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Abstract
I In this paper, an optimization procedure for complex manufacturing processes is presented. The procedure is based on 
advanced empirical modeling techniques and will be presented in two parts. The first part comprises the selection and 
generation of the empirical surrogate models. The process organization and the design of experiments are taken into account. In 
order to analyze and optimize the processes based on the empirical models, advanced methods and tools are presented in the 
second part. These tools include visualization methods and a sensitivity and robustness analysis. Moreover, the obtained 
surrogate models are used for a model-based multi-objective optimization in order to explore the gradation potential of the 
processes. The procedure is applied to two thermo-mechanical processes for the functional gradation of polymers – a monoxiale 
stretching of polycarbonate films and a compression moulding process for polypropylene sheets.

Keywords: Functionally graded materials, empirical modeling, design and analysis of computer experiments, multi-objective 
optimization, polymers

INTRODUCTION  
The functional gradation of components by means of 
complex thermomechanical manufacturing processes 
provides new potentials for the product designer. In 
order to efficiently check the producibility of a 
component and to optimize the parameters of the 
process chain with respect to the specification, novel 
methods for the modeling and optimization of 
manufacturing process chains have to be developed. In 
this context, the major challenge is the generation of 
precise empirical surrogate models within a strictly
limited number of real-world experiments, as standard 
polynomial regression models are often unsuitable to 
describe the nonlinear functional relationship between 
the parameters and the distribution of the component 
properties. 
In this paper, powerful and flexible modeling 
techniques from the design and analysis of computer 
experiments (DACE) are therefore enhanced to cope 
with noisy real-world measurement data. The 
suitability of these models is demonstrated based on 
two exemplary processes for the thermomechanical 
gradation of polymers – a monoxiale stretching of 
polycarbonate films and a combined heating and 
compression moulding of polypropylene laminates. 
Components properties, such as tensile strength, 
Young’s elastic modulus, and damping are predicted
over the range of process parameters. Based on the hot 
compaction process subsequent to a differential 
preheating, also the description of process chains by 
means of the surrogate models is presented. In this 

case, the material temperature acts as a technological 
interface between the models for each process step. By 
applying methods of functional analysis of variance, 
the influence of these interfaces and the process 
parameters on the graded properties can be quantified. 
Along with the information about the variations in 
these interfaces, the robustness of the process chain can 
be optimized. 
The surrogate models establish the basis for the 
optimization of process parameters with respect to a 
given specification. In order to restrict the optimization 
to appropriate process chains, however, the potential 
for a gradation provided by a specific process chain 
should be evaluated prior to the actual planning. To 
accomplish this, a multi-objective optimization of the 
component properties predicted by the models allows 
the tradeoffs that can be realized to be assessed. 
Thereby, the additional estimation of the uncertainty in 
the component properties inherent in the DACE 
models can be utilized for sequentially refining the 
models in order to locally improve the prediction 
quality in the area of the optimal tradeoff solutions.

OPTIMIZATION PROCEDURE  

Empirical Modeling
The optimization of the process chain is conceptually
divided into two parts. Fig. 1 shows the respective 
phases and milestones diagram. At first, the relevant 
process parameters (input variables) and the output 
variables (objectives, process responses) are identified.
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To accomplish this, the design space of all possible 
input parameter configurations, needs to be restricted 
through screening, experience or prior knowledge
about the process. The second step involves the 
generation of a design of experiments (DOE). Common 
DOE methods like central composite designs often 
have some major drawbacks since they restrict the 
analysis to ordinary polynomial regression models. 
These models may be useful for processes with linear 
or quadratic relationship between input parameters and 
objectives, but they show a poor prediction quality in 
case of highly non-linear problems [1]. Space-filling 
designs like Latin Hypercube Designs [2], however, 
are a recommended choice since they provide a flexible 
basis for the surrogate model selection.

FIGURE 1 – Phases and milestones diagram for the 
optimization procedure.

This model selection is a challenging part due to the 
large number of modern statistical learning techniques
[3]. Prior research figured out that DACE models often 
show a very good fit and prediction quality for
estimating functionally graded properties [4], [5]. 
Another advantage is that they provide local 
uncertainty estimates. This allows the model to be 
refinement in the respective regions of the design 
space. If the design of experiments can take place in a 
sequential manner, the model selection can also be
performed by means ensemble techniques [6].
To verify the fitness and the prediction quality of the 
model, a model validation has to be performed. 

Therefore validation techniques like residual analysis, 
bootstrapping or cross validation are used [7]. These 
methods provide reliable indicators, whether the model 
selection has to be questioned or whether the selected 
model precisely describes the considered process.

Analysis and Optimization
The surrogate models provide an excellent basis for 
analysis and optimization. In a first step, the influence 
of the different input parameters is investigated. This is 
done through a sensitivity analysis. Based on the 
surrogate model, the influenced of the input parameters 
on the response behavior is analyzed. One possible 
approach to quantify the proportion of influence is the 
functional analysis of variance (FANOVA) [8]. The 
regression function of the surrogate model is 
systematically divided into single parameter effects or 
interactions of two or more parameters. Hence, it is 
possible to calculate the proportion of variance of each 
parameter and to quantify its impact on the objective.
This information can also be visualized in the next 
step. With the knowledge of the parameters having a
particularly high impact, the analysis can focus on the 
interaction between these parameters and the response. 
The visualization of surrogate models can be carried 
out by 2D or 3D plots. The goal of this step is to 
visualize the complex relationships as clear and 
intuitive as possible.
Furthermore, the models can be used for optimization. 
In general, however, not only one objective, but a set
of objectives needs to be considered. Since these
objectives are often contradictory, it is not possible to 
obtain one single optimum solution. Rather, the goal is 
to find a whole set of optimal solutions, the so called 
Pareto frontier. This set consists of all Pareto-optimal 
points of the design space, which means that an 
objective cannot be improved without worsening 
another. By multi-objective optimization algorithms, it 
is possible to approximate the Pareto frontier of the 
process step which allows the potentials of the process 
to be evaluated.

RESULTS AND DISCUSSION
In this section, the optimization procedure is 
exemplarily applied to two processes for functional 
gradation of polymers. The first process is a stretching 
of polycarbonate films made of Makrolon 2805 from 
the company Bayer Material Science AG. Makrolon 
2805 exhibits a moderate molecular weight and is a 
non-reinforced type for injection molding. The glass 
transition temperature is 145 °C and MFR is 
10 g/10 min. The MFR is measured according to the 
testing standard DIN EN ISO 1133 using 1.2 kg 
polycarbonate at 300 °C [9]. Using a single screw 
extruder made by the company Battenfeld (Uni Ex 1-
45-24/30), the polycarbonate was plasticated using a 
L/D ratio of 30 and barrel temperatures from 240 °C to 
280 °C together with a screw rotation speed of 45 rpm. 
The subsequent molding was carried out using a wide 
fishtail nozzle and a gap width of 0.5 mm at 280 °C. 
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The molding was released and smoothed by means of 
Dr. Collin's chill-rolling equipment applied at 4.5 
m/min and a temperature of 50 °C. Following this, the 
polycarbonate film was stretched by in the narrow gap 
on the uniaxial stretching equipment MDO A / MDO B 
from Dr. Collin. The stretching equipment consists of 
two roller units. The stretch gap length is given as s = 
32 mm [10]. The monoxiale stretching of 
polycarbonate film causes the macromolecules to 
become orientated. Previous investigations to the 
stretching of polycarbonate film have shown that an 
increase in the strength and Young's modulus is 
produced [11,12,13]. The input parameters are rotation
speed v1 of roll unit 1 (0.5 m/min to 2m/min), the 
stretching ratio RS between both roll units (1 to 4), the
annealing temperature TA (90°C to 140°C) and the 
stretching temperature TS (150°C to 160°C). The 
design of experiments was created by means of a Latin 
Hypercube sampling with 20 observations.
The other process used for self-reinforced 
polypropylene composites is compression moulding 
[14]. For this purpose, 16 layers of mono-extruded 
twill weave manufactured by the company Bonar, 
Belgium, are fixated in a tenter frame and pre-tempered 
in a IR preheating sequence. In order to specifically 
enhance the thermal influence on the later composite 
properties, half of the heating panel is covered with a 
masking sheet to keep the tape fabric located beneath it 
at a low preheating temperature. After an automatic 
transfer of the tenter frame into a pressing unit, the 
compression moulding process is then carried out and 
incorporates a thermo-mechanical gradation process. 
The tool especially designed for this process enables a 
setting of differing press temperatures, so as to be able 
to complete the thermal gradation on the right and left 
halves of the tool. This differential tempering is 
analogous to that carried out in the preheating station. 
Furthermore, the pressing tool has a triangular shaped 
geometry, which, due to its special geometry, induces a 
pressure reduction of 30% on the slants of the triangle 
in comparison to the other tool areas. Thus, it is 
possible to create 4 different gradation zones at the 
same time which result from the differing temperature 
(right and left) and press force (flat areas, slants) 
settings [15]. The input parameters are pressure (1Mpa 
to 3Mpa), the pressing temperature TA (150°C to 
200°C), the pressing time (10s to 180s) and the 
material temperature Tm as output of the preceding 
preheating process (24°C to 130°C). The design of 
experiments was also created by means of a Latin 
Hypercube sampling. 25 experiments in 5 different 
zones were performed and therefore 125 observations 
could be used for empirical modeling.
Based on the surrogate models, a sensitivity analysis 
can be performed. Via a FANOVA-decomposition, the
influence of each input parameter on the response can 
be quantified. Fig. 2 shows the result for the stretching
process with Young's modulus as response. It can be 
seen that the results for Young's modulus are almost 
completely described by the stretching ratio and its 

interaction with the stretching speed. The annealing 
temperature and the stretching temperature cannot be 
considered to have a significant influence.

FIGURE 2 – Barplot of the proportion of influence on 
Young’s modulus.

Therefore, Fig. 3 visualizes the influence of stretching 
ratio and stretching speed on the response. The best 
results are obviously reached for a stretching ratio 
between 2 and 3 and high stretching speed values as 
well as a high stretching ratio combined with a low 
stretching speed.

FIGURE 3 – 3D effect plot of the input parameters Tp and 
Tm on the Young’s modulus.

Fig. 4 shows the results for the compression moulding
process with the maximum force Fmax of 10 J impact 
testing as response. The pressing temperature clearly 
has the greatest influence on Fmax. The material 
temperature and the pressing time are also influential
through interactions with the pressing temperature.
Fig. 5 depict, that the interaction of TM and Tp can 
mainly be observed at the transitions between the 
material states otherwise determined by Tp. Therefore, 
this parameter should not be neglected, since it is also a
Technological Interface [16]. This means, it can only 
be varied in a previous process and is thus expected to
have a large variation. Therefore, it should be included 
in further analyses.
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FIGURE 4 – Barplot of the proportion of influence on the 
response Fmax.

FIGURE 5 – 3D effect plot of the input parameters Tp and 
Tm on Fmax.

Since the empirical models provide an efficient
surrogate for the actual system, they can also be used 
for robustness analysis. This can be accomplished, for 
example, by means of a Monte Carlo simulation. In 
such a simulation, variations in the input parameters 
(due to external interference) are simulated and the 
corresponding behavior of the response is simulated.
Fig. 6 exemplarily shows how these uncertainties affect 
the results for Fmax in the compression moulding
process. It is obvious that a pressing temperature 
around Tp = 170 °C (yellow) and Tp = 190 °C (purple)
leads to a high variation in the output. With these 
settings, the process cannot be considered as being 
robust. The simulation shows further, that the best 
result with respect to robustness and a maximization of 
the response value is found if the pressing temperature 
is set to Tp = 180 °C (green). With this setting, a stable
consolidation results in a narrow distribution of 
response values with a mean of 3.25 kN despite of the 
high variation within the input variables. Also with a
pressing temperature of Tp = 160 °C (red) robust results 
are found, but the mean of the response values is 
considerably lower (2.45 kN) as a consolidation is 
never achieved.

FIGURE 6 – Results of a Monte Carlo simulation with 
different pressing temperatures. The left histogram shows the 
simulated distribution of the input parameters Tm, and Tp, and 
the right side the distribution of the response value Fmax.

By means of the impact characterization, different 
material properties can be measured. Hence, the 
potential of the process can be estimated by means of
multi-objective optimization methods. Besides the
already discussed Fmax giving an estimate of the 
hardness of the component, other objectives like the 
maximum deformation lmax can be used to evaluate its 
ductility. Fig. 7 shows the approximate Pareto Frontier
for both objectives. It can be seen that the two
objectives cannot be jointly maximized. A desired lmax
of more than 11mm, for example, cannot be reached
without keeping Fmax below 3.3 kN. The Pareto
Frontier allows these trade-offs to be assessed. It can 
therefore help, to select the process with respect to the 
desired specifications.

FIGURE 7 – Pareto Frontier of Fmax and lmax in the hot 
compaction process.

CONCLUSION
In this paper, we presented an optimization procedure 
for thermo-mechanical processes and applied it to the 
functional gradation of polymers. This procedure is 
based on advanced empirical modeling and 
optimization techniques. The optimization strategy was 
divided into two parts. At first, the procedure to 
generate precise and valid surrogate models was 
presented. The parameter preparation and suitable
DOE methods were discussed. The other part focuses 
on the analysis and optimization of the processes.
Advanced methods and tools to visualize the relevant 
information and to optimize the objectives were 
presented. These methods were exemplarily applied to 
two processes for functional gradation of polymers. For 
a uniaxial stretching process and a hot compaction 
process, the influence of the input parameters on the 
considered objectives could be quantified. It was 
shown that in both cases two of the four parameters
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had a major influence. These information were used to 
visualize the results and, since these parameters have a
high variation, to perform a robustness analysis.
Thereby a parameter setting was obtained, which 
enables the process be robust. Finally, the Pareto 
Frontier of two conflicting objectives was 
approximated via multi-objective optimization
techniques. The estimation of the Pareto frontier can 
serve as a basis for selecting the processes to create the 
desired functionally graded properties.
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