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Sensor Concept Based on Piezoelectric PVDF Films for
the Structural Health Monitoring of Fatigue Crack

Growth
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Abstract: A new sensor concept for monitoring fatigue crack growth in techni-
cal structures is presented. It allows the in-situ determination of the position of
the crack tip as well as the fracture mechanical quantities. The required data are
obtained from a piezoelectric polymer film, which is attached to the surface of
the monitored structure. The stress intensity factors and the crack tip position are
calculated from electrical potentials obtained from a sensor array by solving the
non-linear inverse problem.

Keywords: fatigue crack growth, fracture mechanical sensor, stress intensity fac-
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1 Introduction

The life cycle of technical structures under deterministic or stochastic loads is often
limited by crack growth. Considering the failure of technical structures subcritical
fatigue crack growth often plays an essential role [Lange (1983)]. To ensure the
guaranteed minimum life cycle of machines and plants the growth rates of expected
or observed fatigue cracks must be known. Due to the mostly occurring stochastic
load collectives and complex geometries predictions based on pure calculation are
problematic. In particular, civil engineering constructions, aircraft structures, vehi-
cles as well as wind turbines are exposed to complex load collectives. Numerical
stress analyses are inexact due to uncertainties in the load assumptions [Kamleit-
ner et al. (2005)]. Therefore, expensive inspections of highly loaded structural
components with respect to cracks are regularly required.

Different methods have been developed for the monitoring of the structural integrity
including those to evaluate cracks. On the one hand, there are methods detecting
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just the size and location of cracks, on the other there are those quantifying the
stress state at the crack tip. Concepts for the determination of crack length and
position are using different physical effects. Some are based on the interaction
principle of high-frequency mechanical waves with the crack. Often piezoelectric
or magnetostrictive [Kwun et al. (2002)] components are used for the genera-
tion of these waves and the detection of the signals modified by the crack. With
an appropriate processing of the signals the crack position is determined. The
crack length can be e.g. obtained from the signal of a strain gauge ([Gama and
Morikawa (2008)], [Kurosaki et al. (2002)]) supplying information on the crack
length-dependent stiffness of the specimen. There are also methods for the experi-
mental determination of fracture mechanical quantities e.g. stress intensity factors
(SIF). These include photo elastic methods ([Lu and Chiang (1993)], [Singh and
Shuka (1996)]), laser interferometry and the caustic method [Shozu et al. (2002)]
as well as thermo elastic stress methods. However, those methods are not suitable
for efficient long-term monitoring of technical structures. Thermal methods use
electromagnetic infrared radiation emitted from the surface of a specimen, which
is particularly observed in the fracture process zone. Thus, the stress distributions
are determined and SIF are calculated ([Shiratori et al. (1990)], [Honda et al.
(2002)]). Some optical methods correlate images of the crack growth using digital
image processing technology and thus determine the fracture mechanical quanti-
ties ([McNeill et al. (1987)], [Rethore et al. (2005)], [Roux and Hild (2006)]) by
appropriate evaluation. A rarely used method for SIF determination is based on the
measurement of the potential difference at the crack, which occurs due to the skin
effect if a high frequent alternating current is applied [Saka et al. (1991)]. The use
of strain gauges, mostly applied in front of the crack tip, is one of the most frequent
methods to determine SIFs ([Irwin (1957)], [Dally and Sanford (1988)], [Dally
and Sanford (1990)], [Putra (2000)]). However, it is not suitable for a long-term
monitoring of structures in service, since crack growth must be excluded. Particu-
larly, a high spatial resolution can not be attained. In addition, a high cabling effort
is required, which is mainly due to the obligatory external energy source. Some
new concepts exploit piezoelectric polymer films as sensors for the experimental
determination of fracture mechanical quantities ([Fujimoto et al. (2003)], [Fuji-
moto et al. (2003)], [Fujimoto et al. (2004)]). They compensate for disadvantages
of classical resistance strain gauges, are easily applied and are optimally suitable
for long-term monitoring. However, recently developed concepts based on piezo-
electric polymers merely aim at the experimental determination of SIFs for a given
crack length and do not include crack growth into consideration.
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2 Piezoelectric polymer material PVDF

Polyvinylidene fluoride (PVDF) is efficiently applicable as actuator or sensor. The
chemical basic molecule -(CH2CF2)n- exhibits a strong electronegativity of the flu-
orine compared to the carbon. Thereby, the CF2- dipoles are aligned perpendicu-
larly to the molecular chain axis (Fig. 1), attaining a maximum of polarization in
the βÂ-modification of PVDF [Danz and Geiss (1987)]. Macroscopic piezoelec-
tric properties of the polymeric material are obtained by the polarization process,
where in most cases a mechanical extension superimposes an electric field in the
thickness direction.

F
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Figure 1: Molecular structure of PVDF in β - modification

The piezoelectric and dielectric properties of PVDF are comparable to those of ce-
ramic piezoelectrics, the mechanical properties are much different, though. Due
to the anisotropy in the 1-2-plane caused by production the material is orthotropic.
The small elastic modulus and the extremely low mass of the sensor material open
up new application fields compared to piezoelectric ceramics. Due to simple adhe-
sive attachment and the high flexibility of the layer an application on any curved
surface is feasible. The temperature range for an application of PVDF films as
actuators or sensors is between -70˚C and +90˚C. However, PVDF exhibits strong
pyroelectric properties. The resulting high temperature sensitivity must be taken
into account and should be compensated during measurements. Special design of
the coating of the polymer layer allows for the construction of complex sensor ar-
rays accomplishing a high spatial resolution.

The material constants of PVDF were taken from [Roh et al. (2002)]. Within the
framework of a thermodynamically consistent material modelling they are trans-
formed with respect to strain and electric field as independent variables (see ap-
pendix).
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3 Material equations for an orthotropic piezoelectric sensor

Based on the independent variables ε i j (strain) and Ei (electric field) the piezoelec-
tric material behavior can be expressed by the following constitutive equations:

σi j = ci jklεkl− eki jEk

Di = eiklεkl +κi jE j
(1)

The elasticity tensor ci jkl represents the partial derivative of stresses σ i j with re-
spect to strain at constant electric field and the dielectric tensor κ i j is the derivative
of the electric displacement Di with respect to the electric field at constant strain.
The third order piezoelectric tensor eki j describes the coupling of mechanical and
electrical fields. In Voigt notation all tensors are represented by matrices as shown
in the appendix. This notation clarifies the orthotropic material behavior concern-
ing both mechanical and electrical properties.

For the film x3 is chosen as polarization direction (Fig. 2), the axes 1 and 2 are
lying in-plane. Furthermore, the plane stress state is assumed to prevail in the film
(σ33 = 0).

Since the polarization is orientated into the 3-direction and the potentials can be
measured only at the surfaces, the x3-component of the electric field is relevant.
From the constitutive relations (1) the following equations can be derived:

σ33 = c31ε11 + c32ε22− e33E3 = 0 (2)

D3 = e31ε11 + e32ε22 + e33ε33 +κ33E3 (3)

film

polarisation
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2

3

 

Figure 2: Piezoelectric film with coordinate system

By eliminating ε33 from Eqs. (2) and (3), the dependence of the electric field per-
pendicular to the sensor film from the in-plane strain is obtained

E3 = C1ε11 +C2ε22 +C3D3 (4)
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with the constants C1, C2, C3:

C1 =
c31e33− c33e31

e2
33 + k33c33

(5)

C2 =
c32e33− c33e32

e2
33 + k33c33

(6)

C3 =
c33

e2
33 + k33c33

(7)

In the following, it is assumed that no free charges accumulate at the film surface
such that D3 = 0.

For sensory applications a potential difference ∆φAB = φA−φB is measured between
the lower and upper film surface (Fig. 3).

PVDF film

φA

φΒ h 

Figure 3: Potential difference across the film thickness

This coincides with the voltage UAB by definition. For linear potential gradient in
the thickness direction the electrical field is calculated as follows:

E3 =−∇φ =−∆φAB

h
, (8)

with h as film thickness.

With equation (4) the measured voltage at the film is given as:

UAB =−h(C1ε11 +C2ε22). (9)

4 Relations for a transversely isotropic sensor film arrangement

For isotropic material behavior Eq. (9) can be simplified as

UAB =−hC(ε11 + ε22), (10)

with C = C1 = C2.
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Figure 4: Two stacked orthotropic films. Material axes of the upper film rotated by
90˚ with respect to the lower film

A transverse isotropy is obtained if two orthotropic films are rotated by 90˚ to each
other before gluing them (Fig. 4).

Starting from Eq. (8) applied to each film gives the relation

UAC =−(EF1
3 hF1 +EF2

3 hF2). (11)

Assuming that both films have the same thickness i. e. hF1 = hF2 = h it follows:

UAC =−hC∗ (ε11 + ε22) , (12)

with C∗ = (c31+c32)e33−(e31+e32)c33

(e2
33+k33c33)

5 Relationship between stresses within the specimen and the electric poten-
tial difference

Due to the adhesive bonding of the sensor film to the specimen it can be ideally
assumed that the strains from the surface of the specimen are transmitted to the film
without sliding. Generally this is probably not the case, since the adhesive layer
between the specimen and the film represents a joint with viscoplastic properties.
The discontinuity of the displacements u1, u2 at the interface can be taken into
account by the very simple linear relationship with g≤ 1

ε
F
i j = gε

S
i j ( i = j) (13)

where the superscript F represents the film and S stands for the structure.

In the case that the film coordinate system is rotated with respect to the crack co-
ordinate system, the specimen surface strains have to be transformed into the film
coordinate system:

ε
F
11 = g

(
ε

S
11 cos2

β + ε
S
22 sin2

β +2ε
S
12 sin β cos β

)
(14)
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Figure 5: Crack coordinate system (x,y) and film coordinate system (x′,y′)

Here, the angle β is the angle of rotation between both coordinate systems (Fig. 5).

Assuming a plane stress state at the surface of the specimen it is

ε
S
12 =

(
1+νS

)
ES σ12. (15)

With the elastic modulus ES and Poison’s ratio νS.

Substituting Eqs. (16) to (15) into (14), (15) and finally into (9), the voltage

UAB =− hg
ES {σ11

[
cos2

β
(
C1−ν

SC2
)
+ sin2

β
(
C2−ν

SC1
)]

+

σ22
[

sin2
β
(
C1−ν

SC2
)
+ cos2

β
(
C2−ν

SC1
)]

+

σ12
(
1+ν

S) (C1−C2) sin(2β )}

(16)

is obtained for the orthotropic film. In the case of an effective transversal isotropy
substituting Eqs. (16) to (15) into (14), (15) and finally into (12) yields

UAC =−
hgC∗

(
1−νS

)
ES {σ11 +σ22} (17)
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6 Asymptotic crack tip near field

In the Linear Elastic Fracture Mechanics (LEFM) the asymptotic fields (r→0) of
displacements, stresses and strains near the crack tip are expressed in terms of
stress intensity factors (K-factors) ([Gross and Seelig (2007)], [Kuna (2008)]).
At finite distance to the crack tip higher order terms are taken into account, e.g. a
non-singular constant stress named T-stress acting parallel to the crack. The stress
tensor components are

σ11 =
KI√
2π r

cos
(

ϕ

2

)(
1− sin

(
ϕ

2

)
sin
(

3ϕ

2

))
−

KII√
2π r

sin
(

ϕ

2

)(
2+ cos

(
ϕ

2

)
cos
(

3ϕ

2

))
+T

(18)

σ22 =
KI√
2π r

cos
(

ϕ

2

)(
1+ sin

(
ϕ

2

)
sin
(

3ϕ

2

))
+

KII√
2π r

sin
(

ϕ

2

)
cos
(

ϕ

2

)
cos
(

3ϕ

2

) (19)

σ12 =
KI√
2π r

sin
(

ϕ

2

)
cos
(

ϕ

2

)
cos
(

3ϕ

2

)
+

KII√
2π r

cos
(

ϕ

2

)(
1− sin

(
ϕ

2

)
sin
(

3ϕ

2

)), (20)

with −π ≤ ϕ ≤ π .

The KI and KII represent the two in-plane crack opening modes I and II. The polar
coordinate system (r, ϕ) has its origin at the crack tip and on the ligament ϕ = 0. In
order to obtain the relationship between the fracture mechanical quantities KI , KII ,
T and the voltage at the piezoelectric film, the Eqs. (21) to (20) are substituted into
Eqs. (19) and (17), respectively. According to Williams ([Williams (1957)], [Kuna
(2008)]), the stresses in a cracked body are represented by an infinite series where
higher order terms (n > 2) account for larger distances from the crack tip compared
to the asymptotic solution (21) to (20). This extension may be crucial for remote
electrodes. Using this general representation of the stress state, one obtains for the
orthotropic case:

UAB = C0

∞

∑
n=1

r
n
2−1(an

(
M(n)

11 fI +M(n)
22 fII +M(n)

12 fIII

)
+

bn

(
N(n)

11 fI +N(n)
22 fII +N(n)

12 fIII

)
),

(21)
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with

C0 =− hg
ES ,

fI = cos2
β
(
C1−ν

SC2
)
+ sin2

β
(
C2−ν

SC1
)
,

fII = sin2
β
(
C1−ν

SC2
)
+ cos2

β
(
C2−ν

SC1
)
,

fIII =
(
1+ν

S) (C1−C2)sin(2β ) ,

M(n)
11 =

n
2

{[
2+(−1)n +

n
2

]
cos
[(n

2
−1
)

ϕ

]
−
(n

2
−1
)

cos
[(n

2
−3
)

ϕ

]}
,

N(n)
11 =

n
2

{[
−2+(−1)n− n

2

]
sin
[(n

2
−1
)

ϕ

]
+
(n

2
−1
)

sin
[(n

2
−3
)

ϕ

]}
,

M(n)
22 =

n
2

{[
2− (−1)n− n

2

]
cos
[(n

2
−1
)

ϕ

]
+
(n

2
−1
)

cos
[(n

2
−3
)

ϕ

]}
,

N(n)
22 =

n
2

{[
−2− (−1)n +

n
2

]
sin
[(n

2
−1
)

ϕ

]
−
(n

2
−1
)

sin
[(n

2
−3
)

ϕ

]}
,

M(n)
12 =

n
2

{(n
2
−1
)

sin
[(n

2
−3
)

ϕ

]
−
[n

2
+(−1)n

]
sin
[(n

2
−1
)

ϕ

]}
,

N(n)
12 =

n
2

{(n
2
−1
)

cos
[(n

2
−3
)

ϕ

]
−
[n

2
− (−1)n

]
cos
[(n

2
−1
)

ϕ

]}
.

The an,bn are coefficients of the n-th eigenfunction of the crack field solution. Their
values for n = 1, 2 correspond to

a1 = KI√
2π

, b1 =− KII√
2π

and a2 = T
4 .

Within this general framework of describing the stress state, Eqs. (21) to (20)
represent the special case n = [1, 2]. The case of transverse isotropy of the PVDF
film looks much simpler:

UAC = C∗0

{
∞

∑
n=1

nr
n
2−1 [an cosαn−bn sinαn]

}
, (22)

with

C∗0 =−
2hgC∗

(
1−νS

)
ES , αn =

(n
2
−1
)

ϕ.

With the equations (21) and (22), respectively the electrical potential difference at a
point-shaped electrode located at the position (r, ϕ) in the polar coordinate system
related to the crack tip can be calculated if the load situation is known.
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7 Solution of the inverse problem

Due to strains at the specimen surface, potential differences are induced at any
position of the piezoelectric film, which can be measured in principle. If the loading
situation at the crack tip is to be determined based on these measured potentials
the solution of an inverse boundary value problem of the theory of elasticity is
required. If the crack position with respect to the film is known, K-factors, T -stress
and optionally further terms of the crack solution are the unknown quantities to
be determined. If the problem is limited an,bn to KI , KII and T -stress, there are
three unknowns requiring a system of at least three equations associated with three
measuring points. In this case a linear system of equations with unique solution is
obtained.

However, the practical application of this sensor concept is focussed on the detec-
tion of unknown crack paths. This means that the crack position with respect to the
film is not known and the coordinates of the measuring points (ri, ϕi) in the crack
coordinate system (x, y) thus are not available. Introducing a local coordinate sys-
tem (x′, y′) related to the film (Fig. 5), the position of any measuring point can be
calculated by coordinate transformation to the crack coordinate system (x, y). As
the coordinates of the electrodes with respect to the film are known, the fracture
quantities are complemented by three more unknowns (x0, y0,β ) describing the
film position with respect to the crack faces (Fig. 5). Thus, three more measuring
points and equations need to be considered.

The following equations relate the two coordinate systems:

xi = x′i cosβ − y′i sinβ + x0, (23)

yi = x′i sinβ + y′i cosβ + y0, (24)

ri =
√

x2
i + y2

i , (25)

ϕi = arccos
xi

ri
0≤ ϕi ≤ π

ϕi =−arccos
xi

ri
−π ≤ ϕi < 0

. (26)

In connection with equations (21) and (22), a nonlinear algebraic equation includ-
ing six unknowns is obtained. For the sake of a unique solution at least six in-
dependent equations are required, which in connection with at least six electrodes
enable the calculation of SIFs, T -stress and the coordinates of the crack tip. The
measuring points have to be sufficiently close to the crack tip in order not to leave
the range of validity of equations (21) to (20) or (21) and (22) for finite n. Since
a manifold of solutions exists due to the nonlinearity of the system of equations,
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some more measuring points need to be involved into the evaluation. In princi-
ple, the nonlinear algebraic system is solvable applying standard algorithms such
as Newton’s method, however the initial approximations must be very close to the
final values, in order not to be captured in local minima. Therefore, a solution is
sought in terms of a nonlinear optimization problem. To solve the nonlinear system
of equations two different procedures are applied: the principal axis method [Brent
(1973)] and the Levenberg-Marquardt method [Moré (1977)]. The principal axis
method has been developed by R.P. Brent and is known as one of the best optimiza-
tion algorithms not needing any information on the gradient of the function. The
method possesses a few special features compared to other algorithms, like e.g. the
assumption that local minima evolve from second order functions. The principal
axis method exhibits some advantages with respect to the Levenberg-Marquardt
procedure. It proves to be e.g. less sensitive towards the initial values of the it-
eration and goes along with a higher numerical robustness. The testing of both
methods is based on numerical simulations of the structure – sensor – system and
therewith calculated electrical potentials. The results are compared with each other
in the next section.

Besides these two nonlinear optimization algorithms, the feasibility of applying
neural networks to the solution of the problem under consideration is investigated.
This technique is frequently used in order to solve highly nonlinear inverse prob-
lems [Nguyen (1993); Xia and Feng (2007)]. An artificial neural network com-
monly consists of several layers, where the first layer represents the input infor-
mation and the last one supplies the output data. The weights of the connections
between different neurons are calculated based on a training algorithm, e.g. the
backpropagation-algorithm, in which all training data sets are propagated repeat-
edly in arbitrary order. For the calculations outlined in the following section,
the software package SNNS (Stuttgart Neuronal Network Simulator [Zell et.al.
(1995)]) was used, which is freely accessible and feasible for the development of a
variety of net variants.

8 Testing of the solution algorithms

The numerical solution of the boundary value problem of the cracked structure
with applied sensor film is achieved with the commercial Finite Element (FE) code
ABAQUS. It is used to test the analysis methods as well as to verify the efficiency
of the overall concept. In Fig. 6 a scheme of the model of a plate with a straight
edge crack is presented.

The small dark areas on the surface represent sensor arrays which are applied to the
slightly gray PVDF film. In the FE model the latter is modelled as an orthotropic
piezoelectric material. At the film-structure interface the electric potential is set



12 Copyright © 2011 Tech Science Press SDHM, vol.7, no.1, pp.1-22, 2011

sensor area PVDF film  

Figure 6: Schematic of the system structure-film-electrodes

to zero. Relative motion between the film and the plate is neglected, i.e. there is a
fixed constraint with g = 1. Due to the high ductility and failure strain of the PVDF,
it is assumed that the film is not ruptured by the crack opening locally bearing
large deformations. Calculations have proven that the influence on the potentials at
sensors lying close to the crack path can be neglected.

The sensor concept is verified at a plate specimen (Fig. 7) holding the dimensions
(width×height×length) 10×250×750 mm featuring an edge crack of length 25
mm, which is loaded in different ways.

The film has the dimensions (w×h×l) 0.1×50×50 mm exhibiting 49 sensors with
an area 0.5×0.5 mm each, being arranged at regular distances of 5 mm to each
other. The condition of homogeneous potentials at the area of each electrode im-
plicitly effectuates an integration of local potentials there in the FE-model.

For the plate material, the elastic constants of steel ES = 210 GPa and νS = 0.3
have been chosen. First, the results from the nonlinear optimization algorithms
are discussed. In the following, some abbreviations are introduced: RS – reference
solution, PA – principal axis method, LM – Levenberg-Marquardt method, IV – ini-
tial values. The calculations with ABAQUS have been carried out under different
loading conditions, i.e. pure mode I and II as well as mixed mode. In addition, the
position of the film with respect to the crack including the angle to each other were
varied. The electric potentials emanating from the simulations were considered to
be measured potentials and served as input values for the testing of the mathemati-
cal sensor concept. Those sensors being directly located above the crack faces were
not used for the evaluation. In the Tables 1 to 5 some results of the calculations are
presented. Applying the PA, three rather than the two terms of the crack tip near
field solution depicted in the Eqs. (21) to (20) have been taken into account. On
the other hand, applying the LM only two terms of the series were used with the
exception of Table 3.



Sensor Concept Based on Piezoelectric PVDF Films 13

It can be concluded from the results that in the case of a predominant mode I loading
(Tables 1, 2, 4 and 5) being characteristic for fatigue crack growth, the solution
found from the inverse problem is in good agreement with the reference solution.
Especially the coordinates (x0,y0,β ) being relevant for the crack position are very
well determined. Although the calculated T -stress mostly has significant deviations
from the reference solution, the errors in the more important KI– factor are never
above 10%. Generally it was found that the PA in comparison to the LM is less
sensitive towards the starting value of the iteration. It was also observed for pure
mode I loading with a straight crack path (β = 0) that the values from the sensors
being located directly in front of the crack are completely sufficient to get close to
the correct solution. In the case of a predominant mode II (Table 3) a satisfactory
agreement could not be obtained. Here, the choice of the initial values and the
number of terms used for the crack tip near field solution play an important role.
The reason could be the deviation of the analytically predicted stresses σ11from
those actually calculated for the specimen using the FEM. A difference of e.g. 5
MPa according to Eq. (21) causes a deviation of one volt.

Finally, some results based on calculations with a neural network are presented.
The data basis for the training procedure of the network is presented in Table 6.
Two sets of data have been chosen including the six relevant parameters of crack
position and loading and the respective electric potentials. The first layer comprises
16 input neurons. Attempts to include smaller numbers of neurons have not been
successful. The second and third layer consists of 10 neurons each and the output
neurons correspond to the six unknowns.

 

Figure 7: Plate with crack and sensor array with electrodes (dimensions in mm)

In Table 7 results are presented for four different parameter sets comparing the re-
spective reference solution (RS) to the solution emerging from the neural network
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(NN). The relation between the parameters and the electric potential is based on
the analytical considerations outlined in sections 5 and 6 in order to decouple the
testing of the NN method from possible numerical inaccuracy. The first two data
sets corresponding to the sets used for the training of the neuronal network (Table
6) entail perfect results as expected. For the third example, input data have been
chosen lying between the boundaries of the training sets. In this case, results for
the crack tip coordinates (x0,y0) and the KI-factor, being the technically most in-
teresting parameters, are still very good. For the angle β , KII and the T -stress, the
coincidence with the reference solution is worse, however the total values of these
quantities are small. The fourth example investigates the case that one crack param-
eter, e.g. KI is chosen outside the interval prescribed by the training sets. Whereas
x0,y0, KII and T come out very well, the inclination angle β is rather imprecise.
Yet more important is the deviation of KI from the reference value which is four
times smaller. It is the outstanding disadvantage of the method that the range of
parameters is restricted by the training sets. To account for a wider range of values,
more neurons have to be incorporated into the network. The total error, however, is
only gradually reduced.

9 Summary

The strains on the surface of a cracked specimen, resulting from a mechanical load-
ing, cause deformations at the firmly adhered piezoelectric PVDF film. Thus, on its
surface, charges and electric potentials, respectively, are generated which are mea-
sured at discrete locations using an array of electrodes. The aim of the presented
sensor concept is to identify the crack position and the fracture mechanical quanti-
ties from these potential values. Concerning mechanical properties, the polymeric
PVDF material has significant advantages compared to piezoelectric ceramics. The
sensor concept is particularly suitable for monitoring cracks in plate and shell struc-
tures under conditions of linear elastic fracture mechanics. Here, especially fatigue
crack growth plays an important role, where the crack paths usually exhibit large
radii of curvature and the mode I crack opening

mechanism dominates. In this case, the solution of the inverse problem provides
very good results. An accuracy better than 10% is achieved concerning the crack
position and the value of KI . The best experience was gained with the principal
axis method. Pure mode II loading, however, still does not lead to good predictions
of K-factors and crack positions.
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Appendix

Material constants of PVDF in Voigt-notation

[c] =



3610 1610 1420 0 0 0
1610 3130 1310 0 0 0
1420 1310 1599.1 0 0 0

0 0 0 550 0 0
0 0 0 0 579.1 0
0 0 0 0 0 690


[

N
mm2

]
,

[e] =

 0 0 0 0 −12.102 0
0 0 0 −12.222 0 0

11.286 −11.988 −28.421 0 0 0

 [
nC

mm2

]
,

[κ] =

6.5 0 0
0 8.2 0
0 0 7.1275

 ·10−5
[

nC
Vmm

]
.

Representation of material tensors in Voigt-notation
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{σ}=



σ11
σ22
σ33
σ23
σ31
σ12


, {ε}=



ε11
ε22
ε33

2ε23
2ε31
2ε12


, {D}=


D1
D2
D3

 ,

{E}=


E1
E2
E3

 , [κ] =

κ11 0 0
0 κ22 0
0 0 κ33

 ,

[e] =

 0 0 0 0 e15 0
0 0 0 e24 0 0

e31 e32 e33 0 0 0

 ,

[c] =



c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 .




