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Mixed-mode crack tip loading and crack deflection in 1D quasicrystals
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Abstract Quasicrystals (QC) are a new class of mate-
rials besides crystals and amorphous solids and have
aroused much attention of researchers since they were
discovered. This paper presents a generalized fracture
theory including the J-integral and crack closure inte-
grals, relations between J1, J2 and the stress intensity
factors as well as the implementation of the near-tip
stress and displacement solutions of 1D QC. Different
crack deflection criteria, i.e. the J-integral and maxi-
mum circumferential stress criteria are investigated for
mixed-mode loading conditions accounting for phonon-
phason coupling. One focus is on the influence of phason
stress intensity factors on crack deflection angles.

Keywords quasicrystal · crack deflection · mixed-mode
loading · fracture quantities · J-integral

1 Introduction

In 1982 D. Shechtman observed in the diffraction pat-
terns from electronic microscopy that an Al86Mn14 al-
loy abnormally exhibits a five-fold orientational sym-
metry and published the result two years later [1], mo-
tivating great discussion [2]. The crystallographic com-
munity agreed that five-fold symmetry is disallowed
in crystalline structures, which means this alloy is a
new class of material besides crystals and amorphous
solids. On the other side, researchers have mathemat-
ically developed incommensurate structures based on
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icosahedral lattices and have succeeded in computing
the diffraction pattern analytically, thus proving the
possibility of their existence [3,4]. This new material
has long-range orientational order but without transla-
tional symmetry in particular directions. Lacking trans-
lational symmetry, the atom arrangements are quasiperi-
odic rather than periodic. In short order, however, the
structure still has crystalline features, so it was termed
as quasicrystal (QC) [3]. Loading a QC structure me-
chanically, classical displacements are observed, which
are denoted as phonon displacements. Additionally, the
quasiperiodic arrangement is influenced going along with
atomic flips, denoted as phason displacements.

Depending on in how many directions the atom ar-
rangement is quasiperiodic, QCs are categorised into
three subclasses, i.e. 1D, 2D and 3D. A QC with one
quasiperiodic and two periodic atom arrangement di-
rections, e.g. is called 1D QC [5]. The QCs found in
early years, however, were not thermodynamically sta-
ble but just metastable, forming a crystalline structure
when be heated. After several years the discovery of
QCs being stable up to melting temperature was pub-
lished [6,7]. Stable QCs can be found not only in the
laboratory but also in nature, although there remain
open questions like how these natural QCs are formed
[8]. So far only a few of the approximately 50 stable QC
structures have been studied quantitatively [9].

The physical properties of QCs are also investigated
massively, like thermodynamics, piezoelectricity, light
propagation, electron transport, magnetic, conduction,
elastic properties, dislocation mechanisms and so on
[10,11,12,13,14]. The progress of these investigations
extends essentially the fields of application of QC, for
instance, wear resistant coating, hydrogen storage de-
vices or sintering powders for rapid prototyping.
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Based on the generalized elastic theory, some re-
searchers have begun to investigate defect and crack
behaviour in QCs. Similar to other coupled problems,
as a result of inserting a phason field, the conventional
fracture and crack deflection criteria may not be suit-
able for QC. To understand the effect of cracks in QCs
and how the coupled phason field influences the crack
growth behaviour, an extended fracture theory is pre-
requisite including the determination of crack tip load-
ing quantities, e.g. stress intensity factors, the strain
energy release rate or the J-integral, the knowledge of
their mutual dependences and mixed-mode criteria for
crack growth and deflection. In particular the latter as-
pect might be interesting. From classical linear elastic
fracture mechanics it is known that small contributions
of a Mode-II loading are responsible for curved crack
paths. Thus, it might be expected that even a small
coupling-induced phason crack tip loading gives rise to
crack curvature.

A variety of papers has been published during the
past 15 years, dealing with many aspects of the ex-
tended theory of elasticity for QC. Various boundary
value problems have been solved applying different meth-
ods, providing solutions for e.g. inclusions [15,16], in-
terfaces [17] or Green’s functions [18,19]. Some papers
deal with crack problems in QC giving solutions for
elastic fields in the structure or in the crack tip near
field and providing fracture mechanical loading quanti-
ties [20,21]. Finite element (FE) approaches have been
established in [22,23]. The problem of crack growth in
QC has lately been treated by a molecular dynamics
approach [24]. To our best knowledge, the problem of
crack growth and deflection in QC has, however, not yet
been handled within a continuum mechanical frame-
work. The same holds for equations, relating energet-
ical and stress based crack tip loading quantities, i.e.
J-integral, energy release rate and stress intensity fac-
tors.

The focus of this work is on cracks in 1D quasicrys-
talline plates. The generalized elastic framework and
some fracture mechanical basics of QCs are given in the
next two sections. In particular, the relation between
the coordinates of the J-integral vector and the stress
intensity factors will be drawn from the generalized
crack closure integral and configurational forces are de-
rived starting from an energy balance in QC. Then,
two crack deflection criteria for QCs under mixed-mode
loading are investigated. In the last part, some com-
puted results with different phonon-phason coupling
constants and loading regimes are presented and their
impact on crack deflection angles is discussed.

2 Theoretical framework of linear elasticity in
quasicrystals

2.1 Phonon and phason fields

In order to generalize the crystallographic theory and
construct the quasicrystalline structure mathematically,
the so-called cut method from a higher-dimensional space
is introduced [25,26]. Briefly, the reason is that due
to their aperiodicity QCs need more than three basis
vectors to describe their structures, while for crystals
three unit vectors are sufficient. In fact, the periodic-
ity exists in the hyper space which is spanned by the 4
to 6 basis vectors of QCs depending on the number of
QC directions. The cut method allows the construction
of quasicrystals being cut or projected from this math-
ematical hyper space onto the 3-dimensional physical
space, in which the objects really exist. The additional
non-physical dimensions are denoted as complementary
or perpendicular space. The symbol ∥ is used to identify
the physical space and ⊥ stands for the complementary
space. For elasticity, the variables from physical space
are called phonon and from complementary space pha-
son variables [27].

In order to introduce the cut method intuitively, as
well as the phason displacement as a special elemen-
tary excitation in complementary space, a simplified
model with a 2-dimensional periodic pattern as hyper
space is illustrated in Fig. 1. The pattern, represented
by the regularly arranged dots, projected onto e∥ builds
a sequence conforming to Fibonacci series as principle
quasi-periodic arrangement, if the angle between e∥ and
the periodic direction is irrational. The projected se-
quence, where S stands for ”short” and L for ”long”, is
a real atom or molecule arrangement in QCs, which has
been proven by high-resolution transmission electron
microscopy [28,29]. The projection in black describes
an initial unloaded state, the other projection in red is
the result when an ideal phason strain ∂W/∂x∥ is ap-
plied, where x∥ from now on is the coordinate of the
physical space and W is the phason displacement in
the direction e⊥. It is obvious that the arrangement
”SLSLLSLLS...” is changed into ”SSLSLSLSL...” due
to the phason strain. Accordingly, some local combi-
nations exchange their orders like SL←→LS, which is
denoted as phason flip. Within this context the phason
strain is interpreted as rotation φ of a sequence, where
the two distances (S and L) keep their lengths, however
the arrangement is changed completely, see Fig. 1 for
illustration.

According to Landau’s theory [30], the mass den-
sity function is introduced to describe the statistical
position ri which is determined by the probability of
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Fig. 1 Cut method to obtain a quasiperiodic arrangement in
physical space from a periodic arrangement in hyper space and
interpretation of phason strain as rotation φ and flips of SL-
sequences.

the different locations of particles. Generally, the mass
density function of a periodic structure is defined as
[27]

ρ(ri) = ∑
G j

ρ(G j) exp{iG jr j}, (1)

where G j is the vector of the reciprocal lattice. Here, as
in the whole paper, the analytical notation is applied
with lowercase indices running from 1 to 3 (1 to 2 in 2D)
implying summation over double indices. Each ρ(G j) is
a complex order parameter consisting of a magnitude
ρG j and a phase angle ϕG j :

ρ(G j) = ρG j exp{iϕG j}. (2)

The magnitude ρG j is a state parameter being specific
for solid phase matter. It is independent of the position
vector ri if the solid is in an unloaded equilibrium state.
The phase ϕG j has a basic value ϕ 0

G j
, indicating an ideal

state when all the atoms are at their equilibrium posi-
tions. If the atoms are displaced from their equilibrium
positions by u j due to mechanical loading or thermody-
namic motion, for crystals the phase angle is modified
as follows

ϕG j = ϕ 0
G j

+G ju j. (3)

The magnitude, the equilibrium phase and thus the or-
der parameters ρ(G j) are the factors of a crystalline
structure in the sense of Fourier components of peri-
odic order for the reciprocal lattice vector G j.

For quasicrystals, where the periodicity exists only
in a hyper space consisting of a physical space and a
complementary space, the reciprocal lattice GI (I > 3)

possesses more than 3 dimensions and can be divided
into G∥i and G⊥i . However, the mass density function
describes the distribution of mass only in the physical
space, i.e.

ρ(ri) = ∑
GJ

ρ(GJ) exp{iG∥jr j}. (4)

As an extension of Eq. (3), the phase angle in the hyper
space is given by

ϕGI = ϕ 0
GI

+G∥i ui +G⊥j Wj, (5)

where the index j in this equation runs from 1 to d−3
with d as the dimension of the hyper space or recipro-
cal lattice, respectively. ui is the phonon or conventional
physical displacement, and Wj is the phason displace-
ment. The total displacement uI = (u∥i ,u

⊥
i ) = (ui,Wi) is

the shift in the d-dimensional space with respect to an
equilibrium position. For a 1D QC, e.g. the total dis-
placement is a vector in a 4-dimensional space, repre-
sented by

uI = ui e⃗∥i +W1⃗e⊥1 , (6)

with the basis vectors e⃗∥i , e⃗⊥1 . Generally, the index ”1”
is omitted in the case of a 1D QC.

Inserting the phase angle according to Eq. (5) into
Eq. (4), the mass density function for quasicrystals is
obtained as

ρ(ri) = ∑
GJ

ρGJ exp{i
(
ϕ 0

GJ
+G∥i (ri +ui)+G⊥j Wj

)
}. (7)

Within a hydrodynamic theory, the phason displace-
ment can be understood as the local rearrangement of
unit cells or particle orders. Details about the phason
field and its physical interpretation can be found in di-
verse review papers [31,32].

Hence, phonon and phason are two kinds of elas-
tic degrees of freedom in QCs. Based on this fact, the
generalized theory of elasticity is formulated [30,33,34,
35]. Since not all directions of a QC body are quasi
periodic, ui always consists of three coordinates, while
Wi may have one (d = 4), two (d = 5) or three (d = 6)
according to its quasicrystalline structure. In order to
establish a most general theoretical framework of elas-
ticity, 3D QCs are taken into account in Sections 2.2
and 3. Besides that, most of the QCs intrinsically are
brittle materials at room temperature, showing exten-
sive ductility just at elevated temperatures [36]. Plastic
deformation is thus ignored in this work and all the be-
haviours are considered under linear elastic conditions.
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2.2 Stress, strain and constitutive relations

The phonon strain εi j is defined as in conventional the-
ory of elasticity, however the phason displacement is
a function of phonon coordinates only, i.e. Wi(x

∥
i ), and

the phason strain wi j isn’t symmetric by nature:

εi j =
1
2
(ui, j +u j,i), wi j =Wi, j ̸=Wj,i. (8)

When the atom sequence rearranges going along with
phason displacement, it needs energy or force to accom-
plish it. Hence, the phason traction hi is introduced in
complementary space. Accordingly, a 2nd order phason
stress tensor Hi j is defined, being related as

hi = Hi j n j, (9)

the first index being attributed to the complementary
stress, the second to the physical space where the unit
normal n j is defined. Just as phason strain, phason
stress thus lacks symmetry, i.e.

Hi j ̸= H ji.

The elastic free energy of a QC is

Φ = Φuu +Φww +Φuw

=
1
2

Ci jklεi jεkl +
1
2

Ki jklwi jwkl +Ri jklεi jwkl ,
(10)

where Φuu, Φww and Φuw are pure phonon, pure phason
and coupling energies, respectively, and the indepen-
dent variables are the strains εi j and wi j. Ci jkl is the
phonon elastic stiffness tensor, Ki jkl is the stiffness ten-
sor in the phason space and Ri jkl denotes the phonon-
phason coupling tensor. Furthermore, the stiffness and
coupling tensors can be expressed by means of partial
derivatives, i.e.

Ci jkl =
∂ 2Φ

∂εi j∂εkl
, Ci jkl =Ckli j =Ci jlk =C jikl ,

Ki jkl =
∂ 2Φ

∂wi j∂wkl
, Ki jkl = Kkli j,

Ri jkl =
∂ 2Φ

∂εi j∂wkl
, Ri jkl = R jikl .

(11)

Eqs. (11) comprise all symmetry conditions of the con-
stitutive tensors. Since the phason strain is asymmet-
ric, the indices of Ri jkl and Ki jkl are not completely ex-
changeable, unlike Ci jkl . In particular, the Maxwell re-
lation is not satisfied, i.e.

∂σi j

∂wkl
̸= ∂Hkl

∂εi j
. (12)

From Eq. (10) the governing linear constitutive equa-
tions of quasicrystals are derived as

σi j =
∂Φ
∂εi j

=Ci jklεkl +Ri jklwkl ,

Hi j =
∂Φ
∂wi j

= Rkli jεkl +Ki jklwkl ,

(13)

where the stresses can be expressed in Voigt-notation
as follows:
σi j = [σ11,σ22,σ33,σ23,σ31,σ12],

Hi j = [H11,H22,H33,H23,H31,H12,H32,H13,H21].
(14)

3 Linear elastic fracture mechanics of quasicrystals

3.1 Stress intensity factors and near tip solutions

Fig. 2 Polar coordinates (r,θ) in the vicinity of an opened crack
tip and the stresses σi j,Hi j on the ligament; a is the half length
of an interior crack.

Within the framework of linear elasticity of QCs,
the phason as well as the phonon stresses exhibit sin-
gularities at crack tips [37], see Fig. 2. By approaching
the crack tip, the stress intensity factors for the phonon
field [K∥II ,K

∥
I ,K

∥
III ] and the phason field [K⊥II ,K

⊥
I ,K⊥III ] are

defined as follows

K∥i = [K∥II ,K
∥
I ,K

∥
III ]

T = lim
r→0

√
2πrσi2(r,θ = 0),

K⊥i = [K⊥II ,K
⊥
I ,K⊥III ]

T = lim
r→0

√
2πrHi2(r,θ = 0).

(15)

For the sake of compactness, the intensity factors of
phonon and phason fields can be merged into one single
vector

KP = [K∥II ,K
∥
I ,K

∥
III ,K

⊥
II ,K

⊥
I ,K⊥III ]

T

=

{
K∥i if1≤ P≤ 3
K⊥i if4≤ P≤ 6

.
(16)

The same nomenclature holds for the stress, the dis-
placement and the strain, where uppercase indices run
from 1 to 6 and 1, 2, 3 (4, 5, 6) refers to the phonon
(phason) field.
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Gao et al. [38] have derived the stress functions for
a Griffith crack, i.e. a crack in an infinite plate under
stress loading σ∞

J2:

σI1 = [σ11,σ21,σ31,H11,H21,H31]
T

=
6

∑
N=1

ℜ

BIN

pN−
zN pN√
z2

N−a2

 B−1
NJ

σ∞
J2,

σI2 = [σ12,σ22,σ32,H12,H22,H32]
T

=
6

∑
N=1

ℜ

BIN
zN√

z2
N −a2

B−1
NJ

σ∞
J2,

uI = [u1,u2,u3,W1,W2,W3]
T

=
6

∑
N=1

ℜ
{

AIN

(√
z2

N −a2− zN

)
B−1

NJ

}
σ∞

J2,

(17)

where zN = a+r(cosθ + pN sinθ) is a conformal mapping
function and the matrices AIN and BIN as well as the
eigenvalues pN are characterized by material constants
(see appendix). The real part of a complex quantity is
denoted as ℜ{...}. The stress intensity factors of the
Griffith crack problem are obtained as KP = σ∞

P2
√

πa,
inserting Eqs. (17) into Eqs. (15). Further, the general
near-tip solutions are derived from Eqs. (17) taking the
limit r→ 0:

σI1 =−
1√
2πr

ℜ{BIN PS1
NM B−1

MJ}KJ ,

σI2 =
1√
2πr

ℜ{BIN PS2
NM B−1

MJ}KJ ,

uI =

√
2r
π

ℜ{AIN Pu
NM B−1

MJ}KJ ,

(18)

with the diagonal matrices PNM according to the ap-
pendix.

3.2 Energy release rate and crack closure integral

According to the general definition of the energy release
rate, G is the total potential energy per unit surface
reduced by crack propagation. The energy release rate
can be expressed as follows

G = lim
∆A→0

−∆Π
∆A

=−dΠ
dA

, (19)

where ∆Π =−∆W s is the reduced total potential energy
of the system being equal to the negative work which
is required for crack closure, in case of a reversal of the
quasi-static process of crack growth [39]. It can thus
be considered as the work which is needed to close the
crack along a segment ∆A. Hence, in QCs not only the
phonon but also the phason part are involved in this

work. The local work at a point r on the dashed crack
faces (θ = 0), see Fig. 3, which is required for crack
closure, is calculated as

dW s(r,0) =
0∫

u+i

F∥+i dx∥i +
0∫

W+
i

F⊥+i dx⊥i

+

0∫
u−i

F∥−i dx∥i +
0∫

W−i

F⊥−i dx⊥i

=−
F̄∥+i u+i

2
−

F̄⊥+i W+
i

2

−
F̄∥−i u−i

2
−

F̄⊥−i W−i
2

,

(20)

where the phonon and phason forces F∥i and F⊥i effectuate
respective displacements on positive and negative crack
faces x∥i ∈ [u±i ,0] and x⊥i ∈ [W±i ,0]. When the crack is
completely closed, the forces F̄∥i and F̄⊥i are those on
the created ligament at position r. The outward unit
normal vectors of the crack faces being ni = (0,∓1)T ,
the forces are related to the stresses as F̄∥i = σ̄2in2dA =
∓σ̄2idA and F̄⊥i = ∓H̄i2dA, where the upper sign (−)
stands for the positive and the lower sign (+) for the
negative crack surface.

Fig. 3 Derivation of the crack closure integral: the solid line
represents the current crack tip 1⃝, the dashed line the state
after crack growth 2⃝.

From Eq. (20) the local crack closure work is thus
obtained as

dW s =
1
2

σ̄2i(u+i −u−i )dA+
1
2

H̄i2(W+
i −W−i )dA

=
1
2

σ̄I2(u+I −u−I )dA.
(21)

Assuming that the displacements for both fields are
symmetric with respect to the positive and negative
crack surfaces, i.e. u+I = −u−I , the crack closure work
for a finite crack surface ∆A is determined by integra-
tion:

∆W s =−∆Π =
∫

∆A

σ̄I2u+I dA = B
∫

∆a

σ̄I2u+I dx1. (22)
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Plane crack problems imply ∆A=B∆a and dA=Bdx1 =
Bdr with B as constant thickness. Refering to Fig. 3,
where the crack opening displacements are taken from
the crack faces at (∆a− r,θ = π) and the tractions are
taken from the ligament at (r,θ = 0) [39], where the bars
over the variables can be omitted, the energy release
rate for a plane problem is introduced inserting Eq.
(22) into Eq. (19):

G = lim
∆a→0

1
∆a

∆a∫
0

{σi2(r,0)u+i (∆a− r,π)

+Hi2(r,0)W+
i (∆a− r,π)}dr.

(23)

The limit ∆a→ 0 is essential taking displacements and
stresses from two different crack lengths, i.e. a and
a+∆a, see Fig. 3. Consequently, crack tip near fields
according to Eqs. (18) may be applied to Eq. (23) for
a crack length a.

Following ideas from conventional fracture mechan-
ics [40], a second energy term H is defined by formally
replacing σi2 and Hi2 by σi1 and Hi1:

H = lim
∆a→0

1
∆a

∆a∫
0

{σi1(r,0)u+i (∆a− r,π)

+Hi1(r,0)W+
i (∆a− r,π)}dr.

(24)

Substituting Eqs. (18) into Eqs. (23) and (24), the re-
lations between stress intensity factors and the two en-
ergy rates G and H are derived. In compact notation
they read

G = lim
∆a→0

1
∆a

∆a∫
0

√
∆a− r

π2r
dr KPYPQ KQ =

1
2

KPYPQ KQ,

H = lim
∆a→0

1
∆a

∆a∫
0

−
√

∆a− r
π2r

dr KP ℜ{B−1
PNPS1

NM(θ = 0)BMJ}YJQ KQ

=−1
2

KP ℜ{B−1
PNPS1

NM(θ = 0)BMJ}YJQ KQ,

(25)

where

YPQ = ℜ{iAPN B−1
NQ}

is the generalized Irwin matrix for QCs, and the crack
opening displacement can be expressed as

uP = [ui,Wi]
T =±

√
2r
π

YPQ KQ. (26)

Whereas a unique physical meaning is attributed to the
energy release rate G, an interpretation of H with re-
spect to crack closure is not known. It is rather an aux-
iliary quantity, which may be useful e.g. in numerical
fracture analysis [41], in particular in connection with
the J-integral.

3.3 Configurational force and J-integral

In the following, a straightforward but rigorous deriva-
tion of the J-integral is depicted, starting from the first
law of thermodynamics

dU = dW rev +dQ+dΨ , (27)

where the kinetic energy is neglected, U is the internal
energy, dQ the heat flux and the work of external forces
is separated into a reversible part dW rev and the dis-
sipation dΨ . Inserting dŴ rev = σMN dεMN , dQ̂ = T dŜa

and dΨ̂ = T dŜi, where T is the absolute temperature
and Ŝa and Ŝi are exchange and irreversible specific en-
tropies, respectively, Eq. (27) yields the Gibbs funda-
mental equation for the specific internal energy

dÛ = σi jdεi j +Hi jdWi j +T dŜ. (28)

Neglecting heat flux, i.e. dŜa = 0, the specific dissipative
work is obtained as

dΨ̂ = dΦ−σi jdεi j−Hi jdWi j, (29)

where the more general Û has been replaced by the
specific potential of QC according to Eq. (10).

A QC continuum is considered first including a point
defect with a virtual displacement δ zk in a control vol-
ume V . According to Eq. (29), the associated dissipative
work is given as

Jkδ zk =
∫
V

(
δΦ−σi jδεi j−Hi jδWi j

)
dV, (30)

where Jk is a generalized or configurational force act-
ing at the defect. Considering the balance equations
σI j, j = 0, where volume forces and mass related inertia
are neglected, the phonon and phason virtual works are
transformed as
σi jδεi j = (σi jui,k), jδ zk,

Hi jδwi j = (Hi jWi,k), jδ zk,
(31)

where obviously the virtual displacement δ zk is in the
phonon field. With

δΦ =
dΦ
dxk

δ zk = (Φδk j), jδ zk,

the configurational force of QCs is obtained from Eq.
(30) by eliminating δ zk:

Jk =
∫
V

(Φδk j−σi jui,k−Hi jWi,k), jdV. (32)

The terms in the round brackets of Eq. (32) consti-
tute the generalized energy-momentum or Eshelby ten-
sor [42] for quasicrystals,

Qk j = Φδk j−σi jui,k−Hi jWi,k. (33)
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The configurational force is transformed into a contour
integral by using the divergence theorem introducing
the outward unit normal n j:

Jk =
∮
Γ

Qk jn jdΓ . (34)

The integral is path independent as long as the contour
Γ encloses the defect and is zero otherwise.

Fig. 4 Contours for the J-integral; arrows indicate the orienta-
tions of the integration paths.

Applying Eqs. (32) or (34) to a crack problem, the
configurational force Jk is denoted as J-integral. Accord-
ing to Fig. 4, a closed contour can be constructed in-
cluding both crack surfaces Γ +,Γ−, however excluding
the crack tip. Thus, the J-integral vanishes:

Jk =
∮
Γ

Qk jn j dΓ =
∮

Γa+Γ+−Γε+Γ−

Qk jn j dΓ = 0. (35)

On the other hand, the J-integral can be calculated just
from the inner contour Γε , as long as it is sufficiently
small:

Jk = lim
ε→0

∫
Γε

Qk jn j dΓ

= lim
ε→0

∫
Γa

Qk jn jdΓ

+ lim
ε→0

∫
Γ++Γ−

(Φnk− tiui,k−hiWi,k)dΓ .

(36)

The second equality in Eq. (36) emanates from Eq. (35).
An integration along the crack faces is always required
in connection with a finite contour Γa, if there are trac-
tions ti, hi on the crack faces. In a traction-free case just
the first term with the potential Φ remains, guaran-
teeing path-independence of the J-integral. Just if the
crack, in addition, is straight and only J1 or J2 are of

interest, a crack surface integration does not apply if
the coordinate system is appropriately chosen.

From Eq. (36) the two coordinates of the plane J-
integral are obtained as

J1 = lim
ε→0

∫
Γε

(Φδ1 j−σi jui,1−Hi jWi,1)n j dΓ ,

J2 = lim
ε→0

∫
Γε

(Φδ2 j−σi jui,2−Hi jWi,2)n j dΓ .
(37)

The energy release rate and the Jk-vector are generally
related by the unit vector of crack growth direction zk:

G = Jkzk. (38)

If, in particular, the local orthogonal coordinate system
(x1, x2), see Fig. 4, is chosen in such a way that the crack
surfaces are parallel to the x1−axis and furthermore the
crack propagates into the x1-direction, thus z2 = 0, the
contour integrals according to Eq. (37) correspond to
the energy release rate G and H as

G = J1, H =−J2, (39)

which is confirmed by integration according to Eqs. (37)
and (23), (24) or in connection with Eq. (25). These re-
lationships are consistent with those of classical elastic
materials [40].

3.4 Crack deflection criteria at mixed-mode loading

If only the simple mode-I case due to symmetrical load-
ing and geometry is considered, in classical fracture me-
chanics the crack grows straightforward along its liga-
ment. Under mixed-mode loading, in a sense of unsym-
metrical loading, a few criteria have been developed to
predict the crack growth deflection. Two of them are ap-
plied here and implemented for QC. The first one is the
criterion of maximum circumferential stress [43]. There
the crack grows into the one direction θ̄ where the cir-
cumferential stress σθθ reaches its maximum value, see
Fig. 5.

This criterion can be easily applied if the crack tip
stress is given as a function σθθ = f (θ), i.e.

∂σθθ
∂θ

∣∣∣∣
θ=θ̄

= 0,
∂ 2σθθ
∂θ 2

∣∣∣∣
θ=θ̄

< 0. (40)

Since r may be infinitely small, asymptotic crack tip
near field stresses are employed with Eq. (40), being
related to the stress intensity factors according to Eq.
(18). While for crystals the definition of stress is unique,
QCs are subject to phonon and phason stress. A crack
deflection or fracture criterion could exploit either the
one or the other stress or introduce an equivalent stress
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Fig. 5 Stress state in polar coordinates around a crack tip to
illustrate the criterion of maximum circumferential stress.

criterion of any kind whatsoever. In the present study,
fracture is supposed to occur just in physical space,
thus phonon stress is relevant in Eq. (40), of course
depending on the phason stress due to coupling, see
Eq. (13).

The second hypothesis is the J-integral criterion. It
postulates that the crack extends along the direction of
the configurational force, see Fig. 6. According to Eq.
(38) the scalar product Jkzk is maximal if zk and Jk are
linearly dependent, thus leading to a maximum of the
energy release rate. The deflection angle is accordingly
determined as

θ̄ = arctan(J2/J1). (41)

In the local crack tip coordinate system, again x1 is tan-
gential to the crack faces and x2 is perpendicular. The
coordinates of the J-integral can be computed either
from the path-independent integral Eq. (36) or alter-
natively be derived from the crack closure integral, see
Eqs. (39) and (23), (24). Accounting for Eqs. (25), the
Jk-vector is related to the stress intensity factors as

J1 =
1
2

KPYPQ KQ,

J2 =
1
2

KP ℜ{B−1
PNPS1

NM(θ = 0)BMJ}YJQ KQ.

(42)

Deriving Eq. (42) directly from Eq. (37) inserting the
asymptotic near tip fields is not possible since the in-
tegration does not provide a closed-form solution.

Fig. 6 J-integral criterion for the crack deflection angle θ̄ .

4 Results of crack deflection in QCs

In this section the selected fracture and deflection crite-
ria are implemented for 1D QC with an initial horizon-
tal cleavage, see Fig. 5. Since there is only one quasiperi-
odic direction in a 1D QC, different configurations are
possible for plane problems. The quasiperiodic axis (QA)
can be perpendicular to the plane, thus leading to crys-
talline behaviour. The QA being in the plane of in-
terest arbitrary orientations are possible with respect
to a crack. Here, two configurations are selected, i.e.
the QA is parallel or perpendicular to the crack faces.
The material constants and the matrices related to the
closed-form solution for the two states are given in the
appendix.

Applying the criterion of maximum circumferential
stress, Eq. (40), the near tip solution, Eq. (18), has
to be transformed into polar coordinates following the
transformation

σrr σrθ 0

σθr σθθ 0

0 0 0

=


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1




σ11 σ12 0

σ21 σ22 0

0 0 0




cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 .

(43)

The circumferential stress is thus given as

σθθ =cos(θ)
(
σ22 cos(θ)−σ12 sin(θ)

)
− sin(θ)

(
σ21 cos(θ)−σ11 sin(θ)

)
,

(44)

where the stress components related to x3 are zero due
to plane stress conditions. In this process, the phason
stress does not have to be transformed into polar coordi-
nates, since in the criterion of maximum circumferential
stress only the phonon stress σθθ is assumed to have an
influence on crack deflection. The deflected angle θ̄ is
determined by inserting Eq. (44) into Eq. (40).

Considering the J-integral criterion Eq. (41), J1 and
J2 are required. In order to keep the formulation most
general and to abstain from specific boundary value
problems, Eq. (42) is taken into account expressing the
loading in terms of stress intensity factors. Based on
the material constants given in the appendix, the coor-
dinates of Jk are determined as

J1 = (5.1066K∥2
I +5.1897K∥2

II −0.08824K∥IIK
⊥

+9.2413K⊥2)×10−12,

J2 =−1.0213×10−11 K∥I K∥II−3.1194×10−25 K∥I K⊥,
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(45)

for the QA being parallel to the crack faces and

J1 = (5.1897K∥2
I +5.1066K∥2

II −0.08824K∥I K⊥

+9.2413K⊥2)×10−12,

J2 =−1.0379×10−11 K∥I K∥II−2.2198×10−14 K∥IIK
⊥,

(46)

for the QA being perpendicular. The phason stress in-
tensity factor K⊥ is written without subscript index
since it is a unique quantity in 1D QC. Eqs. (45) and
(46) reveal that the coefficients related to mixed terms
including both phonon and phason stress intensity fac-
tors are smaller than those of pure phonon or phason
terms. The second term in J2 in Eq. (45) can be com-
pletely neglected, while according to Eq. (46) K⊥ might
bring some contribution to J2 for a perpendicular QA.
Furthermore, the impact of K⊥ on J1 has about the
same significance as the one of K∥II or K∥I . In conven-
tional fracture mechanics, a KII being even small com-
pared to KI , influences crack growth significantly, lead-
ing to a crack deflection from the initial ligament [44].
This observation gives rise to the presumption that K⊥

will show a similar effect on crack propagation.
In literature only material constants of 2D and 3D

QCs are given, however there isn’t any experimental
result for 1D QC. Therefore, parameters of the 2D QC
Al-Ni-Co have been adopted here. The R3 missing in 2D
QC is furthermore assumed to be in the same order of
magnitude as R2. The compressed notation of Ri jkl is de-
picted in Eq. (47). Concerning the coupling constants,
those being available represent just a few materials and
predominantly evolve from ab initio or molecular dy-
namics simulations [45], rather than being experimen-
tal findings. Thus, they have to be considered not to
be quite reliable, whereupon a set of enlarged constants
is additionally used to investigate the influence of the
phason field.

The calculated crack deflections θ̄ are now com-
pared, where the quasiperiodic axis is parallel, see Tab.
1, or perpendicular to the cleavage, see Tab. 2. Each
deflection criterion has two columns. The first shows
the results based on coupling constants according to the
appendix and in the second column, the coupling con-
stants are 50 times enlarged. Stress intensity factors not
explicitly given in the loading column are zero, so the
first two rows are single mode and the rest are mixed-
mode loadings. The J-integral criterion, being known
to be valid only if KI is dominating KII [39], hasn’t been
applied for K∥I = 0. K⊥ alone is not applied, since pha-
son loading probably isn’t possible, the phason stress
intensity factor rather being induced by the coupling

Table 1 Comparison of the crack deflection under different
mixed-mode loadings where the QA is parallel to the cleavage.

loading
crack deflection θ̄

J-integral criterion circumferential stress c.
R 50×R R 50×R

K∥I 0◦ 0◦ 0◦ 0◦

K∥II - - −71.03◦ −72.13◦

K∥II = K⊥ - - −71◦ −69.82◦

K∥I = K⊥ ≈ 0◦ ≈ 0◦ ≈ 0◦ ≈ 0◦

K∥II = 1%K∥I −1.15◦ −1.15◦ −1.13◦ −1.19◦

K∥II = 1%K∥I
K⊥ = 1%K∥I

−1.15◦ −1.15◦ −1.13◦ −1.18◦

K∥II = 1%K∥I
K⊥ = 10%K∥I

−1.13◦ −1.12◦ −1.13◦ −1.18◦

K∥II = 1%K∥I
K⊥ = 50%K∥I

−0.79◦ −0.72◦ −1.13◦ −1.18◦

K∥II = 1%K∥I
K⊥ = 100%K∥I

−0.41◦ −0.34◦ −1.13◦ −1.17◦

Table 2 Comparison of the crack deflection under different
mixed-mode loadings where the QA is perpendicular to the
cleavage.

loading
crack deflection θ̄

J-integral criterion circumferential stress c.
R 50×R R 50×R

K∥I 0◦ 0◦ 0◦ 0◦

K∥II - - −71.32◦ −70.95◦

K∥II = K⊥ - - −71.33◦ −71.54◦

K∥I = K⊥ 0◦ 0◦ 0◦ 0◦

K∥II = 1%K∥I −1.15◦ −0.96◦ −1.16◦ −1.07◦

K∥II = 1%K∥I
K⊥ = 1%K∥I

−1.15◦ −0.97◦ −1.16◦ −1.07◦

K∥II = 1%K∥I
K⊥ = 10%K∥I

−1.13◦ −1.07◦ −1.16◦ −1.09◦

K∥II = 1%K∥I
K⊥ = 50%K∥I

−0.80◦ −1.02◦ −1.17◦ −1.15◦

K∥II = 1%K∥I
K⊥ = 100%K∥I

−0.42◦ −0.53◦ −1.17◦ −1.24◦

effect under phonon loading. In Tabs. 1 and 2 only ra-
tios of stress intensity factors are given, since absolute
values are not relevant for the deflection angle θ̄ , which
is obvious looking at Eqs. (45) or (46).

For a pure phonon mode-I loading there is no crack
deflection, no matter which magnitude of the coupling
constant R is chosen. Even a phason loading as large as
KI doesn’t show any significant impact on the deflection
angle. Focusing first on the J-integral criterion, Eqs.
(45) and (46) illustrate that J2 is only non-vanishing, if
there is a mode-II loading. A finite J2, however, is indis-
pensable for a crack deviating from a straight propaga-
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tion. Most of the examples in Tabs. 1 and 2 thus exhibit
a phonon mixed mode loading where KII , however, is
minor compared to KI . The small value being just 1%
of KI was chosen in an order of magnitude which is typ-
ical along curved crack paths in inhomogeneous stress
fields under constant external loading as observed e.g.
near holes or inclusions [44]. The deflection angle pre-
dicted by the J-integral for pure phonon loading in this
case is −1.15◦. It is remarkable that a larger phonon-
phason coupling of 50×R, in the case of the QA being
perpendicular to the initial crack, leads to a smaller an-
gel of −0.96◦. In Eq. (46) the influence of the coupling
constant is not obvious, whereas Eq. (42) shows mate-
rial dependent matrices in the relation of the J-integral
and the stress intensity factors. In Eqs. (45) and (46)
the material dependence and thus the influence of the
coupling coefficient is found in the algebraic factors. In
Tabs. 1 and 2 the last four rows show results for in-
creasing phason loads superimposing a phonon mode-
I/II loading, finally leading to a considerable reduction
of the deflection angle. After all, the influence of K⊥

on crack deflection is smaller than the one of KII since
the related algebraic factors for J2 in Eqs. (45) and (46)
are much smaller and for the perpendicular QA K⊥ is
multiplied by KII instead of by the larger KI .

Concerning the maximum circumferential stress cri-
terion, a crack deflection under pure mode-II loading is
investigated. The predicted angles are slightly larger
than the value for classical isotropic elasticity (θ̄ =
−70.5◦). For the decoupled case of anisotropic elastic-
ity (R=0), θ̄ =−71.03◦ and θ̄ =−71.32◦ are calculated
for the QA parallel and perpendicular to the crack. If
a phason load is superimposed, a remarkable change of
angles is not observed. For the mode-I/II loading cases
the magnitudes of the angles are very close to those
predicted by the J-integral criterion. In contrast to the
latter criterion, a phason loading K⊥ doesn’t have a
considerable influence on the deflection angle, unless
larger coupling coefficients R are employed. Compar-
ing both criteria, the energetic J-integral criterion fully
takes into account the energy stored in the phason field
and postulates the minimization of the total potential
energy of the system, thus following a general law of
nature. The maximum circumferential stress criterion
as formulated here, on the other hand, attributes the
fracture process essentially to the phonon field.

5 Conclusions and outlook

The configurational force and the J-integral for QC are
derived from the first law of thermodynamics for dis-
sipative processes. The crack closure integral of linear
elastic fracture mechanics is generalized to provide a

relation between the J-integral vector and the stress
intensity factors. Two crack deflection criteria are in-
troduced, i.e. an energy-related based on the J-integral
and a stress based one. The latter accounts for the max-
imum circumferential phonon stress. Due to the pha-
son coupling, a mixed-mode crack tip loading is intrin-
sic to fracture of QC. The influence of phason load-
ing in terms of the phason stress intensity factor on
crack deflection is in the focus of the investigations. Two
different orientations of the quasicrystalline axis (QA)
of a 1D QC are assumed, one parallel, the other per-
pendicular to the crack. Concerning the phonon-phason
coupling coefficients, which are barely available from
literature, two different values are employed differing
by a factor of 50.

One outcome of the investigations is that phason
fields only have an impact on the crack deflection, if
a mode-II loading is imposed. For pure mode-II, the
phonon-phason coupling slightly influences the deflection
angle, not exceeding a deviation of 2-3%. The most in-
teresting case, however, is a mode-I/II loading, with
KII being much smaller than KI , being characteristic
for many crack growth problems. Here, the J-integral
criterion predicts a considerable impact on the crack
deflection if the coupling coefficients or the phason
stress intensity factor are sufficiently large. If the pha-
son stress intensity factor of a predominantly mode-I-
driven crack is of the same order of magnitude as KII ,
the influence of the phason field on the crack path is
smaller than expected, unless the coupling coefficient
is much larger than the very few values nowadays being
available in literature for 2D or 3D QC.

Generally, the maximum circumferential stress cri-
terion, where just the phonon stress is supposed to be
relevant for fracture processes, predicts a minor impact
of phonon-phason coupling on the crack deflection an-
gle. The J-integral criterion, where the total potential
energy is considered, postulates crack propagation into
the direction going along with the maximal reduction
of phonon and phason energies. Accordingly, the im-
pact of field-coupling on crack deflection may be non-
negligible. Work in progress deals with crack path simu-
lations. First results indicate that the curvature of crack
paths in a 1D QC may be augmented or reduced de-
pending on the direction of the quasicrystalline axis and
the magnitudes of the coupling coefficients.
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A Material constants and characteristic matrices

In compressed notation the constitutive equations of a 1D QC
with the QA being the x1-axis are



σ11

σ22

σ12

H11

H12


=



C1111 C1122 0 R1 0

C1122 C2222 0 R2 0

0 0 C1212 0 R3

R1 R2 0 K1 0

0 0 R3 0 K2





ε11

ε22

2ε12

w11

w12


. (47)

The following material constants have been used for the calcu-
lations [46,47,48]:

C1111 = 232.22, C1122 = 66.63, C2222 = 234.33

C1133 = 66.63, C2233 = 57.41, C3333 = 234.33,

C1212 = 70.19, C1313 = 70.19, C2323 = 88.46,

R1 =−1.1, R2 = 0.2, R3 = 0.5

K1 = 122, K2 = 24,

(48)

where the unit is GPa. For plane stress conditions, the following
transformations are required:

Cs
1111 =C1111−

C1133C1133

C3333
,

Cs
1122 =C1122−

C2233C1133

C3333
,

Cs
2211 =Cs

1122, Cs
2222 =C2222−

C2233C2233

C3333

Cs
1212 =C1212,

Rs
1 = R1−

C2233R1

C3333
, Rs

2 = R2−
C1133R1

C3333

Rs
3 = R3,

Ks
1 = K1−

R1R1

C3333
, Ks

2 = K2.

(49)

The superscript index s indicates the constants for plane stress
conditions.

In the general case, the characteristic matrices are 6× 6,
where 3 of them are from the phonon and the other 3 from
the phason field. However, for a plane 1D QC, only 2 of the
phonon and 1 of the phason dimensions are required. So, for the
quasiperiodic direction along x1 the following complex 3×3 and
1×3 matrices are calculated applying the methods introduced
in [38]:

AMN =


−0.00858494 1.13626 0.55096i

−0.00293218i 0.539528i −1.14174

0.999967 0.00337372 −0.00374684i

 ,

BMN =


−0.4371i 148.1i −107.7

0.1939 −107.2 −151.3i

54.10i 1.167i −0.7029

×109,

pN = (2.25472i,1.38257i,0.711723i).

(50)

For the quasiperiodic direction along x2 they are

AMN =


−1.14174 0.539528i −0.00293218i

−0.55096i −1.13626 0.00858494

0.00374684i −0.00337372 −0.999967

 ,

BMN =


−151.3i −107.1 0.1939

107.7 −148.1i 0.4371i

0.7029 −1.167i −54.10i

×109,

pN = (1.40504i,0.723288i,0.443514i).

(51)

The matrices PS1
MN ,P

S2
MN ,P

u
MN are diagonal matrices and functions

of the polar coordinate angle θ :

PS1
MN = diag

(
pJ√

cos(θ)+ pJ sin(θ)

)
,

PS2
MN = diag

(
1√

cos(θ)+ pJ sin(θ)

)
,

Pu
MN = diag

(√
cos(θ)+ pJ sin(θ)

)
.

(52)

Eq. (18) shows the analytical solution near the crack tip. Alter-
natively, the stresses and displacements can be split into parts,
introducing angular functions being independent on geometry
and loading. In detail, the equations of a 3D QC are given as

σM j =
1√
2πr

(
K∥II f ∥II

M j +K∥I f ∥IM j +K∥III f ∥III
M j +K⊥II f⊥II

M j

+K⊥I f⊥I
M j +K⊥III f⊥III

M j
)
,

(53)

uM =

√
2r
π
(
K∥II d∥II

M +K∥I d∥IM +K∥III d∥III
M +K⊥II d⊥II

M

+K⊥I d⊥I
M +K⊥III d⊥III

M
)
,

(54)

where f J
M j are the angular functions of stresses and dJ

M j those of
the displacements. For plane problems j = 1,2, so the angular
functions are

f J
M1 =−ℜ{BMNPS1

NI B−1
IJ },

f J
M2 = ℜ{BMNPS2

NI B−1
IJ ]},

dJ
M = ℜ{AMNPu

NIB
−1
IJ ]}.

(55)

The index J of the angular functions runs from 1 to 6 and
denotes the corresponding stress intensity factor.
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