

• LPolyPart(f,z): computes [T,N], where T is an extra term generally not of hypergeometric
type that can appear in the Taylor expansion of a given holonomic expression f of the
variable z, and N is an integer that can be used as starting point if the power series of f

contains m-fold hypergeometric term coefficients.

• FPS(f,z,n,[z0]): computes the power series expansion with the summation index n of a
given expression f of the variable z at the point of development z0.

• Holorep(f,z,n,[z0]): a sub-procedure of FPS that is used to compute the power series
of a given holonomic expression f whose power series seems to be not closed to a
hypergeometric type representation. This command is used to represent the power series
of arbitrary holonomic expression.

• delta2diff(f,z,d): operator used to compute products of two derivatives of a given expression
f. d denotes the δ2,z-order of the computed derivative.

• deltadiff(f,z,d): operator used to compute products of derivatives of a given expression f. d

denotes the δz-order of the computed derivative.

• QDE(f,F(z),[Type]): computes a quadratic DE satisfied by a given expression f of δ2,z-
order at most QNmax. The optional argument Type is Homogeneous by default. One can
specify Inhomogeneous to search for inhomogeneous quadratic DEs.

• QNmax: is the analogue of Nmax for quadratic DE with default value 21 corresponding to
order 4 for the usual derivative operator.
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• NLDE: computes a non-linear differential equation satisfied by a given expression f of
δz-order at most NLNmax.

• NLNmax: is the analogue of Nmax for non-linear DE with default value 30 corresponding
to some cases of order 3 for the usual derivative operator.

• FindQRE(f,z,a[n]): analogue of FindRE for the quadratic case.

• FindNLDE(f,z,a[n]): analogue of FindRE for the non-linear case.

• QNF(f,z,n,[z0]): analogue of HoloRep for non-holonomic expressions using the computa-
tion of a quadratic DE by default.

• NLDEflag: boolean variable with default value false used to allow one computation of
QNF using the computation of a non-linear DE.

• QTaylor(f,z,z0,d): analogue of Taylor for non-holonomic expressions.
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