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Abstract

A density functional theory for lattice models of strongly-interacting fermions is for-
mulated, which applies both to the ground state and to the thermodynamic equilib-
rium in the canonical and grand-canonical ensembles. The single-particle density ma-
trix (SPDM)γ plays the role of the central variable in the sense that all physical observ-
ables can be expressed as functionals of it. The actual SPDM γ which corresponds to
the ground state or to the thermodynamic equilibrium is obtained by minimizing the
appropriate thermodynamic potential: the energy E[γ ] = K[γ ]+W [γ ], if one is inter-
ested in ground-state properties, and the Helmholtz free-energy F [γ ] = E[γ ] −TS[γ ]
or grand potential Ω[γ ] = F [γ ]−µ N [γ ] in the case of the thermodynamic equilibrium
at �nite temperatures. Here K[γ ], W [γ ], S[γ ], and N [γ ] are the SPDM functionals
giving, respectively, the kinetic and interaction energies, the entropy, and the num-
ber of particles in the system. While the exact forms of K[γ ] and N [γ ] are known,
explicit expressions for the interaction energy W [γ ] and the entropy S[γ ] are not
available at present. Therefore, the very �rst and crucial challenge in the framework
of the present lattice density functional theory (LDFT), as in any density functional
approach, is to develop accurate and physically sound approximations to these highly
non-trivial functionals. Clearly, the functional dependence ofW [γ ] and S[γ ]will cru-
cially depend on the nature and strength of the interactions between the Fermions. In
this work we focus on local interactions as described by the Hubbard model, which is
considered to be the paradigm of correlated itinerant electrons in narrow bands.

A simple, transparent approximation to the interaction-energy functionalW [γ ] is
proposed, which is based on an analogy between the e�ects of electronic correlations
and �nite-temperature excitations leading to occupation-number redistributions in
momentum space. In this framework, the ground-state properties of the single-band
Hubbard model are investigated as functions of the Coulomb-repulsion strengthU /t .
Remarkably accurate results are obtained for the most relevant ground-state proper-
ties, such as the ground-state energy E0, the SPDM γ , the average number of double
occupations D, and the spin-resolved momentum distribution ησ (k) in the complete
range of interaction strengths, from weak correlations (U /t � 1) to the strongly-
correlated limit (U /t � 1). A wide variety of physical situations is successfully ex-
plored, including �nite and in�nite lattices in 1–3 and in�nite dimensions, bipartite
and frustrated antiferromagnetic (AFM) structures, spin-polarized systems, attractive
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interactions leading to electronic pairing, and di�erent band-�llings.
Following the reasoning behind Mermin’s theorem, we extend the scope of

LDFT to the thermodynamic equilibrium at �nite temperatures. A simple scaling-
approximation to the correlation part Gc[γ ] = G[γ ] −Gs[γ ] of the free-energy func-
tional F [γ ] = K[γ ] +G[γ ] is proposed, where Gs[γ ] =WHF[γ ] −TSs[γ ] incorporates
the interaction-energy and entropy functionals of independent fermions. The scal-
ing approximation is subsequently applied to the half-�lled Hubbard model in 1–3
dimensions. The comparison with the exact solution in 1D and quantum Monte Carlo
simulations or numerical linked-cluster expansion in higher dimensions demonstrates
the predictive power of our method. Most notably, the separation of spin and charge
degrees of freedom, a subtle e�ect of strong electronic correlations, is accurately de-
scribed. This e�ect is most clearly re�ected by the temperature dependence of the
speci�c heat CV in the strongly-correlated limit, which displays two distinct peaks
corresponding to the low-lying spin- and the high-energy charge-excitations. In par-
ticular, the temperature TN ∝ t2/U at which the low-temperature peak occurs in CV ,
marking the Néel transition from the AFM ground-state to the paramagnetic phase,
is accurately reproduced. The same applies to the temperature TC ∝ U , correspond-
ing to the high-temperature peak, marking the onset of charge excitations across the
Hubbard gap. The scaling approximation is also applied away from half band-�lling
in order to determine how the changes in the electron density a�ect the most rele-
vant equilibrium properties, such as the kinetic energy K , the double occupations D,
and the speci�c heatCV . Furthermore, the scaling approximation is extended to spin-
polarized systems, which allows us to study the e�ect of an external magnetic �eld
on various �nite-temperature properties of the 1D Hubbard model. The comparison
with exact results con�rms the very good accuracy of our LDFT approach.

The theory formulated in this thesis opens a new perspective to the many-body
problem of interacting fermions on a lattice. Practical applications, enabled by the
new approximations to the central functionals W [γ ] and Gc[γ ] introduced in this
work, demonstrate the �exibility and the predictive power of the theory. This ap-
plies both to the ground state, where our functionals are able to take advantage of the
full universality of LDFT, as well as to the equilibrium at �nite temperatures, where
subtle e�ects such as the spin-charge separation are, to our knowledge, reproduced
for the �rst time in the framework of a density-functional description.
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Zusammenfassung

Eine Dichtefunktionaltheorie für Gittermodelle stark wechselwirkender Fermionen
wird formuliert, welche sowohl für den Grundzustand als auch für das thermodynami-
sche Gleichgewicht im kanonischen und großkanonischen Ensemble anwendbar ist.
Die Einteilchen-Dichtematrix (SPDM)γ spielt hierbei die Rolle der zentralen Variable
in dem Sinne, dass alle physikalischen Observablen als Funktionale von ihr dargestellt
werden können. Die SPDMγ , welche zum Grundzustand oder zum Gleichgewichtszu-
stand gehört, erhält man durch die Minimierung des entsprechenden thermodynami-
schen Potentials: Die Energie E[γ ] = K[γ ]+W [γ ], wenn man an den Grundzustands-
eigenschaften interessiert ist und die Helmholtz’sche freie Energie F [γ ] = E[γ ]−TS[γ ]
bzw. das großkanonische Potential Ω[γ ] = F [γ ] − µ N [γ ], im Falle des thermodyna-
mischen Gleichgewichts bei endlichen Temperaturen. Hierbei sind K[γ ], W [γ ], S[γ ]
und N [γ ] die SPDM Funktionale der Kinetischen- und Wechselwirkungsenergie, der
Entropie sowie der Teilchenzahl. Während die genaue Form von K[γ ] und N [γ ] be-
kannt ist, existieren bislang keine expliziten Ausdrücke für W [γ ] und S[γ ]. Daher
besteht die erste wichtige Herausforderung in der vorliegenden Gitterdichtefunk-
tionaltheorie (LDFT), genau wie in jedem anderen Dichtefunktional Ansatz, darin,
genaue und physikalisch sinnvolle Näherungen für diese hochgradig nichttrivialen
Funktionale zu entwickeln. Natürlich wird die funktionale Abhängigkeit von W [γ ]
und S[γ ] stark von der Art und Stärke der Wechselwirkung zwischen den Fermio-
nen beein�usst. In dieser Arbeit konzentrieren wir uns auf lokale Wechselwirkungen
die durch das Hubbard-Modell beschrieben werden, welches das Paradebeispiel zur
Beschreibung korrelierter Elektronen in schmalen Energiebändern darstellt.

Wir schlagen eine einfache Näherung für das Wechselwirkungsfunktional W [γ ]
vor, welche auf einer Analogie zwischen den E�ekten elektronischer Korrelationen
und thermischen Anregungen basiert, die zu Umverteilungen der Besetzungszahlen
im Impulsraum führen. In diesem Rahmen untersuchen wir die Grundzustandseigen-
schaften des Einband Hubbard-Modells als Funktionen der Coulomb AbstoßungU /t .
Wir erhalten bemerkenswert genaue Resultate für die wichtigsten Grundzustandsei-
genschaften, wie z. B. die Grundzustandsenergie E0, die SPDM γ , die mittlere Anzahl
der Doppelbesetzungen D und die Spin-aufgelöste Impulsverteilung ησ (k) im gesam-
ten Bereich, beginnend bei schwachen Wechselwirkungen (U /t � 1) bis hin zum
stark korrelierten Grenzfall (U /t � 1). Eine Vielzahl physikalischer Situationen wird
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erfolgreich untersucht, darunter endliche und unendliche Gitter in 1–3 und unendli-
chen Dimensionen, bipartite und antiferromagnetisch (AFM) frustrierte Strukturen,
Spin-polarisierte Systeme, attraktive Wechselwirkungen, welche zur elektronischen
Paarbildung führen, sowie unterschiedliche Bandfüllungen.

Der Argumentation des Mermin-Theorems folgend erweitern wir den Anwendugs-
bereich der LDFT auf das thermodynamische Gleichgewicht bei endlichen Tempe-
raturen. Wir schlagen eine einfache Skalierungsnäherung für den Korrelationsan-
teil Gc[γ ] = G[γ ] − Gs[γ ] des Funktionals der freien Energie F [γ ] = K[γ ] + G[γ ]
vor, wobei Gs[γ ] = WHF[γ ] − TSs[γ ] die Funktionale der Wechselwirkungsenergie
und der Entropie unabhängiger Fermionen beinhaltet. Die Skalierungsnäherung wird
anschließend auf das halbgefüllte Hubbard-Modell in 1–3 Dimensionen angewandt.
Der Vergleich mit der exakten Lösung in 1D und Quanten Monte Carlo Simulationen
sowie numerischen linked-Cluster Entwicklungen in höheren Dimensionen demons-
triert die Genauigkeit und Vorhersagekraft unserer Methode. Vor allem die Trennung
der Freiheitsgrade von Spin- und Ladungs�uktuationen, welche ein subtiler E�ekt
von starken elektronischen Korrelationen ist, wird hierbei sehr genau wiedergegeben.
Dies zeigt sich am deutlichsten in der Temperaturabhängigkeit der spezi�schen Wär-
me CV im stark korrelierten Grenzfall, welche zwei getrennte Maxima aufweist, die
zu den tie�iegenden Spinanregungen und den hochenergetischen Ladungsanregun-
gen gehören. Insbesondere wird die TemperaturTN ∝ t2/U , bei welcher der Tieftem-
peraturpeak in CV entsteht und welche den Néel-Übergang vom AFM Grundzustand
zur paramagnetischen Phase markiert, genau reproduziert. Dasselbe gilt auch für die
Temperatur TC ∝ U , bei welcher der Hochtemperaturpeak entsteht und welche den
Beginn der Ladungsanregungen über die Hubbard-Lücke markiert. Wir wenden die
Skalierungsnäherung auch auf das weniger als halb gefüllte Hubbard-Modell an und
untersuchen wie Änderungen der Elektronendichte die wichtigsten Gleichgewichtsei-
genschaften beein�ussen, wie z. B. die kinetische EnergieK , die DoppelbesetzungenD
und die spezi�sche Wärme CV . Außerdem erweitern wir die Skalierungsnäherung
auf Spin-polarisierte Systeme, was uns die Möglichkeit gibt die Auswirkungen exter-
ner Magnetfelder auf unterschiedliche Gleichgewichtseigenschaften des 1D Hubbard-
Modells zu studieren. Der Vergleich mit entsprechenden exakten Resultaten bestätigt
die Genauigkeit unseres LDFT Ansatzes.

Die in dieser Arbeit formulierte Theorie betrachtet das Vielteilchenproblem wech-
selwirkender Fermionen auf einem Gitter aus einem neuen Blickwinkel. Praktische
Anwendungen, welche durch die neuen Näherungen für die zentralen Funktiona-
leW [γ ] undGc[γ ] ermöglicht werden, zeigen die Flexibilität und die Vorhersagekraft
der Theorie. Dies gilt sowohl für den Grundzustand, wo unsere Funktionale die volle
Universalität der LDFT ausnutzen, als auch für das thermodynamische Gleichgewicht,
wo subtile E�ekte wie die Spin-Ladungs Separation, nach unserem Wissen, zum ers-
ten Mal im Rahmen einer Dichtefunktionaltheorie reproduziert werden.
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The most beautiful experience we can have is the mysterious.
It is the fundamental emotion that stands at the cradle

of true art and true science.

— Albert Einstein
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Introduction 1
The formulation of quantum mechanics and the accompanying progress in our un-
derstanding of the physical properties of matter and the solid state in particular is
undoubtedly one of the major breakthroughs in the physics of the last century. It has
led to an understanding of the chemical composition, structure, and particular prop-
erties of solids according to which we categorize them as metals, insulators, semicon-
ductors, superconductors, and magnetic materials. The technical applications which
arose from the understanding of matter at the quantum level have revolutionized our
lives in a way which is unparalleled since the industrialization of the 19th century.
The development and progressive miniaturization of essential building blocks, such
as transistors, magnetic and solid-state storage devices, dynamic and magnetic ran-
dom access memories, solid-state lasers, and sensors, has led to a wide variety of
modern electronic devices, such as computers and mobile phones.

Among the most important advances in condensed-matter physics and the quan-
tum many-body problem in general is the development of Hohenberg-Kohn-Sham’s
density functional theory (DFT), in which the ground-state properties of a many-
particle system subject to an arbitrary external potential v(r ) can be regarded as
functionals of the many-particle density n(r ) [2, 3]. The underlying one-to-one corre-
spondence between the ground state |Ψ0〉 and the corresponding density n0(r ) allows
us, in principle, to avoid the calculation of the far more complicated ground-state
wave function. Thus, in the framework of DFT, the density n(r ) takes the role of the
fundamental variable of the many-body problem.

The �rst attempt to formulate the quantum many-body problem solely in terms of
the particle density n(r ) dates back to 1927, where Thomas and Fermi (TF) proposed
the �rst, from today’s perspective very rudimentary, approach to compute atomic en-
ergies on the basis of the electronic density [4, 5]. The TF theory approximates the
local contribution to the kinetic-energy functional K[n(r )] of the interacting many-
electron system by the kinetic energy of noninteracting electrons with the homoge-
neous density n = n(r ), and the interaction energy W [n(r )] is approximated by the
classical Hartree-energy WH[n(r )]. However, shortly after its formulation it turned
out that the TF theory is unable to account for any kind of molecular bonding, which

Some passages of this chapter have been published in Ref. [1], ©2018 American Physical Society.
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1 Introduction

is mostly due to the oversimpli�ed approximation to the kinetic-energy functional,
and thus has been rapidly abandoned.

After the failure of the TF theory, the density functional (DF) approach was not
used very intensively, until in 1964 Hohenberg and Kohn (HK) [2] demonstrated that
in principle all ground-state observables of a many-particle system can be exactly
obtained from the ground-state electron densityn0(r ) alone. The HK theorem ensures
the existence of a universal functional

FHK[n(r )] = K[n(r )] +W [n(r )] , (1.1)

representing the optimal sum of the kinetic energy T [n(r )] and the interaction en-
ergy W [n(r )] of a many-particle system having the density n(r ). The variational
principle of the corresponding energy functional

E[n(r )] =
∫

v(r )n(r ) dr + FHK[n(r )] (1.2)

gives access to the ground-state density n0(r ) and thus to all ground-state properties
in principle. Just a few month after the formulation of the seminal HK theorem, an
extension to the important case of the thermodynamic equilibrium at a �nite tem-
perature was formulated by Mermin [6], who proved that in principle all equilibrium
averages of an interacting many-particle system can be obtained from the equilibrium
particle density neq(r ) alone.

Most practical applications of DFT are performed within the Kohn-Sham (KS)
scheme, which reduces the interacting many-particle problem to a set of selfconsis-
tent single-particle equations [3]. Although formally exact, practical applications of
DFT must resort to some kind of approximation to the universal functional FHK[n(r )].
The �rst such approximation, known as the local density approximation (LDA), was
introduced by Kohn and Sham [3], who expressed the local contribution to the non-
trivial exchange and correlation (XC) part Exc[n(r )] of the universal functional (1.1) in
terms of the XC energy of a homogeneous electron gas with density n = n(r ). No-
ticeable improvements over the LDA have been proposed later on, such as the local
spin-density approximation (LSDA) [7], which accounts for spin-polarized systems,
the generalized gradient approximations (GGAs), which take into account the den-
sity gradient [8–14], and the hybrid functionals [15–19], which combine the exchange
energy computed with the KS orbitals and some appropriate approximation to the
XC energy. More recently, related methods based on the single-particle density ma-
trix (SPDM) γ (r ,r ′) have also been developed [20–32].

Hohenberg-Kohn-Sham’s DFT, in combination with the LDA and its extensions,
has demonstrated its predictive power in countless applications throughout the most
large variety of �elds. For example, ionization energies of atoms, dissociation energies
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of molecules, bond-lengths, and molecular geometries are predicted with astonishing
accuracy. There are, however, several situations where the conventional XC function-
als perform poorly. One prominent example is the semiconductor band-gap, for ex-
ample in silicon, which is largely underestimated by conventional DFT [33]. Another
example are van der Waals interactions, which are caused by dynamical density �uc-
tuations, and are therefore beyond the scope of LDA based XC functionals [34]. Par-
ticularly relevant in the context of the present thesis is the fact that conventional DFT
systematically fails to account for the e�ects caused by strong electron correlations.
This applies, for example, to the physics of spin-�uctuations, the Kondo-screening,
heavy-fermion materials [35], high-temperature superconductivity [36, 37], and Mott-
insulators [38–40]. Finding an accurate description of the e�ects caused by strong
electronic correlations remains therefore a serious challenge in the framework of DFT.

Strongly-correlated electron systems are usually best described in the framework
of lattice-model Hamiltonians, in which the electronic dynamics is simpli�ed by fo-
cusing on the most relevant contributions which dominate the low-energy or low-
temperature physics. Motivated at the origin by the description of molecular bond-
ing [41, 42], magnetic impurities in metals [43], and itinerant electrons in narrow
bands [44–46], the theory of many-body models has grown to a high level of sophis-
tication, not only from a methodological perspective, but also concerning the physical
e�ects that are taken into account in the modelization. In this way, subtle phenom-
ena, such as valence and spin �uctuations, the separation of charge and spin degrees
of freedom, superconductivity, correlation-induced localization, etc., have been re-
vealed [37, 47, 48]. Despite these achievements, and although the electron dynamics
is largely simpli�ed with respect to the full �rst-principles problem, deriving the prop-
erties of these many-body lattice models remains a very di�cult task. Exact analytical
results are rare [38, 39, 49–56] and accurate numerical solutions are either inaccessible
or very demanding [36, 57–68]. Consequently, developing theoretical methods capa-
ble of describing the physics of many-body lattice models is a subject of considerable
interest.

Taking into account the universality of DFT and its remarkable success in han-
dling the �rst-principles problem in the continuum, it is reasonable to expect that a
suitable extension of the fundamental concepts of DFT combined with appropriate
approximations to the corresponding functionals could provide an alternative, poten-
tially most e�ective approach towards the physics of strongly-correlated electrons on
a lattice. Indeed, in the past decades a number of very successful methods have been
developed by applying the concepts of DFT to lattice models [1, 69–87]. Early stud-
ies have addressed the band-gap problem in semiconductors [69–71] and the role of
the o�-diagonal elements of the density matrix in the description of strong electron
correlations [72]. Density-matrix energy functionals based on the exact Bethe-ansatz
solution have been proposed and applied to the Hubbard and Anderson models in or-
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1 Introduction

der to describe itinerant electrons in narrow energy bands and the transport trough an
Anderson junction as well as the related Kondo e�ect [75, 88, 89]. Also time-dependent
approaches for lattice models of strongly-correlated electrons have been developed in
the framework of DFT [76]. Most relevant in the context of the present work is the
lattice density functional theory (LDFT), which considers the SPDM γ as the central
variable of the many-body problem [77, 78].

Several important lattice models of strongly interacting electrons have been ad-
dressed within the framework of LDFT. This includes the single-impurity Anderson
model [81–83] as well as the Hubbard model with homogeneous and inhomogeneous
local potentials, dimerized chains, attractive pairing interactions, and inhomogeneous
local repulsions [77–80, 83–87]. The basic idea behind the functionals proposed in
previous approaches is to adopt a real-space perspective and to take advantage of
scaling properties of the interaction energy W as a function of the bond order γ12σ ,
which measures the degree of charge �uctuations between nearest neighbors (NNs).
The actual dependence of W on γ12σ can then be inferred from the exact solution of
a reference system, such as the two-site problem (dimer), or other exactly solvable
systems. In its simplest form, this scaling approach gives access only to the diago-
nal and NN elements of the ground-state single-particle density matrix (gs-SPDM).
Therefore, more complex observables whose functional dependence O[γ ] involves
long-range SPDM elements, as well as physical situations requiring interatomic hop-
pings beyond NNs, remain out of scope, although an extension has been recently
proposed which overcomes the latter limitation [87]. Nevertheless, the domain of
applicability of the functionals proposed so far in the framework of LDFT, and the
physical properties that can be derived from them, are somewhat limited. Moreover,
in order to take full advantage of the universality of LDFT, it is necessary to account
for the dependence ofW on the complete density matrix γ . In fact, only in this case
the interaction-energy functional W [γ ] is independent of the topology, dimension-
ality, and structure of the system. A more �exible formulation would also allow us
to account for the distance dependence of γijσ and thus for the long-range electron
mobility, which is most interesting in the context of strong electron correlations, even
if the actual hybridizations are short-ranged, as it is usually the case in narrow-band
systems. In this way, it should be possible to investigate how electron localization
develops in real space as the Coulomb-repulsion strength increases, which is also rel-
evant for transport properties.

It is therefore one of the central goals of this work (Chapter 4) to develop an
interaction-energy functionalW [γ ] for the Hubbard-model, which takes into account
its dependence on the full SPDM γ , and thus leverages the universality of LDFT. To
this aim, we will adopt a delocalized k-space perspective and exploit a newly dis-
covered connection between the interaction energy W in the ground state of the
model and the entropy of the corresponding Bloch-state occupation-number distri-
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bution ηkσ . We apply our functional to �nite and in�nite lattices in 1–3 dimensions
as well as to the limit of in�nite dimensions. The universal character of our func-
tional is demonstrated by considering a large variety of interesting physical situa-
tions, including spin-polarized systems, correlated fermions subject to an attractive
interaction, and we will study systems with di�erent electron densities exhibiting
Luttinger-liquid behavior.

Another fundamental limitation of current LDFT is the lack of a rigorous formula-
tion which applies to the thermodynamic equilibrium at a �nite temperature. A �nite-
temperature formulation exists in the framework of conventional DFT, which is based
on Mermin’s fundamental theorem [6], however, despite some e�orts to derive sound
approximations to the corresponding functionals, no practical implementation of the
�nite-temperature method is available so far [88, 90, 91]. This precludes the current
DF approaches to account for a myriad of important physical phenomena, which can
not be described within a ground-state formalism. For example, phase transitions in
magnetic or superconducting materials, the Kondo-e�ect, and metal-insulator transi-
tions are the consequence of speci�c qualitative features in the many-body spectral
density of the electronic system. These e�ects therefore manifest themselves at spe-
ci�c temperatures, such as the Curie or Néel ordering temperatures in ferromagnets
and antiferromagnets, or the Kondo temperature for magnetic impurities in metals.

A further important contribution of the present work is therefore the rigorous for-
mulation of �nite-temperature lattice density functional theory (FT-LDFT) in Sec-
tion 3.2. Practical applications of FT-LDFT are provided in Chapter 5, where we fo-
cus on the Hubbard model and propose a simple scaling approximation to the cor-
relation part Gc[γ ] = G[γ ] − Gs[γ ] of the central free-energy functional F [γ ] =
K[γ ] + G[γ ]. Here, K[γ ] represents the kinetic energy of the lattice electrons and
Gs[γ ] =WHF[γ ]−TSs[γ ] incorporates the interaction energy and entropy of indepen-
dent fermions. The �exibility and predictive power of FT-LDFT in combination with
our new scaling approximation is demonstrated in numerous applications to the Hub-
bard model with di�erent band �llings in 1–3 dimensions. This applies in particular
to the regime of strong Coulomb-interactions U � t , where the scaling approxima-
tion accurately reproduces the subtle e�ects of the separation between the spin- and
charge-degrees of freedom.

The remainder of this thesis is organized as follows. In Chapter 2 we will give a
short introduction to the Hubbard model, which is among the most emblematic mod-
els for strongly correlated electrons on a lattice, and which is therefore the main model
of interest in the applications of our methods. Chapter 3 provides a rigorous formu-
lation of LDFT for the ground state as well as for the thermodynamic equilibrium at
�nite temperatures. We will formulate the fundamentals of FT-LDFT in two di�erent
�avours, accounting for canonical and grand-canonical ensembles. In Chapter 4 we
discover a remarkable one-to-one correspondence between the interaction energyW
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1 Introduction

in the ground state of the Hubbard model and the entropy S of the corresponding
Bloch-state occupation-number distribution ηkσ . This newly discovered connection
betweenW and S leads us to a very intuitive approximation to the interaction-energy
functional W [γ ], which takes into account its dependence on the full SPDM γ and
reproduces the exact interaction energy in the important limits of idempotent and
scalar SPDMs, which are characteristic for weak and strong electronic correlations.
The accuracy and universal nature of our method is demonstrated in applications to a
large variety of physical situations. In Chapter 5 we focus on the thermal equilibrium
at �nite temperatures and develop a very intuitive scaling approximation for the cor-
relation contribution Gc[γ ] to the free energy of the Hubbard model. The predictive
power of our scaling approximation is demonstrated in applications to the half-�lled
Hubbard model on bipartite lattices in 1–3 dimensions. We also go beyond half band-
�lling and employ the scaling approximation in order to investigate the in�uence
of the electron density on the most important equilibrium observables, such as the
speci�c heat CV and the average number of double occupations D. Furthermore, we
extend our method to spin-polarized systems, which allows us to study the e�ects of
external magnetic �elds. The �nal Chapter 6 summarizes our results and provides an
outlook on future challenges in the framework of LDFT.
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The Hubbard model 2
The accurate description of electronic interactions is one of the major challenges in
modern condensed matter physics. Strong electronic interactions arise, for example,
in transition or rare-earth metals having partially �lled d or f shells. Since these or-
bitals are rather localized around the ions, the mutual Coulomb repulsion of the corre-
sponding electrons is, in contrast to the delocalized s or p shells, not treated with suf-
�cient accuracy by mean-�eld approximations. The partially �lled d and f shells are,
however, also hybridized in the bulk, and in this way contribute to the chemical bond-
ing. Consequently, neither a delocalized free-electron picture nor a fully-localized
picture is suitable to describe the physical properties of transition-metal systems. In
order to understand the physics of these systems it is important to have a theory which
takes into account the interplay between electronic interactions and hybridizations.
In this context Hubbard, Gutzwiller, and Kanamori [44–46] independently proposed
a model Hamiltonian, usually referred to as Hubbard model, which intends to capture
the most relevant contributions to the competition between electronic delocalization
driven by hybridization and localization due to the mutual Coulomb repulsion be-
tween the electrons. In its most simple form, the Hubbard model describes a single
orbital per lattice site and the hybridization is realized by the hopping of electrons be-
tween the orbitals located at nearest neighbor (NN) sites. Furthermore, the Coulomb
interaction between the electrons is simpli�ed to an e�ective onsite repulsion, i. e.,
only the interaction between electrons within the same orbital is taken into account.

Despite its apparent simplicity, no general solution of the Hubbard model is avail-
able to date. An exact solution exist only in two special cases, namely for the two
extremes of lattice coordination numbers two and in�nity. The solution for the �rst
case, i. e., the one-dimensional Hubbard model, was derived by Lieb and Wu [49], and
it is based on Bethe’s solution for the spin-1/2 Heisenberg chain [92]. The latter case
is handled by mapping the Hubbard model to a single-impurity Anderson model sup-
plemented by a self-consistency condition. This provides a mean-�eld like picture,
which becomes exact if the spatial dimension tends to in�nity [38, 39]. After having
introduced the Hubbard model in Section 2.1 and discussed the profound approxima-
tions involved in its derivation from the �rst-principles many-body Hamiltonian, we
review the exact Lieb-Wu solution for the ground state of the in�nite Hubbard chain
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2 The Hubbard model

in Section 2.2. In the subsequent Section 2.3 we discuss some important limiting cases
of the Hubbard model, most notably the case of strong Coulomb repulsions, where the
low-lying excitations of the half-�lled Hubbard model are described by an e�ective
spin-1/2 Heisenberg model. Furthermore, we review the mean-�eld approximation
for the Hubbard model in Section 2.4 and present the corresponding ground-state
phase diagram.

2.1 Approximating the full many-body Hamiltonian

In order to derive the Hubbard model from the full many-body Hamiltonian of inter-
acting electrons in a solid, we start by assuming that the ions form a static lattice, such
that their interaction with the electrons can be described by a static potential v(r ).
This assumption is justi�ed, since the electron mass is several orders of magnitude
smaller than the mass of the ions in typical solids, and consequently, the electronic
system is able to adapt almost instantly to changes of the ionic structure. Within
this approximation the dynamics of interacting electrons in a solid is governed by the
electronic Hamiltonian

Ĥ =
∑
σ

∫
ψ̂ †σ (r )

[
− ~

2

2m∇
2 +v(r )

]
ψ̂σ (r ) dr

+
1
2
∑
σσ ′

∫
ψ̂ †σ (r )ψ̂ †σ ′(r ′)

e2

|r − r ′| ψ̂σ ′(r
′)ψ̂σ (r ) dr dr ′ , (2.1)

where ψ̂ †σ (r ) [ψ̂σ (r )] is the usual fermionic �eld operator creating (annihilating) an
electron with spin polarization σ at the position r . The �rst term in Eq. (2.1) rep-
resents the kinetic energy of the electrons and their interaction with the static ion
potential v(r ), and the second term describes their mutual Coulomb interaction.

We aim to describe the dynamics of electrons in narrow energy bands, such as the d
or f electrons in solids, and therefore it is appropriate to work in a basis of Wannier
states ϕα (r − Ri) which are localized around the lattice sites i = 1, . . . ,Na . Here α is
the band index, and if we introduce the corresponding creation operator ĉ†iασ which
creates an electron with spin polarization σ in the Wannier orbital ϕα (r −Ri), we can
express the fermionic �eld operator as

ψ̂ †σ (r ) =
∑
iα

ϕ∗α (r − Ri) ĉ†iασ . (2.2)

Consequently, within the basis of the single-particle Wannier orbitals we can write
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2.1 Approximating the full many-body Hamiltonian

the Hamiltonian (2.1) as

Ĥ =
∑
ijαβσ

t
αβ
ij ĉ†iασ ĉjβσ +

1
2
∑
σσ ′

∑
ijkl
αβγδ

W
αβγδ
ijkl

ĉ†iασ ĉ
†
jβσ ′ĉlδσ ′ĉkγσ , (2.3)

where the hopping integrals are given by

t
αβ
ij =

∫
ϕ∗α (r − Ri)

[
− ~

2

2m∇
2 +v(r )

]
ϕβ (r − Rj) dr , (2.4)

and similarly, the interaction-energy integrals are given by

W
αβγδ
ijkl

=

∫
ϕ∗α (r − Ri)ϕ∗β (r ′ − Rj) e2

|r − r ′| ϕδ (r
′ − Rl )ϕγ (r − Rk) dr dr ′ . (2.5)

The Hubbard model is obtained from the general many-body Hamiltonian (2.3) by
several profound approximations. First, since we are interested in the dynamics of
electrons in open d or f shells, it is justi�ed to approximate their interaction with the
electrons in the closed s and p shells by some static mean-�eld potential which, added
to the ionic potential v(r ), results in an e�ective potential describing the interaction
of the conduction band electrons and the screened ions. If one furthermore assumes
that the Fermi surface lies within a single conduction band and all other bands are far
away from the Fermi level, it is justi�ed to focus on the conduction band exclusively,
which means that one can discard the band indices denoted by Greek letters in the
general Hamiltonian (2.3). A further profound approximation in the Hubbard model
is to neglect any kind of interatomic Coulomb interaction between the electrons, i. e.,
to neglect all interaction parameters except for the dominating termWiiii , which ac-
counts for the Coulomb repulsion between two electrons occupying the same Wannier
orbital localized at a given lattice site. According to Eq. (2.5) the intra-atomic Coulomb
integralWiiii is independent of the speci�c lattice site under consideration, such that
one can setWiiii = U for all i . In this way, the second term in the Hamiltonian (2.3),
which accounts for the Coulomb interaction between the electrons, is reduced to the
simple form

U

2
∑
σσ ′

∑
i

ĉ†iσ ĉ
†
iσ ′ĉiσ ′ĉiσ = U

∑
i

n̂i↑n̂i↓ , (2.6)

where n̂iσ = ĉ†iσ ĉiσ is the usual number operator for electrons with spin polarization σ
in the Wannier orbital located at Ri . Consequently, one obtains the Hubbard-model
Hamiltonian as

Ĥ = K̂ + Ŵ =
∑
ijσ

tij ĉ
†
iσ ĉjσ +U

∑
i

n̂i↑n̂i↓ . (2.7)
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2 The Hubbard model

A further simpli�cation usually made in the context of the Hubbard model on periodic
lattice structures is to assume that the hopping integrals (2.4) are isotropic, i. e., that
they solely depend on the distance between the lattice sites, such that tij = t(|Ri − Rj |),
and based on the assumption that the Wannier functions ϕα (r − Ri) are strongly lo-
calized around the corresponding lattice sites, one often neglects all hopping-matrix
elements beyond the NN terms tij = −t . In this way, the Hubbard-model Hamilto-
nian (2.7) is further simpli�ed to

Ĥ = K̂ + Ŵ = −t
∑
〈i,j〉σ

ĉ†iσ ĉjσ +U
∑
i

n̂i↑n̂i↓ , (2.8)

where 〈i, j〉 indicates the summation over NN lattice sites.1 We have ignored the on-
site terms tii = ε since, due to the assumed homogeneity, they solely contribute a
constant Nε to the energy if the number of electrons N is kept �xed, and otherwise
they can be absorbed in the chemical potential when working in a grand-canonical
ensemble.

The physical processes described by the single-band Hubbard model (2.8) are quite
intuitive. The �rst term K̂ describes the hopping of electrons between the orbitals
located at NN sites, which leads to a delocalized electronic state and, due to the inter-
action with the screened ions, to an e�ective bonding among the lattice. The second
term Ŵ describes the local Coulomb repulsion U between electrons located at the
same lattice site. Equation (2.8) describes a single band, such that there is only one
orbital per lattice site, and consequently, due to Pauli’s exclusion principle, two elec-
trons occupying the Wannier orbital at a given lattice site must have opposite spin
polarization. The two processes described by the Hubbard model are in strong com-
petition with one another, since the kinetic energy K̂ favors a delocalized electronic
state in order to achieve a strong bonding among the lattice, while the local Coulomb
interaction Ŵ favors a localized state in order to minimize the number of doubly oc-
cupied Wannier orbitals.

In order to take a closer look at the two contributions, K̂ andŴ , which make up the
Hubbard-model Hamiltonian, we consider two cases in which the Hubbard model can
be solved easily. The �rst one concerns the atomic limit t = 0, in which the Hubbard
model Hamiltonian reduces to the interaction-energy term

Ĥ = Ŵ = U D̂ , (2.9)
where the operator D̂ =

∑
i n̂i↑n̂i↓ counts the number of doubly occupied Wannier

orbitals. The corresponding eigenstates are given by

|Ψ〉 =
(∏
i∈I↑

ĉ†
i↑

) (∏
i∈I↓

ĉ†
i↓

)
|vac〉 , (2.10)

1Notice, that some authors use the notation 〈i, j〉 in order to indicate the summation over NN pairs,
while in our convention there are two terms in the sum for each pair of NNs.
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2.1 Approximating the full many-body Hamiltonian

where Iσ is an arbitrary subset of {1, . . . ,Na} which represents the local orbitals that
are occupied by spin-σ electrons, such that the corresponding cardinality |Iσ | equals
the number Nσ of spin-σ electrons. The energy eigenvalue of this state is given by

E =
∑
I↑∩I↓

U = U D , (2.11)

where D = |I↑ ∩ I↓ | is the number of doubly occupied local orbitals. The ground
state is obtained by choosing subsets Iσ having minimal intersection. Clearly, for
N = N↑ + N↓ ≤ Na , i. e., if the band is not more than half-�lled, one can always �nd
subsets having I↑ ∩ I↓ = �, resulting in a vanishing ground-state energy E0 = 0.
In the case of a more than half-�lled band (N > Na) there must be at least N − Na

sites which are occupied by two electrons, such that the ground-state energy is given
by E0 = U (N − Na).

The second case in which the Hubbard model (2.8) allows for a straight forward
solution concerns noninteracting systems, i. e., a vanishing local Coulomb repul-
sion U = 0. The Hubbard-model Hamiltonian then reduces to the tight-binding term

Ĥ = K̂ = −t
∑
〈i,j〉σ

ĉ†iσ ĉjσ . (2.12)

Like every periodic tight-binding Hamiltonian it can be diagonalized by introducing
the corresponding Bloch states

ĉ†
kσ
=

1√
Na

Na∑
i=1

eik ·Ri ĉ†iσ , (2.13)

which correspond to the wave vectors k in the �rst Brillouin zone (BZ). It is straight
forward to verify that, in terms of the Bloch-states (2.13), the tight-binding Hamilto-
nian (2.12) assumes the form

Ĥ = K̂ =
∑
k∈BZ

∑
σ=↑,↓

εk n̂kσ (2.14)

with the single-particle energies

εk = −t
∑
∆∈NN

cos(k · ∆) , (2.15)

where the sum is taken over the unique vectors ∆ ∈ NN connecting a given lattice
site to its NNs. For example, in the case of a one-dimensional lattice with lattice
constant a = 1 one has εk = −2t cos(k), and the corresponding Na discrete wave
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2 The Hubbard model

numbers k are distributed equally spaced within the BZ [−π ,π ). The eigenstates of
the Hamiltonian (2.14) are given by

|ΨK〉 =
( ∏
k∈K↑

ĉ†
k↑

) ( ∏
k∈K↓

ĉ†
k↓

)
|vac〉 , (2.16)

where Kσ is an arbitrary subset of the k-vectors in the BZ, representing the Bloch
states that are occupied by spin-σ electrons. The corresponding energy eigenvalue is
then given by

EK =
∑
σ

∑
k∈Kσ

εk . (2.17)

The ground state of (2.14) is consequently obtained by choosingKσ as the set of wave-
vectors which correspond to the Nσ lowest-lying Bloch-state energies (2.15). This kind
of “�lling the band from the bottom” is illustrated in Fig. 2.1 for the case of a one-
dimensional ring having Na = 10 sites and N = 10 electrons. As another speci�c
example, let us consider the in�nite one-dimensional Hubbard chain. Since the cor-
responding wave numbers k are dense within the BZ [−π ,π ), one can replace sums
within the BZ by integrals according to the rule∑

k∈BZ
−→ Na

2π

∫ π

−π
dk . (2.18)

Furthermore, since the dispersion relation of the in�nite chain ε(k) = −2t cos(k) in-
creases monotonously with |k | for k ∈ BZ, all Bloch states having |k | < kFσ are oc-
cupied in the ground state, while states with |k | > kFσ are unoccupied. Here, the
Fermi wave-number kFσ for electrons with spin polarization σ is determined from
the corresponding electron density nσ = Nσ/Na as

Nσ =
Na

2π

∫ kFσ

−kFσ
dk ⇒ kFσ = πnσ . (2.19)

The ground-state energy of the in�nite noninteracting Hubbard chain is thus obtained
as

E0 =
Na

2π
∑
σ

∫ kFσ

−kFσ
ε(k) dk = −2tNa

π

∑
σ

sin(πnσ ) . (2.20)

Despite the apparent simplicity of the Hubbard model (2.8), it incorporates a
plethora of interesting physical phenomena observed in interacting many-electron
systems. It has been used in order to study the band magnetism in transition met-
als [93], to investigate the Mott metal-insulator transition [40, 94], and it is believed
to incorporate the fundamental processes responsible for high-Tc superconductiv-
ity [95, 96]. Clearly, a model which incorporates such a diversity of subtle many-body
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2.2 Lieb-Wu equations for the ground state

k

ε(k)

−π π

−2t

2t

Figure 2.1: Schematic illustration of the noninteracting ground state of a 10-site Hubbard ring
having N = 10 electrons with N↑ = N↓ = 5. The dispersion relation ε(k) = −2t cos(k) of the
one-dimensional Hubbard chain is shown by the blue curve on the left and the single-particle
energy levels εk of the 10-site ring are marked by red dots. The diagram on the right illustrates
the “�lling” of the energy levels from the bottom by electrons with opposite spin polarization,
which leads to the noninteracting ground state.

e�ects can not be expected to allow for an easy general solution. In fact, despite the
profound simpli�cations involved in the derivation of the Hubbard model (2.8), and
the simple solution of its two individual constituents K̂ and Ŵ discussed above, there
are only few exact results available at present. An exact solution exists for the ground
state of the in�nite one-dimensional chain, which will be reviewed in the subsequent
section, as well as in the limit of in�nite spatial dimensions [38, 39]. Furthermore,
there are a number of rigorous results for the ground state and excited states in some
limiting cases [55].

2.2 Lieb-Wu equations for the ground state
One of the few situations in which the Hubbard model (2.8) allows for an exact an-
alytical solution is the case of the in�nite one-dimensional chain. The ground-state
problem of the in�nite one-dimensional Hubbard chain has been solved by Lieb and
Wu [49]. Later developments by Jüttner et al. [56] have extended the exact analytical
solution of the one-dimensional Hubbard chain to the equilibrium at �nite tempera-
tures. In this section we brie�y review the solution of Lieb and Wu for the ground
state, which is based on the Bete-ansatz [92] and reduces the Schrödinger equation
for the one-dimensional Hubbard model to a set of algebraic equations. In the ther-
modynamic limit Na → ∞, with the electron density N /Na and the density N↓/Na

of the down spins kept �xed, the solution of Lieb and Wu is expressed in terms of
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2 The Hubbard model

two density functions ρ(k) and σ (λ), which are obtained from the coupled integral
equations

ρ(k) = 1
2π + cos(k)

∫ B

−B
K[sin(k) − λ]σ (λ) dλ , (2.21)

σ (λ) =
∫ Q

−Q
K[sin(k) − λ] ρ(k) dk −

∫ B

−B
K2[λ − λ′]σ (λ′) dλ′ . (2.22)

The functions K[x] and K2[x] entering the integral equations are de�ned as

K[x] = 1
2π

[
8u

u2 + 16x2

]
and K2[x] = 1

2π

[
4u

u2 + 4x2

]
, (2.23)

where u = U /t is the ratio between the Coulomb repulsion strength U and the hop-
ping integral t . The parameters 0 ≤ Q ≤ π and 0 ≤ B ≤ ∞, which appear in Eqs. (2.21)
and (2.22), are determined by the conditions∫ Q

−Q
ρ(k) dk = N

Na
and

∫ B

−B
σ (λ) dλ = N↓

Na
. (2.24)

Finally, the ground-state energy of the in�nite one-dimensional Hubbard chain is ob-
tained from the density function ρ(k) as

E0 = −2tNa

∫ Q

−Q
ρ(k) cos(k) dk . (2.25)

In the case of a half-�lled band with vanishing magnetization, i. e., N = Na and N↑ =
N↓ = N /2, one can show that Eq. (2.24) is satis�ed for Q = π and B = ∞ [97]. In
this case, Eqs. (2.21) and (2.22) can be solved in a closed form, and one obtains the
ground-state energy of the half-�lled one-dimensional Hubbard chain as

E0 = −4tNa

∫ ∞

0

J0(ω) J1(ω)
ω

(
1 + eωu/2

) dω , (2.26)

where J0(ω) and J1(ω) are Bessel functions of order zero and one. Another impor-
tant quantity that can be obtained from the Lieb-Wu solution is the average number
of double occupations D = ∑

i 〈n̂i↑n̂i↓〉 which, regarding the Hamiltonian (2.8) of the
Hubbard model, is obtained as the derivative of the ground-state energy E0 with re-
spect to the Coulomb integralU . From the ground-state energy (2.26) of the half-�lled
unpolarized Hubbard chain one obtains the corresponding average number of double
occupations as

D =
∂E0
∂U
= Na

∫ ∞

0

J0(ω) J1(ω)
1 + cosh(ωu/2) . (2.27)
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2.2 Lieb-Wu equations for the ground state

The unpolarized caseN↑ = N↓ = N /2with arbitrary electron densityn = N /Na ≤ 1
has been investigated by Shiba [51]. Vanishing magnetization corresponds to B = ∞,
and Shiba has demonstrated that in this case Eqs. (2.21) and (2.22) can be reduced to
the single integral equation

ρ(k) = 1
2π +

cos(k)
u

∫ Q

−Q
R

(
4 (sink − sink′)

u

)
ρ(k′) dk′ , (2.28)

where
R(x) = 4

π

∞∑
n=1
(−1)n+1 2n

x2 + (2n)2 =
1
π

∫ ∞

−∞

sech(πt/2)
1 + (x + t)2 dt . (2.29)

The parameter Q which enters Eq. (2.28) is determined by the �rst condition of
Eq. (2.24), and after ρ(x) is obtained from the solution of Eq. (2.28), the ground-state
energy follows from Eq. (2.25). Again, the average number of double occupations is
obtained from the derivative of the ground-state energy with respect to the Coulomb
repulsion strength U

D =
∂E0
∂U
= −2Na

∂

∂u

(∫ Q

−Q
ρ(k) cos(k) dk

)
. (2.30)

Here one has to take into account that not only ρ(k) but alsoQ depends onu = U /t . In
fact, from the conservation of particles ∂N /∂u = 0 and the �rst condition of Eq. (2.24)
one obtains

∂Q

∂u
= − 1

2ρ(Q)
∫ Q

−Q

∂ρ(k)
∂u

dk , (2.31)

where we have used ρ(Q) = ρ(−Q).2 Combining Eqs. (2.30) and (2.31) one obtains

D = 2Na

∫ Q

−Q
(cosQ − cosk) ∂ρ(k)

∂u
dk . (2.32)

For the derivative of the density function ρ(k) one obtains from Eqs. (2.28) and (2.31)
the following integral equation

∂ρ(k)
∂u

=
cos(k)
u2

∫ Q

−Q
Φ

(
4 (sink − sink′)

u

)
ρ(k′) dk′ + cos(k)

u

∫ Q

−Q
dk′ ∂ρ(k

′)
∂u

×

×
[
R

(
4 (sink − sink′)

u

)
− 1
2 R

(
4 (sink − sinQ)

u

)
− 1
2 R

(
4 (sink + sinQ)

u

)]
, (2.33)

2The fact, that ρ(k) is an even function follows from the uniqueness of the solution of Eq. (2.28),
which has been demonstrated by Lieb and Wu [97], together with the fact that if ρ(k) is a solution
of Eq. (2.28) then ρ(−k) is a solution too.

15



2 The Hubbard model

where the function R(x) is de�ned in Eq. (2.29) and

Φ(x) = −R(x) − x ∂R(x)
∂x

=
8
π

∞∑
n=1
(−1)n+1 n x2 − (2n)2[

x2 + (2n)2]2 . (2.34)

In the strongly correlated limit u = U /t → ∞, Shiba’s integral equations (2.28)
and (2.33) yield ρ(k) = 1/(2π ) and ∂ρ(k)/∂u = 0. Therefore, one obtains D = 0 from
Eq. (2.32), i. e., the expected result that there are no double occupations in the ground
state of the strongly-correlated Hubbard model with n = N /Na ≤ 1. Furthermore, the
�rst condition in Eq. (2.24) must be ful�lled, i. e.,∫ Q

−Q
ρ(k) dk = 2Q

2π =
N

Na
⇒ Q = πn , (2.35)

and consequently, from Eq. (2.25) one obtains the ground-state energy of the strongly
correlated in�nite Hubbard chain as

E0 = −tNa

π

∫ πn

−πn
cos(k) dk = −2tNa

π
sin(πn) . (2.36)

This energy is due to the correlated electronic hopping between vacant lattice sites,
which does not lead to double occupations. Clearly, in a half-�lled band (n = 1) there
are no vacancies, since a state with vanishing double occupations must be attained,
and consequently the ground-state energy of the strongly correlated Hubbard chain
vanishes at half band-�lling.

In Appendix D we present a method for solving Shiba’s integral equations (2.28)
and (2.33), which utilizes the trapezoidal rule in order to approximate the integrals
and, in turn, leads to a set of coupled linear algebraic equations. Results for the
ground-state energy E0 and the average number of double occupationsD as a function
of the electron densityN /Na are presented in Fig. 2.2 for some representative values of
the Coulomb-repulsion strengthU /t . From Fig. 2.2 (a) one concludes that correlation
e�ects are rather negligible for low electron densities (N /Na . 0.3), since the elec-
trons can e�ectively avoid each other without much impact on their kinetic energy.
Correlations in the electronic ground state become more noticeable as the electron
density increases, and reach the maximum in the case of a half-�lled band N /Na = 1.
The ground-state energy is thus most a�ected by changes in the Coulomb-repulsion
strength U /t if the band is half �lled, where it varies from E0 = −4tNa/π in the non-
interacting case U /t = 0 to E0 = 0 in the strongly interacting limit U /t → ∞. In the
strongly interacting limit the electrons can reduce their kinetic energy only by hop-
ping processes which involve vacant lattice sites and consequently, the ground-state
energy is minimal if the number of vacant sites equals the number of electrons, i. e.,
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Figure 2.2: Ground-state properties of the in�nite one-dimensional Hubbard chain as func-
tions of the electron density N /Na , obtained by solving Shiba’s integral equations (2.28)
and (2.33). In (a) the ground-state energy E0 is shown for a number of representative val-
ues of the Coulomb-repulsion strengthU /t , and the corresponding average number of double
occupations D is displayed in sub�gure (b).

for N /Na = 1/2. This is in sharp contrast to the noninteracting case U /t = 0, where
the electrons �ll the band from the bottom such that the minimal value of the ground-
state energy is attained at half band-�lling N /Na = 1. The position of the minimum
in the ground-state energy E0 shifts continuously with increasing U /t , starting from
the noninteracting limit where the minimum is attained at N /Na = 1, to the strongly-
interacting limit where the minimum in E0 occurs at N /Na = 1/2. Furthermore, the
electrons tend to reduce the average number of double occupations D at the expense
of a kinetic-energy gain asU /t increases, and consequently one observes in Fig. 2.2 (b)
a gradual suppression ofD with increasing values ofU /t , starting fromD = N 2/(4Na)
in the noninteracting case to D = 0 in the strongly correlated limit.

2.3 Symmetries and related models
The Hubbard model has many symmetries, some of them are general while others,
such as the particle-hole symmetry, depend on the topology described by the hopping
integrals tij . In the following we will focus on the symmetries that are most relevant
for the remainder of this thesis. These are the particle-number conservation, the in-
variance with respect to rotations in spin space, as well as the particle-hole symmetry.
An excellent overview of all symmetries of the Hubbard model can be found in the
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2 The Hubbard model

book of Essler et al. [98]. Furthermore, we will consider the strongly interacting limit
of the Hubbard model and demonstrate that the low-lying excitations in this limit
are described by the t-J model, which reduces to the well known antiferromagnetic
(AFM) Heisenberg model in the case of a half-�lled band.

2.3.1 Selected symmetries of the Hubbard model
The fact, that the Hamiltonian of the Hubbard model (2.7) commutes with the number
operator N̂σ =

∑
i ĉ
†
iσ ĉiσ for electrons with spin polarization σ is obvious, since each

term in Ĥ contains as many creation operators ĉ†iσ as annihilation operators ĉjσ . Con-
sequently, the numberNσ of electrons with spin polarizationσ is a conserved quantity
in the Hubbard model. It follows that the total number of electrons N = N↑ + N↓ and
the z-component of the spin Sz = (N↑ − N↓)/2 are conserved quantities as well. In
order to demonstrate that Ĥ also commutes with the spin components Ŝx and Ŝy , one
considers the ladder operators

Ŝ+ = Ŝx + i Ŝy =
∑
i

ĉ†
i↑ ĉi↓ and Ŝ− = Ŝx − i Ŝy =

∑
i

ĉ†
i↓ ĉi↑ . (2.37)

Using the fundamental fermionic anticommutator relations {ĉα , ĉβ } = 0 and {ĉα , ĉ†β } =
δαβ , it is straight forward to verify that both terms of the Hubbard-model Hamilto-
nian (2.7), i. e., the kinetic energy K̂ and the local Coulomb repulsion Ŵ , individually
commute with the operators Ŝ±. Consequently, both terms commute with all three
components of the spin Ŝx = (Ŝ+ + Ŝ−)/2, Ŝy = −i (Ŝ+ − Ŝ−)/2, and Ŝz , which means
that they are invariant with respect to arbitrary rotations in spin-space.

In order to introduce the particle-hole symmetry, let us consider the Hubbard model
on a bipartite lattice, i. e., a lattice T that can be divided into two sublattices TA and TB
with T = TA∪TB such that there is no hopping within the two sublattices, i. e., tij = 0
if i, j ∈ TA or i, j ∈ TB . In this case, the unitary transformation which maps ĉ†iσ → ±ĉiσ ,
where the positive sign applies if i ∈ TA and the negative if i ∈ TB , transforms the
Hamiltonian of the Hubbard model (2.7) into

Ĥh = −
∑
ijσ

tij ĉiσ ĉ
†
jσ+U

∑
i

ĉi↑ĉ
†
i↑ĉi↓ĉ

†
i↓ =

∑
ijσ

t∗ij ĉ
†
iσ ĉjσ+U

∑
i

n̂i↑n̂i↓+U (Na−N̂ ) . (2.38)

Therefore, if the hopping matrix t is real, i. e., tij ∈ R for all i, j, the Hamiltonian Ĥh
di�ers from (2.7) only by the term U (Na − N̂ ), which is an irrelevant constant if one
works in a basis with a �xed number of particles. Since the transformation under
consideration maps electrons into holes and vice versa, it follows that one can infer
the N -electron spectrum and eigenstates of the Hubbard model on a bipartite lattice
from the corresponding problem with 2Na − N electrons. This means, for a bipartite
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2.3 Symmetries and related models

lattice it is su�cient to analyze the case N ≤ Na , since the solution of the more than
half-�lled band N > Na can be derived from it.

Let us now restrict the electron-hole transformation to the down spins, i. e., let us
consider the transformation which maps ĉ†

i↓ → ±ĉi↓, where, again, the positive sign
applies if i ∈ TA and the negative if i ∈ TB . This transformation maps the Hubbard-
model Hamiltonian (2.7) into

Ĥa =
∑
ij

tij
(
ĉ†
i↑ĉj↑ − ĉi↓ĉ

†
j↓
)
+U

∑
i

ĉ†
i↑ĉi↑ĉi↓ĉ

†
i↓ =

=
∑
ij

tij ĉ
†
i↑ĉj↑ +

∑
ij

t∗ij ĉ
†
i↓ĉj↓ −U

∑
i

n̂i↑n̂i↓ +U N̂↑ .
(2.39)

If the hopping matrix t is real, the transformed Hamiltonian (2.39) di�ers from the
Hubbard-model Hamiltonian (2.7) by the sign of the Coulomb integral U and the
termU N̂↑, which only contributes an irrelevant constant if one works in a basis with
a �xed number of up spins. This means, the electron-hole transformation of the down
spins e�ectively maps the Hubbard model with repulsive Coulomb interaction onto a
corresponding model with attractive interaction. Therefore, on a bipartite lattice one
can obtain the solution of the attractive Hubbard model with coupling constantU < 0
and N↓ down spins from the corresponding solution of the repulsive Hubbard model
with U > 0 and Na − N↓ down spins.

2.3.2 Related models of strongly interacting electrons

In Section 2.1 we have already analyzed the noninteracting limit U = 0, where the
Hubbard model reduces to a simple tight-binding Hamiltonian. Furthermore, we have
reviewed the atomic limit tij = 0 for all i, j, where all states with minimal number of
double occupations are ground states, such that the corresponding ground-state en-
ergy is highly degenerate. Let us now consider the limit of strong Coulomb interac-
tions, where the hopping integrals are non-vanishing but several orders of magnitude
smaller than the Coulomb-repulsion strength, i. e., U � |tij | for all i, j. In this case,
the large ground-state degeneracy encountered in the atomic limit is lifted by the
kinetic-energy term K̂ , which can be treated like a small perturbation to the interac-
tion energy Ŵ . The ground state is then obtained by diagonalizing K̂ in the lower
Hubbard subband D0, which is the subspace formed by all states having minimal
double occupations, i. e., D = 0 if N ≤ Na and D = N − Na else. In the following we
will derive an e�ective Hamiltonian which describes the low-lying excitations of the
strongly correlated Hubbard model, i. e., the excitations within the low-energy sub-
space D0. To this aim, let us split the kinetic-energy term K̂ de�ned in Eq. (2.7) into

19



2 The Hubbard model

the following projected hopping operators

K̂0 =
∑
ijσ

tij
[ (
1 − n̂i,−σ

)
ĉ†iσ ĉjσ

(
1 − n̂j,−σ

)
+ n̂i,−σ ĉ†iσ ĉjσ n̂j,−σ

]
, (2.40)

K̂+ =
∑
ijσ

tij n̂i,−σ ĉ†iσ ĉjσ
(
1 − n̂j,−σ

)
, (2.41)

K̂− =
∑
ijσ

tij
(
1 − n̂i,−σ

)
ĉ†iσ ĉjσ n̂j,−σ . (2.42)

It is easy to verify that K̂ = K̂0 + K̂+ + K̂−. The �rst term K̂0 neither creates nor
annihilates double occupations, but represents the hopping of double occupations and
vacancies across the lattice. Consequently, the term K̂0 does not lead out of the lower
subband D0. In contrast to K̂0, the operators K̂± lead to transitions between the low-
energy and the high-energy subspaces by creating or annihilating double occupations.
However, higher order hopping processes, such as K̂−K̂+, generate and subsequently
eliminate double occupations, and thus do not lead out of D0. These intermediate
double occupations are called virtual and they are generated by hopping processes of
second or higher order in the operators K̂±. In order to �nd an e�ective Hamiltonian
which describes the action of the Hubbard model (2.7) in the subspace D0, we follow
the work of Schrie�er and Wol� [99] and seek for a unitary transformation

Ĥe� = eiŜ Ĥ e−iŜ = Ĥ + i [Ŝ, Ĥ ] − 1
2 [Ŝ, [Ŝ, Ĥ ]] + · · · (2.43)

which eliminates all terms in Ĥ that give rise to transitions between the lower and
upper Hubbard subbands. It turns out that this goal cannot be achieved in a �nite
number of steps, since, for example, all terms that are of odd order in the opera-
tors K̂± lead to transitions between the Hubbard subbands. Therefore, we will restrict
ourselves to the elimination of the leading term K̂1 = K̂+ + K̂− in the Hamiltonian Ĥ
which, regarding Eq. (2.43), can be achieved by choosing the generator Ŝ such that

i [Ŵ , Ŝ] = K̂1 . (2.44)

Since the operator K̂+ (K̂−) increases (decreases) the number of doubly occupied sites
by one, it holds

[Ŵ , K̂±] = U
(
D̂K̂± − K̂±D̂

)
= ±U K̂± , (2.45)

and consequently one has
[Ŵ , K̂+ − K̂−] = U K̂1 , (2.46)

such that by comparison with Eq. (2.44) one �nds

Ŝ = − i
U

(
K̂+ − K̂−

)
. (2.47)
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This means that Ŝ is of the order t/U � 1 where t = maxij |tij |. Using i [Ŝ, K̂1] =
2 [K̂+, K̂−]/U , one obtains by substituting Eq. (2.47) into Eq. (2.43)

Ĥe� = K̂0 + Ŵ + i [Ŝ, K̂0] + 1
U
[K̂+, K̂−] + O

(
t3/U 2) . (2.48)

Let us now focus on the case n = N /Na ≤ 1, where the lower Hubbard subbandD0 is
formed by the states without doubly occupied sites. Consequently, there is no contri-
bution from Ŵ in the e�ective Hamiltonian (2.48) in this case. Furthermore, the term
in K̂0 which accounts for the hopping of double occupations does not contribute, such
that within D0 one has

K̂0 =
∑
ijσ

tij
(
1 − n̂i,−σ

)
ĉ†iσ ĉjσ

(
1 − n̂j,−σ

)
. (2.49)

Let us now consider the commutator [K̂+, K̂−]. If K̂ (ij)+ and K̂ (kl)− denote the terms
in Eqs. (2.41) and (2.42) which account for the site pairs (ij) and (kl), it is clear
that [K̂ (ij)+ , K̂ (kl)− ] = 0 if both pairs are disjoint. Therefore, only terms involving two
or three sites contribute to [K̂+, K̂−]. The same is true for the commutator [Ŝ, K̂0]. It
is easy to see that only three-site terms contribute to [Ŝ, K̂0] and, furthermore, one
can show (see for example [100, Chapter 5]) that the two-site terms of the opera-
tor [K̂+, K̂−]/U can be expressed as

Ĥspin =
∑
ij

Jij

(
σ̂i · σ̂j −

n̂i n̂j

4

)
with Jij =

2t2ij
U
, (2.50)

where σ̂i = Ŝi/~with the local spin operator Ŝi , and n̂i = n̂i↑+ n̂i↓ is the local electron-
number operator. Consequently, if we neglect all three-site contributions, the e�ective
Hamiltonian (2.48) reduces to the so-called t-J model

Ĥt J =
∑
ijσ

tij
(
1 − n̂i,−σ

)
ĉ†iσ ĉjσ

(
1 − n̂j,−σ

)
+

∑
ij

Jij

(
σ̂i · σ̂j −

n̂i n̂j

4

)
. (2.51)

It is often argued that the omission of the three-site contributions is well justi�ed close
to half band-�lling, however, a complete treatment of the e�ective Hamiltonian (2.48),
including three-site terms up to order t2/U , is desirable in many situations and can
be found, for example, in the excellent book of Fazekas [100]. The �rst term in the
t-J model (2.51) represents the correlated motion of the electrons through the lattice,
which avoids the creation of double occupations altogether. The second term de-
scribes an AFM interaction between the spins (Jij = 2t2ij/U > 0), which is reduced by
a density-density interaction. At exactly half band-�lling (n = 1) the electrons can not
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move without creating doubly occupied sites, such that in this case the t-J model (2.51)
reduces to the well-known AFM Heisenberg model

ĤH =
∑
ij

Jij σ̂i · σ̂j . (2.52)

Here we have omitted the density-density interaction term n̂i n̂j which appears in
Eq. (2.50), since at half band-�lling it only contributes an irrelevant constant due to
the fact that the electrons can not move such that 〈n̂i n̂j〉 = 〈n̂i〉〈n̂j〉 = 1 for all i, j.

2.4 Mean-field approximation
The mean-�eld approximation reduces the Hamiltonian of an interacting many-
electron system to an e�ective single-particle Hamiltonian by neglecting electronic
correlations. Clearly, the negligence of electronic correlations rules out the accurate
description of many interesting e�ects observed in many-electron systems, but never-
theless, the mean-�eld approximation is often useful in order to gain a rough insight
into the basic physical properties of a given many-body system. In order to introduce
the mean-�eld approximation for the Hubbard model (2.8), let us notice that

n̂i↑n̂i↓ = ∆n̂i↑ ∆n̂i↓ + n̂i↑〈n̂i↓〉 + n̂i↓〈n̂i↑〉 − 〈n̂i↑〉〈n̂i↓〉 , (2.53)

where we have introduced the density �uctuation ∆n̂iσ = n̂iσ − 〈n̂iσ 〉. The mean-
�eld approximation is obtained by neglecting the product ∆n̂i↑∆n̂i↓ of the density
�uctuations, such that the Hubbard-model Hamiltonian (2.8) becomes equivalent to

ĤMF = −t
∑
〈i,j〉σ

ĉ†iσ ĉjσ +
U

2
∑
iσ

n̂iσ 〈n̂i,−σ 〉 . (2.54)

If one assumes that the charge distribution is homogeneous, i. e., 〈n̂iσ 〉 = nσ ∀i , it is
straight forward to express the Hamiltonian (2.54) in terms of the Bloch states (2.13)

ĤMF =
∑
kσ

(
εk +

Un−σ
2

)
n̂kσ , (2.55)

where εk are the single-particle energies (2.15). This mean-�eld Hamiltonian is also re-
ferred to as Stoner model, and it describes noninteracting fermions in a band-structure
which is shifted for the up and down spins by ∆ε = U |n↑−n↓ |/2 > 0 if the underlying
state is ferromagnetic (FM), i. e., if n↑ , n↓. In the following we would like to investi-
gate if this splitting of the spin-dependent subbands is energetically favorable, and in
this way determine the stability of the FM phase versus the paramagnetic (PM) phase.
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To this aim, let us �rst notice that the ground-state energy of the Hamiltonian (2.55)
is given by

EMF
Na
=

∑
σ

∫ µσ

−∞
ε ρ(ε) dε +U n↑n↓ , (2.56)

where we have introduced the tight-binding density of states (DOS)

ρ(ε) = 1
Na

∑
k∈BZ

δ (ε − εk) , (2.57)

and the chemical potential µσ for electrons with spin polarization σ is determined by
the condition ∫ µσ

−∞
ρ(ε) dε = nσ . (2.58)

Clearly, in the PM phase one has n↑ = n↓ = n/2 and consequently µ↑ = µ↓ = µ, such
that the corresponding ground-state energy is given by

EPM
Na
= 2

∫ µ

−∞
ε ρ(ε) dε + Un2

4 . (2.59)

Let us now consider a slightly ferromagnetic con�guration, i. e., nσ = n/2+σ δn with
|δn | � n. If one assumes that the DOS is approximately constant in a small region
around the Fermi energy εF = µ, one can approximate Eq. (2.58) as

nσ =
n

2 + σ δn =
∫ µ

−∞
ρ(ε) dε +

∫ µσ

µ
ρ(ε) dε ≈ n

2 + ρ(µ)δµσ (2.60)

⇒ δµσ = µσ − µ = σ δn

ρ(µ) . (2.61)

Similarly, one obtains∫ µσ

−∞
ε ρ(ε) dε ≈

∫ µ

−∞
ε ρ(ε) dε + ρ(µ)

(
µ δµσ +

δµ2σ
2

)
, (2.62)

such that with Eq. (2.61) and n↑n↓ = n2/4− δn2 the energy (2.56) of the FM con�gura-
tion is given by

EFM
Na
=

EPM
Na
+ δn2

(
1

ρ(µ) −U
)
. (2.63)

This means that the FM con�guration is more stable if

Uρ(µ) > 1 . (2.64)
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2 The Hubbard model

This is the well-known Stoner criterion, which states that ferromagnetism should be
favorable for strong Coulomb interactions as well as for large values of the DOS at
the Fermi level. The corresponding equality Uρ(µ) = 1 marks the boundary where,
according to the present mean-�eld approximation, a transition between the PM and
the FM phase is expected. As an example we have indicated the Stoner transition for
the one-dimensional chain and the two-dimensional square lattice in Fig. 2.3.

In Section 2.3.2 we have seen, that the low-lying excitations in the half-�lled Hub-
bard model are described by the AFM Heisenberg model if strong Coulomb inter-
actions are considered. Consequently, we expect that AFM con�gurations play an
important role especially in the region around n = 1. In order to adapt our present
mean-�eld approximation for the Hubbard model such that AFM con�gurations can
be taken into account, we divide the given lattice into unit cells containing two sites.
Thus, in the following we denote by Ri the lattice vector which belongs to a given
(two-site) unit cell, and the individual sites within this unit cell are indicated by the
index α = 1, 2. Using this notation the Hubbard-model Hamiltonian (2.8) is written as

Ĥ = K̂ + Ŵ =
∑

ijαα ′σ
tαα

′
ij ĉ†iασ ĉjα ′σ +U

∑
iα

n̂iα↑n̂iα↓ , (2.65)

where the operator ĉ†iασ (ĉiασ ) creates (annihilates) an electron with spin polarizationσ
in the Wannier orbital localized at the site α in the unit cell Ri . For the hopping
integrals we have tαα ′ij = −t if the site α in the unit cell Ri and the site α ′ in the unit
cell Rj are NNs, and tαα

′
ij = 0 otherwise. In analogy to Eq. (2.13) we introduce the

Fourier transform of the localized Wannier states

ĉ†
kασ
=

1√
Nc

Nc∑
i=1

eik ·Ri ĉ†iασ , (2.66)

where Nc = Na/2 denotes the number of two-site unit cells and the vectors k belong
to the BZ of the given lattice structure. It is straight forward to verify that the kinetic-
energy operator K̂ , expressed in terms of the creation operators (2.66), assumes the
form

K̂ =
∑

kαα ′σ
εαα

′
k ĉ†

kασ
ĉkα ′σ with εαα

′
k =

Nc∑
i=1

tαα
′(Ri) e−ik ·Ri . (2.67)

Here we made use of the translational symmetry of the underlying lattice, such that
the hopping integrals tαα ′ij = tαα

′(Rl ) depend only on the lattice vector Rl = Ri − Rj

connecting the unit cells at Ri and Rj . Let us now apply the mean-�eld approximation

n̂iα↑n̂iα↓ ≈ n̂iα↑〈n̂iα↓〉 + n̂iα↓〈n̂iα↑〉 − 〈n̂iα↑〉〈n̂iα↓〉 (2.68)

to the Hubbard-model Hamiltonian (2.65). If we use the result (2.67) and assume
that the charge distribution is the same within each of the two-site unit cells, i. e.,
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2.4 Mean-�eld approximation

〈n̂iασ 〉 = nασ ∀i , we readily obtain the mean-�eld approximation for the Hubbard-
model Hamiltonian (2.65) as

ĤMF =
∑

kαα ′σ
hαα

′
kσ ĉ†

kασ
ĉkα ′σ with hαα

′
kσ = ε

αα ′
k + δαα ′

Unα ,−σ
2 . (2.69)

The mean-�eld Hamiltonian ĤMF is already diagonal inkσ , and in order to diagonalize
it with respect to α ,α ′ one seeks for the solutions of the eigenvalue equation

Hσ (k)vsσ (k) = εsσ (k)vsσ (k) , (2.70)

where Hσ (k) is the 2×2 matrix formed by hαα
′

kσ
with α ,α ′ ∈ {1, 2}. Introducing the

states
b̂†
ksσ
=

∑
α

vsασ (k) ĉ†kασ , (2.71)

we readily obtain

ĤMF =
∑
ksσ

εsσ (k) n̂ksσ with n̂ksσ = b̂
†
ksσ

b̂ksσ . (2.72)

The single-particle eigenvalues εsσ (k) of the mean-�eld Hamiltonian ĤMF form the
two energy bands s = 1, 2 that are expected for a lattice having two orbitals per unit
cell, however, due to the mean-�eld interaction both bands split into subbands for up-
and down spins. Just like in the case of the Stoner model, this spin-dependent splitting
of the energy bands is controlled by the Coulomb-repulsion strengthU and the charge
distribution, which is characterized by the spin-dependent electron density nασ at the
sites α = 1, 2.

In the following we would like to investigate the equilibrium properties of the
mean-�eld Hamiltonian (2.72). To this aim we work in a grand-canonical ensemble
at a given temperatureT . Since ĤMF describes an e�ective noninteracting system, we
have in equilibrium

〈n̂ksσ 〉 = Tr{ρ̂ n̂ksσ } = f
(
εsσ (k)

)
, (2.73)

where ρ̂ is the grand-canonical density matrix and

f (ε) = 1
1 + eβ(ε−µ)

with β =
1

kBT
(2.74)

the well-known Fermi-Dirac distribution. The chemical potential µ is determined by
the electron density n = N /Na , i. e., from the condition

n =
1
Na

∑
ksσ

f
(
εsσ (k)

)
. (2.75)
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2 The Hubbard model

Furthermore, it is straight forward to verify that the number of spin-σ electrons at
the site α within each of the unit cells is given by

nασ =
1
Nc

∑
k∈BZ
〈ĉ†
kασ

ĉkασ 〉 =
1
Nc

∑
ks

|vsασ (k)|2 f
(
εsσ (k)

)
. (2.76)

Notice, however, that the vectors vsσ (k) depend on nασ themselves [see Eqs. (2.69)
and (2.70)], such that these equations must be solved in a selfconsistent manner:

1. Start from some initial guess n(0)ασ for the number of spin-σ electrons at the site α
within each unit cell. In particular choose

a) n(0)ασ = n/2 for all α ,σ in order to start from a PM con�guration,

b) n(0)
α↑ = n/2 + δn and n(0)

α↓ = n/2 − δn for α = 1, 2 with |δn | > 0 in order to
start from a FM con�guration,

c) n(0)1↑ = n(0)2↓ = n/2 + δn and n1↓ = n2↑ = n/2 − δn with |δn | > 0 in order to
start from an AFM con�guration.

2. Solve the eigenvalue equation (2.70) in order to obtain the band structure εsσ (k)
and the eigenvectorsvsσ (k).

3. Determine the chemical potential µ by means of Eq. (2.75) and, subsequently,
obtain new values for nασ from Eq. (2.76).

4. Exit if convergence is achieved, i. e., nασ = n(0)ασ ∀ασ . Otherwise, return to step 2
after having updated n(0)ασ with nασ .

In order to determine the phase which corresponds to the equilibrium, one solves the
selfconsistent procedure for all three phases and computes the corresponding free
energy F = E −TS , with the energy

E =
∑
ksσ

εsσ (k) f
(
εsσ (k)

)
(2.77)

and the entropy

S = −kB
∑
ksσ

{
f
(
εsσ (k)

)
log

[
f
(
εsσ (k)

) ]
+

[
1 − f

(
εsσ (k)

) ]
log

[
1 − f

(
εsσ (k)

) ] }
. (2.78)

The phase which corresponds to the equilibrium is then identi�ed as the one hav-
ing the lowest free energy F . Notice, however, that solutions within the FM and
AFM phases are not guaranteed, i. e., the selfconsistent iteration, starting from an
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Figure 2.3: Ground-state phase diagram of the Hubbard model, obtained from the mean-�eld
approximation. Sub�gure (a) shows the phase diagram for the 1D chain as function of the
band-�lling n and the Coulomb-repulsion strength U /t . Sub�gure (b) shows similar results
for the 2D square lattice. In both sub�gures the PM–FM transition predicted by the Stoner
criterion (2.64) is indicated by a white dashed line.

(anti)ferromagnetic con�guration having |δn | > 0 might lead to a PM solution with
δn = 0.

Using the thus described selfconsistent procedure for the solution of the mean-
�eld equations, we have determined the ground-state phase diagram of the Hubbard
model on the in�nite chain as well as on the two-dimensional square lattice. In our
results presented in Fig. 2.3 one notices an apparent symmetry around half-band �ll-
ing (n = 1), which is a simple consequence of the particle-hole symmetry in the bipar-
tite Hubbard model, as already discussed in Section 2.3.1. Furthermore, one observes
the general trend that paramagnetism dominates in the weakly interacting regime,
while ferromagnetism or antiferromagnetism dominates for strong Coulomb interac-
tions. This can be readily understood by noting that the subbands εsσ (k) do not split
if a noninteracting system (U = 0) is concerned, such that the most stable con�gura-
tion must be PM in this case. In the other extreme where the Coulomb repulsion is
strong, the subband-splitting is very pronounced, and the most stable con�guration
is achieved if the low-lying subbands are �lled �st, which results in a FM or AFM
con�guration. Comparing Figs. 2.3 (a) and (b) one concludes that the mean-�eld ap-
proximation predicts a greatly enhanced stability of the FM phase in 1D for small
and large values of the band-�lling n. This can be easily understood by the Stoner
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2 The Hubbard model

criterion (2.64), since the DOS in 1D is signi�cantly larger at the band edges than
its equivalent in 2D. In contrast to the FM phase, we �nd a stability region of the
AFM con�guration which is qualitatively very similar for the 1D and 2D lattices. As
expected, an AFM con�guration is most stable in the region around half band-�lling,
where the antiparallel alignment of the spins is crucial in order to reduce the kinetic
energy by hopping processes.
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Density functional theory on a la�ice 3
The quantum many-body problem has always been one of the most important and
challenging problems in condensed-matter physics. One of the major breakthroughs
in this area is the development of Hohenberg-Kohn-Sham’s density functional theory
(DFT), in which the many-particle wave function |Ψ〉 is replaced by the many-particle
density n(r ) as the central variable [2, 3]. For readers not familiar with conventional
DFT in the continuum we present a concise overview in Appendix A, which accounts
for the ground-state formalism as well as to the equilibrium at �nite temperatures.
Although DFT is an exact theory for many-body systems, practical applications must
resort to approximations for the unknown exchange-correlation functional Exc[n(r )].
While the available approximations have been very successful in a wide range of
applications, there are many situations where the current DFT approaches lead to
qualitatively wrong results. This applies in particular to strong electron-correlation
phenomena, including the physics of heavy-fermion materials [35], high-temperature
superconductivity [36, 37], and Mott-insulators [38–40]. Strongly-correlated electron
systems are usually best described in the framework of lattice Hamiltonians, in which
the electronic dynamics is simpli�ed by focusing on the most relevant contributions
which dominate the low-energy or low-temperature physics. Taking into account the
remarkable success of DFT to handle the �rst-principles problem in the continuum,
it is reasonable to expect that a suitable extension of the fundamental concepts of
DFT to many-body lattice models could provide an alternative, potentially most ef-
fective new perspective to the physics of strongly-correlated electrons on a lattice. It
is therefore the purpose of this chapter to develop a DFT formalism which applies to
strongly-interacting electron systems described by lattice and minimal-basis Hamil-
tonians.

The main di�erences between lattice models and the �rst-principles treatment
of interacting-electron systems are that lattice-model Hamiltonians are described in
terms of a discrete and drastically reduced set of single-particle basis statesϕiσ (r ), and
that the Coulomb-interactions as well as the hybridizations are simpli�ed. Neverthe-
less, the formulation of lattice density functional theory (LDFT) is in many aspects
similar to the conventional DFT in the continuum, however, some signi�cant di�er-
ences between both formulations exist. Most notably, the particle density n(r ), which
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3 Density functional theory on a lattice

is the fundamental variable in the formulation of conventional DFT, is replaced by the
single-particle density matrix (SPDM) γ in the framework of LDFT.

The remainder of this chapter is organized as follows. In Section 3.1 we present a
formulation of LDFT which applies to the ground state of lattice-model Hamiltonians.
After having established in Section 3.1.1 a unique connection between the hopping
matrix t , which characterizes the system under study, and the ground-state single-
particle density matrix (gs-SPDM) γ , we will employ a constrained-search method in
Section 3.1.2 which leads to an interaction-energy functional from which the gs-SPDM
and, in turn, all ground-state observables can be obtained in principle. In the follow-
ing Section 3.1.3 we will demonstrate that the gs-SPDM of a given interacting system
can be obtained from the solution of e�ective single-particle equations. In contrast
to the Kohn and Sham (KS) scheme discussed in Appendix A.1.3, we will consider
an auxiliary noninteracting system at a �ctitious �nite temperatureTa > 0 and chose
its parameters such that the corresponding equilibrium single-particle density matrix
(eq-SPDM) γ equals the one in the ground state of the given interacting system. Sec-
tion 3.2 is devoted to the development of a DFT for lattice models in equilibrium at
a �nite temperature. We will formulate the theoretical foundations in two di�erent
�avours: Section 3.2.1 accounts for a grand-canonical ensemble formalism, where the
system is open with respect to exchange of energy and particles with the environment,
while Section 3.2.2 applies to a canonical ensemble, where the system only exchanges
energy with the environment. Within both formulations of �nite-temperature lattice
density functional theory (FT-LDFT) we will establish a unique connection between
the hopping matrix t and the eq-SPDMγ , and we will derive a functional from which
the eq-SPDM and thus the equilibrium values of arbitrary observables can be obtained
in principle. Furthermore, we will demonstrate that a given interacting system can
be mapped to an auxiliary noninteracting system which yields the same eq-SPDM.
In this way, the solution of the �nite-temperature problem for a given lattice model
of interacting Fermions can be obtained from the selfconsistent solution of e�ective
single-particle equations.

3.1 Ground-state formalism
In order to formulate the basic principles of ground-state LDFT, we consider N inter-
acting particles described by the general Hamiltonian

Ĥ = K̂ + Ŵ =
∑
ijσ

tijσ ĉ
†
iσ ĉjσ +

1
2
∑
ijkl
σσ ′

W σσ ′
ijkl ĉ

†
iσ ĉ
†
jσ ′ĉlσ ′ĉkσ , (3.1)

where ĉ†iσ (ĉiσ ) creates (annihilates) a particle with spin polarization σ in the single-
particle basis state ϕiσ (r ). The parameters tijσ are single-particle matrix elements,
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3.1 Ground-state formalism

where the diagonal terms εiσ = tiiσ refer to the (spin-dependent) energy levels, and
the o�-diagonal terms tijσ , i , j are the hopping integrals. Furthermore, the parame-
tersW σσ ′

ijkl
specify the interaction between the particles. In order to make a connection

between the Hamiltonians (A.1) and (3.1), we consider in Eq. (A.1) a spin-dependent
external potentialvσ (r ) and a spin-dependent interactionwσσ ′(r ,r ′) between the par-
ticles. If we expand the fermionic �eld

ψ̂ †σ (r ) =
∑
i

ϕ∗iσ (r ) ĉ†iσ (3.2)

in terms of the single-particle states ϕiσ (r ), it is easy to verify that the single-particle
matrix elements in Eq. (3.1) are given by

tijσ =

∫
ϕ∗iσ (r )

[
− ~

2

2m∇
2 +vσ (r )

]
ϕjσ (r ) dr , (3.3)

and the interaction integrals are given by

W σσ ′
ijkl =

∫
ϕ∗iσ (r )ϕ∗jσ ′(r ′)wσσ ′(r ,r ′)ϕlσ ′(r ′)ϕkσ (r ) dr dr ′ . (3.4)

Clearly, only the single-particle matrix elements tijσ are associated with the external
potentialvσ (r )which, in the spirit of DFT, de�nes the system under study. The inter-
action integrals (3.4) are speci�ed by the type of interaction wσσ ′(r ,r ′) between the
particles and the choice of the single-particle basis {ϕiσ (r )}. Therefore, if we focus on
a given type of particles and keep the single-particle basis �xed, we can regard the sys-
tem described by the Hamiltonian (3.1) as uniquely characterized by the single-particle
matrix elements tijσ . This is also clear from the lattice-model perspective, since the
hopping integrals and energy levels are the single-particle parameters which de�ne
the lattice structure and the range of hybridizations.

Using Eq. (3.2) we can express the electron-density operator as

n̂(r ) =
∑
σ

ψ̂ †σ (r )ψ̂σ (r ) =
∑
ijσ

ϕ∗iσ (r )ϕjσ (r ) ĉ†iσ ĉjσ . (3.5)

Consequently, the electron density in an arbitrary many-particle state |Ψ〉 is given by

n(r ) = 〈Ψ|n̂(r )|Ψ〉 =
∑
ijσ

γijσ ϕ
∗
iσ (r )ϕjσ (r ) , (3.6)

where we have introduced the single-particle density matrix (SPDM)

γijσ = 〈Ψ|ĉ†iσ ĉjσ |Ψ〉 (3.7)
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3 Density functional theory on a lattice

which corresponds to the many-particle state |Ψ〉. Therefore, once a set {ϕiσ (r )} of
single-particle basis states is adopted, the particle density n(r ) of any many-particle
state |Ψ〉 is fully determined by the corresponding SPDM γ = {γijσ }. Conversely,
the knowledge of the full SPDM γ , including in particular its o�-diagonal elements,
is necessary in order to express an arbitrary electron density n(r ) in terms of the
single-particle basis states {ϕiσ (r )}. For this reason, the SPDM takes the role of the
fundamental variable in LDFT in the same sense as the particle density n(r ) is the
fundamental variable in conventional DFT.

3.1.1 Connection between the hopping matrix and the SPDM
In the following we consider the type of particle interaction speci�ed by the parame-
tersW σσ ′

ijkl
as �xed, such that the matrix t = {tijσ } of the hopping integrals and energy

levels characterizes the system described by the Hamiltonian (3.1). We have already
identi�ed the SPDM γ as the fundamental variable in LDFT, and we would now like
to formulate a statement with the same fundamental character as the Hohenberg-
Kohn (HK) Theorem A.1 in the formulation of conventional DFT in the continuum.
Thus, we would like to establish a unique connection between the hopping matrix t ,
which characterizes the system, and the SPDM associated to the ground state. Before
we can do so, we need to ascertain under which conditions two hopping matrices t
and t ′ lead to di�erent ground states. In Lemma A.1 we have already shown that ex-
ternal potentials which di�er by more than a constant must lead to di�erent ground
states. It is straight forward to adapt the proof of Lemma A.1 to the case of spin-
dependent potentials and to demonstrate that two potentials vσ (r ) and v′σ (r ) must
lead to di�erent ground states if they di�er by more than a possibly spin-dependent
constant, i. e., if v′σ (r ) , vσ (r ) + cσ with cσ ∈ R.1 From Eq. (3.3) it is clear, that a
spin-dependent shift in the external potential v′σ (r ) = vσ (r )+ cσ does not change the
hopping integrals tijσ , i , j, but leads to a spin-dependent shift ε′iσ = t ′iiσ = εiσ + cσ of
the energy levels. This immediately proves the following

Lemma 3.1. Two hopping matrices t = {tijσ } and t ′ = {t ′ijσ } lead to di�erent ground
states of the Hamiltonian (3.1) if they di�er by more than a spin-dependent shift in the
energy levels, i. e., if t ′ijσ , tijσ + δijcσ with cσ ∈ R.

We are now prepared to formulate a HK-like theorem and to establish a unique con-
nection between the hopping matrix t , which characterizes the system under study,

1Notice, however, that two potentials which di�er by a spin-dependent constant not necessarily lead
to the same ground state. For example, the coupling to an external magnetic-�eld via a Zeeman
term corresponds to a spin-dependent shift in the external potential which leads to a polarized
ground state if the �eld is su�ciently strong.
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3.1 Ground-state formalism

and the corresponding ground-state single-particle density matrix (gs-SPDM). We will
focus on systems having nondegenerate ground states, however, the inclusion of de-
generate ground-states poses no problem, as discussed further below.

Theorem 3.1 (Töws and Pastor [81]). The hopping matrix t of the interacting many-
particle system described by the Hamiltonian (3.1) is (apart from an irrelevant spin-
dependent shift in the energy levels) a functional2 of the gs-SPDM γ .

Proof. The proof is carried out in close analogy to the proof of the HK Theorem A.1.
Assume that the ground state |Ψ0〉 of the Hamiltonian Ĥ with the hopping matrix t
is nondegenerate and that there exists another hopping matrix t ′ which di�ers from t
by more than a spin-dependent shift in the energy levels but, nevertheless, leads to
the same gs-SPDM γ as the hopping matrix t . If Ĥ ′ and |Ψ′0〉 denote the Hamiltonian
and ground state associated with t ′, the corresponding ground-state energy is given
by

E′0 = 〈Ψ′0 |Ĥ ′|Ψ′0〉 =
∑
ijσ

t ′ijσ γijσ + 〈Ψ′0 |Ŵ |Ψ′0〉 . (3.8)

Since the hopping matrices t and t ′ di�er by more than a spin-dependent shift in
the energy levels, the corresponding ground states |Ψ0〉 and |Ψ′0〉 must be di�erent
according to Lemma 3.1. Therefore, from the minimal principle for the ground-state
energy E0 = 〈Ψ0 |Ĥ |Ψ0〉 of the Hamiltonian Ĥ it follows that

E0 < 〈Ψ′0 |Ĥ |Ψ′0〉 =
∑
ijσ

tijσ γijσ + 〈Ψ′0 |Ŵ |Ψ′0〉 = E′0 +
∑
ijσ

(
tijσ − t ′ijσ

)
γijσ . (3.9)

Notice that the strict inequality holds because we assumed that the ground state as-
sociated with t is nondegenerate. By interchanging primed and unprimed quantities
one obtains

E′0 ≤ 〈Ψ0 |Ĥ ′|Ψ0〉 = E0 +
∑
ijσ

(
t ′ijσ − tijσ

)
γijσ , (3.10)

where no strict inequality holds, since the ground state associated with t ′ could be
degenerate. Adding Eqs. (3.9) and (3.10) the contradiction

E0 + E
′
0 < E′0 + E0 (3.11)

is obtained. This proves that two hopping matrices t and t ′ which di�er by more than
a spin-dependent shift in the energy levels cannot lead to the same gs-SPDM γ . One
concludes that t is (apart from a spin-dependent shift in the energy levels) a functional
of γ . �

2Here and in the following we will sometimes use the term “functional” for quantities which are
ordinary functions in the strict mathematical sense. We choose to do so in order to match the
terminology in conventional DFT and to highlight the corresponding similarities.
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Theorem 3.1 states that the hopping matrix t is, apart from a spin-dependent shift in
the energy levels, a functional of the gs-SPDM. A spin-dependent energy shift is, how-
ever, of little physical relevance, since it could be absorbed in a spin-dependent chem-
ical potential and, most importantly, since it does not change the set of eigenstates
of the Hamiltonian. Therefore, we conclude that the physically relevant part of the
Hamiltonian Ĥ , and thus the full set of corresponding eigenstates as well as all phys-
ical properties derived from it, are functionals of the gs-SPDM γ . Notice, however,
that the one-to-one correspondence between the gs-SPDMγ and the hopping matrix t
established by Theorem 3.1 is no longer valid in the presence of ground-state degen-
eracies. Clearly, if the ground state is degenerate the gs-SPDM γ is no longer unique.
Nevertheless, due to the variational principle and the simple fact that all ground states
share the same energy, a one-to-one correspondence between the set {γα } formed by
the SPDMs of all degenerate ground-states and the hopping matrix t can be estab-
lished. Thus, the gs-SPDM of any one of the degenerate ground-states determines the
hopping matrix t up to a spin-dependent energy-level shift. Furthermore, in practical
applications we will resort to a Levy-Lieb (LL) like formulation of LDFT, which will
be formulated in Section 3.1.2 and where degeneracies pose no problem by default.
Returning to the case of a nondegenerate ground-state, where the unique gs-SPDMγ
determines the hopping matrix t up to a spin-dependent energy-level shift and thus
all the eigenstates of the Hamiltonian, we may immediately formulate the important

Corollary 3.1. The ground state |Ψ0〉 of the interacting many-particle system described
by the Hamiltonian (3.1) is a functional of the gs-SPDM γ .

Moreover, the converse statement is also true, i. e., the gs-SPDM γijσ = 〈Ψ0 |ĉ†iσ ĉjσ |Ψ0〉
is a functional of the ground state |Ψ0〉. This establishes a bijective map between the
set Ψ0 containing all nondegenerate ground states and the corresponding set Γ0 of
the gs-SPDMs. Furthermore, from Corollary 3.1 we obtain the important

Corollary 3.2. The ground-state expectation value of any observable Ô is a functional
of the gs-SPDM γ .

Proof. From Corollary 3.1 we know that the ground state |Ψ0〉 = |Ψ0[γ ]〉 is a functional
of the gs-SPDMγ . Therefore, the ground-state expectation value of any observable Ô
can be obtained from the gs-SPDM as

O[γ ] = 〈Ψ0[γ ]|Ô |Ψ0[γ ]〉 . (3.12)

�

In particular, the functional representing the sum of the kinetic and potential energy

K[γ ] = 〈Ψ0[γ ]|K̂ |Ψ0[γ ]〉 =
∑
ijσ

tijσ γijσ (3.13)
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is explicitly known in the framework of LDFT and a simple linear form in γ . In the
following we will, as it is common practice, refer to K̂ as “kinetic energy”, even though
it contains the contribution from the external potentialvσ (r ) [see Eqs. (3.1) and (3.3)].
It is one of the major advantages of LDFT over the conventional formulation of DFT in
the continuum that the functional dependence K[γ ] of the kinetic energy is explicitly
known. From Corollary 3.2 it follows furthermore that the interaction energy

W [γ ] = 〈Ψ0[γ ]|Ŵ |Ψ0[γ ]〉 (3.14)

is a functional of the gs-SPDM γ . The interaction-energy functional (3.14) has a uni-
versal character in the sense that it does not depend on the hopping integrals tijσ ,
which de�ne the system under study, i. e., the dimensionality and structure of the
underlying lattice as well as the range of the hybridizations. The interaction-energy
functional (3.14) depends on the interaction integralsW σσ ′

ijkl
. Furthermore, it depends

on the many-particle Hilbert space under consideration, since the ground state |Ψ0[γ ]〉
is a state within this Hilbert space. Using Eqs. (3.13) and (3.14), the functional corre-
sponding to the ground-state energy is obtained as

E[γ ] =
∑
ijσ

tijσ γijσ +W [γ ] . (3.15)

Clearly, for the actual gs-SPDM γ0 the energy functional E[γ ] assumes its minimum
and equals the ground-state energy E0 associated with the given hopping matrix t .
If the interaction energy functionalW [γ ] were known, the ground-state energy and
SPDM corresponding to arbitrary hopping matrices t could be obtained by minimizing
the energy functional E[γ ]. Therefore, the main challenge in practical applications of
ground-state LDFT is to determine the functional W [γ ]. In the next section we will
see that already the characterization of the domain of de�nition ofW [γ ] poses some
di�culties. We will circumvent these di�culties by introducing a constrained-search
method for the interaction-energy functional, which is similar to the LL procedure
discussed in Appendix A.1.2.

3.1.2 Constrained-search functional for the interaction energy
In the previous section we have seen that the ground-state energy and SPDM can be
obtained by minimizing the energy functional (3.15) with respect to all matricesγ that
can be derived as the gs-SPDM of the N -particle problem described by the Hamil-
tonian (3.1) with some hopping matrix t . We call this class of matrices pure-state
t-representable, in close analogy to the corresponding terminology in conventional
DFT. At �rst, the pure-state t-representability does not seem to pose a major restric-
tion on γ , since all SPDMs of physical interest for the ground-state problem must
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ful�ll this criterion. However, any practical implementation of the variational princi-
ple for the ground-state energy (3.15) must in principle ensure that the minimization
is constrained to the set of pure-state t-representable SPDMs, since otherwise the
interaction-energy functional (3.14) would be ill-de�ned and the result of the min-
imization would be uncontrolled or simply unphysical. This raises the problem of
characterizing pure-state t-representable SPDMs, which has not been solved to date.
Therefore, in order to render the variational principle for the ground-state energy
useful in practice, the domain of de�nition of the functional (3.15) must be extended
to a larger set of SPDMs. To this aim we follow the work of Valone [101, 102] and
consider the set Γe(N ) of ensemble N -representable SPDMs. By de�nition, a SPDM
is said to be ensemble N -representable if it can be associated with some N -particle
mixed-state, i. e., if it can be expressed as

γijσ = TrN
{
ρ̂ ĉ†iσ ĉiσ

}
, (3.16)

where

ρ̂ =
∑
n

pn |Ψn〉〈Ψn | with pn ≥ 0 and TrN {ρ̂} =
∑
n

pn = 1 (3.17)

is the density matrix characterizing the N -particle mixed state. Here, TrN means the
trace in the N -particle Hilbert space and the sums go over the complete set of N -
particle eigenstates |Ψn〉 of the density matrix ρ̂. We will denote by PN the set of all
density matrices of the form (3.17), i. e., the set of all positive semide�nite operators
with unit trace in N -particle Hilbert space. One can show (see for example Ref. [103])
that a matrix γ is ensemble N -representable if, and only if, it is hermitian, i. e., γjiσ =
γ ∗ijσ , and its eigenvalues ηkσ ful�ll the requirements

0 ≤ ηkσ ≤ 1 ∀kσ and
∑
kσ

ηkσ = N . (3.18)

In order to extend the domain of the interaction-energy functional (3.14) to the
set Γe(N ) of ensemble N -representable SPDMs, we adopt the idea of LL (see Ap-
pendix A.1.2) and propose the constrained-search functional

We[γ ] = min
ρ̂→γ

TrN
{
ρ̂ Ŵ

}
. (3.19)

Here the notation ρ̂ → γ indicates the minimization with respect to all density ma-
trices ρ̂ ∈ PN which yield the given SPDM γ via Eq. (3.16). In order to render the
functional (3.19) useful in practice, we have to prove the following statement.

Theorem 3.2. The constrained-search interaction-energy functional (3.19) is a reason-
able extension of the interaction-energy functional (3.14) in the sense that
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(a) it holds
We[γ ] =W [γ ] (3.20)

for all pure-state t-representable SPDMs γ , and

(b) the minimum of the corresponding energy functional

Ee[γ ] =
∑
ijσ

tijσ γijσ +We[γ ] (3.21)

equals the ground-state energy E0 associated with the hopping matrix t and is as-
sumed at, and only at, the unique gs-SPDMγ0 if the ground state is nondegenerate.
In case of ground-state degeneracies, the energy functional (3.21) assumes its min-
imum E0 only for linear combinations of the SPDMs generated by the degenerate
ground-states.

Proof. It is clear that the Rayleigh-Ritz principle (A.20) remains valid if the minimiza-
tion is extended to the set of N -particle mixed-states characterized by density matri-
ces ρ̂ ∈ PN of the form (3.17), since any normalized N -particle state |Ψ〉 is associated
with the density matrix ρ̂ = |Ψ〉〈Ψ|. Thus, it is easy to verify that the minimal value
of the energy functional (3.21) equals the ground-state energy E0 associated with the
hopping matrix t , by performing the minimization in the extended Rayleigh-Ritz prin-
ciple in two consecutive steps:

E0 = min
ρ̂∈PN

TrN
{
ρ̂

(
K̂ + Ŵ

)}
= min

γ∈Γe(N )

{∑
ijσ

tijσ γijσ +min
ρ̂→γ

TrN
{
ρ̂ Ŵ

}}
=

= min
γ∈Γe(N )

{∑
ijσ

tijσ γijσ +We[γ ]
}
= min

γ∈Γe(N )
Ee[γ ] .

(3.22)

If the ground state |Ψ0〉 associated with the hopping matrix t is nondegenerate,
the minimum in Eq. (3.22) is unique and must be assumed for the pure-state den-
sity ρ̂0 = |Ψ0〉〈Ψ0 |. This means, the only SPDM which yields a minimum of the en-
ergy functional (3.21) is the corresponding unique gs-SPDM γijσ = 〈Ψ0 |ĉ†iσ ĉjσ |Ψ0〉.
If the hopping matrix t leads to a degenerate ground-state, only density matri-
ces ρ̂ = ∑

n pn |Ψ(n)0 〉〈Ψ(n)0 | constructed from the degenerate ground states |Ψ(n)0 〉 lead to
minima in Eq. (3.22). In this case, SPDMs of the form γijσ =

∑
n pn〈Ψ(n)0 |ĉ†iσ ĉjσ |Ψ(n)0 〉 =∑

n pn γ
(n)
ijσ , i. e., linear combinations of the SPDMs generated by the degenerate ground

states, are the only ones which lead to minima of the energy functional (3.21). This
concludes the proof of statement (b).

Let us now consider an arbitrary pure-state t-representable SPDM γ , and let t be
the hopping matrix associated with it according to Theorem 3.1. Then, the density
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matrix which yields the minimum in Eq. (3.22) for this hopping matrix t must be
the pure-state density ρ̂0 = |Ψ0[γ ]〉〈Ψ0[γ ]| constructed from the ground state |Ψ0[γ ]〉
associated with γ . Therefore, We[γ ] = TrN {ρ̂0Ŵ } = 〈Ψ0[γ ]|Ŵ |Ψ0[γ ]〉 must hold,
which coincides with Eq. (3.14). This concludes the proof of statement (a). �

The constrained-search formulation (3.19) extends the interaction-energy func-
tional (3.14) to the domain Γe(N ) of ensemble N -representable SPDMs, which are
easy to characterize by the condition (3.18). This opens the way to practical imple-
mentations of the variational principle for the energy functional (3.21), from which
the ground-state energy and gs-SPDM, and in principle all ground-state observables
can be obtained by virtue of Corollary 3.2. The next section addresses the problem
of implementing the variational principle for the ground-state energy in practice. It
will be shown that the interacting many-particle system can be mapped to a sys-
tem of N noninteracting particles with an e�ective hopping matrix ts[γ ] which is a
functional of the SPDMγ itself. In this way, the ground-state problem for N interact-
ing particles can be formally reduced to the selfconsistent solution of single-particle
equations.

3.1.3 Mapping to an e�ective noninteracting system
Similar to the KS method presented in Appendix A.1.3, we would like to map a given
system of N interacting particles to an auxiliary noninteracting system whose gs-
SPDM equals the one of the interacting system. To this aim, let us consider a nonin-
teracting system characterized by a hopping matrix ts , such that the corresponding
energy functional is given by

Es[γ ] =
∑
ijσ

tsijσ γijσ . (3.23)

In order to minimize Es[γ ] within the set Γe(N ) of ensemble N -representable SPDMs,
i. e., within the set of all hermitian matrices γ having the same dimensionality as
the hopping matrix ts and ful�ll the requirements (3.18), we express the spin-resolved
SPDMγσ in terms of its normalized eigenvectorsukσ and its eigenvalues or occupation
numbers ηkσ

γijσ =
∑
k

uikσ ηkσ u
∗
jkσ . (3.24)

Here we have used the fact that γσ is hermitian, such that its eigenvectors ukσ can
be chosen to be mutually orthogonal. Consequently, the matrix constructed from the
normalized eigenvectors is unitary, i. e.,∑

k

u∗ikσ ujkσ = δij . (3.25)
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For the SPDMγ which minimizes Es[γ ], i. e., for the gs-SPDM associated with the non-
interacting system characterized by the hopping matrix ts , the corresponding Euler-
Lagrange functional

Ls = Es[γ ] −
∑
kσ

λkσ

(∑
i

u∗ikσ uikσ − 1
)
− µ

(∑
kσ

ηkσ − N
)

(3.26)

must be stationary. Lagrange multipliers λkσ and µ have been introduced in order to
enforce the normalization of the eigenvectors ukσ and to satisfy the second condition
in Eq. (3.18) which accounts for the number of particles. At a stationary point of Ls

its derivative with respect to u∗
jkσ

must vanish, and by using Eqs. (3.23) and (3.24) we
thus obtain the following eigenvalue equation for the vectors ukσ

ηkσ
∑
i

tsijσuikσ = λkσ ujkσ ∀jkσ . (3.27)

For ηkσ = 0 the SPDM (3.24) is independent of the eigenvector ukσ and therefore it
can be chosen as an arbitrary normalized vector. For ηkσ > 0 we can recast Eq. (3.27)
in the form (

tsσ
)>
ukσ = εkσ ukσ ∀kσ , (3.28)

with the spin-resolved hopping matrix tsσ and εkσ = λkσ/ηkσ . Equation (3.28) demon-
strates that the eigenvectors ukσ of the gs-SPDM associated with the given nonin-
teracting system are common eigenvectors of the corresponding transposed3 spin-
resolved hopping matrix

(
tsσ

)>. The fact that tsσ is hermitian ensures that the eigen-
vectors ukσ of the gs-SPDM can be chosen to be mutually orthogonal.

Having identi�ed the eigenvectors ukσ of the gs-SPDM as the eigenvectors of the
transposed hopping matrix

(
tsσ

)>, it remains to determine the corresponding occupa-
tion numbers ηkσ . To this aim, we combine Eqs. (3.23), (3.24), and (3.28), and obtain
the single-particle energy functional in diagonal form

Es[γ ] =
∑
kσ

εkσ ηkσ . (3.29)

Thus, the occupation numbers 0 ≤ ηkσ ≤ 1 which correspond to the ground state of
the given noninteracting system are immediately identi�ed as

ηkσ = 1 for εkσ < µ

ηkσ = 0 for εkσ > µ

0 ≤ ηkσ ≤ 1 for εkσ = µ ,

(3.30)

3Notice, that the hopping matrix tsσ is hermitian, such that transposition is equivalent to complex
conjugation and therefore this operation can be discarded in the usual case of a real hopping matrix.

39



3 Density functional theory on a lattice

where the chemical potential µ must be chosen such that the condition ∑
kσ ηkσ = N

is satis�ed. If the Fermi level εkσ = µ is nondegenerate and the number Nσ =
∑

k ηkσ
of particles with spin polarization σ is integer, we have ηkσ ∈ {0, 1} for all k and the
corresponding SPDM is thus idempotent, i. e., γ2

σ = γσ . The ground state |Ψ0〉 of the
given noninteracting system is then a single Slater determinant of the form

|Ψ0〉 =
∏
kσ

(
b̂†
kσ

)ηkσ |vac〉 , (3.31)

where
b̂†
kσ
=

∑
i

u∗ikσ ĉ
†
iσ (3.32)

are the creation operators associated to single-particle states which we will refer to as
natural orbitals. Conversely it is clear, that the only kind of many-body state which
can give rise to an idempotent SPDM is a single Slater determinant of the form (3.31).
Notice, however, that the ground state of an interacting system can not be repre-
sented by a single Slater determinant, and that the corresponding gs-SPDM γ is con-
sequently not idempotent. This means γ must always involve fractional occupation
numbers 0 < ηkσ < 1 if it is associated with the ground state of an interacting many-
particle system. Therefore, if we try to map a given interacting system to an auxiliary
noninteracting system which is supposed to yield the same gs-SPDM, we will face the
di�culty that the Fermi level εkσ = µσ of the auxiliary noninteracting system must
be degenerate in order to produce fractional ground-state occupation numbers. This
means that the gs-SPDM of the auxiliary noninteracting system can not be unique,
since variations of the occupation numbers ηkσ at the degenerate Fermi level have
no impact on the energy as long as the number of particles is kept �xed. In order to
resolve these di�culties we will further below propose to map the given interacting
system to an auxiliary noninteracting system in equilibrium at a �ctitious �nite tem-
perature Ta > 0, since the occupation numbers in equilibrium at a �nite temperature
are always fractional.

Before doing so, let us return to the given interacting system and minimize the
energy functional (3.21) with respect to all ensemble N -representable SPDMs γ ∈
Γe(N ). To this aim, we seek for the stationary points of the corresponding Euler-
Lagrange functional

L = Ee[γ ] −
∑
kσ

λkσ

(∑
i

u∗ikσ uikσ − 1
)
− µ

(∑
kσ

ηkσ − N
)
. (3.33)

Again, we have introduced Lagrange multipliers λkσ and µ in order to enforce the
normalization of the eigenvectors ukσ of the SPDM and to obtain the desired particle
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number. At a stationary point, the derivative of L with respect to u∗
jkσ

vanishes, such
that we obtain the following eigenvalue equation for the eigenvectors ukσ

ηkσ
∑
i

(
tijσ +

∂We[γ ]
∂γijσ

)
uikσ = λkσ ujkσ ∀jkσ . (3.34)

This eigenvalue equation is formally identical to the corresponding equation (3.27) for
the noninteracting system if we choose the hopping integrals of the auxiliary system
as

tsijσ [γ ] = tijσ +
∂We[γ ]
∂γijσ

. (3.35)

Therefore, the gs-SPDM γ of the interacting system is also a gs-SPDM of the auxil-
iary noninteracting system with the hopping integrals tsijσ [γ ]. Equations (3.24), (3.28),
(3.30), and (3.35) make up an iterative scheme, by which the gs-SPDM of a given in-
teracting system can be determined from the solution of an e�ective single-particle
problem. These equations must be solved in a selfconsistent manner, since the ef-
fective hopping integrals (3.35) depend on the SPDM γ itself. As already discussed
above, a di�culty arises from the fact that fractional occupation numbers 0 < ηkσ < 1,
which are characteristic for interacting ground states, are obtained only if the auxil-
iary noninteracting system has a degenerate ground state. In this case, the fractional
occupation numbers ηkσ at the Fermi level are not unique and only constrained by
the condition N =

∑
kσ ηkσ . This renders the practical implementation of the iterative

scheme based on the ground state of the auxiliary noninteracting system impractical.
One possibility to resolve the issues arising from the requirement of fractional occu-

pation numbers was proposed by Saubanére, Lepetit, and Pastor [87]. They suggested
to consider an auxiliary noninteracting system at a �ctitious �nite temperatureTa > 0,
such that the corresponding eq-SPDM equals the one in the ground state of the given
interacting system. The advantage of an auxiliary noninteracting system at a �nite
temperature is that the occupation numbers in equilibrium are fractional. In order
to introduce the method of Saubanére et al., let us consider the eigenvectors ukσ of
the SPDM as �xed for the moment, such that the energy (3.21) can be regarded as a
functional of the occupation numbers ηkσ alone, i. e., E = Ee[η]. In order to seek for
an extremum of the energy functional Ee[η] under the constraint of a given particle
number N , we consider the corresponding Euler-Lagrange functional

L = Ee[η] − µ
(∑

kσ

ηkσ − N
)
. (3.36)

At a stationary point of L its variation with respect to all ηkσ vanishes, such that

∂Ee[η]
∂ηkσ

= µ ∀kσ . (3.37)
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Let us now consider an auxiliary noninteracting system with spin-resolved hopping
matrix tsσ which is chosen such that Eq. (3.28) is ful�lled for the given set of eigenvec-
tors ukσ and some set of corresponding eigenvalues εkσ . The energy of this noninter-
acting system is then given by

Es =
∑
kσ

εkσ ηkσ , (3.38)

where ηkσ are the occupation numbers of the natural orbitals associated with the cre-
ation operators (3.32). Working in a grand-canonical ensemble at a temperatureTa > 0
and chemical potential µ, the equilibrium occupation numbers of the noninteracting
system follow a Fermi-Dirac distribution

ηkσ =
1

1 + e(εkσ−µ)/kBTa
. (3.39)

We require that the equilibrium occupation numbers of the auxiliary noninteracting
system coincide with the eigenvalues of the gs-SPDM of the given interacting system,
such that they lead to a stationary point of L. This means, the equilibrium occupa-
tion numbers of the auxiliary noninteracting system must satisfy the conditions (3.37)
and (3.39) together. The energy levels of the auxiliary noninteracting system are there-
fore obtained as

εkσ [η] =
∂Ee[η]
∂ηkσ

+ kBTa log
(
1 − ηkσ
ηkσ

)
. (3.40)

Since these energy levels depend on the occupation numbers ηkσ themselves,
Eqs. (3.39) and (3.40) must be solved in a selfconsistent manner. The full iterative
procedure for the minimization of the energy functional Ee[γ ] can be implemented as
follows:

1. Start from an arbitrary ensemble N -representable SPDM γ , compute its eigen-
values ηkσ and the e�ective hopping integrals (3.35). Solve the eigenvalue equa-
tion (3.28) for the eigenvectors ukσ .

2. Optimize the occupation numbers ηkσ by keeping the current ukσ �xed. To this
aim, select a �xed auxiliary temperature Ta > 0, compute the e�ective energy
levels (3.40) and use them to update ηkσ via Eq. (3.39). Iterate until convergence
is achieved.

3. Compute the new SPDM γijσ =
∑

k uikσηkσu
∗
jkσ

from the current eigenvec-
torsukσ and the optimized occupation numbers ηkσ . Use Eq. (3.35) to determine
new e�ective hopping integrals tsijσ .

4. Solve the eigenvalue equation (3.28) with the updated hopping integrals tsijσ in
order to obtain new eigenvectors u′

kσ
.
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5. Exit if convergence is achieved, i. e., u′
ikσ
= uikσ ∀ikσ . Otherwise, return to

step 2 after having updated ukσ with u′
kσ

.

The rate of convergence in the presented iterative procedure is a�ected by the
choice of the initial SPDM γ and the auxiliary temperature Ta > 0. Practical im-
plementations for model Hamiltonians, such as the Hubbard model, have shown that
a good choice for the initial SPDM γ is obtained from the ground state of the corre-
sponding noninteracting system which is obtained by setting Ŵ = 0. If the noninter-
acting ground state is degenerate, one can freely choose the occupation numbers at
the Fermi level such that the condition ∑

kσ ηkσ = N is satis�ed. Concerning the auxil-
iary temperatureTa , it is clear that extreme values should be avoided. Good values for
the auxiliary temperature are found in the order of the hopping integrals kBTa ' |tijσ |.
Moreover, Ta may be tuned to some extend, depending on the speci�c lattice model
and interaction strength under consideration, in order to further improve the rate of
convergence.

3.2 Finite-temperature ensembles

Having formulated a density functional theory which applies to the ground state of
lattice-model Hamiltonians, we would now like to extend the formalism to the equi-
librium at �nite temperatures. Having a density functional theory which applies to
the physical properties of lattice models in thermodynamic equilibrium at a �nite
temperature is not only desirable from a theoretical point of view, but also crucial for
applications to systems exhibiting strong electronic correlations. A natural way of
describing electron correlation e�ects is to focus on the most relevant many-body
dynamics of the valence electrons, and to derive a simpli�ed lattice Hamiltonian.
The ground-state properties of these lattice-model Hamiltonians can be treated in
the framework of ground-state LDFT presented in the previous section. There are,
however, a myriad phenomena which can not be described within a ground-state for-
malism. For example, phase transitions in magnetic or superconducting materials,
the Kondo e�ect, and metal-insulator transitions. These e�ects manifest themselves
at speci�c temperatures, such as the Curie or Néel ordering temperatures in ferro-
magnets and antiferromagnets, or the Kondo temperature for magnetic impurities in
metals. Consequently, extending the scope of LDFT to the regime of �nite tempera-
tures in order to describe the equilibrium properties of strongly interacting electrons
in the framework of lattice-model Hamiltonians is indispensable.

Let us begin by noting that the state of a system at a �nite temperatureT > 0 must
be described by a mixed state which is characterized by a density matrix ρ̂. Using the
expansion of the fermionc �elds (3.2) in terms of a given set {ϕiσ (r )} of single-particle
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orbitals, we can express the electronic density in a mixed state as

n(r ) =
∑
σ

Tr
{
ρ̂ ψ̂ †σ (r )ψ̂σ (r )

}
=

∑
ijσ

γijσ ϕ
∗
iσ (r )ϕjσ (r ) , (3.41)

where
γijσ = Tr

{
ρ̂ ĉ†iσ ĉjσ

}
(3.42)

is the SPDM of the mixed state characterized by the density matrix ρ̂. Clearly, once
a set {ϕiσ (r )} of single-particle basis states is adopted, the particle density n(r ) in
an arbitrary mixed state is fully determined by the corresponding SPDM γ . Thus,
we readily identify the SPDM (3.42) as the fundamental variable in the formulation
of �nite-temperature lattice density functional theory (FT-LDFT). We will formulate
the fundamentals of FT-LDFT in two di�erent �avours. In Section 3.2.1 we present a
grand-canonical ensemble formulation of FT-LDFT, while the following Section 3.2.2
accounts for a canonical-ensemble.

3.2.1 Grand-canonical ensembles
In order to develop a grand-canonical formulation of FT-LDFT, we closely follow
the formulation of �nite-temperature density functional theory (FT-DFT) in Ap-
pendix A.2.1. First, we formulate a statement which establishes a unique connection
between the hopping matrix t , which characterizes the lattice model under study, and
the corresponding equilibrium single-particle density matrix (eq-SPDM)γ . This theo-
rem has the same fundamental character as the Mermin Theorem A.3 in the formula-
tion of FT-DFT. It enables us to propose a functional which incorporates a variational
principle from which the eq-SPDM and, in turn, the equilibrium average value of all
physical observables can be obtained in principle. Subsequently, we will demonstrate
that the interacting many-particle system can be mapped to an auxiliary system of
noninteracting particles with an e�ective hopping matrix ts[γ ] which is a functional
of the SPDM itself. In this way, the equilibrium properties of interacting electrons on
a lattice can be formally obtained from the selfconsistent solution of single-particle
equations.

Connection between the hopping matrix and the eq-SPDM

Let us consider a system described by a general Hamiltonian Ĥ of the form (3.1), where
we regard the type of particle interaction speci�ed by the parametersW σσ ′

ijkl
as �xed,

such that the hopping integrals tijσ de�ne the system under study. We will consider
a system which is open with respect to exchange of energy and particles with the
environment, where the latter is characterized by a �xed temperature T and chemi-
cal potential µσ for particles with spin polarization σ . Before we establish a unique
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connection between the hopping matrix t and the corresponding eq-SPDM γ , let us
�rst record Gibbs variational principle for the grand potential, which is the �nite-
temperature analog of the Rayleigh-Ritz variational principle (A.20) for the ground-
state energy. To this aim we consider the functional

Ω[ρ̂] = Tr
{
ρ̂

(
Ĥ +

1
β
log ρ̂ −

∑
σ

µσ N̂σ

)}
, (3.43)

where β = (kBT )−1 with the Boltzmann constant kB. Gibbs variational principle states
that the grand potential is given by

Ω0 = min
ρ̂∈P

Ω[ρ̂] , (3.44)

where the minimization is performed within the set P of all positive semide�nite
density matrices with unit trace representing physical mixed states with arbitrary
particle number [see Eq. (A.37)]. It is easy to show that the functional (3.43) has a
local minimum at the grand-canonical density matrix

ρ̂0 =
e−β (Ĥ−

∑
σ µσ N̂σ )

Tr
{
e−β (Ĥ−

∑
σ µσ N̂σ )

} , (3.45)

which characterizes the equilibrium state of the system described by the Hamilto-
nian Ĥ . Furthermore, Mermin [6] has demonstrated that the minimum is unique and
global within P, i. e., that the strict inequality

Ω[ρ̂] > Ω[ρ̂0] = Ω0 , ρ̂ , ρ̂0 (3.46)

holds for any density matrix ρ̂ ∈ P di�erent from ρ̂0. With these preliminaries we
are now able to formulate the following statement, which plays the same fundamental
role in the formulation of FT-LDFT as the Mermin Theorem A.3 in the formulation of
FT-DFT.
Theorem 3.3. For any �xed temperature T > 0 and chemical potential µσ for particles
with spin polarization σ , the hopping matrix t of the interacting many-particle system
described by the Hamiltonian (3.1) is a functional of the eq-SPDM γ .

Proof. The proof is carried out in close analogy to the one shown for the Mermin The-
orem A.3. Assume there would be another hopping matrix t ′ which di�ers from t but,
nevertheless, at the given temperature T and chemical potential µσ leads to the same
eq-SPDM γ as the hopping matrix t . If Ĥ ′ and ρ̂′0 denote the Hamiltonian and grand-
canonical density matrix of the system with the hopping matrix t ′, the corresponding
grand potential is given by given by

Ω′0 =
∑
ijσ

t ′ijσ γijσ + Tr
{
ρ̂′0

(
Ŵ +

1
β
log ρ̂′0 −

∑
σ

µσ N̂σ

)}
. (3.47)
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3 Density functional theory on a lattice

Since the hopping matrices t and t ′ are by assumption di�erent from each other, it
follows from Eq. (3.45) that the associated grand-canonical density matrices ρ̂0 and ρ̂′0
must be di�erent as well. Thus, from the minimal principle (3.46) it follows that

Ω0 < Ω[ρ̂′0] = Tr
{
ρ̂′0

(
Ĥ +

1
β
log ρ̂′0 −

∑
σ

µσ N̂σ

)}
= Ω′0 +

∑
ijσ

(
tijσ − t ′ijσ

)
γijσ . (3.48)

By interchanging primed and unprimed quantities one obtains

Ω′0 < Ω0 +
∑
ijσ

(
t ′ijσ − tijσ

)
γijσ . (3.49)

Adding Eqs. (3.48) and (3.49) the contradiction

Ω0 + Ω′0 < Ω′0 + Ω0 (3.50)

is obtained, which proves that two di�erent hopping matrices t and t ′ cannot lead to
the same eq-SPDM γ at a given temperature T > 0 and chemical potential µσ . One
concludes that t is a functional of γ . �

Notice that Theorem 3.3 establishes a unique connection between hopping matrix t
and the corresponding eq-SPDM γ , whereas the similar Theorem 3.1 for the ground
state connects the gs-SPDM and the hopping matrix t only up to a spin-dependent
shift in the energy levels. Clearly, this is due to the fact that we work in a grand-
canonical ensemble with �xed chemical potential µσ for particles with spin polariza-
tion σ , such that there is no ambiguity with respect to a spin-dependent shift of the
energy levels.

Since we consider the particle interaction speci�ed by the parametersW σσ ′
ijkl

as �xed,
the hopping matrix t characterizes the system described by the Hamiltonian (3.1)
uniquely. The hopping matrix is in turn uniquely determined by the eq-SPDM γ ,
such that the full Hamiltonian Ĥ and all physical properties derived from it must be
functionals of the eq-SPDM as well. This applies in particular to the grand-canonical
density matrix (3.45), which immediately proves the important

Corollary 3.3. For any �xed temperatureT > 0 and chemical potential µσ for electrons
with spin polarization σ , the grand-canonical density matrix ρ̂0 of the interacting many-
particle system described by the Hamiltonian (3.1) is a functional of the eq-SPDM γ .

Obviously the converse statement is also true, namely that the eq-SPDM γijσ =

Tr{ρ̂0 ĉ†iσ ĉjσ } is a functional of the grand-canonical density matrix ρ̂0. This establishes
a bijective map between the set of the grand-canonical density matrices and the cor-
responding set of the eq-SPDMs. A further important consequence of Theorem 3.3
is
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3.2 Finite-temperature ensembles

Corollary 3.4. For a �xed temperature T > 0 and chemical potential µσ for electrons
with spin polarization σ , the equilibrium average-value of any observable Ô is a func-
tional of the eq-SPDM γ .

Proof. From Corollary 3.3 we know that the grand-canonical density matrix ρ̂0 =
ρ̂0[γ ] is a functional of the eq-SPDM γ . Therefore, the equilibrium average-value of
any observable Ô can be obtained from the eq-SPDM as

O[γ ] = Tr
{
ρ̂0[γ ] Ô

}
. (3.51)

�

In order to be useful in practice, the formulation of FT-LDFT requires a functional
from which the eq-SPDM can be obtained by means of a variational principle. We will
construct this functional by a constrained-search method, which is very similar to the
one discussed in Section 3.1.2. This will allow us to bypass all problems related to the
representability of eq-SPDMs. To this aim, for a given temperature T we introduce
the functional

G[γ ] = min
ρ̂→γ

Tr
{
ρ̂

(
Ŵ +

1
β
log ρ̂

)}
, (3.52)

where the notation ρ̂ → γ indicates the minimization with respect to all density
matrices ρ̂ ∈ P which yield the given SPDM γ by means of Eq. (3.42). This means,
the functional G[γ ] is de�ned on the set of all SPDMs which, via Eq. (3.42), can be
associated with some density matrix ρ̂ ∈ P. This type of SPDM is called ensemble
representable, and we denote the set of all ensemble-representable SPDMs by Γe. One
can show (see for example Ref. [103]) that any hermitian matrixγ ∗jiσ = γijσ with eigen-
values 0 ≤ ηkσ ≤ 1 for all kσ belongs to the set Γe of ensemble-representable SPDMs.4
The functional (3.52) is valid for arbitrary non-negative particle numbers N = ∑

iσ γiiσ
and is universal in the sense that it does not depend on the hopping matrix t , which
characterizes the system under study. It depends on the temperatureT and on the set
of interaction integralsW σσ ′

ijkl
. Furthermore, it depends on the Fock-space under con-

sideration, since the density operators ρ̂ in the minimization of Eq. (3.52) are operators
in the given Fock space.

Using the functional G[γ ] de�ned in Eq. (3.52), we can now introduce the grand-
potential SPDM functional

Ω[γ ] =
∑
ijσ

(
tijσ − δij µσ

)
γijσ +G[γ ] , (3.53)

4Therefore, according to Eq. (3.18) the sole distinction between ensemble-representable SPDMs and
ensemble N -representable SPDMs is that the eigenvalues ηkσ of an ensemble-representable SPDM
must not sum to a given �xed particle number N .
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3 Density functional theory on a lattice

whose minimal value within the set Γe of all ensemble representable SPDMs equals
the grand potential Ω0. This can be most easily seen by performing the minimization
in the Gibbs variational principle (3.44) in two consecutive steps:

Ω0 = min
ρ̂∈P

Tr
{
ρ̂

(
Ĥ +

1
β
log ρ̂ −

∑
σ

µσ N̂σ

)}
=

= min
γ∈Γe

[∑
ijσ

(
tijσ − δij µσ

)
γijσ +min

ρ̂→γ
Tr

{
ρ̂

(
Ŵ +

1
β
log ρ̂

)}]
=

= min
γ∈Γe

[∑
ijσ

(
tijσ − δij µσ

)
γijσ +G[γ ]

]
= min

γ∈Γe
Ω[γ ] .

(3.54)

Furthermore, from Eq. (3.46) it follows that the density matrix ρ̂ which yields the
minimum in Eq. (3.54) is the grand-canonical density matrix (3.45) associated with
the given hopping matrix t , temperature T and chemical potential µσ . Consequently,
the minimizing SPDM γ corresponds to the eq-SPDM.

Let us now perform the minimization in Eq. (3.52) in an explicit manner in order to
develop a practical implementation of the functional G[γ ]. To this aim, we seek for
the extremes of the Euler-Lagrange functional

L[ρ̂] = Tr
{
ρ̂

(
Ŵ +

1
β
log ρ̂

)}
+

∑
ijσ

λijσ
(
Tr

{
ρ̂ ĉ†iσ ĉjσ

}
− γijσ

)
=

= Tr
{
ρ̂

(∑
ijσ

λijσ ĉ
†
iσ ĉjσ + Ŵ +

1
β
log ρ̂

)}
−

∑
ijσ

λijσ γijσ

(3.55)

within the set P of all positive semide�nite density matrices ρ̂ with unit trace. Here
we have introduced Lagrange multipliers λijσ in order to enforce that the minimizing
density matrix ρ̂ yields the required SPDM γ . Apart from an irrelevant constant,
the Euler-Lagrange functional (3.55) equals the Gibbs functional (3.43) with vanishing
chemical potential µσ = 0 (the chemical potential can be regarded as absorbed in the
parameters λiiσ ) and the e�ective Hamiltonian

Ĥλ =
∑
ijσ

λijσ ĉ
†
iσ ĉjσ + Ŵ . (3.56)

Consequently, the minimum of the Euler-Lagrange functional (3.55) within the set P
is attained for the corresponding grand-canonical density matrix

ρ̂λ =
e−βĤλ

Tr
{
e−βĤλ

} . (3.57)
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3.2 Finite-temperature ensembles

The parameters λijσ in the Hamiltonian (3.56) play the role of e�ective energy lev-
els (i = j) and e�ective hopping integrals (i , j), which must be chosen such that
the grand-canonical density matrix (3.57) yields the desired SPDM γ . In practice, one
usually varies the parameters λijσ systematically in order to scan the whole domain
of eq-SPDMs γ . Notice, however, that this procedure requires one to compute the
grand-canonical density matrix (3.57), which is usually expressed in terms of the full
set of eigenstates and eigenvalues of the e�ective Hamiltonian Ĥλ. Therefore, the
thus described procedure is in general of the same level of complexity as the initial
problem with the Hamiltonian (3.1) and is therefore only applicable to systems which
can be solved by analytical or numerical methods.

Mapping to an e�ective noninteracting system

Similar to the method presented in Section 3.1.3, we would like to map the �nite-
temperature problem for N interacting particles to the solution of e�ective single-
particle equations. Therefore, let us consider a general noninteracting system de-
scribed by the Hamiltonian

Ĥs =
∑
ijσ

tsijσ ĉ
†
iσ ĉjσ . (3.58)

In the following we will determine the hopping matrix ts which characterizes the non-
interacting system such that it yields the same eq-SPDMγ as the given interacting sys-
tem. Furthermore, we will introduce the universal functional of the non-interacting
Fermion entropy and derive an explicit expression in terms of the natural-orbital oc-
cupation numbers ηkσ . To this aim, let us �rst express the creation operator ĉ†iσ in
terms of the natural-orbital creation operators (3.32)

ĉ†iσ =
∑
k

uikσ b̂
†
kσ
, (3.59)

where the vectors ukσ are the orthonormal solutions of the eigenvalue problem(
tsσ

)>
ukσ = εkσ ukσ . (3.60)

Expressed in terms of the natural-orbital creation operators b̂†
kσ

and the corresponding
eigenvalues εkσ , the single-particle Hamiltonian (3.58) assumes diagonal form

Ĥs =
∑
kσ

εkσ b̂
†
kσ
b̂kσ =

∑
kσ

εkσ n̂kσ . (3.61)

Therefore, at a given temperature T and chemical potential µσ , we can express the
grand-canonical density matrix of the noninteracting system as

ρ̂ =
e−β

∑
kσ (εkσ−µσ ) n̂kσ

Tr
{
e−β

∑
kσ (εkσ−µσ ) n̂kσ

} . (3.62)
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3 Density functional theory on a lattice

Consequently, we obtain

Tr
{
ρ̂ b̂†

kσ
b̂k ′σ

}
= δkk ′Tr{ρ̂ n̂kσ } = δkk ′

1 + eβ(εkσ−µσ )
, (3.63)

where we made use of the fact that the equilibrium occupation numbers ηkσ =
Tr{ρ̂ n̂kσ } of a noninteracting system follow a Fermi-Dirac distribution. Finally, we
obtain the eq-SPDM of the noninteracting system as

γijσ = Tr
{
ρ̂ ĉ†iσ ĉjσ

}
=

∑
kk ′

uikσ u
∗
jk ′σTr

{
ρ̂ b̂†

kσ
b̂k ′σ

}
=

∑
k

uikσ ηkσ u
∗
jkσ . (3.64)

We conclude that the eigenvectors of the eq-SPDM coincide with the eigenvectorsukσ
of the transposed hopping matrix

(
tsσ

)> and that its eigenvalues are given by

ηkσ =
1

1 + eβ(εkσ−µσ )
. (3.65)

Clearly, the eq-SPDM (3.64) minimizes the noninteracting grand-potential func-
tional

Ωs[γ ] =
∑
ijσ

(
tsijσ − δij µσ

)
γijσ +Gs[γ ] (3.66)

within the set Γe of all ensemble representable SPDMs γ , where

Gs[γ ] = −T Ss[γ ] = 1
β
min
ρ̂→γ

Tr
{
ρ̂ log ρ̂

}
(3.67)

is, apart of the factor −T , the universal entropy functional Ss[γ ] for noninteracting
Fermions. In the following we would like to derive an explicit expression for the
noninteracting functionalGs[γ ] de�ned in Eq. (3.67). To this aim we perform the con-
strained minimization in Eq. (3.67) in a similar manner as in the context of Eqs. (3.55)
to (3.57), i. e., by setting Ŵ = 0 in Eq. (3.55), which leads to the minimizing density
matrix

ρ̂λ =
e−βĤλ

Tr
{
e−βĤλ

} (3.68)

with the e�ective noninteracting Hamiltonian

Ĥλ =
∑
ijσ

λijσ ĉ
†
iσ ĉjσ . (3.69)

Here, the e�ective hopping-integrals λijσ must be chosen such that the corresponding
grand-canonical density matrix (3.68) yields the desired SPDM viaγijσ = Tr{ρ̂λ ĉ†iσ ĉjσ }.
Therefore, as discussed in the context of Eq. (3.64), the eigenvectors of the transposed
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3.2 Finite-temperature ensembles

e�ective hopping matrix (λσ )> must coincide with the eigenvectors of the SPDM γ .
Furthermore, according to Eq. (3.65) the eigenvalues εkσ of (λσ )> must be related to
the eigenvalues ηkσ of the given SPDM γ by

ηkσ =
1

1 + eβεkσ
⇒ εkσ =

1
β
log

(
1 − ηkσ
ηkσ

)
. (3.70)

Thus, the hopping matrix λ = {λijσ } which characterizes the e�ective noninteracting
system (3.69) is completely determined in terms of the given SPDM γ . Using the
well known expression for the grand-canonical partition function of noninteracting
Fermions

Z = Tr
{
e−βĤλ

}
=

∏
kσ

(
1 + e−βεkσ

) (3.70)
=

∏
kσ

(
1

1 − ηkσ

)
, (3.71)

we obtain from Eq. (3.68)

log ρ̂λ = −βĤλ − logZ = −βĤλ +
∑
kσ

log(1 − ηkσ ) , (3.72)

and if we use Tr{ρ̂λ Ĥλ} = ∑
kσ εkσηkσ we arrive at the �nal result

Gs[γ ] = 1
β
min
ρ̂→γ

Tr
{
ρ̂ log ρ̂

}
=

1
β
Tr

{
ρ̂λ log ρ̂λ} (3.72)

=

=
1
β

∑
kσ

[ − βεkσηkσ + log(1 − ηkσ )] (3.70)
=

=
1
β

∑
kσ

[
ηkσ logηkσ + (1 − ηkσ ) log(1 − ηkσ )

]
.

(3.73)

Consequently, the universal functional of the noninteracting Fermion entropy

Ss[γ ] = −kB
∑
kσ

[
ηkσ logηkσ + (1 − ηkσ ) log(1 − ηkσ )

]
(3.74)

is independent of the eigenvectorsukσ of the SPDMγ and solely depends on its eigen-
values ηkσ . The entropy functional Ss[γ ] given in Eq. (3.74) not only applies to nonin-
teracting Fermions but, more generally, to independent Fermions which, for example,
are subject to a mean-�eld interaction, e. g., the average Coulomb-repulsion between
electrons which are distributed with a density n(r ). Therefore, we will refer to Ss
de�ned in Eq. (3.74) as independent-Fermion entropy (IFE).

Let us now return to the given interacting system described by the general Hamil-
tonian (3.1), and let us try to establish a connection with the noninteracting system
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3 Density functional theory on a lattice

described by Eq. (3.61). To this aim, we �rst notice that the eq-SPDM of the interact-
ing system minimizes the corresponding grand-potential functional (3.53), i. e., for the
eq-SPDM γ of the interacting system it holds

∂Ω[γ ]
∂γijσ

= tijσ − δij µσ +
∂G[γ ]
∂γijσ

= 0 ∀ijσ . (3.75)

Let us express the functional G[γ ] as

G[γ ] = Gs[γ ] +WHF[γ ] +Gc[γ ] , (3.76)

where Gs[γ ] is the noninteracting functional (3.67),

WHF[γ ] =
∑
ijkl
σσ ′

W σσ ′
ijkl

(
γikσ γjlσ ′ − δσσ ′ γilσ γjkσ

)
(3.77)

the interaction-energy functional in Hartree-Fock approximation (see Appendix B),
andGc[γ ] the correlation contribution to the free energy of interacting electrons with
eq-SPDMγ . Thus,Gc[γ ] includes the contribution toG[γ ] resulting from the changes
in the Coulomb energy and the entropy caused by correlation e�ects. Using Eq. (3.76),
we can rewrite the stationary condition Eq. (3.75) as

∂Ω[γ ]
∂γijσ

= tsijσ [γ ] − δij µσ +
∂Gs[γ ]
∂γijσ

= 0 ∀ijσ , (3.78)

where we have introduced the e�ective single-particle hopping integrals

tsijσ [γ ] = tijσ +
∂WHF[γ ]
∂γijσ

+
∂Gc[γ ]
∂γijσ

. (3.79)

Equation (3.78) is formally identical to the one obtained for an extremal point of the
noninteracting grand-potential functional (3.66). Therefore, we conclude that the aux-
iliary noninteracting system with the hopping integrals ts given in Eq. (3.79) yields the
same eq-SPDM as the interacting system with the hopping matrix t . Thus, Eqs. (3.60),
(3.65), and (3.79) establish a scheme by which the eq-SPDM of a given interacting sys-
tem can be determined from the solution of e�ective single-particle equations. Since
the hopping integrals (3.79) of the auxiliary noninteracting system depend on the
SPDM γ itself, the scheme must be implemented in a self consistent manner:

1. Start from an initial guess for the eq-SPDM γ of the interacting system, for
example from the eq-SPDM of the corresponding noninteracting system which
is obtained by setting Ŵ = 0.
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2. Use the current guess for the eq-SPDMγ to compute the e�ective single-particle
hopping integrals (3.79), and solve Eq. (3.60) in order to obtain new eigenvec-
tors ukσ and the e�ective single-particle energy levels εkσ . Subsequently, com-
pute the new natural-orbital occupation numbers ηkσ from Eq. (3.65).

3. Compute the new SPDM γ ′ijσ =
∑

k uikσηkσu
∗
jkσ

from the new occupation num-
bers ηkσ and the new eigenvectors ukσ .

4. Exit if convergence is achieved, i. e., γ ′ijσ = γijσ ∀ijσ . Otherwise, return to step 2
after having updated γ with γ ′.

3.2.2 Canonical ensembles

It is well known that in the thermodynamic or macroscopic limit the particle-number
�uctuations in equilibrium are insigni�cant with respect to the actual number of par-
ticles and, consequently, the canonical and grand-canonical ensembles become equiv-
alent. Nevertheless, a canonical-ensemble formulation of FT-LDFT would be most de-
sirable in order to describe physical situations involving systems with a rather small
and �xed number of particles, such as atoms, molecules, or small clusters. This can
be established in a similar fashion as the grand-canonical formulation of FT-LDFT
presented in the previous section.

Connection between the hopping matrix and the eq-SPDM

We consider a system of N interacting particles described by a general Hamiltonian
of the form (3.1). As usual, we regard the type of particle interaction speci�ed by the
parametersW σσ ′

ijkl
as �xed, such that the hopping integrals tijσ de�ne the system under

study. We will consider a system which is open with respect to exchange of energy
with the environment, where the latter is characterized by a �xed temperatureT > 0.
In order to establish a unique connection between the hopping matrix t and the cor-
responding eq-SPDM γ , we make use of the Helmholtz variational principle, which
replaces the Gibbs variational principle (3.44) in the present canonical formulation of
FT-LDFT. To this aim we consider the functional

F [ρ̂] = TrN
{
ρ̂

(
Ĥ +

1
β
log ρ̂

)}
. (3.80)

The Helmholtz variational-principle states that the free energy is given by

F0 = min
ρ̂∈PN

F [ρ̂] = −kBT logZN with ZN = TrN
{
e−βĤ

}
. (3.81)
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Here ZN is the canonical partition function and the minimization is performed within
the set PN of all density matrices of the form (3.17), i. e., within the set of all positive
semide�nite N -particle density matrices with unit trace representing arbitrary N -
particle mixed states. It is easy to verify that the functional (3.80) has a local minimum
at the canonical density matrix

ρ̂N =
e−βĤ
ZN
, (3.82)

which characterizes the canonicalN -particle equilibrium state of the system described
by the Hamiltonian Ĥ . Furthermore, in Appendix C we demonstrate that the mini-
mum is unique and global within PN , i. e., that the strict inequality

F [ρ̂] > F [ρ̂N ] = F0 , ρ̂ , ρ̂N (3.83)

holds for any density matrix ρ̂ ∈ PN di�erent from ρ̂N . In order to establish a unique
connection between the hopping matrix t and the canonical eq-SPDM γ we further-
more need a small

Lemma 3.2. Consider two Hamiltonians Ĥ and Ĥ ′ with the same set of interaction
integralsW σσ ′

ijkl
, then at a given temperature T > 0 the corresponding canonical density

matrices ρ̂N and ρ̂′N are equal, if and only if, the hopping matrices t and t ′ di�er by an
additive scalar matrix, i. e., if tijσ − t ′ijσ = c δij ∀ijσ with c ∈ R.

Proof. Assume that the canonical density matrices ρ̂N and ρ̂′N which correspond to
the Hamiltonians Ĥ and Ĥ ′ are equal. Then it follows from (3.82)

ρ̂N = ρ̂
′
N ⇔ Ĥ − Ĥ ′ = − 1

β

(
logZN − logZ ′N

)
= F0 − F ′0 , (3.84)

and consequently the operator

∆Ĥ = Ĥ − Ĥ ′ =
∑
ijσ

(
tijσ − t ′ijσ

)
ĉ†iσ ĉjσ (3.85)

must be equal to the free-energy di�erence ∆F0 = F0 − F ′0 which is a constant. There-
fore, ∆Ĥ must be proportional to the identity 1N = 1

N

∑
iσ ĉ
†
iσ ĉiσ in N -particle Hilbert

space, which means that tijσ − t ′ijσ = c δij ∀ijσ must hold with c = ∆F0/N ∈ R. �

Theorem 3.4. For any �xed particle number N and temperature T > 0, the hopping
matrix t of the interacting N -particle system described by the Hamiltonian (3.1) is (be-
sides of an additive scalar matrix) a functional of the canonical eq-SPDM γ .
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Proof. Assume there would be another hopping matrix t ′which di�ers from t by more
than an additive scalar matrix but, nevertheless, for the given particle number N and
temperature T > 0 leads to the same canonical eq-SPDM γ as the hopping matrix t .
If Ĥ ′ and ρ̂′N denote the Hamiltonian and canonical density matrix of the system with
the hopping matrix t ′, the corresponding free energy is given by

F ′0 =
∑
ijσ

t ′ijσ γijσ + TrN
{
ρ̂′N

(
Ŵ +

1
β
log ρ̂′N

)}
. (3.86)

Since the hopping matrices t and t ′ di�er by more than an additive scalar matrix, it
follows from Lemma 3.2 that the corresponding canonical density matrices ρ̂N and ρ̂′N
must be di�erent as well. Thus, from the minimal principle (3.83) it follows that

F0 < F [ρ̂′N ] = TrN
{
ρ̂′N

(
Ĥ +

1
β
log ρ̂′N

)}
= F ′0 +

∑
ijσ

(
tijσ − t ′ijσ

)
γijσ . (3.87)

By interchanging primed and unprimed quantities one obtains

F ′0 < F0 +
∑
ijσ

(
t ′ijσ − tijσ

)
γijσ . (3.88)

Adding Eqs. (3.87) and (3.88) the contradiction

F0 + F
′
0 < F ′0 + F0 (3.89)

is obtained. This proves that two hopping matrices t and t ′ which di�er by more than
an additive scalar matrix cannot lead to the same canonical eq-SPDM γ for a given
particle number N and temperature T > 0. One concludes that t is (besides of an
additive real constant) a functional of γ . �

In contrast to the grand-canonical formulation of FT-LDFT, where Theorem 3.3 estab-
lishes a unique connection between the grand-canonical eq-SPDM and the hopping
matrix t , the canonical eq-SPDM determines the hopping matrix t only up to an ad-
ditive scalar matrix. Such a scalar matrix is, however, without physical relevance,
since it corresponds to a uniform shift of all single-particle energy levels which can
be absorbed in the chemical potential or, equivalently, compensated for by choosing
the reference point of the energy scale appropriately. Thus, from a physical point of
view we can regard the hopping matrix t as uniquely determined by the canonical eq-
SPDM. Furthermore, since the hopping matrix characterizes the system under study,
the canonical eq-SPDM γ determines the full Hamiltonian Ĥ such that all physical
properties derived from it must be functionals of the eq-SPDM as well. This applies
in particular to the canonical density-matrix (3.82), which immediately proves the
important
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Corollary 3.5. For any �xed particle number N and temperature T > 0, the canonical
density-matrix ρ̂N of the interactingN -particle system described by the Hamiltonian (3.1)
is a functional of the canonical eq-SPDM γ .

It is obvious that the converse statement is also true, namely that the canonical eq-
SPDM γijσ = TrN {ρ̂N ĉ†iσ ĉjσ } is uniquely determined by the canonical density ma-
trix ρ̂N . This establishes a bijective map between the set of the canonical density-
matrices and the corresponding set of the canonical eq-SPDMs. A further important
consequence of Theorem 3.4 is

Corollary 3.6. For a �xed particle number N and temperature T > 0, the canoni-
cal equilibrium average-value of any observable Ô is a functional of the canonical eq-
SPDM γ .

Proof. From Corollary 3.5 we know that the canonical density matrix ρ̂N = ρ̂N [γ ] is a
functional of the canonical eq-SPDMγ . Therefore, the canonical equilibrium average
value of any observable Ô can be obtained from the canonical eq-SPDM as

O[γ ] = TrN
{
ρ̂N [γ ] Ô

}
. (3.90)

�

Similar to the grand-canonical formulation of FT-LDFT presented in Section 3.2.1,
the canonical formulation must rely on a functional from which the eq-SPDM can be
obtained by means of a variational principle. Again, we will construct this functional
by a constrained search method, which allows us to bypass all problems related to the
representability of canonical eq-SPDMs. To this aim, for a given particle number N
and temperature T we introduce the functional

GN [γ ] = min
ρ̂→γ

TrN
{
ρ̂

(
Ŵ +

1
β
log ρ̂

)}
, (3.91)

where the notation ρ̂ → γ indicates the minimization with respect to all density ma-
trices ρ̂ ∈ PN which yield the given SPDM by means of γijσ = TrN {ρ̂ ĉ†iσ ĉjσ }. Despite
their formal similarity, the functional (3.91) does not coincide with its grand-canonical
analogG[γ ] de�ned in Eq. (3.52). First, GN [γ ] is de�ned on the set of all ensemble N -
representable SPDMsγ ∈ Γe(N ) satisfying the conditions (3.18), whileG[γ ] is de�ned
on the larger set Γe formed by the ensemble representable SPDMs which are only con-
strained by the �rst condition in Eq. (3.18). Furthermore, even on the common subset
Γe(N ) ⊂ Γe the functional GN [γ ] is just an upper bound for G[γ ], i. e.,

GN [γ ] ≥ G[γ ] for γ ∈ Γe(N ) , (3.92)
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3.2 Finite-temperature ensembles

sinceG[γ ] is obtained from the minimization with respect all density matrices ρ̂ ∈ P
describing mixed-states with arbitrary particle number, whileGN [γ ] is obtained from
the minimization with respect to the subset PN ⊂ P formed by all N -particle mixed-
states.

A similarity between the functionalGN [γ ] and its grand-canonical analog (3.52) is,
however, its universal character in the sense that it does not depend on the hopping
integrals tijσ which characterize the system under study. It depends on the particle
number N , on the temperature T , and on the set of interaction integrals W σσ ′

ijkl
. Fur-

thermore, it depends on the N -particle Hilbert space under consideration, since the
density operators ρ̂ in the minimization of Eq. (3.91) are operators within this Hilbert
space.

Using the functional GN [γ ] de�ned in Eq. (3.91), we can now introduce the free
energy functional

F [γ ] =
∑
ijσ

tijσ γijσ +GN [γ ] , (3.93)

whose minimal value within the set Γe(N ) of all ensemble N -representable SPDMs
equals the free energy F0. This can be most easily seen by performing the minimiza-
tion in the Helmholtz variational-principle (3.81) in two consecutive steps:

F0 = min
ρ̂∈PN

TrN
{
ρ̂

(
Ĥ +

1
β
log ρ̂

)}
=

= min
γ∈Γe(N )

[∑
ijσ

tijσ γijσ +min
ρ̂→γ

TrN
{
ρ̂

(
Ŵ +

1
β
log ρ̂

)}]
=

= min
γ∈Γe(N )

[∑
ijσ

tijσ γijσ +GN [γ ]
]
= min

γ∈Γe(N )
F [γ ] .

(3.94)

Furthermore, from Eq. (3.83) it follows that the density matrix ρ̂ which yields the
minimum in Eq. (3.94) must be the canonical density-matrix (3.82) associated with
the given hopping matrix t , particle number N , and temperature T . Consequently,
the minimizing SPDM γ corresponds to the canonical eq-SPDM.

In order to develop a practical implementation of the functional GN [γ ], let us per-
form the minimization in Eq. (3.91) in an explicit manner. To this aim we seek for the
extremes of the Euler-Lagrange functional

LN [ρ̂] = TrN
{
ρ̂

(
Ŵ +

1
β
log ρ̂

)}
+

∑
ijσ

λijσ
(
TrN

{
ρ̂ ĉ†iσ ĉjσ

}
− γijσ

)
=

= TrN

{
ρ̂

(∑
ijσ

λijσ ĉ
†
iσ ĉjσ + Ŵ +

1
β
log ρ̂

)}
−

∑
ijσ

λijσ γijσ

(3.95)
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3 Density functional theory on a lattice

within the set PN of all positive semide�nite N -particle density matrices ρ̂ with unit
trace. As usual, we have introduced Lagrange multipliers λijσ in order to enforce that
the minimizing density matrix ρ̂ yields the required SPDMγ . Apart from an irrelevant
constant, the Euler-Lagrange functional (3.95) equals the Helmholtz functional (3.80)
with the e�ective Hamiltonian

Ĥλ =
∑
ijσ

λijσ ĉ
†
iσ ĉjσ + Ŵ . (3.96)

Consequently, the minimum of the Euler-Lagrange functional (3.95) within the set PN
is attained for the corresponding canonical density matrix

ρ̂λ =
e−βĤλ

TrN
{
e−βĤλ

} . (3.97)

The parameters λijσ in the Hamiltonian (3.96) play the role of e�ective energy lev-
els (i = j) and e�ective hopping integrals (i , j), which must be chosen such that the
canonical density matrix (3.97) yields the required SPDM via γijσ = TrN {ρ̂λ ĉ†iσ ĉjσ }.
In practice, one usually varies the parameters λijσ systematically in order to scan
the whole domain of canonical eq-SPDMs. Like in the previously considered grand-
canonical case, this procedure requires one to compute the canonical density ma-
trix (3.97), which is usually expressed in terms of the N -particle eigenstates and eigen-
values of the e�ective Hamiltonian Ĥλ. The thus described procedure is therefore
in general of the same level of complexity as the initial problem with the Hamilto-
nian (3.1) and is therefore only applicable to systems which can be solved by analytical
or numerical methods.

Mapping to an e�ective noninteracting system

The mapping between a given interacting N -particle system and a noninteracting
system having the same canonical eq-SPDM can be established in a similar fashion as
in the previous grand-canonical formulation of FT-LDFT. To this aim, we seek for a
noninteracting system described by the general single-particle Hamiltonian

Ĥs =
∑
ijσ

tsijσ ĉ
†
iσ ĉjσ =

∑
kσ

εkσ n̂kσ (3.98)

which yields the same canonical eq-SPDM γ as the given interacting system. Here,
n̂kσ = b̂†

kσ
b̂kσ is the number operator for the natural orbital kσ de�ned in Eqs. (3.59)

and (3.60), and εkσ is the corresponding orbital energy. The canonical density matrix
of the noninteracting system described by the Hamiltonian (3.98) is given by

ρ̂N =
e−β

∑
kσ εkσ n̂kσ

TrN
{
e−β

∑
kσ εkσ n̂kσ

} , (3.99)
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3.2 Finite-temperature ensembles

and consequently it holds

TrN
{
ρ̂N b̂†

kσ
b̂k ′σ

}
= δkk ′TrN {ρ̂N n̂kσ } = δkk ′ ηkσ , (3.100)

where ηkσ = TrN {ρ̂N n̂kσ } is the canonical equilibrium occupation-number of the
natural orbital kσ . Analog to Eq. (3.64), we obtain the canonical eq-SPDM of the
noninteracting system described by the Hamiltonian (3.98) as

γijσ =
∑
k

uikσ ηkσ u
∗
jkσ . (3.101)

We conclude that the eigenvaluesηkσ ∈ [0, 1] of the canonical eq-SPDM correspond to
the canonical equilibrium occupation numbers of the natural orbitals, and its eigen-
vectors ukσ coincide with the eigenvectors of the transposed hopping matrix

(
tsσ

)>
[see Eq. (3.60)]. Clearly, the SPDM (3.101) minimizes the noninteracting free-energy
functional

Fs[γ ] =
∑
ijσ

tsijσ γijσ +Gs[γ ;N ] (3.102)

within the set Γe(N ) of all ensemble N -representable SPDMs γ , where

Gs[γ ;N ] = −T Ss[γ ;N ] = 1
β
min
ρ̂→γ

TrN
{
ρ̂ log ρ̂

}
(3.103)

is, apart of the factor −T , the universal entropy functional Ss[γ ;N ] for N noninter-
acting Fermions. In contrast to its grand-canonical analog (3.74), no general explicit
expression is available for the functional Ss[γ ;N ].

Let us now try to establish a connection between the given interacting system de-
scribed by the general Hamiltonian (3.1) and the noninteracting system described by
Eq. (3.98). Clearly, the canonical eq-SPDM of the interacting system minimizes the
corresponding free-energy functional (3.93), i. e., for the canonical eq-SPDM γ of the
interacting system it must hold

∂F [γ ]
∂γijσ

= tijσ +
∂GN [γ ]
∂γijσ

= 0 ∀ijσ . (3.104)

Let us express the functional GN [γ ] as

GN [γ ] = Gs[γ ;N ] +WHF[γ ;N ] +Gc[γ ;N ] , (3.105)

where Gs[γ ;N ] is the noninteracting functional (3.103), WHF[γ ;N ] the interaction-
energy functional in Hartree-Fock approximation, and Gc[γ ;N ] the correlation con-
tribution to the free energy of N interacting Fermions. Here, the interaction-energy
functional in Hartree-Fock approximation is given by WHF[γ ;N ] = TrN {ρ̂N [γ ]Ŵ },
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3 Density functional theory on a lattice

where ρ̂N [γ ] is the canonical density matrix of the unique noninteracting system
whose canonical eq-SPDM equals γ . Notice, however, that the explicit expres-
sion (B.10) for the interaction energy in Hartree-Fock approximation, derived in Ap-
pendix B, is not valid for WHF[γ ;N ], since ρ̂N [γ ] does not describe an uncorrelated
mixed-state (see Appendix B).

Using Eq. (3.105), we can rewrite the stationary condition Eq. (3.104) as

∂F [γ ]
∂γijσ

= tsijσ [γ ] +
∂Gs[γ ;N ]
∂γijσ

= 0 ∀ijσ , (3.106)

where we have introduced the e�ective single-particle hopping integrals

tsijσ [γ ] = tijσ +
∂WHF[γ ;N ]
∂γijσ

+
∂Gc[γ ;N ]
∂γijσ

. (3.107)

Equation (3.106) is formally identical to the condition one would obtain for an ex-
tremal point of the noninteracting free-energy functional (3.102). Therefore, we con-
clude that the auxiliary noninteracting system with the hopping integrals ts given
in Eq. (3.107) yields the same canonical eq-SPDM as the interacting system with the
hopping matrix t . Thus, Eqs. (3.60), (3.99), and (3.107) establish a scheme from which
the canonical eq-SPDM of a given interacting system can be determined by the solu-
tion of e�ective single-particle equations. Since the hopping integrals (3.107) of the
auxiliary noninteracting system depend on the SPDM γ itself, the scheme must be
solved in a selfconsistent manner:

1. Start from an initial guess for the canonical eq-SPDM γ of the interacting sys-
tem, for example from the canonical eq-SPDM of the corresponding noninter-
acting system which is obtained by setting Ŵ = 0.

2. Use the current guess for the canonical eq-SPDM γ to compute the e�ective
single-particle hopping integrals (3.107), and solve Eq. (3.60) in order to ob-
tain new eigenvectors ukσ and the e�ective single-particle energy levels εkσ .
Subsequently, compute the new natural-orbital occupation numbers ηkσ =
TrN {ρ̂N n̂kσ }, where ρ̂N is the canonical density matrix (3.99) of the e�ective
noninteracting system.

3. Compute the new SPDM γ ′ijσ =
∑

k uikσηkσu
∗
jkσ

from the new occupation num-
bers ηkσ and the new eigenvectors ukσ .

4. Exit if convergence is achieved, i. e., γ ′ijσ = γijσ ∀ijσ . Otherwise, return to step 2
after having updated γ with γ ′.

60



Exploiting the links between ground-state
correlations and the independent-Fermion
entropy 4
In the past decades a large number of studies have been devoted to the problem of
electron correlations by applying the methods of density functional theory (DFT) to
lattice models [1, 69–87]. Indeed, taking into account the universality of DFT and
its e�ciency in various complex ab-initio calculations, it is physically reasonable to
expect that DFT combined with a suitable ansatz for the kinetic- and interaction-
energy functionals should be a valuable approach for correlated lattice models. Early
studies have been devoted to the band-gap problem in semiconductors [69–71] and
have addressed the importance of the o�-diagonal elements of the density matrix in
the description of strong correlation e�ects [72]. Density-matrix functionals for the
Anderson and Hubbard models have been successfully applied [73, 75] and even some
time-dependent approaches have been proposed [76]. In the context of this thesis
we focus on the lattice density functional theory (LDFT) formulated in Chapter 3,
which considers the single-particle density matrix (SPDM)γ as central variable of the
many-body problem.

Several important lattice models of strongly interacting electrons have been ad-
dressed within the framework of LDFT. This includes the single-impurity Anderson
model [81–83] as well as the Hubbard model with homogeneous and inhomogeneous
local potentials, dimerized chains, attractive pairing interactions, and inhomogeneous
local repulsions [77–80, 83–87]. The basic idea behind the functionals proposed in
previous approaches is to adopt a real-space perspective, and to take advantage of
scaling properties of the interaction energy W as a function of the bond order γ12σ ,
which measures the degree of charge �uctuations between nearest neighbors (NNs).
The actual dependence of W on γ12σ can then be inferred from the exact solution of
a reference system, such as the two-site problem (dimer), or some other exactly solv-
able system. By doing so, the dependence ofW on the remaining SPDM elements γijσ
has been absorbed in the Levy-Lieb minimization (see Section 3.1.2), which is possible
whenever lattice models with hoppings only between NNs are considered, since the
kinetic energy K depends only on γ12σ in this case such that the dependence ofW on

Most of the content of this chapter has been published in Ref. [1], ©2018 American Physical Society.
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4 Links between ground-state correlations and the IFE

other SPDM elements is irrelevant for the minimization of the energy E = T +W .
While the restriction to NN hoppings and SPDM elements is a useful simpli�cation,
it also brings about some profound limitations. Indeed, these approaches can only
yield the ground-state values of the diagonal and NN elements of the SPDM. This
means that more complex observables, whose functional dependence O[γ ] involves
all SPDM elements, as well as physical situations requiring interatomic hoppings be-
yond NNs, remain out of scope. Therefore, the domain of applicability of these previ-
ous approaches in the framework of LDFT remained somewhat limited. It should be
furthermore noted that the interaction-energy functional W [γ ] forfeits its universal
character if its dependence on most of the SPDM elements is absorbed in the Levy-Lieb
minimization procedure. Consequently, taking into account the dependence ofW on
the complete SPDM γ is both desirable and necessary in order to leverage the full
universality of LDFT. In fact, an approach based on the full SPDM would allow us to
investigate the distance dependence of γijσ and thus the long-range electron mobility,
which is most interesting in the context of strong electron correlations, even if the ac-
tual hybridizations are short-ranged as it is usually the case in narrow-band systems.
In this way it should be possible to investigate how electron localization develops in
real space as the Coulomb-repulsion strength increases.

Keeping these motivations and challenges in mind, we devote the present chapter
to the development of an interaction-energy functionalW [γ ] for the Hubbard model
which takes into account its dependence on the full SPDM. To this aim, we will adopt
a delocalized k-space perspective and focus on homogeneous periodic systems. First,
we investigate the dependence ofW on the eigenvalues ηkσ of the SPDM, which rep-
resent the spin-dependent occupation numbers of the natural orbitals. Second, we
will derive a simple, yet very e�ective approximation to W [γ ] by exploiting certain
analogies between electron correlations in the ground state and the entropy of in-
dependent fermions having the occupation numbers ηkσ . Finally, we apply our new
functional to �nite and in�nite lattices in 1–3 dimensions as well as to the limit of in�-
nite dimensions. We will consider a variety of interesting physical situations, includ-
ing spin-polarized systems, correlated Fermions subject to an attractive interaction,
and we will study systems with arbitrary electron density exhibiting Luttinger-liquid
behavior.

4.1 Reciprocal-space approximation toW [γ ]

In order to derive an approximation to the interaction-energy functionalW [γ ] which
takes into account the dependence ofW on the full SPDM γ , we will adopt a k-space
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4.1 Reciprocal-space approximation toW [γ ]

perspective and focus on the homogeneous and periodic single-band Hubbard model

Ĥ = K̂ + Ŵ =
∑
ijσ

tij ĉ
†
iσ ĉjσ +U

∑
i

n̂i↑n̂i↓ . (4.1)

In the usual notation, tij stands for the hopping integral between atoms or lattice sites
at the positions Ri and Rj , and U for the local Coulomb-repulsion strength. Due to
the translational symmetry of the underlying lattice, the elements of the correspond-
ing ground-state single-particle density matrix (gs-SPDM) γijσ depend only on the
vector Ri − Rj connecting the lattice sites i and j, such that we can write

γijσ = γσ (Ri − Rj) = 1
Na

∑
k∈BZ

ηkσ e−ik ·(Ri−R j ) , (4.2)

where we have introduced the Fourier transform ηkσ of the gs-SPDM. More generally,
Eq. (4.2) holds for any SPDM that is consistent with the translational symmetry of the
underlying lattice. Comparing Eqs. (3.24) and (4.2) we infer the eigenvectors

uikσ =
1√
Na

e−ik ·Ri (4.3)

of the SPDM as well as the corresponding eigenvalues

ηkσ =
Na∑
i=1

γσ (Ri) eik ·Ri . (4.4)

Consequently, any SPDM that is consistent with the translational symmetry of the
given lattice structure is fully characterized by its eigenvalues ηkσ = 〈b̂†kσ b̂kσ 〉, which
represent the average occupation numbers of the corresponding Bloch-states

b̂†
kσ
=

1√
Na

∑
i

eik ·Ri ĉ†iσ . (4.5)

If we focus on the Hubbard model on a given periodic lattice structure and are inter-
ested in the ground-state properties, we can restrict our considerations to the SPDMs
which are consistent with translational symmetry. In this case, we can regard the
SPDM functional of any physical observable O = O[η] as functional of the occupa-
tion numbersη = {ηkσ } alone, since they characterize the corresponding translational
symmetric SPDM. This applies in particular to the functionalsK[η],W [η], and E[η] of
the kinetic, interaction, and total energy. For example, the kinetic-energy functional
expressed in terms of the occupation numbers ηkσ is given by

K[η] =
∑
kσ

εk ηkσ , (4.6)
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4 Links between ground-state correlations and the IFE

where

εk =
Na∑
i=1

t(Ri) cos(k · Ri) (4.7)

is the single-particle dispersion relation. Here we made use of the fact that the hop-
ping integrals tij = t(Rij) between the local orbitals at the sites i and j depend only on
the mutual distance Rij = |Ri − Rj | due to the translational symmetry.

In order to derive a physically sound approximation to the interaction-energy func-
tionalW [η], it is very useful to consider two important limiting cases. The �rst one
concerns idempotent SPDMs, i. e., γ2 = γ , which implies ηkσ ∈ {0, 1} for all kσ . The
corresponding many-particle state is the single Slater determinant made of the occu-
pied Bloch states which are de�ned in Eq. (4.5). The associated interaction energyW
is equal to

WHF = U
∑
i

γii↑γii↓ = UNa n↑n↓ , (4.8)

where we have used that γiiσ = nσ = Nσ/Na for i = 1, . . . ,Na [see Eq. (B.10) in Ap-
pendix B]. The second important limiting case concerns scalar SPDMs, i. e.,γσ = 1nσ ,
which implies that the corresponding occupation numbers ηkσ = nσ are independent
of k . This situation describes a fully localized state since γijσ = 0 for all i , j. The
associated ground-state interaction energy is given by

W∞ = UD∞ , where D∞ =

{
0 if N ≤ Na

N − Na if N > Na
(4.9)

is the minimal number of double occupations for N localized electrons distributed
among theNa orbitals. Any physically sound approximation to the interaction-energy
functionalW [η] should be able to reproduce these two important limiting cases, i. e.,
the results (4.8) and (4.9) for idempotent and scalar SPDMs.

In this context it is useful to consider the independent-Fermion entropy (IFE)1

S[η] = −kB
∑
kσ

[
ηkσ logηkσ + (1 − ηkσ ) log(1 − ηkσ )

]
, (4.10)

representing the entropy of an arbitrary occupation-number distributionη ∈ [0, 1]2Na .
It is easy to verify that S[η] assumes its minimal value S = 0 if ηkσ ∈ {0, 1} for all kσ ,

1Notice that the inclusion of the Boltzmann constant kB in Eq. (4.10) is arbitrary and that it could be
dropped as in the usual mathematical de�nition of the entropy of a probability distribution [104].
Here we shall keep it in order to facilitate some physical interpretations. It is, however, important
to keep in mind that this chapter, and in particular the functionals derived and applied in it, are
aimed towards the description of ground-state properties exclusively. The utility of the IFE de�ned
in Eq. (4.10) and the corresponding �nite-temperature analog results from the fact that the entropy
of the occupation-number distribution {ηkσ } is the quantity which best characterizes its diversity.
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4.1 Reciprocal-space approximation toW [γ ]

and that its maximum under the constraint Nσ =
∑

k ηkσ is attained when ηkσ =
Nσ/Na = nσ for all kσ . In the important case of a half-�lled band, i. e., n↑ + n↓ = 1,
the maximum of the IFE is given by

S∞ = −2NakB
[
n↑ log(n↑) + n↓ log(n↓)

]
. (4.11)

Notice that the IFE (4.10) assumes its extremes for idempotent and scalar SPDMs, just
as the interaction energyW . This suggests to use S[η] as a measure of the degree of
electronic correlations, in terms of which the functional dependence of W [γ ] could
be e�ectively approximated.

In order to assess the actual connection between the IFE (4.10) and the interaction
energy W in the ground state of the half-�lled Hubbard model, we have performed
exact numerical Lanczos diagonalizations for a number of lattice structures and sys-
tem sizes. A variety of ground-state occupation-number distributions {ηkσ } has been
obtained by scaling the hopping integrals in the Hubbard-model Hamiltonian (4.1)
from tij = 0 to tij � U . In this way, the complete range 0 ≤ S ≤ S∞ of the IFE
has been scanned. Our results, presented in Fig. 4.1, show a remarkable one-to-one
correspondence between W and S , which is approximately independent of the size
and dimension of the system under consideration if it is properly scaled by the max-
imum values WHF and S∞. It is, however, important to notice that the results shown
in Fig. 4.1 suggest a relation between W and S only for the ground state, i. e., for
the case of ground-state representable occupation-number distributions {ηkσ }. For the
more general case of occupation-number distributions which are not ground-state
representable, i. e., which are not associated to any ground state of the model under
consideration, there is no one-to-one relation between the IFE S and the interaction
energyW , as we will demonstrate in the following. To this aim, let us assume there
would be a one-to-one correspondence between W and S for arbitrary occupation-
number distributions which are only constrained by the ensemble-representability
condition 0 ≤ ηkσ ≤ 1 ∀kσ . This means, we assume that the interaction-energy
functional

W [η] =W (S[η]) (4.12)

can be expressed as an ordinary function of the IFE de�ned in Eq. (4.10). In order
to obtain the ground-state energy E0 and the ground-state occupation numbers for
a given number Nσ of electrons with spin polarization σ , we have to minimize the
energy functional

E[η] =
∑
kσ

εk ηkσ +W (S[η]) (4.13)

within the domain of the ensemble-representable occupation-number distributions
which correspond to the given particle number. To this aim, we seek for the extremes
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Figure 4.1: Relation between the interaction energy W and the IFE S in the ground state of
the half-�lled Hubbard model, as obtained from exact numerical Lanczos diagonalizations for
a number of di�erent periodic lattice structures. Results are shown for �nite 1D rings having
Na = 6 (circles), Na = 10 (upright triangles) and Na = 14 (squares) lattice sites, as well as for
2D square-lattices having Na = 2×4 (downright triangles) and Na = 3×4 (diamonds) lattice
sites. The solid symbols correspond to the Hubbard model with only NN hopping t , while
the open symbols represent results where also second-NN hoppings t2 = t/2 are taken into
account. Adapted from Müller et al. [1], ©2018 American Physical Society.

of the corresponding Euler-Lagrange functional

L = E[η] +
∑
σ

µσ

(
Nσ −

∑
k

ηkσ

)
, (4.14)

where the Lagrange multipliers µσ enforce the given number Nσ =
∑

k ηkσ of spin-σ
electrons. At an extreme of the Euler-Lagrange functional (4.14) one has

∂L
∂ηkσ

=
∂E[η]
∂ηkσ

− µσ = εk − µσ +
∂W

∂S

∂S[η]
∂ηkσ

= 0 ∀kσ . (4.15)

Introducing the e�ective temperature Te� = −∂W /∂S and using Eq. (4.10), it follows
that

ηkσ =
1

1 + eβe� (εk−µσ )
with βe� =

1
kBTe�

. (4.16)

This means that our initial assumption (4.12) leads to the conclusion that the ground-
state occupation-number distribution {ηkσ } of the Hubbard model follows a Fermi-
Dirac distribution with an e�ective temperature Te� = −∂W /∂S which only depends
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4.2 Finite systems in one and two dimensions

onU and Nσ . This conclusion, however, contradicts the fact that the occupation num-
bers in the ground state of the Hubbard model follow a Luttinger-liquid or a Fermi-
liquid like distribution (see for example Refs. [105–107]) exhibiting a singularity at
the Fermi surface k = kF which does not occur in the Fermi-Dirac distribution (4.16).
Therefore, our initial assumption (4.12) must have been wrong, which means that
there is in general no one-to-one connection between the IFE S and the interaction en-
ergyW for arbitrary ensemble-representable occupation-number distributions {ηkσ }.
Notice, however, that a very accurate description of the occupation-number distribu-
tion {ηkσ } is not necessarily needed in order to obtain accurate values for the most
relevant observables derived from them, since most observables (such as the kinetic
energy or the average number of double occupations) involve an average over all k .
Furthermore, a detailed analysis of numerous exact numerical results for the ground-
state occupation-number distribution of the Hubbard model on various lattice struc-
tures shows the following:

1. Equation (4.12) is valid if ground-state representable distributions η are consid-
ered. Therefore, combined with a sound approximation to the set of ground-
state representable distributions η, Eq. (4.12) is a very promising starting point
towards a �exible LDFT approach for the ground state of the Hubbard model.

2. For the half-�lled band case the Fermi-Dirac distribution (4.16) yields a sound
approximation to the actual ground-state occupation-number distribution. This
means, the assumption that Eq. (4.12) holds for arbitrary ensemble representable
occupation-number distributions introduces only small errors in the ground-
state occupation numbers if one focuses on a half-�lled band.

In the following Sections 4.2 to 4.5 we demonstrate that Eq. (4.12) in combination with
a very simple approximation to the function W (S) already provides a surprisingly
accurate account for the ground-state properties of the half-�lled Hubbard model,
particularly in the challenging case of strong electronic correlations. Furthermore,
in Section 4.6 we combine Eq. (4.12) with a family of functions ησ (k) exhibiting a
Luttinger-like power-law singularity at the Fermi level, since this type of singularity
is expected in the ground-state momentum distribution of the 1D Hubbard model
away from half band-�lling. In this way we leave the regime of a half-�lled band and
explore how the electronic correlations are modi�ed as the electron density changes.

4.2 Finite systems in one and two dimensions
For the following applications to the half-�lled Hubbard model we assume that
Eq. (4.12) holds for arbitrary ensemble-representable occupation-number distribu-
tions {ηkσ }. On the basis of the numerical results shown in Fig. 4.1, we propose to
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4 Links between ground-state correlations and the IFE

approximate the corresponding functionW (S) by the simple linear relation

W (S) =WHF

(
1 − S

S∞

)
. (4.17)

Here,WHF is the Hartree-Fock (HF) interaction energy (4.8) and S∞ the upper bound
for the IFE given by Eq. (4.11). Notice thatW (S) yields the exact interaction energy in
the localized limit (where S = S∞ and W = 0 for n = 1), as well as in the uncorre-
lated limit when ground-state degeneracies are absent (where S = 0 and W =WHF).
Substituting Eq. (4.17) into Eq. (4.13) we obtain the energy functional

E[η] =
∑
kσ

εk ηkσ +UNa n↑n↓

(
1 − S[η]

S∞

)
=

=
∑
kσ

εk ηkσ +WHF −Te� S[η] ,
(4.18)

with the e�ective temperature Te� = −∂W /∂S = WHF/S∞. Consequently, in the
present linear ansatz for W (S), the correlation energy Wc = W −WHF of the inter-
acting problem is approximated by the entropy contribution −Te� S to the Helmholtz
free energy of an auxiliary noninteracting system at an e�ective �nite temperatureTe�
which is proportional to the Coulomb interaction strengthU . Thus, fractional occupa-
tion numbers 0 < ηkσ < 1 are obtained in the ground state of all interacting systems,
i. e., for any U > 0.

4.2.1 One-dimensional rings
Figure 4.2 shows results for several ground-state properties of the Hubbard model
on a ring with Na = 14 sites and N↑ = N↓ = 7 electrons as functions of the
Coulomb-interaction strength U /t . These results were obtained by LDFT in com-
bination with the linear IFE-approximation (4.17) to the interaction energy W , and
we compare them with exact numerical Lanczos diagonalizations [108]. In Fig. 4.2 (a)
one observes that the proposed linear ansatz for W reproduces the ground-state en-
ergy E0 very accurately for all U /t . The relative di�erence between LDFT and the
exact results are always less than 1.1%. In particular, in the strongly correlated limit
we obtain E0/Na = −αt2/U with αIFE = 2.77, while the exact proportionality fac-
tor is αex = 2.79. This demonstrates the ability of LDFT combined with the linear
IFE-ansatz (4.17) to account for the Heisenberg limit of the Hubbard model, where the
energies associated with spin and charge degrees of freedom are widely separated (see
Section 2.3.2). Moreover, it is important to remark that the accuracy of E0 is not the
consequence of a signi�cant compensation of errors. Indeed, as shown in Fig. 4.2 (b),
very good results are obtained also for the average number of double occupations D
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Figure 4.2: Ground-state properties of the 1D Hubbard model on a ring having Na = 14 sites
and N↑ = N↓ = 7 electrons as functions of the Coulomb-repulsion strength U /t . Results of
LDFT combined with the linear IFE-approximation (4.17) to the interaction-energy functional
(blue full curves) are compared with exact numerical Lanczos diagonalizations (red dashed
curves): (a) ground-state energy E0, (b) average number of double occupations D and kinetic
energyK , (c) natural-orbital occupation numbers ηk↑ = ηk↓, and (d) gs-SPDM elements γ0δ ↑ =
γ0δ ↓ between site i = 0 and its δ th-NN. The inset in sub�gure (a) highlights the strongly-
correlated Heisenberg limit (U � t ) where E0 ∝ t2/U . Adapted from Müller et al. [1], ©2018
American Physical Society.
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4 Links between ground-state correlations and the IFE

and the kinetic energy K . Only for very weak interactions (U /t . 1) the LDFT ap-
proximation overestimates D slightly by remaining too close to DHF = Na/4. This is
a consequence of inaccuracies in our approximation to W [η] for nearly integer val-
ues of ηkσ which, for the most part, can be ascribed to the deviations from linearity
inW (S) for small S , as already observed in the context of Fig. 4.1. In fact, by adapting
the function W (S) for small values of S one obtains improved results for the double
occupations D at small values of U /t . In any case, these small inaccuracies in the
double occupations do not a�ect the ground-state energy E0 signi�cantly. In fact, for
weak interactions (U /t . 1) the kinetic energy K dominates, which is always very
accurately reproduced by the linear IFE-approximation.

In addition to the kinetic and Coulomb energies, it is interesting to investigate the
in�uence of electronic correlations on the ground-state density matrixγ0 which min-
imizes the energy functional E[γ ]. A �rst insight from a k-space perspective is given
in Fig. 4.2 (c), where the ground-state occupation numbers ηkσ are shown as func-
tions of the Coulomb-repulsion strength U /t . We �nd eight distinct values for the
occupation numbers ηkσ , which correspond to the wave numbers k = 0, k = ±νπ/7
with ν = 1–6 and k = π , as implied by time-inversion symmetry (i. e., ηkσ = η−kσ ∀k).
Taking into account Eq. (4.16) and the fact that the k-dependence of the single-particle
spectrum εk respects the point-group symmetry of the lattice, it is easy to verify that
the ηkσ derived from any IFE approximation of the form (4.12) always satisfy the local
symmetry properties of the model under consideration.

Another fundamental property of the average Bloch-state occupation numbers ob-
served in the absence of ground-state degeneracies in the unpolarized half-�lled Hub-
bard model is the sum rule

ηkσ + ηk+q,σ = 1 , (4.19)
where the wave vector q satis�es εk+q = −εk for all k ∈ BZ. From Eq. (2.15) one
�nds q = π for a one-dimensional lattice with NN hopping and q =

∑d
i=1 bi/2 in the

general case of a d dimensional lattice, wherebi denotes the elementary vectors of the
reciprocal lattice. In order to prove Eq. (4.19) let us consider the unitary electron-hole
transformation

Û : ĉ†
kσ
→ ĉk+q,σ ∀kσ . (4.20)

Expressing the operator D̂ = ∑
i n̂i↑n̂i↓ in terms of the Bloch states (2.13)

D̂ =
1
Na

∑
k1,k2,Q∈BZ

ĉ†
k1+Q,↑ ĉk1↑ ĉ

†
k2−Q,↓ ĉk2↓ , (4.21)

and using that εk+q = −εk for all k ∈ BZ, it is straight forward to verify that the
Hubbard-model Hamiltonian Ĥ =

∑
kσ εkn̂kσ +U D̂ transforms to

Ĥ ′ = Û †ĤÛ = Ĥ −WHF , (4.22)
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4.2 Finite systems in one and two dimensions

where WHF = UN↑N↓/Na is the HF interaction energy (4.8). Since WHF is just a con-
stant if the number Nσ of spin-σ electrons is kept �xed, it follows that Ĥ is (besides
of this irrelevant constant) invariant upon the electron-hole transformation (4.20).
Consequently, if |Ψ〉 is one of the eigenstates of Ĥ with energy E and Nσ spin-σ
electrons, then the transformed state |Ψ′〉 = Û |Ψ〉 is also an eigenstate of Ĥ with
energy E′ = E −WHF and N ′σ = Na − Nσ spin-σ electrons. One readily concludes that
|Ψ′0〉 = Û |Ψ0〉 must be the ground state for N ′σ = Na−Nσ spin-σ electrons if |Ψ0〉 is the
ground state for Nσ electrons with spin σ . Consequently, in the absence of ground-
state degeneracies for N↑ = N↓ = Na/2 we must have |Ψ0〉 = |Ψ′0〉 = Û |Ψ0〉, such
that

ηkσ = 〈Ψ0 |ĉ†kσ ĉkσ |Ψ0〉 = 〈Ψ0 |Û †ĉ†kσ ĉkσÛ |Ψ0〉 =

= 〈Ψ0 |1 − ĉ†k+q,σ ĉk+q,σ |Ψ0〉 = 1 − ηk+q,σ .
(4.23)

This proves the sum rule (4.19). In the present context it is important to note that any
IFE approximation of the form (4.12) satis�es this sum rule for N↑ = N↓ = Na/2, since
Eq. (4.16) combined with µ↑ = µ↓ = 0 and εk+q = −εk implies Eq. (4.19).

The comparison between the exact and approximate results, shown in Fig. 4.2 (c),
leads to the conclusion that the linear IFE-approximation reproduces the occupation
numbers ηkσ of the �nite half-�lled 1D Hubbard model quite accurately in the whole
range from weak to strong Coulomb interactions. For very weak interactionsU /t � 1
one obtains the expected behavior ηkσ ' 1 for |k | ≤ π/2 and ηkσ ' 0 otherwise. The
gradual suppression of charge �uctuations with increasing values of U /t is re�ected
by the decreasing (increasing) occupations of the Bloch states having lower (higher)
energies. Thus, ηkσ decreases (increases) for |k | < π/2 (|k | > π/2) until in the strongly
correlated limit ηkσ = 1/2 is reached for all kσ . The only signi�cant deviations be-
tween the exact and approximate results is observed for |k | = 3π/7 (|k | = 4π/7),
where ηkσ is underestimated (overestimated) for intermediate values of U /t . Since
these values ofk are those closest to the Fermi surface |kF | = π/2, we conclude that the
linear IFE-approximation overestimates the excitation of electrons across the Fermi
level εF = 0. This is a consequence of the rather small slope ∂ηkσ/∂εk of the Fermi
function (4.16) in the vicinity of the Fermi energy, when compared with the exact
occupation-number distribution. In fact, the ground-state occupation-number distri-
bution of the in�nite Hubbard chain is expected to exhibit the typical power-law sin-
gularity of a Luttinger liquid, which leads to a divergence in the derivative ∂ησ (k)/∂k
at the Fermi level [98]. Notice that the Fermi-Dirac distribution (4.16), which is an im-
mediate consequence of the IFE approximation (4.12), can never reproduce this subtle
behavior.

In Eqs. (4.2) and (4.4) we have already seen that the occupation numbers ηkσ and the
SPDMγ are related by a Fourier transformation. Since we are concerned with lattices
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4 Links between ground-state correlations and the IFE

having translational and rotational symmetry, the elements γijσ = γσ (|Ri − Rj |) of the
gs-SPDM depend solely on the distance between the lattice sites i and j. Therefore,
it is su�cient to consider the matrix elements γ0δσ corresponding to a given lattice
site i = 0 and its δ th NN. Before analyzing the results shown in Fig. 4.2 (d), one should
notice that in the absence of ground-state degeneracies in the unpolarized half-�lled
Hubbard model one has γijσ = 0 for lattice sites i , j belonging to the same sublattice.
This property is closely related to the above discussed electron-hole symmetry of the
Hubbard-model. In fact, by expressing the SPDM as Fourier transform of the Bloch-
state occupation numbers

γijσ =
1
Na

∑
k∈BZ

ηkσ e−ik ·(Ri−R j ) (4.24)

and using the sum rule (4.19), one obtains

γijσ
(
1 + e−iq·(Ri−R j )

)
= δij . (4.25)

Here q = ∑
i bi/2, and from the orthogonality relation ai ·bj = 2πδij between the ele-

mentary real and reciprocal lattice vectors it followsq ·R = Mπ with M =
∑d

i=1 ni ∈ Z
for any lattice vector R = ∑d

i=1 ni ai . Finally, if the lattice is bipartite and the sites i , j
belong to the same sublattice, we have q · (Ri − Rj) = Mπ with M even, such that
Eq. (4.25) implies γijσ = 0. Since any approximation of the form (4.12) satis�es the
sum rule (4.19) for N↑ = N↓ = Na/2, one concludes that this property is exactly repro-
duced within the IFE approximation.

In Fig. 4.2 (d) results are shown for the gs-SPDM elements γ0δσ . As already dis-
cussed, we have γ0δσ = 0 for even δ since in the one-dimensional chain the corre-
sponding lattice sites belong to the same sublattice as the site i = 0. The LDFT results
for the remaining four non-vanishing elementsγ0δσ with δ odd are in good qualitative
agreement to the exact ones. Both weakly- and strongly-correlated limits (U /t . 1
andU /t & 10) are very accurately reproduced for all SPDM elements. Moreover, γ01σ ,
which corresponds to NNs and is proportional to the kinetic energy in the considered
NN-hopping model, is obtained with remarkable accuracy for all values of U /t . This
is consistent with the very good accuracy of the calculated kinetic energy shown in
Fig. 4.2 (b). However, for intermediate values of U /t our approximation underesti-
mates the delocalization of the electrons beyond NNs (i. e., γ0δσ with δ = 3, 5, 7). For
example, forU /t = 4 the LDFT approximation to |γ03σ | is about 50% smaller than the
exact result, while γ05σ and γ07σ nearly vanish. The discrepancies in γ0δσ for δ = 3, 5, 7
seem more severe than what one might have expected on the basis of the results for its
Fourier transform ηkσ . As already discussed in the context of Fig. 4.2 (c), the approxi-
mate values for ηkσ are quite accurate except for k = ±3π/7 and k = ±4π/7. To sum
up, we conclude that the correlation-induced localization of the electrons is quite well
reproduced qualitatively. However, the degree of the localization is overestimated.
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4.2.2 Two-dimensional square la�ice

Figure 4.3 shows results for the ground-state properties of the half-�lled 2D Hubbard
model on a 4×4 square cluster with periodic boundary conditions (N↑ = N↓ = 8).
The comparison with exact Lanczos diagonalizations shows that in two dimensions
the accuracy of LDFT in the linear IFE-approximation (4.17) is similar to the above
discussed 1D case. In particular, the ground-state energy E0 shown in Fig. 4.3 (a) is
accurately reproduced for all values of U /t . In the strongly correlated limit we �nd
E0/Na = −αt2/U which correctly reproduces the behavior of localized Heisenberg
spins (see Section 2.3.2). Quantitatively, we obtain αIFE = 5.55 which is only 13%
larger than the exact value αex = 4.81 deduced from the Lanczos diagonalizations.
For intermediate values of U /t we �nd that the binding energy |E0 | is somewhat
overestimated. The main reason for this is an overestimation of the kinetic-energy
gain |K |, which turns out to be slightly less accurate than in the 1D case [compare
Figs. 4.2 (b) and 4.3 (b)]. Also the average number of ground-state double occupa-
tions D is mostly very well reproduced within the linear IFE-approximation, as can
be seen in Fig. 4.3 (b). Still, forU /t . 2 we �nd that D is signi�cantly underestimated.
This is the reason for the slight underestimation of ∂E0/∂U in the weakly correlated
limit (U /t . 2), although the quantitative impact of D on E0 is weak for small values
of U /t .

Notice that for U /t → 0 both the exact and LDFT results for D are smaller than
the HF value DHF = Na/4. This is a consequence of the fact that the single-particle
spectrum of the �nite 4×4 cluster is degenerate at the Fermi level εF = 0. As a re-
sult, the Bloch states having εk = εF = 0 can be partially occupied in order to reduce
the average number of double occupations even in the limit of vanishing interac-
tion energy U /t → 0. In fact, there are six Bloch states at the Fermi level εF , which
correspond to the wave vectors k = (±π/2,±π/2), (π , 0) and (0,π ). These states
are occupied by six electrons for U /t → 0 and the remaining 10 electrons occupy
the states having k = (0, 0), (±π/2, 0) and (0,±π/2). As shown in Fig. 4.3 (c), LDFT
yields ηkσ = 1/2 for all k at the Fermi level, irrespectively of the Coulomb interac-
tion strength U /t , in agreement with the exact diagonalizations. Furthermore, both
exact and LDFT computations yield the same occupation numbers ηkσ = ηk ′σ for
Bloch states having εk = εk ′ . This is consistent with the general result (4.16), stating
that the k-dependence of the occupation numbers ηkσ obtained from any IFE approx-
imation is determined by the single-particle spectrum εk . Nevertheless, the simple
linear IFE-approximation (4.17) happens to be unable to accurately reproduce the dou-
ble occupations D of the weakly-interacting �nite Hubbard model in the presence of
essential degeneracies, i. e., in the case that the degenerate ground-states are cou-
pled by the action of D̂ in the limit U /t → 0. Notice, however, that Eq. (4.21) implies
〈Ψ(i)0 |D̂ |Ψ(j)0 〉 ∈ {0,±1/Na} for two noninteracting ground states, i. e., for two di�er-
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Figure 4.3: Ground-state properties of the 2D Hubbard model on a 4×4 square lattice with
N↑ = N↓ = 8 electrons and periodic boundary conditions as functions of the Coulomb-
repulsion strengthU /t . Results of LDFT combined with the linear IFE-approximation (4.17) to
the interaction-energy functional (blue full curves) are compared with exact numerical Lanc-
zos diagonalizations (red crosses): (a) ground-state energy E0, (b) average number of double
occupations D and kinetic energy K , (c) natural-orbital occupation numbers ηk ↑ = ηk ↓, and
(d) gs-SPDM elements γ0δ ↑ = γ0δ ↓ between site i = 0 and its δ th NN, as illustrated in the inset.
The inset in sub�gure (a) highlights the strongly-correlated Heisenberg limit (U � t ) where
E0 ∝ t2/U . Adapted from Müller et al. [1], ©2018 American Physical Society.
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ent Slater determinants in the occupied Bloch states (〈Ψ(i)0 |Ψ(j)0 〉 = 0). Consequently,
the e�ect of a �nite degeneracy at the Fermi level vanishes in the thermodynamic
limit Na → ∞. It is for this reason that in Fig. 4.1 we have focused on systems not
exhibiting this kind of �nite-size degeneracy, since otherwise our inferred approxi-
mation (4.17) would have been plagued by spurious �nite-size e�ects. In fact, in Sec-
tion 4.3 we will demonstrate that the ground-state observables of the in�nite Hubbard
chain derived from the present IFE approximation are almost indistinguishable from
the exact Lieb-Wu solution. Moreover, we will show that very accurate results are
obtained for in�nite lattices in higher dimensions as well.

As in the one-dimensional case, the occupation numbers ηkσ of the Bloch states
with energies below (above) the Fermi level εF = 0 decrease (increase) with increas-
ing U /t , starting from ηkσ = 1 (ηkσ = 0) in the uncorrelated limit (U /t = 0) un-
til ηkσ = 1/2 is reached for all k in the strongly correlated limit (U /t → ∞). Fig-
ure 4.3 (c) shows that the occupation numbers ηkσ obtained within the linear IFE-
approximation are remarkably accurate for all kσ in the complete range from weak
to strong interactions. Furthermore, our approximation respects all point-group sym-
metries of ηkσ in the reciprocal lattice, since these are inherited from the dispersion
relation εk .

Results for the gs-SPDM elements γijσ as functions of U /t are presented in
Fig. 4.3 (d). Due to the symmetry of the lattice one only needs to consider the ma-
trix elements γ0δσ between an arbitrary lattice site i = 0 and its δ th NN, as illustrated
in the inset of Fig. 4.3 (d). Electron-hole symmetry implies that γ0δσ = 0 for δ = 2, 3, 5,
since the corresponding sites belong to the same sublattice as the site i = 0. This
holds, since the 2D square lattice is bipartite and the ground state of the 4×4 cluster
with N↑ = N↓ = 8 is non-degenerate. The LDFT results for the remaining non-
vanishing gs-SPDM elements γ01σ and γ04σ follow closely the exact numerical values
for all U /t . In particular, the correlation-induced localization of the electrons is very
accurately reproduced. Remarkably, the results for γ0δσ are signi�cantly more accu-
rate than in the case of the 1D chain [see Fig. 4.2 (d)], at least for the relatively short
distances which can be explored within a �nite cluster.

4.2.3 Triangular la�ice
In order to explore magnetically frustrated systems, we consider a 4×4 cluster of the
2D triangular lattice with N↑ = N↓ = 8 and periodic boundary conditions. Figure 4.4
shows results for several ground-state properties obtained in the framework of LDFT
with the linear IFE-approximation (4.17). The comparison with exact numerical Lanc-
zos diagonalizations shows that the ground-state energy E0 is fairly well reproduced
in the whole interaction range from weak to strong correlations. The binding en-
ergy |E0 | is overestimated, especially for intermediate interaction strengthU /t , where
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Figure 4.4: Ground-state properties of the 2D Hubbard model on a 4×4 cluster of the tri-
angular lattice with N↑ = N↓ = 8 electrons and periodic boundary conditions as functions
of the Coulomb repulsion strength U /t . Results of LDFT combined with the linear IFE-
approximation (4.17) to the interaction-energy functional (blue full curves) are compared with
exact numerical Lanczos diagonalizations (red crosses): (a) ground-state energy E0, (b) average
number of double occupations D and kinetic energy K , (c) natural-orbital occupation num-
bers ηk ↑ = ηk ↓, and (d) gs-SPDM elements γ0δ ↑ = γ0δ ↓ between site i = 0 and its δ th NN, as
illustrated in the inset. The inset in sub�gure (a) highlights the strongly-correlated Heisen-
berg limit (U � t ) where E0 ∝ t2/U . The open circles in sub�gures (c) and (d) are obtained
by averaging the exact occupation numbers which belong to Bloch states having the same
energy εk . Adapted from Müller et al. [1], ©2018 American Physical Society.
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the maximum deviation Eex0 − EIFE0 = 0.22Nat is observed for U /t = 9.33. In the
strongly-correlated Heisenberg limit, the energy relation E0 = −αt2/U is correctly
reproduced, although the corresponding slope αIFE = 8.32 is signi�cantly larger than
the exact value αex = 5.14 inferred from the Lanczos diagonalizations.

The LDFT results for the average number of double occupations D shown in
Fig. 4.4 (b) follow the exact ones fairly close, except forU /t . 4 where D is underesti-
mated by up to 27% in the uncorrelated limitU /t = 0. This is probably a consequence
of the ninefold degeneracy of εk at the Fermi level of the 4×4 cluster, which is occu-
pied by only two electrons. Under these circumstances the linear IFE-approximation
overestimates the ability of the �nite many-body system to take advantage of the
degeneracies in order reduce the double occupations. Nevertheless, this underestima-
tion of D has little impact on the ground-state energy E0, sinceU /t is relatively small
and the kinetic energy K , which is fairly well approximated, dominates. A similar
behavior has already been discovered in the context of the �nite 4×4 square cluster
(see Fig. 4.3).

The Bloch states of the triangular 4×4 cluster with N↑ = N↓ = 8 can be classi�ed in
two groups: those at the Fermi level having εk = εF = 2t and those below the Fermi
level εF . In the uncorrelated limit U /t = 0, the Bloch states having εk < εF are fully
occupied (ηkσ = 1) and the ninefold degenerate Fermi level is occupied by only two
electrons with opposite spin polarization. As shown in Fig. 4.4 (c), the exact diago-
nalizations do not yield a uniform occupation of all Bloch states having εk = εF , as
one might naively expect. In fact, the exact occupation numbers of the Bloch states
at the Fermi level deviate from the value ηkσ = 1/9 predicted by any IFE approx-
imation of the form (4.12). This behavior is a subtle �nite-size electron-correlation
e�ect, by which the system manages to completely suppress the local Coulomb inter-
action between the two electrons at the Fermi level, already for arbitrary small values
of U /t . Concerning the dependence of ηkσ on the Coulomb-repulsion strength U /t ,
we observe a qualitatively similar behavior as in the previously considered bipartite
lattices: the occupation numbers of the Bloch states with εk < εF (εk = εF ) decrease
(increase) from their initial value ηkσ = 1 (ηkσ ∼ 1/9) for U /t = 0, until ηkσ = 1/2
is reached for all k in the limit U /t → ∞. The present IFE approximation correctly
reproduces the overall trend in ηkσ as a function of U /t , however, for U /t & 8 it
somewhat overestimates (underestimates) ηkσ when εk < εF (εk = εF ). Although the
IFE approximation cannot resolve the di�erences in the occupation numbers ηkσ be-
longing to Bloch states having εk = εF , the occupation numbers ηkσ predicted by the
linear IFE-approximation compare well with the exact ones if the latter are averaged
among the Bloch states having the same energy εk . These averaged exact ηkσ are in-
dicated by the green circles in Fig. 4.4 (c). It should be also noted, as already discussed
in the context of the �nite square lattice, that the anomalies due to degeneracies at
the Fermi level of the single-particle spectrum become progressively irrelevant as the
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4 Links between ground-state correlations and the IFE

system size increases. Therefore, one expects that the accuracy of the occupation
numbers ηkσ should improve in the thermodynamic limit.

The gs-SPDM elementsγ0δσ between a lattice site i = 0 and its δ th NN are shown in
Fig. 4.4 (d). One observes a good qualitative agreement between the present approxi-
mation and the exact numerical results. The most signi�cant deviations are observed
for small values of U /t , where the di�erences between γ02σ and γ03σ cannot be re-
solved. This is a consequence of the fact that the IFE approximation does not account
for the subtle �nite-size correlation e�ects responsible for the selective occupation of
the Bloch states having εk = εF . Nevertheless, the gs-SPDM elements γ0δσ obtained
from the averaged exact ηkσ agree fairly well to the approximate results, as indicated
by the green circles in Fig. 4.4 (d). In summary, by comparing Figs. 4.3 and 4.4, one
may conclude that the overall accuracy of the present IFE approximation for magnet-
ically frustrated non-bipartite lattices, such as the triangular lattice, is comparable to,
though in general somewhat inferior than in the case of bipartite lattices.

4.3 Infinite periodic la�ices
Having tested the linear IFE-approximation (4.17) on �nite one- and two-dimensional
clusters, we will now focus on the half-�lled Hubbard model on in�nite periodic lat-
tices. To be explicit, we focus on d-dimensional hypercubic lattices with NN hopping
td = t/

√
d , such that the corresponding single-particle dispersion relation (2.15) is

given by

εk = −
2t√
d

d∑
α=1

cos(kα ) , (4.26)

where kα ∈ (−π ,π ] are the components of the wave vector k ∈ BZ. Notice that the
hopping integrals td ∝ 1/

√
d have been scaled, in order to ensure that the second

moment
w2 =

∫ ∞

−∞
ε2ρ(ε) dε = 2dt2d = 2t2 (4.27)

of the single-particle density of states (DOS) per atom and spin

ρ(ε) = 1
(2π )d

∫
BZ
δ (ε − εk) dk (4.28)

is independent of the lattice dimension d . This allows us to compare results for di�er-
ent dimensions on the same footing, and to explore the limit of in�nite dimensions.

In order to apply our present linear IFE-approximation to in�nite periodic lattices,
it is convenient to express the kinetic energy K and the IFE S in terms of the single-
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particle DOS ρ(ε) de�ned in Eq. (4.28):

K

Na
=

∑
σ

∫ ∞

−∞
ε ησ (ε) ρ(ε) dε (4.29)

and

S

Na
= −kB

∑
σ

∫ ∞

−∞

[
ησ (ε) log

(
ησ (ε)

)
+

(
1 − ησ (ε)

)
log

(
1 − ησ (ε)

) ]
ρ(ε) dε . (4.30)

Here, the spin-resolved occupation number of a Bloch-state with energy ε is, accord-
ing to Eq. (4.16), given by

ησ (ε) = 1
1 + eβe� (ε−µσ )

with βe� =
1

kBTe�
. (4.31)

The e�ective temperature Te� = WHF/S∞ is independent of the IFE S within our
present linear approximation, and the chemical potential µσ for spin-σ electrons is
determined by the usual condtion

nσ =
Nσ

Na
=

∫ ∞

−∞
ησ (ε) ρ(ε) dε . (4.32)

From Eq. (4.29) one readily obtains the ground-state kinetic energy K , by using the
ground-state occupation-number distribution (4.31) and the well-known expression

ρ(ε) = 1
π

∫ ∞

0
cos(λε) Jd0 (2tdλ) dλ (4.33)

for the single-particle DOS of hypercubic lattices in d dimensions, where

J0(x) = 1
π

∫ π

0
cos(x siny) dy (4.34)

is the zero-order Bessel function of the �rst kind. Furthermore, from Eq. (4.30) one ob-
tains the ground-state IFE S and, in turn, the ground-state interaction energyW from
the linear approximation (4.17). For the moment we restrict ourselves to paramagnetic
systems having n↑ = n↓ = 1/2. In this case we haveWHF = UNa/4 and S∞ = 2Na log 2
according to Eqs. (4.8) and (4.11), and thus Te� = U /(8 log 2). Spin-polarized systems
are considered in Section 4.4.

In Fig. 4.5 we show results for the ground-state kinetic, Coulomb and total energies
of the half-�lled Hubbard model on hypercubic lattices in d = 1–3 dimensions and in
the limit d → ∞. For the 1D case one observes that the ground-state energy E0 ob-
tained within the linear IFE-approximation is nearly indistinguishable from the exact

79



4 Links between ground-state correlations and the IFE

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

E
0/
N
a
t

(a)

1D
2D
3D
d = ∞

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

K
/N

a
t

(c)

n↑ = n↓ = 1/2

0.0 0.2 0.4 0.6 0.8 1.0
U /(U + 4t)

0.00

0.05

0.10

0.15

0.20

0.25

D
/N

a

(b)

1D exact [49]
2D QMC [57]
2D QMC [59]
2D QMC [64]

0.0 0.2 0.4 0.6 0.8 1.0
U /(U + 4t)

−2

−1

0

1

2

re
l.
er
r.
×
10

3
(d)

∆D

∆K

∆E0

1D

Figure 4.5: Ground-state properties of the half-�lled Hubbard model on hypercubic lattices
in d = 1–3 dimensions and d → ∞ as functions of the Coulomb-repulsion strength U /t .
Results are shown for the (a) ground-state energy E0, (b) average number of double occupa-
tions D, and (c) kinetic energy K . The full curves were obtained by LDFT in combination
with the linear IFE-approximation (4.17). The symbols correspond either to the exact Bethe-
ansatz solution for the 1D Hubbard model [49] (blue crosses) or to numerical quantum Monte
Carlo simulations for the 2D Hubbard model [57, 59, 64] (green open circles and triangles).
For each dimension d the NN hopping-integral td is scaled as td = t/

√
d , such that the second

moment w2 = 2dt2d of the single-particle DOS is independent of d . Sub�gure (d) shows the
relative di�erence ∆X = (X IFE − X ex)/X ex between the exact Bethe-ansatz solution and the
linear IFE-approximation, where X stands respectively for the ground-state energy E0, the
kinetic energy K and the average number of double occupations D in the one-dimensional
Hubbard model. Adapted from Müller et al. [1], ©2018 American Physical Society.
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Bethe-ansatz solution [49]. In fact, the relative di�erence ∆E0 = (EIFE0 − Eex0 )/Eex0 be-
tween the exact ground-state energy and the IFE approximation is always smaller
than 0.1%, as shown in Fig. 4.5 (d). In particular, the exact asymptotic behavior
E0 = −4Na log(2) t2/U in the strongly correlated Heisenberg limit is recovered, as
discussed in more detail in Appendix E.1. It is most remarkable that the simple linear
approximation, relating W and S , is able to reproduce the exact energy of localized
spins in the strongly correlated limit of the 1D Hubbard model. Notice moreover,
that the linear IFE-approximation yields highly accurate ground-state averages, even
though the occupation numbersησ (k) do not follow the Luttinger-liquid behavior that
is expected for the ground state of the one-dimensional Hubbard model [98]. Most
likely, the precise form of the occupation-number distribution in the vicinity of the
Fermi level εF , although crucial for the excitations and the low-temperature behavior,
has little in�uence on the total energy of the system.

We like to point out that the remarkable accuracy of the ground-state energy in
1D, obtained from LDFT and the linear IFE-approximation, is not the result of a sig-
ni�cant compensation of errors. In fact, also the kinetic energy K and the double
occupations D are almost indistinguishable from the exact results for all U /t . This
is quanti�ed in Fig. 4.5 (d), where the relative errors of the kinetic and total energies
as well as the double occupations are shown. For example, the largest relative error
∆D = 0.17% in the double occupations is only slightly higher than the largest relative
errors ∆K = 0.12% and ∆E0 = 0.10% in the kinetic and total energies.

No exact solution is available for the half-�lled Hubbard model on the 2D square
lattice. However, since the low-lying excitations in the strongly correlated limit are
described by the antiferromagnetic (AFM) spin-1/2 Heisenberg model (2.52) with cou-
pling constant J = 2t2/U , one can infer the value of α in the strong-coupling limit
E0/Na = −αt2/U of the ground-state energy from accurate quantum Monte Carlo
(QMC) simulations for the 2D Heisenberg model. As discussed in more detail in Ap-
pendix E.1, one obtains αIFE = 8 log 2 ≈ 5.55 within the linear IFE-approximation,
while αQMC = 4.68 is inferred from QMC simulations [109]. This means, although
the linear IFE-approximation correctly reproduces the dependence E0 ∝ t2/U in the
strongly-correlated limit, the actual binding energy is overestimated by about 18%.
For �nite values of U /t we �nd a very good agreement between our results and
the far more demanding QMC simulations for the 2D Hubbard model reported in
Refs. [57, 59, 64]. This applies to the ground-state energy E0 shown in Fig. 4.5 (a), as
well as to the average number of double occupationsD presented in Fig. 4.5 (b). Like in
the case of the one-dimensional chain, our approximation tends to slightly underesti-
mate the double occupations for weak to intermediate interaction strength (U /t . 4)
and to overestimate it to some extend when strong interactions are considered.
We conclude that not only the ground-state energy of the Hubbard model on the
2D square lattice, but also the more subtle double occupations are accurately repro-
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4 Links between ground-state correlations and the IFE

duced within the linear IFE-approximation.
Concerning the dependence on the dimension d of the hypercubic lattice, we �nd a

surprisingly fast convergence to the limit of in�nite dimensions once the NN hoppings
are scaled as td = t/

√
d in order to keep the second moment w2 = 2dt2

d
= 2t2 of the

single-particle DOS independent of the lattice dimension. This not only applies to the
total ground-state energy but also to the kinetic and Coulomb energies, which sug-
gests that, within the linear IFE-approximation, the most important dependence of E0,
K , and D on the lattice dimension is concealed in the variance of the single-particle
spectrum. Only in 1D and for U /t . 10 the deviations from the common trend are
signi�cant. Most notably, we obtain a universal behavior of E0,K andD for alld in the
limit of strong correlations (U /t & 10). For example, the ground-state energy is ob-
tained as E0 = −4d log(2) t2d/U = −4 log(2) t2/U in the strongly-correlated Heisenberg
limit (see Appendix E.1). This, however, contrasts with accurate QMC simulations
and exact diagonalizations on �nite square clusters, which do not show such a simple
scaling between the ground-state energies of the 1D and 2D Heisenberg models [109–
112]. In fact, on the basis of these results for the Heisenberg model one infers, after
proper scaling of the hopping integrals td = t/

√
d , that the ratio between the ground-

state energies of the strongly correlated 1D and 2D Hubbard models is approximately
E1D0 /E2D0 = 1.185. This also suggests that the convergence to the limit of in�nite
dimensions is probably slower than predicted by the linear IFE-approximation.

In Fig. 4.6 we show results for the SPDM elements γ0δσ between a site i = 0 and its
δ th NN in the ground state of the half-�lled 1D Hubbard model (n↑ = n↓ = 1/2). For
even values of δ the electron-hole symmetry impliesγ0δσ = 0, since the corresponding
lattice sites belong to the same sublattice as the site i = 0 [see the discussion in the
context of Eq. (4.25)]. Figure 4.6 (a) shows how |γ0δσ | decreases with increasing U /t ,
as charge �uctuations are suppressed in order to reduce the average number of double
occupations. Notice that the long-range charge �uctuations (larger values of δ ) are
suppressed faster with increasingU /t than the short-range ones. This applies in par-
ticular to γ01σ , which corresponds to the charge �uctuation between NNs, and which
decreases much slower than the long-range �uctuations (δ ≥ 3). Most notably, in the
strongly-correlated Heisenberg limit we have K ∝ t2/U , such that γ01σ decreases pro-
portional to t/U , while the long-range charge �uctuations |γ0δσ | with odd δ ≥ 3 fall
o� exponentially for large values of U /t . Notice that, to the best of our knowledge,
the exact values of γ0δσ with δ > 1 cannot be inferred from the Bethe-ansatz solution
for the in�nite Hubbard chain [49].

A di�erent perspective is adopted in Fig. 4.6 (b), and γ0δσ is shown as a function
of δ for representative values of U /t . In the noninteracting limit (U /t = 0) the exact
result

γ0δσ =
1
2π

∫ π/2

−π/2
e−ikδ dk = sin(δπ/2)

δπ
(4.35)
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Figure 4.6: Single-particle density matrix elementsγ0δ ↑ = γ0δ ↓ between a lattice site i = 0 and
its δ th NN in the ground state of the half-�lled 1D Hubbard model, as obtained by the linear
IFE-approximation. In (a), γ0δσ is shown as a function of the Coulomb-repulsion strengthU /t .
In (b), γ0δσ is shown as a function of the distance δ for representative values ofU /t . Electron-
hole symmetry implies γ0δσ = 0 for even δ > 0. Adapted from Müller et al. [1], ©2018 Ameri-
can Physical Society.

is obviously obtained, since for vanishing interaction strength only the low-lying
Bloch states are occupied, i. e., ησ (k) = 1 for |k | < π/2 and ησ (k) = 0 else. Thus,
γ0δσ vanishes for even values of δ > 0, and for odd δ it decreases in absolute value
as δ increases. Notice that |γ0δσ | with odd δ decreases like 1/δ in the noninteracting
limit, and with increasing values ofU /t the decrease becomes much more rapid. Con-
sequently, the oscillations in γ0δσ are rapidly �attened asU /t increases, indicating the
suppression of charge �uctuations and the progressive onset of localization.

In order to investigate non-bipartite lattices, which may show di�erent kinds of
correlations, and in order to address the problem of magnetic frustrations in in�nite
lattices, we consider the half-�lled Hubbard model on the in�nite 2D triangular lat-
tice. In Fig. 4.7 results are shown for the ground-state energy E0, the kinetic energy K
and the average number of double occupations D, as obtained from LDFT with the
linear IFE-approximation to the interaction-energy functional W [η]. One observes
that the dependence on U /t is qualitatively similar to the one obtained from exact
diagonalizations of the Hubbard model on a 4×4 cluster from the triangular lattice
with periodic boundary conditions. In the weakly correlated limit the IFE approxima-
tion recovers the HF average number of double occupations DHF = 1/4. In contrast
to the �nite systems considered in the previous section, there are no issues related to
degeneracies at the Fermi-level in the thermodynamic limit, as already discussed in

83



4 Links between ground-state correlations and the IFE

0.0 0.2 0.4 0.6 0.8 1.0
U /(U + 9t)

−2.0

−1.5

−1.0

−0.5

0.0

E
0/
N
a
t

(a)

Triangular lattice
LDFT
4×4 cluster

0.0 0.2 0.4 0.6 0.8 1.0
U /(U + 9t)

0.00

0.05

0.10

0.15

0.20

0.25

D
/N

a

(b)
−2.0

−1.5

−1.0

−0.5

0.0

K
/N

a
t

Figure 4.7: Ground-state properties of the half-�lled Hubbard model on the in�nite 2D tri-
angular lattice as functions of the Coulomb-repulsion strength U /t : (a) total energy E0 and
(b) average number of double occupations D and kinetic energy K . The full curves are ob-
tained by LDFT in combination with the linear IFE-approximation (4.17), while the crosses
correspond to the exact diagonalization of a �nite 4×4 cluster with periodic boundary condi-
tions. Adapted from Müller et al. [1], ©2018 American Physical Society.

Section 4.2.2. Furthermore, the correct qualitative behavior E0/Na = −αt2/U is ob-
tained in the strongly correlated Heisenberg limit, with αIFE = 8.62. This result can be
compared with numerical estimates based on the extrapolation of �nite-cluster diag-
onalizations for the Heisenberg model, from which one infers αex = 7.41 [113]. Notice
that the relative error in α is only about 16% and therefore signi�cantly smaller than
in the case of the �nite triangular 4×4 cluster discussed in Section 4.2.3.

Summarizing this section, we have shown that LDFT in combination with the linear
IFE-approximation (4.17) yields the ground-state properties of the half-�lled Hubbard
model on in�nite lattices with very good accuracy, as demonstrated by comparison
with available exact results or QMC simulations [49, 57, 59, 64]. Most remarkably,
not only the ground-state energy E0 of the one-dimensional Hubbard chain, but also
the more subtle average number of double occupations D and the kinetic energy K
are reproduced almost exactly in the complete range from weak to strong interac-
tions. Furthermore, our results are exact in the strongly-correlated Heisenberg limit
of the one-dimensional chain, and qualitatively correct results are obtained in higher
dimensions with fairly accurate values for the coe�cient α of the ground-state energy
E0/Na = −αt2/U . Also results for the dependence of γ0δσ on the distance δ and the
Coulomb-repulsion strength U /t have been obtained for the one-dimensional Hub-
bard chain, which are not accessible by the exact Bethe-ansatz solution [49]. These
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results show how charge �uctuations decrease with the distance between the lat-
tice sites and, how increasing Coulomb interactions give rise to a gradual suppres-
sion of the electronic motion. We have also shown that the scope of the linear IFE-
approximation is not limited to bipartite lattices. In fact, the results obtained for the
magnetically frustrated triangular lattice are in good qualitative agreement with exact
diagonalizations on �nite clusters, as well as with the exact results in the strongly cor-
related Heisenberg limit [113]. Regarding the dependence on the coordination num-
ber of the underlying lattice, we may conclude that the accuracy of the linear IFE-
approximation tends to worsen as the coordination number increases. Thus, the 1D
lattice is described more precisely than the 2D square lattice, which in turn is de-
scribed more precisely than the 2D triangular lattice. Furthermore, comparing the
results presented in this section with the ones of Section 4.2, one may conclude that
the accuracy of the linear IFE-approximation tends to improve as the system size in-
creases, which is true for both the weakly and strongly correlated regimes. This might
indicate that the statistical analog underlying the IFE approximation is more suitable
for in�nite systems having continuous single-particle spectra.

4.4 Spin-polarized systems

In order to investigate the ground-state properties of the Hubbard model as a function
of the spin polarization, we minimize the energy functional E[η] under the constraint
of �xed n↑ − n↓ = 2Sz/~Na . In Fig. 4.8 we present results for the total, kinetic and
Coulomb energies of the half-�lled 1D Hubbard model as functions of Sz . As ex-
pected, the minimum energy is always attained for Sz = 0, since the ground state has
total spin S = 0 for all U /t [49]. The polarization energy ∆E(Sz) = E(Sz) − E(0)
results from the interplay between the kinetic-energy increase and the Coulomb-
energy decrease [see Figs. 4.8 (b) and 4.8 (c)] as the occupations ηkσ of the antibond-
ing (εk > 0) majority-spin Bloch states increase at the expense of decreasing oc-
cupations of the minority-spin bonding Bloch states (εk < 0). Double occupations
are progressively suppressed as |Sz | increases, since the probability of �nding two
electrons with opposite spin-polarization at the same site decreases. In the extreme
case of the fully-polarized state (i. e., |Sz | = ~Na/2), all lattice sites are occupied by
one majority-spin electron and therefore both, local double occupations and inter-
atomic charge �uctuations, are fully suppressed. This implies vanishing total, kinetic,
and Coulomb energies for all values of U /t (see Fig. 4.8). The maximum polariza-
tion energy ∆E(Sz = ~Na/2) = −E(Sz = 0), i. e., the energy di�erence between the
fully-polarized and unpolarized states, decreases with increasing Coulomb-repulsion
strength U /t and tends to zero in the strongly correlated limit U /t → ∞ since the
ground-state energy E0 = E(Sz = 0) is a monotonic increasing function of U /t . Fur-
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Figure 4.8: Ground-state properties of the one-dimensional half-�lled Hubbard model as
functions of the spin polarization per atom n↑ − n↓ = 2Sz/~Na for representative values
of the Coulomb-repulsion strength U /t : (a) total energy E, (b) average number of double
occupations D, and (c) kinetic energy K . The curves were obtained by LDFT in the linear IFE-
approximation, while the crosses in (a) for U /t = 3 and 10 are results taken from Ref. [50].
Adapted from Müller et al. [1], ©2018 American Physical Society.

thermore, the fact that ∆E(Sz) = 0 for all Sz whenU /t →∞ signals that the energy of
the system becomes independent of the total spin S in the strongly-correlated limit,
as the e�ective Heisenberg exchange-coupling constant J ∝ t2/U between NN-spins
tends to zero.

In order to assess the accuracy of the present linear IFE-approximation, we com-
pare in Fig. 4.8 (a) our results for E(Sz) with the corresponding results taken from
Ref. [50], which are based on the Bethe-ansatz solution and are exact in the unpolar-
ized limit Sz → 0. One observes an overall satisfactory agreement between the two
approaches for the two available values of the Coulomb-repulsion strength U /t = 3
and 10. Notice, however, that the linear IFE-approximation tends to underestimate
the curvature of E(Sz) in the vicinity of Sz = 0, which anticipates an overestimation
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Figure 4.9: (a) Ground-state magnetization M = −2µBSz/~ of the one-dimensional half-�lled
Hubbard model as a function of the applied magnetic-�eld strength B. Results of LDFT com-
bined with the linear IFE-approximation are shown for representative values of the Coulomb-
repulsion strength U /t . (b) Zero-�eld magnetic susceptibility χ in units of the uncorrelated
Pauli susceptibility χP = µ

2
BNa/πt as a function of the Coulomb-repulsion strength U /t . The

blue curve corresponds to the linear IFE-approximation, while the red curve shows exact re-
sult taken from Ref. [50]. Adapted from Müller et al. [1], ©2018 American Physical Society.

of the zero-�eld magnetic susceptibility χ .
In order to obtain the ground-state magnetization M = −дeµBSz/~ in the presence

of a uniform external magnetic �eld B = B êz , we use our previous results for E(Sz)
and simply minimize EB(Sz) = E(Sz) + дeµBBSz/~ with respect to Sz . Here, µB is
the Bohr magneton, and дe the Landé factor, for which it su�ces to take дe ≈ 2
in the following. In Fig. 4.9 (a) we present results for the ground-state magnetiza-
tion M of the half-�lled one-dimensional Hubbard model as a function of the external
magnetic �eld-strength B for some representative values of the Coulomb-repulsion
strength U /t . These results were obtained by LDFT in the linear IFE-approximation.
As expected, the magnetization M increases monotonously with increasing �eld-
strength B, until saturation, i. e., M = Na µB, is reached. The magnetization and also
its slope χ = ∂M/∂B at B = 0 are increasing functions ofU /t . Consequently, the crit-
ical �eld-strength Bc for which the magnetization saturates decreases with increas-
ing Coulomb-repulsion strengthU /t . The critical �eld-strength is therefore bounded
above by the value µBBc = 2t derived from the magnetization curve

M

Na µB
= 1 − 2

π
arccos

(
µBB

2t

)
(4.36)
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4 Links between ground-state correlations and the IFE

of the noninteracting half-�lled Hubbard chain. The more rapid increase of M and the
corresponding lowering of the critical �eld-strength Bc with increasing values ofU /t
can be understood by recalling that the energy di�erence ∆E(Sz = ~Na/2) between
the fully-polarized and the unpolarized states, which represents the band-width for
spin-excitations, decreases with U /t .

The zero-�eld magnetic susceptibility χ can be directly related to the curvature α
of the ground-state energy E(Sz) in the vicinity of Sz = 0. In fact, from ∆E(Sz) =
αS2z/~2Na + O(S4z ) one readily obtains χ = 2µ2BNa/α . In Fig. 4.9 (b) we compare the
zero-�eld susceptibility χ obtained in the linear IFE-approximation with Takahashi’s
exact results for the half-�lled one-dimensional Hubbard model [50]. In the noninter-
acting limit (U /t = 0) our approximation correctly reproduces the well known Pauli
susceptibility χP = 2µ2BNa ρ(εF ), where ρ(εF ) = 1/(2πt) is the single-particle DOS
per spin (4.28) of the Hubbard chain at the Fermi-level εF = 0. Furthermore, the
IFE approximation explains qualitatively the increase of χ with increasing Coulomb
repulsion strength, as the electrons start to localize and the band width of spin exci-
tations narrows. Moreover, the IFE approximation reproduces qualitatively the linear
increase of χ in the strongly-correlated limit. However, the corresponding asymp-
totic behavior χ ' (π χP/4)(U /t) (see Appendix E.2) di�ers from the exact asymptotic
result χ ' (χP/π )(U /t) derived from the Bethe-ansatz solution [50]. Consequently,
our approximation overestimates the zero-�eld magnetic susceptibility by a factor
π 2/4 ≈ 2.5 in the strongly-correlated regime. This is consistent with the previously
observed underestimation of the curvature of E(Sz) in the vicinity of Sz = 0 [see
Fig. 4.8 (a)].

4.5 A�ractive interactions
The study of electronic pairing, which leads to superconductivity, remains a major
challenge in solid-state physics. In this context, an alternative approach to the fa-
mous theory of Bardeen, Cooper, and Schrie�er (BCS) [114] is to consider the Hub-
bard model (4.1) with local attractive interactions, i. e., with U < 0. Clearly, these
two approaches to the problem of electronic pairing in metals are vastly di�erent.
The e�ective attractive interactions in the BCS theory have an o�-diagonal scattering
character, are mediated by phonons, and the spatial extension of the resulting Cooper
pair is quite large. In contrast, the interactions in the attractive Hubbard model are
strictly local, since they only a�ect electrons occupying the same lattice site. It is
because of these profound di�erences that the investigation of the physical proper-
ties of the attractive Hubbard model are of considerable interest in order to examine
the consequences of electronic pairing in solids from a complementary perspective.
The attractive Hubbard model has already been addressed in the framework of LDFT
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4.5 Attractive interactions

by Saubanère and Pastor [86], who used a simple but very e�ective scaling approx-
imation to the interaction-energy functional W [γ ], which is based on exact results
for the Hubbard dimer (Na = 2). In this way it was possible to obtain very accurate
ground-state observables for the case of bipartite lattices in 1–3 dimensions having
homogeneous and alternating local energy levels.

It is the purpose of this section to investigate the attractive Hubbard model from a
delocalized k-space perspective by generalizing the IFE approximation to the case of
attractive interactions. A rather straight-forward approach towards this goal would
be to exploit the electron-hole transformation discussed in the context of Eq. (2.39),
which maps the attractive model on a bipartite lattice to a (generally spin-polarized)
repulsive model, and to subsequently apply the well-established IFE approxima-
tion (4.17) to the resulting repulsive Hubbard model with Na −N↓ down-spins. Notice,
however, that this approach would be restricted to the case of bipartite lattices. Our
goal is to derive a physically sound approximation to attractive correlations from an
independent perspective in a general way, which is not restricted to bipartite lattice
structures. Nevertheless, the existence of a mapping between the attractive and repul-
sive Hubbard models suggests that the correlations caused by attractive and repulsive
interactions are deeply related. Indeed, with increasing interaction-strength |U |/t the
fermions tend to localize for attractive as well as for repulsive interactions. However,
the physical nature of the localization is quite di�erent. Repulsive interactions lead
to the formation and stabilization of local magnetic moments, whereas attractive in-
teractions tend to suppress the local moments and stabilize localized fermion pairs
with opposite spin polarization. In spite of these di�erences, we can expect that the
competition between delocalization, driven by the hybridizations, and localization,
resulting from the interactions between the particles, is quite similar in the repulsive
and attractive cases. This encourages us to use the IFE de�ned in Eq. (4.10) as an e�ec-
tive measure for the degree of the correlations between the particles also in the case
of attractive interactions. In order to verify that the IFE is indeed a measure for the
correlations caused by attractive interactions, and to quantify its relation to the inter-
action energyW , we have performed exact numerical Lanczos diagonalizations for the
ground state of the half-�lled attractive Hubbard model on multiple lattice structures.
To this aim, we have varied the hopping integrals from tij = 0 to tij � |U | in order to
scan the complete range of possible values 0 ≤ S ≤ S∞ of the IFE. In Fig. 4.10 the inter-
action energyW is scaled between the uncorrelated HF-limitWHF = UN↑N↓/Na and
the strongly-correlated limitW∞ = UD∞, where D∞ = min{N↑,N↓} is the maximum
number of double occupations. The results presented in Fig. 4.10 show a remarkable
one-to-one correspondence between W and S , which, after proper scaling with re-
spect to the extreme valuesWHF,W∞, and S∞, becomes approximately independent of
the size and dimension of the system under consideration. This one-to-one correspon-
dence betweenW and S could thus be exploited in order to derive broadly applicable
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Figure 4.10: Relation between the interaction energy W and the IFE S in the ground state
of the half-�lled attractive Hubbard model, as obtained from exact numerical Lanczos diag-
onalizations for a number of di�erent periodic lattice structures. Results are shown for �-
nite 1D rings having Na = 6 (circles), Na = 10 (upright triangles) and Na = 14 (squares)
lattice sites, as well as for 2D square-lattices having Na = 2×4 (downright triangles) and
Na = 3×4 (diamonds) lattice sites. The solid symbols correspond to the Hubbard model with
only NN hopping t , while the open symbols represent results for the non-bipartite case where
second-NN hoppings t2 = t/2 are included.

approximations to the interaction-energy functional W [η]. In the case of a bipartite
lattice it is straight forward to derive the relationW (a) −W∞ =W (r ) between the in-
teraction energy in the ground state of the attractive and repulsive Hubbard models,
by applying the electron-hole transformation discussed in the context of Eq. (2.39) to
the majority spins. Therefore, in the case of bipartite lattices, the scaled ground-state
interaction energy shown in Fig. 4.10 follows the exact same dependence as a function
of S as the scaled interaction energy in the ground state of the previously considered
repulsive Hubbard model (see Fig. 4.1). Notice, however, that Fig. 4.10 also includes
results for non-bipartite lattices, such as the periodic 3×4 square-lattice cluster and
all lattices with second-NN hoppings. This shows that the common, approximately
linear one-to-one relation between the (scaled) interaction energyW and the IFE S is
not restricted to the bipartite case, but instead also holds for more general systems.
Therefore, we propose to generalize our previous approximation to the interaction-
energy functionalW [η] of the Hubbard model in terms of the IFE S[η] as

W [η] −W∞
WHF −W∞ = f

(
S[η]
S∞

)
, (4.37)
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4.5 Attractive interactions

where the function f : [0, 1] → [0, 1] accounts for the common relation between
the properly scaled interaction energy W and the IFE S in the attractive and repul-
sive cases, shown in Figs. 4.1 and 4.10. Furthermore, WHF = UN↑N↓/Na refers to the
uncorrelated HF interaction-energy and

W∞ = U D∞ with D∞ =

{
min{N↑,N↓} for U < 0
max{N − Na, 0} for U > 0

(4.38)

to the interaction energy in the strongly correlated limit (|U |/t → ∞). Notice that
Eq. (4.37) applies to the Hubbard model with both attractive and repulsive interactions,
and thus the notion generalized IFE-approximation is justi�ed. Since Eq. (4.37) approx-
imatesW [η] in terms of S[η], the consequences of the approximation (4.12) also apply
to Eq. (4.37) and thus also to the case of attractive interactions. This applies in particu-
lar to the result (4.16) which states that ground-state occupation-numbers ηkσ follow a
Fermi-Dirac distribution with an e�ectiveU -dependent temperatureTe� = −∂W /∂S .

Before we apply the generalized IFE-approximation (4.37) to the attractive Hubbard
model on �nite clusters, it is useful to analyze its relation to the electron-hole trans-
formation (2.39) which maps between attractive and repulsive interactions. It turns
out that the relations between the attractive and repulsive models on bipartite lattices
are not reproduced for arbitrary particle numbers Nσ . Only for N↓ = Na/2, i. e., if
the number of down-spins is conserved under the electron-hole transformation, one
can easily show that the generalized IFE-approximation (4.37) correctly reproduces
the relations K (a) = K (r ) and W (a) + |U |N↑ = W (r ) between the kinetic and inter-
action energies of the attractive and repulsive Hubbard models on bipartite lattices.
Notice, however, that the generalized IFE-approximation predicts these relations in-
dependent of the lattice structure, i. e., also for non-bipartite lattices. Furthermore,
for N↓ = Na/2 it is easy to verify that the generalized IFE-approximation yields the
same gs-SPDM γ (a) = γ (r ) for the attractive and repulsive Hubbard models on a bi-
partite lattice, while the electron-hole transformation implies that γ (a)

ij↓ = ±γ
(r )
ij↓ for

i , j, where the negative sign applies if the sites i and j belong to the same sub-
lattice and the positive otherwise. Consequently, the generalized IFE-approximation
fails to reproduce the sign-change of those SPDM elements that do not contribute to
the kinetic energy of the Hubbard model on a bipartite lattice. These SPDM elements
are non-vanishing in general, however, in the special case where the ground state
for N↑ = N↓ = Na/2 is non-degenerate they vanish altogether (see Section 4.2.1). In
this case the predictions of the generalized IFE-approximation (4.37) are consistent
with the implications of the electron-hole transformation.

In order to apply the generalized IFE-approximation to the attractive Hubbard
model on �nite lattices, we follow the route taken in the repulsive case and propose
to approximate the function f in Eq. (4.37) by the linear relation f (x) = 1 − x , such
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Figure 4.11: Ground-state properties of the attractive 2D Hubbard model on a 4×4 square lat-
tice cluster with N↑ = N↓ = 8 and periodic boundary conditions as functions of the
attraction strength |U |/t . Results of LDFT combined with the generalized linear IFE-
approximation (4.39) (blue full curves) are compared with exact numerical Lanczos diagonal-
izations (red crosses): (a) ground-state energy E0, (b) average number of double occupations D
and kinetic energy K , (c) natural-orbital occupation numbers ηk ↑ = ηk ↓, and (d) gs-SPDM el-
ements γ0δ ↑ = γ0δ ↓ between site i = 0 and its δ th NN, as illustrated in the inset. The inset in
sub�gure (a) shows the binding energy EB =W∞−E0 in the strongly-correlated limit (|U | � t ).
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4.5 Attractive interactions

that the generalized IFE-approximation becomes

W [η] =WHF + (W∞ −WHF)
S[η]
S∞
. (4.39)

In the repulsive case with N ≤ Na , i. e., W∞ = 0, this coincides with the linear IFE-
approximation (4.17) discussed in the previous sections. In Fig. 4.11 we show results
for the ground-state properties of the half-�lled attractive 2D Hubbard model on a
4×4 square-lattice cluster with periodic boundary conditions and N↑ = N↓ = 8. The
comparison with exact Lanczos diagonalizations shows that the quality of LDFT in
combination with the generalized IFE-approximation (4.39) is as good as in the repul-
sive case considered in Section 4.2.2. This is not surprising, since the 4×4 cluster with
NN hopping is bipartite, and for N↑ = N↓ = Na/2 the generalized IFE-approximation
reproduces the relations between the attractive and repulsive Hubbard models in-
ferred from the electron-hole transformation (2.39). Also in this case, where the at-
tractive and repulsive models are connected by an electron-hole transformation, it is
very interesting to take a closer look at the ground-state properties of the attractive
Hubbard model and to investigate the di�erences and similarities to the previously
considered repulsive case.

Figure 4.11 (a) demonstrates that the ground-state energy E0 of the attractive Hub-
bard model is accurately reproduced by the linear IFE-approximation in the com-
plete range of the interaction strength |U |/t . In contrast to the repulsive case, we
�nd a monotonously decreasing ground-state energy as the attraction strength |U |/t
increases, since the pair-binding energy of the condensing fermions overcompen-
sates the increase in kinetic energy caused by the gradual fermionic localization.
Most notably, in the strongly correlated limit |U |/t → ∞ the pair-binding energy
of the condensing fermions dominates and gives rise to a diverging ground-state en-
ergy E0 'W∞ = −|U |Na/2. Notice that �rst order hopping processes are prohibited
in the strongly-correlated limit, since they would break a strongly bound fermion
pair. The fermions can, however, lower their kinetic energy K ∝ t2/U by second
order (virtual) hopping processes which break and subsequently reassemble a lo-
cal fermion pair. Thus, one can expect that the binding energy EB = W∞ − E0 be-
haves like EB = αt

2/|U | with α > 0 in the strongly correlated limit [see the inset in
Fig. 4.11 (a)]. In fact, one infers −EB = E0 + |U |D∞ = E(r )0 from the electron-hole trans-
formation (2.39), i. e., the binding energy resulting from the virtual hopping processes
coincides with the negative ground-state energy E(r )0 of the repulsive model. Thus, the
generalized linear IFE-approximation reproduces the binding energy EB = αt

2/|U | in
the strongly correlated limit of the attractive Hubbard model qualitatively correct,
with a coe�cient αIFE = 5.55 which is only 13% larger than the exact value αex = 4.81
for the 4×4 square-cluster. These results are consistent with the ones for the repulsive
Hubbard model on the 4×4 square-cluster discussed in Section 4.2.2.
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4 Links between ground-state correlations and the IFE

Besides some discrepancies for |U |/t < 2, which are the result of degeneracies at the
Fermi-level, we �nd in Fig. 4.11 (b) that also the average numberD of ground-state dou-
ble occupations is very well reproduced by the generalized linear IFE-approximation.
As expected, we �nd increasing values of the double occupations D as the fermionic
attraction strength |U |/t increases, which is due to the formation of local fermion-
pairs, until the maximum possible valueD∞ = Na/2 is attained in the limit |U |/t →∞.
The increase of the average number D of double occupations with increasing inter-
action strength |U |/t is accompanied with an increase of the kinetic energy K , since
the fermions condense into localized pairs and one-fermion hopping processes are
gradually suppressed as the interaction energy starts to overcompensate the binding
energy generated by the fermionic motion. Clearly, in the strongly correlated limit a
fully localized state is attained and the kinetic energy vanishes like K ∝ t2/U , since
�rst-order hopping processes would break the local strongly bound fermion-pairs.

The dependence of the gs-SPDM elements γijσ on the interaction strength |U |/t
is shown in Fig. 4.11 (d). Due to the symmetry of the underlying lattice it is su�-
cient to focus on the matrix elements γ0δσ corresponding to some lattice site i = 0
and its δ th NN, as illustrated in the inset. The non-vanishing SPDM elements γ01σ
and γ04σ display the typical correlation-induced suppression of the charge �uctua-
tions as |U |/t increases and the fermions condense into localized pairs. Like in the
previous case of repulsive interactions, the long-range charge �uctuations |γ04σ | are
suppressed faster than the �uctuations γ01σ between NNs. In fact, the dependence of
the gs-SPDM elements γ0δσ on the strength |U |/t of the attractive interaction coin-
cides with the one in the previously considered repulsive case. This is a result of the
electron-hole symmetry (2.39), which implies that the gs-SPDM of the attractive and
repulsive Hubbard models on bipartite lattices with N↑ = N↓ = Na/2 coincide if the
ground state is non-degenerate. This implication is exactly reproduced by the gener-
alized linear IFE-approximation (4.39), such that the results for the gs-SPDM shown
in Fig. 4.11 (d) coincide with the ones of Fig. 4.3 (d) which accounts for repulsive inter-
actions. Clearly, since the gs-SPDM of the attractive and repulsive Hubbard models
coincide, the same must be true for its eigenvalues, i. e., for the Bloch-state occupation
numbers ηkσ , which are shown in Fig. 4.11 (c). The fact that the occupation numbers
and gs-SPDM elements of the attractive and repulsive Hubbard models coincide on a
bipartite lattice with N↑ = N↓ = Na/2 is a manifestation of the deep underlying rela-
tion between the correlation induced localization caused by attractive and repulsive
interactions in half-�lled band systems.

In order to investigate situations where the ground-state properties of the repul-
sive and attractive Hubbard models are not related by an electron-hole transforma-
tion, we have to go beyond bipartite lattices. This can be achieved by considering
essentially non-bipartite structures, such as the 2D triangular lattice, or by includ-
ing hoppings beyond �rst-NNs. In order to address the second option we have com-
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Figure 4.12: Ground-state properties of the attractive 2D Hubbard model with second-
NN hopping t2 = t/2 [as illustrated in sub�gure (c)] on a 4×4 square lattice with N↑ = N↓ = 8
and periodic boundary conditions as functions of the attraction strength |U |/t . Results of
LDFT combined with the generalized linear IFE-approximation (4.39) (blue full curves) are
compared with exact numerical Lanczos diagonalizations (red crosses): (a) ground-state en-
ergy E0, (b) average number of double occupations D and kinetic energy K , (c) natural-orbital
occupation numbers ηk ↑ = ηk ↓, and (d) gs-SPDM elements γ0δ ↑ = γ0δ ↓ between site i = 0
and its δ th NN, as illustrated in the inset of Fig. 4.11 (d). The inset in sub�gure (a) shows the
binding energy EB =W∞ − E0 in the strongly-correlated limit (|U | � t ).
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puted the ground-state properties of the half-�lled attractive 2D Hubbard model on a
4×4 square-lattice with second-NN hopping t2 = t/2 and N↑ = N↓ = 8. The ground-
state energy E0 shown in Fig. 4.12 (a) is very accurately reproduced by the generalized
linear IFE-approximation (4.39) in the complete range from weak to strong attrac-
tions. This is most remarkable, especially in the range of intermediate interactions
(1 . |U |/t . 10), since the interplay between delocalization driven by hybridiza-
tions and localization due to the formation of local fermion-pairs is far from triv-
ial within this regime. Moreover, the asymptotic behavior of the ground-state en-
ergy E0 ' −|U |Na/2 in the strongly correlated limit |U |/t → ∞ is exactly obtained
within the linear IFE-approximation. The qualitative behaviour EB = αt2/|U | of the
binding energy in the strongly-correlated regime is also correctly reproduced, with
a coe�cient αIFE = 6.93 which is about 18.5% larger than the exact value αex = 5.65
deduced from the Lanczos calculations [see the inset in Fig. 4.12 (a)]. We conclude that
the generalized IFE-approximation overestimates the binding energy in the strongly
correlated limit slightly more if second-NN hoppings are included, when compared to
the previous case where only hoppings between �rst-NN were implied. The depen-
dence of the average number of ground-state double occupations D and the kinetic
energyK on the interaction strength |U |/t , shown in Fig. 4.12 (b), is very similar to the
previously considered case where only NN-hoppings were involved [see Fig. 4.11 (b)].
However, the inclusion of second-NN hopping allows the system to increase the ab-
solute kinetic energy |K | by about 16.7% in the weakly correlated regime and, at the
same time, to reduce the average number of double occupations D by about 8.2%
[compare Figs. 4.11 (b) and 4.12 (b)]. The kinetic-energy gain in the weakly-correlated
regime, resulting from the inclusion of second-NN hoppings, is exactly reproduced
within the linear IFE-approximation, while the average number of double occupa-
tions display the typical discrepancies resulting from degeneracies of the Fermi level.
Nevertheless, the linear IFE-approximation predicts a decrease of the average num-
ber of double occupations by about 12.5% in the weakly-correlated regime due to the
inclusion of second-NN hoppings, which is in qualitative agreement with the 8.2% de-
crease found in the exact results. Moreover, the discrepancies in D essentially disap-
pear for |U |/t & 2.

Regarding the dependence of the Bloch-state occupation numbers ηkσ on the in-
teraction strength |U |/t , shown in Fig. 4.12 (c), we �nd the typical decrease (increase)
of ηkσ for Bloch states having εk < εF (εk > εF ) as the interaction strength |U |/t
increases, which re�ects the localization of the fermions. As in the repulsive case, a
homogeneous occupation of all Bloch states, i. e., ηkσ = 1/2 for all k , is attained in the
strongly correlated limit |U |/t →∞. In contrast to the case which involves only hop-
pings between NNs, we �nd decreasing values of the occupation numbers ηkσ also for
the Bloch states having εk = εF = 0. This is a consequence of the qualitative changes
in the single-particle spectrum εk resulting from the inclusion of second-NN hoppings.
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They lead to a fourfold degenerate Fermi level which is occupied by six fermions in
the noninteracting limit |U |/t → 0, such that ηkσ = 3/4 for σ = ↑,↓ and all four
Bloch states having εk = εF . As shown in Fig. 4.12 (c), the occupation numbers ηkσ
obtained from the generalized linear IFE-approximation (4.39) are very accurate in the
complete interaction range from weak to strong correlations. Only the occupation of
the lowest-lying Bloch state [k = (0, 0)] having εk = −6t is slightly overestimated
for intermediate |U |/t , which results in an overestimation of the absolute kinetic en-
ergy |K | in this range. For example, at |U |/t = 15 the average occupation-number
of the lowest-lying Bloch state is overestimated by 8.7%, which corresponds to an
overestimation of |K | by about 17%.

The gs-SPDM elements γ0δσ corresponding to a lattice-site i = 0 and its δ th NN are
shown in Fig. 4.12 (d). The hoppings between second NNs lift the electron-hole sym-
metry discussed in the context of Eq. (4.25), and as a result the matrix elements γ0δσ
with δ = 2, 3 and 5, which correspond to sites within the same sublattice in the ab-
sence of second-NN hoppings, are no longer identically zero. An interesting non-
monotonous behaviour of γ05σ is observed, which is qualitatively reproduced, al-
though somewhat exaggerated, by the generalized linear IFE-approximation. The
non-monotonous |U |/t dependence ofγ05σ indicates that the second-NN hoppings en-
hance a charge transfer beyond 4th-NNs at intermediate interaction strength, which
optimizes the kinetic energy and, at the same time, lowers the interaction energy due
to the formation of local fermion-pairs, i e., due to an increase of the average number
of double occupations D.

As an example of an essentially non-bipartite lattice (i. e., a lattice which is non-
bipartite even if only NN hoppings are taken into account), we consider in Fig. 4.13
the 4×4 triangular lattice with periodic boundary conditions and N↑ = N↓ = 8. The
comparison with exact numerical Lanczos diagonalizations in Fig. 4.13 (a) shows that
the ground-state energy E0 is again very accurately obtained within the generalized
linear IFE-approximation in the complete range from weak to strong interactions.
Also the qualitative behaviour EB = αt2/|U | of the binding energy in the strongly-
correlated limit is correctly reproduced, and the corresponding coe�cient αIFE = 8.32
is about 19% larger than the exact value αex = 6.73 deduced from the Lanczos calcula-
tions [see the inset in Fig. 4.13 (a)]. We conclude that the strongly attracting limit on
the 4×4 triangular-cluster is much better reproduced than the corresponding repul-
sive case, where the coe�cient α is overestimated by 38% (see Section 4.2.3).

The average number of double occupations D and the kinetic energy K are shown
in Fig. 4.13 (b), and a very similar dependence on |U |/t as in the previously considered
attractive models is observed, which is in general very well reproduced by the present
IFE approximation. Only in the weakly interacting regime |U |/t . 3 we �nd the
already observed signi�cant overestimation of the double occupations D, which is
known to be a consequence of the degeneracies in the single-particle spectrum at the
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Figure 4.13: Ground-state properties of the attractive 2D Hubbard model on a 4×4 cluster
of the triangular lattice with N↑ = N↓ = 8 and periodic boundary conditions as functions
of the attraction strength |U |/t . Results of LDFT combined with the generalized linear IFE-
approximation (4.39) (blue full curves) are compared with exact numerical Lanczos diagonal-
izations (red crosses): (a) ground-state energy E0, (b) average number of double occupations D
and kinetic energy K , (c) natural-orbital occupation numbers ηk ↑ = ηk ↓, and (d) gs-SPDM el-
ements γ0δ ↑ = γ0δ ↓ between site i = 0 and its δ th NN, as illustrated in the inset. The inset in
sub�gure (a) shows the binding energy EB =W∞−E0 in the strongly-correlated limit (|U | � t ).
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Fermi level.
Regarding the Bloch-state occupation numbers ηkσ , shown in Fig. 4.13 (c), one ob-

serves the familiar fermionic localization as |U |/t increases: decreasing (increasing)
occupations ηkσ for Bloch states having εk < εF (εk > εF ), starting from ηkσ = 1
(ηkσ = 0) in the noninteracting limit, until ηkσ = 1/2 is reached for all kσ in the
strongly correlated limit. Concerning the occupation numbers ηkσ of the Bloch states
having εk = εF = 2t , we �nd ηkσ = 1/9 for |U |/t → 0, since the nine-fold degenerate
Fermi-level is occupied by two fermions with opposite spin directions.

A very interesting di�erence to the previously considered repulsive case is the fact
that all Bloch states having εk = εF = 2t are equally occupied in the complete range
from weak to strong interactions, while they split into two groups if repulsive interac-
tions are considered [see the exact numerical Lanczos results shown in Fig. 4.4 (c)]. As
already discussed in Section 4.2.3, this splitting of the Fermi-level occupation numbers
in the repulsive case is a subtle �nite-size e�ect, by which the local Hubbard interac-
tion between the two electrons at the Fermi level is completely suppressed. Clearly,
such a suppression of the mutual interaction between the two electrons at the Fermi
level would be energetically unfavorable in the present attractive case, and thus the
Fermi-level occupation numbers do not split. Figure 4.13 (c) shows that the generalized
IFE-approximation (4.39) reproduces the Bloch-state occupation numbers ηkσ quite
accurately in the complete range from weak to strong interactions. Only the occupa-
tion of the lowest-lying Bloch state [k = (0, 0)] having εk = −6t is slightly overesti-
mated for intermediate values of the interaction strength |U |/t . It is worth noting that
for N↑ = N↓ = Na/2 the generalized IFE-approximation always yields the same occu-
pation numbers for attractive and repulsive interactions, although the exactηkσ might
be di�erent if non-bipartite lattices are considered. Comparing Figs. 4.4 (c) and 4.13 (c),
one concludes that the LDFT results are more accurate in the attractive case. This is
not only due to the absence of the �nite-size splitting of the Fermi-level occupation
numbers in the attractive case, but also due to the higher accuracy of ηkσ for εk < εF
and intermediate values of the interaction strength. The very good accuracy of ηkσ
also implies accurate results for the gs-SPDM elements γ0δσ , as seen in Fig. 4.13 (d).
In the considered attractive case we �nd γ02σ = γ03σ in contrast to the repulsive case,
where γ02σ , γ03σ due to the �nite-size correlations which manage to suppress the in-
teraction of the two fermions at the Fermi level. Since this type of correlation is not at
all favorable in the attractive case, we �nd γ02σ = γ03σ , as predicted by the generalized
linear IFE-approximation (4.39).

In summary, the results presented in this section show that an appropriate general-
ization of the linear IFE-approximation allows us to extend the scope of LDFT to the
ground-state properties of the half-�lled attractive Hubbard model. This is not only
true for bipartite lattices, where such an extension can be formally inferred from the
electron-hole transformation (2.39) which maps between the attractive and repulsive
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4 Links between ground-state correlations and the IFE

models, but also in more general situations involving non-bipartite structures or hop-
pings beyond �rst-NNs. We therefore conclude that the IFE (4.10) is a suitable measure
of the degree of fermionic correlations in the Hubbard model for both attractive and
repulsive interactions.

4.6 Arbitrary filling and Lu�inger-liquid behavior
The focus of the previous sections has been on the ground-state properties of the
half-�lled Hubbard model, which corresponds to the highest carrier density and is
therefore particularly interesting for the study of many-particle correlation e�ects.
Developing accurate interaction-energy functionals for the general case of arbitrary
band-�lling n = N /Na poses a number of new challenges. For example, the ground-
state kinetic energyK of the Hubbard model does in general not vanish in the strongly
correlated limitU /t →∞ if n , 1, due to the ability of the electrons or holes to avoid
each other completely in a correlated motion, for instance, by adopting a fully polar-
ized state. Consequently, away from half band-�lling the strongly-correlated ground
state is no longer fully localized, and the gs-SPDM γ is thus no longer scalar. Non-
vanishing o� diagonal elements γijσ (i , j) and kinetic energy imply that the Bloch-
state occupation numbers ηkσ are no longer homogeneous in the strongly-correlated
limit. Therefore, the strongly-correlated IFE S∞, one of the essential scaling parame-
ters in the linear IFE-approximation (4.17), is no longer easy to obtain in the general
case of arbitrary band �lling. Furthermore, it is not obvious a priori that the one-to-
one correspondence between the ground-state interaction energy W and the IFE S
persists for arbitrary values of the band �lling n, and if so, one has to expect that the
relation betweenW and S depends on the electron density n. In particular, the simple
linear approximation toW (S) employed in the previous sections could be useless for
low values of the carrier density, i. e., if the density of the electrons or holes is low.

In order to investigate how the interaction energy W , the IFE S , and the electron
density n relate to each other, we have performed exact numerical Lanczos diagonal-
izations of the Hubbard model on a number of �nite periodic lattice structures having
di�erent sizes and numbers of electrons. The hopping integrals have been varied
from tij = 0 to tij � U in order to scan the complete range 0 ≤ S ≤ S∞ of the IFE. Our
results are shown in Fig. 4.14 (a), where we have scaled the interaction energy by its
uncorrelated HF valueWHF = UN↑N↓/Na and the IFE by its maximal value S∞ attained
in the strongly-correlated limitU /t →∞. The results demonstrate that a one-to-one
connection betweenW and S in the ground state of the Hubbard model exists not only
at half band-�lling, but also in the more general case of arbitrary electron densities.
Notice, however, that the precise form of the connection between W and S depends
on n. In fact, the interaction energyW decreases more rapidly with increasing S if the
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Figure 4.14: Relation between the interaction energy W and the IFE S in the ground state
of the Hubbard model with di�erent electron densities n = N /Na . The results are obtained
by exact numerical Lanczos diagonalizations for a number of periodic lattice structures and
di�erent numbers of electrons N , as indicated in sub�gure (a). We have scaled the interaction
energy by its uncorrelated HF valueWHF = UN↑N↓/Na and the IFE by its maximum value S∞
attained in the strongly-correlated limit U /t → ∞. Results are shown for �nite 1D rings
having Na = 6 (circles), Na = 10 (upright triangles) and Na = 14 (squares) lattice sites, as well
as for 2D square-lattices having Na = 2×4 (downright triangles), Na = 3×4 (diamonds) and
Na = 4×4 (pentagons) lattice sites. Solid symbols correspond to the Hubbard model with only
NN hopping t , while open symbols represent results where also second-NN hopping t2 = t/2
is present. Sub�gures (a) and (b) show the same data, however di�erent scales are used in (b)
in order to highlight the scaling properties of the relation between W and S as the electron
density changes.

electron density is low, which re�ects the fact that double occupations are more e�ec-
tively suppressed by the correlated motion of the electrons when the carrier density
is lower. Our numerical results show that for very low electron densities the rela-
tion between the interaction energyW and the IFE S follows approximately the circle
equation

(1 −w)2 + (1 − s)2 = 1 for n → 0 , (4.40)
where w =W /WHF and s = S/S∞. On the other hand, at half band-�lling (n = 1) the
relation betweenW and S is approximately linear, i. e., w = 1 − s , which implies

(1 −w) + (1 − s) = 1 for n = 1 . (4.41)

For intermediate values 0 < n < 1 of the electron density the relation between W
and S in the ground state of the Hubbard model passes smoothly from the low-density
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4 Links between ground-state correlations and the IFE

extreme (4.40) to the linear behavior (4.41) at half-band �lling. Therefore, in order to
cast relation betweenW and S in a simple form for alln ≤ 1, we propose to interpolate
between the two extremes (4.40) and (4.41) as follows

(1 −w)2−n + (1 − s)2−n = 1 , 0 < n ≤ 1 . (4.42)

In fact, as shown in Fig. 4.14 (b), we �nd an almost linear relation between (1 −w)2−n
and (1 − s)2−n, which is approximately independent not only of the size and dimen-
sion of the lattice structure under consideration but also of the band �lling n, which is
most important for the desired extension of the IFE approximation. The largest devi-
ations from the common linear trend observed in Fig. 4.14 (b) are found at half band-
�lling (n = 1), for which Eq. (4.42) reduces to the linear IFE-approximation w = 1− s ,
which has already proven to be very successful in the applications to the half-�lled
Hubbard model discussed in the previous sections. One concludes that Eq. (4.42) is
a very promising generalization of the IFE approximation to the regime of arbitrary
electron densities in the range 0 < n ≤ 1. To be explicit, we propose to approximate
the interaction-energy functionalW [η] of the Hubbard model with 0 ≤ n ≤ 1 in terms
of the IFE S[η] as

W [η]
WHF

=


1 −

[
1 −

(
1 − S[η]

S∞

)2−n] 1
2−n

if S[η] ≤ S∞

0 else.
(4.43)

Electron densities above half band-�lling (n > 1) are easily handled by replacing
electrons with holes, which corresponds to replacingn by 2−n andW byW −U (N−Na)
in Eq. (4.43).2

Since Eq. (4.43) approximatesW [η] in terms of the IFE S , all the conclusions drawn
in relation with Eq. (4.12) remain valid for the energy functional E[η] = K[η] +W [η]
obtained from Eq. (4.43). This applies in particular to the result (4.16), which states
that the ground-state occupation numbers ηkσ follow a Fermi-Dirac distribution with
an e�ective temperature Te� = −∂W /∂S which depends on the Coulomb-repulsion
strength U and the electron density n. This contrasts, however, with several well-
established results, which state that the one-dimensional Hubbard model behaves like
a Luttinger liquid away from half band-�lling [115, 116], whose momentum distribution
exhibits a typical power-law singularity

η(k) − η(kF ) ∼ sign(kF − k) |k − kF |α (4.44)

2Notice that the IFE S[η] and thusW [η] as given in Eq. (4.43) are invariant with respect to the addi-
tional implication ηkσ → 1 − ηkσ ∀kσ of the electron-hole transformation.
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4.6 Arbitrary �lling and Luttinger-liquid behavior

in the vicinity of the Fermi level. Moreover, in higher dimensions the Hubbard model
is a Fermi liquid, having a characteristic step-like singularity in the momentum dis-
tribution at the Fermi surface [117]. Clearly, these kind of singularities in the mo-
mentum distribution are not obtained in the framework of any IFE approximation to
the interaction-energy functional, since the ground-state occupation numbers always
follow a Fermi-Dirac distribution.

Notice that the Fermi-Dirac distribution (4.16) is the result of any IFE approxima-
tion, if the minimization of the corresponding energy functional E[ησ (k)] is restricted
only by the ensemble-representability condition 0 ≤ ησ (k) ≤ 1 ∀kσ . In order to
enforce a ground-state occupation-number distribution which displays the typical
Luttinger- or Fermi-liquid characteristics, one could restrict the minimization of the
energy functional E[ησ (k)] to a suitable set of trial functions {ησ (k)} which exhibit
the corresponding type of singularity. In the following we would like to derive a
family of functions which display a typical Luttinger-like power-law singularity at
the Fermi-level and are thus suitable to describe the ground-state occupation-number
distribution of the 1D Hubbard model away from half band-�lling. In the subsequent
applications we will investigate whether or not the restriction of the energy func-
tional E[ησ (k)] to this set of Luttinger-like distributions leads to a signi�cant improve-
ment of the resulting ground-state observables.

In order to obtain a family of Luttinger-like distributions we follow the ideas of
Koch and Goedecker [118]. They derived an excellent approximation for the ground-
state occupation-number distribution of the half-�lled 1D Hubbard model by assum-
ing that the electronic localization, driven by the Coulomb interaction, can be asso-
ciated to an exponential decay γ0δσ = γ (0)0δσ e

−α |δ | of the gs-SPDM elements. Here,
γ (0)0δσ = sin(δπ/2)/(δπ ) refers to the elements of the noninteracting gs-SPDM corre-
sponding to a given lattice site i = 0 and its δ th NN [see Eq. (4.35)], and α ≥ 0 is a
decay constant which depends on the interaction strength. Similarly, away from half
band-�lling Koch and Goedecker [118] proposed to associate the localization of the
electrons to a power-law decay of the gs-SPDM elements

γ0δσ = γ
(0)
0δσ |δ + 1|−α with γ (0)0δσ =

sin(kFσδ )
πδ

, (4.45)

where kFσ = πnσ refers to the Fermi wave-number for spin-σ electrons. The corre-
sponding occupation-number distribution

ησ (k) =
∞∑

δ=−∞
γ0|δ |σ eikδ =

kFσ
π
+

2
π

∞∑
δ=1

sin(kFσδ )
δ

(δ + 1)−α cos(kδ ) (4.46)

has a Luttinger-like power-law singularity with exponent α at k = kFσ . The distri-
bution (4.46) is shown in Fig. 4.15 for di�erent values of the decay parameter α and
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Figure 4.15: Occupation-number distribution (4.46) showing a Luttinger-like power-law sin-
gularity at the Fermi wave-number kFσ = πnσ for di�erent values of the decay parameter α ,
as indicated by the color scale on the right.

the Fermi wave-number kFσ . As a result of the singularity at kFσ , we �nd in Fig. 4.15
a sharp decay of the distribution ησ (k) at the Fermi level if α < 1, while for α > 1 a
�nite slope is found in the vicinity of kFσ . Notice that this behaviour is qualitatively
di�erent from a Fermi-Dirac distribution, which has a �nite slope at the Fermi level
for any positive temperature.

Before we are able to apply the IFE approximation (4.43) to the ground-state prob-
lem of the Hubbard model on periodic lattice structures with band �lling n ≤ 1, we
need to know the value S∞ of the IFE in the strongly-correlated ground state. This
is not an easy task a priori, since S∞ is obtained from the occupation-number dis-
tribution ηkσ which yields the minimum kinetic energy under the constraint of van-
ishing double occupations D = 0. In practice, it is therefore often necessary to in-
troduce approximations to S∞. In the framework of the IFE approximation one can
start from a physically sound approximation for the strongly-correlated ground-state
energy E∞0 (n), which is purely kinetic forn ≤ 1, and tune the parameter x which deter-
mines3 the occupation-number distribution ησ (k ;x), i. e., x = Te� for the Fermi-Dirac
distribution (4.16) and x = α for the Luttinger-like distribution (4.46), such that

E∞0 (n) =
Na

(2π )d
∑
σ

∫
BZ
ε(k)ησ (k ;x) dk . (4.47)

From the occupation-number distribution ησ (k ;x) one �nally obtains an approximate
3Apart from the chemical potential µσ or the Fermi wave-number kFσ , which are determined by nσ .
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value for the IFE S∞ in the strongly-correlated ground state by means of Eq. (4.10).
Thus, the problem of �nding an approximation to S∞ is replaced by the problem to
approximate the strongly-correlated ground-state energy E∞0 (n). To this aim, one can
consider the lowest-lying fully polarized ferromagnetic (FM) state, since it ful�lls the
fundamental constraint of vanishing double occupations D = 0. Even though the
energy EFP(n) of the lowest-lying fully polarized state is in general just an upper bound
for the strongly-correlated ground-state energy E∞0 (n), it has been found to yield a
good �rst approximation [77, 78]. Moreover, it has been shown that the lowest-lying
fully polarized state is always a ground state of the strongly-correlated Hubbard model
if there is exactly one hole (N = Na − 1) [52, 53], and in the case of the in�nite one-
dimensional chain, the strongly-correlated ground-state energy (2.36) coincides with
the energy of the lowest-lying fully polarized state for arbitrary electron densities n.
To sum up, we propose to approximate the IFE S∞ in the strongly-correlated ground
state of the Hubbard model in the following manner:

1. Approximate the strongly-correlated ground-state energy by the energy of the
lowest-lying fully polarized state

EFP(n)
Na

=

∫ µ(n)

−∞
ε ρ(ε) dε , (4.48)

where 0 < n ≤ 1 is the band-�lling and ρ(ε) the single-particle DOS per spin
given by Eq. (4.28). Accordingly, the chemical potential µ(n) ful�lls the condi-
tion

n =

∫ µ(n)

−∞
ρ(ε) dε . (4.49)

2. Determine the e�ective temperature Te� in the Fermi-Dirac distribution (4.31)
such that the corresponding kinetic energy equals the energy (4.48) of the
lowest-lying fully polarized state, i. e., such that

EFP(n)
Na

=
∑
σ

∫ ∞

−∞
ε ησ (ε ;Te�) ρ(ε) dε . (4.50)

If one considers Luttinger-like occupation-number distributions of the
form (4.46) for the 1D Hubbard model, one instead determines the decay con-
stant α in a similar manner.

3. Once the e�ective temperature Te� or decay constant α has been determined,
it is straight forward to calculate S∞ as the IFE (4.30) of the corresponding
occupation-number distribution.
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4.6.1 The infinite Hubbard chain

Having a sound approximation to the IFE S∞ in the strongly-correlated ground state,
we are now in a position to apply our approximation (4.43) in order to determine
the ground-state properties of the Hubbard model with arbitrary electron density by
minimizing the corresponding energy functional E[η] = K[η] +W [η]. In Fig. 4.16 we
present our results for the ground-state energy E0 and the average number of double
occupations D of the in�nite 1D Hubbard chain and compare them with the exact
Bethe-ansatz solution [49]. The LDFT results were obtained either by a minimization
of the energy functional which is restricted to the Luttinger-like distributions (4.46), or
by a minimization involving arbitrary momentum-distributions ησ (k) which are only
restricted by the ensemble-representability condition 0 ≤ ησ (k) ≤ 1 and the given
electron density

∫ π

−π ησ (k) dk = nπ for σ = ↑,↓. As already discussed in the context
of Eq. (4.16), the latter leads to a Fermi-Dirac momentum-distribution. Figs. 4.16 (a)
and (c) show that both methods yield very accurate results for the ground-state en-
ergy E0 in the whole range of electron densities, starting from an empty bandn = 0 up
to half band-�lling n = 1, and for all values of the Coulomb-repulsion strength U /t .
In this context it is important to recall that the LDFT functional recovers the ex-
act ground-state energy in both the noninteracting (U /t = 0) and strongly corre-
lated (U /t → ∞) limits of the 1D Hubbard model for arbitrary values of the electron
density 0 < n ≤ 1, which are given by Eqs. (2.20) and (2.36).

For low densities (n . 0.2) the di�erences between the ground-state energies ob-
tained from Luttinger and Fermi-Dirac momentum-distributions are marginal, and
the almost linear increase of the binding-energy |E0 | is perfectly reproduced in both
cases. For intermediate values of the electron density (0.2 ≤ n ≤ 0.8) we �nd that the
binding energy is slightly overestimated by the global minimum of the LDFT energy
functional, while the restriction to the Luttinger-like distributions leads to a slight un-
derestimation. Nevertheless, the minimization with respect to Luttinger-like distribu-
tions generally yields somewhat more accurate ground-state energies in this density
range. For example, for U /t = 4 the restriction to Luttinger-like distributions leads
to a maximal deviation from the exact ground-state energy of only 1.9% at n = 0.75,
while the global minimization yields a maximal error of 3.5% at n = 0.58. The trend
changes, however, as we approach half band-�lling, and for n > 0.8 we �nd that the
global minimization of the LDFT energy functional leads to errors in the ground-state
energy which are always smaller than 2.0%, while the restriction to Luttinger-like
distributions introduces errors up to 4.4%. This is consistent with our observation in
Section 4.3 that the linear IFE-approximation reproduces the ground-state properties
of the half-�lled in�nite Hubbard chain with astonishing accuracy for all values of
the Coulomb-repulsion strength U /t .

Similar conclusions can be drawn from Fig. 4.16 (c), where the ground-state en-
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Figure 4.16: Ground-state properties of the one-dimensional Hubbard model with di�erent
electron densities. Results are shown for (a) the ground-state energy E0 and (b) the average
number of double occupations D as functions of the electron density N /Na for representa-
tive values of U /t , as indicated in (b). The solid curves correspond to the exact Bethe-ansatz
solution [49], while the crosses are the results of LDFT in combination with the IFE approx-
imation (4.43). The plus symbols indicate results obtained by restricting the minimization of
the LDFT energy-functional to the Luttinger-like momentum distributions (4.46). Similarly,
sub�gures (c) and (d) show results for the ground-state energy E0 and the average number
of double-occupations D as functions of the Coulomb-repulsion strengthU /t for the electron
densities N /Na indicated in (d).
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ergy E0 is shown as a function of the Coulomb-repulsion strength U /t for represen-
tative values of the electron density. For rather small values of the electron density,
i. e., for n = 0.25 and 0.5, the ground-state energy is only slightly a�ected by the
strength of the Coulomb repulsion, since the electrons are able to avoid each other
very e�ectively in a correlated motion throughout the lattice. For low densities and
intermediate values of the Coulomb-repulsion strength (1 . U /t . 10) we obtain
somewhat more accurate results by restricting the minimization to the Luttinger-like
distributions. For very low or large values ofU /t the di�erences between both meth-
ods become marginal. For n = 0.75 the absolute deviations from the exact solution are
found to be almost the same for the ground-state energy obtained from both global and
restricted minimizations. Notice, however, that the global minimum overestimates the
binding energy, while the restricted minimization leads to an underestimation of the
latter. Finally, for n = 1 the ground-state energy obtained from the global minimum
of the LDFT energy functional is far more accurate than its restricted counterpart. As
already discussed in Section 4.3 the error in the ground-state energy obtained from
the global minimum is always smaller than 0.1% in the whole range from weak to
strong coupling, while the restriction to Luttinger-like distributions leads to errors of
up to 4.1%.

Concerning the dependence of the average number of double occupations D on the
electron density n = N /Na and the Coulomb-repulsion strength U /t in Figs. 4.16 (b)
and (d), we �nd that the exact results obtained from the Bethe-ansatz solution are
qualitatively very well reproduced by LDFT in combination with the IFE approxima-
tion (4.43). In the noninteracting (U /t = 0) and strongly correlated (U /t →∞) limits
the corresponding exact values of the double occupations D/Na = n

2/4 and D = 0 are
reproduced within LDFT. For intermediate to large values of the Coulomb-repulsion
strength (U /t & 2) one obtains more accurate double occupations from the minimiza-
tion with respect to Luttinger-like momentum distributions, especially in the range of
intermediate electron densities (0.2 . n . 0.8). For example, at U /t = 2 the relative
error in the double occupations obtained from Luttinger-like momentum distributions
is always below 2.7%, while errors up to 21% are found when the energy functional
is minimized globally. In contrast, when the interactions are weak (U /t . 2), the
Luttinger-like momentum distributions lead to a severe overestimation of the double
occupations near half band-�lling. This is best seen in Fig. 4.16 (d), where the double
occupations obtained from the restricted minimization for n = 1 remain approxi-
mately constant for weak interactions (U /t . 1), whereas the global minimization re-
produces the double occupations of the half-�lled Hubbard chain with astonishing ac-
curacy in the whole range from weak to strong interactions. These �ndings —namely
that the Fermi-Dirac momentum distributions obtained from the global minimization
yield more accurate results in the vicinity of half band-�lling, while Luttinger-like
distributions are preferable if intermediate electron densities are considered— is in
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4.6 Arbitrary �lling and Luttinger-liquid behavior

good qualitative agreement with the fact that the one-dimensional Hubbard model is
a Luttinger liquid only if the band is not half �lled [116].

4.6.2 The two-dimensional Hubbard model
In order to go beyond the domain of integrable models, we have applied the IFE ap-
proximation (4.43) to the in�nite square lattice with NN hopping. Figure 4.17 shows
our results for the ground-state energy E0 and the average number of double occu-
pations D obtained by minimizing the LDFT energy functional with respect to ar-
bitrary ensemble representable occupation-number distributions ησ (k) which yield
the given electron density N /Na . Figures 4.17 (a) and (c) show that the dependence
of the ground-state energy E0 on the electron density N /Na and the Coulomb-
repulsion strength is qualitatively very similar to the previously discussed in�nite
1D Hubbard chain. The proposed LDFT functional reproduces the exact value of the
ground-state energy in the noninteracting limit (U /t = 0). In the strongly corre-
lated limit (U /t →∞), the energy of the lowest-lying fully polarized state (4.48) is
obtained, which is expected to slightly overestimate the strongly-correlated ground-
state energy. The ground-state energy obtained in the framework of LDFT agrees
fairly well with numerical QMC simulations for the Hubbard model on 12×12 and
8×8 square-lattice clusters [57, 59]. This applies to the complete range of electron
densities, starting from low densities up to the half-�lled band. However, the com-
parison with QMC simulations suggests that the present IFE approximation slightly
overestimates the binding energy |E0 |.

In Figs. 4.17 (b) and (d) we show results for the average number of ground-state
double occupations D. The comparison with numerical QMC simulations reported in
Refs. [57, 59, 64] demonstrates that LDFT in combination with the interaction-energy
functional (4.43) reproduces the ground-state double occupations D fairly well as a
function of the electron density N /Na and the Coulomb-repulsion strength U /t in
the complete range of parameters. Nevertheless, for weak to intermediate interaction
strength (1 . U /t . 4) the increase of double occupations with increasing electron
density seems to be somewhat underestimated by our approximation. Notice, how-
ever, that the more recent results reported by Varney et al. [64] suggest a less severe
underestimation of the double occupations than the previous QMC calculations of
Hirsch [57] and Moreo et al. [59].

Before closing this section, we like to investigate how the ground-state momentum-
distribution ησ (k) depends on the electron density n = N /Na and the Coulomb re-
pulsion strength U /t . To this aim we compare in Fig. 4.18 the momentum distribu-
tion obtained within our present IFE approximation to the results of QMC simula-
tions [59, 64]. In Figs. 4.18 (a) and (b) the ground-state momentum distribution is
shown for the path in the �rst Brillouin zone (BZ) which crosses the Fermi surface
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Figure 4.17: Ground-state properties of the Hubbard model on the 2D square lattice with
di�erent electron densities. Results are shown for (a) the ground-state energy E0 and (b) the
average number of double occupations D as functions of the electron density N /Na for di�er-
ent values ofU /t , as indicated in (b). The solid curves correspond to LDFT in combination with
the IFE approximation (4.43), while the open symbols are the results of numerical QMC simu-
lations [57, 59, 64]. In (c) and (d) similar results are shown for the ground-state energy E0 and
average number of double-occupations D as functions of the Coulomb-repulsion strengthU /t
for the electron densities N /Na indicated in (d).
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Figure 4.18: Momentum distribution η↑(k) = η↓(k) in the ground state of the Hubbard model
on the 2D square-lattice with di�erent electron densities n = N /Na and Coulomb-repulsion
strengthsU /t . Results are shown for the path in the BZ which crosses the Fermi surface along
the diagonal kx = ky for (a) quarter (n = 0.5) and (b) half band-�lling (n = 1) at di�erent val-
ues of U /t . The solid lines correspond to LDFT in combination with the interaction-energy
functional (4.43), while the open symbols indicate results obtained from numerical QMC sim-
ulations [59, 64]. The color contour-plots show the LDFT momentum distribution in the com-
plete BZ for electron densities ranging from n = 0.2 to 1.0 for weak [U /t = 2, row (c)] and
intermediate [U /t = 4, row (d)] Coulomb-repulsion strength.
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along the diagonal kx = ky . Di�erent values of the Coulomb-repulsion strength U /t
are considered for quarter band-�lling (n = 0.5) as well as for half band-�lling (n = 1).
The rather sharp Fermi surface found for weak interactions (U /t . 2) broadens con-
siderably as the Coulomb-repulsion strength increases. Notice that this broadening
is particularly pronounced near half band-�lling (n = 1), where the carrier density
is maximal. Indeed, for low or intermediate densities the electrons are able to avoid
each other very e�ectively, without much impact on their kinetic- or binding-energy.
The momentum distribution obtained within our IFE approximation is in good agree-
ment with the available results of QMC simulations. In particular, the broadening
of the Fermi surface is very well reproduced in the case of half band-�lling. The
IFE approximation slightly overestimates the occupation numbers of the low-lying
Bloch states having kx = ky . 3π/8, while the occupation numbers of the states
with kx = ky & 5π/8 are underestimated by the same amount. This is consistent
with the overestimation of the binding energy |E0 | already discussed in the context
of Fig. 4.17. In any case, it is worth noting that our results are remarkably accurate
despite of the fact that the 2D Hubbard model is expected to be a Fermi liquid, having
a step-like singularity in the momentum distribution at the Fermi surface, a behavior
which cannot be reproduced by the continuous Fermi-Dirac distribution predicted by
our present IFE approximation.

In the lower part of Fig. 4.18 we visualize the momentum distribution obtained from
the IFE approximation in the complete BZ by means of color density-plots for di�erent
values of the Coulomb-repulsion strength U /t and the electron density 0.2 ≤ n ≤ 1.
The plots in row (c) display the momentum distribution for a relatively weak interac-
tionU /t = 2, while the plots in row (d) show similar results for intermediate interac-
tion strengthU /t = 4. Our results compare very well with similar ones obtained from
QMC simulations [64]. One observes how changes in the electron density n cause a
deformation of the Fermi surface, starting from a circular shape for low densities to
the rotated square in the case of half band-�lling. Moreover, the broadening of the
Fermi surface with increasing electron density, which is a distinctive sign of elec-
tronic correlations, is clearly visible. A qualitatively similar broadening of the Fermi
surface is also observed when the electronic correlations are enhanced by increasing
Coulomb-repulsions U /t , as can be seen by comparing the plots in rows (c) and (d)
for a given electron density n.

4.7 Summary
We have developed new practical methods to tackle the ground-state problem of
the homogeneous Hubbard model on periodic lattice structures in the framework of
LDFT. Our approach is based on a delocalized k-space perspective, which exploits a
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newly discovered connection between the interaction energyW in the ground state of
the model and the IFE S of the corresponding Bloch-state occupation-number distri-
bution ηkσ . This has opened up a completely new perspective to the ground-state
problem by taking into account the dependence of the central interaction-energy
functional W [γ ] on all elements of the SPDM γ , and led to an approximation which
leverages the full universality of LDFT.

An almost linear connection betweenW and S has been discovered in exact numer-
ical results for the ground state of the half-�lled Hubbard model, which led us to ap-
proximate the interaction-energy functionalW [η] =W (S[η]) in terms of a simple lin-
ear function of the IFE S[η]. Subsequent applications to the half-�lled Hubbard model
on �nite and in�nite lattices in d = 1–3 dimensions as well as in the limit d →∞ have
demonstrated the predictive power of our method. In fact, within our approximation it
was possible to reproduce the ground-state properties in all considered situations with
very good accuracy in the complete range from weak to strong Coulomb interactions.
This applies in particular to the subtle strongly-correlated Heisenberg limitU /t →∞,
where the linear IFE-approximation exactly reproduces the asymptotic behaviour of
the ground-state energy E0 = −αt2/U expected for localized Heisenberg spins. Most
notably, the ground-state properties of the in�nite 1D Hubbard chain derived from the
linear IFE-approximation are almost indistinguishable from the exact Bethe-ansatz
solution [49]. In higher dimensions, the linear IFE-approximation has proven to be
very accurate as well, and the corresponding ground-state observables agree well with
available QMC simulations and exact diagonalizations. Moreover, the spin-polarized
Hubbard model has been studied in the framework of the linear IFE-approximation.
In this way we have obtained the magnetization curve and the zero-�eld magnetic
susceptibility of the in�nite 1D Hubbard chain.

In order to study physical situations involving attractive interactions between the
fermions, giving rise to electronic pairing, we have considered the half-�lled Hub-
bard model with negative coupling constantU < 0. Also in this case an almost linear
connection between W and S has been discovered in exact numerical results for the
ground state. This encouraged us to propose a generalized formulation of the linear
IFE-approximation to the interaction-energy functionalW [η], which treats attractive
and repulsive interactions on the same footing. Subsequent applications to the half-
�lled attractive Hubbard model on �nite bipartite and non-bipartite lattices in two
dimensions have proven that the IFE approximation is able to account for the correla-
tions caused by attractive interactions, and very accurate results have been obtained
for the most important ground-state observables in the complete range from weak to
strong interactions.

Our �nal challenge has been to go beyond half band-�lling and to address the prob-
lem of arbitrary electron densities. The evaluation of exact numerical results for the
ground state of the Hubbard model on various lattice structures with di�erent elec-
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tron densities has shown that a unique relation betweenW and S exists even in this
more general case. However, the connection between W and S has been found to
be strongly a�ected by the electron density n. Nevertheless, by an interpolation be-
tween the low-density limit n → 0 and the half-�lled band case n = 1 it was possi-
ble to derive a physically sound extension of the IFE approximation, which applies
to arbitrary electron densities. Applications to the one- and two-dimensional Hub-
bard model have shown that the ground-state observables of the Hubbard model
are reproduced very accurately within this approximation to W [γ ] in the complete
range from low electron density up to half band-�lling for all values of the Coulomb-
repulsion strength. We have also studied the implications of qualitative changes in
the occupation-number distribution ησ (k) near the Fermi level. To this aim we have
focused on the 1D Hubbard chain and we have restricted the minimization of the
LDFT energy functional E[ησ (k)] to a class of functions ησ (k) exhibiting a typical
power-law singularity at the Fermi-level, which is characteristic for Luttinger liq-
uids, such as the 1D Hubbard model away from half band-�lling. The correspond-
ing results have shown that Luttinger-like distributions are preferable if low electron
densities are concerned, however, in the vicinity of a half �lled band (0.8 . n ≤ 1)
the Fermi-Dirac distributions obtained from the unconstrained minimization of the
energy functional within the IFE approximation lead to signi�cantly more accurate
results. We have also studied the ground-state occupation-number distribution ησ (k)
of the 2D Hubbard model on the square lattice in the framework of the IFE approxima-
tion. Our results agree surprisingly well with accurate QMC simulations, and the typ-
ical broadening of the Fermi surface, as the electron density and Coulomb-repulsion
strength increases, has been very well reproduced.
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Thermodynamic equilibrium and the
separation of spin and charge excitations 5
One of the major shortcomings of present-day density functional theory (DFT) is the
lack of e�ective approaches which account for correlated electrons in thermodynamic
equilibrium at �nite temperatures. Therefore, a large number of fundamental many-
body e�ects which give rise to important new temperature scales cannot be addressed
within the framework of DFT. Examples include phase transitions in magnetic or su-
perconducting materials, the Kondo-screening, or metal-insulator transitions, which
appear at speci�c temperatures, such as the Curie or Néel ordering temperatures in
ferromagnets and antiferromagnets, or the Kondo temperature for magnetic impuri-
ties in metals. It is therefore most desirable to develop practical �nite-temperature
approximations in the framework of DFT, which would extend the scope of DFT and
open the path to these crucial many-body e�ects.

It is therefore the aim of the present chapter to approach this problem from the per-
spective of lattice models for interacting electrons, and to extend the scope of practical
applications of lattice density functional theory (LDFT) to the regime of the thermo-
dynamic equilibrium at �nite temperatures T > 0. To this aim, we will focus on the
Hubbard model and exploit the scaling properties of the functional Gc[γ ] which ac-
counts for the correlation contribution to the free energy. In this way we derive a sim-
ple, yet very e�ective approximation to the central grand-potential functional Ω[γ ].
Previous works in the framework of LDFT have employed similar scaling properties
of the interaction-energy functionalW [γ ] in order to address the ground-state prob-
lem of the homogeneous and inhomogeneous Hubbard models [83–87], as well as the
single-impurity Anderson model [81–83].

In order to derive the approximate �nite-temperature functionals, we focus on
homogeneous and periodic systems with hoppings only between nearest neighbors
(NNs), which enables us to reduce the complexity of the central grand-potential func-
tional Ω[γ ] considerably. These simpli�cations allow us to investigate the nontrivial
correlation contribution Gc[γ ] to the free-energy functional in an explicit manner,
and the scaling properties discovered in this context will lead us to propose a very
e�cient approximation. The variational principle of Gibbs in combination with this
scaling approximation enables us to explore the equilibrium properties of the Hub-
bard model in 1–3 dimensions and to derive the temperature dependence of important
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5 Thermodynamic equilibrium and spin-charge separation

observables such as the kinetic and interaction energies, the entropy S and the speci�c
heat CV .

Most notably, we will demonstrate that the scaling approximation is able to repro-
duce the physical e�ects resulting from the separation of spin and charge degrees of
freedom in the strongly correlated limit (U � t ) of the Hubbard model. In the half-
�lled band case this fundamental �ngerprint of strong electronic correlations mani-
fests itself through the appearance of two distinct peaks in the speci�c heatCV , which
are caused respectively by low-lying spin excitations and higher-energy charge ex-
citations, the latter being caused by the onset of electronic motion throughout the
lattice and the associated �uctuations of the Coulomb energy. Moreover, we will ap-
ply our scaling approximation to the case of a less than half-�lled band in order to
study the changes in the equilibrium properties caused by variations in the electronic
density. Finally, we will consider spin-polarized systems in order to investigate the
physical properties of strongly-interacting electron systems in the presence of exter-
nal magnetic �elds.

5.1 Reduced density-matrix functionals
In Section 3.2 we have already developed the formalism of �nite-temperature lattice
density functional theory (FT-LDFT), which accounts for the thermodynamic equilib-
rium in the canonical and grand-canonical ensembles. In a grand-canonical ensemble
with a given temperatureT > 0 and chemical potentials µσ for electrons with spin po-
larization σ , the functional Ω[γ ] de�ned by Eqs. (3.52) and (3.53) incorporates Gibbs’
variational principle (3.54) and thus gives access to the equilibrium single-particle
density matrix (eq-SPDM) γ eq. Subsequently, once the eq-SPDM is known, the equi-
librium average value of any physical observable can be obtained in principle by virtue
of Corollary 3.4. It is important to keep in mind that the functional (3.53) of the grand-
potential Ω[γ ] involves the functional G[γ ], de�ned in Eq. (3.52), which includes the
contributions of the Coulomb energy and the entropy to the free energy. An explicit
exact expression for G[γ ] is, however, unknown at present. Consequently, the main
challenge in practical applications of FT-LDFT is the development of physically sound
approximations to G[γ ]. In order to address this fundamental problem, we focus on
the homogeneous single-band Hubbard model with NN hopping

Ĥ = K̂ + Ŵ = −t
∑
〈i,j〉σ

ĉ†iσ ĉjσ +U
∑
i

n̂i↑n̂i↓ , (5.1)

where 〈i, j〉 indicates the summation over all NN lattice sites, t > 0 is the NN hopping
integral, andU the local Coulomb repulsion strength. The rotational and translational
symmetry of the lattices to be considered in the following (e. g., the linear chain, the
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2D square and triangular lattices or hypercubic lattices in d dimensions) implies that
the elements

γ
eq
ijσ = γ

eq
σ (|Ri − Rj |) (5.2)

of the eq-SPDM depend only on the distance |Ri −Rj | between the corresponding lat-
tice sites i and j. Consequently, we may restrict ourselves to the subset of the ensemble
representable single-particle density matrices (SPDMs) γ which ful�ll the symmetry
constraint (5.2). In this case we have γiiσ = γ11σ for all diagonal elements i = 1, . . . ,Na

of the spin-dependent SPDM, which represent the local density nσ = Nσ/Na of spin-σ
electrons, and γijσ = γ12σ for all i, j corresponding to NNs. If we furthermore focus
on the unpolarized case, i. e., µ↑ = µ↓ = µ, the grand-potential functional (3.53) of the
Hubbard model (5.1) takes the form

Ω[γ ] = G[γ ] − Na (tz γ12 + µ γ11) , (5.3)

where Na is the number of sites, z is the coordination number, and we have introduced
γ11 =

∑
σ γ11σ and γ12 =

∑
σ γ12σ . Physically, γ11 = N /Na represents the electron den-

sity and γ12 the degree of charge �uctuations or hybridization between NNs. Notice
that, as long as only NN hoppings are taken into account (i. e., tij = 0 for i, j beyond
NNs), the dependence of Ω[γ ] on all SPDM elements other than γ11 and γ12 appears
only through the interaction and entropy functional G[γ ]. Consequently, we can ab-
sorb all SPDM elements other than γ11 and γ12 in the Levy-Lieb (LL) minimization
procedure (3.52) and de�ne the reduced functional

G[γ11,γ12] = min
ρ̂→{γ11,γ12}

Tr
{
ρ̂

(
U

∑
i

n̂i↑n̂i↓ +
1
β
log ρ̂

)}
. (5.4)

Here, the notation ρ̂ → {γ11,γ12} indicates that the minimization is performed within
the set formed by the positive semide�nite density matrices ρ̂ ∈ P with unit trace,
satisfying ∑

σ

Tr
{
ρ̂ ĉ†iσ ĉiσ

}
= γ11 for i = 1, . . . ,Na (5.5a)

and ∑
σ

Tr
{
ρ̂ ĉ†iσ ĉjσ

}
= γ12 ∀i, j ∈ NNs . (5.5b)

The reduced functional (5.4) has a universal character in the sense that it does not
depend on the chemical potential µ and the NN hopping-integral t . It depends on the
underlying Fock-space, which is determined by the number of lattice sites Na , on the
temperatureT , the Coulomb-repulsion strengthU , and, in contrast toG[γ ], also on the
topology of the lattice structure under consideration. The dependence on the lattice
structure is introduced by the constraint (5.5b), requiring that all SPDM elements γij
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which correspond to NNs must equal γ12. Clearly, since this constraint makes explicit
reference to the NNs, it is not transferable between lattice structures having di�erent
local topologies.

The restriction to homogeneous systems with hoppings only between NNs intro-
duces a remarkable simpli�cation: Given any explicit approximation to the reduced
functional G[γ11,γ12], the grand-potential Ω0 is easily accessible as the minimum of
the corresponding functional

Ω[γ11,γ12] = G[γ11,γ12] − Na (tz γ12 + µ γ11) . (5.6)

The minimizing values γ eq11 and γ eq12 directly yield the local electron density n = γ
eq
11

and the kinetic energyK/Na = −tz γ eq12 in thermodynamic equilibrium, and additional
equilibrium averages can be obtained from corresponding derivatives of the grand po-
tential Ω0. Clearly, the minimization of the reduced grand-potential functional (5.6)
must be restricted to the corresponding domain of de�nition, which is given by the
setXe containing all tuples (γ11,γ12) that can be associated with a density matrix ρ̂ ∈ P
satisfying Eq. (5.5). Therefore, before we derive explicit approximations to the func-
tional (5.4), it is important to explore the domainXe and to characterize its boundaries.

5.1.1 Domain of ensemble representability

In order to identify the domain of de�nition Xe of the reduced functionals (5.4)
and (5.6), it is su�cient to focus on ensemble representable SPDMs which ful�ll the
constraint (5.2), since we are concerned with periodic lattices having translational and
rotational symmetry. Under these circumstances, the constraints (5.5) on the SPDM el-
ements, i. e., γii = γ11 for i = 1, . . . ,Na and γij = γ12 for all i, j corresponding to NNs,
are automatically satis�ed for all (γ11,γ12) ∈ Xe. Furthermore, the translational sym-
metry implies that the natural orbitals are the Bloch states of the lattice structure
under consideration. Thus, we can express the spin-resolved SPDM elements γijσ in
terms of the eigenvalues or Bloch-state occupation numbers ηkσ as (see Section 4.1)

γijσ = γσ (Ri − Rj) = 1
Na

∑
k∈BZ

ηkσ e−ik ·(Ri−R j ) , (5.7)

where the summation runs over the wavevectors in the �rst Brillouin zone (BZ). Since
the eigenvalues of ensemble representable SPDMs are bounded by 0 ≤ ηkσ ≤ 1 ∀kσ
(see Section 3.2.1), the domain of representability can be identi�ed as follows. The
diagonal elements

γiiσ =
1
Na

∑
k∈BZ

ηkσ (5.8)
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are bounded by 0 ≤ γiiσ ≤ 1, which is simply a consequence of Pauli’s exclusion
principle. This implies that γ11 =

∑
σ γ11σ satis�es 0 ≤ γ11 ≤ 2. For the case of the NN

SPDM-elementγ12σ , we recall that the invariance with respect to the discrete rotations
in the point group of the lattice implies γijσ = γ12σ for all i, j belonging to NNs. Thus,

γ12σ =
1
z

∑
∆∈NN

γσ (∆) = 1
Naz

∑
k∈BZ

ωk ηkσ , (5.9)

where ∆ ∈ NN indicates the unique vectors connecting a given lattice site to its z NNs.
In Eq. (5.9) we have introduced the numbers

ωk =
∑
∆∈NN

cos(k · ∆) , (5.10)

which coincide with the Bloch-state energies (2.15) of the single-band Hubbard model
when the NN-hopping integral is set to t = −1, and play the role of the energy levels
in an e�ective single-particle problem. Therefore, we will refer to ωk as “e�ective”
Bloch-state energies, regardless of the fact that they are dimensionless numbers. No-
tice that Eqs. (5.9) and (5.10) are a simple consequence of the relation between γ12σ
and the spin-resolved kinetic energy Kσ/Na = −tz γ12σ in periodic single-band sys-
tems with NN hopping. Equation (5.9) shows that for any number Nσ = Na γ11σ of
spin-σ electrons, the upper (lower) bound of γ12σ is attained when the Bloch states
with the highest (lowest) ωk are occupied (ηkσ = 1) while all other Bloch states are
unoccupied (ηkσ = 0). Therefore, in order to determine the boundaries on γ12σ , it is
save to assume that the Bloch-state occupation numbers ηkσ = ησ (ωk) are determined
by the corresponding e�ective energies ωk , and by introducing

ρ(ω) = 1
Na

∑
k∈BZ

δ (ω − ωk) (5.11)

we can thus rewrite Eqs. (5.8) and (5.9) as

γ11σ =

∫ ∞

−∞
ησ (ω) ρ(ω) dω and γ12σ =

1
z

∫ ∞

−∞
ω ησ (ω) ρ(ω) dω . (5.12)

Clearly, ρ(ω) de�ned in Eq. (5.11) is simply the density of states (DOS) of the tight-
binding Hamiltonian

Ĥtb =
∑
〈i,j〉

ĉ†i ĉj , (5.13)

whose single-particle eigenvalues coincide with ωk given in Eq. (5.10). In particular,
in the unpolarized case γ↑ = γ↓ the upper and lower bounds on γ12 =

∑
σ γ12σ are

given by

γmax
12 =

2
z

∫ ∞

µmax

ω ρ(ω) dω and γmin
12 =

2
z

∫ µmin

−∞
ω ρ(ω) dω , (5.14)
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Figure 5.1: DomainXe of ensemble representable (γ11,γ12) for di�erent lattice structures. The
results correspond to unpolarized SPDMs (γ↑ = γ↓) of the periodic (a) 1D chain, (b) square
lattice, (c) triangular lattice, and (d) simple-cubic lattice.

where µmin and µmax are associated with the electron density n = γ11 by the condition

γ11
2 =

∫ ∞

µmax

ρ(ω) dω =
∫ µmin

−∞
ρ(ω) dω . (5.15)

In Fig. 5.1 the domainXe formed by the ensemble representable values of γ11 andγ12
is shown for a number of representative lattice structures. We have focused on the
unpolarized case and used Eqs. (5.14) and (5.15) in order to determine the boundaries
on γ12 as a function of the electron density in the complete range 0 ≤ γ11 ≤ 2. For bi-
partite lattice structures we �nd domains which are symmetric with respect toγ12 = 0,
i. e., γmin

12 (γ11) = −γmax
12 (γ11). This symmetry is readily understood by recalling that for

bipartite lattices the tight-binding Hamiltonian (5.13) simply changes sign upon the
unitary transformation which replaces ĉ†i → ±ĉ†i , where the positive sign applies to
the sites i within one of the two sublattices and the negative to the others. In this case,
the spectrum of Ĥtb and thus the DOS (5.11) is symmetric with respect toω = 0, which
implies γmin

12 = −γmax
12 according to Eq. (5.14). This symmetry does not apply to non-

bipartite lattice structures as, for example, the triangular lattice shown in Fig. 5.1 (c).
Nevertheless, the upper and lower boundaries on γ12 are always linked by the rela-
tion γmin

12 (γ11) = −γmax
12 (2 − γ11), which follows from a similar argument by using the

fact that the tight-binding Hamiltonian (5.13) changes sign upon electron-hole trans-
formation. We conclude that the knowledge of only one of the bounds on γ12, upper
or lower, for all electron densities 0 ≤ γ11 ≤ 2 su�ces in order to characterize the
domain of ensemble representability. Moreover, in the case of bipartite lattice struc-
tures, the additional symmetry γmin

12 = −γmax
12 implies that it su�ces to consider the
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5.1 Reduced density-matrix functionals

upper or lower boundary on γ12 for electron densities up to half band-�lling, i. e., in
the range 0 ≤ γ11 ≤ 1.

5.1.2 Functionals for uncorrelated mixed-states
An important class Ps of many-particle states is formed by the uncorrelated mixed-
states, which are particularly relevant for the thermodynamic equilibrium in the non-
interacting limit U /t → 0 and in the limit of high temperatures T /U → ∞ (see Ap-
pendix B). Therefore, it is instructive to consider the restriction of the functional (5.4)
to the set of uncorrelated mixed-states, which is given by

Gs[γ11,γ12] = min
ρ̂s→{γ11,γ12}

Tr
{
ρ̂s

(
U

∑
i

n̂i↑n̂i↓ +
1
β
log ρ̂s

)}
, (5.16)

where ρ̂s → {γ11,γ12} indicates the minimization with respect to all uncorrelated
mixed-states ρ̂s ∈ Ps which satisfy the conditions (5.5). If we focus on the unpolarized
case γ↑ = γ↓, the interaction energy W = U

∑
i Tr{ρ̂s n̂i↑n̂i↓} in any uncorrelated

mixed-state which meets these requirements is given by (see Appendix B)

WHF[γ11] = UNa
γ 211
4 . (5.17)

Consequently, only the entropy contribution toGs needs to be minimized in Eq. (5.16).
Thus, we can write

Gs[γ11,γ12] =WHF[γ11] −T Ss[γ11,γ12] , (5.18)

where we have introduced the reduced form

Ss[γ11,γ12] = −kB min
ρ̂→{γ11,γ12}

Tr
{
ρ̂ log ρ̂

}
(5.19)

of the universal independent-Fermion entropy (IFE) functional (3.74). Notice that in
Eq. (5.19) it is not necessary to restrict the minimization to the subspace Ps , since the
minimizing ρ̂ always represents an uncorrelated mixed state. This is readily seen by
considering the corresponding Euler-Lagrange functional

L[ρ̂] = Tr
{
ρ̂ log ρ̂

}
+ λ

∑
〈i,j〉

(
Tr

{
ρ̂
∑
σ

ĉ†iσ ĉjσ
}
− γ12

)
− ν

Na∑
i=1

(
Tr

{
ρ̂
∑
σ

n̂iσ
}
− γ11

)
= Tr

{
ρ̂

(
λ

∑
〈i,j〉σ

ĉ†iσ ĉjσ + log ρ̂ − ν N̂
)}
+ Na (ν γ11 − λz γ12) , (5.20)
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5 Thermodynamic equilibrium and spin-charge separation

where N̂ = ∑
iσ n̂iσ and the Lagrange multipliers λ andν enforce that the minimizing ρ̂

satis�es the conditions (5.5). Apart from irrelevant constants, the functional (5.20)
is of the Gibbs form (3.43) and thus the minimum within the set P of all positive
semide�nite density matrices ρ̂ with unit trace is taken for

ρ̂s =
e−βs (Ĥs−µs N̂ )

Tr
{
e−βs (Ĥs−µs N̂ )

} , (5.21)

where βs = λ and µs = ν/λ can be interpreted as e�ective inverse temperature and
chemical potential, and

Ĥs =
∑
〈i,j〉σ

ĉ†iσ ĉjσ (5.22)

is the Hamiltonian of an auxiliary noninteracting system. We conclude that ρ̂s de-
scribes an uncorrelated mixed-state, since it is the grand-canonical density matrix of
a noninteracting system (see Appendix B).

Following the argument which led to the explicit expression (3.74) for the IFE func-
tional, we conclude that

Ss[γ11,γ12] = −kB
∑
kσ

[
ηkσ logηkσ + (1 − ηkσ ) log(1 − ηkσ )

]
, (5.23)

where
ηk↑ = ηk↓ =

1
1 + eβs (ωk−µs ) (5.24)

are the occupation numbers of the Bloch-states with the e�ective energiesωk given in
Eq. (5.10). Equation (5.24) implies that, for a given e�ective temperature and chemical
potential, the occupation numbers ηkσ = ησ (ωk) depend solely on the corresponding
Bloch-state energy ωk . Therefore, we can express the reduced IFE-functional (5.23) in
terms of the tight-binding DOS (5.11) as

Ss[γ11,γ12] = −kBNa

∑
σ

∫ ∞

−∞

[
ησ (ω) log

(
ησ (ω)

)
+

(
1−ησ (ω)

)
log

(
1−ησ (ω)

) ]
ρ(ω) dω .

(5.25)
In practice, one calculates the Bloch-state occupation numbers (5.24) for given values
of the e�ective inverse temperature βs and the e�ective chemical potential µs , and uses
Eq. (5.12) in order to compute γ11 =

∑
σ γ11σ and γ12 =

∑
σ γ12σ , as well as Eq. (5.25) in

order to obtain the corresponding IFE Ss . Subsequently, one varies βs and µs system-
atically in order to scan the complete domain of ensemble representability.

In Fig. 5.2 results are shown for the reduced IFE-functional Ss[γ11,γ12] correspond-
ing to di�erent periodic lattice structures. For the bipartite lattice structures consid-
ered it is su�cient to focus on the partial domain 0 ≤ γ11 ≤ 1 and γ12 ≥ 0. Indeed,
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Figure 5.2: Reduced IFE-functional Ss [γ11,γ12] for di�erent bipartite lattice structures. Color
contour-plots are shown for the periodic (a) one-dimensional chain, (b) square lattice, and
(c) simple cubic lattice. The color scale for Ss is indicated on the right, where Smax

s = kBNa log 4
refers to the structure-independent global maximum of Ss , which is attained in the localized
limit γ12 = 0 at half band-�lling γ11 = 1. Contour lines are drawn at equidistant values of Ss
in order to display its functional dependence more clearly.

changing the sign of the e�ective temperature in Eq. (5.24) leads to ηkσ → 1 − ηkσ ,
which leaves the IFE (5.23) invariant but changes the sign of γ12, which follows
from Eq. (5.12) if the DOS ρ(ω) is an even function. Thus, one readily concludes
that Ss[γ11,γ12] = Ss[γ11,−γ12] if the underlying lattice structure is bipartite. Fur-
thermore, the fact that the auxiliary Hamiltonian (5.22) changes sign upon electron-
hole transformation implies that Ss[γ11,γ12] = Ss[2 − γ11,−γ12]. As already discussed
in Section 5.1.1, the upper bound on γ12 is attained when the Bloch states with the
highest e�ective energies ωk are occupied (ηkσ = 1) while all other Bloch-states are
unoccupied (ηkσ = 0). Consequently, Ss vanishes on the complete delocalized bound-
ary (γ12 = γmax

12 ), and for a given electron density γ11 the IFE increases monotonously
as the degree of NN charge �uctuations γ12 decreases, until the localized limit γ12 = 0
is reached. According to Eq. (5.12) the localized limit γ12 = 0 corresponds to homo-
geneous occupations ηkσ = γ11/2 for all kσ . In this case the IFE (5.23) assumes its
maximal value

Smax
s (γ11) = kBNa [log 4 − (2 − γ11) log(2 − γ11) − γ11 logγ11] (5.26)

for the given electron density. Notice that this maximal value is independent of the
lattice structure under consideration.

123



5 Thermodynamic equilibrium and spin-charge separation

5.2 Scaling approximation for correlation e�ects
Having discussed the case of uncorrelated mixed-states and derived the exact func-
tional dependence of the corresponding functional Gs[γ11,γ12] which comprises the
interaction energy and entropy of independent Fermions, we will now focus on the
e�ects caused by electronic correlations. To this aim it is helpful to express the func-
tional (5.4) in the form

G[γ11,γ12] = Gs[γ11,γ12] +Gc[γ11,γ12] , (5.27)

whereGc[γ11,γ12] takes into account all contributions to the free energy which are the
result of electronic correlations. In order to investigate the functional Gc[γ11,γ12] in
detail, one �rst needs to derive a practical implementation of the functionalG[γ11,γ12]
de�ned in Eq. (5.4), which is possible by performing the corresponding minimization
in an explicit manner. To this aim, let us consider the corresponding Euler-Lagrange
functional

L[ρ̂] = Tr
{
ρ̂

(
U

∑
i

n̂i↑n̂i↓ +
1
β
log ρ̂

)}
+ λ

∑
〈i,j〉

(
Tr

{
ρ̂
∑
σ

ĉ†iσ ĉjσ
}
− γ12

)
− µ

Na∑
i=1

(
Tr

{
ρ̂
∑
σ

n̂iσ
}
− γ11

)
(5.28)

= Tr
{
ρ̂

(
λ

∑
〈i,j〉σ

ĉ†iσ ĉjσ +U
∑
i

n̂i↑n̂i↓ +
1
β
log ρ̂ − µ N̂

)}
+ Na (µ γ11 − λz γ12) ,

where the Lagrange multipliers λ and µ enforce that the minimizing density matrix ρ̂
satis�es the conditions (5.5). Apart from an irrelevant additive constant, the func-
tional (5.28) is of the Gibbs form (3.43) and thus its minimum within the set P of all
positive semide�nite density matrices ρ̂ with unit trace is taken for

ρ̂0 =
e−β (Ĥaux−µN̂ )

Tr
{
e−β (Ĥaux−µN̂ )

} , (5.29)

where µ is identi�ed as the chemical potential of the system described by the auxiliary
Hamiltonian

Ĥaux = λ
∑
〈i,j〉σ

ĉ†iσ ĉjσ +U
∑
i

n̂i↑n̂i↓ . (5.30)

Clearly, the range of practical applications of this approach is limited, since it re-
quires one to compute the grand-canonical density matrix ρ̂0 for the auxiliary Hamil-
tonian (5.30), which has the same level of complexity as the initial problem de�ned by
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5.2 Scaling approximation for correlation e�ects

the Hubbard-model Hamiltonian (5.1). Therefore, applications of the thus described
method are restricted to systems which are either soluble by exact analytical meth-
ods or which are su�ciently small in order to allow for an exact numerical calcula-
tion of the complete many-body spectrum. In these cases, one computes the grand-
canonical density matrix (5.29) for given values of the e�ective NN hopping-integral λ
and chemical potential µ, obtains the equilibrium electron density γ11 and the degree
of NN charge �uctuations γ12 as

γij =
∑
σ

Tr
{
ρ̂0 ĉ
†
iσ ĉjσ

}
, (5.31)

and the corresponding interaction- and entropy-contribution to the free energy is
given by

G[γ11,γ12] = Tr
{
ρ̂0

(
U

∑
i

n̂i↑n̂i↓ +
1
β
log ρ̂

)}
. (5.32)

Subtracting the uncorrelated part Gs[γ11,γ12] �nally yields the correlation contribu-
tion Gc[γ11,γ12] to the free energy. Varying the e�ective NN hopping-integral λ and
chemical potential µ systematically allows us to scan the complete domain Xe of en-
semble representability (see also Fig. 5.1). Alternatively, one may focus on a �xed elec-
tron densityγ11 by solving the eigenvalue problem for the auxiliary Hamiltonian (5.30)
and determining µ such that the desired density is obtained. Varying the e�ective
NN hopping-integral λ systematically then yields the functional dependence Gc[γ12]
in the complete range of representable γ12 for the given electron density.

In Fig. 5.3 we focus on the case of a half-�lled band (γ11 = 1) and present re-
sults for the correlation contribution Gc[γ12] to the free energy of the 1D Hubbard
model on �nite rings having Na = 2–7 sites as well as for the in�nite chain. No-
tice that G/U and thus also Gc/U depends only on the ratio U /kBT and not on the
Coulomb-repulsion strength U and the temperature T individually [see Eq. (5.32)].
Thus, in Figs. 5.3 (a)–(c) we plot Gc/U against γ12 for di�erent ratios U /kBT . Further-
more, we focus on the sector 0 ≤ γ12 ≤ γ 012, whereγ 012 = γmax

12 refers to the upper bound
on the NN charge �uctuation [see Eq. (5.14)]. The correlation functionals Gc[γ12] of
the �nite rings were obtained from exact numerical diagonalizations of the auxiliary
Hubbard-model Hamiltonian (5.30), while the results for the in�nite Hubbard chain
were obtained from the exact �nite-temperature solution of Jüttner, Klümper, and
Suzuki [56]. In Fig. 5.3 one observesGc ≤ 0 in the complete range of representableγ12,
which is expected, since the correlated motion of the electrons necessarily yields a re-
duction of the free energy. Furthermore, |Gc | increases monotonously with decreas-
ing γ12, which re�ects the fact that strong correlations in the electronic motion, aimed
at the reduction of the average Coulomb energy, are accompanied with a signi�cant
suppression of the charge �uctuations. Concerning the dependence on the temper-
ature and the Coulomb-repulsion strength, we �nd that |Gc |/U increases with the
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Figure 5.3: Correlation contribution Gc [γ11,γ12] to the free-energy functional of the one-
dimensional Hubbard model at half band-�lling (γ11 = 1). Results are shown for �nite rings
having Na = 2–7 sites as well as for the in�nite chain with di�erent ratios U /kBT between
the Coulomb-repulsion strength U and the temperature T . Sub�gures in the right column
[(a’)–(c’)] show the same data as their counterparts on the left [(a)–(c)], however, in the right
column the values ofGc and the domain of representable γ12 are scaled to a common range by
using the system-dependent upper bound γ 012 on the degree of NN charge �uctuations as well
as the correlation contributionsG∞c andG0

c in the localized (γ12 = 0) and delocalized (γ12 = γ 012)
limits.
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5.2 Scaling approximation for correlation e�ects

ratio U /kBT . Clearly, in the uncorrelated or high-temperature limit U /kBT → 0, the
Coulomb energy has negligible impact in the minimization (5.4) which determines
the functional dependence ofG[γ11,γ12]. Therefore, the minimizing density matrix ρ̂s
must be the one which yields the maximum entropy for the givenγ11 andγ12. This im-
pliesG[γ11,γ12] = Gs[γ11,γ12] (see Section 5.1.2), such that the correlation contribution
to the free energy vanishes in this limit. On the other hand, the Coulomb energy dom-
inates G[γ11,γ12] in the strongly-interacting or low temperature limit U /kBT → ∞.
Thus, the minimization in Eq. (5.4) leads to a strongly-correlated mixed state ρ̂∞
which, regardless of the entropy loss, yields the minimal average number of dou-
ble occupations achievable for the given γ11 and γ12. This strongly-correlated mixed
state ρ̂∞ is in general very di�erent from the uncorrelated mixed-state ρ̂s which yields
the maximal entropy. Thus, the correlation contribution |Gc | = |G − Gs | increases
with U /kBT as the underlying mixed-state evolves from ρ̂s in the uncorrelated limit
to ρ̂∞ in the strongly-interacting limit.

In Figs. 5.3 (a)–(c) we �nd a qualitative similar dependence of Gc on the NN charge
�uctuation γ12 and on the ratio U /kBT for all considered systems. The most rele-
vant dependence on the lattice size Na originates from the system-dependent repre-
sentability domain, which is characterized by the upper boundary γ 012 on the degree
of NN charge �uctuations. In addition, a rather weak dependence on Na is intro-
duced by the minimal and maximal values G∞c and G0

c of the correlation functional,
which are attained, respectively, in the localized (γ12 = 0) and delocalized (γ12 = γ 012)
limits. In fact, in Section 5.2.1 we will see that the correlation contribution G∞c to
the free energy in the localized limit γ12 = 0 is independent of the lattice structure
under consideration, and that it scales with the size of the system such that G∞c /Na

depends solely on the electron density γ11, the Coulomb-repulsion strength U , and
the temperature T . Furthermore, in Section 5.2.2 we will demonstrate that the non-
vanishing, slightly system-dependent values G0

c observed in the delocalized limit of
some �nite clusters [see, for example, the results for Na = 3–5 in Figs. 5.3 (a)–(c)] are
due to �nite-size e�ects resulting from degeneracies in the single-particle spectrum.
These �ndings suggest that the functional Gc[γ12] could reveal a quasi-universal be-
haviour if the system-dependent representability domains are scaled to a common
range. In order to test this conjecture, we plot in Figs. 5.3 (a’)–(c’) the relative correla-
tion contribution to the free energy (Gc−G∞c )/(G0

c −G∞c ) against the relative degree of
NN charge �uctuationsγ12/γ 012. In this way, a nearly system-independent behaviour of
the scaledGc[γ12] is indeed observed, which is especially true for intermediate to large
values of U /kBT , i. e., in the parameter range where correlation e�ects play a crucial
role. Therefore, it is reasonable to expect that the functional dependence of Gc[γ12]
can be inferred to a very high level of accuracy from the properly scaled correlation
functional of a reference system which can be solved by exact analytical or numerical
methods. Consequently, we propose the following scaling approximation for the cor-
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5 Thermodynamic equilibrium and spin-charge separation

relation contribution to the free-energy functional of the half-�lled Hubbard model:

Gc[γ12] = G∞c +
(
G0
c −G∞c

) Grf
c

[
γ rf12

] −Grf ,∞
c

Grf,0
c −Grf ,∞

c

with γ rf12 = γ12
γ rf ,012
γ 012
, (5.33)

where the upper index “rf” on Gc and γ12 refers to the exactly solvable reference sys-
tem. Notice that the temperature T and the interaction-integrals W σσ ′

ijkl
merely play

the role of �xed external parameters in the framework of FT-LDFT formulated in Sec-
tion 3.2. Therefore, we require to consider the reference system in the scaling approx-
imation (5.33) at the temperature T and the Coulomb-repulsion strength U speci�ed
by the target system in order to be compliant with the principles of FT-LDFT.

In this context, it is worth mentioning that the accuracy of the scaling approxi-
mation (5.33) can be improved by an appropriate choice of the reference system. As
already discussed in Section 5.1, the functional (5.4) and thusGc[γ12] depends to some
extent on the lattice structure. Therefore, although the scaling properties exploited
in Eq. (5.33) take into account most of the dependence ofGc[γ12] on the system size Na ,
it is clear that the nature of the correlated electronic motion and thus the extent of the
correlation e�ects expressed by Gc also depend on the local topology of the underly-
ing lattice. This is especially true in the regime of small to intermediate values of γ12,
where short-ranged charge �uctuations dominate. Therefore, it is advisable to choose
a reference system whose local topology matches the one of the system under study.
For example, in the case of the 2D square lattice one expects more accurate results by
using a �nite square-lattice cluster as reference system rather than a 1D ring.

Notice that the scaling approximation (5.33) involves the system-speci�c correla-
tion contributionsG∞c andG0

c to the free energy in the localized and delocalized limits.
Therefore, it is worthwhile to study the extent of electronic correlations in these cru-
cial limits in detail, before we move on and apply the scaling approximation to the
half-�lled Hubbard model on 1–3 dimensional periodic lattices.

5.2.1 Correlation e�ects in the localized limit
The purpose of this section is to determine the correlation contribution G∞c to the
free energy in the localized limit γ12 = 0, which enters the approximation (5.33) as an
essential scaling parameter. We have already seen that the functional G[γ11,γ12] can
be determined from the solution of the thermodynamic equilibrium problem with the
auxiliary Hamiltonian (5.30), and it is clear that a localized thermal-equilibrium state,
i. e., γij =

∑
σ Tr

{
ρ̂0 ĉ
†
iσ ĉjσ

}
= 0 for all i, j corresponding to NNs, can only be achieved

for λ = 0. Thus, in order to handle the localized limit, the auxiliary Hamiltonian can
be simpli�ed to

Ĥaux = U
∑
i

n̂i↑n̂i↓ . (5.34)
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5.2 Scaling approximation for correlation e�ects

Since Ĥaux is a sum of mutually commuting local terms, the corresponding grand-
canonical partition function

Z = Tr
{
e−β (Ĥaux−∑σ µσ N̂σ )} = Na∏

i=1
Tri

{
e−β (Un̂i↑n̂i↓−∑σ µσ n̂iσ )} = ZNa

1 (5.35)

can be partitioned into a product of local contributions, where

Z1 = Tr1
{
e−β (Un̂↑n̂↓−∑σ µσ n̂σ )} = 1 + eβµ↑ + eβµ↓ + eβ(µ↑+µ↓−U ) (5.36)

is the partition function for a single site and Tr1 denotes the trace in the correspond-
ing four-dimensional singe-site Fock space. In order to be more general, we consider
a spin-dependent chemical potential µσ , which will turn out to be useful in later ap-
plications to spin-polarized systems. From the partition function (5.35), we obtain the
grand potential as

Ω0 = − 1
β
logZ = −Na

β
log

(
1 + eβµ↑ + eβµ↓ + eβ(µ↑+µ↓−U )

)
, (5.37)

and thus we readily infer the spin-dependent electron density as

γ11σ =
Nσ

Na
= − 1

Na

∂Ω0
∂µσ
= 1 − 1 + eβµ−σ

Z1
. (5.38)

Combining Eqs. (5.36) and (5.38), it is straight forward to express the single-site par-
tition function in terms of the spin-dependent electron density

Z1 =
x − (2 − γ11)(x − 1) +

√
[x − (2 − γ11)(x − 1)]2 + 4 (x − 1)(1 − γ11↑)(1 − γ11↓)

2 (1 − γ11↑)(1 − γ11↓)
,

(5.39)
where x = eβU and γ11 =

∑
σ γ11σ . Furthermore, using Eq. (5.38), we can express the

chemical potentials in terms of the spin-dependent electron density as

µσ =
1
β
log

[
Z1 (1 − γ11,−σ ) − 1

]
. (5.40)

Finally, we obtain the contribution (5.32) of the Coulomb energy and the entropy to
the free energy in the localized limit as

G∞

Na
= − 1

β
logZ1 +

∑
σ

µσγ11σ . (5.41)
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Figure 5.4: Correlation contribution G∞c to the free energy in the localized limit (γ12 = 0) as
function of the electron density γ11. Results are shown for unpolarized charge distributions
(γ11↑ = γ11↓ = γ11/2) and representative values of the ratio U /kBT between the Coulomb-
repulsion strength U and the temperature T .

Notice that G∞/Na depends only on the spin-dependent electron density γ11σ , the
Coulomb-repulsion strength U , and the temperature T , but not on the structure or
size of the lattice, since the underlying many-particle state is fully localized.

In order to obtain the correlation contributionG∞c = G∞ −G∞s to the free energy in
the localized limit, we subtract the uncorrelated partG∞s =WHF −T S∞s , whereWHF =
UNa γ11↑γ11↓ is the Hartree-Fock interaction energy (see Appendix B) and S∞s the IFE
in the localized limit. In this case, the Bloch-state occupation numbers ηkσ = γ11σ ∀k
are independent of the wave-vectork , such that we obtain the corresponding IFE from
Eq. (5.23) as

S∞s = −kBNa

∑
σ

[
γ11σ logγ11σ + (1 − γ11σ ) log(1 − γ11σ )

]
. (5.42)

Clearly, just like G∞/Na , the correlation contribution G∞c /Na to the free energy per
lattice site in the localized limit does not depend on the lattice structure and size, but
only on the spin-dependent electron density γ11σ , the Coulomb-repulsion strengthU ,
and the temperature T .

In Fig. 5.4 the dependence of G∞c on the electron density γ11 is shown for the
case of unpolarized charge distributions (γ11↑ = γ11↓ = γ11/2). The results shown
account for G∞c /U , which depends on the ratio U /kBT but not on the Coulomb-
repulsion strength U and the temperature T individually. Notice that |G∞c | increases
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5.2 Scaling approximation for correlation e�ects

monotonously with the Coulomb-repulsion strength U and the electron density in
the considered range 0 ≤ γ11 ≤ 1, and its maximum is reached the case of a half-�lled
band (γ11 = 1). Similar observations were already made in the context of Fig. 5.3.

5.2.2 Correlation e�ects in the delocalized limit
The purpose of this section is to determine the correlation contribution G0

c to the
free energy in the delocalized limit where the degree of charge �uctuations between
NNs is maximal, i. e., γ12 = γ 012. As already discussed in Section 5.1.1, the many-body
states which yield γ12 = γ 012 are Slater determinants where the Bloch states with ef-
fective energies (5.10) above the chemical potential, i. e., with ωk > µσ , are fully occu-
pied (ηkσ = 1) while Bloch states having ωk < µσ are unoccupied (ηkσ = 0). In order
to account for the delocalized limit, it is therefore su�cient to work in the truncated
Fock-spaceH0 spanned by the Slater determinants

|Φ〉 =
∏
σ

∏
ωk=µσ

(
ĉ†
kσ

)nkσ |Φ0〉 with nkσ ∈ {0, 1} , (5.43)

which di�er only in the occupation of the usually degenerate lowest occupied energy
level ωFσ = µσ for spin-σ electrons, which can be regarded as the Fermi level since
it marks the boundary between occupied and unoccupied Bloch states. Furthermore,
we have introduced the state

|Φ0〉 =
∏
σ

∏
ωk>µσ

ĉ†
kσ
|vac〉 , (5.44)

which represents the bulk of the Fermi sea. The Fock-space truncation reduces the
initially 4Na -dimensional Fock-space to the 2дF ↑+дF ↓-dimensional subspace which is
relevant in the delocalized limit. Here, дFσ denotes the degeneracy of the Fermi
level ωFσ = µσ for spin-σ electrons. The Fock-space truncation thus renders the de-
localized limit tractable if the degeneracy of the Fermi level is su�ciently low. For a
given spin-dependent electron density γ11σ , the contribution of the Coulomb energy
and the entropy to the free energy in the delocalized limit is then given by

G0 = min
ρ̂→{γ11↑,γ11↓}

Tr0
{
ρ̂

(
U

∑
i

n̂i↑n̂i↓ +
1
β
log ρ̂

)}
, (5.45)

where Tr0 denotes the trace in the truncated Fock-space H0, and ρ̂ → {γ11↑,γ11↓}
indicates that the minimization is performed with respect to all positive semide�-
nite density matrices ρ̂ ∈ P0 ⊂ P having unit trace in H0, i. e., Tr0{ρ̂} = 1, and
yield the desired local spin density Tr0

{
ρ̂ ĉ†iσ ĉiσ

}
= γ11σ for all i = 1, . . . ,Na . Notice

that, in contrast to the de�nition of G[γ11,γ12] in Eq. (5.4), no constraint is needed
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5 Thermodynamic equilibrium and spin-charge separation

in order to enforce γ12 = γ 012, since this condition is granted for all states within the
truncated Fock-space H0. Moreover, it is important to remark that, in contrast to
the localized limit discussed in the previous section, G0 does depend on the lattice
structure under consideration, since the truncated Fock-spaceH0 is de�ned in terms
of the lattice-speci�c Bloch states and the corresponding e�ective energies ωk [see
Eqs. (5.10) and (5.43)].

In order to �nd the minimum in Eq. (5.45), one considers the corresponding Euler-
Lagrange functional L[ρ̂], which includes Lagrange multipliers in order to enforce
that the constraints Tr0

{
ρ̂ ĉ†iσ ĉiσ

}
= γ11σ are satis�ed for all i = 1, . . . ,Na . As usual,

the Euler-Lagrange functional has the Gibbs form (3.43) and therefore, the minimum
within the set P0 of all positive semide�nite density matrices ρ̂ having unit-trace in
the truncated Fock-spaceH0 is given by

ρ̂0 =
e−(u D̂−

∑
σ νσ N̂σ )

Tr0
{
e−(u D̂−

∑
σ νσ N̂σ )

} , (5.46)

where D̂ = ∑
i n̂i↑n̂i↓ is the operator counting the local double occupations,u = U /kBT

is the ratio between the Coulomb-repulsion strength and the temperature, and νσ can
be considered as an e�ective chemical potential for spin-σ electrons. Notice that, in
contrast to Eq. (5.35), the partition function in the denominator of Eq. (5.46) can not be
separated into a product of local contributions, since the trace is taken in the truncated
Fock space. Therefore, one expresses D̂ in terms of the Bloch-states (2.13)

D̂ =
1
Na

∑
k1,k2,q∈BZ

ĉ†
k1+q,↑ ĉk1↑ ĉ

†
k2−q,↓ ĉk2↓ (5.47)

and one constructs the matrix representation Dnm = 〈Φn |D̂ |Φm〉 in the truncated Fock
space spanned by the Slater determinants (5.43). Since D̂ conserves the number Nσ

of spin-σ electrons as well as the total momentum K =
∑

kσ k nkσ , one can diago-
nalize D̂ within each (N↑,N↓,K)-block separately. Expressing the minimizing density
operator (5.46) in terms of the thus obtained eigenvalues Dn and orthonormal eigen-
states |Ψn〉, one has

ρ̂0 =
1
Z0

∑
n

e−
(
u Dn−∑σ νσN

(n)
σ

)
|Ψn〉〈Ψn | (5.48a)

with
Z0 =

∑
n

e−
(
u Dn−∑σ νσN

(n)
σ

)
. (5.48b)

In this way, we obtain the contribution (5.45) of the Coulomb energy and the entropy
to the free energy in the delocalized limit as

G0 = Tr0
{
ρ̂0

(
U

∑
i

n̂i↑n̂i↓ +
1
β
log ρ̂0

)}
=

∑
n

pn

(
U Dn +

1
β
logpn

)
, (5.49)
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where pn = e−
(
u Dn−∑σ νσN

(n)
σ

)
/Z0 is the statistical weight of the eigenstate |Ψn〉.

The correlation contributionG0
c is �nally obtained by subtracting the uncorrelated

portionG0
s =WHF−T S0s from Eq. (5.49). Clearly, a non-vanishing IFE S0s in the delocal-

ized limit can only be the result of a partially �lled Fermi level, i. e., 0 < ηkσ = nFσ < 1
for all Bloch states having ωk = µσ , such that

S0s = −kB
∑
σ

дFσ
[
nFσ lognFσ + (1 − nFσ ) log(1 − nFσ )

]
. (5.50)

However, the relative degree of degeneracy at the Fermi level

дFσ
Na
= lim

∆ω→0

∫ µσ+∆ω

µσ

ρ(ω) dω = lim
∆ω→0

ρ(µσ )∆ω (5.51)

vanishes if the DOS (5.11) at the Fermi level is �nite, which is always the case in the
thermodynamic limit Na → ∞, at least somewhere in an arbitrarily small neighbor-
hood of µσ . Therefore, we conclude that S0s /Na → 0 in the thermodynamic limit,
as already observed in the context of Fig. 5.2. The fact that дFσ/Na vanishes in the
thermodynamic limit means that we can neglect all complications arising from de-
generacies at the Fermi level if the system under consideration is su�ciently large.
In this case, we can assume that |Φ0〉, given in Eq. (5.44), is the only many-body state
which yields the maximum degree γ12 = γ 012 of NN charge �uctuations. Since |Φ0〉
is a single Slater determinant, we have G0 = U 〈Φ0 |D̂ |Φ0〉 = WHF = G0

s . Therefore,
one concludes that the correlation contribution G0

c = G0 − G0
s to the free energy in

the delocalized limit vanishes if su�ciently large systems are considered. For small
�nite systems, such as the reference systems used in the following applications of the
scaling approximation (5.33), we use Eq. (5.49) in order to compute G0

c explicitly.

5.3 Infinite periodic la�ices
Having introduced the scaling approximation (5.33) for the correlation contributionGc

to the free-energy functional, and discussed the localized and delocalized limits in de-
tail, we are now in a position to apply our method in order to explore the equilibrium
properties of the Hubbard model in the framework of FT-LDFT. We will focus on the
thermodynamic limit Na → ∞ at half band-�lling (N /Na = γ11 = 1), and for given
NN hopping-integral t , Coulomb-repulsion strength U , and temperature T we mini-
mize the free-energy functional

F [γ12] = −tNaz γ12 +Gs[γ12] +Gc[γ12] (5.52)

in the domain of ensemble representable γ12. As usual, Gs[γ12] stands for the
interaction-energy and entropy functional for uncorrelated mixed-states, given by
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5 Thermodynamic equilibrium and spin-charge separation

Eq. (5.16), and Gc[γ12] for the correlation contribution to the free-energy functional
obtained from the scaling approximation (5.33) using an appropriate reference sys-
tem. We treat the reference system in a grand-canonical ensemble formulation at the
temperature T and Coulomb-repulsion strength U de�ned by the target system and
choose the chemical potential µrf of the reference system such that a half-�lled band
is obtained. The minimization of the functional (5.52) directly yields the free energy F ,
the degree of NN charge �uctuations γ12 and thus the kinetic energy K = −tNaz γ12
in thermodynamic equilibrium. Additional equilibrium observables, such as the aver-
age number of double occupations D, the entropy S , and the speci�c heat CV can be
subsequently obtained from appropriate derivatives of the free energy F .

5.3.1 The infinite Hubbard chain
In Fig. 5.5 we present results for several equilibrium properties of the half-�lled
1D Hubbard model as functions of the temperatureT for representative values of the
Coulomb-repulsion strengthU /t . These results were obtained from FT-LDFT in com-
bination with the scaling approximation (5.33) for the correlation contributionGc[γ12]
to the free-energy functional using a 7-site ring as reference system. The 7-site ring
has been chosen, since it is the largest 1D reference system for which the compu-
tations within our current implementation of FT-LDFT are feasible. Furthermore, in
order to account for long-range correlations a su�ciently large reference system is
required, such that one generally expects to obtain more accurate results if a larger
reference system is used. Further below we will quantify to which extent the equilib-
rium properties obtained in the framework of FT-LDFT depend on the choice of the
reference system. In order to assess the accuracy of the FT-LDFT results shown in
Fig. 5.5, we compare them with the exact �nite-temperature solution of the 1D Hub-
bard model [56]. The free energy F , shown in Fig. 5.5 (a), results directly from the
minimization of the free-energy functional (5.52) and the comparison with the corre-
sponding exact analytical solution demonstrates that FT-LDFT is remarkably accurate
in the whole range of temperatures T and Coulomb-repulsion strengthsU /t . Indeed,
the deviation between the exact and FT-LDFT results is smaller than the width of the
individual lines on the scale used in Fig. 5.5 (a). The temperature dependence of F is in
fact reproduced to such a high level of detail that accurate results are also obtained for
its derivatives with respect to the Coulomb-repulsion strength and the temperature.
Therefore, we obtain accurate results also for the average number of double occupa-
tions D = ∂F/∂U , the entropy S = −∂F/∂T , and the speci�c heat CV = T ∂S/∂T ,
which are shown in Figs. 5.5 (d)–(f).

For the double occupations D, shown in Fig. 5.5 (d), we �nd a non-vanishing value
in the ground state (T = 0), which is the result of the competition between electronic
delocalization, driven by hybridization, and localization, which reduces the local
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Figure 5.5: Equilibrium properties of the half-�lled in�nite 1D Hubbard chain as functions of
the temperature T for representative values of the Coulomb-repulsion strength U /t . Results
obtained by FT-LDFT in combination with the scaling approximation (5.33) using a 7-site ring
as reference system (full curves) are compared with the exact solution of Jüttner et al. [56]
(open circles): (a) free energy F , (b) total energy E, (c) kinetic energy K , (d) average number
of double occupations D, (e) entropy S , and (f) speci�c heat CV .
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Coulomb energy. Thus, the average number of double occupations in the ground state
decreases monotonously as the Coulomb-repulsion strength U /t increases. Clearly,
the same is also true for any �nite temperature, since the creation of double occu-
pations requires more energy, and thus higher temperatures, if the Coulomb repul-
sions are stronger. Remarkably, the minimum of D is not attained in the ground state,
but at a �nite temperature which increases slightly with increasing U /t . This ef-
fect is caused by low-lying spin excitations from the antiferromagnetic (AFM) ground
state which leads to a partial ferromagnetic (FM) alignment of the spins, such that
the number of hopping processes permitted by the Pauli principle decreases. As a
result, the charge �uctuations which give rise to the binding energy in the ground
state are partly suppressed as the temperature increases, which is accompanied by a
decrease of the double occupations generated by them. As the temperature increases
beyond a critical threshold, charge excitations in the upper Hubbard band give rise to
a renewed increase of D and thus to the formation of a minimum at a �nite temper-
ature which increases with U /t . Finally, in the high-temperature limit kBT /U →∞
the electronic motion becomes essentially uncorrelated, and thus one has D = Na/4
regardless of the Coulomb-interaction strength (U � kBT ). Notice that FT-LDFT re-
produces the decrease of the double occupations due to the spin excitations from the
AFM ground and the corresponding minimum in D very accurately for all values of
the Coulomb-interaction strengthU /t . Also the increase ofD in the high-temperature
regime is very well reproduced. In fact, the relative error ∆D = |Dex − DFT-LDFT |/Dex
in the double occupations obtained within the framework of FT-LDFT is in average1

just about 2% and always below 8% in the complete range of parameters shown in
Fig. 5.5 (d).

The temperature dependence of the kinetic energy K = −tNaz γ12, shown in
Fig. 5.5 (c), is obtained directly from the minimization of the free-energy func-
tional (5.52). In the ground state we �nd the minimal value of K , which is the result
of the NN charge �uctuations in the AFM ground state. These charge �uctuations are
accompanied by double occupations, which have more impact on the energy if the
Coulomb repulsions are stronger. Thus, we �nd a monotonously decreasing kinetic
energy in the ground state and also at any �nite temperature as U /t increases. As
already discussed above, increasing temperatures give rise to the excitation of low-
lying collective spin waves from the AFM ground state, causing a partial suppression
of the ground-state charge �uctuations, and thus a rather rapid increase of K is ob-
served in the low-temperature regime (kBT . t/2). Notice that K increases more
rapidly in the low-temperature regime if the Coulomb repulsions are stronger. This is

1Here and in the following the average error is calculated as the deviation between the results of
FT-LDFT and the given benchmark, averaged among the whole dataset. The FT-LDFT results are
always distributed equally spaced on the scale shown and the benchmark data are interpolated to
the same regular grid in order to compute the errors.
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due to the fact that the low-lying spin excitations are described by the AFM Heisen-
berg model (2.52) with coupling constant J = 2t2/U , and thus the bandwidth of the
spin waves narrows as U /t increases. As the temperature further increases, anti-
bonding Bloch-states are progressively excited and �nally, in the high-temperature
limit kBT /t →∞, bonding and antibonding Bloch-states are equally occupied, result-
ing in an unbound state with γij = 0 for all i , j. Thus, the kinetic energy vanishes
for all values ofU � kBT in this limit. The comparison with the corresponding exact
results demonstrates that the increase of the kinetic energy caused by the low-lying
spin excitations from the AFM ground state, as well as the transition to an unbound
state as the temperature increases is very accurately reproduced within FT-LDFT in
the complete range of temperatures and Coulomb-interaction strengths. The relative
deviation ∆K = |(Kex − KFT-LDFT)/Kex | between the kinetic energy obtained from FT-
LDFT and the exact solution is in average about 4%, and a maximum deviation of 8%
is found for strong coupling U /t = 20 at kBT = 0.2t . Clearly, the temperature depen-
dence of the total energy E = K +UD, shown in Fig. 5.5 (b), results from the kinetic
energy and the double occupations already discussed. Therefore, FT-LDFT yields very
accurate results also for the total energy E in the complete range from the ground state
to the high-temperature limit and for all values of the Coulomb-interaction strength.

The temperature dependence of the entropy S is shown in Fig. 5.5 (e). We �nd
a rapid increase of the entropy at low temperatures if the Coulomb repulsion is
strong (U /t & 10), which results from the excitation of low-lying collective spin
waves from the AFM ground state. A further entropy increase at higher tempera-
tures is the result of charge-transfer excitations from the lower to the upper Hubbard-
band, which involves the creation of double occupations. For weaker Coulomb repul-
sions (U /t . 8), the energy scales of spin and charge excitations have a noticeable
overlap, such that a rather continuous increase of the entropy is observed in this case.
Notice, however, that FT-LDFT fails to reproduce the linear entropy increase in the
regime of very low temperatures (kBT . 0.2t ).2 This is an artefact of the �nite size
of the reference system and results from the gap between the ground state and the
lowest-lying excited states, as well as from degeneracies of the ground state. How-
ever, for kBT & 0.2t the entropy obtained in the framework of FT-LDFT follows the
exact analytical result very closely and an average relative deviation of 0.6% is found,
which never exceeds 6% for all values of the Coulomb-repulsion strength shown in

2Notice that the NN hopping integral t in transition metals is typically of the order 0.1–0.5 eV, such
that comparable temperatures T ∼ t/kB = 1000–6000 K are actually quite large for typical ex-
perimental setups. However, here and in the following the term “low temperature” refers to tem-
peratures kBT which are small when compared to the energy scales speci�ed by the model under
consideration, such as the bandwidthw ∼ 4dt for a lattice in d dimensions, the Coulomb-repulsion
strengthU , or the e�ective exchange-coupling constant J = 2t2/U which is relevant in the strongly-
interacting Heisenberg limit.
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Fig. 5.5 (e) as long as kBT > 0.2t .
The speci�c heat CV , shown in Fig. 5.5 (f), displays a most interesting tempera-

ture dependence. For intermediate Coulomb-repulsion strengths (U /t . 5) we �nd a
broad peak in the speci�c heat which splits into two separate peaks asU /t increases.
The peak appearing at low temperatures corresponds to spin excitations in the lower
Hubbard-band, while the one at higher temperatures is caused by charge �uctua-
tions, which give rise to increasing Coulomb interactions. The low-lying spin excita-
tions are governed by the AFM Heisenberg model (2.52) with exchange-coupling con-
stant J = 2t2/U . Therefore, we expect to �nd the low-temperature peak in the speci�c
heat, which marks the Néel transition from the AFM ground-state to the paramagnetic
(PM) phase, at a temperature kBTN ∝ t2/U which scales like the e�ective exchange-
coupling constant J with the Coulomb-interaction strength. In fact, in the strong-
coupling limit U /t → ∞ we expect to �nd the low-temperature peak in CV at the
temperature kBTN = J = 2t2/U where the transition between the AFM and PM phases
occurs in the one-dimensional spin-1/2 Heisenberg model [119, 120]. Figure 5.6 (a)
shows the Néel-transition temperatureTN inferred from the low-temperature peak in
the speci�c heat CV as a function of the Coulomb-repulsion strength U /t . The com-
parison with the Néel-transition temperature derived from the exact solution [56]
reveals that FT-LDFT in combination with the scaling approximation (5.33) not only
reproduces the qualitative behaviorTN ∝ t2/U correctly, but also yields very accurate
values for the transition temperature, such that the relative error in TN is in average
about 13% and never exceeds 14.3% for all values shown in Fig. 5.6 (a). Furthermore,
the convergence to the asymptotic behaviour kBTN = 2t2/U in the strongly-correlated
limit U /t →∞ is very well reproduced within FT-LDFT.

Another interesting feature of the speci�c heat is the almost unique high-
temperature crossing point of the curves forU . 8, which occurs at kBT ' 1.4t . This
nearly universal crossing point has attracted much attention in the past [121, 122],
since it not only occurs in the Hubbard model but has been also observed experimen-
tally in the speci�c-heat curvesCV (T ) of strongly correlated systems at di�erent pres-
sures. This includes normal�uid 3H as well as heavy-fermion systems such as CeAl3
and UBe13 [123–126]. The comparison with the corresponding exact results shown in
Fig. 5.5 (f) demonstrates that FT-LDFT reproduces the nearly universal crossing point
of the speci�c-heat curves very accurately for the 1D Hubbard model.

For U /t & 6 we �nd a second peak in CV at high temperatures, which corre-
sponds to charge excitations across the Hubbard gap. In Fig. 5.6 (b) the corresponding
charge-excitation temperatureTC , inferred from the position of the high-temperature
peak, is shown as a function of the Coulomb-repulsion strength U /t . Since the high-
temperature peak in CV is caused by charge excitations in the upper Hubbard-band,
which lead to the creation of double occupations, we expect that the charge-excitation
temperature TC scales linearly with the Coulomb-repulsion strength U . In fact, the
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Figure 5.6: (a) Néel-transition temperature TN and (b) charge-excitation temperature TC of
the half-�lled in�nite 1D Hubbard chain as functions of the Coulomb-repulsion strengthU /t .
The critical temperatures are inferred, respectively, from the positions of the low- and high-
temperature peaks in the speci�c heatCV . Results obtained by FT-LDFT in combination with
the scaling approximation (5.33) using a 7-site ring as reference system are indicated by blue
crosses, while red plus-symbols correspond to the critical temperatures derived from the exact
solution of Jüttner et al. [56]. The gray solid line in (a) marks the asymptotic behaviour kBTN =
2t2/U of the Néel-transition temperature in the strongly-correlated limitU /t →∞, as inferred
from the 1D Heisenberg model [119, 120]. The gray dashed line in (b) marks the corresponding
strong-correlation asymptote kBTC = 0.21U of the charge-excitation temperature, which is
derived from the speci�c heat of the doublons (see Appendix F).

comparison with the temperature TC derived from the exact �nite-temperature solu-
tion of the 1D Hubbard-model [56] reveals that FT-LDFT not only yields the expected
behaviorTC ∝ U but also reproduces the value ofTC almost exactly. The relative error
inTC is in average only 0.6% and never exceeds 1.5% in the complete range of parame-
ters shown in Fig. 5.6 (b). In the strongly-correlated limitU /t →∞, where the energy
scales of spin and charge excitations are widely separated, the dominant contribu-
tion to the speci�c heat at temperatures kBT ∼ U results from the charge �uctuations
and the accompanying �uctuations in the average number of double occupations. In
this case, we can infer the asymptotic behaviour kBTC = 0.21U from the structure-
independent speci�c heat of the doublons, which we have calculated in Appendix F.
From Fig. 5.6 (b) we conclude that the charge-excitation temperatureTC of the 1D Hub-
bard model converges rapidly to the strongly-correlated behavior kBTC = 0.21U and
that FT-LDFT is able to reproduce this rapid convergence with astonishing accuracy.

It is most remarkable that FT-LDFT in combination with the scaling approxima-
tion (5.33) is able to reproduce the gradual separation of spin and charge degrees
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Figure 5.7: Equilibrium properties of the half-�lled in�nite 1D Hubbard chain with U /t = 8
obtained from FT-LDFT in combination with the scaling approximation (5.33) using 1D rings
with N rf

a = 2–7 sites as reference systems. Results are shown for the temperature dependence
of (a) the average number of double occupations D and (b) the speci�c heat CV . The thick
black curves mark the corresponding exact results for the in�nite 1D Hubbard chain [56].

of freedom as the Coulomb-repulsion strength increases. In fact, this subtle e�ect
of strong electronic correlations has, to our knowledge, not been reproduced in the
framework of DFT before, neither on the qualitative and even less on the quantitative
level. Clearly, it is one of the major advantages of FT-LDFT in combination with the
scaling approximation (5.33) that the approximate functional Gc[γ12] is derived from
an interacting system which already incorporates the e�ects of electronic correlations,
such as the separation of spin and charge degrees of freedom. In contrast, most ap-
proximations in conventional DFT are based on the homogeneous electron gas, which
does not incorporates most of the crucial e�ects of electronic correlations.

Before we apply the methods of FT-LDFT to the Hubbard model in two and three
dimensions, let us brie�y assess the importance of the reference system and investi-
gate how the equilibrium properties obtained from the scaling approximation (5.33)
are in�uenced by the choice of the reference system. To this aim we compare in
Fig. 5.7 the average number of double occupations D and the speci�c heat CV of the
half-�lled in�nite 1D Hubbard chain with U /t = 8 obtained from the scaling ap-
proximation (5.33) using 1D rings with N rf

a = 2–7 sites as reference systems. From
Fig. 5.7 (a) we conclude that the average number of double occupations depends rather
weakly on the choice of the reference system in the whole range from the ground
state to the high-temperature limit. As expected, the most noticeable deviations are
observed in the low-temperature regime (kBT . t ), where correlation e�ects play a
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crucial role. At higher temperatures, the dependence of D on the choice of the refer-
ence system becomes rather negligible and the average number of double occupations
of the in�nite 1D Hubbard chain is reproduced very accurately. The situation is dif-
ferent in the case of the speci�c heat CV shown in Fig. 5.7 (b), where the extent of
the low-temperature peak strongly depends on the chosen reference system. This is,
however, to be expected, since the speci�c heat CV = −T ∂2F/∂T 2 is a second-order
derivative of the free-energy and thus depends sensitively on minor changes of the
free-energy functional (5.52) in the vicinity of the minimum. Notice, however, that the
Néel-transition temperatureTN is nevertheless fairly well reproduced with a maximal
relative error of 28% when a 5-site ring is used as reference system. The only excep-
tion to this occurs for N rf

a = 3, where the low-temperature peak in the speci�c heat
degenerates into a shoulder. For higher temperatures (kBT & t ) we observe a rapid
converge to the exact speci�c heat of the in�nite 1D Hubbard chain as the size of the
reference system increases, such that the relative error in the charge-excitation tem-
peratureTC never exceeds 6.8% if rings with three or more sites are used as reference
systems.

We conclude that FT-LDFT in combination with the scaling approximation (5.33)
tends to yield more accurate results as the size of the reference system increases.
However, it should be noted that a reference system whose symmetries and local
topology matches those of the target system should always be preferred.

5.3.2 The square la�ice
In Fig. 5.8 we present results for the equilibrium properties of the half-�lled Hubbard
model on the 2D square lattice as functions of the temperature T for representative
values of the Coulomb-repulsion strengthU /t . These results were obtained from FT-
LDFT in combination with the scaling approximation (5.33) using a 2×2 square-lattice
cluster with periodic boundary conditions as reference system. The periodic 2×2 clus-
ter has been chosen as reference system since its symmetries and its local topology
matches those of the in�nite square lattice. The larger 2×3 cluster lacks the π/2 rota-
tional symmetry and the 3×3 cluster is beyond the scope of our current implementa-
tion of the scaling approximation.

In order to assess the accuracy of the FT-LDFT results shown in Fig. 5.8, we com-
pare them with quantum Monte Carlo (QMC) simulations for the 2D Hubbard model
as well as to numerical linked-cluster expansions (NLCEs) [63, 66]. The total energy E,
shown in Fig. 5.8 (a), increases very slowly in the low-temperature regime kBT � U
where spin excitations with energies of the order t2/U dominate. At higher temper-
atures of the order kBT ∼ U also charge excitations in the upper Hubbard band con-
tribute, which lead to an increase of the average number of double occupations and
thus to a rather steep increase of the total energy. The absolute di�erence between
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Figure 5.8: Equilibrium properties of the half-�lled Hubbard model on the 2D square lat-
tice as functions of the temperature T for representative values of the Coulomb-repulsion
strength U /t . Results obtained by FT-LDFT in combination with the scaling approxima-
tion (5.33) using a 2×2 square-lattice cluster with periodic boundary conditions as reference
system (full curves) are compared with QMC simulations of Du�y and Moreo [63] (diamonds)
as well as with the NLCEs reported by Khatami and Rigol [66] (open circles and dashed lines):
(a) total energy E, (b) average number of double occupations D, (c) entropy S , and (d) speci�c
heat CV .
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the energy per lattice site E/Na obtained from FT-LDFT and the QMC simulations re-
ported by Du�y and Moreo [63] is in average about 4% of the NN hopping amplitude t
and never exceeds 8.5% of t in the whole range of available data.

Concerning the average number of double occupations D, shown in Fig. 5.8 (b),
we �nd a similar temperature dependence as in the previously considered one-
dimensional case. Thus, we �nd monotonously decreasing values of D as U /t in-
creases in the complete range from the ground state to the high-temperature limit.
For intermediate to strong Coulomb-repulsions (U /t & 8) we observe the forma-
tion of a minimum in D at a �nite, rather low temperature, which increases slightly
withU /t . Like in the previously considered one-dimensional case, this e�ect is caused
by spin excitations from the AFM ground state, which leads to a partial suppression of
the ground-state charge �uctuations and the accompanying double occupations. At
higher temperatures, charge excitations in the upper Hubbard band give rise to a re-
newed increase of D, which is more rapid if the Coulomb repulsions are strong. In the
case of rather weak Coulomb repulsions (U /t . 6) the energy scales of spin and charge
excitations have a noticeable overlap, such that we observe slightly increasing values
of D due to charge excisions already in the low-temperature regime (kBT . t ). This
also explains the less rapid increase of D in the high-temperature regime (kBT & 1.5)
observed for rather weak Coulomb repulsions, since in this case a large portion of
the charge degrees of freedom unfreezes already at low temperatures. Finally, in the
high-temperature limit kBT /U → ∞ the electronic motion becomes essentially un-
correlated, such that D = Na/4 regardless of the Coulomb-interaction strength. The
average number of double occupations D obtained in the framework of FT-LDFT is
in overall very good agreement with the corresponding results of NLCEs [66]. The
relative di�erence between the double occupations obtained from both methods is in
average about 4.5% but can be as large as 24% if strong Coulomb-repulsions (U /t = 16)
and temperatures below the charge-excitation threshold (kBT . 2.5t ) are considered.
However, these large relative deviations are mainly caused by the small value of D
in the strongly-interacting and low-temperature regime, and the absolute di�erence
in D/Na in fact never exceeds 9.7 × 10−3.

The entropy S shown in Fig. 5.8 (c) develops the typical plateau as the Coulomb-
repulsion strengthU /t increases and the Hubbard gap is formed, which separates the
low-lying spin excitations from the high-energy charge excitations. The comparison
with the NLCEs reported by Khatami and Rigol [66] demonstrates that the formation
of the plateau and the overall temperature dependence of the entropy is well repro-
duced within the framework of FT-LDFT. However, in the low-temperature regime
the scaling approximation (5.33) in combination with the selected 2×2 square-lattice
cluster as reference system fails to reproduce the temperature dependence of the en-
tropy accurately, and for (kBT . 0.2t ) even slightly negative values of S are obtained.
This unphysical behavior in the low-temperature regime results from an overestima-

143



5 Thermodynamic equilibrium and spin-charge separation

tion of the entropy loss caused by correlations in the electronic motion. In fact, the
comparison with the NLCEs in the low-temperature regime (kBT . t ) reveals that FT-
LDFT predicts a too rapid decrease of the entropy as the system is cooled down, which
ultimately results in negative values of the entropy. Nevertheless, for su�ciently high
temperatures the entropy obtained within the framework of FT-LDFT is in excellent
agreement with the corresponding NLCEs and the relative di�erence between both is
in average only 0.4% and never exceeds 2.8% for kBT > t .

Let us now focus on the speci�c heat shown in Fig. 5.8 (d). The broad peak in CV

which appears at kBT ' t for intermediate Coulomb repulsions (U /t . 8) splits
into two well separated peaks as U /t increases. As already discussed in the con-
text of the one-dimensional Hubbard model, the low-temperature peak corresponds
to spin excitations in the lower Hubbard band, while the peak at higher temper-
atures is caused by charge excitations across the Hubbard gap. The formation of
the two-peak structure in the speci�c heat is well reproduced within the frame-
work of FT-LDFT on the qualitative level, however, the comparison with correspond-
ing NLCEs reveals that the low-temperature peak is overestimated by up to 36%.
Clearly, this is caused by the tendency of FT-LDFT to overestimate the entropy gain
in the low-temperature regime (kBT . t ), as already discussed above. Nevertheless,
the temperature TN at which the low-temperature peak occurs in CV agrees fairly
well with the Néel-transition temperature inferred from NLCEs and QMC simula-
tions, as shown in Fig. 5.9 (a). In fact, the convergence to the theoretical asymp-
tote TN = 4J/3 = 8t2/3U inferred from the speci�c heat of the AFM Heisenberg
model (2.52) on the 2D square lattice [127, 128] is accurately reproduced within the
framework of FT-LDFT.

For su�ciently high temperatures (kBT & 1.5t ) we �nd an excellent agreement
between the speci�c heat obtained from FT-LDFT and NLCEs, and the relative di�er-
ences are in average as low as 0.13%. Within this temperature range we �nd the nearly
universal crossing point of the speci�c-heat curves, which appears for U /t . 12 at a
temperature kBT ' 1.75t , and which is very well reproduced by FT-LDFT. Further-
more, we obtain very accurate results also for the charge-excitation temperature TC
derived from the position of the high-temperature peak in the speci�c heat. This
is shown in Fig. 5.9 (b), where the dependence of TC on U /t is compared with cor-
responding results of NLCEs and QMC simulations. If the Coulomb-repulsions are
strong (U /t & 10) the dominant contributions to the high-temperature excitations are
due to charge �uctuations and the accompanying increase of the double occupations.
The corresponding energies are thus independent of the underlying lattice struc-
ture. Therefore, we �nd in Fig. 5.9 (b) a similar dependence of the charge-excitation
temperature TC on the Coulomb-repulsion strength U /t as in the previously consid-
ered one-dimensional case [see Fig. 5.6 (b)] and a rapid convergence to the structure-
independent asymptotic behavior kBTC = 0.21U is observed (see Appendix F).

144



5.3 In�nite periodic lattices

5 10 15 20 25
U /t

0.10

0.15

0.20

0.25

0.30

0.35

k
BT

N
/t

(a)

FT-LDFT
QMC [63]
NLCE [66]
8t/3U

5 10 15 20 25
U /t

1

2

3

4

5

k
BT

C
/t

(b)
Square lattice
n↑ = n↓ = 1/2

0.21U /t

Figure 5.9: (a) Néel-transition temperature TN and (b) charge-excitation temperature TC of
the half-�lled Hubbard model on the 2D square lattice as functions of the Coulomb-repulsion
strength U /t . The critical temperatures are inferred, respectively, from the positions of the
low- and high-temperature peaks in the speci�c heatCV . Results obtained by FT-LDFT in com-
bination with the scaling approximation (5.33) using a 2×2 square-lattice cluster with periodic
boundary conditions as reference system are indicated by blue crosses, while green circles and
red plus-symbols correspond to the critical temperatures obtained from QMC simulations [63]
and NLCEs [66]. The gray solid line in (a) marks the asymptotic behaviour kBTN = 8t2/3U of
the Néel-transition temperature in the strongly-correlated limit U /t → ∞, as inferred from
the 2D Heisenberg model [127, 128]. The gray dashed line in (b) marks the corresponding
strong-correlation asymptote kBTC = 0.21U of the charge-excitation temperature, which is
derived from the speci�c heat of the doublons (see Appendix F).

5.3.3 The simple-cubic la�ice

Moving on to higher-dimensions, we have applied the methods of FT-LDFT to the
half-�lled Hubbard model on the 3D simple-cubic lattice. The equilibrium prop-
erties shown in Fig. 5.10 were obtained from the minimization of the free-energy
functional (5.52) using the scaling approximation (5.33) for the correlation contribu-
tion Gc[γ12]. We have chosen a 2×2×2 simple-cubic cluster with periodic boundary
conditions as reference system, which is the smallest system resembling the local
topology of the 3D simple-cubic lattice and, at the same time, the largest 3D reference
system for which the computations within our current implementation of FT-LDFT
are feasible. The equilibrium properties of the 3D Hubbard model obtained by FT-
LDFT are in overall excellent agreement with available results of accurate QMC sim-
ulations reported by Paiva [65] and Kozik et al. [67], as well as with NLCEs performed
by Khatami [68]. The energy E, shown in Fig. 5.10 (a), displays a very similar tem-
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Figure 5.10: Equilibrium properties of the half-�lled Hubbard model on the 3D simple-cubic
lattice as functions of the temperature T for representative values of the Coulomb-repulsion
strength U /t . Results obtained by FT-LDFT in combination with the scaling approxima-
tion (5.33) using a 2×2×2 simple-cubic cluster with periodic boundary conditions as reference
system (full curves) are compared with QMC simulations of Paiva [65] (diamonds) and Kozik
et al. [67] (triangles), as well as with the NLCEs reported by Khatami [68] (open circles and
dashed lines): (a) total energy E, (b) average number of double occupations D, (c) entropy S ,
and (d) speci�c heat CV .
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perature dependence as in the previously considered two-dimensional case. Thus, a
slow increase of E is observed in the low temperature regime (kBT � U ), where the
spin excitations dominate, while a steep increase of the energy is found when tem-
peratures of the order kBT ∼ U give rise to charge excitations across the Hubbard
gap, resulting in the creation of double occupations. Concerning the accuracy of the
energy per lattice site E/Na obtained in the framework of FT-LDFT, we �nd the abso-
lute deviation from the available QMC simulations [65, 67] in average as low as 3% of
the NN hopping amplitude t and no discrepancies larger than 7.5% of t are observed
in the whole range of available data.

The temperature dependence of the average double occupancy D, shown in
Fig. 5.10 (b), closely resembles the qualitative features already observed in the case of
one- and two-dimensional lattices. Thus, we observe that D decreases monotonously
with increasing U /t regardless of the temperature, and a minimum is formed at a
�nite temperature which increases slightly with U /t . Just like in the previously
considered low-dimensional cases, the minimum in D is caused by spin excitations
from the AFM ground state, which leads to a partial suppression of the ground-state
charge �uctuations and the accompanying double occupations. Again, at higher tem-
peratures D increases more rapidly with the temperature if the Coulomb repulsions
are strong, until D = Na/4 is attained for all values of U /t in the high-temperature
limit kBT /U → ∞. The comparison with available results of NLCEs [68] reveals that
the temperature dependence of the double occupations in the 3D Hubbard model is
very accurately reproduced within FT-LDFT. The relative di�erence between D ob-
tained from both methods is in average as low as 1.4% and a maximal relative deviation
of 10.5% is found at low temperatures and strong Coulomb-repulsions (kBT = 0.3t ,
U /t = 16). Again, this somewhat large relative deviation is a result of the fact that dou-
ble occupations are largely suppressed in the regime of low temperatures and strong
Coulomb repulsions. In fact, the absolute deviation between the double occupations
per lattice site D/Na obtained from FT-LDFT and NLCEs never exceeds 2.2 × 10−3
for U ≥ 10 and the largest absolute deviation in D/Na is found to be 5 × 10−3 in the
weak-coupling case (U /t = 4) at rather low temperatures kBT ≈ t .

Also the entropy of the 3D Hubbard model, shown in Fig. 5.10 (c), displays a very
similar temperature dependence as its counterpart in two dimensions. Thus, we ob-
serve the formation of a plateau as the Coulomb-repulsion strength U /t increases,
which is due to the increasing Hubbard gap and the resulting separation of the energy
scales for spin and charge excitations. The comparison with the results of QMC sim-
ulations [65] indicates that the scaling approximation (5.33) in combination with the
selected 2×2×2 simple-cubic cluster as reference system again leads to somewhat in-
accurate values of the entropy in the low-temperature regime (kBT . t ). Thus, FT-
LDFT predicts a �nite entropy in the ground state and for kBT . 0.2t the entropy
increases too rapid with the temperature, while for 0.2t & kBT & t the increase of S is
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Figure 5.11: (a) Néel-transition temperature TN and (b) charge-excitation temperature TC
of the half-�lled Hubbard model on the 3D simple-cubic lattice as functions of the Coulomb-
repulsion strengthU /t . The critical temperatures are inferred, respectively, from the positions
of the low- and high-temperature peaks in the speci�c heatCV . Results obtained by FT-LDFT
in combination with the scaling approximation (5.33) using a 2×2×2 simple-cubic cluster with
periodic boundary conditions as reference system are indicated by blue crosses, while red plus-
symbols correspond to the critical temperatures obtained from NLCEs [68]. The gray solid line
in (a) marks the asymptotic behaviour kBTN = 3.78 t2/U of the Néel-transition temperature in
the strongly-correlated limit U /t →∞, as inferred from the 3D Heisenberg model [129]. The
gray dashed line in (b) marks the corresponding strong-correlation asymptote kBTC = 0.21U
of the charge-excitation temperature, which is derived from the speci�c heat of the doublons
(see Appendix F).

underestimated. Nevertheless, for su�ciently high temperatures an excellent agree-
ment between the entropy obtained from FT-LDFT and QMC simulations is obtained,
and the relative deviation between both is in average as low as 0.3% for kBT ≥ t and
never exceeds 1.7% within this temperature range.

The speci�c heat CV shown in Fig. 5.10 (d) exhibits the typical behavior caused
by the separation of spin and charge degrees of freedom as the Coulomb-repulsion
strengthU /t increases. Thus, the broad peak which appears at a temperature kBT ∼ t
for fairly weak Coulomb-repulsions (U /t . 6) splits into two well separated peaks
which correspond to the spin excitations in the lower Hubbard-band and the charge
excitations across the Hubbard gap. The comparison with results of NLCEs [68]
demonstrates that the formation of the two-peak structure in the speci�c heat of
the 3D Hubbard model is very well reproduced within the framework of FT-LDFT,
however some deviations from the NLCEs are observed in the low-temperature
regime (kBT . t ). The NLCEs for the 3D Hubbard model do not converge down to
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arbitrary low temperatures, such that the corresponding results shown in Fig. 5.10 (d)
do not account for the low-temperature peak in CV . However, since FT-LDFT in
combination with the scaling approximation (5.33) and the selected 2×2×2 simple-
cubic cluster as reference system underestimates the entropy increase in the temper-
ature range 0.2t & kBT & t , we expect that FT-LDFT underestimates the speci�c
heat CV = T ∂S/∂T in the vicinity of the low-temperature peak as well. The temper-
atureTN at which the low-temperature phase transition from the AFM con�guration
to the PM phase occurs can be inferred from the position of the low-temperature peak
in the speci�c heat. In Fig. 5.11 (a) we compare the Néel-transition temperatureTN ob-
tained from FT-LDFT to corresponding results derived from the AFM structure factor
of NLCEs [68]. In the strong-coupling regime (U /t & 12) the Néel-transition tem-
perature obtained from both methods is in excellent agreement and the mutual rela-
tive deviations are less than 4.3%. This implies that the convergence to the expected
asymptotic behaviorTN = 1.89J = 3.78 t2/U , inferred from the AFM–PM phase tran-
sition in the 3D Heisenberg model [129], is accurately reproduced within FT-LDFT.
However, the convergence to the strong-coupling asymptote TN = 3.78 t2/U appears
too rapid in the framework of FT-LDFT, such thatTN it is considerably overestimated
for weaker Coulomb-repulsions (U /t . 12) and deviations up to 25% are observed.

For higher temperatures (kBT & 1.5t ) we �nd an excellent agreement between the
speci�c heat obtained from FT-LDFT and NLCEs. This implies that the nearly univer-
sal crossing point of the speci�c-heat curves, which appears at kBT ' 2t forU . 12, is
accurately reproduced within FT-LDFT. Also the peak at higher temperatures, which
corresponds to the charge excitations in the upper Hubbard band, and the correspond-
ing charge-excitation temperature TC is very well reproduced. From Fig. 5.11 (b) we
conclude that the relative deviation between the charge-excitation temperature TC
obtained from FT-LDFT and NLCEs is in average as low as 5.5% and the maximal
deviation is found to be 11.6% for U /t = 8. Like in the previously considered low-
dimensional cases, also the rapid convergence to the structure-independent asymp-
totic behaviour kBTC = 0.21U in the strong-coupling limit is very accurately repro-
duced (see Appendix F).

5.4 Arbitrary electron densities
Having applied the methods of FT-LDFT to the thermodynamic equilibrium problem
of the half-�lled Hubbard model in 1–3 dimensions, we would now like to go beyond
half band-�lling and to generalize our scaling approximation (5.33) such that arbitrary
electron densities can be taken into account. The most general approach towards
this goal would be to infer the functional dependence Gc[γ11,γ12] of the correlation
contribution to the free energy of a given target system with electron density n = γ11
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from the corresponding, properly scaled functional of some suitable reference system
with (possibly di�erent) electron density nrf = γ

rf
11, i. e.,

Gc[γ11,γ12] = G∞c +
(
G0
c −G∞c

) Grf
c

[
γ rf11,γ

rf
12
] −Grf,∞

c

Grf ,0
c −Grf,∞

c

with γ rf12 = γ
rf ,0
12

γ12

γ 012
. (5.53)

Here the reference system is treated in a grand-canonical ensemble formulation at
the temperature T and Coulomb-repulsion strength U de�ned by the target system,
and the chemical potential µrf of the reference system is chosen such that the desired
electron densityγ rf11 is obtained. In order to ease the notation we have not indicated the
explicit dependence ofG∞c = G∞c (γ11) andGrf ,∞

c = Grf,∞
c (γ rf11), as well as ofγ 012 = γ 012(γ11)

and γ rf ,012 = γ
rf ,0
12 (γ rf11) on the electron density in the target and reference systems (see

Sections 5.1.1 and 5.2.1). Notice that alsoG0
c = G

0
c (γ11) andGrf ,0

c = Grf ,0
c (γ rf11) depends on

the respective electron density if the corresponding system is �nite (see Section 5.2.2).
The most natural choice in Eq. (5.53) would be to consider a reference system with

the same electron density as the target system, i. e., γ11 = γ rf11. However, it turns
out to be sometimes favourable to choose the electron density in the reference sys-
tem slightly di�erent from the one in the target system. In order to understand this
point, we consider in Fig. 5.12 the functional dependence of the correlation contri-
bution Gc to the free energy of the one-dimensional Hubbard model for the case
of strong Coulomb-repulsions or low temperatures U /kBT → ∞ and quarter �ll-
ing (n = 0.5). In the previous applications to the half-�lled Hubbard model we have
already seen that an accurate approximation to Gc is most crucial in the regime of
strong Coulomb-repulsions or low temperatures, since correlation e�ects are most
pronounced within this regime. Clearly, in the limitU /kBT →∞ depicted in Fig. 5.12,
the entropy-contribution toGc can be neglected, such that the functional dependence
of Gc = U (D −DHF), leaving constants aside, coincides with the one of the doublons.
Notice in Fig. 5.12 (a) that the overall shape ofGc as a function of γ12 is largely a�ected
by the degree of NN charge �uctuations γ∞12 in the strongly-correlated ground state.
This is particularly true for rather low electron densities (n . 0.5). The non-vanishing
degree of NN charge �uctuationsγ∞12 > 0 remaining in the strongly-correlated ground
state away from half band-�lling (n < 1) results from the ability of the electrons to
avoid each other very e�ectively in a correlated motion, such that double occupations
can be fully suppressed as long as γ12 ≤ γ∞12 . In other words, γ∞12 is the maximal de-
gree of NN charge �uctuations which is consistent with the requirement of vanishing
double occupations D = 0. Furthermore, γ∞12 is directly related to the ground-state
energy

E∞ = −tNaz γ
∞
12 (5.54)

in the strongly-correlated limitU /t →∞ if a not more than half-�lled band is consid-
ered. We conclude that γ∞12 is a crucial parameter for the low-temperature physics of
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Figure 5.12: (a) Correlation contributionGc [γ11,γ12] to the free-energy functional of the one-
dimensional Hubbard model for the case of strong Coulomb-repulsions or low temperatures
U /kBT → ∞ and quarter �lling (n = γ11 = 0.5). The functionals of �nite rings with 3–7 sites
as well as of the in�nite chain are scaled to a common domain and range, and the inset
highlights the region around the relative degree of NN charge �uctuations γ∞12/γ 012 remain-
ing in the strongly-correlated ground state. Sub�gure (b) is similar to (a), however the elec-
tron density γ11 in the �nite rings has been slightly adapted such that the relative degree of
NN charge �uctuations in the strongly-correlated ground state matches the corresponding
value γ∞12/γ 012 = 1/√2 ≈ 0.707 of the in�nite quarter-�lled chain.

the Hubbard model away from half band-�lling. However, from Fig. 5.12 (a) one con-
cludes that a scaling of the functionalsGc taken from systems with the same electron
density does in general not bring the relative degree of NN charge �uctuationsγ∞12/γ 012
remaining in the strongly-correlated ground state to a common point. As a conse-
quence, the scaling approximation (5.53) will in general fail to reproduce the ground-
state energy (5.54) in the strongly-correlated limitU /t →∞ if the electron density in
the reference system matches the one in the target system, i. e., if γ rf11 = γ11. There-
fore, it is in general favourable to choose the electron density γ rf11 in the reference
system such that the corresponding relative degree of NN charge �uctuations in the
strongly-correlated ground state matches the one of the target system, i. e.,

γ rf ,∞12 (γ rf11)
γ rf ,012 (γ rf11)

=
γ∞12(γ11)
γ 012(γ11)

. (5.55)

This situation is depicted in Fig. 5.12 (b), where the band �lling of the �nite rings
having 3–7 sites is chosen according to Eq. (5.55), such that the relative degree of
charge �uctuations in the strongly-correlated ground state matches the correspond-
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Figure 5.13: Equilibrium properties of the in�nite 1D Hubbard chain with electron density
n = 0.8 as functions of the temperatureT for representative values of the Coulomb-repulsion
strength U /t . Results obtained by FT-LDFT in combination with the scaling approxima-
tion (5.53) using a 7-site ring with electron density γ rf11 = 0.8013 as reference system (full
curves) are compared with the exact solution of Jüttner et al. [56] (open circles): (a) average
number of double occupations D, (b) kinetic energy K , and (c) speci�c heat CV .

ing value γ∞12/γ 012 = 1/√2 of the in�nite Hubbard chain with quarter �lling (n = 0.5).
Notice that the choice of the band �lling in the reference system according to Eq. (5.55)
not only guarantees that the scaling approximation (5.53) reproduces the correct
ground-state energy in the strongly-correlated limit (5.54), but in general also leads to
a signi�cant improvement of the approximation to Gc in the vicinity of γ∞12 [compare
the insets in Figs. 5.12 (a) and (b)], which is crucial in the regime of low temperatures
or strong Coulomb repulsions. The exact value of the ground-sate energy E∞ in the
strongly-correlated limit and thus the corresponding degree of NN charge �uctua-
tions γ∞12 is, however, unknown in general, such that Eq. (5.55) usually requires some
approximations. One possibly is to proceed in a similar fashion as in Section 4.6,
and to approximate the strongly-correlated ground state energy E∞ ≈ EFP by the en-
ergy (4.48) of the lowest-lying fully polarized state. The resulting approximationγ∞12 ≈
−EFP/(tNaz) is in general a lower bound for the degree of NN charge �uctuations in
the strongly-correlated ground state, but matches the exact result γ∞12 = sin(πn)/π in
the case of the in�nite Hubbard chain.

Figure 5.13 shows the temperature dependence of several equilibrium average val-
ues of the in�nite Hubbard chain with electron density n = 0.8 for representative
values of the Coulomb repulsion strength U /t . The results of FT-LDFT in combina-
tion with the scaling approximation (5.53) are compared with the exact solution of
Jüttner et al. [56]. As reference system we have chosen a 7-site ring with electron
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density γ rf11 = 0.8013, which has been determined from Eq. (5.55) such that the rela-
tive degree of NN charge �uctuations in the strongly-correlated ground state of the
reference system matches the corresponding value of the in�nite chain with electron
density n = 0.8. Notice that the electron density determined from Eq. (5.55) di�ers
only very slightly from the one in the target system in the present case of a nearly
half-�lled band. Therefore, the modi�cation of the electron density in the reference
system has only marginal impact on the equilibrium averages obtained in the frame-
work of FT-LDFT. In fact, the results obtained when a 7-site ring with electron den-
sity γ rf11 = 0.8 is used as reference system di�er by less than the line width from the
ones presented in Fig. 5.13. Nevertheless, the di�erences become substantial if lower
electron densities are considered, as we will see further below when the methods of
FT-LDFT are applied to the in�nite Hubbard chain at quarter �lling.

Concerning the average number of double occupations in Fig. 5.13 (a), we �nd a
temperature dependence which is qualitatively very similar to the previously con-
sidered case of a half-�lled band [compare Fig. 5.5 (d)]. However, in the present case
of a less than half-�lled band we �nd noticeable smaller values of D for any given
temperature T and Coulomb-repulsion strength U /t , which is a consequence of the
fact that the electrons are able to avoid each other very e�ectively in a correlated
motion throughout the lattice. Clearly, this is also re�ected in the U -independent
high-temperature limit D = DHF = 0.16Na , where the average number of double oc-
cupations is 36% smaller than in the previous half-�lled band case. We also observe the
formation of a pronounced minimum in D at a �nite, rather low temperature which
increases slightly withU /t . Just like in the half-�lled band case we associate this min-
imum with the tendency of the spins to prefer an AFM alignment in the ground state,
since the low-energy physics of the Hubbard model away from half band-�lling is
described by the t-J model (2.51) with AFM exchange-coupling J = 2t2/U > 0. Low-
lying spin excitations give rise to a partial suppression of the ground-state charge �uc-
tuations and the accompanying double occupations, such that we observe decreasing
values of D in the low-temperature regime. At higher temperatures, charge excita-
tions in the upper Hubbard band give rise to a renewed increase of D, and thus to
the formation of a minimum at a temperature which increases withU /t . The average
number of double occupations obtained in the framework of FT-LDFT is in excel-
lent agreement with the exact solution of Jüttner et al. [56] in the whole range from
the ground state to high temperatures as well as for weak to strong Coulomb repul-
sionsU /t . The relative di�erence between the exact and FT-LDFT double occupations
is in average as low as 1.5% and never exceeds 5.7% in the whole range of temperatures
and Coulomb repulsions shown.

In contrast to the double occupations, the temperature dependence of the kinetic
energy K , shown in Fig. 5.13 (b), is quite di�erent from the previously considered case
of a half-�lled bad, at least if strong Coulomb-repulsions (U /t & 8) are considered
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[compare Fig. 5.5 (c)]. Away from half band-�lling, the suppression of the kinetic
energy in the low-temperature regime as a result of increasing Coulomb repulsions is
considerably less pronounced than in the previous case of a half-�lled band. Clearly,
this is due to the fact that the holes can move freely throughout the lattice without
any impact on the Coulomb energy, which ultimately leads to the remaining kinetic
energy in the strongly-correlated ground state. The kinetic energy increases with
the temperature as antibonding Bloch-states are thermally excited, until bonding and
antibonding Bloch-states are equally occupied in the high-temperature limit kBT /t →
∞ resulting in a vanishing kinetic energy K = 0 for all values ofU /t . The comparison
with the corresponding exact results demonstrates that the temperature dependence
of the kinetic energy of the in�nite Hubbard chain with electron density n = 0.8 is
very accurately reproduced within the framework of FT-LDFT. In fact, the relative
error in K is in average as low as 0.7% and no discrepancies larger than 3% are found
in the whole range of parameters explored.

Moving on to the speci�c heat, shown in Fig. 5.13 (c), we �nd a temperature depen-
dence which is qualitatively similar to the one at half band-�lling in the sense that the
pronounced peak observed for intermediate Coulomb repulsions (U /t = 4) splits into
two well separated peaks asU /t increases. However, in contrast to the half-�lled band
case, the low-temperature peak also includes contributions from charge excitations
corresponding to the degrees of freedom of the holes. Thus, in comparison to the pre-
vious half-�lled band case [see Fig. 5.5 (f)], we observe a more pronounced peak in the
low-temperature regime if the Coulomb repulsions are strong (U /t & 6). However,
the comparison with the speci�c heat obtained from the exact solution shows that
the increase of the low-temperature peak due to the admixture of charge excitations
is considerably overestimated by FT-LDFT. In fact, the extent of the low-temperature
peak inCV is overestimated by up to 25%. Nevertheless, the temperature at which the
low-temperature peak arises in the speci�c heat is quite accurately reproduced with
a relative error of less than 6.4% forU /t ≥ 6. Furthermore, the speci�c heat obtained
in the framework of FT-LDFT converges to the exact solution as the temperature in-
creases, and for su�ciently high temperatures we �nd both in excellent agreement.
In fact, for kBT ≥ 0.6t the relative error in CV is in average as low as 0.5% and never
exceeds 2.7% within this temperature range.

In order to investigate the equilibrium properties at rather low electron densi-
ties, we present in Fig. 5.14 results for the in�nite 1D Hubbard chain at quarter �ll-
ing (n = 0.5). These results were obtained from FT-LDFT in combination with the
scaling approximation (5.53) using a 7-site ring as reference system. The electron
density in the reference system has been determined from Eq. (5.55) as γ rf11 = 0.556. In
order to illustrate the in�uence of the electron density in the reference system we also
include results obtained by matching the band �lling in the reference system to the
one in the in�nite chain (i. e., γ rf11 = 0.5). The comparison with the exact solution of
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Figure 5.14: Equilibrium properties of the in�nite 1D Hubbard chain at quarter band-�lling
(n = 0.5) as functions of the temperatureT for representative values of the Coulomb-repulsion
strength U /t . Results obtained by FT-LDFT in combination with the scaling approxima-
tion (5.53) using a 7-site ring with electron densityγ rf11 = 0.556 as reference system (full curves)
are compared with the exact solution of Jüttner et al. [56] (open circles): (a) average number
of double occupations D, (b) kinetic energy K , and (c) speci�c heat CV . Results of FT-LDFT
obtained by matching the electron density in the 7-site reference system to the one of the
in�nite chain (i. e., γ rf11 = 0.5) are indicated by thin dashed lines.

Jüttner et al. [56] demonstrates that the modi�cation of the electron density accord-
ing to Eq. (5.55) improves the FT-LDFT results considerably in the low-temperature
regime (kBT . t ). Nevertheless, in the present quarter-�lled case, FT-LDFT yields
slightly less accurate equilibrium averages at low temperatures as in the previously
considered cases close to or at half band-�lling. The deviations between the exact
and FT-LDFT results might be attributed to �nite-size e�ects in the reference system,
which are more pronounced if lower electron densities are considered.

Concerning the average number of double occupations D, shown in Fig. 5.14 (a),
we �nd the familiar qualitative behaviour already observed previously. Clearly, as
the density decreases the electrons are able to avoid each other more e�ectively in a
correlated motion throughout the lattice. Thus, in the present case of a quarter-�lled
band, we �nd noticeable smaller values ofD at any given temperatureT and Coulomb-
repulsion strength U /t than in the previous case n = 0.8. This is also re�ected in
U -independent high-temperature limit D = DHF = Na/16, which is 61% smaller than
in the case n = 0.8. We also observe the formation of a pronounced minimum at a
�nite temperature, which we associate with the tendency of the spins to prefer an
AFM alignment in the ground state, and the corresponding low-temperature spin ex-
citations. Concerning the accuracy of the average number of double occupations ob-
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tained in the framework of FT-LDFT, we �nd some noticeable deviations of up to 30%
from the exact results within the regime of rather low temperatures (kBT . t ). For
higher temperatures, the dependence of the doublons is more accurately reproduced
with relative errors never exceeding 11% for kBT > t . Since the electrons are able
to avoid each other very e�ectively without much impact on their kinetic energy K
in the present case of a rather low density, we observe in Fig. 5.14 (b) a temperature
dependence of K which is rather insensitive to variations of the Coulomb-repulsion
strength U /t . The comparison with corresponding exact results demonstrates that
FT-LDFT reproduces the temperature dependence of the kinetic energy very accu-
rately in the present low-density case. The relative error of K is in average as low
as 0.5% and never exceeds 2% in the whole range of data shown.

The speci�c heat CV , shown in Fig. 5.14 (c), displays a temperature dependence
which is qualitatively very di�erent from the one observed at and close to half band-
�lling. In the present case of a rather low electron density, the formation of the
two-peak structure in CV as the Coulomb-repulsion strength U /t increases is largely
suppressed since the low-lying spin excitations are superimposed by charge excita-
tions corresponding to the holonic motion. We thus observe a single broad maximum,
which appears at kBT ≈ 0.6t and is rather insensitive to the value of U /t . However,
for su�ciently strong Coulomb repulsions (U /t = 8) we still observe a small satellite-
peak which appears at a very low temperature (kBT ≈ 0.1t ) and it is believed to be
caused by low-lying spin excitations [56]. The comparison of our results to the speci�c
heat derived from the exact solution shows that the broad peak at kBT ≈ 0.6t is very
well reproduced within FT-LDFT. Noticeable deviations are, however, observed in the
low-temperature regime (kBT . 0.5t ), such that the small satellite-peak at kBT ≈ 0.1t
is not accurately obtained. Nevertheless, for su�ciently high temperatures the spe-
ci�c heat obtained in the framework of FT-LDFT is in excellent agreement with the
exact result and the relative error never exceeds 2% for kBT ≥ t .

In order to assess the performance of our FT-LDFT approach in higher dimensions,
we present in Fig. 5.15 results for the temperature dependence of the doublons D in
the Hubbard model on the 2D square lattice and the 3D simple cubic lattice with
electron densities ranging fromn = 0.65 to 1.0. Like in the previous applications to the
half-�lled Hubbard model, we have chosen a 2×2 square lattice cluster with periodic
boundary conditions as reference system in 2D, and a periodic 2×2×2 simple cubic
cluster in 3D. In the present applications to the two- and three-dimensional Hubbard
model it turns out to be favorable to match the electron density in the reference system
to the one in the target system, instead of choosing it according to Eq. (5.55), where we
approximate the degree of NN charge �uctuations in the strongly-correlated ground
state in terms of the energy EFP of the lowest-lying fully polarized state:

γ∞12 ≈ −
EFP
tNaz

. (5.56)
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Figure 5.15: Temperature dependence of the doublons D in the Hubbard model on [(a) and
(b)] the 2D square lattice and (c) the 3D simple cubic lattice with electron densities ranging
from n = 0.65 to 1.0. Results obtained by FT-LDFT in combination with the scaling approxi-
mation (5.53) are indicated by solid lines, while open circles correspond to NLCEs reported by
Khatami et al. [68, 130]. FT-LDFT results in 2D were obtained by using a 2×2 square lattice
cluster as reference system, while in 3D a 2×2×2 simple cubic cluster has been used. The elec-
tron density in the FT-LDFT reference system matches the one in the target system. Results
obtained by choosing the electron density in the reference system according to Eq. (5.55) are
indicated by thin dashed lines.

This can be attributed to the fact that the approximation (5.56) generally underesti-
mates γ∞12 , such that the electron density in the reference system determined from
Eqs. (5.55) and (5.56) tends to be too large. Thus, Eq. (5.55) must be combined with
a more accurate approximation to γ∞12 in order to improve the results of FT-LDFT in
two and three dimensions. However, in contrast to the previously considered one-
dimensional case, it turns out that the scaling approximation (5.53) yields excellent
results in higher dimensions if the electron density in the reference system is chosen
to match the one in the target system. Thus, in Fig. 5.15 we observe that the temper-
ature dependence of the doublons in the 2D and 3D Hubbard models is remarkably
well reproduced in the complete range of electron densities n and Coulomb-repulsion
strengthsU /t . This includes the gradual suppression of D as the electron density de-
creases, which re�ects the fact that the electrons are able to avoid each other more
e�ectively if the density is lower. Also the minimum in D, which is a result of low-
lying spin excitations, is very accurately reproduced for all electron densities. Notice
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that the upturn in D, which leads to the sharp increase of D in the high-temperature
regime, occurs at higher temperatures if the electron density is lower. This can be as-
cribed to the fact that charge excitations have less impact on the double occupations
if low electron densities are concerned. The comparison with the NLCEs reported by
Khatami et al. [68, 130] con�rms that FT-LDFT yields highly accurate results for the
double occupations and we �nd relative deviations for the 2D square lattice which
are in average as low as 1.8% for U /t = 8, as seen in Fig. 5.15 (a), and 3.5% for the
strong-coupling case U /t = 16 shown in Fig. 5.15 (b). Similarly, for the doublons in
the 3D simple-cubic lattice withU /t = 12, shown in Fig. 5.15 (c), we �nd relative devia-
tions which are in average as low as 1.7%. Concerning the dependence on the electron
density, we notice that FT-LDFT tends to yield more accurate results if the electron
density is lower. Thus, we �nd no discrepancies larger than 3% for the 2D square lat-
tice withU /t = 8 and n = 0.65, while at half band-�lling (n = 1) relative di�erences of
up to 12.6% are observed. Similarly, in the strong-coupling caseU /t = 16 the maximal
deviation for n = 0.65 is less than 4%, while close to half band-�lling (n = 0.95) di�er-
ences of up to 24% are observed in the low-temperature regime (kBT . t ). However,
these large relative deviations are mainly due to the fact that the doublons are largely
suppressed in the low-temperature regime if the Coulomb repulsions are strong. In
fact, the absolute deviation in D/Na never exceeds 3.5 × 10−3 for U /t = 16. Con-
cerning the 3D simple cubic lattice with U /t = 12, the largest relative discrepancy
is found to be 11.5% at kBT ≈ 0.7t and n = 0.8. Again, the relative deviation might
be slightly misleading and thus we notice that the absolute di�erences in D/Na never
exceed 3.1 × 10−3 in the whole range of data shown in Fig. 5.15 (c).

We conclude that FT-LDFT in combination with the scaling approximation (5.53)
and a suitable reference system is able to account very accurately for the modi�cations
in the electronic structure and the resulting changes in the equilibrium observables
caused by variations in the electron density. Thus, the crossover from the regime
around half band-�lling, where the spin-charge separation dominates the strong-
coupling physics, to the low-density regime, where low-lying charge excitations as-
sociated with the holonic motion lift the separation between spin and charge degrees
of freedom, is accurately reproduced within FT-LDFT. Furthermore, the ability of the
electrons to reduce double occupations more e�ectively in a correlated motion as their
density decreases is very well reproduced, not only in one spatial dimension but also
for lattice structures in 2D and 3D.

5.5 Spin-polarized systems
In order to investigate the physical properties of interacting electron systems in the
presence of external magnetic �elds, it is desirable to extend the scope of FT-LDFT
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to the regime of spin-polarized electron densities. We will focus on the single-band
Hubbard model in the presence of an external magnetic �eld B = B êz which couples
to the spins by means of a Zeeman term ĤS = −µ̂S ·B = дeµBBŜz , such that the energy
of the system is described by the Hamiltonian

Ĥ = −t
∑
〈i,j〉σ

ĉ†iσ ĉjσ +
1
2 дeµBB

∑
i

(
n̂i↑ − n̂i↓

)
+U

∑
i

n̂i↑n̂i↓ . (5.57)

Here µB is the Bohr magneton and дe the Landé factor for which it su�ces to take
дe ≈ 2 in the following. Since the inclusion of an external magnetic �eld only breaks
the spin-rotational symmetry but not the rotational and translational symmetries
in real space, it follows that the eq-SPDM of the system described by the Hamilto-
nian (5.57) still ful�lls the symmetry (5.2). Thus, similar to Eq. (5.3), for a given chem-
ical potential µ = (µ↑ + µ↓)/2 and magnetic �eld strength B = (µ↓ − µ↑)/2µB we can
write the grand-potential functional (3.53) of the Hubbard model (5.57) as

Ω[γ ] = G[γ ] − Na

[
tz γ12 + µ

(
γ11↑ + γ11↓

) − µBB (
γ11↑ − γ11↓

) ]
, (5.58)

where Na is the number of sites and z the coordination number of the lattice. Notice
that, as long as only NN hoppings are taken into account (i. e., tij = 0 for i, j beyond
NNs), the dependence of Ω[γ ] on all SPDM elements other than γ11↑, γ11↓ and γ12
appears only through the interaction and entropy functionalG[γ ]. Therefore, we can
absorb all other SPDM elements in the LL minimization procedure (3.52) and de�ne
the generalization of the reduced functional (5.4) to the case of spin-polarized electron
densities:

G[γ11↑,γ11↓,γ12] = min
ρ̂→{γ11↑,γ11↓,γ12}

Tr
{
ρ̂

(
U

∑
i

n̂i↑n̂i↓ +
1
β
log ρ̂

)}
. (5.59)

The usual notation ρ̂ → {γ11↑,γ11↓,γ12} indicates that the minimization is performed
within the set formed by the positive semide�nite density matrices ρ̂ ∈ P with unit
trace, satisfying

Tr
{
ρ̂ ĉ†iσ ĉiσ

}
= γ11σ for σ = ↑,↓ and i = 1, . . . ,Na (5.60a)

and ∑
σ

Tr
{
ρ̂ ĉ†iσ ĉjσ

}
= γ12 ∀i, j ∈ NNs . (5.60b)

The reduced functional (5.59) has a universal character in the sense that it does not
depend on the chemical potential µ, the external magnetic �led strength B, and the
NN hopping integral t . Like its unpolarized counterpart (5.4) it depends on the un-
derlying Fock-space, which is determined by the number of lattice sites Na , on the
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temperature T , the Coulomb-repulsion strength U , and on the topology of the lattice
structure under consideration.

In the present case of a spin-dependent electron density we will proceed in a similar
fashion as in the previously considered unpolarized case in order to derive a practi-
cal approximation to the reduced functional (5.59). Thus, we start by exploring the
corresponding domain of de�nition and subsequently we derive the exact functional
dependence Gs[γ11↑,γ11↓,γ12] for the important case of uncorrelated mixed-states. Fi-
nally, we will propose a scaling approximation for the remaining correlation contri-
bution Gc = G −Gs .

5.5.1 Domain of ensemble representability
Building on the preliminary work done in Section 5.1.1, it is straight forward to iden-
tify the domain of de�nition of the reduced functional (5.59). This is the set of all
tuples (γ11↑,γ11↓,γ12) that can be associated with some density matrix ρ̂ ∈ P which
satis�es Eq. (5.60). In the context of Eq. (5.8) we have already seen that γ11σ is bound
to the interval [0, 1], which is simply a consequence of Pauli’s exclusion principle
since γ11σ = Nσ/Na represents the average spin-dependent occupation of the local-
ized Wannier orbitals. Furthermore, adapting the argument which led to Eq. (5.14) to
the case of a spin-polarized electron density, we readily obtain the upper and lower
bounds on γ12 =

∑
σ γ12σ as

γmax
12 =

1
z

∑
σ

∫ ∞

µmax
σ

ω ρ(ω) dω and γmin
12 =

1
z

∑
σ

∫ µmin
σ

−∞
ω ρ(ω) dω . (5.61)

Here, ρ(ω) is the DOS of the tight-binding Hamiltonian (5.13), and µmax
σ and µmin

σ are
associated with the spin-dependent electron density γ11σ by the condition

γ11σ =

∫ ∞

µmax
σ

ρ(ω) dω =
∫ µmin

σ

−∞
ρ(ω) dω . (5.62)

Figure 5.16 shows the domain formed by the set of ensemble representable SPDM el-
ements γ11↑, γ11↓, and γ12 for the case of bipartite lattice structures in 1–3 dimen-
sions. The boundaries on γ12 have been determined from Eqs. (5.61) and (5.62)
by varying the spin-dependent electron densities in the complete range of repre-
sentable values 0 ≤ γ11σ ≤ 1 for σ = ↑,↓. The resulting domains are convex
and highly symmetric. The re�ection symmetry with respect to the γ12 = 0 plane,
i. e., γmin

12 (γ11↑,γ11↓) = −γmax
12 (γ11↑,γ11↓), observed for the bipartite lattice structures

in Fig. 5.16, has already been discussed in Section 5.1.1. In the general case, which
includes non-bipartite lattice structures, the upper and lower boundaries on γ12 are
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Figure 5.16: Domain formed by the set of ensemble representable SPDM elements γ11↑, γ11↓,
and γ12 for the periodic (a) 1D chain, (b) 2D square lattice, and (c) 3D simple-cubic lattice. Sub-
�gures in the bottom row, indicated by primed letters, show cuts through the corresponding
domains at the top along the n = γ11↑+γ11↓ = 1 plane, which corresponds to a half-�lled band.
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related by γmin
12 (γ11↑,γ11↓) = −γmax

12 (1 − γ11↑, 1 − γ11↓), which follows from the fact
that the tight-binding Hamiltonian (5.13) changes sign upon the unitary electron-
hole transformation ĉ†i → ĉi . A further prominent symmetry of the representabil-
ity domains results from the fact that the upper and lower boundaries on γ12, given
by Eq. (5.61), are additive in the equivalent contributions of the up and down spins.
Therefore, the upper and lower boundaries on γ12 are invariant upon interchange
of the spin-dependent electron densities, i. e., γmax

12 (γ11↑,γ11↓) = γmax
12 (γ11↓,γ11↑) and

γmin
12 (γ11↑,γ11↓) = γmin

12 (γ11↓,γ11↑).
In the following we will mainly focus on the important case of a half-�lled band

and thus, in Figs. 5.16 (a’)–(c’), we present cuts through the corresponding domains
along the n = γ11↑+γ11↓ = 1 plane. The boundaries on γ12 within this plane have been
determined from Eqs. (5.61) and (5.62) by varying the spin polarization γ11↑ − γ11↓ =
2Sz/~Na in the complete range of representable values −1 ≤ γ11↑ − γ11↓ ≤ 1.

5.5.2 Functionals for uncorrelated mixed-states
Following the route we took in order to describe unpolarized systems in the frame-
work of FT-LDFT, we would now like to consider the restriction of the functional (5.59)
to the set Ps formed by the uncorrelated mixed-states (see Appendix B). This means,
we consider the functional

Gs[γ11↑,γ11↓,γ12] = min
ρ̂s→{γ11↑,γ11↓,γ12}

Tr
{
ρ̂s

(
U

∑
i

n̂i↑n̂i↓ +
1
β
log ρ̂s

)}
, (5.63)

where ρ̂s → {γ11↑,γ11↓,γ12} indicates the minimization with respect to all uncorre-
lated mixed-states ρ̂s ∈ Ps which satisfy the conditions (5.60). Since the interaction
energy W = U

∑
i Tr{ρ̂s n̂i↑n̂i↓} in any uncorrelated mixed-state which meets these

requirements is given by (see Appendix B)

WHF[γ11↑,γ11↓] = UNa γ11↑γ11↓ , (5.64)

it is su�cient to minimize the entropy contribution to Gs . This means we can write
Eq. (5.63) as

Gs[γ11↑,γ11↓,γ12] =WHF[γ11↑,γ11↓] −T Ss[γ11↑,γ11↓,γ12] , (5.65)

where we have introduced the generalization of the reduced IFE-functional (5.19) to
the case of spin-polarized electron densities

Ss[γ11↑,γ11↓,γ12] = −kB min
ρ̂→{γ11↑,γ11↓,γ12}

Tr
{
ρ̂ log ρ̂

}
. (5.66)

Like in the previous unpolarized case, it is not necessary to restrict the minimization
in Eq. (5.66) to the set Ps , since the minimizing ρ̂ always represents an uncorrelated
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mixed-state. As usual, the minimization in Eq. (5.66) is carried out by seeking for the
extremes of the corresponding Euler-Lagrange functional

L[ρ̂] = Tr
{
ρ̂ log ρ̂

}
+ λ

∑
〈i,j〉

(
Tr

{
ρ̂
∑
σ

ĉ†iσ ĉjσ
}
− γ12

)
−

∑
iσ

νσ
(
Tr

{
ρ̂ n̂iσ

} − γ11σ )
= Tr

{
ρ̂

(
λ

∑
〈i,j〉σ

ĉ†iσ ĉjσ + log ρ̂ −
∑
σ

νσ N̂σ

)}
− Na

(
λz γ12 −

∑
σ

νσ γ11σ

)
, (5.67)

where N̂σ =
∑

i n̂iσ and the Lagrange multipliers λ and νσ enforce that the minimiz-
ing ρ̂ satis�es the conditions (5.60). Following a similar argument which led from
Eq. (5.20) to Eq. (5.25), we obtain the reduced IFE-functional (5.66) as

Ss[γ11↑,γ11↓,γ12] = −kBNa

∑
σ

∫ ∞

−∞

[
ησ (ω) log

(
ησ (ω)

)
+

(
1 − ησ (ω)

)
log

(
1 − ησ (ω)

) ]
ρ(ω) dω , (5.68)

where ρ(ω) is the tight-binding DOS (5.11) and

ησ (ω) = 1
1 + eβs (ω−µsσ )

(5.69)

the spin-dependent occupation number of the Bloch state with energy ω at the e�ec-
tive temperature βs = λ and the e�ective chemical potential µsσ = νσ/λ.

In Fig. 5.17 we focus on the case of a half-�lled band (n = γ11↑ + γ11↓ = 1) and
present results for the reduced IFE-functional (5.68) on periodic lattice structures in
1–3 dimensions. Since we focus on a �xed electron density, we can express the IFE-
functional in terms of the spin polarization γ11↑ − γ11↓ = 2Sz/~Na and the degree of
NN charge �uctuations γ12. Furthermore, for the bipartite lattice structures under
consideration it is su�cient to focus on the partial domain γ12 ≥ 0 and γ11↑ ≥ γ11↓.
The re�ection symmetry of Ss with respect to γ12 = 0 has already been discussed in
Section 5.1.2. The invariance upon interchange of the spin-dependent electron densi-
ties, i. e., Ss[γ11↑,γ11↓,γ12] = Ss[γ11↓,γ11↑,γ12], is evident from the fact that the additive
contributions of the up and down spins to the IFE-functional (5.68) are equivalent. The
functional dependence of the IFE-functionals shown in Fig. 5.17 is deeply related to
the previously considered case of unpolarized electron densities (see Fig. 5.2). Thus, Ss
vanishes on the complete delocalized boundary (γ12 = γmax

12 ), since this limit is attained
when the Bloch-states with the highest e�ective energies ω are occupied [ησ (ω) = 1]
while all other Bloch-states are unoccupied [ησ (ω) = 0]. Starting from the delocal-
ized boundary, the IFE increases monotonously as γ12 decreases, until the localized
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Figure 5.17: Reduced IFE-functional Ss [γ11↑,γ11↓,γ12] for the case of a half-�lled band (n =
γ11↑ + γ11↓ = 1) and di�erent bipartite lattice structures. Color contour-plots are shown for
the periodic (a) one-dimensional chain, (b) square lattice, and (c) simple cubic lattice. The
color scale for Ss is indicated on the right, where Smax

s = kBNa log 4 refers to the structure-
independent global maximum of Ss , which is attained in the localized limit γ12 = 0 with
vanishing spin polarization γ11↑ = γ11↓ = 1/2. Contour lines are drawn at equidistant values
of Ss in order to display its functional dependence more clearly.

limit γ12 = 0 is reached, where Ss assumes its maximum for any given spin-dependent
electron density γ11σ . The localized limit γ12 = 0 corresponds to homogeneous occu-
pations ησ (ω) = γ11σ across the complete Bloch-state spectrum, such that the corre-
sponding structure-independent maximal value of the IFE (5.68) is given by

Smax
s (γ11↑,γ11↓) = −kBNa

∑
σ

[
γ11σ logγ11σ + (1 − γ11σ ) log(1 − γ11σ )

]
. (5.70)

5.5.3 Scaling approximation for correlation e�ects

Having derived the exact functional dependence Gs[γ11↑,γ11↓,γ12], which represents
the interaction-energy and entropy contribution to the free energy of independent
Fermions, it remains to account for the contributions resulting from the electronic
correlations. We follow the approach taken in Section 5.2 and begin by carrying out
the minimization procedure (5.59) in an explicit manner. To this aim we seek for the
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extremes of the corresponding Euler-Lagrange functional

L[ρ̂] = Tr
{
ρ̂

(
U

∑
i

n̂i↑n̂i↓ +
1
β
log ρ̂

)}
+ λ

∑
〈i,j〉

(
Tr

{
ρ̂
∑
σ

ĉ†iσ ĉjσ
}
− γ12

)
−

∑
iσ

µσ
(
Tr

{
ρ̂ n̂iσ

} − γ11σ ) (5.71)

= Tr
{
ρ̂

(
Ĥaux +

1
β
log ρ̂ −

∑
σ

µσ N̂σ

)}
− Na

(
λz γ12 −

∑
σ

µσ γ11σ

)
,

where Ĥaux is the auxiliary Hamiltonian (5.30) and the Lagrange multipliers λ and µσ
have been introduced in order to enforce that the minimizing ρ̂ satis�es the condi-
tions (5.60). Apart from an irrelevant additive constant, the functional (5.71) is of the
Gibbs form (3.43) and thus, the minimum among the set P of all positive semide�nite
density matrices ρ̂ with unit trace is taken for the grand-canonical density matrix of
the auxiliary Hamiltonian Ĥaux, i. e., for

ρ̂0 =
e−β (Ĥaux−∑σ µσ N̂σ )

Tr
{
e−β (Ĥaux−∑σ µσ N̂σ )

} . (5.72)

The functional dependence ofG[γ11↑,γ11↓,γ12] can thus be obtained from the solution
of the �nite-temperature problem with the auxiliary Hamiltonian (5.30), which has
the same level of complexity as the initial problem de�ned by the Hubbard-model
Hamiltonian (5.57). Like in the previously considered case of unpolarized electron
densities, we conclude that the range of applications of the thus described method
is limited to systems which can be solved by either analytical or numerical meth-
ods. Nevertheless, it provides us with a practical means to access the exact functional
dependence G[γ11↑,γ11↓,γ12] for a number of relevant systems.

In Fig. 5.18 we focus on the in�nite one-dimensional Hubbard chain with a half-
�lled band (n = 1) and show results for the nontrivial correlation functional

Gc[γ11↑,γ11↓,γ12] = G[γ11↑,γ11↓,γ12] −Gs[γ11↑,γ11↓,γ12] . (5.73)

The results shown account for di�erent ratios U /kBT between the Coulomb-
repulsion strengthU and the temperature T and were obtained from the exact �nite-
temperature solution of Jüttner, Klümper, and Suzuki [56]. The in�nite chain with
NN hopping is bipartite, and thus we haveGc[γ11↑,γ11↓,γ12] = Gc[γ11↑,γ11↓,−γ12]. Fur-
thermore, from the fact that the auxiliary Hamiltonian (5.30) is invariant with respect
to spin �ips (ĉ†iσ → ĉ†i,−σ ) we conclude that Gc[γ11↑,γ11↓,γ12] = Gc[γ11↓,γ11↑,γ12] must
hold in general. Thus, in Fig. 5.18 it is su�cient to focus on the sector having γ12 ≥ 0
and γ11↑ ≥ γ11↓.
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Figure 5.18: Correlation contribution Gc [γ11↑,γ11↓,γ12] to the free-energy functional of the
in�nite spin-polarized Hubbard chain at half band-�lling (n = γ11↑ + γ11↓ = 1). Sub�gures in
the right column [(a’)–(c’)] show the functional dependence of Gc for di�erent ratios U /kBT
between the Coulomb-repulsion strengthU and the temperatureT in the sector havingγ12 ≥ 0
andγ11↑ ≥ γ11↓. Sub�gures in the left column [(a)–(c)] correspond to the same values ofU /kBT
as their counterparts on the right, and show the functional dependence of Gc along cuts with
�xed spin polarizations sz = ~ (γ11↑ − γ11↓)/2. The correlation functionals along the cuts with
�xed sz have been scaled to a common range by using the upper bound γ 012(sz ) on the degree
of NN charge �uctuations, as well as the correlation contributionG∞c (sz ) to the free energy in
the localized limit γ12 = 0.
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For a given spin polarization sz = Sz/Na = ~ (γ11↑ −γ11↓)/2 we observe in Fig. 5.18 a
qualitatively similar dependence ofGc on the degree of NN charge �uctuations γ12 as
in the previously considered unpolarized case (see Fig. 5.3). Thus, starting from the
localized limit γ12 = 0, whereGc assumes its minimumGc = G

∞
c (sz) for any given spin

polarization sz , we �nd Gc monotonously increasing with γ12, until Gc = 0 is reached
on the complete delocalized boundary γ12 = γ 012(sz).3 Here

γ 012(sz) =
2
π
cos(πsz/~) (5.74)

refers to the upper bound on the NN charge �uctuations in the half-�lled 1D Hubbard-
chain. Regarding the dependence of the correlation contribution to the free energy
on the spin polarization sz , we �nd that |Gc | decreases with increasing values of |sz |,
since the correlated electronic motion is gradually suppressed as the system polarizes.
Thus, the global minimum ofGc is attained in the localized limitγ12 = 0with vanishing
spin polarization (γ11↑ = γ11↓ = 1/2), and it is given by (see Section 5.2.1)

G∞c (0)
Na

=
U

4 −
1
β
log

(
1 + eβU /2

2

)
. (5.75)

Therefore, the correlation contribution to the free energy is bound byG∞c (0) ≤ Gc ≤ 0,
and since the lower boundary G∞c (0)/U is a strictly decreasing function of βU , we
conclude that |Gc |/U increases with the ratio U /kBT . Clearly, this is simply a con-
sequence of the fact that correlation e�ects are most pronounced in the regime of
strong Coulomb repulsions and low temperatures, as already observed in the context
of unpolarized spin densities in Section 5.2.

In order to approximate the functional dependence of the correlation contribu-
tion Gc[γ11↑,γ11↓,γ12] to the free energy of the half-�lled Hubbard model, we aim
to extend the scaling approach (5.33) to the regime of spin-polarized electron den-
sities. The most naive generalization would be to focus on a �xed spin polariza-
tion sz = ~ (γ11↑ − γ11↓)/2, and to extract the dependence of Gc on the degree of
NN charge �uctuations γ12 from the properly scaled functional of a suitable reference
system having the same sz . However, for the applications we have in mind, involving
dynamic variations of the magnetization due to changes in the external magnetic �eld
strength and the temperature, this approach turns out the be inappropriate if small
�nite reference systems are used, as discussed in more detail in Appendix G. In or-
der to develop a more suitable generalization of the scaling idea, let us now focus on
Figs. 5.18 (a)–(c), where the functional dependence of the correlation contribution Gc

to the free energy of the in�nite half-�lled Hubbard chain is shown along cuts through
3See Sections 5.2.1 and 5.2.2 for a detailed discussion of the correlation e�ects in the localized and

delocalized limits.
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the domain which correspond to �xed spin polarizations sz . When scaled to a com-
mon domain and range, using the upper bound γ 012(sz) on the degree of NN charge
�uctuations, given in Eq. (5.74), as well as the correlation contribution G∞c (sz) in the
localized limit γ12 = 0 (see Section 5.2.1), the functional dependence ofGc reveals a re-
markable quasi-universal behaviour, which is approximately independent of the spin
polarization sz . This is especially true in the regime of strong Coulomb-repulsions or
low temperatures U � kBT , where correlation e�ects play a crucial role. This quasi-
universal behaviour of Gc upon proper scaling suggests that its dependence on the
spin polarization is to a great extent concealed in γ 012(sz) and G∞c (sz), at least in the
present case of the in�nite half-�lled Hubbard chain. We conclude that the depen-
dence of Gc on γ12 could be well approximated for any −~/2 ≤ sz ≤ ~/2, if it would
be known for some �xed value of sz . Building upon the success of the scaling approx-
imation (5.33) to account for the unpolarized case, it is thus most reasonable to focus
on sz = 0, and to infer the qualitative dependence of Gc on the degree of NN charge
�uctuations γ12 from an unpolarized reference system. The only modi�cation of the
scaling approximation (5.33) is then to account for the sz-dependence of the scaling
parameters of the in�nite target system, i. e., γ 012 = γ 012(sz), G∞c = G∞c (sz) and G0

c = 0.
We thus arrive at the following generalization of the scaling approximation (5.33) to
the in�nite spin-polarized Hubbard model at half band-�lling:

Gc[sz,γ12] = G∞c (sz)
Grf ,0
c −Grf

c [γ rf12]
Grf ,0
c −Grf ,∞

c

with γ rf12 = γ
rf,0
12

γ12

γ 012(sz)
. (5.76)

Here the upper index “rf” on Gc and γ12 refers to the exactly solvable, half-�lled,
and unpolarized (srfz = 0) reference system. Furthermore, we consider the reference
system at the temperature T and the Coulomb-repulsion strength U speci�ed by the
target system, in order to be compliant with the principles of FT-LDFT.

5.5.4 Application to the infinite Hubbard chain
Having introduced the scaling approximation for spin-polarized systems (5.76), we are
now in a position to apply our method in order to explore the equilibrium properties of
the in�nite Hubbard chain in the framework of FT-LDFT. To this aim we focus on the
half-�lled band case (γ11↑ + γ11↓ = 1), and for given NN hopping integral t , Coulomb-
repulsion strength U , temperature T , and magnetic �eld strength B we minimize the
free-energy functional

F [sz,γ12] = −tNaz γ12 + 2NaµBB
sz
~
+Gs[sz,γ12] +Gc[sz,γ12] (5.77)

in the domain of ensemble-representable spin polarizations −~/2 ≤ sz ≤ ~/2 and
NN charge �uctuations γ12. As usual,Gs[sz,γ12] stands for the interaction-energy and
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entropy functional for uncorrelated mixed-states, given by Eq. (5.63), and Gc[sz,γ12]
for the correlation contribution to the free-energy functional obtained from the scal-
ing approximation (5.76) using an appropriate reference system. We treat the unpo-
larized reference system in a grand-canonical ensemble formulation at the temper-
ature T and Coulomb-repulsion strength U de�ned by the in�nite chain and chose
the chemical potential µrf of the reference system such that a half-�lled band is ob-
tained. The minimization of the functional (5.77) directly yields the free energy F ,
the spin polarization sz , and the degree of NN charge �uctuations γ12 and thus the
kinetic energy K = −tNaz γ12 in thermodynamic equilibrium. Additional equilibrium
observables, such as the average number of double occupations D, the entropy S , the
speci�c heatCV , and the magnetic susceptibility χ can be subsequently obtained from
appropriate derivatives of the free energy F .

In Fig. 5.19 we present results for several equilibrium properties of the in�nite half-
�lled Hubbard chain with strong Coulomb repulsion U /t = 8 in the presence of an
external magnetic �eld B. The results shown were obtained from FT-LDFT in combi-
nation with the scaling approximation (5.76) for the correlation contributionGc[sz,γ12]
to the free energy, using a 7-site ring as reference system. In order to assess the accu-
racy of the equilibrium properties obtained in the framework of FT-LDFT, we compare
them with the exact �nite-temperature solution of the in�nite 1D Hubbard chain [56].

Let us begin our discussion by considering in Fig. 5.19 (c) the dependence of the
magnetization M = −2µBSz/~ on the temperatureT and the magnetic �eld strength B.
In the present case of a strong Coulomb repulsion U /t = 8, the low-lying spin exci-
tations in the Hubbard model are described by an e�ective Heisenberg model (2.52)
with NN exchange-coupling constant J = 2t2/U . Thus, we expect to �nd the grad-
ual crossover from the AFM ground state in the absence of an external magnetic
�eld (B = 0) to the fully polarized FM ground state at �eld strengths of the or-
der µBB ' J = t/4. In fact, for rather weak4 magnetic �elds (0.2t ≤ µBB ≤ 0.4t )
we �nd a partially polarized ground state, while for stronger �elds the ground state is
fully polarized. The magnetization decreases as low-spin states are thermally excited
with increasing temperature, and for su�ciently high temperatures we discover the
typical Curie-lawM = C B/T of a paramagnet with Curie-constantC ≈ µ2B/(2kB) [131].
In fact, for µBB ≥ t/2, where the ground state of the Hubbard chain is fully polar-
ized, the magnetization curves can be roughly approximated by the well-known rela-
tion M/N = µB tanh(µB/kBT ) for N noninteracting spin-1/2 particles with magnetic

4Notice that the NN hopping integral t in transition metals is typically of the order 0.1–0.5 eV, such
that comparable magnetic �eld strengths B ∼ t/µB = 2000–9000 T are actually very large for typical
experimental setups. However, here and in the following we relate the magnetic �eld strength µBB
to the energy scales speci�ed by the model under consideration, such as the bandwidth w = 4t ,
the Coulomb-repulsion strength U , or the e�ective exchange-coupling constant J = 2t2/U which
is relevant in the strongly-interacting Heisenberg limit.
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Figure 5.19: Equilibrium properties of the half-�lled in�nite 1D Hubbard chain as functions
of the temperature T for the case of strong Coulomb repulsion U /t = 8 and representative
values of the external magnetic �eld strength B. Results obtained by FT-LDFT in combination
with the scaling approximation (5.76) using a 7-site ring as reference system (full curves) are
compared with the exact solution of Jüttner et al. [56] (open circles): (a) kinetic energy K ,
(b) average number of double occupations D, (c) magnetization M = −2µBSz/~, (d) entropy S ,
(e) speci�c heat CV , and (f) magnetic susceptibility χ = ∂M/∂B.

170



5.5 Spin-polarized systems

moment µ = µB/
√
2, which is chosen such that the corresponding Curie-constant

C = µ2/kB = µ2B/(2kB) matches the one of the Hubbard chain. The results obtained in
the framework of FT-LDFT correctly predict the transition to a fully polarized ground
state at µBB ≈ t/2 and exactly reproduce the high-temperature Curie-law. The magne-
tization curves obtained within the framework of FT-LDFT show an overall very good
quantitative agreement with the corresponding exact analytical results in the com-
plete range of parameters explored. Only in the low-temperature regime (kBT . 0.5t )
with rather weak �elds (µBB ≤ 0.4t ) some noticeable deviations are observed. For
example, at µBB = 0.4t FT-LDFT underestimates the ground-state magnetization by
about 15%. For intermediate and strong �elds the FT-LDFT results are in excellent
agreement with the exact analytical solution. In fact, for µBB ≥ 0.5t the relative error
in M is in average as low as 1% and never exceeds 6% within this range.

Concerning the in�uence of external magnetic �elds on the kinetic energy K ,
shown in Fig. 5.19 (a), we observe that charge �uctuations are gradually suppressed
as the magnetic �eld strength increases. This is a simple consequence of Pauli’s ex-
clusion principle, since the spins tend to align in a FM pattern as the external �eld
strength increases, and hopping processes are prohibited if NN sites are occupied by
parallel spins. In the extreme case of a fully-polarized state, as found in the ground
state for µBB ≥ t/2, the kinetic energy vanishes completely since the band is half
�lled. However, at temperatures of the order kBT ≈ µBB low-spin states are ther-
mally excited, opening up the way for NN hopping processes, which give rise to a
rapid increase of |K | for intermediate magnetic �eld strengths (t/2 . µBB . t ). The
comparison with the exact analytical solution demonstrates that FT-LDFT is able to
reproduce the thus described e�ects of external magnetic �elds on the kinetic energy
of the lattice electrons very accurately. However, in the range of rather low temper-
atures (kBT . t ) and weak to intermediate �elds (µBB ≤ t/2), where the transition
from the AFM to the FM ground-state occurs, we �nd some noticeable deviations
between the exact and FT-LDFT results. For example, at µBB = 0.4 FT-LDFT overes-
timates the binding energy |K | in the ground state by about 24%. Nevertheless, for
intermediate to strong �elds, the agreement between the exact and FT-LDFT results
is excellent in the whole range of temperatures considered, such that the error in the
kinetic energy per lattice site is in average as low as 2.8t × 10−3 for µBB ≥ 0.7t and
never exceeds 1.5t × 10−2 within this range, which is just about 0.4% of the band-
width w = 4t .

Let us now focus on the average number of double occupations D, shown in
Fig. 5.19 (b). Starting from the B-independent high-temperature limit D = Na/4, we
�nd a decrease of the doublons upon cooling which is more rapid if strong magnetic
�elds are applied, since strong �elds stabilize a FM alignment of the spins and thus
lead to a rapid suppression of D. The typical increase in D upon further cooling in the
low-temperature regime (kBT . t/2), signalling the onset of an AFM con�guration if
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no magnetic �eld is applied, is gradually suppressed as the magnetic �eld strength in-
creases, and for µBB ≥ t/2 a fully polarized ground state with D = 0 is formed. These
modi�cations in the temperature dependence of the doublons, caused by the external
magnetic �eld, are very well reproduced within the framework of FT-LDFT. In fact,
the error in the double occupations per lattice site is in average as low as 4.3 × 10−4
and never exceeds 5.6 × 10−3 in the whole range of data shown in Fig. 5.19 (b).

Concerning the in�uence of external magnetic �elds on the temperature depen-
dence of the entropy S , shown in Fig. 5.19 (d), we �nd the rapid entropy-increase in
the low-temperature regime (kBT . t ) gradually suppressed as the magnetic �eld
strength increases. Clearly, for intermediate to strong �elds (µBB ≥ t/2), the spin ex-
citations from the FM ground state and the charge excitations across the Hubbard gap
are suppressed until temperatures of the order kBT ∼ µBB are reached. In contrast to
the unpolarized case (B = 0), where degeneracies in the ground state of the reference
system prevent FT-LDFT from reproducing the linear increase of S in the regime of
very low temperatures (kBT . 0.2t ), as already discussed in the context of Fig. 5.5, we
�nd that FT-LDFT reproduces the entropy of the in�nite Hubbard chain in the pres-
ence of intermediate to strong magnetic �elds very well also in the low-temperature
regime. In fact, for µBB ≥ t/2 we �nd errors in the entropy per lattice site (measured
in units of kB) which are in average as low as 3 × 10−3 and never exceed 3 × 10−2 in
the complete temperature range shown in Fig. 5.19 (d).

Also the temperature dependence of the speci�c heatCV , shown in Fig. 5.19 (e), dis-
plays very interesting modi�cations in the presence of external magnetic �elds. If no
�eld is applied (B = 0), the speci�c heat exhibits the typical two-peak structure, where
the low-temperature peak at kBT ≈ 0.23t corresponds to the excitation of spin waves
from the AFM ground-state, while the peak at higher temperatures (kBT ≈ 1.75t )
corresponds to charge excitations across the Hubbard gap. As the magnetic �eld
strength increases above values of the order µBB ∼ 2t2/U = t/4, an antiferromag-
netic alignment of the spins becomes energetically unfavorable and the crossover to
a FM ground-state occurs. For intermediate �eld strengths (0.5t . µBB . 0.7t ) we
still observe a low-temperature structure in the speci�c heat, which is caused by low-
lying spin excitations from the FM ground-state. As the �eld strength exceeds values
of µBB ≈ t = U /8, the low-temperature structure in CV is suppressed and a single
broad peak is formed. Upon further increase of the external magnetic �eld strength
the broad peak in CV is shifted to higher temperatures, since spin and charge excita-
tions remain suppressed until temperatures of the order kBT ∼ µBB are reached. All
of the thus described modi�cations in the temperature dependence of CV , caused by
variations in the magnetic �eld strength, are very well reproduced within the frame-
work of FT-LDFT. Only in the low-temperature regime (kBT . 0.7t ) with intermediate
�elds (0.5t ≤ µBB ≤ 0.7t ) we �nd noticeable deviations from the exact results of up
to 20%. For higher temperatures (kBT > 0.7t ), the relative error in the speci�c heat
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Figure 5.20: TemperatureTχ at which the peak in the magnetic susceptibility of the half-�lled
Hubbard chain with U /t = 8 occurs as a function of the magnetic �eld strength B. Results
obtained by FT-LDFT in combination with the scaling approximation (5.76) using a 7-site ring
as reference system are indicated by blue crosses, while red plus symbols correspond to the
exact solution of Jüttner et al. [56]. The gray solid line marks the asymptotic behavior kBTχ =
µBB expected for strong magnetic �elds.

obtained from FT-LDFT is in average as low as 1.4% and never exceeds 7% within this
range of temperatures for all values of the magnetic �eld strength.

The temperature dependence of the magnetic susceptibility χ = ∂M/∂B of the
half-�lled Hubbard chain with U /t = 8, shown in Fig. 5.19 (f), is very similar to the
one of the spin-1/2 Heisenberg chain if intermediate to strong �elds (µBB ≥ 0.7t ) are
applied [120]. Thus, starting from T = 0, where χ vanishes since the ground state is
already fully polarized, we �nd the magnetic susceptibility increasing with the tem-
perature until a pronounced peak at kBTχ ' µBB is formed. The temperature Tχ
where the peak in χ occurs roughly marks the transition from the fully polarized
regime at low temperatures to the Curie-law decay of the magnetization in the high-
temperature range. In Fig. 5.20 we show the dependence of the temperatureTχ on the
external magnetic �eld strength, and for su�ciently large values of B the expected
behavior kBTχ = µBB is observed. The comparison with the temperature Tχ derived
from the exact analytical solution demonstrates that the position of the peak in χ is
very well reproduced within the framework of FT-LDFT and the relative error inTχ is
less than 5% in the whole range of parameters explored in Fig. 5.20. However, for in-
termediate values of the magnetic �eld strength (µBB = 0.7t ) FT-LDFT overestimates
the peak in χ by about 18%, as seen in Fig. 5.19 (f). Nevertheless, as the temperature in-
creases beyondTχ , the magnetic susceptibility obtained in the framework of FT-LDFT
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Figure 5.21: (a) Magnetization curve of the in�nite half-�lled Hubbard chain withU /t = 8 for
representative values of the temperature T . (b) Zero-�eld magnetic susceptibility of the half-
�lled in�nite Hubbard chain for representative values of the Coulomb-repulsion strengthU /t .
The solid lines in both �gures mark results obtained by FT-LDFT in combination with the
scaling approximation (5.76) using a 6-site ring as reference system, while the exact analytical
solution of Jüttner et al. [56] is indicated by open circles.

approaches the exact result, and for kBT & t an almost perfect agreement is obtained.
The same is true if strong �elds (µBB ≥ t ) are considered. Within this range, the ab-
solute error in the magnetic susceptibility per lattice site (measured in units of µ2B/t )
is in average as low as 4.8 × 10−3 and never exceeds 3.9 × 10−2 for µBB ≥ t .

In Fig. 5.21 we present results for the magnetization curve M(B) of the in�nite half-
�lled Hubbard chain for representative values of the temperature T , as well as for
the temperature dependence of the zero-�eld magnetic susceptibility χ at di�erent
values of the Coulomb-repulsion strengthU /t . Results obtained by FT-LDFT in com-
bination with the scaling approximation (5.76) using a 6-site ring as reference system
are compared with the exact analytical solution of the Hubbard chain at �nite tem-
peratures [56].

The magnetization curves shown in Fig. 5.21 (a) correspond to a fairly strong
Coulomb repulsion U /t = 8, where the low-lying spin excitations in the Hubbard
chain are governed by the spin-1/2 Heisenberg model (2.52) with exchange-coupling
constant J = 2t2/U . Thus, at very low temperatures, magnetic �eld strengths of
the order µBB ' J = t/4 are su�cient in order to destabilize the AFM alignment
of the spins, and we expect to observe a gradual crossover to a fully polarized state
within this region. In fact, for kBT = t/10 we observe in Fig. 5.21 (a) a rapid increase
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of the magnetization in the weak-�eld regime, and a fully-polarized state is formed
for µBB & t/2. As the temperature increases, low-spin states are thermally excited,
giving rise to a gradual suppression of the magnetization if the �eld strength B is kept
�xed. The comparison to the corresponding exact analytical results demonstrates
that FT-LDFT reproduces the magnetization curve of the in�nite Hubbard chain with
astonishing accuracy. Only at very low temperatures (kBT = t/10) we �nd some
noticeable deviations of up to 17% in the weak-�eld range (µBB . t/2), where the
magnetization increases very rapidly. For higher temperatures (kBT ≥ 0.4t ), the rel-
ative error in the magnetization obtained form FT-LDFT is in average as low as 0.6%
and never exceeds 5% within the whole range of �eld strengths considered.

In Fig. 5.21 (b) we show the zero-�eld magnetic susceptibility of the in�nite half-
�lled Hubbard chain as a function of the temperature for intermediate to strong
Coulomb repulsions U /t . Since the low-lying spin excitations in the Hubbard chain
have energies of the order J = 2t2/U , we �nd χ increasing in the low-temperature
regime and a pronounced peak is formed at a temperature kBT ≈ J . The e�ec-
tive exchange-coupling constant J decreases like 1/U with the Coulomb-interaction
strength, and thus, the maximum in χ increases approximately proportional to U .
For higher temperatures (kBT & 2t2/U ), the magnetic susceptibility decreases rather
rapidly, and for su�ciently high temperatures the typical Curie-law decay χ = C/T
of a paramagnet is observed. The comparison with the exact analytical solution
demonstrates that the temperature dependence of the zero-�eld susceptibility is over-
all very accurately reproduced within the framework of FT-LDFT. Only in the low-
temperature regime (kBT . t/2) FT-LDFT tends to overestimate the susceptibility.
For example, at U /t = 7 FT-LDFT overestimates the magnetic susceptibility in the
ground state by 17%. Nevertheless, for su�ciently high temperatures (kBT ≥ t/2), the
susceptibility obtained in the framework of FT-LDFT is in excellent agreement with
the exact analytical solution, and the relative deviations are in average as low as 1.1%
and never exceed 4.2% within this range.

5.6 Summary
We have developed practical methods to handle the thermodynamic equilibrium prob-
lem of the Hubbard model in the framework of FT-LDFT. Our focus has been on
the homogeneous Hubbard model with hoppings only between NNs. In this case
we can regard the grand potential Ω[γ ] as a functional of the SPDM elements γ11σ
and γ12 =

∑
σ γ12σ alone, which represent the spin-dependent local electron density

and the total degree of charge �uctuations between NNs.
In a �rst step we have focused on the unpolarized case γ↑ = γ↓, and we have iden-

ti�ed the corresponding domain of de�nition of the reduced grand-potential func-
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tional Ω[γ11,γ12]. Furthermore, we have derived its exact functional dependence in
the subspace formed by the uncorrelated mixed-states. Subsequently, we have fo-
cused on the important case of a half-�lled band (γ11 = 1), and we have devoted our
attention to the nontrivial correlation contribution Gc = G − Gs to the free energy
F = K +G, where Gs =WHF − T Ss incorporates the interaction energy and entropy
of independent fermions. Exact numerical results have been presented for the func-
tional dependence Gc[γ12] of the correlation contribution to the free energy of �nite
Hubbard rings and the in�nite 1D Hubbard chain. Our numerical results have re-
vealed that Gc[γ12] only depends weakly on the system size if it is properly scaled
between the localized (γ12 = 0) and delocalized (γ12 = γ 012) limits. This quasi-universal
behaviour of the scaled functional Gc[γ12] led us to propose a scaling approximation,
which extracts the functional dependence ofGc along the crossover from the localized
to the delocalized limit from a suitable reference system.

The scaling approximation has been applied in order to explore the equilibrium
properties of the in�nite half-�lled Hubbard model by minimizing the corresponding
free-energy functional F [γ12] = K[γ12] + Gs[γ12] + Gc[γ12] within the set of ensem-
ble representable γ12. In this way, very accurate results have been obtained for the
most important equilibrium observables of the half-�lled Hubbard model in 1–3 di-
mensions, such as the energy E, the average number of double occupations D, the
entropy S , and the speci�c heat CV . In fact, the deviations between the results of the
scaling approximation and available exact or accurate numerical results are usually
found in the lower one-digit percent range. Noticeable deviations have been observed
only in the low-temperature regime (kBT . t ) for observables which are higher-order
derivatives of the free energy F , such as the speci�c heat CV .

One of the most important results is the fact that our newly developed scaling ap-
proximation is able to account for the physical e�ects caused by the separation of spin
and charge degrees of freedom in the strongly-correlated Hubbard model. This e�ect
is most clearly re�ected by the temperature dependence of the speci�c heatCV , which
develops a characteristic two-peak structure as the Coulomb-repulsion strength U /t
increases. The low-temperature peak corresponds to collective spin wave excitations
from the AFM ground state, which are described by an e�ective Heisenberg model
with exchange-coupling constant J = 2t2/U . The peak which occurs at higher tem-
peratures is caused by charge excitations across the Hubbard gap, which involves the
creation of double occupations with energies of the order U . The gradual formation
of this two-peak structure in CV with increasing Coulomb-repulsion strength is very
well reproduced within our scaling approximation. Furthermore, the qualitative and
quantitative dependence of the temperatureTN ∝ t2/U , at which the low-temperature
peak arises inCV and which marks the Néel transition from the AFM to the PM phase,
is accurately reproduced. The same is also true for the temperature TC ∝ U , which
corresponds to the high-temperature peak and marks the onset of charge excitations.

176



5.6 Summary

Motivated by the excellent performance of the scaling approximation in the case
of the half-�lled Hubbard model, we have proposed a very intuitive extension which
takes into account the dependence of Gc on the electron density n = γ11. In this
way it was possible to explore the equilibrium properties of the Hubbard model in
1–3 dimensions at various band �llings in the framework of FT-LDFT. The comparison
with available exact results, as well as with accurate QMC simulations and NLCEs, has
demonstrated that FT-LDFT in combination with the scaling approximation is able
to reproduce the dependence of the most important equilibrium observables on the
electron density very accurately in the complete range from low to high temperatures
and weak to strong Coulomb repulsions.

The �nal challenge has been the extension of our scaling approximation to the
regime of spin-polarized electron densities, in order to investigate the in�uence of
external magnetic �elds on the most important equilibrium observables in the frame-
work of FT-LDFT. As a prerequisite, we have identi�ed the domain of de�nition of
the reduced grand-potential functional Ω[γ11↑,γ11↓,γ12], and we have derived its ex-
act functional dependence for the case of uncorrelated mixed-states. Subsequently,
we have focused on the half-�lled band case (γ11↑ + γ11↓ = 1), and we have studied
the correlation contribution Gc[sz,γ12] to the free-energy functional of the in�nite
1D Hubbard chain. This has led to the remarkable result that Gc[sz,γ12] only de-
pends weakly on the spin polarization sz = ~ (γ11↑ − γ11↓)/2 if it is properly scaled
between the localized (γ12 = 0) and delocalized [γ12 = γ 012(sz)] limits. This led us
to propose an approximation, which extracts the functional dependence of Gc[sz,γ12]
along the crossover from the localized to the delocalized limit for arbitrary spin po-
larizations −~/2 ≤ sz ≤ ~/2 from a suitable unpolarized reference system.

Our scaling approximation has been subsequently applied to the half-�lled in�-
nite 1D Hubbard chain in the presence of an external magnetic �eld. In this way
we were able to investigate the modi�cations in the temperature dependence of the
most important equilibrium observables caused by variations in the magnetic �eld
strength. This includes the kinetic and Coulomb energies, the magnetization M , the
entropy S , the speci�c heat CV , and the magnetic susceptibility χ . Only in the re-
gion µBB . t/2, where the transition from the AFM ground state to the fully polarized
state occurs, some noticeable deviations from the exact results have been observed in
the low-temperature regime (kBT . t ). For stronger �elds (t/2 . µBB . t ), only
higher-order derivatives of the free energy, e. g., the speci�c heat CV and the mag-
netic susceptibility χ , show such discrepancies at low temperatures, while for very
strong �elds (µBB & t ) an almost perfect agreement with the exact analytical solu-
tion has been achieved in the complete range from low to high temperatures. Also
the magnetization curves M(B) at di�erent temperatures and the temperature depen-
dence of the zero-�eld magnetic susceptibility for intermediate to strong Coulomb
repulsions have been very accurately reproduced within the framework of FT-LDFT.
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Summary and outlook 6
A density functional theory for lattice models of strongly interacting fermions has
been formulated, which applies both to the ground state as well as to the thermo-
dynamic equilibrium at �nite temperatures. The �nite-temperature formalism repre-
sents an important fundamental extension of current lattice density functional theory
(LDFT) and has been formulated in two di�erent �avours accounting for canonical and
grand-canonical ensembles. In order to pave the way to practical applications of LDFT
for the ground state as well as for the �nite-temperature case, we have focused on the
Hubbard model and developed new approximations to the central functionals W [γ ]
andGc[γ ] representing respectively the interaction energy and the correlation contri-
bution to the free energy. Our new functionals have demonstrated their universality
in applications to a wide range of physical situations, and very accurate results have
been obtained for the most important observables in the ground state as well as in the
thermodynamic equilibrium at �nite temperatures.

For the ground-state problem in the framework of LDFT we have focused on the
homogeneous Hubbard model on periodic lattice structures. We have adopted a delo-
calized k-space perspective and discovered a remarkable one-to-one connection be-
tween the interaction energyW in the ground state of the model and the entropy S of
the corresponding Bloch-state occupation-number distribution ηkσ . This has opened
up a completely new perspective to the ground-state problem by taking into account
the dependence of the central interaction-energy functionalW [γ ] on all elements of
the single-particle density matrix (SPDM)γ , and led to an approximation which lever-
ages the full universality of LDFT.

The almost linear connection between W and S discovered in exact numerical re-
sults for the ground state of the half-�lled Hubbard model led us to approximate the
interaction-energy functional W [η] = W (S[η]) in terms of a simple linear function
of the independent-Fermion entropy (IFE) S[η]. In order to obtain the ground-state
properties of the model, the corresponding energy functional E[η] = K[η]+W [η] has
been minimized with respect to ηkσ , where K[η] = ∑

kσ εkσηkσ stands for the kinetic-
energy functional. In this way, the predictive power of the linear IFE-approximation
has been demonstrated in applications to the half-�lled Hubbard model on �nite and
in�nite lattices in d = 1–3 dimensions as well as in the limit d → ∞. In fact, within
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our approximation it was possible to reproduce the ground-state properties in all con-
sidered situations with very good accuracy in the complete range from weak to strong
Coulomb interactions. This applies in particular to the subtle strongly-correlated
Heisenberg limit U /t → ∞, where the linear IFE-approximation exactly reproduces
the asymptotic behaviour of the ground-state energy E0 = −αt2/U expected for lo-
calized Heisenberg spins. Most notably, the ground-state properties of the in�nite
1D Hubbard chain derived from the linear IFE-approximation are almost indistin-
guishable from the exact Bethe-ansatz solution [49]. In higher dimensions, the lin-
ear IFE-approximation has proven to be very accurate as well, and the corresponding
ground-state observables agree well with available quantum Monte Carlo (QMC) sim-
ulations and exact diagonalizations. Moreover, the spin-polarized Hubbard model has
been studied in the framework of the linear IFE-approximation. In this way we have
obtained the magnetization curve and the zero-�eld magnetic susceptibility of the
in�nite 1D Hubbard chain.

In order to study physical situations involving attractive interactions between the
fermions, giving rise to electronic pairing, we have considered the half-�lled Hub-
bard model with negative coupling constantU < 0. Also in this case an almost linear
connection between W and S has been discovered in exact numerical results for the
ground state. This encouraged us to propose a generalized formulation of the linear
IFE-approximation to the interaction-energy functionalW [η], which treats attractive
and repulsive interactions on the same footing. Subsequent applications to the half-
�lled attractive Hubbard model on �nite bipartite and non-bipartite lattices in two
dimensions have proven that the IFE-approximation is able to account for the corre-
lations caused by attractive interactions, and very accurate results have been obtained
for the most important ground-state observables in the complete range from weak to
strong interactions.

We also went beyond half band-�lling and addressed the problem of arbitrary elec-
tron densities. The evaluation of exact numerical results for the ground state of
the Hubbard model on various lattice structures with di�erent electron densities has
shown that a unique relation betweenW and S exists even in this more general case.
However, the connection between W and S has been found to be strongly a�ected
by the electron density n. Nevertheless, by an interpolation between the low-density
limit n → 0 and the half-�lled band case n = 1 it was possible to derive a physically
sound extension of the IFE-approximation, which applies to arbitrary electron densi-
ties. Applications to the one- and two-dimensional Hubbard model have shown that
the ground-state observables of the Hubbard model are reproduced very accurately
within this approximation to W [γ ] in the complete range from low electron density
up to half band-�lling for all values of the Coulomb-repulsion strength. We have also
studied the implications of qualitative changes in the occupation-number distribu-
tion ησ (k) near the Fermi level. To this aim we have focused on the 1D Hubbard chain
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and we have restricted the minimization of the LDFT energy functional E[ησ (k)] to a
class of functions ησ (k) exhibiting a typical power-law singularity at the Fermi-level,
which is characteristic for Luttinger liquids, such as the 1D Hubbard model away from
half band-�lling. The corresponding results have shown that Luttinger-like distribu-
tions are preferable if low electron densities are concerned, however, in the vicinity
of a half �lled band (0.8 . n ≤ 1) the Fermi-Dirac distributions obtained from the
unconstrained minimization of the energy functional within the IFE-approximation
lead to signi�cantly more accurate results. We have also studied the ground-state
occupation-number distribution ησ (k) of the 2D Hubbard model on the square lat-
tice in the framework of the IFE-approximation. Our results agree surprisingly well
with accurate QMC simulations, and the typical broadening of the Fermi surface, as
the electron density and Coulomb-repulsion strength increases, has been very well
reproduced.

After the ground-state properties of the periodic Hubbard model have been ex-
plored in the framework of the IFE-approximation, we have devoted our attention
to the thermodynamic equilibrium at �nite temperatures. Our applications of �nite-
temperature lattice density functional theory (FT-LDFT) were aimed at the homoge-
neous Hubbard model with hoppings only between nearest neighbors (NNs). In this
case we can regard the grand potential Ω[γ ] as a functional of the SPDM elementsγ11σ
and γ12 =

∑
σ γ12σ alone, which represent the spin-dependent local electron density

and the total degree of charge �uctuations between NNs.
In a �rst step we have focused on the unpolarized case γ↑ = γ↓, and we have iden-

ti�ed the corresponding domain of de�nition of the reduced grand-potential func-
tional Ω[γ11,γ12]. Furthermore, we have derived its exact functional dependence in
the subspace formed by the uncorrelated mixed states. Subsequently, we have fo-
cused on the important case of a half-�lled band (γ11 = 1), and we have devoted our
attention to the nontrivial correlation contribution Gc = G − Gs to the free energy
F = K +G, where Gs =WHF − T Ss incorporates the interaction energy and entropy
of independent fermions. Exact numerical results have been presented for the func-
tional dependence Gc[γ12] of the correlation contribution to the free energy of �nite
Hubbard rings and the in�nite 1D Hubbard chain. Our numerical results have re-
vealed that Gc[γ12] only depends weakly on the system size if it is properly scaled
between the localized (γ12 = 0) and delocalized (γ12 = γ 012) limits. This quasi-universal
behaviour of the scaled functional Gc[γ12] led us to propose a scaling approximation,
which extracts the functional dependence ofGc along the crossover from the localized
to the delocalized limit from a suitable reference system.

The scaling approximation has been applied in order to explore the equilibrium
properties of the in�nite half-�lled Hubbard model by minimizing the corresponding
free-energy functional F [γ12] = K[γ12] +Gs[γ12] +Gc[γ12] within the set of ensemble-
representable γ12. In this way, very accurate results have been obtained for the most
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important equilibrium observables of the half-�lled Hubbard model in 1–3 dimen-
sions, such as the energy E, the average number of double occupations D, the en-
tropy S , and the speci�c heat CV . In fact, the deviations between the results of the
scaling approximation and available exact or accurate numerical results are usually
found in the lower one-digit percent range. Noticeable deviations have been observed
only in the low-temperature regime (kBT . t ) for observables which are higher-order
derivatives of the free energy F , such as the speci�c heat CV .

One of the most important results is the fact that our newly developed scaling ap-
proximation is able to account for the physical e�ects caused by the separation of spin
and charge degrees of freedom in the strongly-correlated Hubbard model. This e�ect
is most clearly re�ected by the temperature dependence of the speci�c heatCV , which
develops a characteristic two-peak structure as the Coulomb-repulsion strength U /t
increases. The low-temperature peak corresponds to collective spin-wave excitations
from the antiferromagnetic (AFM) ground state, which are described by an e�ective
Heisenberg model with exchange-coupling constant J = 2t2/U . The peak which
occurs at higher temperatures is caused by charge excitations across the Hubbard
gap, which involves the creation of double occupations with energies of the order U .
The gradual formation of this two-peak structure in CV with increasing Coulomb-
repulsion strength is very well reproduced within our scaling approximation. Fur-
thermore, the qualitative and quantitative dependence of the temperatureTN ∝ t2/U ,
at which the low-temperature peak arises inCV and which marks the Néel transition
from the AFM to the paramagnetic (PM) phase, is accurately reproduced. The same
is also true for the temperature TC ∝ U , which corresponds to the high-temperature
peak and marks the onset of charge excitations.

Motivated by the excellent performance of the scaling approximation in the case
of the half-�lled Hubbard model, we have proposed a very intuitive extension which
takes into account the dependence of Gc on the electron density n = γ11. In this
way it was possible to explore the equilibrium properties of the Hubbard model in
1–3 dimensions at various band �llings in the framework of FT-LDFT. The compar-
ison with available exact results, as well as with accurate QMC simulations and nu-
merical linked-cluster expansions (NLCEs), has demonstrated that FT-LDFT in com-
bination with the scaling approximation is able to reproduce the dependence of the
most important equilibrium observables on the electron density very accurately in
the complete range from low to high temperatures and weak to strong Coulomb re-
pulsions.

The �nal challenge has been the extension of our scaling approximation to the
regime of spin-polarized electron densities, in order to investigate the in�uence of
external magnetic �elds on the most important equilibrium observables in the frame-
work of FT-LDFT. As a prerequisite, we have identi�ed the domain of de�nition of
the reduced grand-potential functional Ω[γ11↑,γ11↓,γ12], and we have derived its ex-
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act functional dependence for the case of uncorrelated mixed-states. Subsequently,
we have focused on the half-�lled band case (γ11↑ + γ11↓ = 1), and we have studied
the correlation contribution Gc[sz,γ12] to the free-energy functional of the in�nite
1D Hubbard chain. This has led to the remarkable result that Gc[sz,γ12] only de-
pends weakly on the spin polarization sz = ~ (γ11↑ − γ11↓)/2 if it is properly scaled
between the localized (γ12 = 0) and delocalized [γ12 = γ 012(sz)] limits. This led us
to propose an approximation, which extracts the functional dependence of Gc[sz,γ12]
along the crossover from the localized to the delocalized limit for arbitrary spin po-
larizations −~/2 ≤ sz ≤ ~/2 from a suitable unpolarized reference system.

Our scaling approximation has been subsequently applied to the half-�lled in�-
nite 1D Hubbard chain in the presence of an external magnetic �eld. In this way
we were able to investigate the modi�cations in the temperature dependence of the
most important equilibrium observables caused by variations in the magnetic �eld
strength. This includes the kinetic and Coulomb energies, the magnetization M , the
entropy S , the speci�c heat CV , and the magnetic susceptibility χ . Also the magne-
tization curves M(B) at di�erent temperatures and the temperature dependence of
the zero-�eld magnetic susceptibility for intermediate to strong Coulomb repulsions
have been studied in the framework of FT-LDFT, and the comparison with the exact
analytical solution con�rms the accuracy of our method.

This work has opened up a new perspective to the ground-state properties of
strongly interacting electrons on a lattice in the framework of LDFT by adopting a
delocalized k-space perspective which leverages the full universality of the theory.
Furthermore, it has extended the scope of the theory to the regime of the thermo-
dynamic equilibrium at �nite temperatures by providing a rigorous formulation of
FT-LDFT and �rst applications to the unpolarized Hubbard model at various band
�llings, as well as to the case of spin-polarized systems. Future developments in the
framework of LDFT could transfer the methods developed in this thesis to other lat-
tice models, such as the single-impurity Anderson or Kondo models, in order to study
magnetic impurities in metals and the related Kondo e�ect. Furthermore, it would be
very interesting to investigate if a connection between the entropy S of the Bloch-state
occupation-number distributionηkσ and the correlation contributionGc to the free en-
ergy, similar to the one exploited in our k-space approach for the ground state, could
be established also in the case of the thermodynamic equilibrium at �nite tempera-
tures. This would provide a new, potentially most e�ective perspective to practical
approximations in the framework of FT-LDFT.

Another fundamental challenge in the framework of LDFT would be to derive prac-
tical approximations to the functionals of more general observables, such as the spin-
and charge-correlation functions. To this aim one could focus on homogeneous and
periodic systems, where all physical observablesO[η] can be regarded as a functionals
of the Bloch-state occupation numbersηkσ alone. A very promising approach towards

183



6 Summary and outlook

approximate functionals of more general observables would be to employ supervised
machine-learning techniques, and to train a model on a large set of data (O,η) ob-
tained from exactly solvable systems. One of the most important challenges one
would face in the framework of such machine-learning approaches is to �nd suit-
able extrapolations of the models’ predictions to larger systems or to the thermody-
namic limit, since the data used in the training phase is usually obtained from the
exact numerical solution for small �nite clusters. Nevertheless, taking into account
the universality of LDFT, such machine-learning methods would be most promising,
since robust approximations, especially to the central functionals W [η] and Gc[η],
would provide a uni�ed method which gives access to the ground-state and equilib-
rium properties of arbitrary lattice models.
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Fundamentals of density functional theory A
One of the major breakthroughs in condensed-matter physics and the general quan-
tum many-body problem in general is the development of Hohenberg-Kohn-Sham’s
density functional theory (DFT), in which the many-particle wave function |Ψ〉 is re-
placed by the many-particle density n(r ) as the central variable [2, 3]. This major sim-
pli�cation opened a completely new perspective to the quantum many-body problem
and made it possible to e�ciently calculate a large variety of important ground-state
properties, such as binding energies of molecules, band structures of solids, or mag-
netic moments of nanoparticles with high accuracy.

Historically, DFT was not the �rst attempt to formulate a quantum many-body the-
ory which is solely based on the particle density n(r ). Already in 1927 Thomas and
Fermi (TF) proposed the �rst, from today’s perspective very rudimentary, approach
to compute atomic energies on the basis of the electronic density [4, 5]. In the TF the-
ory, the local contribution to the kinetic-energy functional K[n(r )] of the interacting
many-electron system is approximated by the kinetic energy of noninteracting elec-
trons having the homogeneous density n = n(r ), and the interaction energyW [n(r )]
is approximated by the classical Hartree-energy WH[n(r )]. Shortly after its formula-
tion, it turned out that the TF theory is not able to describe any molecular bonding,
which is mainly due to the simple approximation to the kinetic-energy functional,
and was therefore rapidly abandoned. After the failure of the TF theory to account
for molecular bonding has been discovered, the density functional (DF) approach was
not used very intensively, until in 1964 Hohenberg and Kohn (HK) [2] demonstrated
that in principle all ground-state observables of a many-particle system can be ex-
actly obtained from the ground-state electron density n0(r ) alone. The HK theorem
ensures the existence of a universal functional FHK[n(r )], representing the optimal
sum of the kinetic and the interaction energy of a many-particle system having the
density n(r ), and the variational principle of the corresponding energy functional
gives access to the ground-state density and to all ground-state properties in prin-
ciple. Just a few month after the formulation of the ground-breaking HK theorem,
Mermin [6] extended the HK theorem to �nite temperatures by proving that in prin-
ciple all equilibrium averages of an interacting many-particle system can be obtained
from the equilibrium particle density neq(r ).
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The actual way to most-current practical applications of DFT was pawed by Kohn
and Sham (KS), who showed that the interacting many-particle system can be re-
placed by an auxiliary system of noninteracting particles [3]. In the same work KS
also provided the �rst local density approximation (LDA) to the nontrivial exchange
and correlation (XC) part Exc[n(r )] of the universal functional FHK[n(r )]. In the fol-
lowing decades several improvements over the LDA have been developed. Presently,
the generalized gradient approximations (GGAs) [8–14] and the so-called hybrid func-
tionals [15–19] are the most widespread approaches for practical applications.

The remainder of this chapter is organized as follows. In Section A.1 a brief
overview of the formulation of DFT for the many-particle ground state problem is
provided and in Section A.2 the extension of the theory to the equilibrium at �nite
temperatures is presented.

A.1 Ground-state formalism

In this section we brie�y review the formulation of DFT for the ground-state problem
of interacting many-particle systems. For simplicity, the focus is on systems having
nondegenerate ground states, although the formalism can be easily extended to the
degenerate case [132, 133]. Section A.1.1 recalls the HK theorem from which some
important conclusions are drawn. The following Section A.1.2 brie�y discusses the
representability problem for the density functions n(r ), some related formal di�cul-
ties, and how they can be circumvented by the Levy-Lieb (LL) constrained-search
method. The KS method is reviewed in Section A.1.3. Finally, the LDA approximation
to the XC energy is presented in Section A.1.4.

A.1.1 The Hohenberg-Kohn theorem

In order to formulate the HK theorem we consider a system ofN particles subject to an
external potentialv(r ) (e. g., the lattice potential generated by the ions in a crystal) and
to their mutual interactionw(r ,r ′) [e. g., the Coulomb repulsionw(r ,r ′) = e2/|r−r ′|].
The corresponding electronic Hamiltonian reads

Ĥ = K̂ + V̂ + Ŵ , (A.1)

where

K̂ = − ~
2

2m
∑
σ

∫
ψ̂ †σ (r ) ∇2 ψ̂σ (r ) dr (A.2)
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is the kinetic-energy1 operator,

V̂ =
∑
σ

∫
ψ̂ †σ (r )v(r )ψ̂σ (r ) dr =

∫
v(r ) n̂(r ) dr (A.3)

the operator describing the interaction with the external potential, and

Ŵ =
1
2
∑
σσ ′

∫
ψ̂ †σ (r )ψ̂ †σ ′(r ′)w(r ,r ′)ψ̂σ ′(r ′)ψ̂σ (r ) dr dr ′ (A.4)

describes the interaction between the particles. In the usual second-quantization no-
tation, ψ̂ †σ (r ) [ψ̂σ (r )] stands for the creation [annihilation] operator for an electron
with spin polarization σ at the position r , and n̂(r ) = ∑

σ ψ̂
†
σ (r )ψ̂σ (r ) for the electron-

density operator. Notice that the interaction w(r ,r ′) is speci�ed by the type of parti-
cles under consideration, such that we can consider a system as uniquely character-
ized by the external potentialv(r ). Before we can formulate the HK theorem we need
a small

Lemma A.1. Two reasonably well-behaved2 potentials v(r ) and v′(r ) lead to the same
ground state |Ψ0〉 if, and only if, the potentials di�er by an additive constant.

Proof. The fact that two potentials v(r ) and v′(r ) which solely di�er by an additive
constant must lead to the same ground state is obvious. Thus, let us assume that the
two potentials di�er by more than an additive constant, i. e.,

V̂ , V̂ ′ + c with c ∈ R (A.5)

within the given N -particle Hilbert space, but nevertheless lead to the same ground
state |Ψ0〉, such that(

K̂ + V̂ + Ŵ
)
|Ψ0〉 = E0 |Ψ0〉 and

(
K̂ + V̂ ′ + Ŵ

)
|Ψ0〉 = E′0 |Ψ0〉 . (A.6)

Subtracting these two equations leads to(
V̂ − V̂ ′) |Ψ0〉 =

(
E0 − E′0

) |Ψ0〉 . (A.7)

Thus, since V̂ and V̂ ′ are multiplicative operators, we conclude that V̂ −V̂ ′ = E0−E′0 ∈
R if |Ψ0〉 does not vanish on a set of positive measure, which is guaranteed by the

1Notice that within this Appendix, which provides a formulation of DFT in the continuum, K̂ refers
to the operator of the pure kinetic energy, whereas in the chapters concerning the DFT of lattice
models, K̂ refers to the full single-particle part of the Hamiltonian Ĥ . Nevertheless, as it is common
practice, we refer to K̂ as “kinetic energy” in these chapters as well.

2We call potentials reasonably well-behaved if the unique-continuation theorem applies to them [134,
135]. This excludes, for example, potentials exhibiting in�nite barriers.
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unique-continuation theorem, which is valid for the reasonably well-behaved poten-
tials under consideration [134, 135]. This, however, contradicts our initial assump-
tion (A.5) which thus must have been wrong. We conclude that there are no reason-
ably well-behaved potentials which di�er by more than a constant but nevertheless
lead to the same ground state. �

Theorem A.1 (Hohenberg and Kohn [2]). The external potential v(r ) of a many-
particle system is (apart from an irrelevant additive constant) a functional of the elec-
tronic ground-state density n(r ).
Proof. Assume that the ground state |Ψ0〉 of Ĥ is non degenerate and that there exists
another potentialv′(r )which di�ers fromv(r ) by more than an additive constant but,
nevertheless, leads to the same ground-state density n(r ) as the potential v(r ). Then,
if Ĥ ′ and |Ψ′0〉 denote the Hamiltonian and ground state associated with v′(r ), the
corresponding ground-state energy is given by

E′0 = 〈Ψ′0 |Ĥ ′|Ψ′0〉 =
∫

v′(r )n(r ) dr + 〈Ψ′0 |K̂ + Ŵ |Ψ′0〉 . (A.8)

Since the potentials v(r ) and v′(r ) di�er by more than an additive constant, the cor-
responding ground states |Ψ0〉 and |Ψ′0〉 must be di�erent from each other according
to Lemma A.1. Therefore, from the minimal principle for the ground-state energy
E0 = 〈Ψ0 |Ĥ |Ψ0〉 of the Hamiltonian Ĥ it follows that

E0 < 〈Ψ′0 |Ĥ |Ψ′0〉 =
∫

v(r )n(r ) dr + 〈Ψ′0 |K̂ + Ŵ |Ψ′0〉 =

= E′0 +
∫
[v(r ) −v′(r )]n(r ) dr .

(A.9)

Notice that the strict inequality holds, because we assumed that the ground state asso-
ciated withv(r ) is non degenerate. By interchanging primed and unprimed quantities
one obtains

E′0 ≤ 〈Ψ0 |Ĥ ′|Ψ0〉 = E0 +

∫
[v′(r ) −v(r )]n(r ) dr , (A.10)

where no strict inequality holds, since the ground state associated withv′(r ) could be
degenerate. Adding Eqs. (A.9) and (A.10) the contradiction

E0 + E
′
0 < E′0 + E0 (A.11)

is obtained, which proves that two potentials v(r ) and v′(r ) di�ering by more than
an additive constant cannot yield the same ground state density n(r ). One concludes
that v(r ) is (apart of a constant) a functional of n(r ). �
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The HK theorem states that the external potentialv(r ) is a functional of the ground-
state density n(r ). Consequently, as long as the interaction w(r ,r ′) is �xed, the full
Hamiltonian Ĥ and all the physical properties derived from it must be functionals of
the ground-state density as well. This applies in particular to the ground state |Ψ0〉
but also to all excited states. Notice however, that the one-to-one correspondence
between the ground-state density n(r ) and the external potential v(r ) established by
the HK Theorem A.1 is no longer valid in the presence of ground-state degenera-
cies. Clearly, if the ground state is degenerate, the ground-state density n(r ) is no
longer unique. Nevertheless, due to the variational principle and the simple fact that
all ground states share the same energy, a one-to-one correspondence between the
set {n(r )} formed by the densities of all degenerate ground-states and the external
potentialv(r ) can be established [132]. Thus, the density of any one of the degenerate
ground-states uniquely determines the external potential v(r ) and thus de�nes the
Hamiltonian Ĥ and all its ground-state and excited-state properties. Returning to the
case of a nondegenerate ground-state, where the unique ground-state density n(r )
determines v(r ) and thus the Hamiltonian Ĥ , we may immediately formulate the im-
portant

Corollary A.1. The ground state |Ψ0〉 of a many-particle system is a functional of the
ground-state density n(r ).
Moreover, the converse statement is also true, i. e., the ground-state density n(r ) =
〈Ψ0 |n̂(r )|Ψ0〉 is a functional of the ground state |Ψ0〉. This establishes a bijective map
between the set Ψ0 containing all nondegenerate ground states and the corresponding
set Nv of the ground-state densities. Furthermore, from Corollary A.1 we obtain the
important

Corollary A.2. The ground-state expectation value of any observable Ô is a functional
of the ground-state density n(r ).
Proof. From Corollary A.1 we know, that the ground state |Ψ0〉 = |Ψ0[n(r )]〉 is a func-
tional of the ground-state density n(r ). Therefore, the ground-state expectation value
of any observable Ô can be obtained from the ground-state density as

O[n(r )] = 〈Ψ0[n(r )]|Ô |Ψ0[n(r )]〉 . (A.12)

�

In particular, the kinetic and interaction energies are functionals of n(r ). One there-
fore de�nes the functional

FHK[n(r )] = 〈Ψ0[n(r )]|K̂ + Ŵ |Ψ0[n(r )]〉 , (A.13)
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representing the sum of the kinetic and interaction energies, which is a universal
functional of n(r ) in the sense that it does not depend on the external potential v(r ).
Notice that the functional (A.13) is de�ned for all densities n(r ) = 〈Ψ0 |n̂(r )|Ψ0〉 which
can be derived from the N -particle ground state |Ψ0〉 associated with some external
potential v(r ). Using Eq. (A.13), the functional corresponding to the ground-state
energy is obtained as

E[n(r )] =
∫

v(r )n(r ) dr + FHK[n(r )] . (A.14)

Clearly for the actual ground-state density n0(r ), the energy functional E[n(r )] as-
sumes its minimum and equals the ground-state energy E0 associated with the given
external potential v(r ). If the functional FHK[n(r )] were known, the ground-state
energy and density corresponding to arbitrary potentials v(r ) could be obtained by
minimizing the energy functional E[n(r )]. Therefore, the main challenge in practical
applications of DFT is to determine the universal functional FHK[n(r )]. In the next
section we will see that already the characterization of the domain of de�nition of
FHK[n(r )] is far from trivial.

A.1.2 The Levy-Lieb constrained-search method
In the previous section we have seen that the ground-state energy and density can be
obtained by minimizing the energy functional (A.14) with respect to all functions n(r )
that can be derived as the ground-state density of the N -particle problem with inter-
actionw(r ,r ′) and some external potentialv(r ). This class of functions is called pure-
state v-representable. At �rst, this does not seem to pose a major restriction on n(r ),
since all density functions of physical interest for the ground-state many-body prob-
lem must be pure-state v-representable. However, any practical implementation of
the variational principle for the ground-state energy (A.14) must in principle ensure
that the minimization is constrained to the set of pure-state v-representable densi-
ties, since otherwise FHK[n(r )]would be ill-de�ned and the result of the minimization
would be uncontrolled or simply unphysical. This raises the problem of characteriz-
ing pure-state v-representable density functions. The early hope that all reasonably
well behaved non-negative functions, corresponding to an integer particle-number
N =

∫
n(r ) dr , are pure-state v-representable has been proven to be wrong. The �rst

kind of non pure-state v-representable density functions has been discovered inde-
pendently by Levy [136] and Lieb [135]. They considered a system havingq degenerate
ground states |Ψ1〉, . . . , |Ψq〉 and constructed the density matrix

ρ̂ =
q∑
i=1

pi |Ψi〉〈Ψi | with pi ≥ 0 and
q∑
i=1

pi = 1 . (A.15)
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The resulting density

n(r ) = Tr{ρ̂ n̂(r )} =
q∑
i=1

pi 〈Ψi |n̂(r )|Ψi〉 (A.16)

can be shown to be not pure-state v-representable (except for very special choices
of the weights pi ). Density functions n(r ) of the form (A.16) are called ensemble
v-representable. One can easily extend the functional (A.14) and the corresponding
variational principle to the set of ensemble v-representable densities [137]. How-
ever, Englisch and Englisch [137] have shown that even the criterion of ensemble
v-representability is not met by all reasonably well-behaved non-negative functions.
Therefore, in order to render the variational principle for the ground-state energy
useful in practice, the domain of de�nition of the functional (A.14) must be extended
to an even larger set of trial densities.

The �rst such extension has been proposed by Levy [138] and Lieb [135], who de-
�ned the functional

FLL[n(r )] = min
|Ψ〉→n(r )

〈Ψ|K̂ + Ŵ |Ψ〉 . (A.17)

The notation |Ψ〉 → n(r ) indicates that the minimization is performed with respect
to all normalized N -particle states |Ψ〉 which yield the given density n(r ), i. e., which
satisfy the condition 〈Ψ|n̂(r )|Ψ〉 = n(r ) ∀r . The major advantage of the LL func-
tional (A.17), as compared to the HK functional (A.13), is that it is de�ned for all func-
tions n(r ) that correspond to the density of some normalized N -particle state |Ψ〉,
not necessarily a ground state. These functions n(r ) are consequently called pure-
state N -representable, and Gilbert [20], Harriman [139], March [140], Zumbach and
Maschke [141] have shown that any non negative function which integrates to the
given particle number N is pure-state N -representable.

In order to establish the connection with the many-body problem, and to render
the LL functional useful in practice, we have to prove the following statement.

Theorem A.2. The LL functional (A.17) is a reasonable extension of the HK func-
tional (A.13) in the sense that

(a) it holds
FLL[n(r )] = FHK[n(r )] (A.18)

for any pure-state v-representable density n(r ), and
(b) the corresponding energy functional

ELL[n(r )] =
∫

v(r )n(r ) dr + FLL[n(r )] (A.19)
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assumes its minimum at, and only at, the ground-state density n0(r ) which corre-
sponds to the external potential v(r ), and the minimal value equals the associated
ground-state energy E0.

Proof. According to the Rayleigh-Ritz principle, the ground-state energy E0 of an in-
teracting N -particle system described by the Hamiltonian (A.1) is given by

E0 = min
|Ψ〉
〈Ψ|Ĥ |Ψ〉 , (A.20)

where the minimization is restricted to all normalized N -particle states |Ψ〉. Denoting
byNN the set of pure-state N -representable functions, we can perform the minimiza-
tion in Eq. (A.20) in two consecutive steps:

E0 = min
n(r )∈NN

{∫
v(r )n(r ) dr + min

|Ψ〉→n(r )
〈Ψ|K̂ + Ŵ |Ψ〉

}
=

= min
n(r )∈NN

{∫
v(r )n(r ) dr + FLL[n(r )]

}
= min

n(r )∈NN
ELL[n(r )] .

(A.21)

This already proves the second part of statement (b), namely that the minimal value
of the energy functional (A.19) equals the ground-state energy E0.

Assuming that the ground state associated with the external potential v(r ) is non-
degenerate, the state |Ψ0〉 yielding the minimum in Eq. (A.20) is unique. Consequently,
the density yielding the minimum in Eq. (A.21) must be the corresponding unique
ground-state densityn0(r ). More generally, we can state that any N -particle state |Ψ′0〉
which minimizes (A.20) for some external potential v′(r ) is a ground state by con-
struction and thus, the corresponding densityn(r )must be pure-statev-representable.
This means, there is no density n(r ) which does not belong to the set of pure-state v-
representable functions but leads to a minimum of ELL[n(r )]. Clearly, any pure-state
v-representable density n(r ) that is di�erent from the true ground-state density n0(r )
must correspond to a ground state |Ψ′0〉 that di�ers from the true ground state |Ψ0〉, and
therefore |Ψ′0〉 can not yield the minimum in Eq. (A.20) for the given potential v(r ).
Consequently ELL[n(r )] > E0 must hold, which concludes the proof of statement (b).

Let us now assume thatn(r ) is an arbitrary pure-statev-representable function, and
let v(r ) be the external potential associated with it according to the HK Theorem A.1.
Then, the state which yields the minimum in Eq. (A.20) for this potential v(r ) must
coincide with the ground state |Ψ0[n(r )]〉 associated with n(r ). Therefore, FLL[n(r )] =
〈Ψ0[n(r )]|K̂ +Ŵ |Ψ0[n(r )]〉 must hold, which coincides with Eq. (A.13). This concludes
the proof of statement (a). �

The LL functional (A.17) extends the HK functional (A.13) to the domain of pure-
state N -representable densities, i. e., to the set of all non negative functionsn(r )which
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integrate to N . This opens the way to practical implementations of the variational
principle (A.19) from which the ground-state energy and density and in principle all
ground-state observables can be obtained via Eq. (A.12). The next section addresses
the problem of implementing the variational principle for the ground-state energy in
practice. It will be shown that the interacting many-particle system can be mapped to
a system of N noninteracting particles in an e�ective potential vs([n];r ), which is a
functional of the electronic density n(r ) itself. In this way, the ground-state problem
for N interacting particles can be formally reduced to the selfconsistent solution of
single-particle equations.

A.1.3 The Kohn-Sham scheme
In the previous sections we have demonstrated that the ground-state energy and den-
sity of a many-particle system can be obtained by from the variational principle of
the energy functionals (A.14) and (A.19). In order to formulate a practical implemen-
tation of the corresponding minimization procedure, we consider an auxiliary system
of noninteracting particles described by the Hamiltonian

Ĥs = K̂ + V̂s = K̂ +

∫
vs(r ) n̂(r ) dr . (A.22)

In the following we assume that the electronic ground-state density n(r ) of a given
interacting N -particle system can be obtained from the ground state of N noninter-
acting particles under the action of some external potential vs(r ), as described by the
Hamiltonian (A.22). Such densities, which can be associated with the ground state of a
noninteracting system, are termed noninteracting pure-statev-representable. Thus, we
assume that all interacting pure-statev-representable densities are also noninteracting
pure-state v-representable. The validity of this hypothesis is discussed, for example,
in Ref. [133]. Assuming vs(r ) exists, its uniqueness follows from the HK theorem,
which, of course, also holds for noninteracting systems.

The ground state of the noninteracting system (A.22) can be obtained from the
solution of the corresponding single-particle Schrödinger equation[

− ~
2

2m∇
2 +vs(r )

]
ϕi(r ) = εi ϕi(r ) (A.23)

as the Slater determinant constructed with the single-particle orbitalsϕi(r ) having the
N lowest single-particle energies εi . In the absence of degeneracies, the ground-state
density is given by

n(r ) =
N∑
i=1
|ϕi(r )|2 . (A.24)
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From Corollary A.1 we know that the ground state of a many-particle system is a
functional of the ground-state density n(r ), and consequently, for a noninteracting
system the solutions of Eq. (A.23) must be functionals of n(r ), i. e., ϕi(r ) = ϕi([n];r ).
Furthermore, for noninteracting particles, the HK functional (A.13) is solely given by
the contribution of the kinetic energy. This means that the noninteracting kinetic
energy Ks[n(r )] is a universal functional of the electronic density n(r ). An explicit
expression for Ks[n(r )] is readily obtained in terms of the solutions of Eq. (A.23)

Ks[n(r )] = − ~
2

2m

N∑
i=1

∫
ϕ∗i ([n];r ) ∇2ϕi([n];r ) dr . (A.25)

In order to obtain ϕi(r ) and thus n(r ), one needs to chose the single-particle poten-
tial vs(r ) such that the auxiliary single-particle system (A.22) has the same ground-
state density n(r ) as the interacting system under consideration. In order to handle
this problem, it is useful to write the kinetic- and interaction-energy functional (A.13)
or (A.17) in the form

F [n(r )] = Ks[n(r )] + 1
2

∫
n(r )w(r ,r ′)n(r ′) dr dr ′ + Exc[n(r )] , (A.26)

whereKs[n(r )] is the noninteracting kinetic-energy functional (A.25), the second term
is the Hartree energyWH[n(r )], and

Exc[n(r )] = F [n(r )] −WH[n(r )] − Ks[(r )] (A.27)

is the exchange-correlation (XC) energy. Here and in the following we drop the in-
dex to F [n(r )] which distinguishes between the HK and the LL functionals (A.13)
and (A.17), since the discussion applies to both. Notice that the XC functional (A.27) in-
cludes not only the contribution to F [n(r )] resulting from XC e�ects on the Coulomb-
interaction energyW , but also those caused by XC e�ects on the kinetic energyK . Just
like F [n(r )], the XC energy Exc[n(r )] is a universal functional of the densityn(r ) in the
sense that it does not depend on the external potentialv(r ), and it applies to arbitrary
numbers of particles. For the minimum of the energy-functional (A.14) or (A.19), i. e.,
for the true ground-state density n(r ), the corresponding Euler-Lagrange functional

L = E[n(r )] − µ
(∫

n(r ) dr − N
)

(A.28)

must be stationary. Here we have introduced the Lagrange multiplier µ in order to
enforce the condition that the density yields the given particle numberN . The station-
ary condition on the Euler-Lagrange functional (A.28) corresponds to the vanishing
functional derivative

δL
δn(r ) =

δE[n(r )]
δn(r ) − µ = 0 . (A.29)
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A.1 Ground-state formalism

Using Eq. (A.14) or (A.19) together with Eq. (A.26), this condition is equivalent to
δKs[n(r )]
δn(r ) +vs([n];r ) − µ = 0 (A.30)

with
vs([n];r ) = v(r ) +

∫
n(r ′)w(r ,r ′) dr ′ +vxc([n];r ) , (A.31)

where we have introduced the so-called XC potential

vxc([n];r ) = δExc[n(r )]
δn(r ) . (A.32)

Equation (A.30) is the same stationary condition that one would obtain for a system of
noninteracting particles moving in the external potential vs([n];r ), with the notable
di�erence that the potentialvs([n];r ) in Eq. (A.30) depends onn(r ) in addition to being
a function of the electron position r . We may identify vs([n];r ) as the unique single-
particle potential for which the auxiliary noninteracting system (A.22) yields the same
ground-state density n(r ) as the interacting system with the external potential v(r ).

Equations (A.23), (A.24), and (A.31) de�ne the KS-scheme. Due to the fact that
the e�ective single-particle potential (A.31) depends on n(r ), the corresponding prob-
lem must be solved in a selfconsistent way: One starts from an assumed n(r ), con-
structs vs([n];r ) from Eq. (A.31), and solves Eq. (A.23) from which a new n(r ) is ob-
tained by means of Eq. (A.24). This procedure is iterated, starting from the new den-
sity n(r ), until the output density obtained from Eq. (A.24) equals the input density
that was used to construct the single-particle potential vs([n];r ). After convergence
is achieved, the ground-state energy of the interacting system is obtained as

E =
N∑
i=1

εi + Exc[n(r )] − 1
2

∫
n(r )w(r ,r ′)n(r ′) dr dr ′ −

∫
vxc([n];r )n(r ) dr . (A.33)

The question of how the XC energy Exc[n(r )] is obtained, which enters the e�ec-
tive single-particle potential vs([n];r ) through the XC potential (A.32), and which is
required in order to compute the ground-state energy (A.33), remains so far open. An
explicit expression for Exc[n(r )] is unknown in general, and therefore one has to resort
to approximations. In the next section we present the most basic approximation for
the XC energy, which is derived from exact results for the homogeneous interacting
electron gas.

A.1.4 Local density approximation
The �rst approximation to the XC energy Exc[n(r )] was introduced by Kohn and
Sham [3]. They proposed to approximate the XC energy by

Exc[n(r )] =
∫

εxc(n(r ))n(r ) dr , (A.34)
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where εxc(n) is the XC energy per electron of a homogeneous electron gas having the
density n = n(r ). This means, for a given system of interacting electrons, having the
density n(r ), the XC energy per electron at a given point r is approximated by the
XC energy of an electron gas having the homogeneous density n = n(r ). Functionals
of this type are called local, since they are constructed from a sum of local contri-
butions, i. e., contributions which depend only on the density n(r ) at the particular
point r .

The exchange part εx of the XC energy εxc can be obtained from the Hartree-Fock
(HF) approximation, since exchange e�ects are treated exactly within the HF method.
For the homogeneous electron gas one obtains

εx = − 3e2
4πrs

(
9π
4

)1/3
, (A.35)

where e is the electron charge and rs the radius of a sphere containing one electron,
i. e., (4π/3) r 3s = n−1 (see for example Ref. [133]).

The correlation part εc of the XC energy εxc is more subtle. Even in the homo-
geneous case an exact result, which is valid for all values of the electron density n,
is unknown at present. Exact results are available for the regimes of high and low
densities, as well as parametrizations for intermediate densities. In particular, the
two-parameter form suggested by Hedin and Lundqvist [142]

εc = −Ce
2

a0

{(
1 + x3

)
log

(
1 + 1

x

)
+
x

2 − x
2 − 1

3

}
with x =

rs
a0A

(A.36)

is widely used in practical applications of the LDA. The parameters C = 0.0225 and
A = 21 yield reliable results in the density range characterized by a0 ≤ rs ≤ 6a0,
where a0 is the Bohr radius.

The LDA (A.34) is by construction exact for the homogeneous electron gas, where
the density is uniform. Therefore, one could expect that it would yield accurate re-
sults only for systems having slowly varying densities, a condition which is satis�ed
in some metals but certainly not in atoms and molecules. Nevertheless, it turns out
that the LDA gives ionization energies of atoms, dissociation energies of molecules,
bond-lengths, and molecular geometries with a satisfying accuracy. The LDA can be
easily extended to spin-polarized systems [7]. In addition, noticeable improvements
have been proposed [133]. Most notably the GGAs, which take into account the den-
sity gradient [8–14], and the hybrid functionals [15–19], which combine the exchange
energy computed with the KS orbitals and some appropriate approximation to the
XC energy, have been proven to be quite successful.

There are however many situations, where the LDA fails to yield accurate results.
One prominent example is the semiconductor band-gap, for example in silicon, which
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is largely underestimated by the LDA [33]. Another example are van der Waals inter-
actions, which are caused by dynamical density �uctuations, and are therefore beyond
the scope of the LDA [34]. Particularly important in the context of the present thesis
is the fact that the LDA and its extensions systematically fail to account for the ef-
fects caused by strong electronic correlations, such as the physics of spin-�uctuations,
the Kondo-screening, heavy-fermion materials [35], high-temperature superconduc-
tivity [36, 37], and Mott-insulators [38–40]. It is therefore most desirable to extend
the scope of DFT in order to account for systems exhibiting strong electronic corre-
lations. Strongly correlated systems are usually best described in the framework of
lattice-model Hamiltonians, which focus on the most relevant many-body dynamics
of the valence electrons. Therefore, we present in Chapter 3 a reformulation of DFT
which applies to many-body lattice models.

A.2 Extension to finite temperatures

In the previous section we have reviewed the Hohenberg-Kohn-Sham formulation of
DFT, which accounts for the ground-state properties of general many-particle sys-
tems. There are, however, a myriad of important physical phenomena which can not
be described within a ground-state formalism. For example, phase transitions in mag-
netic or superconducting materials, the Kondo-e�ect, and metal-insulator transitions
are the consequence of speci�c qualitative features in the many-body spectral den-
sity of the electronic system. These e�ects therefore manifest themselves at speci�c
temperatures, such as the Curie or Néel ordering temperatures in ferromagnets and
antiferromagnets or the Kondo temperature for magnetic impurities in metals. Con-
sequently, an extension of the scope of DFT in order to describe the properties of
many-particle systems at �nite temperatures is indispensable. In fact, shortly after
its publication, Mermin [6] demonstrated a �nite-temperature version of the funda-
mental HK theorem, in whose framework it is possible to determine the tempera-
ture dependence of the equilibrium properties of a general many-particle system. A
�nite-temperature formulation of the KS scheme for mixed-states or ensembles had
already been provided by Kohn and Sham [3]. Despite some e�orts to obtain sound
approximations to the functionals involved in Mermin’s theory [90, 91], no practical
implementation of this method is available so far. However, a number of less rigorous
approaches, for example, the functional-integral spin-�uctuation theory [143, 144],
or a combination of the LDA and dynamical mean-�eld theory (DMFT), have been
proposed in order to describe remarkable �nite-temperature e�ects such as the mag-
netism in iron and nickel [145]. In the following we present the foundations of �nite-
temperature density functional theory (FT-DFT), including the fundamental Mermin
theorem in Section A.2.1 and the �nite-temperature KS scheme in Section A.2.2.
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A.2.1 The Mermin theorem
In contrast to the ground-state formalism of the preceding section, the state of a sys-
tem at a �nite temperature T > 0 cannot be described by a pure state but instead by
a mixed state. Mixed states are characterized by their density matrix ρ̂, which is a
hermitian positive semide�nite operator. As such, ρ̂ can be expressed in terms of its
eigenvalues pn and orthonormal eigenstates |Ψn〉 in the form

ρ̂ =
∑
n

pn |Ψn〉〈Ψn | with pn ≥ 0 and Tr{ρ̂} =
∑
n

pn = 1 , (A.37)

where Tr indicates the trace in the corresponding Fock space containing all states
with arbitrary particle number. The eigenvalue pn of the density matrix ρ̂ represents
the probability of �nding the system in the eigenstate |Ψn〉. The sums in Eq. (A.37)
go over the complete set of eigenstates, which are not restricted to a �xed particle
number. The expectation value of any observable Ô can be expressed in terms of the
density matrix ρ̂ as

O = Tr
{
ρ̂ Ô}

=
∑
n

pn〈Ψn |Ô |Ψn〉 . (A.38)

In the following we consider a system which is open with respect to exchange
of energy and particles with the environment, where the latter is characterized by
a �xed temperature T and chemical potential µ. Before we formulate the Mermin
theorem, let us �rst record Gibbs variational principle for the grand potential, which
is the �nite-temperature analog of the Rayleigh-Ritz variational principle (A.20) for
the ground-state energy. To this aim we consider the functional

Ω[ρ̂] = Tr
{
ρ̂

(
Ĥ +

1
β
log ρ̂ − µN̂

)}
, (A.39)

where Ĥ is the Hamiltonian (A.1) of the electronic problem under consideration, which
is characterized by the external potential v(r ). Furthermore, β = (kBT )−1 with the
Boltzmann constant kB, and

N̂ =
∑
σ

∫
ψ̂ †σ (r )ψ̂σ (r ) dr =

∫
n̂(r ) dr (A.40)

is the operator counting the number of particles. Gibbs variational principle states
that the grand potential is given by

Ω0 = min
ρ̂∈P

Ω[ρ̂] , (A.41)

where the minimization is performed within the set P of all density matrices of the
form (A.37), i. e., within the set of all positive semide�nite density matrices with unit
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trace. It is easy to show that the functional (A.39) has a local minimum at the grand-
canonical density matrix

ρ̂0 =
e−β (Ĥ−µN̂ )

Tr
{
e−β (Ĥ−µN̂ )

} , (A.42)

and Mermin [6] has demonstrated that this minimum is unique and global, i. e., that
the strict inequality

Ω[ρ̂] > Ω[ρ̂0] = Ω0, ρ̂ , ρ̂0 (A.43)
holds for any density matrix ρ̂ ∈ P di�erent from ρ̂0. With these preliminaries it is
now straight forward to prove the following fundamental statement.

TheoremA.3 (Mermin [6]). For any �xed temperatureT > 0 and chemical potential µ,
the external potential v(r ) of a many-particle system is a functional of the equilibrium
particle density n(r ).
Proof. The proof is carried out in close analogy to the one shown for the HK Theo-
rem A.1. Suppose, there would be another external potential v′(r ) di�erent from v(r )
which, at the given temperature T and chemical potential µ, gives rise to the same
equilibrium density n(r ) as v(r ). If Ĥ ′ = K̂ + V̂ ′ + Ŵ and ρ̂′0 denote the Hamiltonian
and grand-canonical density matrix of the system with the external potential v′(r ),
the corresponding grand potential is given by

Ω′0 =
∫

v′(r )n(r ) dr + Tr
{
ρ̂′0

(
K̂ + Ŵ +

1
β
log ρ̂′0 − µN̂

)}
. (A.44)

Here we have used that, by our assumption, the average external-potential energy is
given by

V ′ = Tr{ρ̂′0 V̂ ′} =
∫

v′(r )Tr{ρ̂′0 n̂(r )} dr =
∫

v′(r )n(r ) dr . (A.45)

Since the potentials v(r ) and v′(r ) are by assumption di�erent from each other, the
associated grand-canonical density matrices ρ̂0 and ρ̂′0 must di�er as well.3 Thus, from
the minimal principle (A.43) it follows that

Ω0 < Ω[ρ̂′0] = Tr
{
ρ̂′0

(
Ĥ +

1
β
log ρ̂′0 − µN̂

)}
= Ω′0 + Tr

{
ρ̂′0

(
V̂ − V̂ ′)} =

= Ω′0 +
∫ [

v(r ) −v′(r )] n(r ) dr . (A.46)

3Notice that the grand-canonical density matrices ρ̂0 and ρ̂ ′0 are di�erent from each other even in
the case where the external potentials v(r ) and v ′(r ) only di�er by a constant energy shift. The
grand-canonical density matrix given in Eq. (A.42) depends on v(r ) − µ and therefore, once the
chemical potential µ is �xed, there is no ambiguity with respect to a constant energy shift.
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By interchanging primed and unprimed quantities one obtains

Ω′0 < Ω0 +

∫ [
v′(r ) −v(r )] n(r ) dr . (A.47)

Adding Eqs. (A.46) and (A.47) the contradiction

Ω0 + Ω′0 < Ω′0 + Ω0 (A.48)

is obtained, which proves that two di�erent potentialsv(r ) andv′(r ) cannot yield the
same equilibrium density n(r ) at a given temperatureT > 0 and chemical potential µ.
Therefore, v(r ) is a functional of n(r ). �

The Mermin theorem states that for a given temperature T > 0 and chemical poten-
tial µ the external potential v(r ) is a functional of the equilibrium density n(r ). Con-
sequently, if the type of interaction de�ned byw(r ,r ′) is �xed, the full Hamiltonian Ĥ
and all physical properties derived from it must be functionals of the equilibrium den-
sity as well. This applies in particular to the grand-canonical density matrix (A.42),
which immediately proves the important

Corollary A.3. For any �xed temperature T > 0 and chemical potential µ, the grand-
canonical density matrix ρ̂0 is a functional of the equilibrium particle density n(r ).

Notice that the converse statement is also true, since the equilibrium density n(r ) =
Tr{ρ̂0 n̂(r )} is a functional of the grand-canonical density matrix ρ̂0. A further impor-
tant consequence of the Mermin theorem is

Corollary A.4. For a �xed temperatureT > 0 and chemical potential µ, the equilibrium
average value of any observable Ô is a functional of the equilibrium particle-densityn(r ).

Proof. From Corollary A.3 we know that for any temperature T > 0 and chemical
potential µ the grand-canonical density matrix ρ̂0 = ρ̂0[n(r )] is a functional of the
equilibrium particle-density n(r ). Therefore, the equilibrium average-value of any
observable Ô can be obtained from the equilibrium particle-density as

O[n(r )] = Tr
{
ρ̂0[n(r )] Ô

}
. (A.49)

�

Similar to the ground-state formalism presented in Section A.1, the formulation of
FT-DFT requires the construction of a density functional from which the equilibrium
density n(r ) can be obtained by means of a variational principle. We will derive such
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a functional by using a constrained search method, which is analogous to the LL for-
mulation of Section A.1.2. This will allow us to bypass all problems related to the
representability of equilibrium densities n(r ). To this aim we introduce the functional

G[n(r )] = min
ρ̂→n(r )

Tr
{
ρ̂

(
K̂ + Ŵ +

1
β
log ρ̂

)}
, (A.50)

where the notation ρ̂ → n(r ) indicates the minimization with respect to all density
matrices ρ̂ ∈ P which yield the given density via

n(r ) = Tr{ρ̂ n̂(r )} =
∑
n

pn〈Ψn |n̂(r )|Ψn〉 . (A.51)

This means, the functional (A.50) is de�ned on the set of the density functions n(r ),
which, via Eq. (A.51), can be associated with some density matrix ρ̂ ∈ P. This type of
functions n(r ) is called ensemble representable, and we denote the set of all ensemble-
representable functions by Ne . The question of how ensemble-representable density
functions are characterized is easily answered by noting that, according to Eq. (A.51),
any n(r ) ∈ Ne can be expressed as a linear combination of pure-state N -representable
density functions 〈Ψn |n̂(r )|Ψn〉 ∈ NN with non-negative coe�cients pn ≥ 0. Thus,
we conclude that Ne must contain all real valued, non-negative functions, since the
sets NN with N ∈ N0 contain all real valued, non-negative functions that integrate
to N , as already discussed in Section A.1.2. The functional (A.50) is valid for arbitrary
non-negative particle numbers N =

∫
n(r ) dr , and it is universal in the sense that it

does not depend on the external potential v(r ).
Using the functional G[n(r )], given by Eq. (A.50), we can now de�ne the grand

potential density-functional

Ωv[n(r )] =
∫
[v(r ) − µ]n(r ) +G[n(r )] . (A.52)

The minimal value of the functional Ωv[n(r )] within the set Ne of ensemble-
representable density functions equals the grand potential Ω0. This can be most easily
seen by performing the minimization in the Gibbs variational principle (A.41) in two
consecutive steps:

Ω0 = min
ρ̂∈P

Tr
{
ρ̂

(
Ĥ +

1
β
log ρ̂ − µN̂

)}
=

= min
n(r )∈Ne

[∫
[v(r ) − µ]n(r ) dr + min

ρ̂→n(r )
Tr

{
ρ̂

(
K̂ + Ŵ +

1
β
log ρ̂

)}]
=

= min
n(r )∈Ne

[∫
[v(r ) − µ]n(r ) dr +G[n(r )]

]
= min

n(r )∈Ne
Ωv[n(r )] .

(A.53)
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Furthermore, from Eq. (A.43) it follows that the density matrix ρ̂ which yields the min-
imum in Eq. (A.53) is the grand-canonical density matrix (A.42) associated with the
given external potential v(r ), temperatureT and chemical potential µ. Consequently,
the minimizing density n(r ) must be the equilibrium density of the system.

A.2.2 Finite-temperature Kohn-Sham scheme
In order to formulate a �nite-temperature extension of the KS scheme, we seek for an
auxiliary noninteracting system described by the single-particle Hamiltonian (A.22)
with an external potential vs(r ), which is chosen such that the corresponding equi-
librium density n(r ) equals the equilibrium density of the interacting system with the
external potential v(r ). Once the existence of vs(r ) is granted, its uniqueness follows
from the Mermin Theorem A.3.

For a noninteracting system with external potential vs(r ), the equilibrium particle
density at a given temperature T and chemical potential µ is given by

n(r ) =
∑
i

|ϕi(r )|2
1 + eβ(εi−µ)

, (A.54)

where ϕi(r ) and εi are the solutions and corresponding eigenvalues of the single-
particle Schrödinger equation[

− ~
2

2m∇
2 +vs(r )

]
ϕi(r ) = εi ϕi(r ) . (A.55)

From Corollary A.4 we know that the grand-canonical density matrix ρ̂s of the non-
interacting system, and thus the corresponding average values of all physical observ-
ables are functionals of the equilibrium density n(r ). Consequently, the noninteract-
ing kinetic energy

Ks[n(r )] = Tr
{
ρ̂s[n(r )] K̂

}
(A.56)

and the noninteracting entropy

Ss[n(r )] = −kBTr
{
ρ̂s[n(r )] log ρ̂s[n(r )]

}
(A.57)

are universal functionals of the equilibrium density n(r ).
In order to �nd the potential vs(r ) which characterizes the noninteracting system

whose equilibrium density n(r ) equals the one of the interacting system under con-
sideration, we write the functional (A.50) in the form

G[n(r )] = Gs[n(r )] + 1
2

∫
n(r )w(r ,r ′)n(r ′) dr dr ′ +Gxc[n(r )] , (A.58)
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where Gs[n(r )] = Ks[n(r )] − TSs[n(r )], and Gxc[n(r )] is the XC contribution to the
free energy of interacting electrons with equilibrium density n(r ). Thus, Gxc[n(r )]
includes the contribution to G[n(r )] resulting from XC e�ects on the Coulomb-
interaction energy W , the kinetic energy K , and the entropy S = −kBTr{ρ̂ log ρ̂}.
The grand potential density-functional Ωv[n(r )], de�ned in Eq. (A.52), assumes its
minimal value at the actual equilibrium density, and the corresponding stationary
condition reads

δΩv[n(r )]
δn(r ) =

δG[n(r )]
δn(r ) +v(r ) − µ = 0 . (A.59)

Writing G[n(r )] in the form (A.58), we obtain

δGs[n(r )]
δn(r ) +vs([n];r ) − µ = 0 (A.60)

with
vs([n];r ) = v(r ) +

∫
n(r ′)w(r ,r ′) dr ′ + µxc([n];r ) (A.61)

and
µxc([n];r ) = δGxc[n(r )]

δn(r ) . (A.62)

Equation (A.60) is formally the same condition one would obtain for a system of non-
interacting particles moving in the e�ective potentialvs([n];r ). Therefore, we identify
vs([n];r ) as the unique external potential, for which the noninteracting system (A.22)
yields the same equilibrium density n(r ) as the interacting system in the presence of
the external potential v(r ). Equations (A.54), (A.55), and (A.61) de�ne the �nite tem-
perature KS-scheme. Due to the fact that the e�ective single-particle potential (A.61)
explicitly depends on the density n(r ), it must be solved in a selfconsistent way which
is analogous to the ground-state procedure described in Section A.1.3.
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Hartree-Fock approximation for the
interaction-energy functional B
Within the Hartree-Fock method, one assumes that the ground state |Ψ0〉 of an inter-
acting many-body system can be approximated by a single Slater determinant. Con-
sequently, one seeks for the Slater determinant

|n〉 =
∏
ασ

(
b̂†ασ

)nασ |vac〉 with nασ ∈ {0, 1} , (B.1)

which yields the minimal value of the total energy 〈Ĥ 〉 = 〈K̂〉 + 〈Ŵ 〉. Here, the
operators b̂†ασ correspond to a complete, yet to be determined, set of single-particle
states {φασ (r )}, and n = {nασ } represents the corresponding occupation numbers.
The minimization procedure in the Hartree-Fock approximation requires one to com-
pute the average value of the two-particle operator

Ŵ =
∑
ijkl
σσ ′

W σσ ′
ijkl ĉ

†
iσ ĉ
†
jσ ′ĉlσ ′ĉkσ , (B.2)

which represents the interaction between the particles. Therefore, we aim to derive
an explicit expression for the interaction energy W = 〈n |Ŵ |n〉 of a Slater determi-
nant (B.1) in terms of the corresponding single-particle density matrix (SPDM)γ . Since
the operators b̂†ασ in Eq. (B.1) correspond to a complete set of single-particle states, we
can expand the operators ĉ†iσ which appear in Eq. (B.2) as

ĉ†iσ =
∑
α

uiασ b̂
†
ασ , (B.3)

with some coe�cients uiασ ∈ C. Using this relation together with the fact that for a
Slater determinant it holds

〈n |b̂†ασ b̂βσ |n〉 = δαβ 〈n |n̂ασ |n〉 = δαβ nασ , (B.4)

one obtains the SPDM of a Slater determinant as

γijσ = 〈n |ĉ†iσ ĉjσ |n〉 =
∑
αβ

uiασ u
∗
jβσ 〈n |b̂†ασ b̂βσ |n〉 =

∑
α

uiασ nασ u
∗
jασ . (B.5)
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Furthermore, using Eq. (B.3) one obtains

ĉ†iσ ĉ
†
jσ ′ĉlσ ′ĉkσ =

∑
αβγδ

uiασ ujβσ ′ u
∗
lδσ ′ u

∗
kγσ b̂

†
ασ b̂
†
βσ ′b̂δσ ′b̂γσ , (B.6)

and from the de�nition (B.1) of a Slater determinant |n〉 it follows that

〈n |n̂ασ n̂βσ ′ |n〉 = nασnβσ ′ . (B.7)

Thus, it is easy to verify that

〈n |b̂†ασ b̂†βσ ′b̂δσ ′b̂γσ |n〉 = nασ nβσ ′
(
δαγ δβδ − δσσ ′ δαδ δβγ

)
. (B.8)

Combining this relation with Eq. (B.6), one obtains

〈n |ĉ†iσ ĉ†jσ ′ĉlσ ′ĉkσ |n〉 =
∑
αβ

uiασ ujβσ ′ u
∗
lβσ ′ u

∗
kασ nασ nβσ ′−

− δσσ ′
∑
αβ

uiασ ujβσ u
∗
lασ u

∗
kβσ nασ nβσ

(B.5)
=

= γikσ γjlσ ′ − δσσ ′ γilσ γjkσ .

(B.9)

Finally, replacing this result in Eq. (B.2), one obtains the interaction-energy functional
in Hartree-Fock approximation as

WHF[γ ] = 〈n |Ŵ |n〉 =
∑
ijkl
σσ ′

W σσ ′
ijkl

(
γikσ γjlσ ′ − δσσ ′ γilσ γjkσ

)
. (B.10)

In this thesis we refer to Eq. (B.10) as Hartree-Fock approximation for the interaction-
energy functionalW [γ ]. It is, however, worth noting that this expression is far more
general than the usual self-consistent Hartree-Fock (HF) energy, since it corresponds
to the exact interaction energy of any Slater determinant yielding the given SPDM γ .

Uncorrelated mixed-states
In the following we would like to demonstrate thatWHF[γ ], as given in Eq. (B.10), rep-
resents the exact interaction-energy functional not only for pure Slater determinants,
but also for an uncorrelated superposition of Slater determinants. By this we mean a
special kind of mixed state, which is described by a density matrix of the form

ρ̂ =
∏
ασ

pασ (n̂ασ ) with pασ (n) = ηnασ (1 − ηασ )1−n , ηασ ∈ [0, 1] ∀ασ . (B.11)
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In Eq. (B.20) below we will demonstrate that the numbers ηασ represent the average
occupation of the orbitalsφασ (r ), i. e., ηασ is the probability of �nding the correspond-
ing orbital occupied in the mixed state described by ρ̂. Clearly, the eigenstates of ρ̂ are
the Slater-determinants |n〉 de�ned in Eq. (B.1), and for the corresponding eigenvalues

p(n) =
∏
ασ

pασ (nασ ) (B.12)

it holds 0 ≤ p(n) ≤ 1, which means that ρ̂ is positive semide�nite. Furthermore, if we
take the Slater determinants (B.1) as basis of the underlying Fock space, it is easy to
verify that ρ̂ is properly normalized:

Tr{ρ̂} =
1∑

n1↑=0

1∑
n1↓=0
· · ·

∏
ασ

pασ (nασ ) =
∏
ασ

1∑
n=0

pασ (n) = 1 . (B.13)

Here we have used that pασ (0) + pασ (1) = 1 for all ασ , according to Eq. (B.11). Notice
that ρ̂ has unit trace in Fock space and not in the N -particle Hilbert space which is
relevant in a canonical-ensemble formalism. A density matrix of the form (B.11) would
not represent a proper mixed state when working in a canonical ensemble, since its
eigenstates do not have a �xed particle number N , and furthermore, since it does not
has unit trace in N -particle Hilbert space. We refer to a state described by a density
matrix ρ̂ of the form (B.11) as uncorrelated mixed-state, since its eigenstates are single
Slater determinants and the corresponding occupation numbers nασ are uncorrelated
due to the product form (B.12) of the eigenvaluesp(n), which represent the probability
for the corresponding occupation-number con�guration n = {nασ }.

One prominent example of an uncorrelated mixed-state is the grand-canonical
thermal-equilibrium state of a non-interacting system described by the Hamiltonian

Ĥ0 =
∑
ασ

εασ n̂ασ , (B.14)

whose grand-canonical density matrix is given by

ρ̂0 =
e−β(Ĥ0−∑σ µσ N̂σ )

Tr
{
e−β(Ĥ0−∑σ µσ N̂σ )

} =∏
ασ

e−β(εασ−µσ ) n̂ασ
1 + e−β(εασ−µσ )

=
∏
ασ

pασ (n̂ασ ) (B.15)

with
pασ (n) = ηnασ (1 − ηασ )1−n and ηασ =

1
1 + eβ(εασ−µσ )

. (B.16)

In Eq. (B.15) we have used the well-known grand-canonical partition function of a
non-interacting system described the Hamiltonian (B.14)

Z = Tr
{
e−β(Ĥ0−∑σ µσ N̂σ )} =∏

ασ

(
1 + e−β(εασ−µσ )

)
. (B.17)
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B Hartree-Fock approximation for the interaction-energy functional

More generally, uncorrelated mixed-states yield the maximal value of the entropy
S = −Tr{ρ̂ log ρ̂} for a given distribution of the average occupation numbers ηασ =
Tr{ρ̂ n̂ασ }. In order to prove this statement, we seek for the minimum of the Euler-
Lagrange functional which corresponds to the negative entropy

L[ρ̂] = Tr{ρ̂ log ρ̂} +
∑
ασ

εασ
(
Tr{ρ̂ n̂ασ } − ηασ

)
=

= Tr
{
ρ̂

(∑
ασ

εασ n̂ασ + log ρ̂
)}
−

∑
ασ

εασ ηασ ,

(B.18)

where the Lagrange multipliers εασ enforce the condition that the minimizing density
matrix ρ̂ yields the desired average occupation numbersηασ ∈ [0, 1]. Apart from an ir-
relevant constant, Eq. (B.18) equals the Gibbs functional (3.43) with β = 1, µσ = 0, and
the non-interacting Hamiltonian (B.14). Consequently, the minimum of L[ρ̂] within
the set P of all positive semide�nite density matrices ρ̂ with unit trace is taken for
the corresponding grand-canonical density matrix ρ̂0 = e−Ĥ0/Tr{e−Ĥ0}. Thus, ρ̂0 is
the mixed state which yields the maximal entropy for the given average occupation
numbers ηασ , and in the context of Eq. (B.15) we have already seen that ρ̂0 represents
an uncorrelated mixed-state.

In order to show that Eq. (B.10) represents the exact interaction-energy functional
for uncorrelated mixed-states, we mainly have to demonstrate that the analog of
Eq. (B.7)

Tr
{
ρ̂ n̂ασ n̂βσ ′

}
= Tr

{
ρ̂ n̂ασ

}
Tr

{
ρ̂ n̂βσ ′

}
(B.19)

holds for any density matrix ρ̂ of the form (B.11). This is most easily seen by taking
the Slater determinants (B.1) as basis of the underlying Fock space. In this way one
obtains

Tr
{
ρ̂ n̂ασ

}
=

1∑
n1↑=0

1∑
n1↓=0
· · ·nασ

∏
βσ ′

pβσ ′(nβσ ′) =

= pασ (1)
∏

βσ ′,ασ

1∑
n=0

pβσ ′(n) = pασ (1) = ηασ ,
(B.20)

and similarly

Tr
{
ρ̂ n̂ασ n̂βσ ′

}
=

1∑
n1↑=0

1∑
n1↓=0
· · ·nασnβσ ′

∏
γσ ′′

pγσ ′′(nγσ ′′) =

= pασ (1)pβσ ′(1)
∏

γσ ′′,ασ ,βσ ′

1∑
n=0

pγσ ′′(n) = pασ (1)pβσ ′(1) = ηασ ηβσ ′ .
(B.21)
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Finally, using this relation and the substitutions

nασ → ηασ and 〈n |Ô |n〉 → Tr
{
ρ̂ Ô}

(B.22)

in Eqs. (B.4) to (B.10), it follows that Eq. (B.10) is the interaction energy functional
for uncorrelated mixed-states. In particular, since the grand-canonical density ma-
trix (B.15) of any non-interacting system describes an uncorrelated mixed-state, we
conclude that WHF[γ ], as given in Eq. (B.10), represents the average interaction en-
ergyW = Tr{ρ̂0Ŵ } in the thermal-equilibrium state ρ̂0 of the unique non-interacting
system whose grand-canonical equilibrium single-particle density matrix (eq-SPDM)
equals γ . However, since an uncorrelated mixed-state does not correspond to a �xed
particle number, the equivalent statement is not true if one works in a canonical en-
semble.
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Minimal principle of the Helmholtz
functional F [ρ̂] C
We wish to demonstrate that the Helmholtz functional

F [ρ̂] = TrN
{
ρ̂

(
Ĥ +

1
β
log ρ̂

)}
(C.1)

satis�es the strict minimal principle

F [ρ̂] > F [ρ̂N ] , ρ̂ , ρ̂N (C.2)

for all positive semide�nite N -particle density matrices with unit trace ρ̂ ∈ PN , as
de�ned in Eq. (3.17). Here, the canonical density matrix ρ̂N is given by

ρ̂N =
e−βĤ

TrN
{
e−βĤ

} . (C.3)

We start by demonstrating that ρ̂N is in fact a stationary point of the Helmholtz func-
tional F [ρ̂]. To this aim we seek for the extremes of the corresponding Euler-Lagrange
functional

L[ρ̂] = TrN
{
ρ̂

(
Ĥ +

1
β
log ρ̂

)}
− ε

(
TrN {ρ̂} − 1

)
, (C.4)

where we have introduced the Lagrange multiplier ε in order to enforce that the min-
imizing density matrix has unit trace in N -particle Hilbert space. Clearly, if ρ̂ is a
stationary point of the Euler-Lagrange functional (C.4), its variation

δL[ρ̂] = TrN
{
δ ρ̂

(
Ĥ +

1
β

(
log ρ̂ + 1

) − ε)} (C.5)

must vanish for any in�nitesimal δ ρ̂ with Tr{δ ρ̂} = 0. This condition is certainly
satis�ed if

Ĥ +
1
β

(
log ρ̂ + 1

) − ε = 0 ⇒ ρ̂ =
e−βĤ

e1−βε
. (C.6)

Here, the Lagrange multiplier ε must be chosen such that the condition TrN {ρ̂} = 1
is satis�ed, i. e., we must have e1−βε = TrN

{
e−βĤ

}
, which means that ρ̂N , as given in

Eq. (C.3), is in fact a stationary point of the Helmholtz functional (C.1) within PN .
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C Minimal principle of the Helmholtz functional F [ρ̂]

In order to demonstrate that the Helmholtz functional (C.1) is bounded below
by F [ρ̂N ], i. e., that Eq. (C.2) holds, we closely follow the proof of Mermin [6] con-
cerning the analog statement for the Gibbs functional Ω[ρ̂] de�ned in Eq. (3.43).
Let ρ̂ ∈ PN be an arbitrary positive semide�nite density matrix with unit trace, and
de�ne for λ ∈ [0, 1]

ρ̂λ =
e−βĤλ

TrN
{
e−βĤλ

} with Ĥλ = Ĥ + λ∆̂ and ∆̂ = −
(
Ĥ +

1
β
log ρ̂

)
. (C.7)

The operator Ĥλ is hermitian since ρ̂ is positive semide�nite, and consequently we can
regard ρ̂λ ∈ PN as the canonical density matrix of a system described by the auxiliary
Hamiltonian Ĥλ. Furthermore, one has ρ̂λ=0 = ρ̂N and ρ̂λ=1 = ρ̂, and consequently we
can write

F [ρ̂] − F [ρ̂N ] =
∫ 1

0

∂

∂λ
F [ρ̂λ] dλ . (C.8)

In order to evaluate the derivative we write

F [ρ̂λ] = TrN
{
ρ̂λ

(
Ĥ + λ∆̂ +

1
β
log ρ̂λ

)}
− λ TrN

{
ρ̂λ∆̂

}
. (C.9)

Here, the �rst trace is the Helmholtz functional (C.1) for a system described by the
Hamiltonian Ĥλ = Ĥ + λ∆̂, and it is therefore stationary with respect to variations
of ρ̂λ around the corresponding canonical density matrix (C.7). Consequently, we need
to di�erentiate the �rst trace in Eq. (C.9) only with respect to the explicit occurrence
of λ, which leads to

∂

∂λ
F [ρ̂λ] = −λ Tr

{
∂ρ̂λ
∂λ

∆̂

}
. (C.10)

In order to compute the derivative ∂ρ̂λ/∂λ we have to take in to account that Ĥ in
general not commutes with ρ̂ and consequently also not with ∆̂. In order to handle
this di�culty, we will make use of Feynman’s ordering technique [146], i. e., we attach
an index to each operator, and it is understood that operators act in order of increasing
value of their indices. Thus, for two operators Â and B̂ one has ÂsB̂s ′ = ÂB̂ if s > s′

and ÂsB̂s ′ = B̂Â if s < s′. In this way we can apply the rules of ordinary commutative
calculus to the operators Âs and B̂s ′ . However, in a �nal step we have to disentangle
the operators, before we can drop their indices an return to the usual notation. Using
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this technique, one can write

∂

∂λ
e−βĤλ =

∂

∂λ
e−β

∫ 1
0 (Ĥs ′+λ∆̂s ′)ds ′ =

= −β
(∫ 1

0
∆̂s ds

)
e−β

∫ 1
0 (Ĥs ′+λ∆̂s ′)ds ′ =

= −β
∫ 1

0
ds e−β

∫ s
0 (Ĥs ′+λ∆̂s ′)ds ′ ∆̂s e−β

∫ 1
s (Ĥs ′+λ∆̂s ′)ds ′ =

= −β
∫ 1

0
ds e−βsĤλ ∆̂ e−β(1−s)Ĥλ

β ′=β(1−s)
=

= −e−βĤλ

∫ β

0
dβ′ ∆̂λ(β′) , (C.11)

where we have introduced ∆̂λ(β′) = eβ ′Ĥλ ∆̂ e−β ′Ĥλ . Using this result, one obtains

∂ρ̂λ
∂λ
=

∂
∂λe
−βĤλ

TrN
{
e−βĤλ

} − e−βĤλ(
TrN

{
e−βĤλ

})2 TrN {
∂

∂λ
e−βĤλ

}
=

= −ρ̂λ
∫ β

0
dβ′ ∆̂λ(β′) + ρ̂λ

∫ β

0
dβ′ TrN

{
ρ̂λ ∆̂λ(β′)

}
. (C.12)

Since ρ̂λ commutes with Ĥλ, we obtain by cyclically permuting operators within the
trace

〈∆̂λ(β′)〉λ = TrN
{
ρ̂λ eβ

′Ĥλ ∆̂ e−β ′Ĥλ
}
= TrN

{
ρ̂λ ∆̂

}
= 〈∆̂〉λ , (C.13)

where we have introduced the shorthand notation 〈Ô〉λ = TrN
{
ρ̂λ Ô

}
. Consequently,

we can write Eq. (C.12) as

∂ρ̂λ
∂λ
= −ρ̂λ

∫ β

0
dβ′

(
∆̂λ(β′) − 〈∆̂〉λ

)
. (C.14)

Using this result in Eq. (C.10), one obtains

∂

∂λ
F [ρ̂λ] = λ

∫ β

0
dβ′ TrN

{
ρ̂λ

(
∆̂λ(β′) − 〈∆̂〉λ

)
∆̂

}
=

= λ

∫ β

0
dβ′

(
〈∆̂λ(β′) ∆̂〉λ − 〈∆̂〉2λ

)
,

(C.15)
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C Minimal principle of the Helmholtz functional F [ρ̂]

and again, by cyclically permuting operators within the trace, similar to Eq. (C.13), it
is easy to verify that

〈∆̂λ(β′) ∆̂〉λ = 〈∆̂λ(12β′) ∆̂†λ(12β′)〉λ . (C.16)

By introducing δ̂ (β′) = ∆̂λ(12β′) − 〈∆̂〉λ, one obtains

〈δ̂ (β′) δ̂†(β′)〉λ = 〈∆̂λ(12β′) ∆̂†λ(12β′)〉λ − 2 〈∆̂λ(12β′)〉λ︸      ︷︷      ︸
=〈∆̂〉λ

〈∆̂〉λ + 〈∆̂〉2λ =

= 〈∆̂λ(β′) ∆̂〉λ − 〈∆̂〉2λ ,
(C.17)

and consequently we can write Eq. (C.15) as

∂

∂λ
F [ρ̂λ] = λ

∫ β

0
dβ′ 〈δ̂ (β′) δ̂†(β′)〉λ . (C.18)

The operator δ̂ (β′) δ̂†(β′) is positive semide�nite, such that the right-hand side of
Eq. (C.18) is non-negative and only vanishes if δ̂ (β′) = 0, i. e., if

∆̂λ(12β′) = e
1
2 β
′Ĥλ ∆̂ e−

1
2 β
′Ĥλ = 〈∆̂〉λ . (C.19)

Since 〈∆̂〉λ is just a real number, Eq. (C.19) can only be satis�ed if ∆̂ is a multiple of the
identity operator, which, according to Eq. (C.7), is only the case if ρ̂ = ρ̂N . Therefore,
Eqs. (C.8) and (C.18) establish the strict inequality (C.2).
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Solving Shiba’s integral equations D
In this Appendix we present a method for solving Shiba’s integral equations (2.28)
and (2.33), which utilizes the trapezoidal rule in order to approximate the integrals
and, in turn, leads to a set of coupled linear algebraic equations. Thus, in order to �nd
a solution ρ(k) of Shiba’s integral equation

ρ(k) = 1
2π +

cos(k)
u

∫ Q

−Q
R

(
4 (sink − sink′)

u

)
ρ(k′) dk′ , (D.1)

we discretize the interval [−Q,Q] into a grid of M + 1 equally spaced points km =
−Q +m ∆k , m = 0, . . . ,M with ∆k = 2Q/M , and we approximate the integral on the
right-hand side by means of the trapezoidal rule∫ Q

−Q
f (k) dk ≈ ∆k

M∑
m=1

f (km−1) + f (km)
2 = ∆k

(
M−1∑
m=1

f (km) +
f (k0) + f (kM )

2

)
. (D.2)

Here we focus on the trapezoidal rule, since it allows for an easy implementation,
however, it is straight forward to generalize the following procedure to higher order
quadrature rules. Using the trapezoidal rule (D.2) and ρm = ρ(km), we can cast Eq. (D.1)
into the following set of M + 1 coupled linear algebraic equations

ρn =
1
2π +

cos(kn)
u

∆k

(
M−1∑
m=1

Rnm ρm +
Rn0 ρ0 + RnM ρM

2

)
, (D.3)

where

Rnm = R

(
4 (sinkn − sinkm)

u

)
(D.4)

with R(x) de�ned in Eq. (2.29). If we introduce

Anm =
∆k cos(kn)

u
Rnm ×

{
1/2 ifm ∈ {0,M}
1 else

(D.5)
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D Solving Shiba’s integral equations

we can write Eq. (D.3) in the compact form

ρn −
M∑

m=0
Anm ρm =

1
2π (D.6)

or, equivalently,

(1 −A) ρ = v with v =
1
2π (1, . . . , 1)

> . (D.7)

Solving this system of linear equations yields a discretized solution ρ for the density
function ρ(k), from which the ground-state energy E as well as the electron den-
sity n = N /Na can be obtained by means of

− E

tNa
= 2

∫ Q

−Q
ρ(k) cos(k) dk ≈ ∆k

M∑
m=1

[
ρm−1 cos(km−1) + ρm cos(km)

]
, (D.8)

n =

∫ Q

−Q
ρ(k) dk ≈ ∆k

M∑
m=1

ρm−1 + ρm
2 . (D.9)

In order to obtain the average number of double occupations

D = 2Na

∫ Q

−Q
(cosQ − cosk) ∂ρ(k)

∂u
dk , (D.10)

we need to �nd ∂ρ(k)/∂u from the solution of the integral equation

∂ρ(k)
∂u

=
cos(k)
u2

∫ Q

−Q
Φ

(
4 (sink − sink′)

u

)
ρ(k′) dk′ + cos(k)

u

∫ Q

−Q
dk′ ∂ρ(k

′)
∂u

×

×
[
R

(
4 (sink − sink′)

u

)
− 1
2 R

(
4 (sink − sinQ)

u

)
− 1
2 R

(
4 (sink + sinQ)

u

)]
(D.11)

with the function Φ(x) de�ned in Eq. (2.34). Having the discretized solution ρ for the
density function ρ(k), we can approximate the �rst integral on the right-hand side by
means of the trapezoidal rule

cos(kn)
u2

∫ Q

−Q
Φ

(
4 (sinkn − sink′)

u

)
ρ(k′) dk′ ≈

≈ cos(kn)
u2

∆k

(
M−1∑
m=1

Φnm ρm +
Φn0 ρ0 + ΦnM ρM

2

)
=

M∑
m=0

Bnm ρm , (D.12)
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where we have introduced

Φnm = Φ

(
4 (sinkn − sinkm)

u

)
(D.13)

and

Bnm =
∆k cos(kn)

u2
Φnm ×

{
1/2 ifm ∈ {0,M}
1 else.

(D.14)

Furthermore, with ∂ρm = ∂ρ(km)/∂u and

Tnm = R

(
4 (sinkn − sinkm)

u

)
− 1
2 R

(
4 (sinkn − sinQ)

u

)
− 1
2 R

(
4 (sinkn + sinQ)

u

)
,

(D.15)
we can approximate the second integral on the right-hand side of Eq. (D.11) by

cos(kn)
u

∆k

(
M−1∑
m=1

Tnm ∂ρm +
Tn0 ∂ρ0 +TnM ∂ρM

2

)
=

M∑
m=0

Cnm ∂ρm , (D.16)

where, for the sake of simplicity, we have introduced

Cnm =
∆k cos(kn)

u
Tnm ×

{
1/2 ifm ∈ {0,M}
1 else.

(D.17)

Combining Eqs. (D.12) and (D.16), we can cast Eq. (D.11) into the following set of M +1
linear equations

(1 −C) ∂ρ = b with b = Bρ . (D.18)

Finally, having the discretized solution ∂ρ for the function ∂ρ(k)/∂u, we obtain the
average number of double occupations D by approximating the integral on the right-
hand side of Eq. (D.10) by means of the trapezoidal rule

D

Na
≈ ∆k

M∑
m=1

[ (cosQ − coskm−1) ∂ρm−1 + (cosQ − coskm) ∂ρm]
. (D.19)

217





Strongly-interacting limit within the linear
IFE-approximation E
We consider the strongly-interacting limitU /t →∞ of the half-�lled Hubbard model
on a hypercubic lattice in d dimensions within the linear independent-Fermion en-
tropy (IFE) approximation (4.17), and derive the corresponding expressions for the
ground state total, kinetic, and interaction energy. Our main result is that the ground-
state energy obtained in the strongly-correlated limit of the linear IFE-approximation
reproduces the expected behaviour E0/Na = −αt2/U of localized Heisenberg spins,
where the slope is given by α = 4d log(2) in the unpolarized case n↑ = n↓ = 1/2.
Thus, the exact asymptotic behaviour of the ground-state energy is recovered for the
one-dimensional Hubbard model (d = 1). We also demonstrate that the asymptotic
behaviour of the zero-�eld magnetic susceptibility in the strongly-correlated limit is
given by χ = UNaµ

2
B/(4dt2) within the linear IFE-approximation.

E.1 Ground-state energy and related quantities
We are interested in the ground-state properties of the half-�lled Hubbard model on
a d-dimensional hypercubic lattice in the thermodynamic limit Na → ∞ with nσ =
Nσ/Na kept �xed for σ = ↑,↓. Therefore, within the linear IFE-approximation (4.17),
we consider the energy functional

E[η] = Na

(2π )d
∑
σ

∫
BZ
ε(k)ησ (k) dk +WHF

(
1 − S[η]

S∞

)
. (E.1)

Here

ε(k) = −2t
d∑

n=1
cos(kn) , kn ∈ [−π ,π ) (E.2)

is the single-particle dispersion relation corresponding to the d-dimensional hypercu-
bic lattice under consideration,WHF = UNan↑n↓ the Hartree-Fock interaction energy,

S[η] = −kBNa

(2π )d
∑
σ

∫
BZ

[
ησ (k) logησ (k) +

(
1 − ησ (k)

)
log

(
1 − ησ (k)

) ]
dk (E.3)
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E Strongly-interacting limit within the linear IFE-approximation

the IFE, and
S∞ = −2NakB

(
n↑ logn↑ + n↓ logn↓

)
(E.4)

its maximal value, which is attained if ησ (k) = nσ for all k . The integrations in
Eqs. (E.1) and (E.3) are taken over the �rst Brillouin zone (BZ). As discussed in the
context of Eq. (4.16), the occupation-number distribution ησ (k) which minimizes the
energy functional (E.1), and thus corresponds to the ground state within the linear
IFE-approximation, is given by

ησ (k) = 1
zσeβε(k) + 1

with zσ = e−βµσ and β =
1

kBTe�
=

S∞
kBWHF

, (E.5)

whereTe� =WHF/S∞ ∝ U is an e�ective temperature. We conclude that βε(k) ∝ t/U ,
and thus we can expand Eq. (E.5) as

ησ (k) = 1
zσ + 1

− zσβε(k)
(zσ + 1)2

+ O
(
t2

U 2

)
. (E.6)

We require that the occupation-number distribution ησ (k) yields the particle den-
sity nσ , and thus we obtain to �rst order in t/U

nσ =
1
(2π )d

∫
BZ
ησ (k) dk = 1

zσ + 1
⇒ zσ =

1 − nσ
nσ

, (E.7)

where we have used
∫
BZ ε(k) dk = 0, which is obvious from Eq. (E.2). Substituting the

result (E.7) back into Eq. (E.6), we obtain to �rst order in t/U

ησ (k) = nσ + δη(k) with δη(k) = −n↑n↓βε(k) ∝ t/U . (E.8)

For the kinetic energy we thus obtain to �rst order in t/U
K

Na
=

1
(2π )d

∑
σ

∫
BZ
ε(k)ησ (k) dk = −

2βn↑n↓
(2π )d

∫
BZ

[
ε(k)]2 dk =

= −4βdt2n↑n↓ =
8dt2
U

(
n↑ logn↑ + n↓ logn↓

)
,

(E.9)

where we have used the well-known result

1
(2π )d

∫
BZ

[
ε(k)]2 dk = 2dt2 , (E.10)

which is valid for hypercubic lattices and straight forward to derive from Eq. (E.2).
Moving on to the IFE (E.3), we can expand the integrand in powers of δη ∝ t/U using
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E.2 Magnetic suspeptibility

Eq. (E.8)

−ησ logησ − (1 − ησ ) log(1 − ησ ) =
= −(nσ + δη) log(nσ + δη) − (1 − nσ − δη) log(1 − nσ − δη) =

=
S∞

2kBNa
+ δη log

(
1 − nσ
nσ

)
− δη2

2n↑n↓
+ O (

δη3
)
.

(E.11)

Thus, we obtain the IFE (E.3) up to second order in t/U as

S − S∞
Na

= − kB

n↑n↓(2π )d
∫
BZ

[
δη(k)]2 dk = −2kBβ2dt2n↑n↓ , (E.12)

where we have used δη(k) = −n↑n↓βε(k) and Eq. (E.10). With this result we obtain
the interaction energy within the linear IFE-approximation as

W

Na
=
WHF
Na

(
1 − S

S∞

)
=

1
kBβ

(
S∞ − S
Na

)
= 2βdt2n↑n↓ = −

K

2Na
. (E.13)

Thus, within the linear IFE-approximation the ground-state energy of the strongly
correlated Hubbard model at half band-�lling on a d-dimensional hypercubic lattice
is, to lowest order in t/U , given by

E0
Na
=
K +W

Na
=

K

2Na
=

4dt2
U

(
n↑ logn↑ + n↓ logn↓

)
. (E.14)

Therefore, the expected behavior of localized Heisenberg-spins

E0
Na
= −αt

2

U
with α = −4d (

n↑ logn↑ + n↓ logn↓
)

(E.15)

is reproduced in the strongly-interacting limit of the linear IFE-approximation. For
the case of an unpolarized spin-density (n↑ = n↓ = 1/2) the slope of the ground-state
energy is given by α = 4d log(2), such that the exact result E0 = −4Na log(2) t2/U for
the strongly-interacting Hubbard chain is recovered, which can be inferred from the
exact analytical solution of the one-dimensional Heisenberg model [110].

E.2 Magnetic suspeptibility
In order to derive the asymptotic behavior of the zero-�eld magnetic susceptibility
in the strong-coupling limit of the linear IFE-approximation (4.17), let us express the
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E Strongly-interacting limit within the linear IFE-approximation

ground-state energy (E.14) in terms of the spin-polarization sz = Sz/Na = ~ (n↑−n↓)/2

E0(sz)
Na

=
4dt2
U

[(
1
2 +

sz
~

)
log

(
1
2 +

sz
~

)
+

(
1
2 −

sz
~

)
log

(
1
2 −

sz
~

)]
=

=
4dt2
U

(
2s2z/~2 − log 2

)
+ O (

s3z
)
.

(E.16)

In the presence of an external magnetic-�eld B = B êz we have to add a Zeeman term
to the energy, i. e., E(sz) = E0(sz)+2µBBNasz/~. Thus, leaving terms of the order O (

s3z
)

aside, we obtain the magnetization from the necessary condition ∂E/∂sz = 0 for a local
minimum of the energy as

M = −2µBSz
~
=
UNaµ

2
BB

4dt2 . (E.17)

Thus, within the linear IFE-approximation we �nally obtain the asymptotic behaviour
of the magnetic susceptibility χ = ∂M/∂B in the strongly-correlated limit of the half-
�lled Hubbard model as χ = ∂M/∂B = UNaµ

2
B/(4dt2). In the one-dimensional case

(d = 1) we can compare this result to the exact value χ1D = UNaµ
2
B/(πt)2, derived from

the Bethe-ansatz solution for the half-�lled Hubbard chain [50], which leads to the
conclusion that the linear IFE-approximation overestimates the zero-�eld magnetic
susceptibility of the strongly-correlated 1D Hubbard model by a factor π 2/4 ≈ 2.47.
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Specific heat of the doublons F
We are interested in the contribution of the doublons to the speci�c heat of the half-
�lled Hubbard model, and thus we would like to investigate the thermal-equilibrium
properties of the system described by the Hamiltonian

Ĥ = U
∑
i

n̂i↑n̂i↓ . (F.1)

As already discussed in Section 5.2.1, the grand-canonical partition function of the
system described by the Hamiltonian (F.1) is given by Z = ZNa

1 , where Z1 is the single-
site partition function (5.39), which, in the considered case γ11↑ = γ11↓ = 1/2, is given
by

Z1 = 2
(
1 + eβU /2

)
. (F.2)

From the corresponding grand-potential Ω = −Na log(Z1)/β we obtain the entropy of
the doublons as

S = −∂Ω
∂T
= NakB

(
logZ1 − βU eβU /2

Z1

)
. (F.3)

Finally, the speci�c heat of the doublons is obtained as

CV = T
∂S

∂T
=

NakB x
2

cosh2(x) with x =
βU

4 . (F.4)

In Fig. F.1 the speci�c heat of the doublons is shown as a function of the ratio kBT /U
between the temperature T and the Coulomb-repulsion strength U . We �nd a single
broad maximum in CV , which corresponds to the charge excitations across the Hub-
bard gap, i. e., to the �uctuations in the average number of doublons. In the following
we would like to determine the temperatureTC at which the peak in the speci�c heat
occurs. For a local maximum in the speci�c heat it must hold

dCV

dx =
2NakB x

cosh2(x) [1 − x tanh(x)]
!
= 0 . (F.5)

This equation has solutions at x = 0 and x → ∞, which correspond to the limits
T → ∞ and T = 0 where the speci�c heat vanishes. The solution of interest, which
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Figure F.1: Speci�c heat of the doublons as a function of the ratio kBT /U between the tem-
perature T and the Coulomb-repulsion strength U.

corresponds to a �nite non-vanishing temperature, is obtained from x tanh(x) = 1.
This equation can be easily solved by numerical methods and one obtains

xC = 1.19968 ⇒ kBTC ≈ 0.21U . (F.6)
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Discontinuities in finite-size domains G
In this Appendix we brie�y discuss the issues arising from a naive generalization
of the scaling approximation (5.33) to the regime of spin-polarized electron densi-
ties. Within this naive generalization of the scaling idea, one �rst focuses on a �xed
spin polarization sz = ~ (γ11↑ − γ11↓)/2 and one extracts the functional dependence
of Gc[sz,γ12] on the degree of nearest neighbor (NN) charge �uctuations γ12 from the
properly scaled functional of a suitable reference system having the same sz .

In order to understand the issues arising from this approach, let us notice that the
upper bounds γ 012 and γ rf ,012 on the degree of NN charge �uctuations, which enter the
approximation (5.33) as essential scaling parameters, generally depend on the given
spin-polarization sz . In contrast to the thermodynamic limit Na → ∞, where γ 012(sz)
is a smooth function of sz (see Fig. 5.16), one observes that the derivative of γ 012(sz)
exhibits discontinuities at characteristic values of sz if �nite systems are concerned.

This situation is illustrated in Fig. G.1, where the domain of representability is
shown for a number of typical reference systems used in the framework of �nite-
temperature lattice density functional theory (FT-LDFT). We have highlighted the lo-
cations where discontinuities in the derivative of γ 012(sz) occur by red points. These
discontinuities are a simple consequence of the fact that the spectrum of the tight-
binding Hamiltonian (5.13) is discrete if �nite systems are considered. As already
discussed in Section 5.1.1, the delocalized limit γ12 = γ 012 is attained when the Bloch
states with e�ective energies (5.10) above the chemical potential µσ are fully occu-
pied while Bloch states having ωk < µσ are unoccupied. Thus, as electrons with
spin-polarization σ are added to the system the tight-binding energy changes like

d〈Ĥtb〉
dNσ

= zNa

dγ 012
dNσ

= µσ , (G.1)

where z is the coordination number of the �nite cluster under consideration. We
conclude that discontinuities in the derivative of γ 012 occur whenever the Fermi
level ωFσ = µσ is completely �lled and a further increase in the number of spin-σ
electrons requires a discontinuous jump of µσ . At this point, it is worth mentioning
that in the case of �nite systems also the correlation contribution G0

c (sz) to the free
energy in the delocalized limit (γ12 = γ 012), which enters the approximation (5.33) as
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G Discontinuities in �nite-size domains
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Figure G.1: Representability domains of typical FT-LDFT reference-systems. Results are
shown for the half-�lled Hubbard model (n = γ11↑+γ11↓ = 1) on a (a) 7-site ring, (b) 2×2 square-
lattice cluster and (c) 2×2×2 simple-cubic cluster. The spin polarizations sz = ~ (γ11↑ −γ11↓)/2
where discontinuities in the derivative of γ 012(sz ) occur are highlighted by red points.

another scaling parameter, displays a discontinuous derivative at the same values of sz
where discontinuities in the derivative of γ 012(sz) occur. The origin of these disconti-
nuities is, however, more subtle and they usually occur only in the limitU /kBT →∞,
i. e., in the case of strong Coulomb repulsions or low temperatures.

Returning to the naive generalization of the scaling idea mentioned above, we must
conclude that the discontinuities in the derivative of γ rf,012 (sz), which always occur if a
�nite reference system is used, would lead to arti�cial discontinuities in the derivative
of the approximate functional Gc[sz,γ12]. This ultimately leads to very unphysical
discontinuities in the thermal equilibrium averages obtained from the minimization of
the corresponding approximations to the free-energy or grand-potential functionals.

226



Bibliography

[1] T. S. Müller, W. Töws, and G. M. Pastor, “Exploiting the links between ground-
state correlations and independent-fermion entropy in the Hubbard model,”
Phys. Rev. B 98, 045135 (2018).

[2] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136,
B864 (1964).

[3] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and
Correlation E�ects,” Phys. Rev. 140, A1133 (1965).

[4] L. H. Thomas, “The calculation of atomic �elds,” Proc. Camb. Phil. Soc. 23, 542
(1927).

[5] E. Fermi, “Un metodo statistico per la determinazione di alcune priorieta
dell’atome,” Rend. Accad. Naz. Lincei 6, 32 (1927).

[6] N. D. Mermin, “Thermal Properties of the Inhomogeneous Electron Gas,” Phys.
Rev. 137, A1441 (1965).

[7] U. von Barth and L. Hedin, “A local exchange-correlation potential for the spin
polarized case: I,” J. Phys. C: Solid State Phys. 5, 1629 (1972).

[8] H. Stoll, C. M. E. Pavlidou, and H. Preuß, “On the calculation of correlation
energies in the spin-density functional formalism,” Theor. Chim. Acta 49, 143
(1978).

[9] H. Stoll, E. Golka, and H. Preuß, “Correlation energies in the spin-density func-
tional formalism,” Theor. Chim. Acta 55, 29 (1980).

[10] A. D. Becke, “Density functional calculations of molecular bond energies,” J.
Chem. Phys. 84, 4524 (1986).

[11] J. P. Perdew and W. Yue, “Accurate and simple density functional for the elec-
tronic exchange energy: Generalized gradient approximation,” Phys. Rev. B 33,
8800 (1986).

227

http://dx.doi.org/10.1103/PhysRevB.98.045135
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/ 10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1017/S0305004100011683
http://dx.doi.org/10.1017/S0305004100011683
http://dx.doi.org/ 10.1103/PhysRev.137.A1441
http://dx.doi.org/ 10.1103/PhysRev.137.A1441
http://dx.doi.org/ 10.1088/0022-3719/5/13/012
http://dx.doi.org/10.1007/PL00020511
http://dx.doi.org/10.1007/PL00020511
http://dx.doi.org/10.1007/BF00551408
http://dx.doi.org/ 10.1063/1.450025
http://dx.doi.org/ 10.1063/1.450025
http://dx.doi.org/10.1103/PhysRevB.33.8800
http://dx.doi.org/10.1103/PhysRevB.33.8800


Bibliography

[12] A. D. Becke, “On the large-gradient behavior of the density functional exchange
energy,” J. Chem. Phys. 85, 7184 (1986).

[13] A. D. Becke, “Density-functional exchange-energy approximation with correct
asymptotic behavior,” Phys. Rev. A 38, 3098 (1988).

[14] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation
Made Simple,” Phys. Rev. Lett. 77, 3865 (1996).

[15] A. D. Becke, “Density-functional thermochemistry. III. The role of exact ex-
change,” J. Chem. Phys. 98, 5648 (1993).

[16] J. P. Perdew, M. Ernzerhof, and K. Burke, “Rationale for mixing exact exchange
with density functional approximations,” J. Chem. Phys. 105, 9982 (1996).

[17] A. D. Becke, “Density-functional thermochemistry. V. Systematic optimization
of exchange-correlation functionals,” J. Chem. Phys. 107, 8554 (1997).

[18] H. L. Schmider and A. D. Becke, “Optimized density functionals from the ex-
tended G2 test set,” J. Chem. Phys. 108, 9624 (1998).

[19] C. Adamo and V. Barone, “Toward reliable density functional methods without
adjustable parameters: The PBE0 model,” J. Chem. Phys. 110, 6158 (1999).

[20] T. L. Gilbert, “Hohenberg-Kohn theorem for nonlocal external potentials,” Phys.
Rev. B 12, 2111 (1975).

[21] A. M. K. Müller, “Explicit approximate relation between reduced two- and one-
particle density matrices,” Phys. Lett. A 105, 446 (1984).

[22] S. Goedecker and C. J. Umrigar, “Natural Orbital Functional for the Many-
Electron Problem,” Phys. Rev. Lett. 81, 866 (1998).

[23] E. J. Baerends, “Exact Exchange-Correlation Treatment of Dissociated H2 in
Density Functional Theory,” Phys. Rev. Lett. 87, 133004 (2001).

[24] M. A. Buijse and E. J. Baerends, “An approximate exchange-correlation hole
density as a functional of the natural orbitals,” Mol. Phys. 100, 401 (2002).

[25] O. Gritsenko, K. Pernal, and E. J. Baerends, “An improved density matrix func-
tional by physically motivated repulsive corrections,” J. Chem. Phys. 122, 204102
(2005).

228

http://dx.doi.org/10.1063/1.451353
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1063/1.472933
http://dx.doi.org/10.1063/1.475007
http://dx.doi.org/ 10.1063/1.476438
http://dx.doi.org/10.1063/1.478522
http://dx.doi.org/10.1103/PhysRevB.12.2111
http://dx.doi.org/10.1103/PhysRevB.12.2111
http://dx.doi.org/10.1016/0375-9601(84)91034-X
http://dx.doi.org/ 10.1103/PhysRevLett.81.866
http://dx.doi.org/10.1103/PhysRevLett.87.133004
http://dx.doi.org/10.1080/00268970110070243
http://dx.doi.org/ 10.1063/1.1906203
http://dx.doi.org/ 10.1063/1.1906203


Bibliography

[26] D. R. Rohr, K. Pernal, O. V. Gritsenko, and E. J. Baerends, “A density matrix
functional with occupation number driven treatment of dynamical and nondy-
namical correlation,” J. Chem. Phys. 129, 164105 (2008).

[27] M. Piris, “A new approach for the two-electron cumulant in natural orbital func-
tional theory,” Int. J. Quantum Chem. 106, 1093 (2006).

[28] M. Piris, X. Lopez, F. Ruipérez, J. M. Matxain, and J. M. Ugalde, “A natural orbital
functional for multicon�gurational states,” J. Chem. Phys. 134, 164102 (2011).

[29] M. A. L. Marques and N. N. Lathiotakis, “Empirical functionals for reduced-
density-matrix-functional theory,” Phys. Rev. A 77, 032509 (2008).

[30] N. N. Lathiotakis and M. A. L. Marques, “Benchmark calculations for reduced
density-matrix functional theory,” J. Chem. Phys. 128, 184103 (2008).

[31] N. N. Lathiotakis, S. Sharma, J. K. Dewhurst, F. G. Eich, M. A. L. Marques, and
E. K. U. Gross, “Density-matrix-power functional: Performance for �nite sys-
tems and the homogeneous electron gas,” Phys. Rev. A 79, 040501 (2009).

[32] D. R. Rohr, J. Toulouse, and K. Pernal, “Combining density-functional theory
and density-matrix-functional theory,” Phys. Rev. A 82, 052502 (2010).

[33] C. S. Wang and B. M. Klein, “First-principles electronic structure of Si, Ge, GaP,
GaAs, ZnS, and ZnSe. I. Self-consistent energy bands, charge densities, and ef-
fective masses,” Phys. Rev. B 24, 3393 (1981).

[34] R. O. Jones and O. Gunnarsson, “The density functional formalism, its applica-
tions and prospects,” Rev. Mod. Phys. 61, 689 (1989).

[35] A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University
Press, Cambridge, UK, 1993).

[36] E. Dagotto, “Correlated electrons in high-temperature superconductors,” Rev.
Mod. Phys. 66, 763 (1994).

[37] G. D. Mahan, Many-Particle Physics, 3rd ed., Physics of solids and liquids
(Springer, New York, 2000).

[38] A. Georges and G. Kotliar, “Hubbard model in in�nite dimensions,” Phys. Rev.
B 45, 6479 (1992).

[39] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, “Dynamical mean-�eld
theory of strongly correlated fermion systems and the limit of in�nite dimen-
sions,” Rev. Mod. Phys. 68, 13 (1996).

229

http://dx.doi.org/10.1063/1.2998201
http://dx.doi.org/10.1002/qua.20858
http://dx.doi.org/10.1063/1.3582792
http://dx.doi.org/10.1103/PhysRevA.77.032509
http://dx.doi.org/10.1063/1.2899328
http://dx.doi.org/ 10.1103/PhysRevA.79.040501
http://dx.doi.org/ 10.1103/PhysRevA.82.052502
http://dx.doi.org/10.1103/PhysRevB.24.3393
http://dx.doi.org/ 10.1103/RevModPhys.61.689
http://dx.doi.org/10.1017/CBO9780511470752
http://dx.doi.org/ 10.1103/RevModPhys.66.763
http://dx.doi.org/ 10.1103/RevModPhys.66.763
http://dx.doi.org/10.1007/978-1-4757-5714-9
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/RevModPhys.68.13


Bibliography

[40] M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod.
Phys. 70, 1039 (1998).

[41] R. Pariser and R. G. Parr, “A Semi-Empirical Theory of the Electronic Spectra
and Electronic Structure of Complex Unsaturated Molecules. I.” J. Chem. Phys.
21, 466 (1953).

[42] J. A. Pople, “Electron interaction in unsaturated hydrocarbons,” Trans. Faraday
Soc. 49, 1375 (1953).

[43] P. W. Anderson, “Localized Magnetic States in Metals,” Phys. Rev. 124, 41 (1961).

[44] J. Hubbard, “Electron Correlations in Narrow Energy Bands,” Proc. R. Soc. Lond.
A 276, 238 (1963).

[45] J. Kanamori, “Electron Correlation and Ferromagnetism of Transition Metals,”
Prog. Theor. Phys. 30, 275 (1963).

[46] M. C. Gutzwiller, “E�ect of Correlation on the Ferromagnetism of Transition
Metals,” Phys. Rev. Lett. 10, 159 (1963).

[47] P. Fulde, Electron Correlations in Molecules and Solids, 3rd ed., Springer series in
solid-state sciences No. 100 (Springer, Berlin, 1995).

[48] N. H. March, Electron Correlation in Molecules and Condensed Phases (Springer,
New York, 1996).

[49] E. H. Lieb and F. Y. Wu, “Absence of Mott Transition in an Exact Solution of
the Short-Range, One-Band Model in One Dimension,” Phys. Rev. Lett. 20, 1445
(1968).

[50] M. Takahashi, “Magnetization Curve for the Half-Filled Hubbard Model,” Prog.
Theor. Phys. 42, 1098 (1969); M. Takahashi, “Magnetic Susceptibility for the
Half-Filled Hubbard Model,” Prog. Theor. Phys. 43, 1619 (1970).

[51] H. Shiba, “Magnetic Susceptibility at Zero Temperature for the One-
Dimensional Hubbard Model,” Phys. Rev. B 6, 930 (1972).

[52] Y. Nagaoka, “Ground state of correlated electrons in a narrow almost half-�lled
s band,” Solid State Commun. 3, 409 (1965).

[53] H. Tasaki, “Extension of Nagaoka’s theorem on the large-U Hubbard model,”
Phys. Rev. B 40, 9192 (1989).

230

http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/ 10.1063/1.1698929
http://dx.doi.org/ 10.1063/1.1698929
http://dx.doi.org/ 10.1039/TF9534901375
http://dx.doi.org/ 10.1039/TF9534901375
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/ 10.1098/rspa.1963.0204
http://dx.doi.org/ 10.1098/rspa.1963.0204
http://dx.doi.org/10.1143/PTP.30.275
http://dx.doi.org/10.1103/PhysRevLett.10.159
http://dx.doi.org/10.1007/978-3-642-57809-0
http://dx.doi.org/10.1007/978-1-4899-1370-8
http://dx.doi.org/10.1103/PhysRevLett.20.1445
http://dx.doi.org/10.1103/PhysRevLett.20.1445
http://dx.doi.org/ 10.1143/PTP.42.1098
http://dx.doi.org/ 10.1143/PTP.42.1098
http://dx.doi.org/ 10.1143/PTP.43.1619
http://dx.doi.org/10.1103/PhysRevB.6.930
http://dx.doi.org/10.1016/0038-1098(65)90266-8
http://dx.doi.org/10.1103/PhysRevB.40.9192


Bibliography

[54] E. H. Lieb, “Two Theorems on the Hubbard Model,” Phys. Rev. Lett. 62, 1927
(1989).

[55] H. Tasaki, “The Hubbard model - an introduction and selected rigorous results,”
J. Phys. Condens. Matter 10, 4353 (1998).

[56] G. Jüttner, A. Klümper, and J. Suzuki, “The Hubbard chain at �nite temper-
atures: Ab initio calculations of Tomonaga-Luttinger liquid properties,” Nucl.
Phys. B 522, 471 (1998).

[57] J. E. Hirsch, “Monte Carlo Study of the Two-Dimensional Hubbard Model,” Phys.
Rev. Lett. 51, 1900 (1983).

[58] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis, and R. T.
Scalettar, “Numerical study of the two-dimensional Hubbard model,” Phys. Rev.
B 40, 506 (1989).

[59] A. Moreo, D. J. Scalapino, R. L. Sugar, S. R. White, and N. E. Bickers, “Numerical
Study of the Two-Dimensional Hubbard Model for Various Band Fillings,” Phys.
Rev. B 41, 2313 (1990).

[60] N. Furukawa and M. Imada, “Charge Gap, Charge Susceptibility and Spin Cor-
relation in the Hubbard Model on a Square Lattice,” J. Phys. Soc. Jpn. 60, 3604
(1991).

[61] S. R. White, “Density matrix formulation for quantum renormalization groups,”
Phys. Rev. Lett. 69, 2863 (1992).

[62] S. R. White, “Density-matrix algorithms for quantum renormalization groups,”
Phys. Rev. B 48, 10345 (1993).

[63] D. Du�y and A. Moreo, “Speci�c heat of the two-dimensional Hubbard model,”
Phys. Rev. B 55, 12918 (1997).

[64] C. N. Varney, C.-R. Lee, Z. J. Bai, S. Chiesa, M. Jarrell, and R. T. Scalettar, “Quan-
tum Monte Carlo Study of the Two-Dimensional Fermion Hubbard Model,”
Phys. Rev. B 80, 075116 (2009).

[65] T. Paiva, “Fermions in 3D Optical Lattices: Cooling Protocol to Obtain Antifer-
romagnetism,” Phys. Rev. Lett. 107, 086401 (2011).

[66] E. Khatami and M. Rigol, “E�ect of particle statistics in strongly correlated two-
dimensional Hubbard models,” Phys. Rev. A 86, 023633 (2012).

231

http://dx.doi.org/10.1103/PhysRevLett.62.1927.5
http://dx.doi.org/10.1103/PhysRevLett.62.1927.5
http://dx.doi.org/ 10.1088/0953-8984/10/20/004
http://dx.doi.org/ 10.1016/S0550-3213(98)00256-9
http://dx.doi.org/ 10.1016/S0550-3213(98)00256-9
http://dx.doi.org/ 10.1103/PhysRevLett.51.1900
http://dx.doi.org/ 10.1103/PhysRevLett.51.1900
http://dx.doi.org/10.1103/PhysRevB.40.506
http://dx.doi.org/10.1103/PhysRevB.40.506
http://dx.doi.org/ 10.1103/PhysRevB.41.2313
http://dx.doi.org/ 10.1103/PhysRevB.41.2313
http://dx.doi.org/10.1143/JPSJ.60.3604
http://dx.doi.org/10.1143/JPSJ.60.3604
http://dx.doi.org/ 10.1103/PhysRevLett.69.2863
http://dx.doi.org/ 10.1103/PhysRevB.48.10345
http://dx.doi.org/ 10.1103/PhysRevB.55.12918
http://dx.doi.org/ 10.1103/PhysRevB.80.075116
http://dx.doi.org/10.1103/PhysRevLett.107.086401
http://dx.doi.org/10.1103/PhysRevA.86.023633


Bibliography

[67] E. Kozik, E. Burovski, V. W. Scarola, and M. Troyer, “Néel temperature and
thermodynamics of the half-�lled three-dimensional Hubbard model by dia-
grammatic determinant Monte Carlo,” Phys. Rev. B 87, 205102 (2013).

[68] E. Khatami, “Three-dimensional Hubbard model in the thermodynamic limit,”
Phys. Rev. B 94, 125114 (2016).

[69] O. Gunnarsson and K. Schönhammer, “Density-Functional Treatment of an Ex-
actly Solvable Semiconductor Model,” Phys. Rev. Lett. 56, 1968 (1986).

[70] A. Svane and O. Gunnarsson, “Localization in the self-interaction-corrected
density-functional formalism,” Phys. Rev. B 37, 9919 (1988).

[71] K. Schönhammer, O. Gunnarsson, and R. M. Noack, “Density-functional theory
on a lattice: Comparison with exact numerical results for a model with strongly
correlated electrons,” Phys. Rev. B 52, 2504 (1995).

[72] A. Schindlmayr and R. W. Godby, “Density-functional theory and the v-
representability problem for model strongly correlated electron systems,” Phys.
Rev. B 51, 10427 (1995).

[73] A. E. Carlsson, “Exchange-correlation functional based on the density matrix,”
Phys. Rev. B 56, 12058 (1997).

[74] R. G. Hennig and A. E. Carlsson, “Density-matrix functional method for elec-
tronic properties of impurities,” Phys. Rev. B 63, 115116 (2001).

[75] N. A. Lima, M. F. Silva, L. N. Oliveira, and K. Capelle, “Density Functionals
Not Based on the Electron Gas: Local-Density Approximation for a Luttinger
Liquid,” Phys. Rev. Lett. 90, 146402 (2003).

[76] C. Verdozzi, “Time-Dependent Density-Functional Theory and Strongly Corre-
lated Systems,” Phys. Rev. Lett. 101, 166401 (2008).

[77] R. López-Sandoval and G. M. Pastor, “Density-matrix functional theory of the
Hubbard model: An exact numerical study,” Phys. Rev. B 61, 1764 (2000).

[78] R. López-Sandoval and G. M. Pastor, “Density-matrix functional theory of
strongly correlated lattice fermions,” Phys. Rev. B 66, 155118 (2002).

[79] R. López-Sandoval and G. M. Pastor, “Electronic properties of the dimerized
one-dimensional Hubbard model using lattice density-functional theory,” Phys.
Rev. B 67, 035115 (2003).

232

http://dx.doi.org/10.1103/PhysRevB.87.205102
http://dx.doi.org/10.1103/PhysRevB.94.125114
http://dx.doi.org/10.1103/PhysRevLett.56.1968
http://dx.doi.org/10.1103/PhysRevB.37.9919
http://dx.doi.org/ 10.1103/PhysRevB.52.2504
http://dx.doi.org/ 10.1103/PhysRevB.51.10427
http://dx.doi.org/ 10.1103/PhysRevB.51.10427
http://dx.doi.org/10.1103/PhysRevB.56.12058
http://dx.doi.org/10.1103/PhysRevB.63.115116
http://dx.doi.org/10.1103/PhysRevLett.90.146402
http://dx.doi.org/10.1103/PhysRevLett.101.166401
http://dx.doi.org/10.1103/PhysRevB.61.1764
http://dx.doi.org/10.1103/PhysRevB.66.155118
http://dx.doi.org/ 10.1103/PhysRevB.67.035115
http://dx.doi.org/ 10.1103/PhysRevB.67.035115


Bibliography

[80] R. López-Sandoval and G. M. Pastor, “Interaction-energy functional for lattice
density functional theory: Applications to one-, two-, and three-dimensional
Hubbard models,” Phys. Rev. B 69, 085101 (2004).

[81] W. Töws and G. M. Pastor, “Lattice density functional theory of the single-
impurity Anderson model: Development and applications,” Phys. Rev. B 83,
235101 (2011).

[82] W. Töws and G. M. Pastor, “Spin-polarized density-matrix functional theory of
the single-impurity Anderson model,” Phys. Rev. B 86, 245123 (2012).

[83] W. Töws, M. Saubanère, and G. M. Pastor, “Density-matrix functional theory
of strongly correlated fermions on lattice models and minimal-basis Hamilto-
nians,” Theor. Chem. Acc. 133, 1 (2014).

[84] M. Saubanère and G. M. Pastor, “Scaling and transferability of the interaction-
energy functional of the inhomogeneous Hubbard model,” Phys. Rev. B 79,
235101 (2009).

[85] M. Saubanère and G. M. Pastor, “Density-matrix functional study of the Hubbard
model on one- and two-dimensional bipartite lattices,” Phys. Rev. B 84, 035111
(2011).

[86] M. Saubanère and G. M. Pastor, “Lattice density-functional theory of the attrac-
tive Hubbard model,” Phys. Rev. B 90, 125128 (2014).

[87] M. Saubanére, M. B. Lepetit, and G. M. Pastor, “Interaction-energy functional
of the Hubbard model: Local formulation and application to low-dimensional
lattices,” Phys. Rev. B 94, 045102 (2016).

[88] G. Stefanucci and S. Kurth, “Towards a Description of the Kondo E�ect Us-
ing Time-Dependent Density-Functional Theory,” Phys. Rev. Lett. 107, 216401
(2011).

[89] J. P. Berg�eld, Z.-F. Liu, K. Burke, and C. A. Sta�ord, “Bethe Ansatz Approach
to the Kondo E�ect within Density-Functional Theory,” Phys. Rev. Lett. 108,
066801 (2012).

[90] F. Perrot, “Gradient correction to the statistical electronic free energy at nonzero
temperatures: Application to equation-of-state calculations,” Phys. Rev. A 20,
586 (1979).

233

http://dx.doi.org/10.1103/PhysRevB.69.085101
http://dx.doi.org/10.1103/PhysRevB.83.235101
http://dx.doi.org/10.1103/PhysRevB.83.235101
http://dx.doi.org/10.1103/PhysRevB.86.245123
http://dx.doi.org/10.1007/s00214-013-1422-0
http://dx.doi.org/10.1103/PhysRevB.79.235101
http://dx.doi.org/10.1103/PhysRevB.79.235101
http://dx.doi.org/10.1103/PhysRevB.84.035111
http://dx.doi.org/10.1103/PhysRevB.84.035111
http://dx.doi.org/10.1103/PhysRevB.90.125128
http://dx.doi.org/ 10.1103/PhysRevB.94.045102
http://dx.doi.org/ 10.1103/PhysRevLett.107.216401
http://dx.doi.org/ 10.1103/PhysRevLett.107.216401
http://dx.doi.org/ 10.1103/PhysRevLett.108.066801
http://dx.doi.org/ 10.1103/PhysRevLett.108.066801
http://dx.doi.org/ 10.1103/PhysRevA.20.586
http://dx.doi.org/ 10.1103/PhysRevA.20.586


Bibliography

[91] S. Pittalis, C. R. Proetto, A. Floris, A. Sanna, C. Bersier, K. Burke, and E. K. U.
Gross, “Exact Conditions in Finite-Temperature Density-Functional Theory,”
Phys. Rev. Lett. 107, 163001 (2011).

[92] H. Bethe, “Zur Theorie der Metalle,” Z. Physik 71, 205 (1931).

[93] W. Nolting and W. Borgieł, “Band magnetism in the Hubbard model,” Phys. Rev.
B 39, 6962 (1989).

[94] N. Furukawa and M. Imada, “Two-Dimensional Hubbard Model –Metal Insula-
tor Transition Studied by Monte Carlo Calculation–,” J. Phys. Soc. Jpn. 61, 3331
(1992).

[95] P. W. Anderson, “The Resonating Valence Bond State in La2CuO4 and Super-
conductivity,” Science 235, 1196 (1987).

[96] M. Cyrot, “Are high Tc superconductors doped mott insulators?” Solid State
Commun. 63, 1015 (1987).

[97] E. H. Lieb and F. Y. Wu, “The one-dimensional Hubbard model: A reminiscence,”
Physica A 321, 1 (2003).

[98] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Korepin, The One-
Dimensional Hubbard Model (Cambridge University Press, Cambridge, 2005).

[99] J. R. Schrie�er and P. A. Wol�, “Relation between the Anderson and Kondo
Hamiltonians,” Phys. Rev. 149, 491 (1966).

[100] P. Fazekas, Lecture Notes on Electron Correlation and Magnetism, Series in Mod-
ern Condensed Matter Physics, Vol. 5 (World Scienti�c, Singapore, 1999).

[101] S. M. Valone, “Consequences of extending 1-matrix energy functionals from
pure-state representable to all ensemble representable 1 matrices,” J. Chem.
Phys. 73, 1344 (1980).

[102] S. M. Valone, “A one-to-one mapping between one-particle densities and some
n-particle ensembles,” J. Chem. Phys. 73, 4653 (1980).

[103] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Ox-
ford University Press, New York, 1995).

[104] D. Williams, Weighing the Odds (Cambridge University Press, New York, 2001).

234

http://dx.doi.org/ 10.1103/PhysRevLett.107.163001
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1103/PhysRevB.39.6962
http://dx.doi.org/10.1103/PhysRevB.39.6962
http://dx.doi.org/10.1143/JPSJ.61.3331
http://dx.doi.org/10.1143/JPSJ.61.3331
http://dx.doi.org/10.1126/science.235.4793.1196
http://dx.doi.org/ 10.1016/0038-1098(87)90651-X
http://dx.doi.org/ 10.1016/0038-1098(87)90651-X
http://dx.doi.org/ 10.1016/S0378-4371(02)01785-5
http://dx.doi.org/10.1017/CBO9780511534843
http://dx.doi.org/10.1017/CBO9780511534843
http://dx.doi.org/ 10.1103/PhysRev.149.491
http://dx.doi.org/10.1142/2945
http://dx.doi.org/10.1063/1.440249
http://dx.doi.org/10.1063/1.440249
http://dx.doi.org/10.1063/1.440656


Bibliography

[105] M. Ogata and H. Shiba, “Bethe-ansatz wave function, momentum distribu-
tion, and spin correlation in the one-dimensional strongly correlated Hubbard
model,” Phys. Rev. B 41, 2326 (1990).

[106] P. W. Anderson, ““Luttinger-liquid” behavior of the normal metallic state of the
2D Hubbard model,” Phys. Rev. Lett. 64, 1839 (1990).

[107] G. Benfatto, A. Giuliani, and V. Mastropietro, “Fermi Liquid Behavior in the 2D
Hubbard Model at Low Temperatures,” Ann. Henri Poincaré 7, 809 (2006).

[108] B. N. Parlett, The Symmetric Eigenvalue Problem (SIAM: Philadelphia, PA, USA,
1998).

[109] M. Calandra Buonaura and S. Sorella, “Numerical study of the two-dimensional
heisenberg model using a green function monte carlo technique with a �xed
number of walkers,” Phys. Rev. B 57, 11446 (1998).

[110] L. Hulthén, “Über das Austauschproblem eines Kristalls,” Ark. Mat. Astron. Fys.
26A, 11 (1938).

[111] D. C. Mattis, The Theory of Magnetism I: Statics and Dynamics, Springer Series
in Solid-State Sciences (Springer-Verlag, Berlin Heidelberg, 1981).

[112] D. C. Mattis and C. Y. Pan, “Ground-State Energy of Heisenberg Antiferromag-
net for Spins s = 1

2 and s = 1 in d = 1 and 2 Dimensions,” Phys. Rev. Lett. 61,
463 (1988).

[113] S. Fujiki, “Zero-Temperature Properties of Quantum Spin Models on the Trian-
gular Lattice III: The Heisenberg Antiferromagnet,” Can. J. Phys. 65, 489 (1987).

[114] J. Bardeen, “Theory of Superconductivity,” Phys. Rev. 108, 1175 (1957).

[115] F. D. M. Haldane, “’Luttinger liquid theory’ of one-dimensional quantum �u-
ids. I. Properties of the Luttinger model and their extension to the general 1D
interacting spinless Fermi gas,” J. Phys. C 14, 2585 (1981).

[116] K. Schönhammer, “Luttinger liquids: the basic concepts,” in Strong interactions
in low dimensions, edited by D. Baeriswyl and L. Degiorgi (Springer Netherlands,
Dordrecht, 2004) Chap. 4, pp. 93–136.

[117] H. J. Schulz, “Fermi liquids and non-Fermi liquids,” in Mesoscopic Quantum
Physics, Les Houches, Session LXI, 1994 (Elsevier, Amsterdam, 1995).

235

http://dx.doi.org/10.1103/PhysRevB.41.2326
http://dx.doi.org/10.1103/PhysRevLett.64.1839
http://dx.doi.org/ 10.1007/s00023-006-0270-z
http://dx.doi.org/10.1137/1.9781611971163
http://dx.doi.org/ 10.1103/PhysRevB.57.11446
http://dx.doi.org/10.1007/978-3-642-83238-3
http://dx.doi.org/10.1103/PhysRevLett.61.463
http://dx.doi.org/10.1103/PhysRevLett.61.463
http://dx.doi.org/ 10.1139/p87-066
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/ 10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1007/978-1-4020-3463-3_4
http://dx.doi.org/10.1007/978-1-4020-3463-3_4


Bibliography

[118] E. Koch and S. Goedecker, “Locality properties and Wannier functions for in-
teracting systems,” Solid State Commun. 119, 105 (2001).

[119] J. C. Bonner and M. E. Fisher, “Linear Magnetic Chains with Anisotropic Cou-
pling,” Phys. Rev. 135, A640 (1964).

[120] A. Klümper, “The spin-1/2 Heisenberg chain: Thermodynamics, quantum crit-
icality and spin-Peierls exponents,” Eur. Phys. J. B 5, 677 (1998).

[121] D. Vollhardt, “Characteristic Crossing Points in Speci�c Heat Curves of Corre-
lated Systems,” Phys. Rev. Lett. 78, 1307 (1997).

[122] N. Chandra, M. Kollar, and D. Vollhardt, “Nearly universal crossing point of the
speci�c heat curves of Hubbard models,” Phys. Rev. B 59, 10541 (1999).

[123] D. F. Brewer, J. G. Daunt, and A. K. Sreedhar, “Low-Temperature Speci�c Heat
of Liquid He3 near the Saturated Vapor Pressure and at Higher Pressures,” Phys.
Rev. 115, 836 (1959).

[124] D. S. Greywall, “Speci�c heat of normal liquid 3He,” Phys. Rev. B 27, 2747 (1983).

[125] G. E. Brodale, R. A. Fisher, N. E. Phillips, and J. Floquet, “Pressure dependence
of the low-temperature speci�c heat of the heavy-fermion compound CeAl3,”
Phys. Rev. Lett. 56, 390 (1986).

[126] N. E. Phillips, R. A. Fisher, J. Flouquet, A. L. Giorgi, J. A. Olsen, and G. R. Stewart,
“Pressure Dependences of the Speci�c Heats of UPt3, UBe13 and CeAl3,” J. Magn.
Magn. Mater. 63-64, 332 (1987).

[127] J. Jaklič and P. Prelovšek, “Finite-temperature properties of doped antiferromag-
nets,” Adv. Phys. 49, 1 (2000).

[128] P. Sengupta, A. W. Sandvik, and R. R. P. Singh, “Speci�c heat of quasi-two-
dimensional antiferromagnetic Heisenberg models with varying interplanar
couplings,” Phys. Rev. B 68, 094423 (2003).

[129] A. W. Sandvik, “Critical Temperature and the Transition from Quantum to Clas-
sical Order Parameter Fluctuations in the Three-Dimensional Heisenberg An-
tiferromagnet,” Phys. Rev. Lett. 80, 5196 (1998).

[130] E. Khatami and M. Rigol, “Thermodynamics of strongly interacting fermions in
two-dimensional optical lattices,” Phys. Rev. A 84, 053611 (2011).

236

http://dx.doi.org/10.1016/S0038-1098(01)00192-2
http://dx.doi.org/ 10.1103/PhysRev.135.A640
http://dx.doi.org/10.1007/s100510050491
http://dx.doi.org/10.1103/PhysRevLett.78.1307
http://dx.doi.org/ 10.1103/PhysRevB.59.10541
http://dx.doi.org/10.1103/PhysRev.115.836
http://dx.doi.org/10.1103/PhysRev.115.836
http://dx.doi.org/ 10.1103/PhysRevB.27.2747
http://dx.doi.org/10.1103/PhysRevLett.56.390
http://dx.doi.org/ 10.1016/0304-8853(87)90602-0
http://dx.doi.org/ 10.1016/0304-8853(87)90602-0
http://dx.doi.org/ 10.1080/000187300243381
http://dx.doi.org/10.1103/PhysRevB.68.094423
http://dx.doi.org/10.1103/PhysRevLett.80.5196
http://dx.doi.org/10.1103/PhysRevA.84.053611


Bibliography

[131] D. W. Hone and P. Pincus, “High-Temperature Properties of the Half-Filled-
Band Hubbard Model,” Phys. Rev. B 7, 4889 (1973).

[132] W. Kohn, in Highlights of condensed-matter theory, edited by F. Bassani, F. Fumi,
and M. P. Tosi (North Holland Physics Publishing, Amsterdam, 1985) p. 1.

[133] R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer-Verlag,
Berlin Heidelberg, 1990).

[134] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4 (Aca-
demic Press, New York, 1978).

[135] E. H. Lieb, “Density Functionals for Coulomb Systems,” Int. J. Quant. Chem. 24,
243 (1983).

[136] M. Levy, “Electron densities in search of Hamiltonians,” Phys. Rev. A 26, 1200
(1982).

[137] H. Englisch and R. Englisch, “Hohenberg-Kohn theorem and non-V -
representable densities,” Physica A 121, 253 (1983).

[138] M. Levy, “Universal variational functionals of electron densities, �rst-order den-
sity matrices, and natural spin-orbitals and solution of the v-representability
problem,” Proc. Natl. Acad. Sci. 76, 6062 (1979).

[139] J. E. Harriman, “Orthonormal orbitals for the representation of an arbitrary den-
sity,” Phys. Rev. A 24, 680 (1981).

[140] N. H. March, “n representability of electron density and �rst-order density ma-
trix,” Phys. Rev. A 26, 1845 (1982).

[141] G. Zumbach and K. Maschke, “New approach to the calculation of density func-
tionals,” Phys. Rev. A 28, 544 (1983).

[142] L. Hedin and B. I. Lundqvist, “Explicit local exchange-correlation potentials,” J.
Phys. C: Solid State Phys. 4, 2064 (1971).

[143] G. M. Pastor and J. Dorantes-Dávila, “Spin-rotational-invariant theory of
transition-metal magnetism at �nite temperatures: Systematic study of a single-
site model,” Phys. Rev. B 93, 214435 (2016).

[144] S. Riemer, J. Dorantes-Dávila, and G. M. Pastor, “Finite temperature magnetic
properties of small Fe chains and clusters on Pt(111),” Phys. Rev. B 93, 134414
(2016).

237

http://dx.doi.org/10.1103/PhysRevB.7.4889
http://dx.doi.org/10.1007/978-3-642-86105-5
http://dx.doi.org/10.1002/qua.560240302
http://dx.doi.org/10.1002/qua.560240302
http://dx.doi.org/10.1103/PhysRevA.26.1200
http://dx.doi.org/10.1103/PhysRevA.26.1200
http://dx.doi.org/10.1016/0378-4371(83)90254-6
http://www.pnas.org/content/76/12/6062
http://dx.doi.org/ 10.1103/PhysRevA.24.680
http://dx.doi.org/10.1103/PhysRevA.26.1845
http://dx.doi.org/ 10.1103/PhysRevA.28.544
http://dx.doi.org/ 10.1088/0022-3719/4/14/022
http://dx.doi.org/ 10.1088/0022-3719/4/14/022
http://dx.doi.org/ 10.1103/PhysRevB.93.214435
http://dx.doi.org/10.1103/PhysRevB.93.134414
http://dx.doi.org/10.1103/PhysRevB.93.134414


Bibliography

[145] A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, “Finite-Temperature Mag-
netism of Transition Metals: An ab initio Dynamical Mean-Field Theory,” Phys.
Rev. Lett. 87, 067205 (2001).

[146] R. P. Feynman, “An Operator Calculus Having Applications in Quantum Elec-
trodynamics,” Phys. Rev. 84, 108 (1951).

238

http://dx.doi.org/ 10.1103/PhysRevLett.87.067205
http://dx.doi.org/ 10.1103/PhysRevLett.87.067205
http://dx.doi.org/10.1103/PhysRev.84.108

	Introduction
	The Hubbard model
	Approximating the full many-body Hamiltonian
	Lieb-Wu equations for the ground state
	Symmetries and related models
	Selected symmetries of the Hubbard model
	Related models of strongly interacting electrons

	Mean-field approximation

	Density functional theory on a lattice
	Ground-state formalism
	Connection between the hopping matrix and the SPDM
	Constrained-search functional for the interaction energy
	Mapping to an effective noninteracting system

	Finite-temperature ensembles
	Grand-canonical ensembles
	Canonical ensembles


	Links between ground-state correlations and the IFE
	Reciprocal-space approximation to W
	Finite systems in one and two dimensions
	One-dimensional rings
	Two-dimensional square lattice
	Triangular lattice

	Infinite periodic lattices
	Spin-polarized systems
	Attractive interactions
	Arbitrary filling and Luttinger-liquid behavior
	The infinite Hubbard chain
	The two-dimensional Hubbard model

	Summary

	Thermodynamic equilibrium and spin-charge separation
	Reduced density-matrix functionals
	Domain of ensemble representability
	Functionals for uncorrelated mixed-states

	Scaling approximation for correlation effects
	Correlation effects in the localized limit
	Correlation effects in the delocalized limit

	Infinite periodic lattices
	The infinite Hubbard chain
	The square lattice
	The simple-cubic lattice

	Arbitrary electron densities
	Spin-polarized systems
	Domain of ensemble representability
	Functionals for uncorrelated mixed-states
	Scaling approximation for correlation effects
	Application to the infinite Hubbard chain

	Summary

	Summary and outlook
	Fundamentals of density functional theory
	Ground-state formalism
	The Hohenberg-Kohn theorem
	The Levy-Lieb constrained-search method
	The Kohn-Sham scheme
	Local density approximation

	Extension to finite temperatures
	The Mermin theorem
	Finite-temperature Kohn-Sham scheme


	Hartree-Fock approximation for the interaction-energy functional
	Minimal principle of the Helmholtz functional F
	Solving Shiba's integral equations
	Strongly-interacting limit within the linear IFE-approximation
	Ground-state energy and related quantities
	Magnetic suspeptibility

	Specific heat of the doublons
	Discontinuities in finite-size domains
	Bibliography

