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Abstract: Various remote sensing data have been successfully applied to monitor crop vegetation
parameters for different crop types. Those successful applications mostly focused on one sensor
system or a single crop type. This study compares how two different sensor data (spaceborne multi-
spectral vs unmanned aerial vehicle borne hyperspectral) can estimate crop vegetation parameters
from three monsoon crops in tropical regions: finger millet, maize, and lablab. The study was
conducted in two experimental field layouts (irrigated and rainfed) in Bengaluru, India, over the
primary agricultural season in 2018. Each experiment contained n = 4 replicates of three crops with
three different nitrogen fertiliser treatments. Two regression algorithms were employed to estimate
three crop vegetation parameters: leaf area index, leaf chlorophyll concentration, and canopy water
content. Overall, no clear pattern emerged of whether multispectral or hyperspectral data is superior
for crop vegetation parameter estimation: hyperspectral data showed better estimation accuracy for
finger millet vegetation parameters, while multispectral data indicated better results for maize and
lablab vegetation parameter estimation. This study’s outcome revealed the potential of two remote
sensing platforms and spectral data for monitoring monsoon crops also provide insight for future
studies in selecting the optimal remote sensing spectral data for monsoon crop parameter estimation.

Keywords: monsoon crops; leaf area index; leaf chlorophyll concentration; crop water content;
multispectral; hyperspectral

1. Introduction

The global cropland area is predicted to decline by 1.8-2.4% by 2030 due to conversion
of arable croplands to mostly built-up landcover, and 80% of this land cover change is
expected to occur in Asia and Africa [1]. Bengaluru is one of the megacities (over 10 million
population) in southern India [2], which has already lost 62% of the vegetated area, while
the urban area increased by 125% between 2001 and 2011 [3]. Agricultural production has
intensified (i.e., high nitrogen (N) fertiliser usage, drip irrigation), and the cropping pattern
has changed to meet the increasing food demand for the growing population. Between
2006 and 2012, the cropping pattern in Bengaluru changed from high water use paddy
cultivation to dry land cereals and pulses (e.g., maize, finger millet, lablab). According to
the state-level statistics, maize and finger millet crop yield increased by 4 to 6% annually,
while pulse yield (including lablab) soared by 15% [4].

Increasing crop production using available arable lands while sustainably managing
resources (e.g., water, soil) and reducing climate change is challenging [5]. Thus, near-
real-time crop status monitoring could be a way forward to manage available resources
and reduce inputs (i.e., precision agriculture). However, crop monitoring approaches
need to be adapted to distinct crop types, in different growth stages (phenology), and
under different agricultural practices. Remote sensing (RS) is one of the primary tools for
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crop monitoring [6]. RS facilitates contactless data collection over a given crop area using
reflected electromagnetic energy, enabling the characterisation of an area’s spatiotemporal
information. The development of RS data collection and analysis techniques helps to
achieve accurate models to estimate crop parameters.

Various sensor platforms (i.e., terrestrial, airborne, and spaceborne) have been em-
ployed to collect data about cropping areas and estimate crop growth and health parameters
through different modelling approaches [7]. Generally, the reflected electromagnetic en-
ergy from the plant changes according to the physiological and the structural condition
of crops and the surrounding environment [8]. Both multi- and hyperspectral sensors
have been utilised from different platforms to capture these varying reflected energies.
Hyperspectral sensors capture reflected energy at many narrow spectral bands (usually
more than 30 bands). In comparison, multispectral sensor data contains fewer spectral
bands with larger bandwidth [9]. Due to the higher spectral sensitivity of the hyperspectral
data, there is a significant potential to capture a wider variety of different physiological and
structural crop traits [8]. To make the clear comparison of the spectral resolution difference
of the RS data for crop trait estimation, it is necessary to obtain RS data with similar spatial
resolution. However, most studies which compared the spectral resolution sensitivity
(hyperspectral vs. multispectral) for crop trait estimation were based on different spatial
resolution; for example [10] employed field spectroscopy data as hyperspectral data with
point observation and satellite data as multispectral data with 10 m spatial resolution for
estimation of maize crop traits.

Empirical (statistical) models (both parametric and non-parametric) or physical mod-
els (e.g., radiative transfer model inversion) have been employed to estimate crop pa-
rameters using spectral data [11]. The empirical models inspect the association between
in-situ measured target crop vegetation parameter and spectral reflectance data collected
from RS. The reflectance data or their transformations (e.g., first derivative) or vegetation
index (VI) developed from many wavebands were the inputs for the empirical models. A
linear regression model is one of the standard parametric empirical modelling methods
which estimates crop traits by utilising single waveband reflectance data or VI data as
input [12]. In contrast, all—or only the essential—waveband reflectance data (original and
transformed) and a multitude of VI data can be used as inputs for non-parametric empirical
modelling with, e.g., machine learning methods (i.e., random forest, Gaussian process) [13].
Since both parametric and non-parametric models are data driven methods, a comparison
of these methods for estimation of crop traits using RS spectral data can always provide
capabilities of different modelling methods [14].

Many crop vegetation parameters that indicate growth and health status have been
estimated using RS spectral data, e.g., leaf area index (LAI), leaf chlorophyll content (LCC),
and canopy water content (CWC) [7]. LAI (m?/m?) is the leaf area per unit ground area,
an essential plant biophysical variable to understand growth, health, and yield [15]. When
considering other photosynthetically-active plant parts besides the leaves, it is called the
green area index or plant area index [8]. Crop LAI estimation using RS reflectance data
and empirical modelling approaches (both parametric and non-parametric) have shown
promising results, but also considerable variation in prediction quality (coefficient of
determination (R?) ranges from 0.36 to 0.97) [16].

The LCC (both chlorophyll a and b) is a crop biochemical indicator for photosynthetic
capacity, environmental stress, and N status of leaves [17,18]. LCC (ug/cm?) is referred to
as leaf-level quantification, while the multiplication of LCC with LAI is considered canopy
chlorophyll content (CCC-g/cm?). Spectral reflectance from the green to near-infrared
region shows a strong relationship with LCC values [8]. According to available literature,
LCC can be estimated with a maximum relative error of less than 20% from both multi-
and hyperspectral sensors [19,20].

Quantification of CWC (g/m?) attempts to identify crop water stress by estimating
the quantity of water per unit area of the ground surface [21]. Water absorption regions
(970 nm and 1200 nm) of the spectral reflectance data have been employed to estimate
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CWC using RS spectral data [21-23]. However, few studies were able to accurately es-
timate (R > 0.7) maize crop CWC using linear regression models with VI derived from
wavebands from the green, red-edge and near-infrared regions [24,25]. Conversely, the
crop CWC has not yet been estimated using full spectral data to uncover the full potential
of hyperspectral information.

Successful estimation of crop vegetation parameters with RS spectral data has been
demonstrated for various crop types such as wheat, rice, barley, and maize [7,26,27].
However, RS data application has not been examined for crops like finger millet and lablab,
which are major monsoon crops in the tropical region (e.g., Bengaluru, Southern Indjia).
Furthermore, few studies have compared different remote sensing platforms (e.g., in-situ
vs airborne vs spaceborne) and sensors (multispectral vs hyperspectral) for crop vegetation
parameters estimation [16,28]. Thus, this study sought to fill the identified research and
knowledge gap for RS for monsoon crop monitoring. The primary objective of this study
is to evaluate two different RS spectral data types (420-970 nm) with a similar spatial
resolution (~1 m), namely spaceborne multispectral (World View3-8 bands) and unmanned
aerial vehicle (UAV) borne hyperspectral (Cubert-126 bands) for estimating three crop
vegetation parameters (LAI, LCC, and CWC) from three crop types (finger millet, maize,
and lablab) under different agricultural treatments (irrigation and fertiliser). The specific
sub-objectives of this study were:

e  To build crop-specific parametric and non-parametric models to estimate crop vegeta-
tion parameters

e To evaluate the developed vegetation parameter estimation models against (a) the
spectral sensitivity of the RS data (multispectral vs hyperspectral), (b) modelling
method (parametric and non-parametric), and (c) crop type (finger millet, maize, and
lablab)

e To explore how crop-wise vegetation parameter estimation is affected by agricultural
treatment (irrigation and fertiliser)

2. Materials and Methods
2.1. Study Site and Experimental Design

This study was performed in an experimental station on the premises of the Uni-
versity of Agricultural Science (UAS), Bengaluru, Karnataka state, India (12°58'20.79” N,
77°34'50.31” E, 920 m.a.s.1). The climate of the study area is a tropical savanna climate with
29.2 °C mean annual temperature. The south-west monsoon rain between June to October
contributes substantially to the mean total annual rainfall of 923 mm. The dominant soil
types in the area are Kandic Paleustalfs and Dystric Nitisols.

Two experimental layouts were established with two water treatments: drip irrigated
(I) (controlled according to available precipitation), and rainfed (R) (Figure 1). The experi-
ment was conducted in the 2018 Kharif season (July-October). In each experimental layout,
four repetitions of finger millet (Eleusine coracana L.) (cultivar ML-365), maize (Zea mays
L.) (cultivar NAH1137), and lablab (Lablab purpureus L.) (cultivar HA3) were cultivated
with three different N fertiliser treatments (low, medium, and high) (36 blocks within one
experimental layout). At the high fertiliser level, the recommended dosage of N fertiliser
(50 kg N ha~!, 150 kg N ha~!, and 25 kg N ha~!, respectively, for finger millet, maize and
lablab) was applied. A reduced amount was applied at medium fertiliser treatment (58%,
56%, and 53% of the recommended N dosage, respectively, for finger millet, maize, and
lablab). No N fertiliser was applied in the low-level fertiliser treatment for the three crop
types. Phosphorous (P) and potassium (K) fertiliser were applied at the time of sowing at
different levels following the recommended doses for the respective crop types [29].
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Figure 1. (a) Bengaluru, India; (b) Overview of the two experiment sites overlaid with Google satellite layer; (c) irrigated
experiment layout, and (d) rainfed experiment layout with true colour composite Cubert hyperspectral image (Red = 642 nm,
Green = 550 nm, Blue = 494 nm).

A single crop block was 6 m by 12 m, and the crop blocks were designed in a ran-
domised block design. Each block was divided into two parts for destructive sampling (i.e.,
CWC) and non-destructive sampling (i.e., LAI, LCC). Field-level data collection and RS
data collection campaigns were conducted between 29-31 October 2018. The phenological
stages of the crops at the time of the field campaign are summarised in Table 1.

Table 1. Phenological stages of the crops when the remote sensing and in-situ data were collected.
Based on Table A3 from [29].

Phenological Stage (Days after Sowing)

Crop

Irrigated Experiment Rainfed Experiment
Finger millet Inflorescence emergence (87) Inflorescence emergence (79)
Lablab Ripening (83) Development of fruit (78)
Maize Development of fruit (87) Development of fruit (79)

2.2. In-Situ Field Data

Block-level LAI and LCC data were collected as non-destructive measurements. LAI
was measured using an LI-COR LAI-2000 plant canopy analyser (LI-COR Inc., Lincoln,
NE, USA). One single LAl measurement consisted of a three-time repetition of one above-
canopy measurement followed by four below-canopy measurements between two crop
rows. [30]. All LAI measurements were performed after 16:00 when the sun was at the
horizon. LCC was measured using a handheld SPAD-502 Plus Chlorophyll meter (Konica
Minolta, Osaka, Japan). The device measures the absorbances of the leaf in red and near-
infrared regions. The device retrieves an arbitrary, unitless, numerical ‘SPAD’ value (SV)
based on absorbance values. Four plants were randomly selected in each block, and three
measurements per plant from the last fully developed leaf were taken. The block-level SV
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was computed as the average of all 12 measured SVs. According to [31], the consensus
regression Equation (1) was applied to convert the SV into LCC in pg/cm?:

LCC (ug cmfz) = M 1

(144 - SV)

After LAI and LCC measurements, destructive biomass sampling was conducted.
From each block, two plants were removed, and above-ground fresh biomass weight
was recorded. A subsample was dried using a sun dryer (maximum temperature was
75 °C) until no further weight loss was found (approx. 3 days). Based on dried sample
weight, total dry biomass weight was computed. According to the sampled plant area,
fresh biomass content (kg/ m?) and dry biomass content (kg/ m?) were determined. The
canopy water content (CWC) was computed (Equation (2)) using fresh and dry biomass
contents [22]:

CWC (kg rn*z) = fresh biomass content — dry biomass content (2)

2.3. Remote Sensing Data

RS datasets acquired from two platforms and sensor systems were utilised in this
study: (a) multispectral WorldView3 satellite data, and (b) hyperspectral Cubert UHD data
mounted on a UAV.

2.3.1. WorldView 3 Data

A WorldView-3 multispectral satellite scene from 26 October 2018 was used as satellite
RS data. The satellite image contained eight multispectral bands between 397 nm to
1039 nm, covering the visible and near-infrared regions of the electromagnetic spectrum
(Table 2). The image's spatial resolution is 1.24 m [32,33].

Table 2. WorldView-3 multispectral image’s bands and their effective bandwidths [32].

Band Name Centre Wavelength (nm) Effective Bandwidth (nm)
Coastal blue (CB) 4274 40.5
Blue (BL) 481.9 54.0
Green (GR) 547.1 61.8
Yellow (YE) 604.3 38.1
Red (RD) 660.1 58.5
Red-edge (RE) 722.7 38.7
Near-infrared 1 (N1) 824.0 100.4
Near-infrared 2 (N2) 913.6 88.9

The fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) method
in ENVI 5.0 software (Harris Geospatial Solutions Inc., Broomfield, CO, USA) was applied
to pre-process the satellite image using the image’s metadata [34]. The pre-processed image
pixel contained atmospherically-corrected surface reflectance values. However, the coastal
blue (CB) band from WorldView3 data was not incorporated for the crop parameter vegeta-
tion modelling due to substantial influence from atmospheric scattering. Additionally, six
vegetation indices (VIs) were calculated (Table 3). These VIs were chosen from published
literature due to their proven potential to estimate LAI, LCC, and CWC [12,23,35] and
compatibility with WorldView3 wavebands.
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Table 3. Vegetation indices (VI) and their equations for WordView-3 (WV3) and Cubert (CUB) images. WV3 band names:
GR: green, RD: red, RE: red-edge, N1: near-infrared 1. CUB bands are indicated by wavelength (oxxx) in nanometres. (NDVI:

normalised difference vegetation index, DATT4: The 4th VI introduced by [36], MTVI: modified triangular vegetation index,

REIP: red-edge inflexion point, and WI: water index)

VI Formula for WV3 Bands Formula for CUB Bands Reference
NDVIsoo,670 NTTRD o [57]
ND V150,550 MEeR e [38]

RD 0670
DATT4 GRXRE 0550 X 0706 [36]
MTVI 1.2 [12 (N]. — GR) —25 (RD — GR)] 1.2 [12 (P802 — p550) —25 (P670 — p550)] [39]
RD+RE\ _ Pe70TP782 |
REIP 700 + 40 {%} 700 + 40 # [40]
WI N s [23]

2.3.2. Cubert Hyperspectral Data

A custom-made octocopter equipped with the Cubert Hyperspectral FireFleye S185
SE (Cubert GmbH, Ulm, Germany) snapshot camera was utilised as a UAV-borne imaging
system. The hyperspectral camera is a 2D imager with a multi-point spectrometer. The
camera has 450-998 nm spectral sensitivity and contains 138 spectral bands with a 4-nm
sampling interval. The bands’ full width at half maximum value is 4.8 nm at 450 nm and
25.6 nm at 850 nm. The spectral image is 50 by 50 pixels in size, and the camera focal length
is 12 mm. Additionally, the camera has a panchromatic sensor that provides images with
1000 by 990 pixels [41,42].

The UAV-borne hyperspectral images were acquired on 29-30 October 2018 in both
irrigated and rainfed experimental sites between 11:30-14:00 under clear sky conditions.
At each site, the UAV-borne dataset was collected at 100-m flying height. According to
the flying height, the ground sampling distance of the UAV dataset was 1.0 m. All flight
missions were configured to keep 80% overlap (forward and side), and the UAV was flown
with 2 ms~! horizontal speed. Before each UAV flight, the camera was radiometrically
calibrated to obtain surface reflectance values using a white calibration panel [43,44]. For
georeferencing, the UAV images, 1-m? ground control points (black and white wooden
crosses) were laid on the ground before the flights, and the positions of points were
measured using a Trimble global navigation satellite system.

A workflow described by [43] was applied to produce a digital ortho-mosaic from
single UAV-borne hyperspectral images using Agisoft PhotoScan Professional version
1.4.1 (64 bit) software (Agisoft LLC, St. Petersburg, Russia). Due to noise in the spectral
bands between 450—470 nm, the final ortho-mosaic contained only 126 spectral bands
(470-970 nm). Six VI images were computed in addition to the spectral band images (Table
3).

2.4. Model-Building Workflow for Crop Vegetation Parameter Estimation

From the WorldView-3 satellite dataset (WV3) and the UAV-borne hyperspectral
dataset (CUB), mean values were extracted from the non-destructively sampled portions
of the plots for (a) vegetation indices (VIs), and (b) all spectral wavebands (WBs). A
2-m internal buffer to the plot was applied to avoid edge effects. To estimate the crop
parameters (LAI, LCC, and FMY) for each crop type, (a) parametric modelling (linear
regression-LR) was conducted using VIs, and (b) non-parametric modelling (random forest
regression-RFR) was performed with selected WBs based on feature importance analysis.

The relationship between the estimator (e.g., VI) and the dependent variable (e.g.,
LAI) was built using a linear equation (straight line) in the LR models. Before the LR model
was built, a crop-wise Pearson correlation coefficient (r) was computed between the crop
vegetation parameter and the VIs. A single LR model using the highest correlated VI was
built to estimate crop-wise vegetation parameters.



Sensors 2021, 21, 2886

7 of 22

RFR is one of the most prominent non-parametric regression algorithms that has been
frequently applied for crop parameter modelling with RS data [13]. It is an ensemble
modelling approach that employs decision trees and bagging [45]. This ensemb]e tree-
based architecture supports the handling of a multitude of correlated variables [46]. The
most influential bands were identified using the Boruta feature selection algorithm to
reduce the computational intensity and overfitting. Boruta is an iterative process: in
each iteration, features with a lower contribution to the accuracy were removed, and new
random variables were introduced, thereby selecting essential variables for the model [47].
From the Boruta feature selection method, specific WBs from CUB and WV3 data were
selected for crop-wise vegetation parameters. The selected WBs were utilised to build RFR
models. Based on [48], one-third of the number of estimators was set as 'the number of
drawn candidate variables in each split-(mtry)” hyperparameter value in each RFR model.
The other hyperparameter, ‘the number of trees in the forest” and ‘the minimum number of
observations in a terminal node—(node size)’, were kept as 500 and 5, respectively, for all
RFR models.

Additionally, the importance of the selected wavelengths was determined using the
actual impurity reduction (AIR) importance value [49]. The AIR is a Gini importance
value that was corrected for bias. Based on AIR values, the most important waveband for
estimating each crop-wise vegetation parameter could be identified.

All the modelling procedures were executed using the ‘mlr3’ library and its extensions
in the R programming language [50,51]. The ‘ranger’ library was employed inside the
‘mlr3’ library to build RFR models [52], and the ‘Boruta’ library was utilised for the feature
selection step [47]. In total, 12 models for each crop vegetation parameter were developed
(i.e., 2 modelling methods [LR and RFR] x 2 RS datasets [CUB and WV3] x 3 crops [FM,
MZ, and LB]).

Due to limited data (24 data records per crop), cross-validation (CV) was applied in
the model-building workflow. In CV, 12 models were trained and validated as follows: one
data point from the irrigated site and one data point from the rainfed site were left out each
time for validation, and the remaining 22 points (11 from the irrigated site and 11 from the
rainfed site) were utilised for training the model. Based on the predicted vs actual values
in the validation phase, the root means squared error (RMSE) was computed Equation (3).
To standardise the RMSE values, normalised RMSE (nRMSE) was calculated by dividing
RMSE from the range of the corresponding crop parameter value (the difference between
the minimum and maximum values) Equation (4). The coefficient of determination (R?) [53]
was computed based on actual and predicted values Equation (5). Based on the distribution
of the nRMSE and R? values, the crop-wise best model was identified for each crop
vegetation parameter. Moreover, each model’s predictive capability was examined using
normalised residual values Equation (6) against two water and three fertiliser treatments.
Positive or negative normalised residual values indicate overestimated or underestimated

values, respectively:
1 .
RMSE = |~ Y (yi = 9)* 3)
i=1

RMSE

nRMSE = : x 100 (4)
(max(y) —min(y))
i (vi = 1)’
R2 — ll _ % (5)
iz (i — ;)
normalised residual value = u 6)
vty

where y is the actual crop vegetation parameter, § is the predicted parameter, ¥ is the
average value of the actual parameter, and # is the number of samples.
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3. Results
3.1. Crop Vegetation Parameter Data

The descriptive statistics of the crop-wise parameter data are presented in Table A1.
The LAI values ranged between 0.4-3.2 m?/m? for finger millet, 0.2-3.5 m?/m? for lablab,
and 1.0-3.0 m?/m? for maize in both the irrigated and rainfed sites. For all three crops,
the irrigated field always showed considerably higher LAI values than the rainfed site.
According to the crop-wise two-way analysis of variance (ANOVA) test for LAI values,
significant differences (p < 0.001) in LAI between irrigation treatments (I and R) were found
for all three crops. N fertiliser (low, medium, and high) did not significantly affect (p > 0.1)
LAI for any of the crops. However, there was a significant effect of interaction between
irrigation and N fertiliser for lablab LAI (p = 0.03), with the combinations of N fertiliser
and irrigation increasing average LAL

The highest average LCC was found in irrigated maize (76.4 pug/cm?), while the
rainfed finger millet had the lowest average LCC (10.2 ug/cm?) (Table Al). Like LAI,
irrigation significantly positively affected (p < 0.001) LCC for all three crops. Fertilizer only
significantly affected maize LCC (p = 0.03) positively. In contrast, there was a significant
effect from the interaction between irrigation and N fertiliser for both finger millet (p = 0.01)
and maize (p = 0.05) for LCC, with N fertiliser combinations irrigation increasing.

The highest CWC was found for maize (average CWC = 1.5 and 0.9 kg/m? for irrigated
and rainfed) (Table A1), whereas lablab had the lowest CWC (0.7 kg/ m? and 0.08 kg/ m? for
irrigated and rainfed experiments, respectively). According to the ANOVA test, CWC was
significantly affected by irrigation for finger millet, lablab, and maize (p < 0.001). Besides,
the CWC for finger millet revealed a significant positive effect of fertiliser (p = 0.05) and the
interaction between water and fertiliser (p = 0.01).

Crop-wise LAI was strongly correlated with CWC (r = 0.85, 0.78, and 0.74 for finger
millet, maize, and lablab, respectively). Similarly, crop-wise LCC was also positively
correlated with both LAI (r = 0.81, 0.64, and 0.60) and CWC (r = 0.60, 0.62 and 0.54) for
finger millet, maize, and lablab, respectively.

3.2. Spectral and Vegetation Index Data

The pattern of the spectral reflectance curves from the two experimental sites (I and R)
exhibited a substantial difference for both RS datasets (Figure 2). In the irrigated plots, both
CUB and WV3 spectral curves followed a typical healthy vegetation spectral reflectance
curve. However, in the rainfed data, both CUB and WV3 reflectance data deviated in the
visible region of the spectrum from healthy vegetation spectral curve due to higher soil
spectral signals (Figure 1c).
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Figure 2. Average spectral reflectance data for millet, lablab, and maize from Cubert (black) and WorldView3 (grey) data for
irrigated (solid line) and rainfed (dashed line) experiments.

The crop-wise VI significantly differed (p < 0.001) between the two RS data types (CUB
and WV3) as well as between the irrigation treatments (Figure 3). However, the WV3 water
index (WI) was the only index that did not show a substantial difference (p > 0.3) between
the irrigation treatments.

3.3. Crop Vegetation Parameter Estimation with Linear Regression

LR models with VI were employed to estimate crop-wise vegetation parameters using
two RS datasets. A total of six models were built separately (3 crops x 2 RS datasets). LAI
estimation from CUB and WV3 data showed similar results for all three crops (Table 4). All
six models obtained R2., > 0.73. CUB VI for LAI estimation achieved nRMSE., of 15.7%,
14.9%, and 15.6% for finger millet, maize, and lablab, respectively (Table 5). Likewise,
nRMSE.y of 16.1%, 15.9%, and 16.0% were obtained for finger millet, maize, and lablab LAI
estimation, respectively, using WV3 data. NDVIgyg ¢70 was the best VI for LAI estimation
using CUB data for all three crops. For WV3 data, NDVIggg ¢70 was the best for maize LAI
estimation, while REIP was the best VI for finger millet and lablab LAL

The VI-based LR models for estimating LCC showed lower R?., values (Table 4). For
finger millet, LCC estimation models with CUB VI data (nRMSE, = 18.0%) performed
better than with WV3 VI data (nRMSEy, = 21.0%). Maize LCC estimation models resulted
in the highest normalised error and the lowest RZCV values. From the two RS datasets,
WV3 VI performed better than CUB VI for maize LCC estimation. In contrast, lablab LCC
estimation models from both RS datasets showed similar performances (nRMSE, = 23.3%
and R2., = 0.37). Of the tested VIs, NDVI (NDVIyzs0 550, NDVIggg 670) and DATT4 were the
most highly correlated with LCC for both RS datasets.
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Figure 3. Distribution of crop-wise vegetation indices (VI) for finger millet, lablab, and maize from Cubert (CUB) and

WorldView3 (WV3) data from irrigated (grey) and rainfed (black) experiments. (NDVI: normalised difference vegetation
index, DATT4: The 4th VI introduced by Datt (1998), MTVI: modified triangular vegetation index, REIP: red-edge inflexion

point, and WI: water index).

Crop-wise CWC estimation from VI from two RS datasets obtained less than 20% nRMSE., (Table 4). The nRMSE,
values for CWC estimation with CUB data were 19.5%, 19.9%, and 16.3% for finger millet, maize, and lablab, respectively,
while nRMSE_y values for finger millet, maize, and lablab were 19.9%, 17.0%, and 15.6%, respectively, for CWC estimation
with WV3 data. The NDVI indices from CUB resulted in the best CWC estimation for all three crop types, while
WV3-based NDVIys 550, REIP, and DATT4 were strongly correlated with CWC values, respectively, from finger millet,

lablab, and maize.
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Table 4. Summary of the crop parameter estimation model results from linear regression (LR) using
the best-correlated vegetation index (VI). Bold values indicate the lowest nRMSEcv values among
the two remote sensing datasets for each crop type. All the reported linear regression models with
the best vegetation index showed p-value less than 0.05. (LAI: leaf area index, LCC: leaf chlorophyll
content, CWC: canopy water content, CUB: Cubert, WV3: WorldView3, r: Pearson correlation
coefficient between VI and crop-wise vegetation parameter, R%.y: coefficient of determination from
cross-validation, NnRMSE.y: normalised root means squares error from cross-validation).

LR Model with VIs
Parameter Crop RS Data
Best nRMSE
Vegetation T R2, o Y
(%)
Index
Finger CUB NDV1800_670 0.88 0.74 15.7
millet WV3 REIP 0.88 0.74 16.1
LAI CUB NDVIsgo 670 0.90 0.77 15.6
(m2/m?2) Lablab WvV3 REIP 0.90 0.77 15.9
) CUB NDVlgog 670 0.90 0.77 14.9
Maize Wv3 NDVIgoo 670 0.89 0.73 16.0
Finger CUB DATT4 0.83 0.63 18.0
millet WV3 NDVI750_550 0.76 0.50 21.0
LCC CUB NDVIs) 550 0.67 0.37 23.3
(ug/cm?) Lablab WV3 NDVIy5 550 0.66 0.36 23.4
_ CUB NDVIggg 670 0.59 0.21 24.1
Maize WV3 DATT4 0.61 0.26 23.3
Finger CUB NDVI7507550 0.73 0.44 19.5
millet WV3 NDVIyz50 550 0.73 0.43 19.9
CWC CUB NDVIggg 670 0.77 0.53 16.3
(kg/m2) Lablab WV3 REIP 0.81 0.58 15.6
Maize CUB NDVIgoo 670 0.68 0.36 19.9
Wv3 DATTA4 0.76 0.51 17.0

Table 5. Selected wavebands from Boruta feature selection algorithms for each crop vegetation parameter (LAI: leaf area

index, LCC: leaf chlorophyll content, CWC: canopy water content) from two remote sensing datasets. Cubert bands are

indicated as the band wavelength (oxxx) in nanometres.

Parameter Crop Selected Wavebands from Cubert Data Selected Wavebands from WorldView3 Data
Finger Millet P522, P526, P582, P642, P694, P702, P706, P722, P730, Blue, Green, Yellow, Red, Red-edge,
LAI 0738, P750, P762, 0946 Near-infrared 2
272
(m*/m*) Lablab 0690, P698, P706, P722, P726, P734, P750, P826, P918, Blue, Green, Yellow, Red, Red edge
0930, P946, P950, P954, P958
Maize P474, P478, P674, P682, P690, P694, P794, P802, PS06- Blue, Green, Yellow, Red, Red edge,
0822, P870, P874, P890, P898, P06, P930, P954 Near-infrared 2
Fineer Millet Blue, Green, Yellow, Red, Red edge,
LCC g P746, P750, P754, P758, P762, P766 Near-infrared 1, Near-infrared 2
(p.g/cmz) Lablab P574, P638, P718, P742, P750 Blue, Green, Yellow, Red, Red edge
Maize P682, P690, P698, P702 Blue, Green, Yellow, Red, Red edge
. . P470, P478, P522, P526, P694, P706, P710, P722, P742, Blue, Green, Yellow, Red, Red edge,
CWC Finger Millet P746 Near-infrared 2
2
(kg/m*) Lablab 0502, P606 P614s P61§, 9638/ D666/ P678, P682, P7425 Blue, Green, Yellow, Red, Red edge
802, P834
Maize P866, P878, P886, P918, P966, P970 Blue, Green, Yellow, Red, Red edge
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3.4. Crop Vegetation Parameter Estimation with Random Forest Regression
3.4.1. Key Wavebands

Important WBs for crop vegetation parameter estimation were identified using Boruta
feature selection algorithms. Table 5 summarises the identified WBs from each RS datasets
(CUB or WV3) for each crop vegetation parameter.

3.4.2. Model Performance

RFR models were built to estimate crop-wise vegetation parameters using the iden-
tified best WBs. Irrespective of the RS datasets and crop type, the RFR models for LAI
estimation yielded less than 16.1% nRMSE, and over 0.70 R?., (Table 6).

Table 6. Summary of the crop parameter estimation model results from random forest regression
(RFR) using selected wavebands. Bold values indicate the lowest nRMSEcv values among the two
remote sensing datasets for each crop type. (LAIL leaf area index, LCC: leaf chlorophyll content,
CWC: canopy water content, CUB: Cubert, WV3: WorldView3, R2.,: coefficient of determination
from cross-validation, and nRMSE,: normalised root means squares error from cross-validation).

RFR Model with Selected Wavebands

Parameter Crop RS Data

No. of R2 nRMSEy,

Wavebands v (%)

Finger millet CUB 13 0.74 16.1

WV3 6 0.70 17.1

T T T T

, CUB 18 0.79 13.9

Maize WV3 6 0.80 13.9

Finger millet CUB 6 0.45 21

WV3 7 0.51 20.8

LCC CUB 5 0.23 25.8

(ug/em?) Lablab Wv3 5 0.13 27.4

, CUB 4 0.16 24.9

Maize WV3 5 0.01 315

Finger millet CUB 10 043 19.9

WV3 6 0.23 2.9

CWC CUB 1 0.51 16.9

(kg/m?) Lablab Wv3 5 0.42 18.2

, CUB 4 0.24 214

Maize WV3 5 0.26 214

The LAI estimation for lablab resulted in the lowest error among the three crop types
(nRMSE, =12.9% and 12.0%, respectively, from CUB and WV3 data). The LAI estimation
models for finger millet showed better performance for CUB data (nRMSE, = 16.1%)
compare to WV3 data (nRMSEy = 17.1%). In contrast, CUB data and WV3 data had similar
accuracy for maize LAI estimation (nRMSE, = 13.9%).

LCC estimation based on CUB data was more accurate than WV3 data for maize
and lablab. For finger millet, the opposite was found (Table 6). The nRMSE,, for LCC
estimation with RFR was above 20.5% for all crops, regardless of the RS datatype. The
nRMSE,., values for LCC estimation from CUB data were 22.1%, 25.8% and 24.9%, and
from WV3 data were 20.8%, 27.4 and 31.5 %, respectively, for finger millet, lablab, and
maize. Based on the nRMSE,,, the RFR models were less accurate than the LR models for
LCC estimation irrespective of the RS data type and crop type.

The R?., was less than 0.5 for CWC estimation for all three crops (Table 6). For
finger millet (NRMSE., = 19.9%) and lablab (nRMSE, = 16.9%), CWC estimation with
CUB data performed better than models with WV3 data (nRMSE., = 22.9% and 18.2%,



Sensors 2021, 21, 2886

13 of 22

respectively). Both RS datasets showed similar performance for maize CWC estimation
(nRMSE.y, = 21.4%).

3.5. Best Models and Distribution of Residuals

The best models from two RS datasets (CUB vs. WV3) and two modelling methods (LR
vs. RFR) for each crop vegetation parameter were identified based on nRMSE,. Observed
vs predicted values for crop-wise vegetation parameters from the best models are plotted
in Figure 4.

(a) Leaf area index (LAI)
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Figure 4. Observed vs predicted values of the best performing models for (a) leaf area index (LAI),
(b) leaf chlorophyll content (LCC), and (c) canopy water content (CWC). The remote sensing data
type (CUB or WV3) and modelling method (LR or RFR) for the best models are indicated as “RS
data type + modelling method” (e.g., CUB + LR). The blue line is the fitted regression line between
predicted and observed values, and the black line is the 1:1 line.

The normalised residual distribution values against irrigation and fertiliser treatments
are shown in Figure A3. The normalised residuals of LAI, LCC, and CWC were not
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significantly affected (p > 0.05) by irrigation for any of the crops. In comparison, only
the residuals from finger millet LAI and CWC prediction were significantly affected by
fertiliser, with residuals decreasing from low to medium to high N fertiliser treatments.

4. Discussion

The main objective of this study was to evaluate two different spectral RS datasets
(multispectral WV3 and hyperspectral CUB) for estimating three crop vegetation param-
eters (LAI, LCC, and CWC) of three major tropical crop types (finger millet, maize, and
lablab). Considering the modelling method, out of the best nine (three vegetation parame-
ters x three crop types) LR models based on VIs, CUB data provided six of the best models,
while WV3 data provided three of the best models (Table 4). In contrast, out of the best
nine RFR models with selected WBs, five of the best models were based on CUB data,
whereas the other four relied on WV3 data. Overall, these results did not show a definite
pattern between the RS datasets and the vegetation parameter estimation model’s accuracy.
Similarly, [10] reported that maize LAI estimation accuracy did not significantly differ
between data with two different spectral resolutions and two different modelling methods
(LR vs machine learning regression). In contrast, [54] detailed that narrow band VIs derived
from hyperspectral data models yielded 20% higher R? values than multispectral data
models for wheat and barley LAI estimation.

4.1. Finger Millet Vegetation Parameter Estimation

According to the authors’ knowledge, only a few studies have utilised RS data to
estimate crop vegetation parameters of finger millet and lablab [29,55]. Finger millet is a
small-grained cereal (C4 type) with similar crop characteristics as pearl millet, sorghum,
and foxtail millet [56]. This study revealed that the hyperspectral CUB data clearly showed
the substantial potential to estimate finger millet vegetation parameters irrespective of
the modelling method. For finger millet LAI estimation, NDVIggg ¢70 from CUB data
showed the minimum error, which confirmed that NDVI has a closer relationship with
LAI at lower LAI values (less than 3.2 m?/m?) [8]. Similar to these results, NDVI showed
the best estimation accuracy for sorghum LAI than other VIs (i.e., greenNDVI, EVI, and
MTVI2) [57].

DATT4 is a VI for leaf chlorophyll a and chlorophyll a+b content estimation [36]
and, when derived from CUB data, showed the strongest correlation with finger millet
LCC (Table 4). However, DATT4 from WV3 was the least correlated VI (Figure Al). The
central wavelengths of the WV3 bands do not match with the exact wavelengths of the
DATT4's formula, which may have reduced the sensitivity of the index. In contrast, Two
NDVIs (NDVIggy 670 and NDVIysg 550) from CUB and WV3 data also showed a strong
correlation with finger millet LCC (Figure A1). However, sorghum’s LCC showed the
highest correlation with hyperspectral data NDVI [58] and indicated a lower correlation
with multispectral data NDVI [59].

Models with VIs showed better finger millet CWC estimation results for both RS
datasets. NDVIy5q 550 was the best correlated VI from both datasets, which predicts CWC
indirectly [25] and contained green and near-infrared bands. CWC estimation with VI
derived from green and near-infrared bands (Clgreen = (p750/ P550) —1) also showed the
best results among other VIs that predict CWC indirectly (i.e., NDVI, NDVIrededge, and
Clrededge) [24]. When it comes to RFR modelling with selected WBs, WBs above 750 nm
were not selected for finger millet CWC estimation. Nevertheless, some of the identified
vital WBs were comparable with important WBs for finger millet fresh biomass estimation
using multi-temporal terrestrial CUB data (e.g., 694 nm) [29].

4.2. Lablab Vegetation Parameter Estimation

Lablab is a legume crop similar to pea, beans, and lentils [60]. The lablab LAI values
showed a strong correlation with NDVI values, but the LAI estimation error with NDVI
was higher than the error from RFR models with selected WBs. The higher LAI values
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(>3.0) from lablab may impede accurately estimating LAI with NDVI due to the saturation
effect, which also demonstrated by [39] with pea LAI values. In comparison to lablab
LAI estimation, LR models with VI showed improved results for lablab LCC estimation.
NDVlIy5q 550, which contains the green band with the near-infrared band instead of the red
band, was the most highly correlated VI with lablab LCC. NDVIy5 550 is also known as
‘Green NDVT’, and according to [38], shows a strong relationship with Chlorophyll a.

NDVI and REIP, respectively, from CUB and WV3 data, delivered the lowest error for
lablab CWC estimation. Even though these VI do not directly relate to the leaf water content,
they could determine CWC because they are linked to crop biomass [25]. Furthermore,
the identified best WBs from CUB data for lablab CWC estimation (Table 5 and Figure A2)
were similar to the critical WBs for lablab fresh biomass estimation [29].

4.3. Maize Crop Vegetation Parameter Estimation

As opposed to finger millet and lablab, maize has been frequently explored with
RS data for its vegetation parameter estimation. LR modelling with hyperspectral (CUB)
data to calculate NDVI showed a lower error than NDVI from multispectral (WV3) data
for maize LAI estimation. [10] also revealed the same pattern for maize LAI estimation
using VI from hyperspectral (field spectrometer) and multispectral (Sentinel-2) data. RFR
models with essential WBs showed similar relative errors for maize LAI estimation using
both RS datasets. Likewise, maize LAI estimation models from hyperspectral data and
multispectral data also demonstrated similar cross-validation error (nRMSE., = 14.9%)
with a support vector machine algorithm [10].

VI derived from green, red-edge, and near-infrared bands were usually better for
LCC estimation [61,62] Logically, VI containing those bands (i.e., NDIVggy g70, DATT4)
were strongly correlated with maize LCC values. However, RFR models with WV3 data
had > 31% relative error, although the centre wavelength of the red band from WV3 data
is 660.1 nm, which is the region absorbed by leaf chlorophyll a [63]. In comparison,
RFR models with CUB data obtained slightly lower error, but all the essential WBs were
between 682-702 nm (red-edge region) (Table 5 and Figure A2). This contrasts with results
from another study using the same hyperspectral sensor (CUB) data, which reported the
usefulness of WBs from blue, red, red-edge, and near-infrared regions for maize LCC
estimation [64].

Indirectly linked VIs could estimate maize CWC in this study, while WI, which is a
directly sensitive VI for CWC, showed the weakest relationship with CWC for all crops.
This could be because crop parameters were highly correlated, and the variation of CWC
somehow directly linked with the crop LAI and biomass values [25]. Nevertheless, water
absorption at 970 nm due to O-H bonds in liquid canopy water [65] was one of the key
WBs for maize CWC estimation by CUB data only (Table 5 and Figure A2).

4.4. Overall Discussion

This study could not conclude which RS data (spaceborne multispectral or UAV-borne
hyperspectral) is better for the evaluated crop parameters for three crop types. Nevertheless,
it is worth to mention the pros and cons of the two RS systems in terms of practical aspects
of general crop monitoring. The spaceborne multispectral WV3 data hugely affected by
cloud coverage in tropical regions, especially in the rainy season. Proper atmospheric
corrections are needed to obtain accurate surface reflectance data from WV3 images to
relate spectral values with crop vegetation parameters, which might not be easy to achieve.
Additionally, the WV3 data cannot be acquired whenever it is needed because of its revisit
frequency of one to five days, depending on the latitude. However, applying WV3 data to
estimate crop parameter in the entire crop field can be efficiently performed because of the
large spatial coverage of each satellite scene.

On the other hand, the UAV-borne CUB data can be collected whenever the data is
needed, and there is no effect on the data due to cloud cover (when a proper radiometric
correction is applied). However, coverage of a larger field needs to done using several
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UAV flight sessions, which could be a disadvantage over the WV3 data. Additionally,
UAV-borne data is also challenging to collect in extreme weather conditions such as rain
and wind, typical of the tropical region’s monsoon seasons.

This study’s third sub-objective explored how the crop parameter estimation accuracy
was affected by the crop’s water and fertiliser treatments. The collected field data showed
a significant positive effect due to irrigation in all three crops. However, finger millet
(inflorescence emergence) and maize (development of fruit) were in similar phenological
stages in both water treatments, while lablab showed two different phenological stages
for irrigated and rainfed crops. (Table 1). The results clearly showed that the prediction
accuracy of crop vegetation parameters did not significantly affect irrigation, and only
finger millet's LAI and CWC prediction error had a significant difference due to fertiliser
treatments (Figure A3). Confirming these findings, [29] also reported no significant differ-
ence for biomass prediction error between two water treatments and fertiliser treatments
for the same three crops with three-year data using in-situ hyperspectral data with machine
learning methods.

This study utilised only a few (n = 24) samples for model building for vegetation
parameter estimation. For this reason, separate models for the irrigation treatments were
not employed, even though the data showed a significant difference between treatments.
Therefore, the CV was applied to build unbiased models, which facilitated evaluating
models with a limited number of data points from both treatments. However, the number
of sample points for both training (n = 22) and validation (n = 2) in the CV was not
enough to capture the dataset’s total variability. For example, when the model was trained
with a unique range of dataset and the validation data points were out of the range
from the trained model, then the model tends to under or overestimates the prediction
value. It is necessary to have more data points to increase the model sensitivity to the
dataset’s total variability. However, having many sample points is always challenging
for RS-based crop parameter estimation for many reasons, including human and physical
resource availability.

The two RS datasets used in this study were sensitive from the visible to the near-
infrared region. According to published studies, usage of the spectral region until the
shortwave infrared (2500 nm) could increase crop parameter estimation potential [12,24].
The two RS datasets utilised in this study could accurately estimate three crop vegetation
parameters from three crop types with different agriculture treatments. Hence these
results could be utilised as a starting point to an in-depth examination of how to use RS
data without shortwave infrared spectral data for modelling LAI, LCC, and specifically
CWC. Additionally, these research findings could be employed to monitor monsoon crops
using the currently available spaceborne and UAV-borne high spatial resolution remote
sensors with similar spectral sensitivity (e.g., Parrot Sequoia, Micasense RedEdge, and
microsatellite constellations such as Planet).

5. Conclusions

This study focused on uncovering how two different spectral resolution RS data can
be utilised for estimating crop vegetation parameters from three crops (finger millet, maize,
and lablab) prominently grown in Southern India. This study evaluated two different very
high spatial resolution (>1.5 m) RS spectral datasets (UAV-borne hyperspectral Cubert-
CUB, spaceborne multispectral World View3-WV3) for estimating LAI, LCC, and CWC for
the three target crops. Two distinct modelling methods, namely linear regression with best-
correlated vegetation index and random forest regression with important wavebands, were
also evaluated. According to the results, irrespective of the RS datatype, crop type, and
modelling method, the average relative estimation error was less than 16%, 25%, and 22%,
respectively, for LAI, LCC, and CWC estimation. However, there was no clear evidence
to identify the best RS dataset or the best modelling method to estimate the examined
crop parameters. Nevertheless, there was a trend that hyperspectral (CUB) data was better
for estimation of vegetation parameters of finger millet while multispectral (WV3) data
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was better for both lablab and maize vegetation parameter estimation. Overall, vegetation
indices derived from the combination of either green, red, red-edge, and near-infrared
wavebands showed clear potential from either multi or hyperspectral data for an accurate
estimation of the investigated vegetation parameters regardless of the crop type.
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Appendix A

Table Al. Summary of the crop parameter data (LAI: leaf area index, LCC = leaf chlorophyll content,
CWC: canopy water content, SD: standard deviation, CV: coefficient of variation).

Crop Water Min Mean SD Max Ccv

LAI (m?/m?)

Finger Irrigated 14 2.6 05 3.2 19.2%

millet Rainfed 0.4 1.0 0.4 1.6 40.0%

Irrigated 1.7 2.5 0.6 3.5 24.0%

Lablab Rainfed 0.2 0.5 0.2 0.7 40.0%

Mad Irrigated 2.1 2.7 0.2 3.0 7.4%

aize Rainfed 1.0 1.6 0.4 2.2 25.0%
LCC (ug/cm?)

Finger Irrigated 19.3 39.7 13.6 65.6 34.3%

millet Rainfed 10.2 12.8 34 21.4 26.6%

Irrigated 17.5 36.3 7.8 43.0 21.5%

Lablab Rainfed 20.1 275 43 333 15.6%

Irrigated 15.7 421 19.6 76.4 46.6%

Maize Rainfed 11.9 20.3 5.3 30.6 26.1%
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Table Al. Cont.

Crop Water Min Mean SD Max Ccv
CWC (kg/m?)
Finger Irrigated 0.4 14 0.7 2.7 46.5%
millet Rainfed 0.1 0.5 0.2 1.0 52.1%
Irrigated 0.4 0.7 0.3 1.6 48.5%
Lablab Rainfed 0.03 0.08 0.04 0.1 50.0%
Mai Irrigated 0.8 1.5 0.4 2.3 26.6%
aize Rainfed 0.2 0.9 0.4 15 45.5%
LAI LCC CcwcC
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Figure A1. Correlation between vegetation indexes from two remote sensing data Cubert (black) and WorldView3 (grey)
and crop vegetation parameters leaf area index (LAI), leaf chlorophyll content (LCC), and crop water content (CWC) for

finger millet, maize, and lablab.
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Figure A2. Distribution of actual impurity reduction value-based important wavebands for two remote sensing datasets
(Cubert-black and WorldView3—grey) for leaf area index (LAI) estimation (a,d,g), leaf chlorophyll content (LCC) estimation

(b,e,h), canopy water content (CWC) estimation (¢ f,i) for finger millet (a,b,c), lablab (d,e,f), and maize (g,h,i) crops.
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Figure A3. Distribution of the normalised residuals values against (a) water treatments and (b) fertiliser treatments from
the best models for leaf area index (LAI) estimation, leaf chlorophyll content (LCC) estimation, and canopy water content
(CWC) estimation for finger millet, lablab, and maize. The dashed line at y = 0 represents zero normalised residual value.
(ns or NS: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001).
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