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Summary

In this thesis, a set of modeling and control strategies are proposed for Cyber-
physical systems (CPS), which aim at ensuring a safe, reliable, and highly perfor-
mant operation of each local subsystem contained in the CPS. Modeling of CPS is
challenging since not only must the tight interconnection of continuous and discrete
dynamics of local subsystems be exactly represented, but so must also the interleav-
ing structure between different subsystems. Optimal control of CPS, accordingly,
should take into account not only the local mixed dynamics by local controller
synthesis, but also the influence from other subsystems around.

To model a large variety of physical processes containing continuous and discrete
behavior, a type of hybrid system HA is first introduced in this thesis. Compared
to standard modeling techniques, such as piecewise affine (PWA) systems, the pro-
posed HA is capable of encompassing both, autonomous switching and externally
triggered switching between different continuous dynamics. By assuming each sub-
system in CPS is modeled by HA, three different interleaving structures among
the subsystems are considered in this thesis, namely: 1.) the influence from other
subsystems is cast into a time-invariant change of the local HA; 2.) the influence is
cast into an uncertain and time-varying change of the local HA; 3.) the influence
is cast into coupling constraints to be jointly satisfied by all subsystems.

For the first case, in which no uncertainty is encountered, the major task of this
thesis is to ensure the optimality of the local control strategy and the efficiency of the
process to determine such a control strategy. Different methods are thus proposed to
encode the hybrid dynamics of the H A, based on which the optimal control strate-
gies are determined by solving mixed-integer programming (MIP) problems. For
the second case, in which the local H A varies over time with uncertainties, means
are introduced to ensure the robustness of the control strategies. For the online
application of a selected strategy, another important task is to ensure the continu-
ity of the operation despite uncertain changes of the environment. Regarding this
problem, which refers to the concept of recursive feasibility, methods are introduced
to preserve the continuity. For the last case, in which coupling constraints arise, a
particular difficulty of controlling CPS is to provide such means that the coupling
constraints are satisfied while the optimality is ensured. The most promising way
is to employ a centralized solution, but the size, e.g., the number of subsystems,
may quickly let it become intractable. Accordingly, a set of distributed solution
strategies with feasibility and performance guaranties are introduced in this thesis.
By applying these distributed strategies, the centralized problem is cast into a set of
small-scale problems to be solved in parallel. This distributed scheme also ensures
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a minor increase of the overall complexity when more subsystems are included in
the CPS.

Last, besides the numerical experiments tested for each proposed method, a set
of CPS-relevant practical studies are introduced for each considered case. Efficiency
and reliability of the proposed methods are confirmed by all these tests and studies.
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1. Introduction and Problem
Background

1.1. Introduction

Cyber-physical systems (CPS) have attracted great interest in recent years, not
only because of their relevance for applications such as ,, Industrie 4.0”, autonomous
driving vehicles or human-robot collaboration, but also in academic research due to
open system-theoretic questions on: 1.) how the tight interconnection of software
and physical elements can be realized (leading to combined continuous and discrete
dynamics) and 2.) how networked structures arising either from the coupling of
the dynamic behavior of subsystems or from the communication of joint goals or
specifications should be designed. Meanwhile, the challenges for modeling and con-
trol of CPS are further complicated as the sizes of systems are growing ever more:
This is due to an increased complexity of the discrete dynamics interleaving with
the continuous dynamics in each local subsystem, and to an increased number of
subsystems interacting with each other.

A typical structure of CPS is illustrated in Fig. 1.1, where the plant of each local
subsystem contains both continuous and discrete behaviors (the continuous part
arises from modeling physical process and the discrete part represents some discrete
decisions selected from a finite set), and a change of a local plant may also affect
the evolution of other plants. Therefore, the local controllers have to coordinate
with each other via the network in order to ensure that the local control objective
is realized despite the complex dynamics and the influence of other subsystems.
Some example scenarios of a CPS with this structure and taken from the domain
of autonomous driving are illustrated in Fig. 1.2: The one on the left considers
a vehicle overtaking problem, whereas the other one refers to a narrow passage
problem at a building site. For both scenarios, a mixed decision consisting of both,
a discrete decision (e.g. whether to change the lane or not, or who should drive
first through the passage) and a continuous decision (e.g. velocity and acceleration
over time) must be made by each local vehicle, while the behavior of other vehicles
around must be taken into account during the local decision process through the
network.

For the modeling of CPS, a general model class to describe the dynamics in each
subsystem is often required, so that a large variety of the physical processes can
be covered. As shown in the examples in Fig. 1.2, such a model should be able to
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Figure 1.1.: Networked structure of CPS: each local subsystem ¢ € {1,--- ,ns} con-

sists of both continuous and discrete dynamics in the plant. Interac-
tions between the subsystems are caused by either physical coupling or
coupled cost criteria. For the local controller ¢;, not only should the
local mixed dynamics be considered, but also the interactions among
the subsystems. It is thus necessary to communicate and coordinate
local controlled behavior through a network according to certain pro-
tocol, such that the safety and optimality of all subsystems in CPS are
guaranteed.

comprise both continuous and discrete dynamics. In addition, as the evolution of
the continuous dynamics affects the evolution of the discrete part, or vice versa, this
model should also be able to describe the interactions between the two dynamics,
such as through suitable logic conditions. For the control part in CPS, a main goal
is to guarantee the satisfaction of all safety properties of the overall system, while
at the same time controller adaption in response to changes of the system or its
local environment should enable high system performance in attaining the control
goals.

Clearly, the tasks of modeling of and controller design for CPS are not indepen-
dent of each other, but highly correlated. For example, as the use of an approximat-
ing model is sometimes preferred since it can lead to reduced system size (e.g. the
use of linearized continuous dynamics instead of the original nonlinear one derived
from the physical law, or neglecting some redundant discrete decisions), a larger set
of uncertainties caused by approximation errors may arise and must be taken into
account for controller synthesis. This may lead to relatively conservative control
strategies and thus to worsening the performance, or even threatening the guaranty
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Figure 1.2.: Application of CPS in different autonomous driving problems: in both
cases, local autonomous vehicles must communicate as well as coor-
dinate their continuous and discrete behavior through the network in
order to ensure a safe and reliable driving maneuver of all vehicles.

of safety of the controlled behavior.

Accordingly, the objective of this thesis is to develop new means for both modeling
and control of CPS, such that a good control performance is achieved together with
a guaranty of safety of the system. Before the details of these new means are
exposed, existing methods in the given context are first surveyed below. Note that
more detailed references to existing work are additionally provided at the beginning
of each chapter.

1.1.1. Modeling of Hybrid Dynamics in CPS

To account for the requirements in CPS modeling, the class of hybrid systems
is preferred in this thesis due to its high flexibility in describing the interleaving
between the transitions among discrete states and the evolution of the continuous
states. Typically, a change of the discrete state affects the continuous dynamics
as well as the continuous state from which the further evolution starts, while the
continuous state evolution determines the discrete successor state reached by the
upcoming transition. An example is the automatic gear-shift of a vehicle, where the
engine speed (continuous state) decides whether the gear (discrete state) should be
shifted, and the chosen gear will also affect the evolution of engine speed.
According to different transition mechanisms of the discrete states, hybrid systems
have been further classified into autonomously switching systems, switched systems
(controlled switching systems), or the combination of both [37]. More details of
this classification can be found at the beginning of the next chapter. Among the
existing work in CPS modeling by using hybrid systems, the use of piecewise affine
(PWA) systems, which belong to the class of switching systems, has attracted much
attention in the last few years, see [33, 75, 21, 15]. There, the continuous state space



1. Introduction and Problem Background

is partitioned into a set of subspaces by hyperplanes, and a discrete state is assigned
to each of the subspaces. In different subspaces, different continuous dynamics are
followed, and a change of the continuous dynamics is triggered by the state evolution
crossing through a hyperplane constituting the boundary of a partition. Obviously,
as the crossing of a boundary is the only way to change the discrete state in this
scheme, physical processes in which the change of the discrete state is not bounded
to crossing a hyperplane cannot be represented by using PWA systems. Thus, more
general types of hybrid systems are required to model more general phenomena in
CPS.

1.1.2. Controller Synthesis of CPS

Challenges in controller synthesis of CPS are manifold, but main objective remains
nevertheless to ensure a safe, reliable and highly performant operation of the net-
worked system. Especially for the networked structure in Fig. 1.1, the control
strategy of each local subsystem must be adapted in order to overcome the diffi-
culties of 1.) high complexity caused by different dynamics, parameters, objectives,
and physical constraints defined for each subsystem; 2.) the uncertainty caused by
incomplete knowledge during system modeling, measurement error of the changing
environment and communication error/delay among the subsystems, and 3.) lim-
ited computational power which may make it difficult to find the optimal control
strategy online.

Nevertheless, before any of these challenges can be addressed, a fundamental is-
sue lies in encoding the transition mechanisms of the hybrid dynamics before the
controller synthesis step. Note that for different transition mechanisms in given
hybrid systems, the solution to the control problem (e.g. optimal control, robust
control, etc.) is also different: for the optimal control of PWA systems (or the
equivalent class of mixed logical dynamic (MLD) Systems [20, 19, 31, 75]), the hy-
brid dynamics in most cases is cast first into piecewise linear dynamics including
real and binary variables. Then, a mixed integer programming (MIP) problem is
solved in order to obtain the optimal control strategy. A similar procedure is pos-
sible for piecewise nonlinear dynamics, which then leads to mixed integer nonlinear
programming (MINLP) problem [87, 125]. Another approach is to use dynamic pro-
gramming (DP) or the maximum principle for the controller synthesis of switching
or switched systems in continuous-time domain, see [31, 74, 139, 129]. The use of
temporal logic [134, 57] to encode more elaborate logic specifications of the hybrid
systems evolution were addressed in [80, 122, 62], but are mainly applied to PWA
systems [166, 77, 170].

Note that most of these approaches (especially for discrete-time hybrid systems)
need to use integer variables to encode the logic conditions behind the discrete and
continuous state evolution, i.e., a MIP problem is formed, which is not convex,
and it is also known that it cannot be solved in polynomial time [49]. To reduce
the complexity of the controller synthesis, the strategy of Model Predictive Control
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(MPC) [65, 109, 137, 108] is often applied, which only takes into account a finite time
domain of the controlled behavior in any iteration, and thus reduces the problem
size. The optimal control action is determined repeatedly in each iteration or time
instance in MPC, until the control objective is achieved. The state and input
constraints can also be easier handled via MPC than in traditional control strategies
such as Linear Quadratic Regulators (LQR) [84, 10], and this is especially important
for fulfilling safety requirements in CPS.

Robust Control of Uncertain CPS

Controller synthesis for local subsystems of CPS may encounter uncertainty, caused
by either local modeling error or an inexact model to describe the interaction among
the subsystems. For the former class of uncertainty arising in the local hybrid plant
(e.g. random failures causing unexpected transitions from one discrete state to
another, random resets of continuous states during the transitions, or disturbances
affecting the continuous behavior), the work in [79, 3] derived a robust control law
specific to PWA systems with additive disturbances through computation of robust
controllable sets. For the same class of PWA systems, the authors in [115, 143]
aimed at setting up a min-max problem to enforce the robustness. The work in
[73, 67] preserved the robustness by using a robust invariant set to bound the effect
of the disturbances for PWA systems and linear switched systems. In addition, the
work in [113] proposed a robust switching law for autonomously switching systems,
and the work in [2, 14, 15] focused on another class of uncertainty in which the
discrete transition structure is probabilistic.

Besides the uncertainties affecting a local plant, a change of the environment
(which may only be partially known) of the local subsystem may also yield uncer-
tainties. This usually occurs when the impact of the interactions between subsys-
tems cannot be exactly modeled nor predicted. Note that this type of uncertainty
is even more critical when an online strategy like MPC is applied, since the change
of the environment (usually leading to a change of the local state constraints) may
lead to a loss of recursive feasibility and stability of the strategy. However, the
controller synthesis problem for varying environments has rarely been considered
in the past, with the following exceptions: The work in [163, 107] focused on MPC
with time-varying input and state constraints, where the pattern of how the con-
straints change is assumed to be known a-priori. Techniques of explicit MPC rely
on state-space partitioning, which has to be provided in offline computations [5]
— considering all configurations (and thus different partitions) which may occur in
applications like autonomous driving seems not realistic. The work in [106] intro-
duced the method of homotheticly changing the terminal region in order to provide
stability guarantees, despite changes of the state and input constraints. However,
recursive feasibility was not addressed in that work, although it is an important
pre-requisite of stability of predictive controllers [104]. In a more recent work in
[145], a collision avoidance problem by using MPC is considered, where the obsta-
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cles (representing the environment) are moving over time with uncertainties. The
authors proposed means to ensure recursive feasibility, constraint satisfaction and
robust collision avoidance for given problem settings.

Distributed Control of CPS

The distributed control of CPS has been proposed as an important class of tech-
niques, when the control problem is too complicated to be solved in a centralized
fashion (note that as communication and coordination between subsystems are re-
quired in the structure considered in Fig. 1.1, the notion of distributed control is
used instead of decentralized control throughout this thesis). For two main types of
coupling considered in CPS, i.e. criteria of coupled costs and coupled constrained
sets, the development of distributed control strategies aims at decomposing the
centralized problem into a set of small-scale sub-problems in order to reduce the
problem size. Most of the discussions on distributed control algorithms are limited
to linear dynamics and focus on how to achieve the global optimum in an iterative
scheme with low communication frequency [70, 59, 52, 172], or for a time-varying
communication graph [42, 117, 119]. For networked hybrid systems, where both
real and integer variables are involved in the centralized program, only a few results
have been addressed so far with respect to the distributed control problem. In [34],
an iterative distributed MPC algorithm for hybrid systems was proposed, but the
considered class of hybrid systems is far from general (linear systems with discrete
valued inputs). In [71], a distributed control strategy of coupled PWA systems
was proposed, but only a local optimum can be achieved through the proposed
communication scheme.

Techniques for distributed optimization of MIP problems have also been devel-
oped in the past few years, e.g. in [162, 161, 60, 124], and they can possibly be
applied to realize distributed control in CPS, since integer variables are applied to
encode the hybrid dynamics. However, most of these techniques are limited to the
case when the cost function (representing the control objective) is linear — although
a quadratic one is more common in control methods such as MPC.

1.2. Outline of this Dissertation

In this thesis, a general class of hybrid system H A is first defined, which is able to
describe a larger variety of transition mechanisms than is described in literature for
existing methods, e.g., for PWA systems. Then, based on modeling each subsystem
of a CPS by the considered general hybrid system, a series of controller synthesis
problems and their solutions are proposed for different interaction schemes of CPS:

In Chapter 2, it is first assumed that the interaction between other subsystems and
a subsystem i is static, and the influence to subsystem i can be cast into additional
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deterministic constraints for subsystem ¢. By modeling the dynamics of subsystem
i with the proposed HA, the local controller design thus takes all its local hybrid
dynamics and constraints, and the additional constraints into account. An optimal
control problem over a finite time horizon is thus formulated and considered in this
chapter, where the transition mechanisms (including switching, controlled switch-
ing and conditional controlled switching) of local hybrid dynamics are translated
into algebraic programs, to which existing solvers can be applied. As integer vari-
ables are used for the translation, which is crucial for the ability to encode logic
constraints (e.g. the transition mechanisms) but leads to high complexity of the nu-
merical programs, two translation schemes are proposed in this chapter to enhance
efficiency. The first one requires to enumerate all possible discrete state sequences,
while the other does not (advantages and disadvantages of the two schemes are also
discussed in this chapter). Both schemes can ensure the exactness of the translation
and thus the optimality of the control action obtained (for the discrete-time case).
In both schemes, an additional constraint purely among the integer variables is also
formulated, which can significantly reduce the available combinations of the inte-
ger variables (and thus the computational complexity), with the same amount of
necessary integer variables. At the end of this chapter, an autonomous vehicle over-
taking problem is considered, and it is shown that safe trajectories can be planned
by modeling the over-taking procedure with considered hybrid systems.

In Chapter 3, the focus still remains on the local problem of subsystem 7, but now
with uncertainties. Different classes of uncertainties are considered in this chapter,
caused by either modeling errors for local plants or modeling errors for the envi-
ronment (interaction). For the uncertainty caused by the former, a robust control
method is proposed, which ensures that the local control objective can be achieved
despite the uncertainties. This method is tailored to the type of hybrid systems
in the last chapter, that a robust strategy implies that given hybrid semantics are
always followed despite the uncertainties, while the desired control tasks are always
achieved. In this approach, a so-called ,tube-based” method [86, 110, 67] which
was used to handle uncertainties in simpler dynamics, is applied to the considered
hybrid dynamics. The other type of uncertainty, the one caused by environment
modeling errors, usually arises when the interaction is changing over time and no
model is at hand to describe or to predict the change. This is a more realistic setting
than the static interaction scheme considered in Chapter 2. For this case, an MPC
strategy is developed in order to guarantee recursive feasibility and stability despite
the uncertainties. However, these guarantees come with a price of conservativeness
with respect to a tightening of the feasible state and input space, i.e., no feasible
control action may be found in the worst case. For this problem, a less conservative
approach is introduced which uses a penalty term of the cost function to enforce
the robustness (instead of tightening the feasible space). Numerical examples con-
firm that the same robustness can be achieved in most cases by employing this
approach (but cannot provide guaranty as the tightening approach). At the end, a
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human-robot collaboration problem is considered, where uncertainties are presented
for both robot plant and human motion prediction. It is shown that by using the
methods proposed in this chapter, a safe and reliable collaboration between robot
and human can be guaranteed.

In Chapter 4, the focus is shifted to distributed control problems for CPS. The
background of the problems is that, it may not always be possible to cast the in-
teraction among the subsystems into local constraints, and the subsystems may
have to decide upon their control actions jointly. This may happen if, e.g., shared
resources are considered in CPS and allocation strategies are required to distribute
these resources optimally. The narrow passage problem in Fig. 1.2 belongs to one
of these problems, where the priority to travel through the passage is a kind of re-
source to be distributed among the vehicles. As most of the local control problems
have been eventually cast into MIP problems in the preceding chapters, this chap-
ter starts with an analysis of the distributed optimization of global MIP problems.
Unlike the distributed optimization of convex problems, e.g. linear programs (LP),
means to guarantee the convergence of distributed MIP problem towards the opti-
mum are still under study, see [162, 161, 60]. The considered investigation starts
from extending recent results on distributed optimization of mixed-integer linear
programs (MILP). Here some conservative assumptions required in state-of-the-art
approaches are relaxed, and thus enhancing the computational efficiency. Then, a
distributed optimization strategy for mixed-integer quadratic programs (MIQP) is
introduced, which can handle more general types of problems in the context of op-
timal control. Various numeric tests are conducted to confirm the efficiency of the
developed strategies compared to the centralized one. At the end of this chapter,
a trajectory planning problem for autonomous vehicles passing through a narrow
passage is considered. The simulation results show that all vehicles can safely travel
through the passage (with neglectable performance loss compared to the centralized
solution) by employing the proposed distributed strategy.

Finally, it is emphasized that communication problems such as the directed or
undirected communication graphs, time-varying graphs, packet losses in transmis-
sion channels, or communication delays are not in the focus of this chapter (but
belong to part of the future research topics detailed in the conclusion chapter). In-
stead, the focus is limited to the design of the communication order for CPS, such
that the convergence towards the global optimum /sub-optimum can be guaranteed.

Chapter 5 concludes this thesis by listing all main contributions, together with
an outlook on future research directions in modeling and control of CPS.

10
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2. Optimization Based Control of
Hybrid Systems

This chapter considers an optimal control problem for a single subsystem of CPS.
Problems of this kind arise if the interaction with other subsystems can be cast
into constraints of the local subsystem, see Fig. 2.1. The design of local controllers
therefore has to take into account these constraints together with local constraints
when aiming at achieving the local control goal. For example, in autonomous driv-
ing (see the example in Fig. 1.2 in the last chapter) the influence of surrounding
vehicles can be formulated as forbidden zones of the vehicle, and the local controller
should plan its motion by avoiding these zones. However, unlike the optimal control
problem for linear dynamics and convex constraints, the optimal control problem for
single subsystems of CPS is more challenging with respect to the following aspects:

e Hybrid dynamics are suitable to model the evolution of combined continuous
and discrete states (e.g. the continuous states in autonomous driving are
the velocity and position of each local vehicle, while the discrete state is the
decision whether to overtake the vehicle in front, or not): to decide which type
of hybrid system should be employed so that the desired mixed-state evolution
can be modeled sufficiently precise, however, is often difficult.

e After a suitable local hybrid dynamics has been identified, the formulation of

Constraints

Controller ¢;
A l : X
\ : ¥ -

:

Figure 2.1.: Interaction from other subsystems to local subsystem i is cast into con-
straints for its local controller.

13
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a related (optimal) control problem may also be challenging with respect to:
1.) the local control task, 2.) the local constraints such as the maximal accel-
eration of the local vehicle, and 3.) the additional constraints representing the
interaction with the environment, such as the forbidden zones to be occupied
by other vehicles.

e The obtained optimal control problem may contain both continuous and dis-
crete variables, or logical relations describing the interleaving between contin-
uous and discrete dynamics. The question is, thus, how to properly formulate
such mixed dynamics and logical relations in the optimal control problem, so
that the problem is accessible to existing solvers.

e Even if the optimal control problem is immediately accessible by a solver, its
solution process may also be too time-consuming for online control. Thus, one
has to ask if and how the complexity can be reduced, e.g. through a compact
formulation of the optimization problem with fewer variables.

Given these challenges, this chapter starts from reviewing some commonly used
hybrid systems (for the two cases of continuous-time and discrete-time formulation)
in literature. Optimal control strategies for these hybrid systems are also reviewed,
such as Dynamic programming and Indirect/Direct methods for the continuous-time
case, and mixed-integer programs for the discrete-time case. Thereafter, departing
from the often used PWA systems for modeling of hybrid dynamics, a type of
hybrid automata that can cover quite general transition mechanisms of CPS is
proposed (which is derived from the unified hybrid systems defined in [37]), including
autonomous switching, controlled switching, conditional controlled switching, as
well as impulsive changes of the continuous state.

Then, for the considered type of hybrid systems in discrete-time, a class of finite-
time optimal control problems is obtained and two techniques to compute optimal
control strategies are proposed in this chapter. In the case that the flow and reset
functions in considered hybrid systems are linear (extensions to nonlinear case are
discussed at the end of this chapter), both approaches are capable to translate the
hybrid dynamics into a set of linear, mixed-integer constraints, leading to numeri-
cal programs which can then be processed by solvers like CPLEX [48]. In addition,
exactness of the translation is also guaranteed (and thus the optimality of the so-
lution) for both approaches, while the difference lies in whether the discrete state
sequences need to be enumerated in advance. Advantages and disadvantages of the
two approaches are then discussed in detail. Finally, a vehicle overtaking problem
(similar to the one in Fig. 1.2) is considered, in which safe trajectories of a local
autonomous vehicle are found by employing the methods proposed in this chapter.
The content of this chapter is based in parts on results previously published in
[95, 93, 97, 94].
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2.1. Introduction of a General Class of Hybrid Systems

2.1. Introduction of a General Class of Hybrid
Systems

As mentioned in the last chapter, hybrid systems are often classified into switched
systems, autonomously switching systems, or the combination hereof based on the
transition semantics. While in switched systems the transition of the discrete state
is forced by an external discrete input signal [167, 95, 171], the change of the discrete
state in autonomously switching systems is only a consequence of the continuous
state evolution [23, 89], see Fig. 2.2. A change of the discrete state in both switched
and switching systems will lead to another differential or difference equation to be
followed thereon by the continuous state. For switching systems, the condition to
be satisfied for the continuous state to trigger a discrete state transition is often
defined as a transition guard [89, 85], i.e. a subset of the continuous state space
which must be reached by the continuous state to trigger the transition, see the
red line in Fig. 2.2. In contrast, no guard exists in switched systems, as discrete
state transitions can be enabled anywhere in the continuous space, provided that
an external trigger signal is given. Controlled switching systems are a combination
of the two former types, such that a discrete state change is only enabled when a
subset part of the continuous state space is reached and a discrete input signal is
given in the same time.

Besides the classification above, hybrid systems are further classified according
to whether the continuous state changes impulsively at a change of discrete state,

Switching System Switched System Conditionally Switched System

vo(t) =1

Figure 2.2.: Different transition mechanisms in continuous-time hybrid systems: In
the left case, a change of the continuous dynamics is triggered by hitting
a hyperplane (or a manifold) marked in red; in the middle, a change
is triggered by an external discrete input v(t) = 1; in the right case, a
transition can only be triggered if the continuous state is located in a set
(representing a transition condition) and if the discrete input v(t) =1
is also applied in the same time.
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Autonomous impulse Controlled impulse
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Figure 2.3.: Resets (or jumps) of the continuous state for both autonomous and
controlled impulses are illustrated: when a change of a discrete state
is triggered at time ¢, with ¢; = lim; 4 ;<4 ¢, an impulsive change
(dashed line) of the continuous state from x(¢7) to (¢;) is also triggered
at the same time.

namely, the autonomous impulses for switching systems, and the controlled impulses
for switched systems [37], see Fig. 2.3. Impulsive changes of the continuous state,
sometimes also called Resets or Jumps, usually result from an abstraction of the
true physical process, especially when the continuous state changes significantly in
a negligibly small interval of time.

It should not be hard to notice that modeling by using hybrid systems may lead to
a range of possible combinations of the transition mechanisms. Among the possible
combinations, piecewise affine (PWA) systems are a relatively popular subclass of
hybrid systems, and the optimal control problem for it has been widely considered,
e.g. in [22, 20, 152, 17, 31, 33]. In these publications, the continuous state space is
typically partitioned into several polyhedral subsets, see Fig. 2.4. Transition guards
for PWA systems are defined implicitly in the sense that, whenever the continuous
state hits or crosses a hyperplane constituting the boundary of a partition, the
discrete state transition occurs as an immediate consequence of the evolution of the
continuous state. In this sense, PWA systems also belong to a subclass of switching
systems.

However, although PWA systems have attracted significant interest by studying
modeling and control of CPS, the way how the discrete states changes in PWA
systems is restrictive with respect to the different transition mechanisms introduced
above. An example is a model suitable to design an automatic gear-shift for a
vehicle, when shifting a gear is permitted in a certain range of engine speed instead
of only at the prescribed values of engine speed. This is relevant if the choice of
switching speed is still a degree of freedom of the control design.

To overcome these limitations of PWA systems, a general hybrid system HA,
which is of the type of hybrid automata [76, 9], encompassing all three transition
mechanisms in Fig. 2.2 and two types of impulses in Fig. 2.3 is considered in the
sequel. The HA shares a similar structure to the unified hybrid systems defined
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2.1. Introduction of a General Class of Hybrid Systems

Figure 2.4.: For a PWA system with 4 discrete states obtained by partitioning the
state space X into four subspaces X;, X5, X3 and X,. Starting from
the initial continuous state z(ty) at time tp, a change of the discrete
state as well as the continuous dynamics is a direct consequence by
crossing the boundaries of subspaces (marked in red).

in [37], and the optimal control of HA involves the decision on optimal contin-
uous state and controls, discrete state and controls, discrete state sequences and
transition times. Before the discussion of H A is started, a brief review of existing
optimal control techniques for different classes of hybrid systems is presented for
both continuous-time and discrete time cases.

Optimal Control of Continuous-Time Hybrid Systems

Unlike purely continuous systems, the continuous states of hybrid systems evolve
according to different differential equations in different discrete states. The overall
continuous control inputs are thus a set of continuous trajectories in an infinite
dimensional functional space for each discrete state. Techniques to determine the
optimal input trajectories have been derived for purely continuous systems, includ-
ing Dynamic programming, Indirect methods and Direct methods. However, these
techniques must be tailored to hybrid systems, in order to take into account the
discrete dynamics at the same time.

When Dynamic programming is applied to the optimal control of hybrid systems,
the key is to find the optimal control law in each discrete state according to the
Hamilton-Jacobi-Bellman (HJB) equation, see [38, 37, 74]. The HJB equation is
derived from the Principle of Optimality, i.e., each subtrajectory (for both continu-
ous and discrete states) of an optimal trajectory must be an optimal trajectory as
well. The main advantage of dynamic programming is that it provides an optimal
feedback control law, thus the optimal control action can be directly computed ac-
cording to the measured state when applied online. For the unified hybrid systems
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2. Optimization Based Control of Hybrid Systems

considered in [37], the optimal control strategy proposed there is also based on dy-
namic programming. However, similar to the case of purely continuous dynamics, a
value function satisfying the HJB partial differential equation must be determined
in dynamic programming. But the computation of the value function is well known
to suffer from the ,curse of dimensionality” (besides some special cases, such as the
linear quadratic optimal control problem, in which the value function can be derived
analytically). To determine an approximated value function, a common approach is
to sample the continuous state and control spaces, while this limited the application
of dynamic programming only to problems with small state and input dimension.

Indirect methods start from formulating the necessary optimality conditions of
the optimal control problem, see e.g. [154, 130, 41, 129]. This idea is in part simi-
lar to dynamic programming, but no feedback control law is derived here. Instead,
optimal conditions for the controlled states and co-states are formulated, leading to
a boundary value problem (BVP) of them. By solving the BVP, the optimal state
and co-state trajectory can be determined, and thus the optimal control actions.
Note that the formulation of the optimal conditions requires the use of Pontrya-
gin’s Mazimum Principle, sometimes also called the Minimal principle (depending
on whether the optimization task is to maximize or minimize). The BVP is solved
numerically, e.g., by the Multiple shooting method, in which the time interval of
the BVP is discretized and the Newton method is used to match the boundary
conditions. In general, indirect methods are able to provide a solution with high ac-
curacy, but suffer a small domain of convergence (as the BVP is possibly described
by a set of non-smooth differential equations) and a difficult initialization (a good
initialization of the co-state is crucial for the solution quality) [128]. The neces-
sary optimality conditions in literature are often tailored to specific type of hybrid
systems, e.g., in [154] a switching system is considered, and in [130, 129] a parti-
tioned state space is required for the hybrid system. For the unified hybrid systems
in [37], the necessary optimality conditions for a given discrete state sequence are
formulated in [126].

Direct methods start from parameterizing the infinite dimensional controls of the
original problem, leading to an approximating nonlinear program with finitely many
optimization variables, see [158, 160]. A standard step in direct methods is to first
discretize the whole problem with respect to time, and then optimize the discretized
state and control trajectories in a nonlinear program (that is why direct methods are
often characterized as ,first discretize, then optimize”, while indirect methods are
characterized as ,first optimize, then discretize”). Since the discretization is made
before the optimization, direct methods thus share many similarities with methods
developed for discrete-time optimal control problems. In addition, as a large vari-
ety of optimization methods for nonlinear programs have been well studied in the
last decades, see a summary in [26], these optimization methods can eventually be
employed to solve the nonlinear programs in direct methods, and thus enhances the
computational efficiency. By applying direct methods to hybrid systems (with non-
linear continuous dynamics), as the discrete states are usually modeled by integer
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2.1. Introduction of a General Class of Hybrid Systems

variables and the transition mechanisms are encoded by mixed-integer constraints,
this approach will lead to mixed-integer nonlinear program (MINLP). More details
of MINLP will be reviewed in the following section.

Optimal Control of Discrete-Time Hybrid Systems

For discrete-time hybrid systems, a sampling over time leads to slightly different
transition mechanisms than in the continuous-time case, see Fig. 2.5 for more
details. For optimal control in the case of discrete-time, the method of dynamic
programming can be further applied (see [95, 94] for example), but the ,curse of
dimensionality” still exists, and the method is thus only suitable for hybrid systems
with low-dimensional state and input space. Most existing work cast the optimal
control problem directly into MINLP tasks, and determine the optimal state and
control trajectories thereafter. This approach mostly uses a set of mixed-integer
algebraic constraints to describe the discrete-valued dynamics and the transition
mechanisms. The mixed logical dynamic (MLD) systems tailored to PWA systems
(see [20, 19, 31]) also belong to this approach. In general, by collecting all states,
controls, as well as additional integer variables into a mixed-integer vector w €
R" x Z"=, the following MINLP is obtained:

min J(w) (2.1)
s.tr G(w) <0, we R™ x Z™.

Note that here the optimization variable w contains n, continuous entries and
n, integer components, and the equality constraints are re-written into inequal-
ity form. Techniques based on branch-and-bound [88, 112] or branch-and-cut al-
gorithms [111, 149] are standard approaches to solve MINLP problem (2.1). The

Switching System Switched System Conditionally Switched System
va(ty) =1 @ vty =1 e
v () = fi(e(te), ult) ," / 2(trs1) = fr(@(te), ult) ./

]
¥
o\./ °
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Figure 2.5.: Different transition mechanisms in discrete-time hybrid systems: Com-
pared with the case of continuous-time in Fig. 2.2, difference equa-
tions are used to describe the continuous dynamics, and the transition
conditions for switching systems are changed to crossing a hyperplane
(marked in red) instead of exactly hitting it.
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Figure 2.6.: The branch-and-bound search tree starts from a root node @ (marked
in yellow) satisfying G() < 0,% € R" x Z"=. The cost J(@) is then
adopted as the incumbent best cost of the problem (2.1) and serves
to prune the succeeding nodes in the searching. The branching of the
,root node” is realized by branching over an integer variable in @ and
imposing additional constraints to the problem (2.1). A new node is
determined by problem (2.1) with the additional constraints. For a new
node, if it can lead to a feasible candidate for (2.1), the optimal cost
(or an upper bound of the optimal cost) of the candidate is compared
with the incumbent best cost, and replaces the latter if it attains a
lower value. For the case that the new node cannot lead to a candidate
feasible for (2.1), or the lower cost bound of the candidate is even higher
than the incumbent best cost, it is pruned from further searching. The
search terminates when no node in the tree can lead to a candidate
better than the incumbent best one.

tree-search procedure applied in these algorithms relies on the iterative determina-
tion of suitable cost bound, based on which sub-trees may not include the optimal
solution are eliminated from further exploration, see Fig. 2.6. The efficiency de-
pends critically on the tightness of these bounds, usually obtained by relaxing the
integrality constraints (leading to lower cost bounds) or from appropriate heuristics
(leading to upper cost bounds).

Nevertheless, by applying some advanced heuristics and when the number of in-
teger variables in w is small, the branch-and-bound method can indeed provide a
suitable approximation of the optimal solution within short time. However, when a
large number of discrete states is involved or a large time horizon is considered, the
exponentially increasing complexity will quickly make branch-and-bound methods
impractical. A reason may be that the heuristics are not efficient enough to cope
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2.1. Introduction of a General Class of Hybrid Systems

with a large number of possible value combinations, so that a large amount of nodes
has to be explored (e.g., when a node leads only to infeasible candidates of (2.1),
or attains a performance worse than the best cost found so far). In this thesis, as
the class of discrete-time hybrid systems is considered, most of the optimal control
problems are eventually formulated into the form of (2.1) with linear or quadratic
cost function J(w), and linear constraints G(w) < 0. These problems are then
solved by using the solver CPLEX, which uses a similar search procedure as in Fig.
2.6, but with many advanced ,,add-ons” to enhance the performance. This includes
questions of smart selection of nodes to be further branched, of backtracking to
previous nodes in case of infeasible nodes, the choice of heuristics, etc. These ,,add-
ons”, however, can not change the fact that the search procedure in Fig. 2.6 in
general takes more and more time if more integer variables are considered. In this
case, adopting a more compact formulation of the constraints G(w) < 0 to reduce
the search space (in this chapter), or applying efficient distributed strategies to cast
(2.1) into a set of small scale problems being solved in parallel (in Chapter 4), turn
out to be better choices to enhance the performance.

In this chapter, the focus is limited to a class of discrete-time hybrid systems H A
following the structure of hybrid automata [76, 9]. It will be shown that H A is capa-
ble to encompass all aforementioned transition mechanisms and impulsive changes.
Then, its optimal control problem over a finite time horizon is considered, as well as
the mixed-integer program obtained from the control problem. To solve the mixed-
integer program efficiently, especially for a large number of integer variables, a set
of tailored constraints involving only integer variables are defined in the program.
With the help of these constraints, the number of possible combinations of neces-
sary integer variables can be significantly reduced — thus, only a ,slim” tree needs
to be explored in branch-and-bound methods and thus enhances the computational
efficiency. Finally, although the continuous dynamics in the considered type of HA
is limited to the linear case, the idea of introducing pure-integer constraints to en-
hance the computational efficiency can be well transferred to the case of nonlinear
continuous dynamics (see the discussion at the end of this chapter).

A General Class of Discrete-Time Hybrid Systems

The considered general class of discrete-time hybrid systems follows the definition
in [93, 97], and is defined by HA = (T, U, X, Z,1,T,G,V,r, f) with:

o the discrete time-domain 7' = {t;, | k € NU{0},A € R : ¢} := k- A}, where
k is used in the following to refer to fx;

e the continuous input space U C R"™ with the continuous input signal u; € U;

e the continuous state space X C R" on which the continuous state vector
is defined;
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e the finite set of discrete states Z = {zq1),- -+, 2(n,)}, from which a discrete
state variable z in time k is selected;

e asct [ = {Iy),..., )} of invariants, where the invariant of any discrete state
Z(3) is a polytope I(z’) = {"L | ng, € N, C(i) € Rmzxn’”,d(i) e R : C(i) s < dm},
Iy € X5

e the finite set of transitions 7 C Z x Z, in which a transition from z(; € Z to
z(j) € Z is denoted by 7(; ;) € T

e the set G of guard sets containing one polytopic set G ;) = {z | Cpj) €
R"%,;)X”ﬂd(i’j) € R"w, ¢ € I+ Cuyjy - o < dgy} for any transition
T(i,j) € T;

e the finite set V' = {v( ;) | vi,) € {0,1}, V(5 € T} of discrete input variables,
where any element v, ;1 in V' refers to one transition 7(; jy € T triggered at
time k; the variable v; ;) is a binary one, encoding that for v(; ;) = 1 the
transition 7(; ;) is triggered if xp € G(; ;) applies; while for v(; ;) = 0, the
transition cannot occur; in addition, let v, € {071}“/|X1 represent a vector

containing the binary values of all variables v(; ;) € V, and at any time k at

most one entry of v = 1 is allowed;

e a reset function r: T x X — X which updates the continuous state x; upon
a transition 7(; ;) € T according to T = E ) - Tr + ey, Euj) @ o) —
R e iyt Tag) — R7>1 This function models the impulsive change of

the continuous state mentioned earlier;

e a flow function f : X x U x Z — X defines the discrete-time continuous
dynamics according to zp1 = Agy - 2 + By - up with 2y, € Z, 21, € Iy,

The execution of HA over time is defined as follows:

Definition 2.1. (Admissible Execution)
For HA, let a finite time set Ty = {0,1,..., N} and initial states (xg, z9) sal-

isfying 20 == 25 € Z, wo € Iy be given. For given input sequences ¢, =
{ug,u1,...,un—1} and ¢, = {vo,v1,...,on-1}, the pair of state sequences ¢, =
{zo, 21, - ,an} and ¢, = {z0, 21, -+ , zn} is admissible, if and only if for any k €

{0, ..., N} the pair (xpi1, 2ks1) follows from (xy, zi), xx € Iy, 21 = 2() according
to the following semantics:

].) = A(l) ST+ Bm < U,
2.) if Guj) € G exists so that «' € G5y and if vy, = 1 applies, then xjqq -

= By o' +euy) € 1) and zpy1 = z5); otherwise, = 2’ € Iy, and
2kl = 2(p) 1S assigned.
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discrete dynamics: continuous dynamics:

gt G

Figure 2.7.: Exemplary HA: the figure on the left demonstrates the transition map
of discrete dynamics; the figure on the right depicts the evolution of
continuous dynamics, in which the invariant sets are marked in yellow
and the guard sets are marked in red, and the blue dashed lines denote
a trajectory of continuous states and the black solid lines represent the
resets when the discrete state changes.

An exemplary HA is demonstrated in Fig. 2.7. In the light of Definition 2.1, one
can notice that the three transition mechanisms as well as the two types of impulsive
changes introduced in the last section are all encompassed in H A, namely:

e Switching systems: in switching systems, a transition 7(; ;) is a direct conse-
quence if the continuous state satisfies ), € G, ) in time k. Thus, by fixing
the discrete input v(; ;) x = 1 in any time k in H A, a pure switching system is
obtained according to the semantics in Definition 2.1. In addition, as a reset
function r is also included in HA, an autonomous impulse can thus also be
modeled by HA. To represent the subclass PWA systems, one only has to set
Gij) =X, vk =1, for all G ;) € G in any time k, as well as choosing an
identity function for r for any transition in HA;

e Switched systems: for switched systems, a transition 7; ;) can take place in
any time k, provided that the continuous state xj is located in the invariant
set I(;) and a discrete input signal v(; ;) = 1 is given. Thus, by setting the
guard set G(; ;) equal to the invariant set I(;) for any guard and any discrete
state, a switched system is obtained. Similarly to the autonomous impulse, a
controlled impulse can thus also be modeled by H A;

e Conditionally switched systems: as both switching and switched systems can
be represented by H A, it is obvious that H A can also model this type of hybrid
system.
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Compared with the commonly used PWA systems, the considered HA clearly
provides a higher degree of freedom in modeling the interaction between continuous
and discrete dynamics. H A thus appears to be a better option than PWA systems
facing the challenges in CPS modeling. In addition, in terms of the interaction
structure defined in Fig. 2.1, HA also allows one to model the influence from other
subsystems to a change of the local invariants or guards (e.g. their shape or size,
and this property is also demonstrated in the case study at the end of this chapter).
Moreover, it will be shown in a later chapter, that different class of uncertainties
occurring in CPS can also be modeled by using HA.

2.2. Optimal Control of Hybrid Systems with Given
Phase Sequences

In this section, the optimal control problem of HA over a finite time horizon is
considered. For given hybrid system HA with initial states (zg, 29) satisfying zg :=
2(s) € Z, To € I(5), assume now a set of hybrid goal states (X, z,) which is defined
by z, € Z and a polyhedral set contained in the invariant of zy: Xy = {z | np, €
N,Cy € R™o*" d, € R™, 2 € Iy : Cy - & < dgy}. Furthermore, let a state z, € X
be bpecmed (e.g. the Vohunetrlc center of X,) to later define a distance to the goal
region in a computationally easy way.

If (20, 20), 20 == 2(s), (Xy, 29), and Ty are specified, the control objective is to find
admissible state sequences ¢, and ¢,, or corresponding input sequences ¢, and ¢,
respectively, which minimize an appropriate cost functional. Hereto, the following
objective function is defined:

N
=Y {(zr — 29)"Qax — mg) +uj_ Rup_1} + g4 - Ny (2.2)
k=1

where () and R are semi-positive-definite weighting matrices, and ¢, € RZ0. The
variable N, := min{k € {1,...,N} | 2 € X;, 2 = z,} encodes the first point
of time in which the continuous state has reached the goal set. Thus, by only
preserving the last term in J(zy), one models a time-optimal control goal, so that
the goal region X, should be reached as fast as possible. It must be emphasized that
the switching costs often considered in literature can also be included into J(zy), a:
well as some other types of control objectives, e.g., see [93]. Now by assuming thdt
the system can be held in the goal set, the overall control problem can be defined
as:

Problem 2.1. For HA initialized to (w0, 20), 20 = 2(s), let a time set Ty and a
goal (X, z,) be given. Then, determine input sequences ¢), and ¢}, as the solution
of:

min 7 (xg) (2.3)

Pu,Pv
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s.t.: ¢y with u, € Uk €{0,...,N — 1},
bv with v 5 € {0,1},k € {0,...,N — 1},
Ou, @ admissible for HA,

ry € Xy, 2N = 24.

Note that the direct solution of this problem is difficult because of the following
reasons:

1. The last but one constraint in Problem 2.1 requires the solution to satisfy
the semantics in Def. 2.1, and thus the logical conditions of the transition
mechanisms have to be converted into a form that is accessible to existing
solvers for the optimization problem;

2. With increasing value of the horizon N, the number of possible combinations
of ¢, and ¢, increases exponentially;

3. It is not known a-priori whether a feasible solution (or an admissible execution)
exists at all for the selected horizon N, and the optimizer may have to search
over many iterations until a first feasible solution (and thus a first finite upper
bound on the costs) is obtained, whereas the latter is crucial for reducing the
search space of the optimization algorithm.

Given these difficulties, a new approach is proposed which translates Problem 2.1
into a substitute formulation that considers the points mentioned above. The prin-
ciple is to introduce as few binary variables as necessary to convert the logical
conditions in Def. 2.1 exactly into a set of linear constraints for the binary vari-
ables (and real variables to encode the continuous part of the dynamics). By this,
the combinatorics of ¢, and ¢, is transformed into a combinatorics of the binary
variables. In addition, through a set of linear constraints formulated purely for the
binary variables, the relevant combinations for determining the optimal solution can
be reduced significantly. All the constraints in Problem 2.1 are equivalently refor-
mulated into a set of linear constraints and can be solved by using existing MIQP
solvers, such as CPLEX. The reformulation does not involve any approximation,
and the reformulated problem has the same optimal solution as Problem 2.1.

2.2.1. Representation of Admissible Trajectories by Algebraic
Programs

This section introduces a particular format to encode Problem 2.1 as algebraic
program with binary variables. It is well-known that implications like (z; € I(;)) <
(b = 1) for mapping the invariant set containment of xj into a binary variable b can
be accomplished by rules as those explained in [165] (often referred to as the Big-M-
approach). Such mechanisms have been re-used in different work on hybrid system
optimization, e.g. in [22, 150, 152], but the particular challenge is to use a number
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of binary variables and constraints as small as possible on these variables for low
computational times. This issue is addressed in the following for Problem 2.1. To
facilitate the description and understanding of the procedure, a simplified case is
first referred to, where a phase sequence is known: let the order of the discrete states
Z by which H A passes through be known, but the times in T at which the discrete
states are left or are reached still have to be determined. Hence, the remaining task
is to determine the transition times as well as ¢, and ¢, such that ¢, is led (if
possible) through the appropriate series of invariants and guards. Formally, a phase
sequence is denoted by ¢, = {po,...,pr}, where p; with [ € {0,..., L} is set to
the index of the discrete state, which is invariant in the I-th phase (i.e., ¢, C ¢, is
obtained from eliminating consecutive equal elements in ¢,).

The phases are now important to identify the number of binary variables required
to encode the execution of HA within the optimization problem: consider a phase
pi, as shown in Fig. 2.8, from a hybrid state (zy,2x) with 2z, = 2;) (reached by a
preceding transition) up to the state (245, 2145) with 2.5 = 2(;), reached through
the transition 7(; ;). Note that 2 e Gi ) 1s an intermediate state, which is imme-
diately transferred into zj 5 = (7 ), ') € I(j) by the transition with reset upon
V(i j)k+4 = 1, according to the definition of an admissible run above. Two points
are obvious from this figure:

1. for any of the states {xy, ..., zy14, 2’} the same invariant constraint (element
of I(;)) applies, i.e. one binary variable per phase is sufficient to express this
fact;

2. the intermediate state 2’ must be associated with an additional binary variable
to encode o’ € G(; 5 for p;.

Since ' must be treated separately, an extended index set for the states is considered
here, namely, ke Ty ={0,--- N+ L}, see Fig. 2.9 for a better understanding of
such extension mechanisms.

Within this set, the following assignments are provided corresponding to an ad-
missible run of HA:

e the new initial time step & = 0 still refers to zo;

Figure 2.8.: Execution of HA within one phase.
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Figure 2.9.: Extension of the time index set Tx to account for the intermediate
states 2’ occurring for transitions.

e [ steps from set Ty are additionally assigned to the intermediate states 2’
(and thus an exit from a discrete state);

e N +1 steps (including the initial step) from set T belong to the evolution of
continuous states in each discrete state;

o the last step in set T encodes the entry into X,,.

Next, the constraints on the continuous states zj have to be formulated suit-
ably. Recall that all invariants, guard sets, and X, are given as polytopic sets.
Exemplarily for an invariant set ), the efficient algebraic encoding is explained:
using the principles proposed in [165], the constraint C(;) - 27, < d(;) can be modeled
equivalently by:

C(Z-) “ T < d(i) + b(i),fc . ]W(i) (2.4)

if My € R™:*1 is a vector of large constants, and by i € {0,1} one binary vari-
able. If b(i)jc = 0, the invariant constraint is enforced, while b(i),;, = 1 relaxes the
constraint. Likewise, a guard constraint zj, € Gy, j) results in:

Cligy o < diagy + G )5 - M j)- (2.5)

Consider that two binary variables are required per phase (one for the invariant
conditions, and one for the guard condition (or the terminal set, respectively)), a
vector of 2(L + 1) binary variables is introduced, namely:

bi = [0y b i by -+ by byl (2.6)

for each lE: € {0,--+ , N+ L}. The last entry represents containment in the goal set
X,. For k = 0, the numeric values of this vector are by = [0,1,..., l}T, and for the
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transition from phase p; to p;41, there exists: (a) by =[1,...,1, 0,01, 17T
241 2i42
corresponding to the intermediate state 2/, and (b) by = [1,...,1, 0.1, 1]7T for
2i+3
the entry in the next invariant. For k = N+L, the vector is: by = [1,...,1,0,0]T,
and all of these vectors are collected in a matrix:

By, = [bg,b1,...by. 1] = (2.7)
[0] (0] [o] [1] (1] [1] 1] [1
1 1 0] |1 : : : 1
1 1l [1] 10 1l 11 1l
1 1 (1] ] 0| |1 1| 1
1 1 (1] |1 1l |0 0| [0
1 1 (1] |1 1 1 0| [0
M N

The last line refers to the time indexing, where k= 123"” encodes the instance in

which the first invariant is left, and k& = ki encodes the instance in which the
second invariant of ¢, is reached. The following holds by construction:

Proposition 2.1. If ¢, and ¢. determine an admissible run of HA with zy = z,
and xy € X, then a matriz By, € {0, 1} WA eqists according to the rules
(2.4) to (2.7), and each column in B, uniquely determines which constraints apply
to xy fork €{0,--- N + L}. O

This proposition is a direct consequence of using the Big-M-approach to refor-
mulate the invariant, guard and terminal constraints in (2.4) — (2.7). Then, by
collecting all large constants M(;) and M; ;) into a vector M with suitable dimen-
sion, and letting all constraints of the form (2.4) and (2.5) be collected in the order
of the indexing of x, in:

C -3, <D+ diag(Bp(:, k + 1)) - M, (2.8)

the search for an admissible run ¢, and ¢, thus means to satisfy with (2.8) for
all k € {0,...,N + L}. The number of (2L + 2) - (N + L) binary variables (with
by i being known) in B,, encode in principle 225+2-(V+L) combinations, which is
prohibitively large for an efficient solution of Problem 2.1 with larger N and L
values. Nevertheless, the particular structure in (2.7) that B, has to satisfy for any
admissible execution reduces the number of possible combinations significantly, i.e.,
from 2C2L+2)(N+L) ¢4 N;ZL), and for the case when N = 10, L = 3, the combinations
are reduced from 2194 to 1716. The following section proposes a scheme to efficiently
exploit this structure in searching for an optimal ¢, and ¢,.
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2.2. Optimal Control of Hybrid Systems with Given Phase Sequences

2.2.2. Formulation of the Optimization Problem

In order to explain how B, enables to search only over those value combinations
of binary variables that represent admissible runs of HA, the first two rows of the
matrix B,, are focused on first. They represent the values of the binary variables
b(U)JC, b((Ll)Jc over k € {0,--+ ,N+L}, and these variables model that z;, is contained
in the invariant of the first discrete state (value 0) and, respectively, that the first
transition is triggered (again value 0):

)

0o0---0011--1

[1 1 1011 - 1}' (2:9)
Note that the column in which B,,(1, :) changes from 0 to 1 is not yct~dctormincd7 as
the transition time is still not clear. Nevertheless, the value of By, (1, k+1) in B, (1,:
) can be noticed to depend on an auxiliary vector le,1§+1 = [Bn(1,k),B(2,k)]
according to:

Bn(1,k+1) = {(1]} ifdj;,, = {[070}[00’:][1’ 1}}' (2.10)

Now, define two arbitrary parameter vectors oy € R3*! and 5, € R3*! satisfying
the following conditions:

o] [0 11 0
0 <100 1] a4 <1
0 111 1
o] fo11 1
1 <100 1] 8 < ||, (2.11)
1 111 00

where the first two columns of the matrices in front of the vectors o and 31 encode
the possible values of le1%+1 in (2.10). Then the relation (2.10) can be algebraically
and equivalently formulated as:

Bu(Lk+1)>ai(1:2)-d;jy, +ai(3),
Bu(Lk+1) < Bl(1:2)-dy .y + Bi(3). (2.12)
While this encoding relates to the first phase, the principle can be transferred to

the subsequent phases as well. For a phase with index [ € {1,---,L — 1}, the
row with index 2/ + 1 of By, is relevant. It refers to the binary variable b i,
and the value of B,,(20 4+ 1,k + 1) is written depending on an auxiliary vector

b iy = B2 %), B2l + 1,K), B(20 + 2, F)):

= 0 . [0,1,1] or [1,0,1]
B2l +1,k+1) = {1} ifdl, = {[1717 Jeloo] @13
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If parameter vectors a; € R**! and f; € R™! are defined similarly to (2.11), the
assignment (2.13) can be equivalently formulated as:

Bu(2l+ Lk +1) > of (1:3) - dyy g juy + u(4),
Bu(2l+ 1,k +1) < BF(1:3) - dyy iy + Bil4). (2.14)

With respect to the penultimate row of B,,, which refers to b, e the value of B,,(2L+
1,k + 1) depends likewise on an auxiliary vector d = [Bn(2L, k), B, (2L +

1, k)] with:

2L+1,k41

Bn(2L +1,k +1) = {O} ifdy, g, = {[O’l] o [1’0}}. (2.15)

[1,1]
Using parameter vectors oy € R3*! and By € R3*1 (2.15) is translated into:

Bu(2L + 1,k +1) > o (1:2) - dyp 1 14y + (3),
Bm(2L + 1,k +1) < B1(1:2) - dyp g juy + By(3). (2.16)

For any 2l-th row of B, (with [ € {1,---,L}), which refers to b,_; j, only one

entry equals 0 (indicating that the reset is only triggered once), and can be enforced
by:

N+L B
S Bn(Lk+1)=N+L, Vie{l,-- L} (2.17)
k=0

Finally, for the last row, referring to b, ;, only the last entry B, (2L +2,N + L +1)
is forced to 0, modeling z € X,. This is translated into:

Bu(2L+2,N +L+1)=0. (2.18)

The condition that x;, € X, if ;, € X, for k > k is modeled by:

B(2L +2,k) > B, (2L + 2,k +1). (2.19)
Note that the options considered for d; T b n (2.10), for dQTZ+1 i1 0 (2.13), and
for dgL g D (2.15) are sufficient to encode the part of B, which corresponds to

the change of phases. Using this fact, and the constructive rules provided above to
determine the linear inequalities formulated for elements of B,,, the following fact
can be established:

Proposition 2.2. If a binary matriz B, € {0, 1} N+ wih first column
B.(:,1) = by and last column B,(:;, N + L + 1) = by salisfies the constraints
(2.12), (2.14), and (2.16) to (2.19), then it has the same structure as in (2.7). O
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Proof. Constraint (2.12) enforces the first row of B8,, to satisfy the structure in (2.7);
Constraint (2.14) enforces the (21 + 1)-th row of B,,, for all I € {1,--- L — 1}, to
satisfy the structure in (2.7), while constraint (2.16) is for the 2i-th row of B,,, for
all 1 € {1,---, L}; Constraint (2.19) ensures the last row of B,, satisfy the desired
structure. Finally, all 2L 4 2 rows of ,, are ensured to follow the desired structure
in (2.7) and thus finishes the proof. ]

Theorem 2.1. The task of finding an admissible trajectory of HA for given phase
sequence ¢, is equivalent to finding a matriz B, € {0, 1}GEF2-WNHLAD apith first
column By, (:,1) = by and last column By,(:; N + L + 1) = bnyr, satisfying con-
straints (2.4), (2.5), (2.12), (2.14), and (2.16) to (2.19). O

This theorem is a direct result of Proposition 2.1 and 2.2 and thus the proof is
omitted. Now, all constraints introduced for the matrix B,, can be collected in the
set of linear constraints:

Q- [B(: 1), BL(,N+L+1)]" <W, (2.20)

where the matrices @ and W depend on the various parameter vectors a and /3.
The constraints in (2.20) also reduce the value combinations of the respective binary
variables in B,, from 2@L+2-(N+L) 4 (N;,L) as the obtained B,, must follow the
structure in (2.7). The search for an admissible run ¢, and ¢, of HA now means
to let B,, satisfy (2.8) and (2.20). Thus, by introducing auxiliary variables & ;, Thi
and &, ; ;1) for all ke {l,...,N+L} (details of such reformulations can be found

in [152]), and additional parameters O;", ©;, ©;, O, determined by :

T

of = [mm -+ mpxen] 221
. . T
o = [ o el
T
Of = [ -+ gy
. . T
o, = [gggul Iurglrjlunu] ,

as well as parameter vectors A\, € R™, \, € R™ to have for all x € X and u € U:

T4 Ay >0 g — A, < 0 XL (2.22)
U4 Ny > 0"y — A, < 0"

the following transformed problem is obtained:

Problem 2.2. For a given phase sequence ¢, determine input sequences ¢;, and a
matriz By, as solution to:
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N+L N+L -
érfié}n 1520 {(#r4 — 29) Q71 — Tg) + u;{Ru,;,} + Qg'g Bn(2L + 2,k +1)
(2.23a)
st:Q-[BL(1), - BN+ L+1)]T <W; (2.23D)
for ke{l,...,N+L}:
i <ap A (L — i B (2i, k + 1)), (2.23¢)
1;1 )
B> ap = A (L= Bu(2i,k + 1)), (2.23d)
L i
2 <A Q- Bn(2i,k+1)+1- L), (2.23e)
z:lL ~
2> =N (O Bn(2i,k+1)+1— L); (2.23f)
L = L-1
T = i_U[Au) i T By - Tl + ;} &k, i1 (2.23g)
C -, <D+ diag(Bn(:, k+1))- M, uz_, €U; (2.23h)
forie{0,---  L—1}:
G S O - (Bn(2i+2,k) — B(2i + 1, k), (2.231)
§ri = 07 - (B(2i+2,k) — Bu(2i + 1, k), (2.23))
G S iy + Ae - (1= B(2i +2,k) + B (2i + 1,k)), (2.23k)
Gi > iy — Ao (1= Bu(2i+ 2,k) + B (2i + 1, k), (2.231)
Tra < OF « (Bn(2i +2,k) — Bu(2i + 1, k), (2.23m)
Tia = O, - (B(2i +2,k) — Bu(2i + 1, k), (2.23n)
Thi S p_y + M- (1= Bo(2i + 2,k) + By (2i + 1, k), (2.230)
Tha = Uiy — M (1= Bon(2i + 2,k) + B (2i + 1, k), (2.23p)
& iivn) S Ofr - (1= Bm(2i + 2, k), (2.23q)
& (iit1) = Oty - (1= Bn(2i +2,k)), (2.23r)
&iiivy) < Eliirn) - Tpoq + eivn) + Ao - Bn(2i + 2, k), (2.235)
§iiirn) = Blivy) - py + €ivn) — Aa - Bm(20 42, k). (2.23t)

The cost function (2.23a) is an equivalent reformulation of the one in Problem
2.1, where the sum in the last term counts the total number of steps in which zj, is
not in X,. The constraints (2.23c) to (2.23f) ensure that the costs induced by the
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intermediate states 2’ are not recorded in the cost function. The conditions (2.23b)
and (2.23h) force the resulting trajectory ¢, to comply to ¢,. The equations and in-
equalities (2.231) to (2.23t) refer to reformulate the hybrid dynamics into linear ones
by using auxiliary variables. Note that Problem 2.2 can be eventually reformulated
into the form of (2.1) at the beginning of this chapter. In addition, as all constraints
in Problem 2.2 are linear, together with a quadratic cost function, the optimization
problem represents an MIQP problem and thus can be solved by existing solvers.
After Problem 2.2 has been solved, the obtained B, can straightforwardly deter-
mine the ¢} and ¢} according to the zero entries in B},. Furthermore, since (2.23b)
admits all possible values of B, corresponding to the structure in (2.7) and since
no approximation is involved, the following applies:

Corollary 2.1. If no feasible solution ezists to Problem 2.2, then there ezists no
admissible trajectory corresponding to the given phase sequence ¢p,. ]

Thus, Problem 2.2 can be used to verify the existence of an admissible trajectory
satisfying Problem 2.1 for the considered ¢,.

Theorem 2.2. If the solution of Problem 2 returns a feasible solution ¢} and B,

m?’
then it represents the optimal solution of Problem 2.1 for the given phase sequence

o0 0

This result follows from the relation between Problem 2.2 and 2.1 for the given ¢,
as established by Proposition 2.1 and 2.2, and from the fact that the branch-and-
bound algorithms for MIQP problems are capable to terminate with the optimal
solution, if the search tree is fully explored [26]. If now Problem 2.1 is addressed
without restriction to certain single ¢,, the solution is obtained by solving one
instance of Problem 2.2 for any possible phase sequence connecting zy with z,.
If the number of possible phase sequences connecting the initial discrete state zg
and the target state z, is not very large, the search can be carried out by full
enumeration.

2.2.3. Numeric Examples

To illustrate the procedure, the following example considers an HA with z € R3
and 5 discrete states Z = {2(0), 2(1), 2(2), 2(3), Z(¢)} The invariant sets of these states
are marked by yellow regions and the guard sets by orange regions in Fig. 2.10
and the following figures. The continuous dynamics, reset functions, and input
constraints are parametrized suitably (but not shown here for brevity), and the set
of transitions follows from the adjacency of the invariant sets.

The initial state is zo = [12,—7,0]T € (), and the terminal state is set to
z, = [-2,-12, —2|T € I(g). The terminal region X, is marked as a green region
in the figures, and N is first selected to be 15, which leads to a number of 102
binary variables to be employed in Problem 2.2. Three different phase sequences
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Figure 2.10.: Optimal trajectories for the two phase sequences ¢, = {z(g), 2(2)s z(g)}
and ¢, = {2(0), 2(3), 2(g) }» Where the trajectories in magenta are resets

A
@ D @
N

Figure 2.11.: Transitions map of the HA in Fig. 2.10.

are possible as shown in Fig. 2.11. Nevertheless, only for ¢, = {z). 2(2), 2(9)}
and ¢, = {z(0), 2(3), 2(9)} optimal admissible trajectories are found with selected
horizon N = 15, leading to costs of 3135.18 and 3429.26, and requiring computation
times of 0.08 sec and 0.09 sec on a 3.4GHz processor using Matlab 2015a and the
solver CPLEX. Through constraint (2.20), the relevant combinations of the binary
variables are reduced from 2'°% to (1478 = 2380 according to previous discussion, and

34



2.2. Optimal Control of Hybrid Systems with Given Phase Sequences

Figure 2.12.: Optimal trajectory for ¢, = {2(0), 21), 2(g)} with N = 25.

the time to verify the infeasibility of ¢, = {2(0), 21), 2(9)} for N = 15 is about 0.01
sec. If, for the latter ¢y, the time horizon is increased to N = 25, then the admissible
trajectory shown in Fig. 2.12 is obtained with optimal cost of 6160.51 computed
in 0.72 sec. A further test on a new HA with unique ¢, = {z(0), 21), 22), 2(g) }» 1-€-
a longer phase sequence than in the last test, and a horizon N = 24, the optimal
trajectory (determined in 1.06 sec) is illustrated in Fig. 2.13.

Figure 2.13.: Optimal trajectory for ¢, = {2(), 21), 2(2), 2(g)} With N = 24.
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2.3. Controller Synthesis without Enumerating Phase
Sequences

In the last section, the solution of Problem 2.1 has been realized by first enumerating
all available phase sequences in a given H A, and then formulating and solving Prob-
lem 2.2 for each phase sequence and comparing their costs. This scheme, however,
may not be suitable for HA with larger sets of discrete states and transitions, as
the number of available phase sequences increases exponentially (in the worst case)
when more discrete states and transitions are included in H A. This section, in con-
trast, proposes a solution of Problem 2.1 by avoiding the enumeration procedure,
and shows that the globally optimal solution can be determined by solving only one
MIQP problem. This scheme is especially beneficial for some simpler tasks, such as
checking the feasibility of a state-to-set transfer problem with a given finite horizon.
In addition, a constraint purely among the binary variables is also formulated in
the MIQP problem, in order to reduce the solution complexity.

The key idea of the approach, which was first proposed in the publication [97], is
still to encode the logic conditions contained in Def. 2.1, namely:

1. starting from state xj, an intermediate state x’ is first reached according to
= A(i) s X+ B(i) c Uk,

2. the reset function r is triggered and the state xy.q is reached according to
T = Ej) - @' + e ), if a transition is triggered,

and to cast them into a set of linear constraints using binary variables. Note that
the extension of the index set of the time horizon is still necessary here. But as
the phase sequence ¢, is not enumerated and thus unknown here, the extent of this
extension also belongs to the variables to be optimized. Accordingly, the extended
index set is defined as Ty = {0,1, ..., N +|¢,| — 1}, and for any step ke Ty, the
semantics in Def. 2.1 is equivalently reformulated into the following:

]fit,; S I(z‘)J;; ¢ G’(LJ-MVG(,-’]-) € G, then Thyy = A(z)x]} + B(i)u,;, < [(i)7 Zhe1 = Z(i)s
If 1, € G j) and Vg = 0, then xp ., == A(i)w% + Bayuj, € Lgy, 2541 = 23);

If xp € Gy and v, ;= 1, then xpyy = Eq jag + ey € 1), Zher 1= 2()-
(2.24)

For convenience of description, the index extension is first bound to Ty = {0,1, ...,
N + Lyaz} conservatively, where L, is an upper bound of the times in which
a transition 7 may be triggered along an admissible trajectory. It will be shown
that the feasibility and optimality of Problem 2.1 will not be affected by such a
conservative extension.
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After the time horizon is extended, by introducing one binary variable for each
invariant set, guard set, and the terminal set for any step ke Ty as in the last
section, a number of (|Z| + |G| + 1) - (N 4 Lyes + 1) binary variables are defined
and are collected in a set B. Meanwhile, the following constraints are obtained for
all k€ {0,--- N + Lypaz}:

Cuy - zp <du + b(i,),l_c “ My, Vau) € Z;
Cligy - 71 < dig) + b gy i - Mgy, YGiiy) € G
Cg cxj < dg + bg']‘c . ]Wg. (2.25)

The value of the binary variables for k =0 is known according to the initial hybrid
states (as in the last section). But unlike the scheme in the last section where
the constraint (2.25) is only used to encode the logic conditions for a single phase
sequence, here it will be applied to directly encode the transition rule in (2.24), and
thus the original semantics in Def. 2.1. Following this line, the transition rule in
(2.24) will first be decomposed into the parts of the discrete and the continuous
dynamics in the coming section. Then, a type of encoding techniques based on
(2.25) will be introduced for each part to cast them into linear constraints.

2.3.1. Invariant Sets

When abstracting from the continuous dynamics in (2.24) for a moment, the fol-
lowing logical relations are obtained:

If aj € Ly, o3, & Gy, YGayj) € G, then xj ., € 1) must apply; (2.26)
If xj € Iy, wj, € Gigy and v 55 =0, then xp, € 1) must apply; (2.27)
If xj € 1), v, € G ) and Vnh =1 then xj ., € Iy must apply. (2.28)

As an auxiliary means, let a set of possible discrete successor states of a discrete
state 2(; € Z be defined as Z(";)‘t, where z(;) € Z, z;j) # z() is included in Z(‘Zf)‘t
exactly if a transition 7(; ;) € 7T exists. Now, to encode the logical relations in
(2.26) — (2.28) in terms of binary variables, the following constraints together with
the constraint (2.25) are introduced for :

|Z]|
2bor =121 -1 (2.29)
i=1
251 G
Y bk 21281 X by > G- 1 (2.30)
=1 G(,_])€G

1223

]f b(l),iﬂ =0, b(i,j),lhc =1, ; b(i,l),fc = ‘Z&l)ﬂL then b(i),l;+1 =0 must apply (231)
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|Z°§L\
Z biin, "’)”\ L, then b j,y = 0 must apply.

If by p=0,0

?y-)

(2.32)

Note that for given continuous state xj, and xj_, as well as discrete input V(i ) s if
the logical relations in (2.25) and (2.29) — (2.32) are satisfied, then the continuous
states and discrete input must also satisfy the constraints (2.26) — (2.28):

e For the first relation (2.26), if xj satisfies the condition xj € I(;), zj, ¢ Gij)
for all G(; ;) € G, then there must exist b ;. = 0 and b; 7 1 VG € G
accordlng to constraints (2.25) and (2.29). Then, based on constraint (2.31)

|z
one knows that if b;) . = 0 and b; ;) ; = 1 are satisfied, as well as Z by =
|Z"“t| (since b, ;= 1, VG(; ;) € G), there must exist by 4 = 0 which
nnphos T e I() according to (2.25), i.e., the logical relation in (2.26) is
satisfied;

e For relations (2.27) and (2.28), if zj satisfies the condition x; € Ij; and
zj, € G(ij), then there must exist by ; = 0 and by, ;) ; € {0,1} in the light of
constraint (2.25). Thus, if the state xj, is inside of the guard set G ), the

Zout‘
7 =0, then Z b = 14§ )t| — 1, must apply according to

(4,9)»

relation: If by,
‘Zoul‘

constraint (2.30). Now, based on (2.31), if b; ;, z = 1 and Z biin i |Z(“t|

there must exist b;) ., = 0, which means :Ek+1 € I(; due to (2 25). Thus, the
|Z0ut‘
relation in (2.27) is satisfied. For the case that bije = 0 and Z bani =
|Zg5'| — 1, there must exist b7, = 0 accordlng to (2.32), Wthh means
T34, € I(j) according to (2.25), i.e., the relation in (2.28) is also satisfied.

Following the description above, it is not hard to notice that the selection of the
discrete input v, ;1 in (2.27) and (2.28) is cast into the value selection of the binary
variable b(; ;) 1 in constraints (2.29) — (2.32) and (2.25). However, besides constraint
(2.29) and (2.30) are formulated in linear form, the other two constraints (2.31) and
(2.32) do still contain logical expressions. Thus the following steps aim at casting
the (2.31) and (2.32) into linear form as well.

First note that both (2.31) and (2.32) are actually representing a mapping from
1761

the vector b(i)fc b(i 0E X b<i " in step k to the vector [b(z-),,gﬂ b(ngﬂ] in
’ SRR == B

the succeeding step & + 1. This mapping is summarized in Table 2.1. The binary
‘doutl
choice of Z b s In this table, together with constraint (2.29), take four value
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|Zg|
Table 2.1.: Relevant cases of the vector [b(i)fe b(,- kX b(i ) il
kg k2 P,
I -~
bk | apk | 2 Paok | Ples | b ki | b in
0 | 1 |Zg = 0 1
0 0 |1Zg-1] - 1 0
0 1250 -1] — 1 1
1 1 1Ze5'| — | {0,1} | {0,1}
1255

combinations of the vector [ > b i into account. The remaining

b(z‘),fc b(i,j),/% il).k
combinations are all not related or not feasible due to (2.25), (2.29) and (2.30). It
has to be emphasized that for the combination [1 1 |Z<"f;t|] in Table 2.1, it only
implies that the state zj is not in the set Ij;). Whether xp,, € I or zp,, € I
applies, still has to be considered.

‘Zoim .
bk i liz)l b(i,l),l%} to {b(i),l_c+1 b(.7)7g+1] in Table
2.1 are cast into a set of linear constraints by using a similar method introduced in
Sec. 2.2.2: a set of arbitrary parameter vectors a;; € R, 8,1 € R™! and ;5 €
R 3; 5 € R¥! are first introduced, which satisfy the following four conditions:

Next, the mappings from

o] 01 |z 1 0]
0 00 |Zg" -1 1] 1]
0 0 1 |z —1 1| NS )
—oo 11 |zg 1 0]
) B
1 l=1 1 o oo
1 <o 1 jzz—1 1] P sl
ot ozgy ~
0 01 |z 1 17
—oo| 00 |Zg[—1 1 o|
0| o1 fzg -1 1) T ]
—oo] 11 |zg 1 0]
ooz o1 0]
of |00 |zg-11 1
1 o1 jzgu -1 1] P2 | (2.33)
o1 jze o1 o0

<
L

Here, the first three columns in the matrix before the parameter vectors encode
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OS(L‘
all value combinations of the vector [b(l) i bk Z bap, ] in Table 2.1. With the
help of a1, 551, @i and 3;2, the mappings in Table 2.1 can be algebraically and

equivalently formulated as the following linear constraints:

by iy > (14 _ g
(@1 = @i (1:4) - _b(i)’,; bi gk E bin i

—_
L

r ‘ZOILY
_ T . .
b < Bial: ) b i b El b i

M ‘Zﬂufl
) T (1. 4.
b(j),k-H 2 (11-“’2(1 1 4) _b(i),ll- b(i,j),fc lgl b ()%

L =

—_
L

[ 1Zg5 1
T .
b(j),iﬁ-l S 51’,2(1 . 4) : _b(l)’; b(z,]),]_c [gl b(7l>7]: l_ . (234)

Finally, as the mappings in Table 2.1 also represent the logical relations in (2.31)
and (2.32), the latter relations are now successfully cast into linear constraints
(2.34). These linear constraints, together with constraint (2.29) and (2.30), are
thus sufficient to represent the logical constraints (2.26) — (2.28), i.e., the logic
behind the discrete state transition in (2.24).

2.3.2. Continuous Dynamics

For the logical relations in (2.24), by only considering the continuous dynamics to
be followed in step k, the following relations are established:

If ;€ [(i Ty ¢ G ,‘j),VG(ij € G, then Ty = A @»TE + B@U;C;
If v € Gy andv i =0, then g = Awxy, + Bayug;
If xj, € Gy and v =1, then zj == E jap + € ). (2.35)

This together with the constraint (2.25), (2.29), and (2.34) can be equivalently
represented by:

125!

]fb(i)jg =0, b(i,j),;c =1, and Z b(i,l)fc = |Z&1it\, then wg,, = Agxy + Bayug;

\zz’:;fl

]fb(i),fc =0, b(m-)jc =0, and ; bivl)_j{: |Z ““’\ — 1, then xj,, = Eq j; + e )
(2.36)

Now by introducing auxiliary variables 5 Ve i)k and N0k similar to those in

Problem 2.2, as well as vectors @a), @ @ O, and A, A\, determined according

u?
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0 (2.21) and (2.22), the continuous dynamics in step k in (2.24) can be reformulated
by using the following linear constraints:

1Z&5
Ty = Aw&ak T Bomaw Z Mei.0),% (2.37)
where for all 2y € th
O - Cani —bayi) < Ewr < 00 (buni — b i) (2.38a)
= A (L=bani 00 7)) < o < 2+ (L=bapz+bep)  (2:38b)

Oy - (bani —bwyi) < i < O (b i — bai)s (2.38¢)
up — Ay - (1= b(i,l),l% + b(i),fc) < i)k <wup+ A (- b(i,l),fc + b(i),fc)v (2.38d)

/\z (i =) < mapi < Aa (L=bip i) (2.38¢)
Einyrp + ey — Ae b(i,l),fc < U < Eupnrp ey + A b(z’,l),fc' (2.381)

Now, through the derivations above, both the discrete state and continuous state
transitions in (2.24) are reformulated into a set of linear constraints (2.25), (2.29),
(2.30), (2.34), (2.37) and (2.38a)-(2.38f). This means that the admissibility of ¢, ¢,
in Problem 2.1 can be ensured through these linear constraints. Note for the re-
maining constraints contained in Problem 2.1, u; € U is already in linear form and
V(ig)k € 10,1} has already been ensured through constraint (2.34). The only con-
straint that has not yet been considered is the terminal constraint zx € X, 2y = 2,
which will be the focus of the coming part.

2.3.3. Encoding the Terminal Constraint

The requirement that, once z; € X, applies, then z; € X, for k > k can be
equivalently modeled by:

> b (2.39)

bg,l} k41"
This constraint implies that once b, ;. = 0, then b, i1 = 0 must apply, i.e., enforcing
77, € X, according to (2.25). For the terminal constraint zy € X, recall that
it Corrcsponds to the constraint xn.r,,., € Xy for the extended tnnc set Ty, if a
number of L,,,, transitions were indeed triggered.

In the general case, the terminal constraint zy € X, is equal to zy4, € X,
where p denotes the amount of additional steps caused by transitions. However,
as mentioned earlier the exact number of necessary additional steps is only known
after solving Problem 2.1, since it is an outcome of the optimization. Nevertheless,
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one can still compute the number p by:

N+Lmax
p=(Nt Ly +1)-1GI = > X iy (2.40)
k=0 G(ls.7)€G

This is because, if the constraints (2.25), (2.29), (2.30) and (2.34) hold, then the
transition from 2(; to z(;) can only be triggered if the binary variable bfc,(i,j) is 0 for
all k € {0,-++ N + Lyaz}. As a result, the right hand side of (2.40) is actually
recording how many by, ; » are equal to 0 among all guard sets, which forces the
outcome of the right hand side of (2.40) to be equal to the number of the transitions
being executed.
Accordingly, together with the constraint (2.39), the terminal constraint xy € X,
can be equivalently reformulated into the following linear form:
N+Lmax
bg‘];,’ <N +p. (2.41)
k=0
It implicitly requires by n4, = 0, which enforces zn4, € X, according to (2.25).
Now, all the constraints in Problem 2.1 are reformulated into linear form, leading
to the following equivalent problem:

Problem 2.3. For HA initialized to (o, 20), 20 = %), let a time set Ty and a
goal (Xy, z4) be given. Then, determine continuous mput sequences ¢, and the set
of binary variable ! B, as the solution of:

N+Lmax T T N+-Lax
min 3 {8 —29) Q@ — xg) +up_ Rup_}+4ag-( 30 byg—p)
T k=1 k=1
s.t.. Constraints (2.25), (2.39) — (2.41), and (2.42a)
for k€ {0,...,N + Lypar — 1}
up €U, (2.42b)
|Z] 12| 1283
Ty = Z{A vi By Tk Z Z Mgk (2.42c)
=X (IGl= >0 bapi) < 8 S 2+ A (IG1 = X bujp),  (242d)
G(, ,)EG G(,_'])EG
=X ( Z b(i,j),/} +1-1G]) < p < Ag- ( Z b(i,j),fe +1-1G)), (2.42¢)
G(,Y])EG G(,7])EG

Constraints (2.29), (2.30), (2.34), (2.38a) — (2.38f), Vz() € Z, Vz(;) € Z&S‘t. (2.42f)

The state evolution (2.42c¢) is an extension of (2.37) by taking all invariant sets
and guard sets into account. The constraints (2.42d) to (2.42e) ensure that the

!Note that through constraint (2.34), the optimization of the sequence ¢, has been cast into the
optimization of binary variables b(i,j),fc for all G(; ;) € G and for all k € {0, , N 4 Lypqe — 1}.
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costs induced by the intermediate states 2’ of the transition are not recorded in the

cost function. The cost term Ny in the original cost function (2.2) is equivalently

cast into Nfimax ng; — p, which counts the number of steps that the state x is not in
=1

the terminzfl set X,. Note that the Problem 2.3 is once more in the form of (2.1),

i.e., it represents an MIQP problem with linear constraints, and can thus be solved

by CPLEX.

Furthermore, as all the constraints and the cost function defined in Problem 2.3
are obtained through equivalent reformulation of the constraints in Problem 2.1,
both problems share exactly the same feasibility and optimality. This property
enables one to use the set of constraints defined in Problem 2.3 to specify the fea-
sibility of Problem 2.1 (a verification task rather than optimization). Moreover,
the constraint (2.34) only involves the binary variables and can thus reduce the set
of possible value combinations, i.e., reduce the overall complexity (same reason as
for constraint (2.20) in the last section). At last, compared with the last approach
where enumeration is required, the new approach can realize the optimization and
verification task in one program. In addition, when new transitions are included
or certain transitions are prohibited in given HA, or certain discrete states must
be visited in the obtained trajectory, one only has to adapt the corresponding con-
straints in this approach, instead of enumerating all discrete state sequences once
more (this property is illustrated in the following example).

2.3.4. Numeric Examples

The HA considered here for numeric illustration is similar to the one in Sec. 2.2.3,
but contains more transitions and thus makes the enumeration of all phase sequences
difficult. Again, the invariant sets are marked in yellow, the guard sets in orange
and the target set in green, see Fig. 2.15. The transition map of the considered
HA with a number n, = 7 of discrete states is shown in Fig. 2.14. The weighting
factors, the continuous dynamics in each invariant set, the reset function of each
guard set, and the input set are parametrized suitably.

In the first test, the initial state is selected to be zg = [15,—6,0]T € I(1) and the
terminal state z, = [—4,—10,0]T € I13). The considered horizon is N = 20, Lynq, is
chosen to be 5, so that a number of (74 17+1)- (204 5+ 1) = 650 binary variables
is needed. By solving Problem 2.3 for the given setting, the optimal trajectory is
obtained in 18.77 sec with a cost of 1385.40, as shown in Fig. 2.15. There, the
optimal continuous state sequence starts from Z(1), enters into guard set G(Lg)., and
then reaches z(3). If one only seeks for a feasible trajectory instead of the optimal
one (a verification task), the considered program terminates within only 0.13 sec.

In the second test, an additional requirement is considered, that the discrete

state z(z) must once be visited. This requirement can be equivalently formulated

N+Lmax
as constraint 3 b(5)‘,~€ < N + Ly, in Problem 2.3, which implies that the
k=0 '
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Figure 2.14.: Transition map of the considered H A.
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Figure 2.15.: Optimal trajectory of the first test, where the reset of the continuous

states by transition z(1) — z(3) is marked in magenta.

binary variable b(5)7,;, must at least once be zero over the horizon. The new optimal
trajectory is obtained in 23.75 sec with a cost of 1496.21 (while the first feasible

trajectory in found in only 0.63 sec), and is shown in Fig. 2.16.

For the alternative requirement that the discrete state z(;y must be visited, the
infeasibility of the task is verified within 0.35 sec. The tests above shows the high
flexibility with which Problem 2.3 can be adapted when the control task changes,
as well as efficiency with respect to computation time. All the tests were carried

10

20

out on a 3.4GHZ processor using Matlab 2015a with the solver CPLEX.
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Figure 2.16.: Optimal trajectory with visiting z(5) once.

2.4. Case Study: An Overtaking Problem for an
Autonomous Vehicle

The case study of automated driving is an example of a CPS being composed of
several subsystems (representing the automated vehicles) which evolve over time in
interacting manner, see Fig. 2.17. The number of vehicles involved in a scenario
determines the information exchanged through the communication network and the
number of restrictions to be considered for the driving plans of each vehicle.

For each local vehicle in the network, such as s; marked in Fig. 2.17, its basic
objective is to guarantee that the local maneuvers are safe with respect to avoiding
inter-vehicle collision. The maneuvers of s; are thus determined by its local dynam-
ics and the information sent from other vehicles, which contains, e.g., the region of

Figure 2.17.: Vehicle overtaking scenario on a straight road for an automated car.
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possible positions to be occupied over a future time span (marked in red). Based on
this information, the controller of s; can identify the regions that it can freely move
(marked in green and blue) over the future time span. If, in addition, the controller
of s1 intends to overtake the vehicle in front, a set of new regions on the road are
assigned (marked in blue), within which the lane-change maneuver is allowed to be
executed safely. The goal of this study is to plan a trajectory for s; by constructing
a hybrid system H A, such that the overtaking task can be accomplished, while all
safety issues are taken into account.

Model of the Vehicle Dynamics

For the considered trajectory planning problem, the selected vehicle model directly
affects the quality of the obtained trajectory. For reducing the complexity of plan-
ning, a double integrator model is often used [54, 53], since only the position and
velocity of the vehicle are relevant. If, however, a precise model of the vehicle was
used in planning, e.g. a high-dimensional nonlinear model consisting of the vehi-
cle position, velocity, acceleration, yaw angle, yaw rate, steering angle [135], the
complexity of the planning would increase significantly.

As a compromise between accuracy and complexity, the vehicle dynamics is here
approximated by a set of linear differential equations, each of which models a typical
behavior of the vehicle during the overtaking. In detail, the state of the vehicle
contains longitudinal position p,(t) and velocity v,(t), and lateral position p,(t)
and velocity v, (t), satisfying the differential equation:

pe(t)] [0 0 1 0] [pa(t) 0

y(t)| _ |00 0 1f |py(t) 0

fJ')I(zt) “loooo gz(t) 1 costot)) | 1O (2.43)
oy(t)] [0 0 0 0] [v(t)] [sin(6(t))

where 6(t) is the angle of the vehicle to the longitudinal road axis and u(t) denotes
the acceleration along the driving direction (local coordinate). Both 6(t) and wu(t)
are the inputs to be selected in (2.43), and it is assumed that 6(¢) can only take
value from the finite set {—§,0, 5}, each representing a typical angle during the
overtaking. The change of #(t) from one value to another in the finite set can be
modeled by using reset functions. The other constraints are chosen suitably.

Trajectory Planning with H A

As different 6-values lead to different linearized dynamics in (2.43), a hybrid system
H A is constructed to model the hybrid behavior of s; during the overtaking scenario
(also as an approximation of the original nonlinear dynamics (2.43)). In detail, a
number of 5 discrete states Z = {2(0), 2(1), 2(2), 2(3), 4(a) } are assigned to encode the
green (straight drive) and blue (lane change allowed) regions (see Fig. 2.18) and
the following hybrid dynamics is applied:
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o for 2(g), z(2) and z(), angle 0(t) = 0 applies in (2.43);
o for zqy, 0(t) = § applies;
o for z3), 0(t) = —§ applies.

A set of guards G = {G(OJ), G1,2),G23), G(3’4)}7 Gjj+1) C Iz(]), Vi €{0,1,2,3} are
also assigned through a partition of the road, representing the transition condition of
the discrete states, see Fig. 2.18. A set of discrete inputs v; j41), 7 € {0,1,2,3} are
also applied together with the guards, in order to decide the time of the transition.
Clearly, for a more precise approximation of the nonlinear dynamics (2.43), one can
take more available f-values into account. But this will also lead to an increase
of discrete states and transitions in the obtained HA, and thus complicates the
corresponding control problems.

After the HA is determined and by selecting a suitable objective function, e.g.,
the time-optimal one, the overtaking problem is cast into a trajectory planning
problem connecting z(g) and 2y, see Fig. 2.18. To achieve the overtaking task, an
optimization problem in the form of Problem 2.2 is formulated (as there is only one
possible phase sequence in the HA) and solved by using CPLEX. With a sampling
time of 0.5sec and a planning horizon of 15 sec, the trajectory in Fig. 2.19 is found
after 0.28 sec, as well as the velocity profile plotted in Fig. 2.20. Note that the
impulsive change of the velocities in step 8 and 15 are due to an impulse change
(jump) of the angle 0(t) when discrete state changes. This issue of non-smoothness

Figure 2.18.: The vehicle overtaking problem of s; is cast into an optimal control
problem of a hybrid system HA: before the overtaking procedure
starts, each invariant I and guard G of the HA is obtained by par-
titioning the road, and the partition is based on the local status of
s1 (including position, speed and acceleration) and the status of the
vehicles around (through communication or observation).
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Figure 2.19.: Trajectory obtained by solving Problem 2.2.
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Figure 2.20.: Longitudinal and lateral velocity of s; during the overtaking.

may not be desired in practical realization of the plan, but can be overcome by
providing an additional (subordinated) controller to smooth the sharp changes.

2.5. Summary and Discussion

In this chapter, a class of hybrid systems that can describe a large variety of transi-
tion mechanisms has been proposed to model the local dynamics of CPS. Compared
to commonly considered hybrid systems (such as PWA systems), more interleav-
ing schemes between the discrete and continuous dynamics can be modeled in the
proposed HA. The enhanced modeling ability, however, also makes the optimal
control problem more complicated, primarily due to the extended degree of free-
dom by describing the hybrid dynamics including: 1.) the discrete state path; 2.)
the allocation of time points to the discrete states; 3.) the evolution of the con-
tinuous state in each discrete state; 4.) the continuous/discrete inputs. Efficient
methods for the solution are thus required to meet the real-time requirement when
controlling CPS online.

With this task in mind, a method requiring that the possible phase sequences of
HA are enumerated (before the optimization is started) has first been proposed in
Sec. 2.2. For each phase sequence, the semantics of the corresponding admissible
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trajectories are cast into a tailored set of linear constraints, reducing the value
combinations of binary variables required to formulate the transition dynamics.
The significant reduction of the number of value combinations also reduces the
search space of the underlying MIP, and thus increases the computational efficiency.
The procedure does not involve approximation and thus ensures that the globally
optimal solution is found.

The requirement that all phase sequences must be enumerated, however, may not
be efficient, since the enumeration procedure may become intractable for a large
number of discrete states/transitions of HA. To avoid the enumeration process, a
new method has been proposed in Sec. 2.3, which determines the optimal control
actions through only one numerical program. The basic idea is to directly cast the
semantics of HA into linear constraints, instead of the semantics for each phase
sequence, and it enables efficient solution as demonstrated for simulation examples.

A limiting assumption of the HA in this chapter is that the flow functions are
assumed to be linear (affine). For a more general case in which nonlinear functions
arise, the results published recently in [101] can enable the two solution schemes
above be further applied. In a nutshell, the nonlinear flow function fg; for each
discrete state z(;) € Z can first be approximated by a piecewise affine system, using
the technique called hybridization [13, 50]. The hybridization also partitions each
invariant set /(;) into a finite number of sub-invariants, so that a linear flow function
is obtained for each sub-invariant. As a result, the original HA with nonlinear flow
functions can be approximated by a new HA, in which only linear flow functions
are followed, but with linearization error and more invariants (discrete states) than
before. The two solution schemes can then be applied to solve the optimal control
problem of the approximated H A, which indirectly solves the original problem. For
the linearization error caused by approximation, a set of advanced methods are
introduced in [101], so that the feasibility of the original problem can be ensured,
while the performance loss is also bounded.

Nevertheless, the setting at the beginning of the chapter that the interaction
among the subsystems of CPS is static and can be cast into deterministic constraints
(e.g. deterministic invariants and guards) of a local subsystem may seem unrealistic
especially for online control. This implies that uncertainties should be taken into
account during the controller synthesis of H A, which will be the main topic of the
following chapter.
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3. Robust Control of Hybrid Systems
with Uncertain Dynamics and
Environments

In this chapter, different classes of uncertainties encountered in CPS will be taken
into account, including additive disturbances and parametric uncertainties affecting
the local hybrid dynamics, and time-varying state constraints (with unknown but
bounded change) caused by the interaction among the subsystems, see Fig. 3.1.
For the additive disturbances and parametric uncertainties, they may be obtained
by unpredictable disturbances or the use of an approximated model, e.g., the use
of a double integrator model to describe the nonlinear vehicle dynamics. The un-
known change of state constraints, on the other hand, is primarily due to incomplete
knowledge of the behavior of the environment around the local subsystem, e.g., the
vehicle to be overtaken may suddenly start to accelerate.

Starting from the uncertainties affecting local plants, a robust control strategy is
proposed first in this chapter, ensuring that the given control objective can always
be achieved despite the uncertainties. This is realized by constructing a nominal
HA (without uncertain terms affecting the flow and reset functions) as in the last
chapter, by using a ,robust invariant tube”. Then, the robust control problem of
the uncertain H A is cast into the optimal control problem of the nominal one.

Next, the local controller synthesis problem with a time-varying environment is

Uncertain + Varying

'
Constraints —)

-

Interaction ----- >1 Plant p; |[*

-
.
-

Figure 3.1.: Uncertainty may arise in both the local plant and the environment
around.
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considered. In this case, the MPC strategy is applied to control the local subsys-
tem, and important properties such as recursive feasibility and stability have to be
(and are) investigated in this chapter, especially for two types of changes of the
environment:

e If no detailed model is available to describe the change of the environment
precisely, the maximal change of the environment within one time step may
still be known to be bounded, and it may be possible to conservatively estimate
the bound a priori.

e [f a dynamic model of the change of the environment exists but is subject to
uncertainties, the model can be used to specify the change of the environment
conservatively.

For the two cases, means to guarantee the above named properties of MPC are
presented. However, if the over-approximation of the uncertain changes is large,
quite conservative control strategies may result, and no feasible control action may
be found in the worst case. To overcome this issue, a method using a penalty term
(added to the cost function) to preserve the desired properties is proposed, and no
conservativeness with respect to reducing feasible solution space is introduced in
this approach.

Eventually, a human-robot collaboration example is considered, in which the
robot dynamics is affected by additive disturbances, and the prediction of human
motion also contains uncertainties. By applying the methods proposed in this chap-
ter simultaneously, it is shown that the desired task of the robot can be accomplished
while the safety of the humans is ensured. This chapter is based on results published
partly already in [100, 98].

3.1. Robust Point-to-Set Control with Uncertain
Dynamics

An important extension to the H A introduced in the last chapter is that the contin-
uous as well as discrete dynamics (more precisely the reset functions) are subject to
uncertainties. So far, robust control of hybrid systems with focus on optimization-
based approaches, has only considered simpler system classes: In [79], PWA systems
with additive disturbances were under study, and robust controllers were obtained
by backward computation of robust controllable sets. The work in [91] extended
the idea of backward computation for the case of parametric model uncertainties.
For the same class of PWA systems, the authors in [115] and [143] aim at setting up
min-max problems; or to employ multi-parametric linear programming (see [32]).
Specific to the considered class of hybrid systems, the work in [113] proposes a
robust switching law for the case when no continuous input is applied.
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In this section, however, both parametric uncertainties and additive disturbances
affecting the continuous dynamics are considered, as well as uncertain reset func-
tions assigned to transitions. For the task of computing robust control trajectories,
ideas that were used for simpler systems in [86, 110, 67, 136] were employed and
extended, namely to construct reachable tubes (robust invariant sets) around nomi-
nal trajectories. Through a reduction of the size (or sometimes called as tightening)
of the invariants and guard sets of the hybrid systems by use of such tubes, and
by optimizing the nominal trajectories for a obtained nominal hybrid system with
tightened invariants and guards, it is shown that the optimal point-to set control
tasks can be solved reliably despite the presence of the uncertainties.

The class of uncertain hybrid systems HA" = (T, U, X, Z,I,T,G,V,r", f*), which
has been introduced in [100], is extended compared to the one in Sec. 2.1, which
contains:

e the discrete time domain T = {t; | k e NU{0},A € R* : ¢ := k- A};
e the continuous inputs u € U C R™,

e the continuous states z € X C R";

e the finite set of discrete states Z = {z(1y, -+, 2(n.) };

o aset I ={Iy),..., I} of invariants I;;);

e the finite set of transitions 7 C Z x Z , where the transition from z(; to z(;
is denoted by 7 ) € T;

e the set G of guard sets, of which any element G/; ;) is assigned to 7(; ;) € T;

e the finite set V' of discrete inputs, where any element v; ;) € {0,1} in V refers
to one transition 7(; ;y € T;

e an uncertain reset function 7% : 7 x X — X to randomly update the continuous
states x upon a transition 7(; ;) € 7 according to the following scheme:

with a matrix F{; ;) and a vector e j); Fy
Fij) defined by:

i,j) is randomly taken from a polytope

Pi,j) P(i.j)
1
Flig) = {F(m =3 w F, l; 7 = 1} (32)

=1

with ]-—((;7)].) denoting the vertices of F; ;), and p; ;) is the number of these
vertices, and 7 € [0,1]. The vector e(; ;) is randomly taken from a polytopic
set &

i.§)3
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e an uncertain flow function f“ : X x U x Z — X defining the discrete-time
continuous-valued dynamics to:

Tpp1 = Agy - zk + By - ug + wiy e (3.3)

with @41 = 2(tg41) and 2;) € Z. The matrices A(;) and By are randomly
taken from polytopic sets A(;) and B(;) with numbers of vertices given by p(;, 4)
and p py:

Pi,A) ) P(i,A)
Ay = {A(i) =D n-Ag D m= 1}4,
=1

=1
P(i,B) 0 P(i,B)

B = {Bm => By = 1}., (3.4)
=1 =1

and with coefficients v, € [0,1]. The additive disturbances w; ; are taken
from a set W), containing the origin.

The set of admissible executions of the model HA" considering the uncertain
components of the continuous dynamics and reset functions is defined as follows:

Definition 3.1. (Admissible execution of the uncertain model HA") Let
a finite time domain Tn = {0,1,...,N} C T and an initial hybrid state (xo, zo)
with zo = 25y € Z, 1o € I be given. Then, for given input sequences ¢, =
{ug,uy, -+ ,un_1} and ¢, = {vo,v1, -+ ,on_1}, an admissible execution is a pair
of state sequences ¢, = {xo,x1, -+ ,axn} and ¢, = {20, 21, -+ , 2N} complying to the
following rules: for k € {0, ..., N =1}, x € ¢y, and z, = z4) € ¢, the successor
states Typ+1 € ¢p and zp+1 € ¢, must satisfy:

o if v, = 0, then there must exist Ay € Agy, By € By, and wyy, € W) to
obtain i1 € Iy according to (3.3) and zp1 = 2

o if v = vy = 1 and if Ay € Ap), Bu € Buy, and wiyyy € W) ewist
to obtain an intermediate state x' = Agy -z + By - up + wiy g @ € Gy
according to (3.3), then there must exist F; jy € F(; ;) and e jy € £ ;) to have
T = Fj -2’ 4 ey € Iy according to (3.1), and zp1 = ().

Obviously, for given inputs in time &, any value of the uncertain components A,
By, wey, i), and e ;) may contribute to and determine the hybrid successor
state, as long as the necessary containment in the invariants and guard sets are
observed — thus, any controller designed for a model of type H A" must consider the
complete set of possible executions according to Def. 3.1.

Turning to the control task to be addressed within this section, now consider the
optimal transfer of HA" from an initial hybrid state (zg, z9) into a set of goal states
while taking the uncertainties into account. For the hybrid goal states, assume the
pair (X, z,) with terminal discrete state z, € Z and terminal continuous goal set
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3.1. Robust Point-to-Set Control with Uncertain Dynamics

X, C Iy, as well as a continuous state z, € X denote the volumetric center of X,.
Furthermore, let a cost functional J(zg) be specified to quantify the performance
of transferring the system into the goal within a finite time domain of Ty.

Definition 3.2. (Point-to-set control task for HA") For an initial hybrid state
(w0, 20) of HA", a time domain T, as well as a set of goal states (X, z4), find the

pair of sequences of continuous inputs ¢, = {ug,u1,- -+ ,un—1} and discrete inputs
¢p = {vo, 01, ,ON_1} SO that:
o the resulting pair of state sequences ¢, = {xg,x1, -+, xn} and ¢p.={z0, 21,

-, 2N} satisfy Def. 3.1,
o the terminal states satisfy xn € X, and 2y = zg,
e and the cost functional J(xg) is minimized.

Note that an equivalent problem for the case without uncertainties was already
addressed in the last chapter, proposing a particular structure to take care of the
theoretically exponential increase of the number of possible ¢, and ¢, over N.
For the variant of hybrid systems with uncertainties considered in this section, the
additional challenge is to guarantee that the selected pair of ¢, and ¢, realizes the
path into (X, z,) for all possible realizations of the uncertainties. To succeed in
this task, the principles inspired by the so-called tube-based predictive control for
continuous-valued dynamics [86, 110] are employed. Along this line, it is shown
that, based on tubes of reachable sets, the control problem in Def. 3.2 can be cast
into a problem for a nominal model HA with deterministic flow and reset functions,
to which the method in the last chapter can be applied. In addition, as has been
shown in the last chapter, by either enumerating the phase sequences in advance,
or not doing so, the additional time steps caused by the intermediate states can
always be properly encoded in the numerical program without affecting optimality.
Thus, to avoid redundancy, these additional time steps will not be considered in
this section.

3.1.1. Reachability Tubes to Handle Uncertain Transitions

In order to explain the principle of using reachability tubes to robustly control
HA", this section focuses first on a single transition as part of the sequence ¢,
solving the problem in Def. 3.2. More precisely, an arbitrary transition 7(; ;) € T
is considered, and it is shown how to ensure the semantics in Def. 3.1 in terms
of: 1.) the continuous state evolving inside of Ij;) of discrete state z(; (called the
pre-transition phase), 2.) transitioning from zy) to z(j), and 3.) further evolving
inside of I(;) of discrete state z(; (the post-transition phase). If this procedure is
later applied to all transitions in 7, this will lead to a substitute hybrid system
HA, in which both flow and reset functions are without any uncertain term.
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3. Robust Control of Hybrid Systems with Uncertain Dynamics and Environments

Pre-Transition Phase

First, it is assumed that the polytopic sets leading to uncertainties in both the
reset function and the flow function, can be decomposed into two parts, namely a
nominal part (indicated by @), and a disturbance set containing the origin:

Fig) = Fag) @ Fagy Eag) = €as) © By
Ay = Aw) © Ay, By = By © By, (3.5)

Here, the symbol @ denotes the Minkowski addition (or set addition according to
[110]), and the nominal part ® can be determined by, e.g., the arithmetic mean of all
vertices of the corresponding polytope. Note that the sets W, already contain the
origin by definition and need not to be decomposed. Next, a nominal flow function
as well as a nominal reset function is defined (considering the deterministic part in
f* and r* only) to obtain the nominal continuous state and input:

T = Ag) - T + By - s (3.6)

T = Flij) T+ eay)- (3.7)

Now assume for step k that the state xj from (3.3) and the nominal state Zj from
(3.6) are located inside of the invariant I;;. Then, by applying a continuous input
uy, and a nominal uy in (3.3) and (3.6) respectively, the difference between x4 and
Tj+1 can be determined according to:

Tt — Trar =A@k — Tk) + Bay (ur — k) + wie e + Ak - Tk + Ak - Uk
(3.8)

with A(A,i),k € A(i) and A(B,i),k € B(i)~
Suppose further that a closed-loop feedback controller with matrix K; € R™>"

is defined such that AK,@;) = A + By - K is stable. If x;, is measurable and w,
chosen to:

ur = ug + K - (Ik - ka,), (39)
then the difference between xj:+1 and Ty in (3.8) can be written as:
Tt — Trpr =Ag ) (Th — Tr) + weyk + Dk - T+ Ak U (3.10)

Furthermore, as zp € Ij; and Ay, € Ay, and both I(; and A are polytopic,
the following applies according to [39]:

l
A(A,T?),k CTE € Conv ({Agz; : ]((g)) | le {17 s 7p(A(1))} » 4 € {17 s 7p(1(7))}}) : (311)

Here, [ and ¢ are the indices running over the P(a) Vertices, or respectively p i)
vertices of the respective polytopes, and Conv is the function to determine the
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convex hull over the combinations of vertices. Similarly, the value of Ap ;). - ux in
(3.10) can be bounded by:

A(B,i),k SUup € Conv <{ng . U(Q) | le {1, L ,p(]B(i))} , q € {1, - 7P(U)}}) . (3.12)

For abbreviation, the terms Conv(A;I;)) and Conv(B;)U) are used to denote the
convex set on the right hand side of (3.11), and (3.12) respectively. With it, a
disturbance invariant set D; can be determined according to (3.10) satistying:

AK,({)Di D (W(i) &) COTL’U(A@)I@)) D CO’ILU(B@)U)) C D;. (3.13)

The set D; exists, since AK(Z-) is stable and contains the origin according to [110],
and for the computation of D;, a series of methods are introduced in [78]. The
relation (3.13) means that, if x; — Ty € D; applies, then zp11 — Tr1 € D; also
follows from using the control law (3.9) despite all the uncertainties in the flow
function, and the following holds:

Lemma 3.1. If for two given states xy and Ty € Iy applies that vy, € T, ©D;, then
using the control law (3.9) implies that the relation xj4y € Tyr1 ® D; holds for all
A(A,i),k S A(i), A(B,i),k S B(i) and W),k S W(i). O

Note that this lemma is a direct result of (3.10) and (3.13) and the proof is thus
omitted. By use of Lemma 3.1 and when denoting the Pontryagin difference (or set
subtraction according to [110]) by ©, the following fact can also be established:

Proposition 3.1. If the nominal state satisfies Ty, Tr1 € Iy © Dy, and xp €
Tk @ Dy, and if the nominal input satisfies ux € U © K;D;, then there always exists
U = ﬂk+Ki(Ik—fk) € U such that 41 € [(i) for all A(A,i),k S A(i); A(B,i),k € B(i)
and W),k S W(,;). O

The proof of Proposition 3.1 follows the lines in [110] and is briefly sketched in
the following:

Proof. First of all, according to the property of operation @ and © introduced in
[6], one knows that the relation (I;)©D;) ®D; C I(;) always hold. This also implies
that, if the nominal input satisfies uy € U © K;D;, then the relation ux & K;D; C
(U e K;D;) ® K;D; C U must apply. Now, as relation x; — Zy € D; applies, and
the input satisfies wy, = uy, + K; (2 — Tx) € ux @ K;D; C U according to the control
law (3.9), the relation g1 € Ty @ D; thus must hold despite all uncertainties
according to Lemma 3.1. Then, as relation Iy, 1 € I(;) © D; applies according to the
given setting, one can ensure that zy.1 & D; C (I(i) eD)®D; C I ;) always holds.
Thus, the desired relation 1 € Tgy1 © D; € I(;) must apply. |

This proposition indicates that, as long as the evolution of the nominal z; lies
inside of /(; ©D; (i.e. inside of a tightened invariant), and if the nominal continuous

57
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input @y, is selected from set U © K;D; (i.e. from a tightened input set), then one
can always find u; € U to obtain the next continuous state xy inside of [ (i) despite
all the uncertainties. An exemplary evolution is illustrated in Fig. 3.2. In addition,
as all the sets in (3.13) are polytopic, the computation of D; can be assumed to be
tractable according to [28]. Furthermore, it is desired that D; is as small as possible,
in order to reduce the scale of the tightening, and thus reduce the conservatism.
With respect to the semantics of HA" in Def. 3.1, the state x can be kept inside
of I(; during the evolution in zy), by forcing the nominal state Z to be inside of
I(i) ) Di.

The Transition Phase

Next, if the transition 7(; ;) is triggered in step k, it must hold that v ;) = 1 and
the following two conditions must be satisfied:

L. An intermediate state z’ obtained from (3.3) must lie inside of G, j);
2. The state 2341 resulting from (3.1) must be inside of ;).

For the first condition, it is known from Proposition 3.1 that by applying the control
law (3.9) the state zy, lies inside of a tube D; around the nominal state Z; during
evolution in [;). As the guard G; ;) is fully contained in I, the tube around the
nominal state must also exist when Iy evolves inside of G(; j). The Proposition 3.1
can thus be extended to:

Lemma 3.2. By applying (3.9), if 2 € G j) © Dy is satisfied, then xp € Gy )
holds. O

Proof. According to Lemma 3.1, the relation x; € %}, ®©D; holds when Z. € I; ©D;.

1 -
1 T
1 L‘.
— e ~Tk+2
1 sy Ty e
Tpt2| o o o a aa .
1 e ! / Thi1
k+1 Thyo 1 /
/ | > 1 ot
/ Tht1 Trio ®D; ' Tk
/ ,\ bt
é / Zp1 ©D; 1 k
Ty .
7.L{i y I . I(z) & D;
Tk B ;
k i (i) '
1
'

Figure 3.2.: By applying (3.9), the difference between = and z is recursively lying
inside of D; (denoted by the blue polytope in the left figure) despite
all the uncertainties; Thus, a robust evolution of z; in invariant /(;) is
guaranteed when 7, € I(; © D is satisfied, see the figure on the right.
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Thus, as 7 € G5 © Dy, and {G(; 5 © Di} € {I;) © Dy}, the relation x; € G )
must apply. O

The lemma implies that 2’ € Gi,j) exists despite the uncertainties, if a nominal
intermediate state ', as obtained from (3.7), is inside of G(; ;) © D;. Thus, the first
condition is guaranteed to be satisfied by restricting the position of the nominal
intermediate state 7', see Fig. 3.3.

Next, due to the uncertainties on the reset function (3.1), a difference between
the states 711 and xxi1 may be obtained according to:

Tep — Tk = Fp (@ — &) + Ag,, -2’ + A (3.14)

€(i.5)”

where Ap, € Fj) and A, € E(; ;). By Lemma 3.2, the difference between x’
and 7’ is bounded to D;. As 2’ must be inside of G(; j), the value of A, -2’ must
be bounded by Conv(F(; ;G ;). Hence, the difference of Zp11 and zpyq in (3.14)
is bounded by:

Thtl — Tht1 € F(z’,j)Di 5] COTL’I)(IF(M-)G(L]')) 5] E(i,]’)~ (315)
With the help of this bound, Lemma 3.2 can be extended to:

Lemma 3.3. If the nominal state after the transition 1(; ;) satisfies Tpy1 € I(j) ©
(Fii,yDi® Conv(F(; G j)) ®E j)), then the relation xpq1 € I(j) holds for the state

obtained from 7(; ;) despite all the uncertainties in (3.1). O
1) ) | —]
i) ™
Tt
1)
T G T T
a’ °

o/ H— T
xr k+1
T |
L]
Tk I(j)

Figure 3.3.: For the case that 2’ @ D; is not fully contained in G(; ;) (upper part),
the transition 7(; ;) may not be correctly triggered due to the deviation
between 2’ and 2; If 2’ @ D; € G, ) (lower part), then the transition
T(i,j) 18 guaranteed to be triggered as required by the system semantics.
The blue polytope represents the disturbance invariant set D;.
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The proof of Lemma 3.3 is similar to that of Lemma 3.2. According to Lemma 3.3,
the second condition listed at the beginning of this section is satisfied by restricting
the position of the nominal state 1.

The Post-Transition Phase

After reaching the discrete state z(;), the further evolution inside of I;; has to
be ensured. Obviously, this can again be achieved by applying a similar control
law as in (3.9), considering a disturbance invariant set D; for z(;. However, such
a recursive robustness guaranty relies on the condition that the difference of the
states zp41 and Zp41 is in D; according to Lemma 3.1. But according to (3.15), the
difference is known to be inside of F(Z-,]-)Di @ Conv(F(; G j)) @ E( ), which is not
depending on Dy, see Fig. 3.4. To avoid that robustness is lost at this point, the
following criterion is formulated:

Definition 3.3. (Robust Transition) Any transition 7 j € T of HA" may only
be executed, if the condition:

F(i7]-)DZ‘ &) CO’IZU(F(Z-J)G(M)) ® E(i,j) CD; (3.16)
is satisfied, otherwise it is prohibited, i.c., transition 7 jy is removed from set T.

Lemma 3.4. Let the transition 7(; ;) satisfy (3.16) and let the control law (3.9) be
applied in both 2 and 2. If ¥ — T is then bounded to D; before the transition
T(i.j), then x — T is also bounded to the set Dj after the transition 7 j). 0
Proof. If ), — ) € D; applies before the transition 7(;;), then zpy1 — Tpy1 €
F(i,j)DZ- @ Conv(F(; yGi ) © Eg 5y € Dj holds true after the transition according
to (3.15) and (3.16). Then, using Lemma 3.1, it follows that the difference will be
recursively bounded to D; by applying the control law (3.9) in the further steps. [

FuD:6 ContlFp G 6 By '
i 1 i) Di © Conv(F(; yGigy) © Egg

AR EERN v D;
[ N, | e PR

1 Lh+2 M P NS

Cl— 1 LS I S

Thil o I N Trot \. Tk I
Th+2 : Thi2 )

Figure 3.4.: For the case zp41 € ZTp1 @ D; due to (3.15) (the set described by the
right-hand side of (3.15) is marked in green), the further evolution of
the real continuous state in z(;) may not be bounded by the D; around
the nominal state (left part); for z341 € Ty @ D; (right part), such
a bound applies. The blue polytope denotes the disturbance invariant
set D;.
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Eventually at this stage, the sequence of system evolution in z(;), of the transition
7(i,j), and of the further evolution in z(;) was successfully cast into a set of constraints
on the nominal state and inputs as well as the condition (3.16). In the next section,
a substitute hybrid system HA with nominal dynamics is constructed based on
these constraints for all transitions in 7. It is then shown that the control task for
HA" in Def. 3.2 can be transformed into a corresponding problem for HA.

3.1.2. Hybrid Systems with Nominal Dynamics

In this section, a nominal hybrid system HA = (T,U, X, Z,I1,T,G,V,7, f) based
on the uncertain one HA" is constructed. The sets 7', X and Z are identical to
those in H A", while the other components of HA are determined according to the
following rules:

e aset U= {U(l), .. ‘,U(nz)} of continuous input sets, where for any z(;) € Z,
the continuous input set is U(i) =U e K;D;;
e aset ] = {f(l), e ,f(nl)} of invariants, where the invariant of any discrete

state z(; € Z is obtained to I(;) := I;) © D;;

e the finite set of transitions 7, obtained from deleting those of 77, which do not
satisfy (3.16);

e the set G of guard sets contains one polytopic set C?’(,-_J) = G5 © D; assigned
to any transition 7; ;) € T;

e the finite set V of discrete input variables, where any element U5 € {0,1} in
V refers to one transition 7; j € T;

e a deterministic (nominal) reset function 7, which updates the continuous state

7’ according to (3.7);

e a deterministic (nominal) flow function f defines the continuous dynamics
according to (3.6).

Note that all the uncertain components of HA" are excluded here, and an admis-
sible execution of the nominal H A is defined as:

Definition 3.4. (Admissible Execution of HA) For HA, let a finite time set
Ty ={0,1,...,N} C T and an initial hybrid state (Zo, 20) satisfying zo := 2(5) €

Z, ko € I be given. For selected input sequences ¢y = {ug, U1, ..., un—1} and
¢ = {00, 01, ...,0N_1}, the pair of state sequences ¢z = {Zo, Z1,- -+ ,Tn} and ¢, =
{20, 21,- -+, 2n} is admissible, if and only if for any k € {0, ..., N} the pair Ty,

2p11) Jollows from (Ty, 2i), Tn € Ly, 2k := 2 according to the following semantics:

]‘) 7= A(z) ST+ B(l) U,
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2.) sz” € G egists so that T € G(”) and if v 5 = 1 applies, then ZTpyq :
= Fj - 7+ €ij) € I() and 211 1= 25, otherwise, Tiy1 = 7 e I(,) and
2kl = () 1S assigned.

Then, by defining the new hybrid goal set ( 2 29), where X, := X, © D, (while
assuming z, is still the volumetric center of X;), as well as assigning Zy := zy, the
following cost functional J () is selected:

{('i'k - Tg)TQ(fk - Ig) + ﬁg—lRﬂk—l} +qq - Ny, (3.17)

M=

T (zo) =

k

1

where () and R are semi-positive-definite weighting matrices, and ¢, € R=0. The
variable N, := min{k € {1,..., N} | Zx € X,, 2 = z,} still encodes the first point
of time at which the continuous state has reached the goal set. The control problem
of the nominal HA can then be defined as:

Definition 3.5. For HA initialized to (%o, 2), 20 = 2(s), let a time set Ty =
{0,1,...,N} and a goal (Xg, 24) be given. Then, determine input sequences ¢}, and
@r as the solution of:

min 7 (o)

ba,po
s.t.oforallk € {0,...,N =1} :
oz with uy, € U(i ), when Ty, € I s V2
G5 with v 5 € {0,1};
0z, &, admissible for HA;
TN € )_(gaZN = Zg.

If now the parameters of the initial and goal sets as well as that of the cost
functional in Def. 3.5 are chosen identical to that of Def. 3.2, a solution of the
previous one can be referred to the latter problem, see below. In addition, the
problem of Def. 3.5 is of the same type as the one in Problem 2.1 in the last chapter,
which implies it can be solved by using the same methods proposed there, i.e., by
solving an MIQP problem in the form of (2.1). At last, the following conclusion is
established:

Lemma 3.5. If, for the same parameterization of Def. 3.2 and Def. 3.5, a feasible
solution is obtained for the problem in Def. 3.5, then this solution also provides a
feasible solution to the control task in Def. 3.2. |

Proof. For the initial continuous state, the difference ry — xg = 0 € D; applies (up
to this point, the Lemma above also applies when Zy # z, as long as £y — z¢ € Ds
is satisfied). The optimized inputs @} in ¢¥ obtained from the solution of the
problem in Def. 3.5 are all selected from the tightened input sets U. The optimal
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continuous states 7, in ¢} are all located in the tightened invariant sets I, as well
as the transitions to be executed in ¢} are all satisfying the condition (3.16). Thus,
according to Proposition 3.1 as well as Lemma 3.2, 3.3 and 3.4, the satisfaction of
the semantics in Def. 3.1 is always ensured during the evolution in each z;, as well
as for each transition in ¢} when using the through control law (3.9). In addition,
for the last state 2} in ¢%, as oy — Ty € D, applies according to Lemma 3.1, and
Ty € X, © D, applies according the last constraint in the problem in Def. 3.5, it is
ensured that zn € X,. O

Accordingly, by controlling the original HA" over the time domain Ty, one only
has to: 1.) solve the problem in Def. 3.5; 2.) assign Vi j)k = ﬂz‘i’j)’k and calculate
uy, according to (3.9) in each step k. Then the goal states (X, z,) are ensured to
be reached at the end of the horizon, while satisfying the semantics in Def. 3.1.

3.1.3. Numerical Examples

The uncertain HA" considered here for illustration of the procedure consists of
four discrete states with a set of possible transitions, as shown in Fig. 3.5. The
invariants of the model are marked in red, the guards are in green, and the selected
terminal set X, C I(y) is marked in yellow. The uncertain flow function f* and reset
function r* of the states and transitions are parametrized with different bounds of
uncertainties. The initial state is 29 = [10,4.5]" € I(;) and a horizon of N = 20
is available to realize the transition from the initial state into the goal set. The
disturbance invariant set D; should be chosen as small as possible in order to reduce
the conservativeness by constructing the nominal HA, i.e., compare the size of each
invariant and guard in Fig. 3.5 and 3.6. Thus, by requiring D; to be polytopic, the
smallest D; is obtained by using the minimum time controller K; according to [86],
and is computed with the help of the Matlab Invariant Set Toolbox [78]. When

[
j Y o (o)

Figure 3.5.: Relevant sets and the transitions of the uncertain model HA".
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Figure 3.6.: The nominal HA obtained by tightening each invariant set, guard set,
and the terminal set of HA"; The trajectory in black is the optimal
nominal state sequence of the problem in Def. 3.5, and the set of ma-
genta lines denote the resets of the continuous states for the transitions.
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Figure 3.7.: The set of blue trajectories are the state sequences under different re-
alizations of the uncertainties. The set of magenta points contained in
the terminal set X, are the last states of the trajectories. The black
trajectory is the solution of the problem in Def. 3.5.

constructing the nominal HA, each invariant and guard set, the terminal set as well
as the continuous input set are tightened according to the disturbance invariant set,
see Fig. 3.6. By evaluating the condition (3.16) for each transition in HA, only
the transition 7(; o) fails to satisfy it, and is thus prohibited. Thereafter, by solving
the problem in Def. 3.5 for the resulting nominal HA, the optimal trajectory is
found by first transferring from z(1) to (), and then to z(y), see Fig. 3.6. The time
required for the computation is 0.66 sec on a 3.4GHz processor using Matlab 2015a.
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Based on the solution of the problem in Def. 3.5, the original uncertain system H A"
is controlled by the control law (3.9) in each step, and for 50 different realizations
of the uncertainties, the trajectories shown in Fig. 3.7 are obtained. It can be seen
in this figure that all continuous states along these trajectories evolve inside of the
invariant, and that the transitions are correctly triggered in the guard set, despite
the uncertainties. In addition, all 50 trajectories reach the terminal set at the end
of the horizon.

3.2. Model Predictive Control with Time-Varying
Environments

Until now, this thesis has focused throughout on finite-horizon control problems,
in which the input signals over a predefined planning horizon N are optimized
once and in open-loop. There, once the optimal inputs are determined, they will
be applied to the plant for the whole horizon without any re-optimization in the
intermediate steps. Model Predictive Control (MPC) is a strategy similar to the
finite-horizon one, but it is an online strategy that solves the finite-horizon control
problem repeatedly and in closed-loop. In each discrete time step of the online
process, MPC determines the optimal inputs over a finite and moving horizon in
the future based on the new measurement of the system, but only applies the first
step of the optimized inputs to the plant. This receding horizon scheme, in general,
ensures that the input to be applied is always optimal in terms of the measured
information and the limited horizon in each time instance, thus it enhances the
control performance especially when time-varying components are present.

In most discussions of MPC, however, only the uncertainty of the dynamics is
taken into account but not of the environment around the plant. For the case that
the state constraints representing the environment remain invariant over time, it is
well known under which conditions the important properties of recursive feasibility,
stability, and robustness are obtained, see e.g. [109, 140, 69, 86]. Nevertheless,
in recent years domains such as autonomous driving or human-robot collaboration
have led to an increased interest in applying MPC also to settings, in which the
constraints imposed on the system state vary over time. This arises in autonomous
driving, e.g., when the controlled vehicle has to determine its path within the com-
plement of the space occupied by other traffic participants [54, 56], or in human-
robot cooperation, e.g., when the robot controller has to ensure that a robotic
manipulator circumvents the regions momentarily blocked by a human operator
[131, 83].

When MPC is used in these application cases, the starting point is that, in any
step of the receding horizon scheme, the state constraints of the system to be con-
trolled must also be predicted over the future time horizon. These constraints can
be obtained by reachable set computations for the environment, e.g., by encoding
the regions of a street topology that are potentially occupied by another car. These
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reachable set computations can be executed either offline or online. The state con-
straints to be considered for the system to be controlled can then be determined as
convex subsets of the complement of the reachable sets of all relevant entities of the
environment. The requirement of convexity for the state constraints is straightfor-
wardly used to simplify the computation of control strategies in real-time (and in
response to changes of the environment).

When the MPC strategy is adapted in any time instant of a discrete-time scheme
to varying constraints, obviously the question arises, whether it is possible to always
find a feasible solution for the control problem. Phrased differently, it has to be
determined which changes of the environment are permissible to ensure the existence
of a feasible control strategy, especially when the change of the environment cannot
be exactly predicted in advance. The corresponding property is known as recursive
feasibility in predictive control [104, 29, 105], and it is one important aspect of this
section. The second property to be investigated is that of stability, thus the question
of whether the system (subject to the constraints) is certainly driven into a goal set
(or towards a reference state) by the predictive controller [109, 72, 90].

While for time-invariant constraints, recursive feasibility and stability have been
studied for different settings and definitions, only very little work addresses these
properties for time-varying constraints. Accordingly, the conditions for ensuring
these important properties of MPC subject to time-varying state constraints will
be provided in this section. The discussion starts from brief review on how to
ensure recursive feasibility and stability of MPC when the state constraints are
time-invariant. Then, the discussion is extended to the cases when: (a) there is
no suitable model available to describe the change of the environment precisely,
but the maximal change of the environment within one sampling time is known to
be bounded (e.g., from the maximum acceleration of a human operating close to
a robot to be controlled); (b) a dynamic model of the change of the environment
exists, but it is subject to uncertainties for which bounds can be conservatively
specified. In both cases, the change of the environment is to be understood as being
small in between two successive sampling times, and the bounds of the change can
be obtained from reachability computations. Finally, it will be shown that under
moderate and realistic assumptions, recursive feasibility and asymptotic stability of
MPC can be preserved for the two cases.

3.2.1. Review: Time-Invariant State Constraints

This section starts from general, nonlinear dynamics of the system to be controlled,
and the properties of the MPC controller addressed here are also valid for the
case of hybrid dynamics. Consider the following nonlinear discrete-time difference
equations describing the nonlinear dynamics:

T = flar, w), (3.18)
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with state vector x € R™ and input vector u; € R™. In each time step with
index k € N U {0}, the system evolution is subject to convex state constraints
X ={z|C eR"" deR"™ xecR"™:C- -z <d}. Theinput vector u is bounded
to a time-invariant set U € R™.

Before indeed considering time-varying state constraints, i.e., X is varying over
time, a review of asymptotic stability and recursive feasibility of standard MPC
problems with time-invariant constraints is first provided. Let

Ouke = {Uk\k-,-, Uk41|ky - - - 7U]<:+H71\k} (3-19)
Ga = Tkt 1) Tho2lks - -+ Thr H|k ) 3.20)
denote the prediction of the input and state sequences for time index k over a pre-
diction horizon of H steps, and assume the state constraints X remains unchanged

for all k € NU{0}. To model state-dependent, input-dependent, and terminal costs,
a standard quadratic form of the cost functional J(xy) is applied:

H-1
T (@r) = X (@peQhjie + Wi Rt jie) + Ty ppQoTrrm - (3.21)
=0

step cost L(TppjikWktj|k) terminal cost F(xpy k)

in which @, R, and @, are chosen as positive-definite weighting matrices. Further-
more, let a terminal set X, C X be selected. The problem to be solved in step k
can then be defined as:

Problem 3.1.
min J (z)
Pu ke
stoupg €U, je{0,..., H—1} (3.22a)
Trpjie € X, j € {1, H—1} (3.22b)
D (3.22¢)

When using the standard receding-horizon scheme of MPC, only the first step
input signal uy;, of the solution ¢j ; of Problem 3.1 is applied in time &, then the
next state xj.q is measured, and the solution of Problem 3.1 is repeated for the
updated data in k + 1. However, the feasibility of Problem 3.1 in time k + 1 must
also be guaranteed, and this refers to the concept of recursive feasibility of the MPC
strategy (similarly defined in [104]):

Definition 3.6. (Recursive Feasibility) Given a compact set F of possible initializa-
tion xg of the system (3.18), the MPC' controller established by solving Problem 3.1
in any step k is recursively feasible if and only if for any xo € F, a feasible solution
to Problem 3.1 for k = 0 implies the existence of a feasible solution to the problem
for any k € {1,2,---}.
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Next, the asymptotic stabilization of the system (3.18) by the MPC controller
obtained from solving Problem 3.1 is defined similarly to [140]:

Definition 3.7. (Asymptotic Stability) If there exists a function V : R™ — R with
V(0) =0 on X, such that for all k € {0,1,2,---}, the system (3.18) under control
of the solution to Problem 3.1 satisfies V (xj41) < V(xy), then the controlled system
is asymptotically stabilized to the origin.

The function V(z) here is a measure for the distance of the state x to the origin.
As discussed in [109], the asymptotic stability according to Def. 3.7 can be ensured
by imposing additional assumptions on the terminal set X, namely:

Assumption 3.1. The terminal set X, C X is closed, and 0 € X, applies.

Assumption 3.2. A terminal controller k, € R™*" exists so that kg -x € U for
allx € Xy, and f(z,ky-x) € X, for all x € X, i.e., X, is a control invariant set
of the system.

Assumption 3.3. The condition F(f(z,ky-x)) — F(x) + L(z, kg - ) < 0 with L
according to (3.21) applies for all x € X,.

Then, the following lemma applies:

Lemma 3.6. If the Assumptions 3.1, 3.2, and 3.3 hold, then the solution to Prob-
lem 3.1 in any step k leads to a state xyyy, for which Problem 3.1 again leads to a
feasible solution, and the controlled system is asymptotically stabilized over k. [

Proof. To start with recursive feasibility, assume first that the state sequence ¢}, =
{1k Thaopr - - - Thpmpet 18 the optimal solution to Problem 3.1 in time k. Since
xZ+H|k € X, according to (3.22c) applies, there must exist a new state oy p1; =
S @y e g~ Thmp) € Xg and kg - @3y, € U according to Assumption 3.2.

Furthermore, each intermediate state in the sequence ¢; , satisfies @7, ik € X,
Vj € {1,---,H}. Thus after moving to state :r};ﬂ‘k in step k + 1, a new candidate
state sequence:

cd _ * *
ki1 = AThsolksr -+ Thp Hj> Thot H 1|k }

does also satisfy all state constraints of Problem 3.1 in k+ 1, and recursive feasibility
according to Def. 3.6 follows from induction.

As for asymptotic stability, the state sequence qﬁ;‘fk 41 in step k£ + 1 leads to costs
Jx41). This value constitutes an upper bound of the optimal cost: J%(2p41) >
J*(21+1). Furthermore, the cost difference between J(2;41) and J*(x) can be
calculated from:

TN wpr1) — T (xr) (3.23)

= F(f(@hsnmpe Ko - Tramp)) — F(@romp) + L@y mpps Kg * Topmpe) — L@k, tg)-
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According to Assumption 3.3, the sum of the first three terms on the right-hand
side of (3.23) is non-positive, thus J(zj1) — T* (1) < —L(wy, ujy), implying
also: J*(zk1) — T"(xr) < —L(wp, ujy). As the step cost L defined in (3.21) is
always strictly positive outside of the origin, J* decreases monotonically. If J*(z)
is taken as the function V() according to Def. 3.7, then asymptotic stability of the
controlled system according to Def. 3.7 is obtained!. O

3.2.2. Time-Varying Constraints

After review of the time-invariant case, the focus is shifted to the case of time-
varying state constraints. The state constraint now takes a form of X = {z|C €
R dp € R, o € R™ : C'- o < di} in each step k, indicating that its value is
varying over time k. In addition, the settings that only vector dj is indexed with
k implies that only the positions of bounding hyperplanes of the polytope X} are
changing, while the orientation of the hyperplane remains unchanged.

Obviously, a new problem arises by applying MPC under time-varying state con-
straints X: the exact changes of the constraints can typically not be predicted, but
the properties such as recursive feasibility and asymptotic stability of MPC must
be further ensured. Regarding this problem, two different scenarios are considered
in which the state constraints are not precisely known, and sufficient conditions are
proposed to ensure the satisfaction of the desired properties of MPC.

Case One: Bounded Changes of the State Constraints

First, consider the case that no explicit model to predict the change of the con-
straints between two subsequent steps is available, but only an upper bound of the
change. As indicated before, assume that the state constraint changes only with
respect to the right hand sides of the inequalities, e.g., from X;, = {z|C 2 < di} to
Xit1 ={2|C-z < dgq1}, while the matrix C' remains unchanged. This is useful if a
translation from Xy to Xy is sufficient to model the available subset of the state-
space, e.g., if an obstacle to the change of state x; moves, and the constraint Xy, is
adapted by changing the vector dj accordingly (without changing the orientation
of X k)

Let the maximal change of any component of the vector dj; compared to dj be
bounded by:

|dl<:+1 (7') - dk(l)| < Wi mazy Wimaz € RZO: (324)

for all i € {1,---,n.}. The value of w;mee can be obtained, e.g., by evaluating
the physical limits of the entity which constitutes the changing environment (e.g.

!The optimized cost function J*(z), instead of the original cost function (), is taken as the
function V(z) in Def. 3.7.
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the maximal acceleration of a vehicle, interacting with an autonomous car to be
controlled).

Based on this information, one can obtain a conservative estimation of the change
of the environment over the horizon by using the prediction:

Xk+j|k = {1’ | C-zr< dk+j\k7 dk+j\k = dj, R dmaz}7 V] S {].7 s ,H}, (325)

with dies = [W1maz, - ,wnmmm]T € R". The set X, represents a conservative
estimation (obtained in time k) of the future measured constraint Xy; being indeed
available for trajectory planning. Also define the set:

Ox = { Xnr 11k Kbt - Xnr |k} (3.26)
of conservatively predicted state constraints, see also Fig. 3.8 for an illustration.

Assumption 3.4. The set Xy is not empty and contains the terminal set X,
0€ Xy, forallk € {0,1,2,---}.

An interpretation of this assumption is that the environment does not block the
path from the set X, o), into the terminal set X,. Note that as long as the terminal
set X, is contained in Xy g, for all k € {0,1,2,---}, then it will remain to be a
control invariant set of the system by employing the terminal controller x,, despite
the change of the state constraints [28]. In other words, if the Assumption 3.4
holds, then one does not have to re-determine the terminal set X, with respect to
the change of the environment.

Lemma 3.7. If the condition xyyj € Xy is satisfied for all j € {1,--- | H}, then
Zpyj € Xpyj applies, too. O

Proof. According to (3.24), the relation |dj4;(i) — d(7)] < J - Wimaa applies for
all j € {1,---,H}, and for all ¢ € {1,--- n.}. This, implies also the relation
|ditj — di| < 7+ dpae according to the definition of dyeq,. Thus, dp — 7 - dines < diy
holds true and implies X ;. € Xpyj, ie., the predicted set is always contained in
the measured one. Accordingly, zxy; € Xjyjix implies that ., ; € Xy ;. O
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Figure 3.8.: Conservative inner approximation of Xjy; through Xj; for all j €
{1,---,4} (yellow: X, red: Xjj, green: Xpyjjg, blue: X).
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Lemma 3.8. Given j € {1,---,H}, then for any j1 € NU{0} with 0 < j; < j, it
applies that Xk+7|k g Xk+]|k+71 O

Proof. According to (3.25), for j and j; with 0 < j; < j < H, the predicted
constraints Xjjjx and Xk, take the form of:

XkJrjlk = {LE | C-z < dk - ] : dma.t}-,
Xk+j|k+j1 = {LE | C-x < dk+j1 - (] - Jl) . dmaav}~

Then, according to (3.24), the relation dyj, > dj, — ji - dings implies that:
dk+j1 - (] - ]1) . dmaz 2 dk - jl . dmaz - (] - .71) : dmaz = dk 7]‘ : dmaz7 (327)

ie. the right hand side of the inequality for Xj . is not larger than that for
Xt jlk+j, - Furthermore, as the matrix C' in both constraints X, and Xp ks,
are the same, the relation Xy . © Xy, applies. O

Note the Lemmas 3.7 and 3.8 together establish the following facts:

e The constraint X, is a conservative (inner) estimation of the true set Xy
by taking all possible realizations of the changes of the environment into ac-
count.

e The relation X, j41p € Xpqjjk applies according to (3.25), meaning that the
estimation is increasingly more conservative over j.

o The estimation of the true constraint Xj,; based on set Xj; with j; <7, is
less conservative than based on set X}, according to Lemma 3.8.

Now, the following optimization problem is defined for step k with use of the
predicted state constraints:

Problem 3.2.

min J (zy)
Pu,k

st uppge €U, j €40, H =1} (3.28a)
Thrjle € Xajir J € {1 H =1} (3.28b)
Triulk € Xg- (3.28¢)

Lemma 3.9. If the Assumptions 3.2, 3.3, and 3.4 hold for any k € {0,1,2,---},
then the solution to Problem 3.2 will establish recursive feasibility and the system
(3.18) is asymptotically stabilized into the origin. O
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Proof. First, since 2j1x € Xjpqq) is ensured by constraint (3.28b) in Problem 3.2,
and X1, € X1 applies according to Lemma 3.7, the state w41 resulting from
solving Problem 3.2 is guaranteed to be contained in constraint Xj; despite the
uncertainties. Then, consider the state constraints in Problem 3.2 for step k& + 1,
which take a form of:

Tp+(k+1 € Xpr(esrs J € {1, H = 1}; (3.29a)
Tl 14-(H) | k+1 S Xg, (329b)

Similar to the proof of Lemma 3.6, let the state sequence ¢}, = {CEZHW IZHU@?
ce xZ+H\k} denote the optimal solution of Problem 3.2 in k, and a candidate state
sequence

cd I g K .
D1 = {lk+2|ku s Ty H|ks ThqH1lk )}

can be obtained based on ¢} ., with x4, g1 = f(z};+mk7 Kg -xZ+H|k) € X,

Note that for the first H — 2 states in the candidate sequence ¢>gﬁ’k, 41, it applies
that zj 1 € Xpyjpa for all j € {1,--- . H — 2} according to constraint (3.28b).
Based on Lemma 3.8, the relation @, 1, € Xprjrie © Xpr14(j)wr1 thus holds
for all j € {1,--- , H — 2}.

Furthermore, the penultimate state xj_ Hlk 0 ¢5§dk 41 is contained in X, according
to constraint (3.28c). Then, since Xy € Xpy g € Xiy14(m—1)k+1 applies according
to Assumption 3.4 and Lemma 3.8, state xz+H‘k‘ is also contained in Xj 14 (g —1)jk41-

Finally, the last state zp, g1 in ¢;‘fk+1 satisfies zp g € Xy according to
Assumption 3.2. Thus, the candidate sequence d)fcdk 41 exists and satisfies all the
constraints of Problem 3.2 in step k + 1. Since in addition the corresponding input
sequence satisfies the input constraint according to Assumption 3.2 and (3.28a)
recursive feasibility of the MPC strategy according to Def. 3.7 is guaranteed.

The proof of asymptotic stability follows a path similar as in the time-invariant
case, since the relation J¢(zp.1) — J*(21) < —L(z, uy,) still applies, ensuring
T (k1) = T (@) < —L(xk, upy,). Thus, the monotonic decrease of the cost of
the function J* applies, leading to asymptotic stability of the controlled system
according to Def. 3.7. O

Case Two: Modeled Constraint Variation with Uncertainties

In contrast to the previous case, in which the constrained sets are shrinking in
all directions over the prediction, here the changes of the constrained state set are
modeled in a way that a translation towards the goal is possible, i.e., a more general
type of uncertain prediction of the constrained sets is considered.

Now, assume that a model M for the prediction of the change of the state
constraints exists, but it contains uncertainties, which may accumulate over the
steps of the prediction horizon. Assume further that in the current step k, the
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state constraints still have the form X = {z|C -2 < di}, but the predictions
Xirjie = 1@ dpje € R™ 2 C -1 < diyjpe}, for j € {1,..., H} are iteratively
computed according to the model M:

i = M(dpyjn), Vi€ {0,...,H—1}, (3.30)

where dA;HU‘k = dj, and M : R" — R" denotes a model for the variation of the
vector Jk+j|k. This prediction scheme implies that the state constraint predicted in
the next step is derived from the one of the previous step. In addition, the model
M requires that, for two different state constraints (in step k) with a specific bound
on their difference, the predicted constraints for the succeeding step (as obtained
from the model M) is limited by the same bound:

Assumption 3.5. For any two vectors d§., di, € R" with d # di, zf|dZ( )—di(i)] <
Vi, Vi > 0 applies for all i € {1,--- n.}, then |M(d2)() M(d8)(3)| < i also
applies.

After the prediction model is introduced, the prediction error by using this model
is considered next. Unlike in the last section where the maximal change of the
state constraints is considered, here the maximal prediction error by using model
M is taken into account. It is assumed that the deviation between the predicted
constraint X k+jlk and the measured constraint X y; = {z | C'2 < diy;} accumulates
over the prediction step k + j, and satisfies the following property:

Assumption 3.6. For the predicted constraint Xk+j|k ={z|C -z < dAkﬂ-‘k} and
the measured one Xpy; = {x|C -z < dyyj}, each component of the vector cz;ﬁ_j‘k
satisfies

‘(Zk+]\k(l) - dlﬁ»]’(i)' < J . wi,mah ﬁ)i,mam € R207 (331)
forallie {1,--- n.}.

This implies that the uncertainty over the prediction may linearly increase over
Jj- Similarly to (3.24) in the last section, the requirement (3.31) is reasonable, since
the upper bound of W; e, can be determined offline from experiments.

To consider the maximally possible uncertainty of the predicted constraint X ket
a tightened constraint XHﬂk = {z] Jk+j|k. eR™: C-z< Jkﬂ»‘k} is determined
according to:

Jk+j\k = Jkﬂ'\k —J+ daa, (3.32)
with vector cfmaz = [W1 maz, " - 7ugnmm]T € R" (see Fig. 3.9).

Assumption 3.7. Let the set )N(;Hj‘k be non-empty for all k € {0,1,2,---} and
JjeA{l,....H}, and the terminal set X, be included in XHH“C, and 0 € X,.
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Figure 3.9.: Tightening the predicted set X k+jx according to the knowledge of Anas
forall j € {1,---,4} (yellow: present Xy, blue: predicted )A(kfﬂk, green:
tightened Xkﬂ‘k, red: measured Xy, magenta: terminal X,).

Similar to Assumption 3.4, if the Assumption 3.7 holds, then the terminal set X,
has not to be redetermined with respect to the change of the environment?.

Lemma 3.10. Use the satisfaction of Assumptwn 3.6 as additional condition, and
if Xk+]|k is obtained from (3.32), where dkﬂ‘k follows from model M according to
(3.30), and if x4 € Xk-ﬂ'\k applies for all j € {1,--- H}, then xpy; € Xpyy
applies too. O

Pmof According to (3.31) and the definition of dmaz, the relation dkﬂ‘k —diy; <
I Amas applies. Furthermore, since dkﬂw = dk+ ik —J dinas holds, the relation

dk_,_]‘k < dj4; applies, implying X;H_]‘k C Xjyj. Accordingly, for all a4 ; € Xk+J|k,
relation xj4; € Xjy; must hold, too.

Lemma 3.11. Given the situation in Lemma 3.10 and j € {1,---,H}, then for
any j1 € NU{0} with 0 < jy < j, it applies that Xjjn © Xprjjbss, - |

Proof. According to (3.31), it applies for the con