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Abstract

Organic farmers, who rely on legumes as an external nitrogen (N) source, need a fast and

easy on-the-go measurement technique to determine harvestable biomass and the amount

of fixed N (NFix) for numerous farm management decisions. Especially clover- and lucerne-

grass mixtures play an important role in the organic crop rotation under temperate European

climate conditions. Multispectral sensors mounted on unmanned aerial vehicles (UAVs) are

new promising tools for a non-destructive assessment of crop and grassland traits on large

and remote areas. One disadvantage of multispectral information and derived vegetations

indices is, that both ignore spatial relationships of pixels to each other in the image. This gap

can be filled by texture features from a grey level co-occurrence matrix. The aim of this

multi-temporal field study was to provide aboveground biomass and NFix estimation models

for two legume-grass mixtures through a whole vegetation period based on UAV multispec-

tral information. The prediction models covered different proportions of legumes (0–100%

legumes) to represent the variable conditions in practical farming. Furthermore, the study

compared prediction models with and without the inclusion of texture features. As multispec-

tral data usually suffers from multicollinearity, two machine learning algorithms, Partial

Least Square and Random Forest (RF) regression, were used. The results showed, that bio-

mass prediction accuracy for the whole dataset as well as for crop-specific models were

substantially improved by the inclusion of texture features. The best model was generated

for the whole dataset by RF with an rRMSE of 10%. For NFix prediction accuracy of the best

model was based on RF including texture (rRMSEP = 18%), which was not consistent with

crop specific models.

Introduction

The production of industrial fertilizer containing nitrogen (N) as an essential element of plant

growth increased global food production in the last decades. Nevertheless, the excessive use of
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N in agriculture caused different environmental problems, like e.g. eutrophication and pollu-

tion of water [1] and is also linked to air pollution and climate change [2]. To reduce these neg-

ative impacts on the environment, organic agriculture uses a reduced N supply as it follows the

idea of a closed nutrient cycle and, thus, is considered as a sustainable and low-input agricul-

tural system [3]. As mineral N fertilizer is prohibited in organic agriculture, N is the primary

limiting nutrient for many farms [4]. Beside organic fertilizer, organic farmers rely on legumes

as an external N supplier, due to the ability of fixing atmospheric N in symbiosis with Rhizo-
bium bacteria [5]. Especially, legume-grass mixtures, like e.g. clover-grass or lucerne-grass, cul-

tivated for 1–3 years and cut 3–5 times a year, are an inherent part of the organic crop rotation

in temperate European climates. These mixtures detain even higher amounts of N than the

same solely cultivated legume [6] and are used as green manure or forage for livestock as well

as for biogas plants. Total annual N fixation varies strongly and can reach up to over 300–500

kg N ha-1 year-1 depending on the legume species [7–9]. Beside N acquisition, legume-grass

mixtures provide additional positive effects on the subsequent cash crop, i.e. enhanced product

quality and soil fertility as well as weed suppression [10–13]. For an efficient nutrient manage-

ment on farm level both with and without livestock, knowledge on the actual amount of bio-

mass harvested as well as on the total annual biomass is necessary [14]. Furthermore, the

amount of fixed N (NFix) is a valuable information, as it contributes to the N cycle of the farm.

In order to understand the dynamics of legume-grass mixtures over the entire growing season,

multi-temporal studies are required. It is well known that legume proportion varies strongly in

practical farming which substantially affects total annual NFix [15].

Traditional methods and devices to estimate biomass in practical grassland management,

like destructive biomass sampling, ruler height or rising plate meter measurements are com-

monly used but are labour and time consuming. Methods to estimate NFix are very expensive

and need a lot of laboratory work, like isotope measurement of the 15N/14N ratio of the natural

abundance or by the isotope dilution method [16]. Another method is the nitrogen difference

method, where the N content in the aboveground biomass of a N-fixing plant and a non-N-fix-

ing plant as reference is analyzed and the difference is calculated [17]. Høgh-Jensen et al. [18]

generated a model for legume-grass mixtures, which includes additional sinks of fixed N, like

the amount of fixed N in the below-ground biomass of the fixing plant, as well as of the grass.

Nevertheless, farmers need efficient on-the-go measurement techniques for biomass and NFix

estimation for short-term management decisions.

Solutions for new non-destructive measurement techniques, covering large areas in short

time, can be found in the field of remote sensing, which developed rapidly in the last decades

in agricultural and grassland science. An overview about different applications of remote sens-

ing in grasslands is given in Schellberg et al. [19] and Wachendorf et al. [20]. A very promising

platform for sensors are unmanned aerial vehicles (UAVs), which are becoming increasingly

important for agricultural crops [21,22]. There exists a variety of different optical sensors, to

be mounted on UAVs for the assessment of agricultural crops. These sensors capture the

reflecting light of vegetation, ranging from low-cost costumer-grade cameras for RGB (red,

green, blue) images to multi- and hyperspectral sensors, which cover also non-visible spectral

bands [23–25].

To compensate background noise from soil or atmosphere in the spectral reflection and to

increase the sensitivity for vegetation traits, vegetation indices (VIs) can be calculated [26].

The most known VI, which uses the red and near infrared (NIR) bands, is the Normalized Dif-

ference Vegetation Index (NDVI) [27]. Nevertheless, NDVI has its limitations, as it saturates

at high biomass and LAI values [23,28] and is varying with soil colour [29] and due to atmo-

spheric effects [30]. In the recent decades more than 100 VIs were developed, which vary in

calculation and proportion of different spectral bands for specific applications and utilization
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for biophysical and -chemical features of vegetation [31]. For estimating different vegetation

features in grassland, VIs are already well-studied tools like for biomass yield [32,33], leaf area

index (LAI) [34] and quality [35].

One aspect with the common use of spectral bands and VIs is that they ignore spatial vari-

ability of the grey level values (pixels) within the neighbourhood of each pixel. This gap can be

covered by texture analysis, which is more complex to quantify than spectral information [36].

Texture is the spatial variation within an image, which correlates with the structure and het-

erogeneity of vegetation [37]. Furthermore, Culbert et al. [38] documented that texture fea-

tures can vary depending on the observed vegetation and its phenological stage, which makes

it an interesting tool for multi-temporal studies. These facts are gaining more attention in

research studies, mainly focusing on land cover classification [39–41], vegetation modelling

[42,43] and structure [44,45] as well as forest biomass estimation [46,47]. For agricultural

crops, there exist, to our best knowledge, only two studies using texture features in combina-

tion with UAV multispectral information. In a multi-temporal study over two years, Zheng

et al. [48] and Li et al. [49] used a multispectral sensor on a UAV to estimate rice biomass and

LAI including different cultivars, varying seed densities and N levels. The authors concluded

that the combination of spectral and texture information is a promising method for biomass

estimation. Few studies have explored the effectiveness of texture features in permanent grass-

and rangeland and mainly focused on the classification of vegetation [50]. Gebhardt and Küh-

bauch [51] as well as van Evert et al. [52] found a high detection accuracy for Rumex obtusifo-
lius in grasslands by using texture features. Guo et al. [53] compared two grassland

management systems (i.e. grazed and non-grazed) and successfully described differences in

spatial heterogeneity of these grasslands. The most popular method of gaining texture infor-

mation of remotely sensed images follows a statistical approach, named Grey Level Co-occur-

rence Matrix (GLCM), which can be used to calculate so-called second order texture features

[54]. While first-order texture features are calculated directly from occurring grey level values

(e. g. variance) within a certain area (window), second-order texture features consider the spa-

tial relationship between these pixels, also called co-occurrence. Therefore, these features are

more computationally intensive, but have a greater potential to represent the structure of vege-

tation. Nevertheless, there exist no studies which estimate biomass in terms of aboveground

biomass and NFix of legume-grass mixtures using texture features in combination with multi-

spectral information.

The aim of this study is to develop harvestable biomass and aboveground NFix estimation

models from UAV multispectral imaging of legume-grass mixtures with varying legume pro-

portions (0–100%). To deal with multispectral data, which usually suffers from multicollinear-

ity, machine learning algorithms can be a solution, especially when the number of predictors is

higher than the number of samples in the dataset. The specific objectives of this study were: (1)

to develop harvestable biomass and aboveground NFix prediction models for mixtures with

two different legumes by machine learning algorithms for a whole growing season; (2) to com-

pare the prediction accuracy of these models with and without the inclusion of texture features;

(3) to identify key variables of the resulting models; (4) to compare the measured and pre-

dicted total annual dry matter biomass and NFix including all cuts in one growing season.

Material and methods

Experimental site and ground truth data

The field experiment was conducted in 2017 and 2018 in Neu-Eichenberg at the experimental

farm of the Universität Kassel, which is located in northern Hesse, Germany (51˚23’ N, 9˚54’

E, 227 m above sea level). The soil is characterized as a silty clay loam and oil radish was
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cultivated as a preceding crop. As the experimental farm is managed organically, no pesticides

or mineral N fertilizer were applied. Long-term average annual precipitation at the site is 687

mm, but the amount of rainfall in 2018 was unusually low (350 mm) and led to severe drought

throughout the whole vegetation period.

Field plots were established in autumn 2017 with a size of 1.50 m × 12 m and sown with a

total seed rate of 35 kg ha−1. The treatments consisted of two legume-grass-mixtures, clover-

(CG) and lucerne-grass (LG), and additionally pure stands of legumes (LCG, LLG) and grass

(GCG, GLG) of both mixtures. These six treatments were sown in four randomized replicates,

resulting in 24 plots in total (Fig 1). CG contained 60% Lolium multiflorum, 30% Trifolium
pratense, 5% Trifolium hybridum L. and 5% Trifolium repens L., whereas LG included 40%

Medicago sativa, 20% Festuca pratensis Huds., 15% Lolium perenne L., 10% Lolium multi-
florum, 10% Trifolium pratense and 5% Phleum pratense L (S1 Table).

In total eight biomass datasets for fresh (FM) and dry matter (DM) were obtained from

three main harvests (17.05.2018, 20.06.2018, 03.08.2018) and to cover the whole vegetation

period from five additional sub-sampling dates, whereas NFix was determined only at main

harvests. At each main harvest two aboveground biomass samples were collected in each plot

on an area of 50 cm × 50 cm and cut at a stubble height of 5 cm. Biomass samples were

weighed, dried for 48 h at 105˚C and weighed again to determine DM. The remaining above-

ground biomass was removed with a Haldrup forage plot harvester. Two additional samples of

fresh biomass were taken. One sample of all plots was dried at 60˚C for a later N content analy-

sis. The second sample was taken only from the mixtures to determine the different fractions:

legumes, grass, herbs and senesced material. The five sub-samples were taken between the

main harvests at an area of 25 cm × 25 cm, restricted to the first 1.5 m of every plot to leave the

remaining area undisturbed for the main harvests (Fig 1B).

N concentration in the biomass was assessed by an elemental microanalyzer (Elementar

vario MAX CHN, Langenselbold, Germany) and N content in the aboveground biomass was

determined by multiplication of N concentration and DM biomass. The difference method

according to Stülpnagel [17] was used to quantify NFix of the legumes (Eq 1):

NFix ¼ NL � NR ð1Þ

where the N content of the mixtures and the pure stand of legumes were defined as the N fix-

ing crop (NL) and the pure stands of grass were used as the non-fixing reference crop (NR).

UAV image acquisition and data pre-processing

UAV flight missions were conducted before each cut (eight flights in total) in the morning at a

nearly equal sun position. A low-cost quadrocopter (DJI Phantom 3 Advanced, Shenzhen,

China) was used equipped with a multispectral sensor (Parrot Sequoia, MicaSense Inc, Seattle,

USA). The sensor captured the reflected light in four separate bands: green (530–570 nm), red

(640–680 nm), red edge (730–740 nm) and near-infrared (NIR; 770–810 nm) with a spatial

resolution of 1.2 Megapixel (MP) as well as red, green, blue (RGB) images with a spatial resolu-

tion of 16 MP. The sensor was supplied with an additional sunshine sensor, which was

mounted on the top of the drone to capture the at-the-sensor irradiance for automatic calibra-

tion of every picture. This radiometric calibration is done to eliminate variation in sunlight

conditions during flight for the subsequent analysis. For two cuts the drone was flown at a

flight altitude of 50 m above ground, where image overlap was 100%. Therefore, as a compro-

mise between flight height and time, remaining cuts were flown at 20 m. All flight missions

were flown manually, as due to the removal of the original camera automatic flight missions

created major internal technical problems. The UAV was steered in a grid pattern through the
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experimental field at a speed of less than 1 m/s and the time trigger of the sensor was set to one

image per 1.5 sec, resulting in about 1000 to 2000 images. Eight portable ground control points

(GCPs; 25 cm × 25 cm) were evenly distributed in the pathways next to the plots and georefer-

enced by a differential global positioning system (DGPS, Leica, Germany) with a mean hori-

zontal and vertical error of 0.02 m (S3 Table). Additionally, the plot corners were

georeferenced once to delimit the individual plots.

Photogrammetric processing was done by means of structure from motion (SfM) with Agi-

soft PhotoScan Professional (Agisoft LLC, St. Petersburg, Russia) to generate multispectral

orthomosaics for every flight mission. The overlapping images, including more than nine

images for the area of interest, of each imported dataset were aligned with internal algorithms

and image fitting techniques of the software. The position and orientation of each image was

adjusted, and a sparse point cloud was created with the accuracy setting “high”, a key point

Fig 1. Overview of experimental field and treatments. (A) Orthomosaic of the experimental field showing the different plots (white border) one day before the third

main harvest (02.08.2018) in false colours (NIR, red, green); (B) Design of experimental layout with treatments in four replicates: clover- (CG) and lucerne-grass (LG)

and pure stands of legumes (LCG, LLG) and grasses (GCG, GLG) of the mixtures. Sampling area for main harvests (red) and the first 1.5 m for sub-sampling (light red).

https://doi.org/10.1371/journal.pone.0234703.g001
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limit of 40,000 and tie point limit of 1,000. Coordinates of the GCPs had to be placed in five

images manually and automatic camera calibration was used to improve the accuracy of the

sparse point cloud. In the next step a dense point cloud was created with “high” quality settings

and a “mild” depth filtering to achieve a detailed image. The resulting output was a multispec-

tral orthomosaic including the reflectance values of each band. Due to different flight altitude

(50 and 20 m), ground resolution ranged between 2–4 cm. Therefore, orthomosaics were

exported as a TIFF file with 4.5 cm resolution for unified conditions for subsequent analysis.

Data analysis and machine learning

Extraction of reflectance information of the four bands and calculation of the texture features

was achieved by Quantum Geographical Information System (QGIS 2.18.14, QGIS Develop-

ment Team, Raleigh, NC, USA). Coordinates of the plot corners were used to create polygons,

avoiding the first 1.5 m which were disturbed by biomass sub-sampling (Fig 1B). For the

remaining area of 15.75 m2 zonal statistic was applied for polygons of each plot and band to

generate average values of every variable. An overview of the workflow including the variables

and analysis is given in Fig 2.

Texture features of images. Image texture can be described as the spectral and spatial var-

iability of grey level values of an image. Haralick suggested a GLCM using 14 second order tex-

tural features of remotely sensed images [54]. As there exists no evidence in literature which

features are best suitable for biomass prediction in grassland or legume-grass mixtures, eight

of these GLCM texture features were used (Table 1), which were provided by the processing

tool HaralickTextureExtraction of the Orfeo Toolbox library (OTB, open source, [55]) in

QGIS. The eight Haralick texture parameters were computed for all four spectral bands sepa-

rately with settings on default (window size: 2 × 2) and a texture set selection on “simple”. The

radiometric resolution was set to 16 bit.

Vegetation index calculation. The spectral information of the orthomosaics was used to

calculate a set of common VIs. Thirteen VIs using visible and red edge as well as NIR reflec-

tance were selected (S2 Table), which were reported in literature for structural or biochemical

characteristics of vegetation and grasslands [31,35]. VIs were calculated in R (R 3.5.1, R Foun-

dation for Statistical Computing, Vienna, Austria) based on the mean value of the original

reflectance of the spectral bands for each plot.

Partial least square and random forest regression. Further analysis and model calcula-

tion were done with R. Two machine learning methods were used for model calibration by

means of the caret package [57] for modelling FM and DM biomass and NFix: Partial Least

Square (PLS) and Random Forest (RF) regression. PLS reduces the number of highly corre-

lated independent variables (i.e. spectral bands) by linear combinations to a few latent vectors

(principal components), which cover the maximum of covariance between independent and

dependent variables (i.e. FM, DM, or NFix) to build a regression model [58]. Another machine

learning algorithm, which in contrast observes non-linear relationships, is RF regression. RF,

introduced by Breiman [59], builds multiple decision trees for regression with a random selec-

tion of sub-datasets as input variables. Both regression algorithms, PLS and RF, are common

techniques for spectral analysis, including highly correlated independent variables, to estimate

biomass yield and quality, also in the field of grassland and forage production [33,35,60].

For an internal training and validation of the PLS and RF models, a leave-one-out-cross-

validation (LOOCV) was performed. For PLS the tuning parameter ncomp, which defines the

number of principal components to be tested, was set to 10% of the number of samples with 4

as a minimum (for DM and FM: 19 for the whole dataset and 10 for both CG and LG; for NFix:

5 for the whole dataset and 4 for CG and LG). Two tuning parameters were set for RF in order
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to produce decision trees: mtry, which is the number of randomly selected variables and ntree,
which represents the number of trees to grow. In this study, mtry was determined by the

square root of the number of variables (here without texture: 5; with texture: 8) and ntree is

automatically set to 500, as commonly recommended [61].

The four spectral bands together with eight texture parameters for each band and the 13

vegetation indices resulted in a total of 49 variables, which were used as independent variables,

Fig 2. Workflow. Workflow of data acquisition and processing with fieldwork (green), dependent variables (blue) and independent variables (yellow) for data analysis.

https://doi.org/10.1371/journal.pone.0234703.g002
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while FM, DM and NFix were considered as dependent variables (Fig 2). To measure the accu-

racy of the PLS and RF models a cross-validation (CV) was implemented. Therefore, the whole

dataset was divided into a training (75%) dataset for calibration of the model and a test dataset

(25%). The test dataset included at least one datapoint of each treatment (CG, LG, LCG, LLG,

GCG, GLG) and cut (three main harvests and five sub-sampling dates) for a later validation. To

avoid bias by dividing the dataset, CV was run 100 times with randomly chosen training and

test datasets. Performance of model prediction quality by CV was indicated by average coeffi-

cient of determination of the validation (R2
val) (Eq 2), root mean square error of prediction

(RMSEP) (Eq 3) and relative RMSEP (rRMSEP) (Eq 4).

R2

val ¼ 1 �

Pn
i¼1
ðyi � ŷiÞ

2

Pn
i¼1
ðyi � �yiÞ

2

" #

ð2Þ

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðyi � ŷiÞ

2

n

s

ð3Þ

rRMSEP ¼
RMSEP

maxðyiÞ � minðyiÞ
ð4Þ

where yi is the measured variable (i. e. FM, DM, NFix), ŷi is the predicted variable, �yi is the aver-

age measured variable and n is the number of samples.

This was done for the whole dataset, as well as crop-specific for clover- and lucerne-grass,

each including the mixture and the pure stands of the corresponding legumes and grasses. Fur-

thermore, PLS and RF were compared with and without texture parameters and the best

machine learning algorithm was selected based on the lowest median rRMSEP value for fur-

ther analysis. To determine the variable importance for biomass and NFix prediction, the best

model out of the 100 cross-validated machine learning algorithms was identified based on the

lowest rRMSE value.

Results

Due to severe drought through the whole vegetation period, both biomass and N fixation were

at a relatively low level. Nevertheless, the experimental set up with two legume-grass-mixtures

(CG, LG) including the pure stands of legumes (LCG, LLG) and grass (GCG, GLG) as well as the

various sampling dates through the vegetation period generated a wide range in biomass (Fig

3). In this multi-temporal study, the range of FM for CG and LG (0–100% legumes) was 0.38–

33.95 and 0.23–28.56 t ha-1, whereas the range of DM was 0.07–5.41 and 0.07–5.33 t ha-1,

Table 1. Haralicks grey level co-occurrence matrix (GLCM) texture features.

Texture feature Explanation (adapted from [54,56])

1. Energy Measures the local steadiness of the grey levels

2. Entropy Measures randomness or degree of disorder

3. Correlation Shows the linear dependency of grey level values in the GLCM

4. Inverse Difference Moment Measures the local homogeneity

5. Inertia Measures the local contrast or amount of variations

6. Cluster Shade Measures skewness of the GLCM

7. Cluster Prominence Measures the asymmetry of the GLCM

8. Haralick Correlation Shows the probability of two pixels with similar grey level

https://doi.org/10.1371/journal.pone.0234703.t001
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respectively. NFix, which was calculated only for the main harvests, was 3.84–118.09 kg ha-1 for

CG and 4.57–121.48 kg ha-1 for LG.

For every main harvest, the percentage of the different fractions (legumes, grass, herbs,

senesced material) in the mixtures was determined to point out differences in the proportions

of legumes (Fig 4). There were only slight differences between the two treatments CG and LG,

but they differed between the three cuts. The proportion of legumes accounted for over 80% in

Fig 3. Violin plot of ground truth data. Violin plots of measured fresh (FM) and dry matter (DM) biomass and fixed N (NFix) of clover-

(CG) and lucerne-grass (LG) mixtures including pure stands of legumes and grasses. Biomass data (FM, DM) were obtained at 3 main

harvests and 5 sub-sampling dates, whereas NFix was determined only at main harvests. Black boxes show the 25 and 75% percentile, white

circles indicate the median, whiskers represent the 5 and 95% percentile, violins show point density.

https://doi.org/10.1371/journal.pone.0234703.g003

Fig 4. Fractions of the mixtures. Dry matter (DM) contribution of the legumes, grass, herbs and senesced material

fractions for the three main cuts in the clover- (CG) and lucerne-grass (LG) mixtures.

https://doi.org/10.1371/journal.pone.0234703.g004
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the first cut and decreased for the second cut to about 40% and to 20% in the third cut. In con-

trast, the percentage of grass increased for every cut. Proportions of herbs and senesced mate-

rial was negligible.

Prediction models

Prediction models for biomass and NFix were built with four spectral bands as well as 13 VIs

and were compared with models including additional eight texture features for each band.

Separate models were developed for the whole dataset (CG, LG, GCG, GLG, LCG, LLG) as well as

specifically for the two legume-grass mixtures, including the corresponding pure stands of

legumes and grass to cover the whole range of legume proportions occurring in farming prac-

tice (Table 2).

Inclusion of texture features generally improved cross validation results of both FM and

DM models (Table 2). The lowest rRMSEP was found in the RF models with the whole dataset,

where texture features reduced the relative error from 15.22 to 9.76% rRMSEP (R2
val = 0.62 to

0.86). For the crop-specific RF models texture features improved rRMSEP from 19.21 to

14.08% (R2
val = 0.55 to 0.76) for CG and from 19.04 to 14.62% (R2

val = 0.54 to 0.74) for LG.

The same trends were obtained from the PLS models, but rRMSEP values were 2–3% higher

(Table 2).

In general, NFix prediction showed no consistent improvement and preferable model algo-

rithm by the integration of texture features. For RF with LG, where rRMSEP was reduced

from 26.33 to 23.75%, although it could not outperform the PLS model (Table 2). In contrast

CG showed the best model by RF without texture (rRMSEP = 25.39%). The lowest rRMSEP of

17.88% was found for the whole dataset by RF with texture features, whereas rRMSEP exclud-

ing texture was 17.91%. Considering the crop-specific models, the best performance was

found for PLS with texture, where the model for LG (rRMSEP = 20.90%; R2 = 0.80) performed

better than for CG without texture features (rRMSEP = 24.46%; R2 = 0.69).

Table 2. Cross-validation results.

Whole dataset Clover-grass (CG, LCG, GCG) Lucerne-grass (LG, LLG, GLG)

Variable Texture (T) Model n R2
val RMSEP rRMSEP n R2

val RMSEP rRMSEP n R2
val RMSEP rRMSEP

FM (t ha-1) Without T PLS 192 0.46 5.18 18.54 96 0.44 5.90 21.51 96 0.42 4.85 21.69

RF 192 0.62 4.23 15.22 96 0.55 5.32 19.21 96 0.54 4.52 19.04

With T PLS 192 0.77 3.60 12.13 96 0.70 4.30 15.75 96 0.70 3.56 16.58

RF 192 0.86 2.79 9.76 96 0.76 3.95 14.08 96 0.74 3.27 14.62

DM (t ha-1) Without T PLS 192 0.53 0.96 20.05 96 0.51 1.03 21.88 96 0.49 0.96 21.94

RF 192 0.62 0.86 17.30 96 0.56 0.98 21.28 96 0.55 0.93 20.41

With T PLS 192 0.76 0.72 15.09 96 0.66 0.89 18.68 96 0.68 0.78 19.04

RF 192 0.87 0.52 10.78 96 0.79 0.71 15.05 96 0.77 0.66 15.28

NFix (kg ha-1) Without T PLS 48 0.72 18.12 18.98 24 0.69 19.87 24.46 24 0.81 18.56 22.25

RF 48 0.74 17.01 17.91 24 0.73 18.46 25.39 24 0.60 20.03 26.33

With T PLS 48 0.70 17.86 19.56 24 0.49 27.73 36.86 24 0.83 19.86 20.90

RF 48 0.76 16.77 17.88 24 0.67 18.99 26.41 24 0.79 17.34 23.75

Median value of 100 randomly executed cross-validations of Partial Least Square (PLS) and Random Forest (RF) regression including multispectral variables and indices

with and without texture features (T) for fresh (FM) and dry matter (DM) as well as fixed N (NFix) for the whole dataset as well as crop-specific: clover-grass (CG) and

lucerne-grass (LG) mixtures including the pure stands of legumes (LCG, LLG) and grass (GCG, GLG); n = number of datapoints, R2
val = coefficient of determination of

validation, RMSEP = root mean square error of prediction, rRMSEP = relative RMSEP (%).

https://doi.org/10.1371/journal.pone.0234703.t002
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The best prediction model algorithm (i. e. RF or PLS) was chosen by lowest rRMSEP value

for further assessment. Coefficient of determination of validation (R2
val) for the best models

varied between 0.69 and 0.87. The plots of fit in Fig 4 for measured versus predicted biomass

and NFix show the 100 times randomly repeated prediction models for the whole dataset as

well as crop-specifically. As the validation dataset contained at least one data point from each

treatment and cut, a wide range of crop conditions was covered by the models. Despite of that

all models showed an underestimation at higher biomass levels (Fig 5), while this trend was

not as clearly visible for NFix.

To identify the contribution of texture features compared to single bands and VIs in the

developed prediction models, the variable importance was calculated (Fig 6). Therefore, out of

the 100 CV-models the best model based on the lowest rRMSEP was chosen and compared

with and without texture for the whole dataset (Fig 6). For FM without texture features the

three most important variables were MCARI, NDRE and GCI, which changed with the inclu-

sion of texture features to G_Tex_3, R_Tex_7 and CVI. A similar trend is visible for DM,

where GCI, GNDVI and R were the most important variables, whereas GCI, R_Tex_7 and

G_Tex_3 contributed the most to the model when texture features were included. Particularly

texture features of the red band ranked relatively high, which also applied for crop-specific

models (S2 and S3 Figs). For NFix without texture features the three most important variables

were RE, NIR and CVI, which changed to RE, NIR_Tex_8 and RE_Tex_8 after including tex-

ture features.

For practical farming the accuracy of total annual biomass is relevant, which is the cumu-

lated biomass of the main harvests of one year. Therefore, biomass (FM, DM) and NFix mea-

sured and predicted by the best prediction algorithm for the two mixtures CG and LG is

shown in Fig 7 with cumulated data. Though the two legume-grass mixtures were on different

biomass and NFix levels, they showed very similar patterns concerning the trend of observed

and predicted values. In total after the third harvest (H3) predicted FM and DM was underesti-

mated by 1.18 and 1.25 t ha-1 for CG as well as 1.52 and 2.38 t ha-1 for LG respectively. NFix

was overestimated at all cuts with annual NFix (H3) was overestimated by 13.69 kg ha-1 for CG

and by 9.96 kg ha-1 for LG.

Discussion

The aim of this study was to provide aboveground biomass and NFix estimation models in two

legume-grass mixtures through a whole vegetation period based on multispectral information.

The prediction models covered different proportions of legumes to represent the variable con-

ditions in practical farming and the multi-temporal data acquisition offered a wide range of

biomass levels, which is a prerequisite for robust and generalised models [62]. All multispectral

information, containing also VIs and texture features, arose from four spectral bands. Conse-

quently, no additional sensors were needed, which reduced measurement errors [63] and

makes this method time and cost efficient.

The first specific objective of this study was the development of biomass and NFix prediction

models for two common legume-grass mixtures. Though differences in model performance

between the two machine learning algorithms (i.e. PLS and RF) were minor, biomass predic-

tion by RF performed better (in terms of rRMSE) than by PLS both for the whole as well as for

the crop-specific dataset. Similar findings were reported by Zhou et al. [64], who found Sup-

port Vector Machine (SVM) to perform better than PLS with hyperspectral reflectance data

captured with a radiometer (400–1000 nm) in different legume-grass mixtures. The authors

pointed out, that there might exist a non-linear relationship between spectral information and

biomass, which could not be captured by PLS modelling. For NFix the best model for the whole
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Fig 5. Plot of fit. Scatterplot for measured and predicted fresh (FM) (A) and dry matter (DM) (B) and fixed N (NFix) (C) for the whole

dataset as well as crop-specific: clover-grass (CG) and lucerne-grass (LG) mixtures including the pure stands of legumes and grass. Plots

show the best prediction algorithm, Partial Least Square or Random Forest (RF), with 100 randomly selected test and training data sets based

on data from 3 main harvests and 6 sub-sampling dates, whereas NFix contains only main harvests.

https://doi.org/10.1371/journal.pone.0234703.g005
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Fig 6. Variable importance. Variable importance of prediction models for fresh (FM) (A) and dry matter (DM) (B) as well as fixed N

(NFix) (C) for the whole dataset built with four spectral bands, 13 vegetation indices and with (red) and without (black) 8 texture features

of each band. Stars indicate the three highest rankings of variables with (red) and without texture features (black) in the model. Plots

show the best prediction algorithm, Partial Least Square (PLS) or Random Forest (RF), with the best of 100 randomly selected test and

training data sets based on data from 3 main harvests and 6 sub-sampling dates, whereas NFix contains only main harvests.

https://doi.org/10.1371/journal.pone.0234703.g006
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dataset was given by RF, whereas the crop-specific regression analysis was better with PLS.

Morin et al. [55] stated that RF showed weaknesses in dealing with small sample sizes. In our

study the dataset for model calibration of NFix was limited to three main harvests only, which

may have decreased model robustness.

In contrast to findings by Grüner et al. [24], where biomass prediction models by UAV

height measurement showed substantial crop-specific differences, no clear differences were

found in this study between clover- and lucerne-grass mixtures. Interestingly, for biomass and

NFix the best models with an average rRMSEP of 10% (FM), 11% (DM) and 18% (NFix) were

obtained based on the whole dataset, which produced rather universal and crop-unspecific

Fig 7. Annual biomass. Measured (black) and predicted (red) cumulated biomass for fresh (FM) (A) and dry matter

(DM) (B) as well as fixed N (NFix) (C) for clover-grass (CG) and lucerne-grass (LG) mixtures, after the first (H1),

second (H2: H1+H2) and third (H3: H1+H2+H3) cut. Best machine learning algorithm is shown of Partial Least

Square (PLS) and Random Forest (RF) regression with and without texture features (T).

https://doi.org/10.1371/journal.pone.0234703.g007
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models. Model validation by a preferably independent test dataset is desirable for the assess-

ment of prediction accuracy. However, our models were created based on datasets from one

experimental site only and a limited variety of plant species which may limit the transfer to

other locations and time periods [45].

NFix models were less accurate with a relative error of 18–24%. To our best knowledge, no

other studies investigated the relationships between spectral information and N fixation by

legume-grass mixtures. The relationships between NFix and multispectral information with R2

from 0.69 to 0.84 found in our study must be interpreted with caution, as different impacts of

N flux in the soil, air and plant affect N fixation of forage legumes in mixtures with grasses

[16]. Knoblauch et al. [65] could not capture N dynamics of the soil by a multispectral sensor

with two bands (red, NIR) or by calculating NDVI and SR (Simple Ratio) in a greenhouse

experiment with perennial ryegrass (Lolium perenne L.). The authors concluded that the above

mentioned effects cause problems to measure NFix so far by optical remote sensing, as it only

obtains spectral information of the biomass and the top soil surface, but furthermore, does not

consider the root tissue which also contains atmospherically fixed N [7]. NFix model accuracy

may also depend on the methodology for measuring reference data. NFix calculation by the dif-

ference method, which is widely-spread and relatively simple to use, assumes that grass and

legumes have the same intensity of soil N absorption. However, grass usually absorbs more soil

N, which leads to an underestimation of the method [7]. For this reason, Thilakaratha et al.

[16] suggested to include non-N-fixing legumes of the same species as a reference, not only for

a more precise difference method, but also to calibrate the spectral information and to use it

for an improved classification of N fixation.

The second and third objective of our study was to compare the performance of the biomass

and NFix prediction models with and without texture features and to identify the importance

of the variables. Models for FM and DM showed poor accuracies without texture features with

an rRMSEP between 15 to 22%. Due to missing rainfall through the whole vegetation period

and as no fertilizer was applied, especially pure stands of grass were growing poorly after the

first cut. Biewer et al. [66] found that models build with VIs solely (i. e. NDVI and SR) showed

weaknesses in predicting mature and dry grass swards due to alteration of the spectral infor-

mation. Though mixed stands with plants of varying chemical (e. g. pigments and water) and

morphological traits (e. g. angle and structure of leaves) may show similar spectral reflection

patterns [67], texture features may help to distinguish single plant species by considering the

spatial heterogeneity [68]. Our results clearly demonstrated that inclusion of texture features

reduced rRMSEP by almost the half (rRMSEP = 10–15%) and resulted in improved model

accuracies (R2 = 0.75–0.87). Furthermore, texture features showed high rankings in the vari-

able importance of the models, especially for those of the red band. The latter finding is con-

firmed by the work of Gallardo-Cruz et al. [37] who found texture features from red and NIR

bands as the most important in satellite-based remote sensing for vegetation classification and

modelling of height and biodiversity.

Thus far, only one study included texture analysis for biomass prediction of agricultural

crops. Using multispectral UAV images Zheng at al. [48] found rather poor relationships

between different texture features and DM over two vegetations periods. However, model

accuracy could be improved by using a new Normalized Difference texture index (NDTI)

instead of single texture features (R2 = 0.44–0.75 for the whole dataset). A comparison to

legume-grass mixtures, which form more heterogeneous canopies, is difficult. Nevertheless,

Zheng at al. point out that a normalization of texture information by an index excludes back-

ground noises like soil reflection and varying sun position and, thus, may improve biomass

prediction in multi-temporal studies with legume-grass mixtures, but more research is

required in this area.
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NFix was improved by texture features except for CG, although texture showed high rank-

ings for variable importance. As NFix depends on several different conditions (e.g. soil variabil-

ity), this plant trait cannot be captured easily by spectral information of the plant canopy. Such

limited information may be the reason for the inconsistent effects of texture features on model

accuracy. A broader spectral range or hyperspectral information from additional sampling

dates as well as from bare soil areas at the time of measurement, which act as a reference for

the soil N content [69] may improve model accuracy.

The last objective of our study was the assessment of total annual biomass and NFix for CG

and LG. Total annuals represent the level at which farmers, plant breeders and advisory services

usually conduct the evaluation of crop performance and where data are available as a basis for

feeding plans for ruminants or biogas plants. Annual FM and DM was underestimated for both

CG and LG by around 1 to 2 t ha-1, with slightly better accuracy for FM. Surprisingly, a predic-

tion of annual biomass by crop height, which was estimated from drone-based RGB imaging

and photogrammetric analysis, showed greater potential [24]. Contrary, annual total NFix for

CG and LG was slightly overestimated by 10–14 kg ha-1. Compared to data reported for CG and

LG, which indicate a total annual N fixation of up to 300 kg ha-1 [7,9,70], total annual NFix in

our study was generally on a relatively low level, which in combination with a small sample size

may have created difficulties in the modelling process. Annual biomass and NFix prediction by

multispectral information, thus, should be considered as a first approach for the support of

farm management decisions, which still needs further improvement.

In general, accurate biomass prediction by multispectral UAV data depends on several

parameters during data acquisition, like recording time, image quality and model tuning.

Though the sensor used in our study had an integrated sunshine sensor for automatic calibra-

tion of every picture, multi-temporal data acquisition requires stable and calm weather condi-

tions and equal time points of flight missions [71], which was difficult to comply with even

under experimental conditions and all the more so poses challenges under farming conditions.

Changing atmospheric condition between the sampling dates might also affect data quality,

which can only be compensated by proper atmospheric correction [72]. Nevertheless, atmo-

spheric algorithms are complex and intense atmospheric measurements have to be done

simultaneously for each flight, which increases measurement time [21,72,73]. Moreover, mov-

ing plant leaves by wind or blurred images need to be avoided to keep texture accuracy high

[52]. As flight speed in our study was very slow (1 m/s) image quality was high and no image

had to be excluded from the analysis. Especially for texture features, image quality and resolu-

tion play a decisive role [36], which depends on the sensor resolution in combination with the

flight altitude. With the sensor used in our study a flight height of 50 and 20 m resulted in an

image resolution of 2–4 cm, which was then resampled to 4.5 cm. Different ground resolutions

should be avoided in future studies to keep unified conditions for data analysis As plant and

especially grass leaves can be thinner than 2 cm, a higher spatial resolution may improve tex-

ture resolution and, therefore, biomass prediction accuracy. Furthermore, in our study only

default parameter settings for texture processing were used. The impact and versatility of tun-

ing parameters and window size for texture processing was shown elsewhere [36,47,55] and

should be considered in future research to improve quality of biomass estimation in legume-

grass mixtures. Further work is needed to assess the potential of this promising tool at other

sites and different legume-grass mixtures.

Conclusion

Non-destructive and fast aboveground biomass and NFix prediction tools are desirable for

practical farm management, especially for organic farmers who are depending on legumes as
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an N source. For this purpose, the aim of this multi-temporal field study was to provide above-

ground biomass and NFix estimation models based on UAV-borne multispectral information.

Two machine learning methods were tested (PLS and RF) using data from two different

legume-grass mixtures and associated pure legume and grass through a whole vegetation

period. We successfully developed a procedure for biomass prediction by inclusion of texture

features from a grey level co-occurrence matrix. RF produced the best results for the whole

dataset based on the two legume-grass mixtures including the pure stands of legumes and

grass, both for biomass and NFix. Although prediction of fixed N seemed to be more complex,

strong relationships were found between NFix and multispectral information under field con-

ditions. In conclusion, multispectral information including texture features from one single

sensor on a UAV proved to be a very promising tool for biomass and NFix prediction in

legume-grass mixtures.

Supporting information

S1 Table. Treatments. CG = Clover-grass; LG = Lucerne-grass.

(TIF)

S2 Table. Vegetation indices. Vegetation indices calculated with four bands captured by the

multispectral sensor used in this study: green, red, red edge (RE) and near infra-red (NIR).

(TIF)

S3 Table. Photogrammetric processing information.

(TIF)

S1 Fig. Model accuracy. Boxplots for the model accuracy created by 100 cross-validations for

the whole dataset as well as crop-specific: clover-grass (CG) and lucerne-grass (LG) mixtures

including the pure stands of legumes and grass. Plots show the best prediction algorithm, with

100 randomly selected test and training data sets based on data from 3 main harvests and 6

sub-sampling dates, whereas NFix contains only main harvests. Boxes show the 25 and 75%

percentile, the solid line indicates the median, the whiskers represent the 5 and 95% percentile,

circles show outliers.

(TIFF)

S2 Fig. Variable importance for clover-grass. Variable importance of prediction models for

fresh (FM) (A) and dry matter (DM) (B) as well as fixed N (NFix) (C) for the whole dataset

built with four spectral bands, 13 vegetation indices and with (red) and without (black) 8 tex-

ture features of each band. Stars indicate the three highest rankings of variables with (red) and

without texture features (black) in the model. Plots show the best prediction algorithm, Partial

Least Square (PLS) or Random Forest (RF), with the best of 100 randomly selected test and

training data sets based on data from 3 main harvests and 6 sub-sampling dates, whereas NFix

contains only main harvests.

(TIF)

S3 Fig. Variable importance for lucerne-grass. Variable importance of prediction models for

fresh (FM) (A) and dry matter (DM) (B) as well as fixed N (NFix) (C) for the whole dataset

built with four spectral bands, 13 vegetation indices and with (red) and without (black) 8 tex-

ture features of each band. Stars indicate the three highest rankings of variables with (red) and

without texture features (black) in the model. Plots show the best prediction algorithm, Partial

Least Square (PLS) or Random Forest (RF), with the best of 100 randomly selected test and

training data sets based on data from 3 main harvests and 6 sub-sampling dates, whereas NFix
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contains only main harvests.

(TIF)
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