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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Manufacturing Engineering Society International Conference 
2017. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 

Procedia Manufacturing 33 (2019) 554–561

2351-9789 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the scientific committee of the 16th Global Conference on Sustainable Manufacturing (GCSM).
10.1016/j.promfg.2019.04.069

10.1016/j.promfg.2019.04.069 2351-9789

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the scientific committee of the 16th Global Conference on Sustainable 
Manufacturing (GCSM).

Available online at www.sciencedirect.com

Procedia Manufacturing 00 (2018) 000–000
www.elsevier.com/locate/procedia

16th Global Conference on Sustainable Manufacturing - Sustainable Manufacturing for Global Circular Economy

Signal based non-intrusive load decomposition
T. Weißa,∗, H. Dunkelberga, J.-P. Seeversa

aSustainable Products and Processes (upp), University of Kassel, Kurt-Wolters-Str. 3, 34125 Kassel, Germany

Abstract

Driven by both regulatory and monetary interests the development of energy monitoring systems has been accelerated in recent
years. Thus, a large amount of data is collected and stored in huge databases. This is a decisive step towards sustainable production
systems since you can’t improve what you don’t know. This paper aims to use the datasets currently available and to combine
databases to gather additional information on production systems, in particular energy flows. Therefore, an algorithm has been
developed that combines energy consumption data from production lines with production information to estimate the consumption
of connected subsystems. This paper analyzes the algorithm with case studies from companies with their specific databases and
will show a deviation of less than 5 % of accumulated energy. Hence, the algorithm is able to create a more detailed analysis of
production systems without additional sensor installations by combining existing databases.
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1. Introduction

The past years show a significant increase in the amount of stored data and thus a development in digital businesses.
While companies like Google develop new business cases, the potential of collected data, especially energy data, in
industrial plants is barely exploited. Simultaneously, the industrial sector is accountable for 25 % of the final energy
consumption in Europe and thus every potential should be considered [1]. Furthermore, several governmental regula-
tions have pushed the energy data aggregation in European countries by forcing companies to track their consumption
more strictly. Thus, this paper analyses a simple algorithm that gathers additional information about the energy flows
in plants and systems by combining existing databases. Basically, it needs one power meter’s data, information about
the structure of its sub-components and a database which provides information about machine states in any kind. By
combining this information the power meter’s load can be decomposed and assigned to the connected subcomponents.
The algorithm was evaluated on three model cases. The cases differ in the temporal resolution of the energy data, the
detail level the information and the composition and control concepts of the system’s components. Consecutively the

∗Corresponding author. Tel.: +49-561-802-2726 ; fax: +49-561-802-3995.
E-mail address: weiss@upp-kassel.de

2351-9789 c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 16th Global Conference on Sustainable Manufacturing (GCSM).

Available online at www.sciencedirect.com

Procedia Manufacturing 00 (2018) 000–000
www.elsevier.com/locate/procedia

16th Global Conference on Sustainable Manufacturing - Sustainable Manufacturing for Global Circular Economy

Signal based non-intrusive load decomposition
T. Weißa,∗, H. Dunkelberga, J.-P. Seeversa

aSustainable Products and Processes (upp), University of Kassel, Kurt-Wolters-Str. 3, 34125 Kassel, Germany

Abstract

Driven by both regulatory and monetary interests the development of energy monitoring systems has been accelerated in recent
years. Thus, a large amount of data is collected and stored in huge databases. This is a decisive step towards sustainable production
systems since you can’t improve what you don’t know. This paper aims to use the datasets currently available and to combine
databases to gather additional information on production systems, in particular energy flows. Therefore, an algorithm has been
developed that combines energy consumption data from production lines with production information to estimate the consumption
of connected subsystems. This paper analyzes the algorithm with case studies from companies with their specific databases and
will show a deviation of less than 5 % of accumulated energy. Hence, the algorithm is able to create a more detailed analysis of
production systems without additional sensor installations by combining existing databases.

c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 16th Global Conference on Sustainable Manufacturing (GCSM).

Keywords: energy; energy efficiency; NILM, non-intrusive load monitoring; sustainable production; load decomposition

1. Introduction

The past years show a significant increase in the amount of stored data and thus a development in digital businesses.
While companies like Google develop new business cases, the potential of collected data, especially energy data, in
industrial plants is barely exploited. Simultaneously, the industrial sector is accountable for 25 % of the final energy
consumption in Europe and thus every potential should be considered [1]. Furthermore, several governmental regula-
tions have pushed the energy data aggregation in European countries by forcing companies to track their consumption
more strictly. Thus, this paper analyses a simple algorithm that gathers additional information about the energy flows
in plants and systems by combining existing databases. Basically, it needs one power meter’s data, information about
the structure of its sub-components and a database which provides information about machine states in any kind. By
combining this information the power meter’s load can be decomposed and assigned to the connected subcomponents.
The algorithm was evaluated on three model cases. The cases differ in the temporal resolution of the energy data, the
detail level the information and the composition and control concepts of the system’s components. Consecutively the

∗Corresponding author. Tel.: +49-561-802-2726 ; fax: +49-561-802-3995.
E-mail address: weiss@upp-kassel.de

2351-9789 c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 16th Global Conference on Sustainable Manufacturing (GCSM).

Available online at www.sciencedirect.com

Procedia Manufacturing 00 (2018) 000–000
www.elsevier.com/locate/procedia

16th Global Conference on Sustainable Manufacturing - Sustainable Manufacturing for Global Circular Economy

Signal based non-intrusive load decomposition
T. Weißa,∗, H. Dunkelberga, J.-P. Seeversa

aSustainable Products and Processes (upp), University of Kassel, Kurt-Wolters-Str. 3, 34125 Kassel, Germany

Abstract

Driven by both regulatory and monetary interests the development of energy monitoring systems has been accelerated in recent
years. Thus, a large amount of data is collected and stored in huge databases. This is a decisive step towards sustainable production
systems since you can’t improve what you don’t know. This paper aims to use the datasets currently available and to combine
databases to gather additional information on production systems, in particular energy flows. Therefore, an algorithm has been
developed that combines energy consumption data from production lines with production information to estimate the consumption
of connected subsystems. This paper analyzes the algorithm with case studies from companies with their specific databases and
will show a deviation of less than 5 % of accumulated energy. Hence, the algorithm is able to create a more detailed analysis of
production systems without additional sensor installations by combining existing databases.

c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 16th Global Conference on Sustainable Manufacturing (GCSM).

Keywords: energy; energy efficiency; NILM, non-intrusive load monitoring; sustainable production; load decomposition

1. Introduction

The past years show a significant increase in the amount of stored data and thus a development in digital businesses.
While companies like Google develop new business cases, the potential of collected data, especially energy data, in
industrial plants is barely exploited. Simultaneously, the industrial sector is accountable for 25 % of the final energy
consumption in Europe and thus every potential should be considered [1]. Furthermore, several governmental regula-
tions have pushed the energy data aggregation in European countries by forcing companies to track their consumption
more strictly. Thus, this paper analyses a simple algorithm that gathers additional information about the energy flows
in plants and systems by combining existing databases. Basically, it needs one power meter’s data, information about
the structure of its sub-components and a database which provides information about machine states in any kind. By
combining this information the power meter’s load can be decomposed and assigned to the connected subcomponents.
The algorithm was evaluated on three model cases. The cases differ in the temporal resolution of the energy data, the
detail level the information and the composition and control concepts of the system’s components. Consecutively the

∗Corresponding author. Tel.: +49-561-802-2726 ; fax: +49-561-802-3995.
E-mail address: weiss@upp-kassel.de

2351-9789 c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 16th Global Conference on Sustainable Manufacturing (GCSM).

2 Weiß, Dunkelberg, Seevers / Procedia Manufacturing 00 (2018) 000–000

case’s datasets require different preprocessing steps before being decomposed by the algorithm. This approach will
extend monitoring systems with additional virtual meters by a simple algorithm. It replaces the need of an own sensor
for each machine to monitor it’s power demand. This opens possibilities to monitor machines which are not yet -
and may never be - equipped with sensors. Hence, it is a different approach to a more resoluted energy monitoring
system than the equipping of each component with a single meter (Internet of Things, IoT). Providing a more detailed
energetic analysis of a production line’s consumption is crucial for the identification of energy-intensive processes
and thus finding measures to delevop a more sustainable production.

2. Load decomposition’s state of the art

Trough the rapid expansion of load sensors and smart meters the analysis of various loads continuously gains more
attention. For example, there is a great interest in decomposing an electrical grid’s load since grid operators need
to estimate the demand but usually has no information about his consumer’s behaviors. Paisios proposes a method
to decompose and profile the load for demand side management [2]. This has recently lead to the development of
algorithms for non-intrusive load monitoring (NILM) techniques, which aim to assign a meter’s load to the compo-
nents connected to the meter. NILM often focuses on household meters to detect loads of various common household
equipment [3]. The initial approach for NILM was proposed by Hart in 1992 and gained attention through the in-
creasing digitalization over the last years ([3], [4], [5]). These algorithms aim to detect component states by analyzing
the load profile. Often not just the load but also additional characteristics like harmonics are used like Srinivasan’s
analysis of loads with neural networks [6]. Like stated by Saitoh NILM can identify several component’s states by
analyzing the load [7]. Usually NILM requires the installation of smart meters that provide detailed measurements
of the load, so these concepts aim for the design phase of electrical systems [8]. However, previous mentioned re-
search focuses on analyzing load to allocate the load to the components or identify states via unsupervised learning
methods. On industrial levels there is often no need to identify states of components since they are already recorded
for other purposes like production planning and controlling. Energy monitoring systems also usually record just the
power demand and no additional load information. An approach to decompose energy data in an industrial scale using
NILM was proposed in by Holmegaard along with an analysis of the challenges, however not combining energy data
with other production information [9]. Abele presents an analysis of a milling machine whose load is allocated to its
components using PLC signals [10]. Eberspächer presents a similar approach but uses PLC signals as an input for a
Model to determine the load via simulations [11] and Gebbe presents a decomposition approach using machine states
and processing this data through a linear regression model [12]. The database of Gebbe’s evaluation is quite similar
to case study 2 in this paper, with different levels of state details though.
However, most analyses are carried out on a laboratory scale and hence have predictable boundary conditions. Anal-
yses of load measurements of real production systems bring along more extensive requirements to handle factors like
human behavior, sensor failures, transmission or conversion errors. Hence, this paper analyzed three load measure-
ments of different systems in real plant operation. The algorithm is kept simple since it is considered to be implemented
as an addition to monitoring software. The simplicity of the linear solving approach however lacks in decomposing
nonlinear correlations. The implementation of expert knowledge into the algorithm, which is shown in case study 3
of this paper, will tackle this problem, however if expert knowledge is not available or relations not obvious, neural
networks, like shown by Kelly, are able to handle non-linear correlations [13].

3. Methodology

The following method describes an algorithm which gains additional information about subsystems connected to a
common load meter. It provides information about the individual load of the connected components in their specific
states, which may vary depending on the underlying databases. Therefore, three case studies have been analyzed, each
with different production information systems and complexity levels. These differences affect the data preprocessing
and preparation, the base algorithm however remains the same. The basis for each evaluation is a matrix providing
state changes for each machine with the corresponding timestamp and the mean power demand of all machines during
the time interval. Table 1 is showing an excerpt of an example dataset.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2019.04.069&domain=pdf
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case’s datasets require different preprocessing steps before being decomposed by the algorithm. This approach will
extend monitoring systems with additional virtual meters by a simple algorithm. It replaces the need of an own sensor
for each machine to monitor it’s power demand. This opens possibilities to monitor machines which are not yet -
and may never be - equipped with sensors. Hence, it is a different approach to a more resoluted energy monitoring
system than the equipping of each component with a single meter (Internet of Things, IoT). Providing a more detailed
energetic analysis of a production line’s consumption is crucial for the identification of energy-intensive processes
and thus finding measures to delevop a more sustainable production.

2. Load decomposition’s state of the art

Trough the rapid expansion of load sensors and smart meters the analysis of various loads continuously gains more
attention. For example, there is a great interest in decomposing an electrical grid’s load since grid operators need
to estimate the demand but usually has no information about his consumer’s behaviors. Paisios proposes a method
to decompose and profile the load for demand side management [2]. This has recently lead to the development of
algorithms for non-intrusive load monitoring (NILM) techniques, which aim to assign a meter’s load to the compo-
nents connected to the meter. NILM often focuses on household meters to detect loads of various common household
equipment [3]. The initial approach for NILM was proposed by Hart in 1992 and gained attention through the in-
creasing digitalization over the last years ([3], [4], [5]). These algorithms aim to detect component states by analyzing
the load profile. Often not just the load but also additional characteristics like harmonics are used like Srinivasan’s
analysis of loads with neural networks [6]. Like stated by Saitoh NILM can identify several component’s states by
analyzing the load [7]. Usually NILM requires the installation of smart meters that provide detailed measurements
of the load, so these concepts aim for the design phase of electrical systems [8]. However, previous mentioned re-
search focuses on analyzing load to allocate the load to the components or identify states via unsupervised learning
methods. On industrial levels there is often no need to identify states of components since they are already recorded
for other purposes like production planning and controlling. Energy monitoring systems also usually record just the
power demand and no additional load information. An approach to decompose energy data in an industrial scale using
NILM was proposed in by Holmegaard along with an analysis of the challenges, however not combining energy data
with other production information [9]. Abele presents an analysis of a milling machine whose load is allocated to its
components using PLC signals [10]. Eberspächer presents a similar approach but uses PLC signals as an input for a
Model to determine the load via simulations [11] and Gebbe presents a decomposition approach using machine states
and processing this data through a linear regression model [12]. The database of Gebbe’s evaluation is quite similar
to case study 2 in this paper, with different levels of state details though.
However, most analyses are carried out on a laboratory scale and hence have predictable boundary conditions. Anal-
yses of load measurements of real production systems bring along more extensive requirements to handle factors like
human behavior, sensor failures, transmission or conversion errors. Hence, this paper analyzed three load measure-
ments of different systems in real plant operation. The algorithm is kept simple since it is considered to be implemented
as an addition to monitoring software. The simplicity of the linear solving approach however lacks in decomposing
nonlinear correlations. The implementation of expert knowledge into the algorithm, which is shown in case study 3
of this paper, will tackle this problem, however if expert knowledge is not available or relations not obvious, neural
networks, like shown by Kelly, are able to handle non-linear correlations [13].

3. Methodology

The following method describes an algorithm which gains additional information about subsystems connected to a
common load meter. It provides information about the individual load of the connected components in their specific
states, which may vary depending on the underlying databases. Therefore, three case studies have been analyzed, each
with different production information systems and complexity levels. These differences affect the data preprocessing
and preparation, the base algorithm however remains the same. The basis for each evaluation is a matrix providing
state changes for each machine with the corresponding timestamp and the mean power demand of all machines during
the time interval. Table 1 is showing an excerpt of an example dataset.
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Table 1. Example dataset for five machines with binary states.

Timestamp M1 M2 M3 M4 M5 P [kW]

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

06-Oct-2017 06:09:28 1 1 0 0 1 71.16
06-Oct-2017 06:09:55 1 1 0 0 1 66.30
06-Oct-2017 06:11:00 1 1 0 0 1 64.97
06-Oct-2017 06:12:33 1 1 0 1 1 71.51
06-Oct-2017 06:13:53 1 1 0 1 1 73.95
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

The algorithm assumes that the common power demand of all machines in a time period can be derived from the
sum off all states (s) multiplied with their specific power demand:

Pt1 =

M∑
Mi=1

(s = 1) ∗ Pon,Mi + (s = 0) ∗ Po f f ,Mi (1)

Table 1 therefore represents a linear equation system. Since there may also be a power demand when all machines
are offline (i.e. the baseload), the matrix must be extended by binary offline states. The extension with offline states
will lead to a doubling of the unknown variables without adding additional information and thus not enhancing the
rank of the matrix. This will consequently lead to a higher deviation when solving the equation. To work around this
problem the baseload (Pb) is identified by searching for the rows that contain just offline statuses and shared equally
on all machines (n):


1 0
1 1
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Anyway, in most cases there is still not enough information available to exactly solve the system. Additionally, the
data source is based on real measurements which inherently contain deviations and a classic solver for linear equation
systems may output unrealistic machine power demands as the best solution. Hence, a solver for nonnegative linear
least-squares problems is used:

min
PM
‖S ∗ Pon,M − P∗t ‖, where PM >= 0. (3)

where S contains the states of each machine in each timespan, PM the machine’s power in each state and Pt
* the

baseload-adjusted aggregated power per timespan.
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4. Case studies

The production information’s level of detail varies between the three case studies depending on the available
databases, so they require different preprocessing algorithms. Input data may furthermore just take binary (”on” and
”off”) or continuous states and may correlate in different ways with the power demand. Case study 1 examines ma-
chines with just two different states, case study 2 uses four states while case study 3 examines five machines with
binary states as well as four machines with continuous states.

4.1. Case study 1: Automotive production line

The first case study analyzes a production line of an automotive plant with consecutive processing steps consisting
of four grinding machines and a washing machine. However, there are storage possibilities between the machines so
there is no temporal relation between the output of one machine to the input of another. There are process completion
signals available for each machine, but all machines have one common power meter.

Pel

Fig. 1. Scheme of the automotive production line.

The first step is to process the signals to achieve Information about the runtime of each machine. Therefore the time
difference between each signal is evaluated and tested for outliers as suggested by Grubbs [14]. Hence, very large
time differences are not considered as production time and thus identified as outliers. Remaining time differences
are assumed to be the actual cycle time of the processes. Based on this information the matrix representing the
production status of each machine (see table 1) is built. If neccessary, the power consumption is adjusted to the
matrix’s timestamps.

4.2. Case Study 2: Plastic fabrication

The second case study analyzes a plastic fabricator’s set of six injection molding machines connected to one
power rail. Similar to the first case there is no temporal dependency between the machine’s production cycles. There
is however a more detailed production information system compared to the first case study. This system is logging
detailed machine states like automatic operation, faults or offline states. This provides a more detailed resolution of the
process, especially in non-producing times. However, previous analyses showed that it is recommended to concentrate
the information to four states: automatic operation, manual operation, machine faults and offline. Furthermore, each
injection molding machine can be equipped with different tools, whose power demands may significantly differ. Hence
every tool is treated like a separate machine and is thus expanding the matrix’s column size.
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Table 1. Example dataset for five machines with binary states.
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there is no temporal relation between the output of one machine to the input of another. There are process completion
signals available for each machine, but all machines have one common power meter.
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The first step is to process the signals to achieve Information about the runtime of each machine. Therefore the time
difference between each signal is evaluated and tested for outliers as suggested by Grubbs [14]. Hence, very large
time differences are not considered as production time and thus identified as outliers. Remaining time differences
are assumed to be the actual cycle time of the processes. Based on this information the matrix representing the
production status of each machine (see table 1) is built. If neccessary, the power consumption is adjusted to the
matrix’s timestamps.

4.2. Case Study 2: Plastic fabrication

The second case study analyzes a plastic fabricator’s set of six injection molding machines connected to one
power rail. Similar to the first case there is no temporal dependency between the machine’s production cycles. There
is however a more detailed production information system compared to the first case study. This system is logging
detailed machine states like automatic operation, faults or offline states. This provides a more detailed resolution of the
process, especially in non-producing times. However, previous analyses showed that it is recommended to concentrate
the information to four states: automatic operation, manual operation, machine faults and offline. Furthermore, each
injection molding machine can be equipped with different tools, whose power demands may significantly differ. Hence
every tool is treated like a separate machine and is thus expanding the matrix’s column size.
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Pel

Fig. 2. Scheme of the plastic fabrication.

Since there are four states instead of two and there are several tools a more extensive dataset is required to solve
the linear equation system. The sharper definition of machine states improves accuracy, though.

4.3. Case study 3: Cooling tower System

The last case study shows a cooling tower system with one circuit pump, four fans and their four corresponding
pumps each connected to a heat transfer unit. The secondary cooling circuit connected to the heat transfer units
however is not a part of this analysis.

Pel

Fig. 3. Scheme of the cooling tower system.

This system differs from the other cases since there is a physical dependency between the pumps. They are con-
nected through a hydraulic system and the status of one pump will affect the other. Consequently, the pumps are not
treated separately but have to be interpreted as different combinations of states. There is no production system provid-
ing the state information, since there is no direct product relation, but PLC signals are used to decompose the power
consumption instead. The pumps’ states can have two values (on and off) while the fans are frequency controlled and
can take partial loads between 50 % and 100 %. Since there is a cubic correlation between rotation speed (and thus
partial load) of the fans and their power consumption and a linear equation system is used to decompose the power
demand a direct evaluation of these partial loads would not represent the power consumption of the fans precisely. The
results may be improved by defining discrete intervals of partial loads and summarize the corresponding continuous
values in these classes. Smaller classes will increase accuracy. Since you know the basic cubic dependency between
partial load and power demand you can use this information to enhance the performance. Hence the corresponding
PLC values of the fans are raised to the power of 3 and afterwards solved linear. Figure 4 shows the difference between
different approaches.

The best performance is clearly carried out by (d), while (c) is performing slightly worse. Obvious deviations show
(a) and (b) while the last may be improved by a more sophisticated class distribution. Anyway, if there is information
about the physical dependencies between the database and the power demand the result can be significantly improved
by adapting the algorithm. If, however, there is no knowledge about the relationships, the performance for continuous
datasets may be improved by classification.
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Fig. 4. Comparison of the (a) linear, (b) discrete-linear with 10 %-classes, (c) discrete-linear with 1 %-classes and (d) cubic approach.

5. Results

The algorithm provides the mean power demand for each machine with each tool in each state. Hence, based on the
production plan, the common power meter’s demand can be simulated. The simulation will output a discrete function
and the averaging effect will lead to deviations when the actual power is peaking. However, this approach is not aiming
to simulate the power demand at every point but rather to the mean power demand. Hence the quality of the results
should be derived by the difference between the accumulated energy consumption. Figure 5 compares the discrete
simulation with the measured values.
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Fig. 5. Simulation of the power meter’s consumption of the grinding machines compared to measurements (40-day-database).

Figure 5 compares the simulated to the measured power and shows severe short-time deviations. The power de-
mand over time highly depends on the depth of cut and thus varies a lot during a grinding machine’s duty cycle. Due
to the constant power assumption during a duty cycle there are high short-time deviations between the measured and
the simulated power. Although there are these short-time deviations in power the accumulated energy demand differs
just by less than 5 %. Hence, the mean power demand over a long time period can be simulated quite accurately while
a short-time simulation is not suitable. Further differentiation between offline- and standby-states could additionally
improve the results.
The second case study provides more detailed information about different states with total energy consumption devi-
ations with up to 3 %.

However, changes in machine or user behavior will result in wrong forecasts. Figure 6 shows how a machine
remains in standby mode over a weekend while the power demand is near zero and depicts offline states. Since these
factors may not be obvious and may change just slowly over time, the machine power demand database should be
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Figure 5 compares the simulated to the measured power and shows severe short-time deviations. The power de-
mand over time highly depends on the depth of cut and thus varies a lot during a grinding machine’s duty cycle. Due
to the constant power assumption during a duty cycle there are high short-time deviations between the measured and
the simulated power. Although there are these short-time deviations in power the accumulated energy demand differs
just by less than 5 %. Hence, the mean power demand over a long time period can be simulated quite accurately while
a short-time simulation is not suitable. Further differentiation between offline- and standby-states could additionally
improve the results.
The second case study provides more detailed information about different states with total energy consumption devi-
ations with up to 3 %.

However, changes in machine or user behavior will result in wrong forecasts. Figure 6 shows how a machine
remains in standby mode over a weekend while the power demand is near zero and depicts offline states. Since these
factors may not be obvious and may change just slowly over time, the machine power demand database should be



560 T. Weiß  et al. / Procedia Manufacturing 33 (2019) 554–561
Weiß, Dunkelberg, Seevers / Procedia Manufacturing 00 (2018) 000–000 7

0 1 2 3 4 5 6 7
0

50

100

Relative time in d

Po
w

er
in

kW

Measurement
Simulation

Fig. 6. Simulation of the injection molding machines power meter’s consumption compared to measurements.

continuously updated.
The usage of expert knowledge to define base relationships between the parameters and the power consumption
significantly improves the results. Especially components in partial load operation often have nonlinear relations.
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Fig. 7. Simulation of the cooling tower power meter’s consumption compared to measurements.

The last case shown in figure 3 uses expert knowledge, considers physical relations between subsystems and thus
performs very accurate at deviations lower than 1 %.

6. Conclusions

The algorithm presented in this paper decomposes a system meter’s load and assignes it to the subsystems’s com-
ponents by combining information of common databases in an industrial plant. It depends on the power consumption
of a power meter and production information of all its subcomponents. The production information system’s raw data
may be production signals, machine states or PLC signals while more detailed signals will naturally perform better.
The algorithm outputs consumption information about each component with each tool in each state by solving a linear
equation system. The algorithm however can not solve short-time power demands accurately, especially if the power
demands varies a lot during a duty cycle. Hence, temporal peak power demands can not be estimated, which may be
an important issue especially when analyzing large consumers.

8 Weiß, Dunkelberg, Seevers / Procedia Manufacturing 00 (2018) 000–000

To solve it nonnegative constraints should be set for the component’s power vector, since there may be mathemat-
ically better results for negative loads. Also, the component’s interdependencies have to be considered to get valid
information. If there is continuous raw data it is recommended to use expert knowledge to define the base dependen-
cies between load and raw data, if they are not linear. This will significantly improve the algorithm’s performance.
If, however, the dependencies are not clear a classification of discrete data will improve accuracy but simultaneously
increase the computational effort.
As stated above there is a lot of research concerning load decomposition methods and NILM. This paper proposes
a simple algorithm which is capable of running on machine level without requiring additional hardware. While it is
a robust and fast algorithm for solving linear correlations. The use of expert knowledge improves the accuracy of
nonlinear correlations, however unclear correlations may require more sophisticated algorithms. Further development
of this algorithm will focus on the differentiation between baseload and offline states, if they are not provided by
the system. Also, the use of neuronal networks is a promising advantage to the decomposition algorithm (see [13]).
Advanced NILM algorithms however need to be trained with data while expert knowledge is directly available.
Disaggregating energy data is an additional step for understanding the basic energy distribution in production sys-
tems. The implementation of virtual load meters through energy data decomposition gains the actual energy demand
without installing additional sensors or equipment. Implemented on factory level the algorithm can be continuously
updated, adapted to changing circumstances and detect changes in the energy demand. Furthermore, using PLC signals
a machine’ power consumption can be assigned to the machine’s components to gain an even more detailed energy
analysis. These information opens new possibilities in detecting optimization measures or monitoring the component’s
quality leading to a more sustainable production.

Acknowledgements

PARTS OF THE CONTENTS OF THIS PAPER HAVE BEEN ACQUIRED WITHIN THE COOPERATION
PROJECT ”SMART CONSUMER – ENERGY EFFICIENCY THROUGH SYSTEMIC COUPLING OF ENERGY
FLOWS BY MEANS OF INTELLIGENT MEASUREMENT AND CONTROL TECHNOLOGY”. THE PROJECT
IS FUNDED BY THE GERMAN FEDERAL MINISTRY FOR ECONOMIC AFFAIRS AND ENERGY (FKZ:
03ET1180).

References

[1] The statistical Office of the European Union Eurostat, Final energy consumption by sector, URL:
http://ec.europa.eu/eurostat/cache/metadata/DE/tsdpc320 esmsip.htm (2016)

[2] A. Paisios, S. Djokic, Load Decomposition and Profiling for ”Smart Grid” Demand-Side Management Applications (2013)
[3] A. Faustine, N. H. Faustine, S. Kaijage, K. Michael A Survey on Non-Intrusive Load Monitoring Methodies and Techniques for Energy

Disaggregation Problem (2017).
[4] G. W. Hart, Nonintrusive Appliance Load Monitoring applications, Proceedings of the IEEE, vol. 80, no. 12 (1992) 1870-1891.
[5] C. Klemenjak, P. Goldsborough, Non-Intrusive Load Monitoring: A Review and Outlook, INFORMATIK 2016, Gesellschaft für Informatik

e.V., (2016) 2199-2210.
[6] D. Srinivasan, W. Ng, A. Liew, Neural Network-Based Signature recognition for Harmonic Source Identification, IEEE Transactions on Power

Delivery, 21 (2006) 398-405.
[7] T. Saitoh, T. Osaki, R. Konishi, K. Sugahara, Current Sensor Based Home Appliance and State of Appliance Recognition, SICE Journal of

Control, Measurement, and System Integration (2011).
[8] W. Wichakool, Advanced Nonintrusive Load Monitoring System, Massachusetts Institute of Technology (2011).
[9] E. Holmegaard, M. B. Kjærgaard, NILM in an Industrial Setting: A Load Characterization and Algorithm Evaluation, IEEE International

Conference on Smart Computing (SMARTCOMP), St. Louis (2016) 1-8.
[10] E. Abele, N. Panten, B. Menz, Data Collection for Energy Monitoring Purposes and Energy Control of Production Machines, Procedia CIRP

29 (2015) 299-304.
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The last case shown in figure 3 uses expert knowledge, considers physical relations between subsystems and thus
performs very accurate at deviations lower than 1 %.
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