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Efficient Solution of Distributed MIP in Control of Networked Systems
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Certain classes of optimization-based control problems stated for networked systems involving hybrid dynamics and logical
constraints can be cast into Mixed-Integer Programming (MIP) problems. Since these belong to the complexity class NP-
hard, the motivation arises to find approximations of the optimal solution by distributed solution efficiently. For the cases
that the cost functional is linear or quadratic and the constraints are linear, this paper proposes an alternative to the standard
centralized schemes, by employing dual decomposition into a set of local problems of moderate size which can be solved in
parallel. Numerical examples demonstrate that the scheme can efficiently approximate the global solution.
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1 Introduction and Problem Definition

For distributed systems consisting of n coupled subsystems with index i € N = {1,...,n}, this paper considers the efficient
solution of MIP problems of the type:

min E filzs), st § Az, < b, z; € X; CR" x Z*, Vi € N,b € R™. 1)
L1, 3, Tn
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Such problems arise in the context of optimal control of networked hybrid systems with coupling constraints if the following
steps are caried out, compare to [4]: time-discretization is introduced, the local vector z; is defined to comprise all variables
(inputs and states) of the subsystem ¢ over the considered time-domain, all local constraints are formulated to linearly depend
on z;, and the global costs are defined as the summation of the local cost functions f;(z;). Note that z;; contains r; real-valued
entries as well as z; integer components, and it is bound to a local mixed-integer polyhedral set X; = {z; € R" x Z* |D;z; <

d;}. Note further that a subset of the m inequality constraints may establish coupling constraints > A;x; < b to be satisfied
iEN

by several or even all subsystems.

Techniques based on branch-and-bound principles are standard approaches to solve MIP problems such as (1). These tree-
search techniques rely on the iterative determination of suitable cost bounds based on which sub-trees which may not include
the optimal solution are eliminated from further exploration. The efficiency depends critically on the tightness of these bounds,
usually obtained by relaxing the integrality constraints (lower bounds) or from appropriate heuristics (upper bounds). With
respect to (1), larger numbers of N often lead to large computation times for centralized branch-and-bound techniques, in
particular since the provision of suitable heuristics to determine upper bounds is difficult, and since the distributed structure
of the problem is not explicitely considered. Solution techniques which employ problem decomposition require appropriate
handling of the coupling constraints. If however, and this is part of the alternative solution technique proposed in this paper,
the integrality constraints for the integer components of x;, Vi € N are temporarily relaxed (in an iterative scheme), if the
local cost functions f;(x;) are convex, and if the Slater constraint qualification is satisfied, the decomposed solution by use
of the Lagrangian dual is possible. This path is promising as the distributed solution can adopt the well-known scheme of
primal-dual iteration [1] to solve the dual problem, and global optimality is ensured due to a zero duality gap. Of course,
without relaxing the integrality constraint, a duality gap may exist in the general case, causing the distributed solution to
be non-optimal or even infeasible. Nonetheless, recent studies revealed for n being large in (1), aside of an increase of the
problem size, that the duality gap vanishes to zero under certain conditions [2]. Accordingly, by making use of the Lagrangian
dual of (1), one can indeed determine an optimal or closed-to-optimal solution in a distributed way.

2 Efficient Distributed Solution Based on Dual Decomposition

First consider the case that all local cost functions f;(x;) are linear, thus leading to (1) in form of a mixed-integer linear
program (MILP). Then by replacing X;, Vi € N with its convex hull Conv(X;), and by relaxing the integrality constraint for
x;, a linear programming (LP) problem with zero duality gap is obtained:

min E filzs), st E Az < b; x; € Conv(X;) C R+# Vi e N. )
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20f2 Section 20: Dynamics and control

Different properties of problem (2) offer its use within a distributed solution procedure for (1): 1.) by dualizing the coupling
constraints Y A;x; < bof (2), the primal-dual iteration allows to determine the optimal solution x:’LP, ¢ € N in adistributed

i€EN
way; 2.) although the optimal cost > fi(x:’LP) of (2) is always lower than or equal to the optimal costs > fi(z7) of (1),
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the optimality gap tends to be zero for increasing n; 3.) the optimal solution x:"LP, i € N of (2) always satisfies the
coupling constraints in (1), and, under mild assumptions, it only fails to satisfy the local constraint z; € X; for at most
m + 1 subsystems [2]. Given these properties, one only has to recover the local feasibility of X; for a small fraction of the
subsystems (especially for n > m) after distributed solution of (2). To this end, a sub-optimal solution of (1) with bounded
performance loss is obtained, while most of the computation is carried out in a distributed form. In addition, as the global
problem is decomposed into n local problems with local variables only, the overall complexity increases only moderately with
the number of subsystems. Drawbacks are, however, that the convergence towards x:"LP, i € N is often found to be slow
such that a large number of iterations is required. In addition, the success of recovering local feasibility for the up to m + 1
subsystems, for which xj’L P may not be feasible with respect to X, requires conservative assumptions on the feasibility of
(1). With respect to these limitations, a new method has recently been proposed in [3], which relaxes the assumptions and also
allows an earlier termination of the primal-dual iteration. Key idea of the new approach is to start from a feasible candidate of
(1) and successively generate new candidates, such that the global costs decrease as in gradient methods. In each iteration, a
new MILP problem in the form of (1) is formulated for which feasibility is guaranteed by adapted constraints, and in which a
definitely improving step Az composed of Az;, i € N is determined in distributed form.

For quadratic local cost functions f;(x;) = xLTQZxZ + ciTxi with positive-definite ();, ¢ € N in (1), the resulting mixed-
integer quadratic programming (MIQP) problems constitute a more common case in optimal control. In this case, a solution
procedure very similar to the one sketched before can be used, starting from a first feasible candidate z[°! composed of xEO],
1 € N, which can typically be determined with very low effort. In any iteration k, the linearization of the global cost function
in z[*! leads to a linear approximation > gz[k] Az;. A permissible ellipsoidal set e!*! is chosen for a step Az[*! such that

iEN
feasibility with respect to the coupling constraints of (1) is obtained. By inner-approximating £*! by a polytopic set P[*, the
following MILP problem is formulated to obtain the step Az!¥1:

. k k k )
Axlr,l}-n,lAwn ;vgz[ ]Axi, s.L.: ;Ai(Ami + mg ]) <b; Az e PH: Az, + LLE Ve X;, Vi € N. 3)
3 3

The structure is the same as in (1), if Az € P*l is categorized into coupling constraints or in local ones for i. Thus,
the distributed solution as described above for (2) can be employed, and for any k, after obtaining Az[*! and thus the new
feasible candidate z(*+1] = 2*] 4 Az[¥]| the linear approximation (3) is updated and the iteration continues until no further
improvement is found, or is below a specified threshold.

3 Numerical Experiment and Conclusion

The proposed distributed solution was tested for a large number of problem instances of type (1). Exemplarily, for an MILP
with n = 40 subsystems with each z; = r; = 15 integer and real variables, the solution z* was found with optimal cost
of —2.17 - 10° in 336sec by centralized solution using a standard numerical solver. By employing the proposed distributed
solution, z!1] was obtained with costs of —2.14 - 10° after 0.35sec, and z[2 with costs of —2.16 - 10° after 0.48sec, thus
much faster and already very close to the global solution. Tests results for problems with up to 500 subsystems are reported
on in [3].

This work has proposed a scheme for the distributed solution of different MIP problems. The dual decomposition makes
use of the separable structure of the problem in order to enhance computational efficiency. While the present method has
shown its potential for MILP and MIQP problems, succeeding work aims at extending the principles to more general cost
functions and constraints.
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