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Summary

In this thesis, a set of modeling and control strategies are proposed for Cyber-
physical systems (CPS), which aim at ensuring a safe, reliable, and highly perfor-
mant operation of each local subsystem contained in the CPS. Modeling of CPS is
challenging since not only must the tight interconnection of continuous and discrete
dynamics of local subsystems be exactly represented, but so must also the interleav-
ing structure between different subsystems. Optimal control of CPS, accordingly,
should take into account not only the local mixed dynamics by local controller
synthesis, but also the influence from other subsystems around.

To model a large variety of physical processes containing continuous and discrete
behavior, a type of hybrid system HA is first introduced in this thesis. Compared
to standard modeling techniques, such as piecewise affine (PWA) systems, the pro-
posed HA is capable of encompassing both, autonomous switching and externally
triggered switching between different continuous dynamics. By assuming each sub-
system in CPS is modeled by HA, three different interleaving structures among
the subsystems are considered in this thesis, namely: 1.) the influence from other
subsystems is cast into a time-invariant change of the local HA; 2.) the influence is
cast into an uncertain and time-varying change of the local HA; 3.) the influence
is cast into coupling constraints to be jointly satisfied by all subsystems.

For the first case, in which no uncertainty is encountered, the major task of this
thesis is to ensure the optimality of the local control strategy and the efficiency of the
process to determine such a control strategy. Different methods are thus proposed to
encode the hybrid dynamics of the HA, based on which the optimal control strate-
gies are determined by solving mixed-integer programming (MIP) problems. For
the second case, in which the local HA varies over time with uncertainties, means
are introduced to ensure the robustness of the control strategies. For the online
application of a selected strategy, another important task is to ensure the continu-
ity of the operation despite uncertain changes of the environment. Regarding this
problem, which refers to the concept of recursive feasibility, methods are introduced
to preserve the continuity. For the last case, in which coupling constraints arise, a
particular difficulty of controlling CPS is to provide such means that the coupling
constraints are satisfied while the optimality is ensured. The most promising way
is to employ a centralized solution, but the size, e.g., the number of subsystems,
may quickly let it become intractable. Accordingly, a set of distributed solution
strategies with feasibility and performance guaranties are introduced in this thesis.
By applying these distributed strategies, the centralized problem is cast into a set of
small-scale problems to be solved in parallel. This distributed scheme also ensures

v
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a minor increase of the overall complexity when more subsystems are included in
the CPS.

Last, besides the numerical experiments tested for each proposed method, a set
of CPS-relevant practical studies are introduced for each considered case. Efficiency
and reliability of the proposed methods are confirmed by all these tests and studies.
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Part I.

Introduction and (Theoretical)
Background
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1. Introduction and Problem
Background

1.1. Introduction

Cyber-physical systems (CPS) have attracted great interest in recent years, not
only because of their relevance for applications such as „Industrie 4.0”, autonomous
driving vehicles or human-robot collaboration, but also in academic research due to
open system-theoretic questions on: 1.) how the tight interconnection of software
and physical elements can be realized (leading to combined continuous and discrete
dynamics) and 2.) how networked structures arising either from the coupling of
the dynamic behavior of subsystems or from the communication of joint goals or
specifications should be designed. Meanwhile, the challenges for modeling and con-
trol of CPS are further complicated as the sizes of systems are growing ever more:
This is due to an increased complexity of the discrete dynamics interleaving with
the continuous dynamics in each local subsystem, and to an increased number of
subsystems interacting with each other.

A typical structure of CPS is illustrated in Fig. 1.1, where the plant of each local
subsystem contains both continuous and discrete behaviors (the continuous part
arises from modeling physical process and the discrete part represents some discrete
decisions selected from a finite set), and a change of a local plant may also affect
the evolution of other plants. Therefore, the local controllers have to coordinate
with each other via the network in order to ensure that the local control objective
is realized despite the complex dynamics and the influence of other subsystems.
Some example scenarios of a CPS with this structure and taken from the domain
of autonomous driving are illustrated in Fig. 1.2: The one on the left considers
a vehicle overtaking problem, whereas the other one refers to a narrow passage
problem at a building site. For both scenarios, a mixed decision consisting of both,
a discrete decision (e.g. whether to change the lane or not, or who should drive
first through the passage) and a continuous decision (e.g. velocity and acceleration
over time) must be made by each local vehicle, while the behavior of other vehicles
around must be taken into account during the local decision process through the
network.

For the modeling of CPS, a general model class to describe the dynamics in each
subsystem is often required, so that a large variety of the physical processes can
be covered. As shown in the examples in Fig. 1.2, such a model should be able to
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1. Introduction and Problem Background

Plant pi−1 Plant pi
Plant pi+1

Controller ci−1 Controller ci
Controller ci+1

continuouscontinuouscontinuous

discretediscretediscrete

Interaction

Communication/Coordination
through the network

Figure 1.1.: Networked structure of CPS: each local subsystem i ∈ {1, · · · , ns} con-
sists of both continuous and discrete dynamics in the plant. Interac-
tions between the subsystems are caused by either physical coupling or
coupled cost criteria. For the local controller ci, not only should the
local mixed dynamics be considered, but also the interactions among
the subsystems. It is thus necessary to communicate and coordinate
local controlled behavior through a network according to certain pro-
tocol, such that the safety and optimality of all subsystems in CPS are
guaranteed.

comprise both continuous and discrete dynamics. In addition, as the evolution of
the continuous dynamics affects the evolution of the discrete part, or vice versa, this
model should also be able to describe the interactions between the two dynamics,
such as through suitable logic conditions. For the control part in CPS, a main goal
is to guarantee the satisfaction of all safety properties of the overall system, while
at the same time controller adaption in response to changes of the system or its
local environment should enable high system performance in attaining the control
goals.

Clearly, the tasks of modeling of and controller design for CPS are not indepen-
dent of each other, but highly correlated. For example, as the use of an approximat-
ing model is sometimes preferred since it can lead to reduced system size (e.g. the
use of linearized continuous dynamics instead of the original nonlinear one derived
from the physical law, or neglecting some redundant discrete decisions), a larger set
of uncertainties caused by approximation errors may arise and must be taken into
account for controller synthesis. This may lead to relatively conservative control
strategies and thus to worsening the performance, or even threatening the guaranty
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1.1. Introduction

NetworkNetwork

Figure 1.2.: Application of CPS in different autonomous driving problems: in both
cases, local autonomous vehicles must communicate as well as coor-
dinate their continuous and discrete behavior through the network in
order to ensure a safe and reliable driving maneuver of all vehicles.

of safety of the controlled behavior.

Accordingly, the objective of this thesis is to develop new means for both modeling
and control of CPS, such that a good control performance is achieved together with
a guaranty of safety of the system. Before the details of these new means are
exposed, existing methods in the given context are first surveyed below. Note that
more detailed references to existing work are additionally provided at the beginning
of each chapter.

1.1.1. Modeling of Hybrid Dynamics in CPS

To account for the requirements in CPS modeling, the class of hybrid systems
is preferred in this thesis due to its high flexibility in describing the interleaving
between the transitions among discrete states and the evolution of the continuous
states. Typically, a change of the discrete state affects the continuous dynamics
as well as the continuous state from which the further evolution starts, while the
continuous state evolution determines the discrete successor state reached by the
upcoming transition. An example is the automatic gear-shift of a vehicle, where the
engine speed (continuous state) decides whether the gear (discrete state) should be
shifted, and the chosen gear will also affect the evolution of engine speed.

According to different transition mechanisms of the discrete states, hybrid systems
have been further classified into autonomously switching systems, switched systems
(controlled switching systems), or the combination of both [37]. More details of
this classification can be found at the beginning of the next chapter. Among the
existing work in CPS modeling by using hybrid systems, the use of piecewise affine
(PWA) systems, which belong to the class of switching systems, has attracted much
attention in the last few years, see [33, 75, 21, 15]. There, the continuous state space
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1. Introduction and Problem Background

is partitioned into a set of subspaces by hyperplanes, and a discrete state is assigned
to each of the subspaces. In different subspaces, different continuous dynamics are
followed, and a change of the continuous dynamics is triggered by the state evolution
crossing through a hyperplane constituting the boundary of a partition. Obviously,
as the crossing of a boundary is the only way to change the discrete state in this
scheme, physical processes in which the change of the discrete state is not bounded
to crossing a hyperplane cannot be represented by using PWA systems. Thus, more
general types of hybrid systems are required to model more general phenomena in
CPS.

1.1.2. Controller Synthesis of CPS

Challenges in controller synthesis of CPS are manifold, but main objective remains
nevertheless to ensure a safe, reliable and highly performant operation of the net-
worked system. Especially for the networked structure in Fig. 1.1, the control
strategy of each local subsystem must be adapted in order to overcome the diffi-
culties of 1.) high complexity caused by different dynamics, parameters, objectives,
and physical constraints defined for each subsystem; 2.) the uncertainty caused by
incomplete knowledge during system modeling, measurement error of the changing
environment and communication error/delay among the subsystems, and 3.) lim-
ited computational power which may make it difficult to find the optimal control
strategy online.

Nevertheless, before any of these challenges can be addressed, a fundamental is-
sue lies in encoding the transition mechanisms of the hybrid dynamics before the
controller synthesis step. Note that for different transition mechanisms in given
hybrid systems, the solution to the control problem (e.g. optimal control, robust
control, etc.) is also different: for the optimal control of PWA systems (or the
equivalent class of mixed logical dynamic (MLD) Systems [20, 19, 31, 75]), the hy-
brid dynamics in most cases is cast first into piecewise linear dynamics including
real and binary variables. Then, a mixed integer programming (MIP) problem is
solved in order to obtain the optimal control strategy. A similar procedure is pos-
sible for piecewise nonlinear dynamics, which then leads to mixed integer nonlinear
programming (MINLP) problem [87, 125]. Another approach is to use dynamic pro-
gramming (DP) or the maximum principle for the controller synthesis of switching
or switched systems in continuous-time domain, see [31, 74, 139, 129]. The use of
temporal logic [134, 57] to encode more elaborate logic specifications of the hybrid
systems evolution were addressed in [80, 122, 62], but are mainly applied to PWA
systems [166, 77, 170].

Note that most of these approaches (especially for discrete-time hybrid systems)
need to use integer variables to encode the logic conditions behind the discrete and
continuous state evolution, i.e., a MIP problem is formed, which is not convex,
and it is also known that it cannot be solved in polynomial time [49]. To reduce
the complexity of the controller synthesis, the strategy of Model Predictive Control
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1.1. Introduction

(MPC) [65, 109, 137, 108] is often applied, which only takes into account a finite time
domain of the controlled behavior in any iteration, and thus reduces the problem
size. The optimal control action is determined repeatedly in each iteration or time
instance in MPC, until the control objective is achieved. The state and input
constraints can also be easier handled via MPC than in traditional control strategies
such as Linear Quadratic Regulators (LQR) [84, 10], and this is especially important
for fulfilling safety requirements in CPS.

Robust Control of Uncertain CPS

Controller synthesis for local subsystems of CPS may encounter uncertainty, caused
by either local modeling error or an inexact model to describe the interaction among
the subsystems. For the former class of uncertainty arising in the local hybrid plant
(e.g. random failures causing unexpected transitions from one discrete state to
another, random resets of continuous states during the transitions, or disturbances
affecting the continuous behavior), the work in [79, 3] derived a robust control law
specific to PWA systems with additive disturbances through computation of robust
controllable sets. For the same class of PWA systems, the authors in [115, 143]
aimed at setting up a min-max problem to enforce the robustness. The work in
[73, 67] preserved the robustness by using a robust invariant set to bound the effect
of the disturbances for PWA systems and linear switched systems. In addition, the
work in [113] proposed a robust switching law for autonomously switching systems,
and the work in [2, 14, 15] focused on another class of uncertainty in which the
discrete transition structure is probabilistic.

Besides the uncertainties affecting a local plant, a change of the environment
(which may only be partially known) of the local subsystem may also yield uncer-
tainties. This usually occurs when the impact of the interactions between subsys-
tems cannot be exactly modeled nor predicted. Note that this type of uncertainty
is even more critical when an online strategy like MPC is applied, since the change
of the environment (usually leading to a change of the local state constraints) may
lead to a loss of recursive feasibility and stability of the strategy. However, the
controller synthesis problem for varying environments has rarely been considered
in the past, with the following exceptions: The work in [163, 107] focused on MPC
with time-varying input and state constraints, where the pattern of how the con-
straints change is assumed to be known a-priori. Techniques of explicit MPC rely
on state-space partitioning, which has to be provided in offline computations [5]
– considering all configurations (and thus different partitions) which may occur in
applications like autonomous driving seems not realistic. The work in [106] intro-
duced the method of homotheticly changing the terminal region in order to provide
stability guarantees, despite changes of the state and input constraints. However,
recursive feasibility was not addressed in that work, although it is an important
pre-requisite of stability of predictive controllers [104]. In a more recent work in
[145], a collision avoidance problem by using MPC is considered, where the obsta-
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1. Introduction and Problem Background

cles (representing the environment) are moving over time with uncertainties. The
authors proposed means to ensure recursive feasibility, constraint satisfaction and
robust collision avoidance for given problem settings.

Distributed Control of CPS

The distributed control of CPS has been proposed as an important class of tech-
niques, when the control problem is too complicated to be solved in a centralized
fashion (note that as communication and coordination between subsystems are re-
quired in the structure considered in Fig. 1.1, the notion of distributed control is
used instead of decentralized control throughout this thesis). For two main types of
coupling considered in CPS, i.e. criteria of coupled costs and coupled constrained
sets, the development of distributed control strategies aims at decomposing the
centralized problem into a set of small-scale sub-problems in order to reduce the
problem size. Most of the discussions on distributed control algorithms are limited
to linear dynamics and focus on how to achieve the global optimum in an iterative
scheme with low communication frequency [70, 59, 52, 172], or for a time-varying
communication graph [42, 117, 119]. For networked hybrid systems, where both
real and integer variables are involved in the centralized program, only a few results
have been addressed so far with respect to the distributed control problem. In [34],
an iterative distributed MPC algorithm for hybrid systems was proposed, but the
considered class of hybrid systems is far from general (linear systems with discrete
valued inputs). In [71], a distributed control strategy of coupled PWA systems
was proposed, but only a local optimum can be achieved through the proposed
communication scheme.

Techniques for distributed optimization of MIP problems have also been devel-
oped in the past few years, e.g. in [162, 161, 60, 124], and they can possibly be
applied to realize distributed control in CPS, since integer variables are applied to
encode the hybrid dynamics. However, most of these techniques are limited to the
case when the cost function (representing the control objective) is linear – although
a quadratic one is more common in control methods such as MPC.

1.2. Outline of this Dissertation

In this thesis, a general class of hybrid system HA is first defined, which is able to
describe a larger variety of transition mechanisms than is described in literature for
existing methods, e.g., for PWA systems. Then, based on modeling each subsystem
of a CPS by the considered general hybrid system, a series of controller synthesis
problems and their solutions are proposed for different interaction schemes of CPS:

In Chapter 2, it is first assumed that the interaction between other subsystems and
a subsystem i is static, and the influence to subsystem i can be cast into additional
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1.2. Outline of this Dissertation

deterministic constraints for subsystem i. By modeling the dynamics of subsystem
i with the proposed HA, the local controller design thus takes all its local hybrid
dynamics and constraints, and the additional constraints into account. An optimal
control problem over a finite time horizon is thus formulated and considered in this
chapter, where the transition mechanisms (including switching, controlled switch-
ing and conditional controlled switching) of local hybrid dynamics are translated
into algebraic programs, to which existing solvers can be applied. As integer vari-
ables are used for the translation, which is crucial for the ability to encode logic
constraints (e.g. the transition mechanisms) but leads to high complexity of the nu-
merical programs, two translation schemes are proposed in this chapter to enhance
efficiency. The first one requires to enumerate all possible discrete state sequences,
while the other does not (advantages and disadvantages of the two schemes are also
discussed in this chapter). Both schemes can ensure the exactness of the translation
and thus the optimality of the control action obtained (for the discrete-time case).
In both schemes, an additional constraint purely among the integer variables is also
formulated, which can significantly reduce the available combinations of the inte-
ger variables (and thus the computational complexity), with the same amount of
necessary integer variables. At the end of this chapter, an autonomous vehicle over-
taking problem is considered, and it is shown that safe trajectories can be planned
by modeling the over-taking procedure with considered hybrid systems.

In Chapter 3, the focus still remains on the local problem of subsystem i, but now
with uncertainties. Different classes of uncertainties are considered in this chapter,
caused by either modeling errors for local plants or modeling errors for the envi-
ronment (interaction). For the uncertainty caused by the former, a robust control
method is proposed, which ensures that the local control objective can be achieved
despite the uncertainties. This method is tailored to the type of hybrid systems
in the last chapter, that a robust strategy implies that given hybrid semantics are
always followed despite the uncertainties, while the desired control tasks are always
achieved. In this approach, a so-called „tube-based” method [86, 110, 67] which
was used to handle uncertainties in simpler dynamics, is applied to the considered
hybrid dynamics. The other type of uncertainty, the one caused by environment
modeling errors, usually arises when the interaction is changing over time and no
model is at hand to describe or to predict the change. This is a more realistic setting
than the static interaction scheme considered in Chapter 2. For this case, an MPC
strategy is developed in order to guarantee recursive feasibility and stability despite
the uncertainties. However, these guarantees come with a price of conservativeness
with respect to a tightening of the feasible state and input space, i.e., no feasible
control action may be found in the worst case. For this problem, a less conservative
approach is introduced which uses a penalty term of the cost function to enforce
the robustness (instead of tightening the feasible space). Numerical examples con-
firm that the same robustness can be achieved in most cases by employing this
approach (but cannot provide guaranty as the tightening approach). At the end, a
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1. Introduction and Problem Background

human-robot collaboration problem is considered, where uncertainties are presented
for both robot plant and human motion prediction. It is shown that by using the
methods proposed in this chapter, a safe and reliable collaboration between robot
and human can be guaranteed.

In Chapter 4, the focus is shifted to distributed control problems for CPS. The
background of the problems is that, it may not always be possible to cast the in-
teraction among the subsystems into local constraints, and the subsystems may
have to decide upon their control actions jointly. This may happen if, e.g., shared
resources are considered in CPS and allocation strategies are required to distribute
these resources optimally. The narrow passage problem in Fig. 1.2 belongs to one
of these problems, where the priority to travel through the passage is a kind of re-
source to be distributed among the vehicles. As most of the local control problems
have been eventually cast into MIP problems in the preceding chapters, this chap-
ter starts with an analysis of the distributed optimization of global MIP problems.
Unlike the distributed optimization of convex problems, e.g. linear programs (LP),
means to guarantee the convergence of distributed MIP problem towards the opti-
mum are still under study, see [162, 161, 60]. The considered investigation starts
from extending recent results on distributed optimization of mixed-integer linear
programs (MILP). Here some conservative assumptions required in state-of-the-art
approaches are relaxed, and thus enhancing the computational efficiency. Then, a
distributed optimization strategy for mixed-integer quadratic programs (MIQP) is
introduced, which can handle more general types of problems in the context of op-
timal control. Various numeric tests are conducted to confirm the efficiency of the
developed strategies compared to the centralized one. At the end of this chapter,
a trajectory planning problem for autonomous vehicles passing through a narrow
passage is considered. The simulation results show that all vehicles can safely travel
through the passage (with neglectable performance loss compared to the centralized
solution) by employing the proposed distributed strategy.

Finally, it is emphasized that communication problems such as the directed or
undirected communication graphs, time-varying graphs, packet losses in transmis-
sion channels, or communication delays are not in the focus of this chapter (but
belong to part of the future research topics detailed in the conclusion chapter). In-
stead, the focus is limited to the design of the communication order for CPS, such
that the convergence towards the global optimum/sub-optimum can be guaranteed.

Chapter 5 concludes this thesis by listing all main contributions, together with
an outlook on future research directions in modeling and control of CPS.
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Modeling and Control of
Single Hybrid Systems
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2. Optimization Based Control of
Hybrid Systems

This chapter considers an optimal control problem for a single subsystem of CPS.
Problems of this kind arise if the interaction with other subsystems can be cast
into constraints of the local subsystem, see Fig. 2.1. The design of local controllers
therefore has to take into account these constraints together with local constraints
when aiming at achieving the local control goal. For example, in autonomous driv-
ing (see the example in Fig. 1.2 in the last chapter) the influence of surrounding
vehicles can be formulated as forbidden zones of the vehicle, and the local controller
should plan its motion by avoiding these zones. However, unlike the optimal control
problem for linear dynamics and convex constraints, the optimal control problem for
single subsystems of CPS is more challenging with respect to the following aspects:

• Hybrid dynamics are suitable to model the evolution of combined continuous
and discrete states (e.g. the continuous states in autonomous driving are
the velocity and position of each local vehicle, while the discrete state is the
decision whether to overtake the vehicle in front, or not): to decide which type
of hybrid system should be employed so that the desired mixed-state evolution
can be modeled sufficiently precise, however, is often difficult.

• After a suitable local hybrid dynamics has been identified, the formulation of

Plant pi

Plant pi

Controller ci
Controller ci

Interaction

Constraints

Figure 2.1.: Interaction from other subsystems to local subsystem i is cast into con-
straints for its local controller.
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a related (optimal) control problem may also be challenging with respect to:
1.) the local control task, 2.) the local constraints such as the maximal accel-
eration of the local vehicle, and 3.) the additional constraints representing the
interaction with the environment, such as the forbidden zones to be occupied
by other vehicles.

• The obtained optimal control problem may contain both continuous and dis-
crete variables, or logical relations describing the interleaving between contin-
uous and discrete dynamics. The question is, thus, how to properly formulate
such mixed dynamics and logical relations in the optimal control problem, so
that the problem is accessible to existing solvers.

• Even if the optimal control problem is immediately accessible by a solver, its
solution process may also be too time-consuming for online control. Thus, one
has to ask if and how the complexity can be reduced, e.g. through a compact
formulation of the optimization problem with fewer variables.

Given these challenges, this chapter starts from reviewing some commonly used
hybrid systems (for the two cases of continuous-time and discrete-time formulation)
in literature. Optimal control strategies for these hybrid systems are also reviewed,
such as Dynamic programming and Indirect/Direct methods for the continuous-time
case, and mixed-integer programs for the discrete-time case. Thereafter, departing
from the often used PWA systems for modeling of hybrid dynamics, a type of
hybrid automata that can cover quite general transition mechanisms of CPS is
proposed (which is derived from the unified hybrid systems defined in [37]), including
autonomous switching, controlled switching, conditional controlled switching, as
well as impulsive changes of the continuous state.

Then, for the considered type of hybrid systems in discrete-time, a class of finite-
time optimal control problems is obtained and two techniques to compute optimal
control strategies are proposed in this chapter. In the case that the flow and reset
functions in considered hybrid systems are linear (extensions to nonlinear case are
discussed at the end of this chapter), both approaches are capable to translate the
hybrid dynamics into a set of linear, mixed-integer constraints, leading to numeri-
cal programs which can then be processed by solvers like CPLEX [48]. In addition,
exactness of the translation is also guaranteed (and thus the optimality of the so-
lution) for both approaches, while the difference lies in whether the discrete state
sequences need to be enumerated in advance. Advantages and disadvantages of the
two approaches are then discussed in detail. Finally, a vehicle overtaking problem
(similar to the one in Fig. 1.2) is considered, in which safe trajectories of a local
autonomous vehicle are found by employing the methods proposed in this chapter.
The content of this chapter is based in parts on results previously published in
[95, 93, 97, 94].
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2.1. Introduction of a General Class of Hybrid Systems

2.1. Introduction of a General Class of Hybrid
Systems

As mentioned in the last chapter, hybrid systems are often classified into switched
systems, autonomously switching systems, or the combination hereof based on the
transition semantics. While in switched systems the transition of the discrete state
is forced by an external discrete input signal [167, 95, 171], the change of the discrete
state in autonomously switching systems is only a consequence of the continuous
state evolution [23, 89], see Fig. 2.2. A change of the discrete state in both switched
and switching systems will lead to another differential or difference equation to be
followed thereon by the continuous state. For switching systems, the condition to
be satisfied for the continuous state to trigger a discrete state transition is often
defined as a transition guard [89, 85], i.e. a subset of the continuous state space
which must be reached by the continuous state to trigger the transition, see the
red line in Fig. 2.2. In contrast, no guard exists in switched systems, as discrete
state transitions can be enabled anywhere in the continuous space, provided that
an external trigger signal is given. Controlled switching systems are a combination
of the two former types, such that a discrete state change is only enabled when a
subset part of the continuous state space is reached and a discrete input signal is
given in the same time.

Besides the classification above, hybrid systems are further classified according
to whether the continuous state changes impulsively at a change of discrete state,

x1

x2

Switching System Switched System Conditionally Switched System

ẋ(t) = f1(x(t), u(t))ẋ(t) = f1(x(t), u(t))ẋ(t) = f1(x(t), u(t))

ẋ(t) = f2(x(t), u(t))ẋ(t) = f2(x(t), u(t))ẋ(t) = f2(x(t), u(t))

v2(t) = 1v2(t) = 1

Figure 2.2.: Different transition mechanisms in continuous-time hybrid systems: In
the left case, a change of the continuous dynamics is triggered by hitting
a hyperplane (or a manifold) marked in red; in the middle, a change
is triggered by an external discrete input v(t) = 1; in the right case, a
transition can only be triggered if the continuous state is located in a set
(representing a transition condition) and if the discrete input v(t) = 1
is also applied in the same time.

15



2. Optimization Based Control of Hybrid Systems

Autonomous impulse Controlled impulse

x(t−
1 )

x(t−
1 )

x(t1) x(t1)

ẋ(t) = f1(x(t), u(t))ẋ(t) = f1(x(t), u(t))

ẋ(t) = f2(x(t), u(t))
ẋ(t) = f2(x(t), u(t))

v2(t
−
1 ) = 1

Figure 2.3.: Resets (or jumps) of the continuous state for both autonomous and
controlled impulses are illustrated: when a change of a discrete state
is triggered at time t−

1 , with t−
1 = limt→t1,t<t1 t, an impulsive change

(dashed line) of the continuous state from x(t−
1 ) to x(t1) is also triggered

at the same time.

namely, the autonomous impulses for switching systems, and the controlled impulses
for switched systems [37], see Fig. 2.3. Impulsive changes of the continuous state,
sometimes also called Resets or Jumps, usually result from an abstraction of the
true physical process, especially when the continuous state changes significantly in
a negligibly small interval of time.

It should not be hard to notice that modeling by using hybrid systems may lead to
a range of possible combinations of the transition mechanisms. Among the possible
combinations, piecewise affine (PWA) systems are a relatively popular subclass of
hybrid systems, and the optimal control problem for it has been widely considered,
e.g. in [22, 20, 152, 17, 31, 33]. In these publications, the continuous state space is
typically partitioned into several polyhedral subsets, see Fig. 2.4. Transition guards
for PWA systems are defined implicitly in the sense that, whenever the continuous
state hits or crosses a hyperplane constituting the boundary of a partition, the
discrete state transition occurs as an immediate consequence of the evolution of the
continuous state. In this sense, PWA systems also belong to a subclass of switching
systems.

However, although PWA systems have attracted significant interest by studying
modeling and control of CPS, the way how the discrete states changes in PWA
systems is restrictive with respect to the different transition mechanisms introduced
above. An example is a model suitable to design an automatic gear-shift for a
vehicle, when shifting a gear is permitted in a certain range of engine speed instead
of only at the prescribed values of engine speed. This is relevant if the choice of
switching speed is still a degree of freedom of the control design.

To overcome these limitations of PWA systems, a general hybrid system HA,
which is of the type of hybrid automata [76, 9], encompassing all three transition
mechanisms in Fig. 2.2 and two types of impulses in Fig. 2.3 is considered in the
sequel. The HA shares a similar structure to the unified hybrid systems defined
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X1 X2

X3X4

ẋ(t) = f1(x(t), u(t))

ẋ(t) = f2(x(t), u(t))

ẋ(t) = f3(x(t), u(t))

ẋ(t) = f4(x(t), u(t))

x(t0)

Figure 2.4.: For a PWA system with 4 discrete states obtained by partitioning the
state space X into four subspaces X1, X2, X3 and X4. Starting from
the initial continuous state x(t0) at time t0, a change of the discrete
state as well as the continuous dynamics is a direct consequence by
crossing the boundaries of subspaces (marked in red).

in [37], and the optimal control of HA involves the decision on optimal contin-
uous state and controls, discrete state and controls, discrete state sequences and
transition times. Before the discussion of HA is started, a brief review of existing
optimal control techniques for different classes of hybrid systems is presented for
both continuous-time and discrete time cases.

Optimal Control of Continuous-Time Hybrid Systems

Unlike purely continuous systems, the continuous states of hybrid systems evolve
according to different differential equations in different discrete states. The overall
continuous control inputs are thus a set of continuous trajectories in an infinite
dimensional functional space for each discrete state. Techniques to determine the
optimal input trajectories have been derived for purely continuous systems, includ-
ing Dynamic programming, Indirect methods and Direct methods. However, these
techniques must be tailored to hybrid systems, in order to take into account the
discrete dynamics at the same time.

When Dynamic programming is applied to the optimal control of hybrid systems,
the key is to find the optimal control law in each discrete state according to the
Hamilton-Jacobi-Bellman (HJB) equation, see [38, 37, 74]. The HJB equation is
derived from the Principle of Optimality, i.e., each subtrajectory (for both continu-
ous and discrete states) of an optimal trajectory must be an optimal trajectory as
well. The main advantage of dynamic programming is that it provides an optimal
feedback control law, thus the optimal control action can be directly computed ac-
cording to the measured state when applied online. For the unified hybrid systems
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considered in [37], the optimal control strategy proposed there is also based on dy-
namic programming. However, similar to the case of purely continuous dynamics, a
value function satisfying the HJB partial differential equation must be determined
in dynamic programming. But the computation of the value function is well known
to suffer from the „curse of dimensionality” (besides some special cases, such as the
linear quadratic optimal control problem, in which the value function can be derived
analytically). To determine an approximated value function, a common approach is
to sample the continuous state and control spaces, while this limited the application
of dynamic programming only to problems with small state and input dimension.

Indirect methods start from formulating the necessary optimality conditions of
the optimal control problem, see e.g. [154, 130, 41, 129]. This idea is in part simi-
lar to dynamic programming, but no feedback control law is derived here. Instead,
optimal conditions for the controlled states and co-states are formulated, leading to
a boundary value problem (BVP) of them. By solving the BVP, the optimal state
and co-state trajectory can be determined, and thus the optimal control actions.
Note that the formulation of the optimal conditions requires the use of Pontrya-
gin’s Maximum Principle, sometimes also called the Minimal principle (depending
on whether the optimization task is to maximize or minimize). The BVP is solved
numerically, e.g., by the Multiple shooting method, in which the time interval of
the BVP is discretized and the Newton method is used to match the boundary
conditions. In general, indirect methods are able to provide a solution with high ac-
curacy, but suffer a small domain of convergence (as the BVP is possibly described
by a set of non-smooth differential equations) and a difficult initialization (a good
initialization of the co-state is crucial for the solution quality) [128]. The neces-
sary optimality conditions in literature are often tailored to specific type of hybrid
systems, e.g., in [154] a switching system is considered, and in [130, 129] a parti-
tioned state space is required for the hybrid system. For the unified hybrid systems
in [37], the necessary optimality conditions for a given discrete state sequence are
formulated in [126].

Direct methods start from parameterizing the infinite dimensional controls of the
original problem, leading to an approximating nonlinear program with finitely many
optimization variables, see [158, 160]. A standard step in direct methods is to first
discretize the whole problem with respect to time, and then optimize the discretized
state and control trajectories in a nonlinear program (that is why direct methods are
often characterized as „first discretize, then optimize”, while indirect methods are
characterized as „first optimize, then discretize”). Since the discretization is made
before the optimization, direct methods thus share many similarities with methods
developed for discrete-time optimal control problems. In addition, as a large vari-
ety of optimization methods for nonlinear programs have been well studied in the
last decades, see a summary in [26], these optimization methods can eventually be
employed to solve the nonlinear programs in direct methods, and thus enhances the
computational efficiency. By applying direct methods to hybrid systems (with non-
linear continuous dynamics), as the discrete states are usually modeled by integer
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variables and the transition mechanisms are encoded by mixed-integer constraints,
this approach will lead to mixed-integer nonlinear program (MINLP). More details
of MINLP will be reviewed in the following section.

Optimal Control of Discrete-Time Hybrid Systems

For discrete-time hybrid systems, a sampling over time leads to slightly different
transition mechanisms than in the continuous-time case, see Fig. 2.5 for more
details. For optimal control in the case of discrete-time, the method of dynamic
programming can be further applied (see [95, 94] for example), but the „curse of
dimensionality” still exists, and the method is thus only suitable for hybrid systems
with low-dimensional state and input space. Most existing work cast the optimal
control problem directly into MINLP tasks, and determine the optimal state and
control trajectories thereafter. This approach mostly uses a set of mixed-integer
algebraic constraints to describe the discrete-valued dynamics and the transition
mechanisms. The mixed logical dynamic (MLD) systems tailored to PWA systems
(see [20, 19, 31]) also belong to this approach. In general, by collecting all states,
controls, as well as additional integer variables into a mixed-integer vector w ∈
Rnr × Znz , the following MINLP is obtained:

min
w

J(w) (2.1)

s.t.: G(w) ≤ 0, w ∈ R
nr × Z

nz .

Note that here the optimization variable w contains nr continuous entries and
nz integer components, and the equality constraints are re-written into inequal-
ity form. Techniques based on branch-and-bound [88, 112] or branch-and-cut al-
gorithms [111, 149] are standard approaches to solve MINLP problem (2.1). The

Switching System Switched System Conditionally Switched System

x1

x2

x(tk+1) = f1(x(tk), u(tk))x(tk+1) = f1(x(tk), u(tk))x(tk+1) = f1(x(tk), u(tk))

x(tk+1) = f2(x(tk), u(tk))x(tk+1) = f2(x(tk), u(tk))x(tk+1) = f2(x(tk), u(tk))

v2(tk) = 1v2(tk) = 1

Figure 2.5.: Different transition mechanisms in discrete-time hybrid systems: Com-
pared with the case of continuous-time in Fig. 2.2, difference equa-
tions are used to describe the continuous dynamics, and the transition
conditions for switching systems are changed to crossing a hyperplane
(marked in red) instead of exactly hitting it.
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root node

feasible

feasible pruned

pruned

nodenode

nodenode

Figure 2.6.: The branch-and-bound search tree starts from a root node ŵ (marked
in yellow) satisfying G(ŵ) ≤ 0, ŵ ∈ Rnr × Znz . The cost J(ŵ) is then
adopted as the incumbent best cost of the problem (2.1) and serves
to prune the succeeding nodes in the searching. The branching of the
„root node” is realized by branching over an integer variable in ŵ and
imposing additional constraints to the problem (2.1). A new node is
determined by problem (2.1) with the additional constraints. For a new
node, if it can lead to a feasible candidate for (2.1), the optimal cost
(or an upper bound of the optimal cost) of the candidate is compared
with the incumbent best cost, and replaces the latter if it attains a
lower value. For the case that the new node cannot lead to a candidate
feasible for (2.1), or the lower cost bound of the candidate is even higher
than the incumbent best cost, it is pruned from further searching. The
search terminates when no node in the tree can lead to a candidate
better than the incumbent best one.

tree-search procedure applied in these algorithms relies on the iterative determina-
tion of suitable cost bound, based on which sub-trees may not include the optimal
solution are eliminated from further exploration, see Fig. 2.6. The efficiency de-
pends critically on the tightness of these bounds, usually obtained by relaxing the
integrality constraints (leading to lower cost bounds) or from appropriate heuristics
(leading to upper cost bounds).

Nevertheless, by applying some advanced heuristics and when the number of in-
teger variables in w is small, the branch-and-bound method can indeed provide a
suitable approximation of the optimal solution within short time. However, when a
large number of discrete states is involved or a large time horizon is considered, the
exponentially increasing complexity will quickly make branch-and-bound methods
impractical. A reason may be that the heuristics are not efficient enough to cope
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with a large number of possible value combinations, so that a large amount of nodes
has to be explored (e.g., when a node leads only to infeasible candidates of (2.1),
or attains a performance worse than the best cost found so far). In this thesis, as
the class of discrete-time hybrid systems is considered, most of the optimal control
problems are eventually formulated into the form of (2.1) with linear or quadratic
cost function J(w), and linear constraints G(w) ≤ 0. These problems are then
solved by using the solver CPLEX, which uses a similar search procedure as in Fig.
2.6, but with many advanced „add-ons” to enhance the performance. This includes
questions of smart selection of nodes to be further branched, of backtracking to
previous nodes in case of infeasible nodes, the choice of heuristics, etc. These „add-
ons”, however, can not change the fact that the search procedure in Fig. 2.6 in
general takes more and more time if more integer variables are considered. In this
case, adopting a more compact formulation of the constraints G(w) ≤ 0 to reduce
the search space (in this chapter), or applying efficient distributed strategies to cast
(2.1) into a set of small scale problems being solved in parallel (in Chapter 4), turn
out to be better choices to enhance the performance.

In this chapter, the focus is limited to a class of discrete-time hybrid systems HA
following the structure of hybrid automata [76, 9]. It will be shown that HA is capa-
ble to encompass all aforementioned transition mechanisms and impulsive changes.
Then, its optimal control problem over a finite time horizon is considered, as well as
the mixed-integer program obtained from the control problem. To solve the mixed-
integer program efficiently, especially for a large number of integer variables, a set
of tailored constraints involving only integer variables are defined in the program.
With the help of these constraints, the number of possible combinations of neces-
sary integer variables can be significantly reduced – thus, only a „slim” tree needs
to be explored in branch-and-bound methods and thus enhances the computational
efficiency. Finally, although the continuous dynamics in the considered type of HA
is limited to the linear case, the idea of introducing pure-integer constraints to en-
hance the computational efficiency can be well transferred to the case of nonlinear
continuous dynamics (see the discussion at the end of this chapter).

A General Class of Discrete-Time Hybrid Systems

The considered general class of discrete-time hybrid systems follows the definition
in [93, 97], and is defined by HA = (T, U, X, Z, I, T , G, V, r, f) with:

• the discrete time-domain T = {tk | k ∈ N∪ {0}, Δ ∈ R>0 : tk := k · Δ}, where
k is used in the following to refer to tk;

• the continuous input space U ⊆ Rnu with the continuous input signal uk ∈ U ;

• the continuous state space X ⊆ R
nx, on which the continuous state vector xk

is defined;
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• the finite set of discrete states Z = {z(1), · · · , z(nz)}, from which a discrete
state variable zk in time k is selected;

• a set I = {I(1), . . . , I(nz)} of invariants, where the invariant of any discrete state
z(i) is a polytope I(i) = {x | nIi ∈ N, C(i) ∈ R

nIi
×nx , d(i) ∈ R

nIi : C(i) · x ≤ d(i)},
I(i) ⊆ X;

• the finite set of transitions T ⊆ Z × Z, in which a transition from z(i) ∈ Z to
z(j) ∈ Z is denoted by τ(i,j) ∈ T ;

• the set G of guard sets containing one polytopic set G(i,j) = {x | C(i,j) ∈

R
nG(i,j)

×nx , d(i,j) ∈ R
nG(i,j) , x ∈ I(i) : C(i,j) · x ≤ d(i,j)} for any transition

τ(i,j) ∈ T ;

• the finite set V = {v(i,j) | v(i,j) ∈ {0, 1}, ∀τ(i,j) ∈ T } of discrete input variables,
where any element v(i,j),k in V refers to one transition τ(i,j) ∈ T triggered at
time k; the variable v(i,j),k is a binary one, encoding that for v(i,j),k = 1 the
transition τ(i,j) is triggered if xk ∈ G(i,j) applies; while for v(i,j),k = 0, the

transition cannot occur; in addition, let vk ∈ {0, 1}|V |×1 represent a vector
containing the binary values of all variables v(i,j),k ∈ V , and at any time k at
most one entry of vk = 1 is allowed;

• a reset function r: T × X → X which updates the continuous state xk upon
a transition τ(i,j) ∈ T according to x̂k = E(i,j) · xk + e(i,j), E(i,j) : τ(i,j) →
R

nx×nx, e(i,j) : τ(i,j) → R
nx×1. This function models the impulsive change of

the continuous state mentioned earlier;

• a flow function f : X × U × Z → X defines the discrete-time continuous
dynamics according to xk+1 = A(i) · xk + B(i) · uk with z(i),k ∈ Z, xk ∈ I(i).

The execution of HA over time is defined as follows:

Definition 2.1. (Admissible Execution)
For HA, let a finite time set TN = {0, 1, . . . , N} and initial states (x0, z0) sat-

isfying z0 := z(s) ∈ Z, x0 ∈ I(s) be given. For given input sequences φu =
{u0, u1, . . . , uN−1} and φv = {v0, v1, . . . , vN−1}, the pair of state sequences φx =
{x0, x1, · · · , xN } and φz = {z0, z1, · · · , zN } is admissible, if and only if for any k ∈
{0, . . . , N} the pair (xk+1, zk+1) follows from (xk, zk), xk ∈ I(i), zk := z(i) according
to the following semantics:

1.) x′ := A(i) · xk + B(i) · uk,

2.) if G(i,j) ∈ G exists so that x′ ∈ G(i,j) and if v(i,j),k = 1 applies, then xk+1 :
= E(i,j) · x′ + e(i,j) ∈ I(j) and zk+1 := z(j); otherwise, xk+1 := x′ ∈ I(i), and
zk+1 := z(i) is assigned.
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Figure 2.7.: Exemplary HA: the figure on the left demonstrates the transition map
of discrete dynamics; the figure on the right depicts the evolution of
continuous dynamics, in which the invariant sets are marked in yellow
and the guard sets are marked in red, and the blue dashed lines denote
a trajectory of continuous states and the black solid lines represent the
resets when the discrete state changes.

An exemplary HA is demonstrated in Fig. 2.7. In the light of Definition 2.1, one
can notice that the three transition mechanisms as well as the two types of impulsive
changes introduced in the last section are all encompassed in HA, namely:

• Switching systems: in switching systems, a transition τ(i,j) is a direct conse-
quence if the continuous state satisfies xk ∈ G(i,j) in time k. Thus, by fixing
the discrete input v(i,j),k = 1 in any time k in HA, a pure switching system is
obtained according to the semantics in Definition 2.1. In addition, as a reset
function r is also included in HA, an autonomous impulse can thus also be
modeled by HA. To represent the subclass PWA systems, one only has to set
G(i,j) := X, v(i,j),k = 1, for all G(i,j) ∈ G in any time k, as well as choosing an
identity function for r for any transition in HA;

• Switched systems: for switched systems, a transition τ(i,j) can take place in
any time k, provided that the continuous state xk is located in the invariant
set I(i) and a discrete input signal v(i,j),k = 1 is given. Thus, by setting the
guard set G(i,j) equal to the invariant set I(i) for any guard and any discrete
state, a switched system is obtained. Similarly to the autonomous impulse, a
controlled impulse can thus also be modeled by HA;

• Conditionally switched systems: as both switching and switched systems can
be represented by HA, it is obvious that HA can also model this type of hybrid
system.
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Compared with the commonly used PWA systems, the considered HA clearly
provides a higher degree of freedom in modeling the interaction between continuous
and discrete dynamics. HA thus appears to be a better option than PWA systems
facing the challenges in CPS modeling. In addition, in terms of the interaction
structure defined in Fig. 2.1, HA also allows one to model the influence from other
subsystems to a change of the local invariants or guards (e.g. their shape or size,
and this property is also demonstrated in the case study at the end of this chapter).
Moreover, it will be shown in a later chapter, that different class of uncertainties
occurring in CPS can also be modeled by using HA.

2.2. Optimal Control of Hybrid Systems with Given
Phase Sequences

In this section, the optimal control problem of HA over a finite time horizon is
considered. For given hybrid system HA with initial states (x0, z0) satisfying z0 :=
z(s) ∈ Z, x0 ∈ I(s), assume now a set of hybrid goal states (Xg, zg) which is defined
by zg ∈ Z and a polyhedral set contained in the invariant of zg: Xg = {x | npg ∈
N, Cg ∈ R

nXg ×nx, dg ∈ R
nXg , x ∈ Ig : Cg · x ≤ dg}. Furthermore, let a state xg ∈ Xg

be specified (e.g. the volumetric center of Xg) to later define a distance to the goal
region in a computationally easy way.

If (x0, z0), z0 := z(s), (Xg, zg), and TN are specified, the control objective is to find
admissible state sequences φx and φz, or corresponding input sequences φu and φv

respectively, which minimize an appropriate cost functional. Hereto, the following
objective function is defined:

J (x0) =
N∑

k=1

{(xk − xg)TQ(xk − xg) + uT
k−1Ruk−1} + qg · Ng (2.2)

where Q and R are semi-positive-definite weighting matrices, and qg ∈ R≥0. The
variable Ng := min{k ∈ {1, . . . , N} | xk ∈ Xg, zk = zg} encodes the first point
of time in which the continuous state has reached the goal set. Thus, by only
preserving the last term in J (x0), one models a time-optimal control goal, so that
the goal region Xg should be reached as fast as possible. It must be emphasized that
the switching costs often considered in literature can also be included into J (x0), as
well as some other types of control objectives, e.g., see [93]. Now by assuming that
the system can be held in the goal set, the overall control problem can be defined
as:

Problem 2.1. For HA initialized to (x0, z0), z0 := z(s), let a time set TN and a
goal (Xg, zg) be given. Then, determine input sequences φ∗

u and φ∗
v as the solution

of:

min
φu,φv

J (x0) (2.3)
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s.t.: φu with uk ∈ U, k ∈ {0, . . . , N − 1},

φv with v(i,j),k ∈ {0, 1}, k ∈ {0, . . . , N − 1},

φx, φz admissible for HA,

xN ∈ Xg, zN = zg.

Note that the direct solution of this problem is difficult because of the following
reasons:

1. The last but one constraint in Problem 2.1 requires the solution to satisfy
the semantics in Def. 2.1, and thus the logical conditions of the transition
mechanisms have to be converted into a form that is accessible to existing
solvers for the optimization problem;

2. With increasing value of the horizon N , the number of possible combinations
of φz and φv increases exponentially;

3. It is not known a-priori whether a feasible solution (or an admissible execution)
exists at all for the selected horizon N , and the optimizer may have to search
over many iterations until a first feasible solution (and thus a first finite upper
bound on the costs) is obtained, whereas the latter is crucial for reducing the
search space of the optimization algorithm.

Given these difficulties, a new approach is proposed which translates Problem 2.1
into a substitute formulation that considers the points mentioned above. The prin-
ciple is to introduce as few binary variables as necessary to convert the logical
conditions in Def. 2.1 exactly into a set of linear constraints for the binary vari-
ables (and real variables to encode the continuous part of the dynamics). By this,
the combinatorics of φz and φv is transformed into a combinatorics of the binary
variables. In addition, through a set of linear constraints formulated purely for the
binary variables, the relevant combinations for determining the optimal solution can
be reduced significantly. All the constraints in Problem 2.1 are equivalently refor-
mulated into a set of linear constraints and can be solved by using existing MIQP
solvers, such as CPLEX. The reformulation does not involve any approximation,
and the reformulated problem has the same optimal solution as Problem 2.1.

2.2.1. Representation of Admissible Trajectories by Algebraic
Programs

This section introduces a particular format to encode Problem 2.1 as algebraic
program with binary variables. It is well-known that implications like (xk ∈ I(i)) ⇔
(b = 1) for mapping the invariant set containment of xk into a binary variable b can
be accomplished by rules as those explained in [165] (often referred to as the Big-M-
approach). Such mechanisms have been re-used in different work on hybrid system
optimization, e.g. in [22, 150, 152], but the particular challenge is to use a number
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of binary variables and constraints as small as possible on these variables for low
computational times. This issue is addressed in the following for Problem 2.1. To
facilitate the description and understanding of the procedure, a simplified case is
first referred to, where a phase sequence is known: let the order of the discrete states
Z by which HA passes through be known, but the times in TN at which the discrete
states are left or are reached still have to be determined. Hence, the remaining task
is to determine the transition times as well as φu and φv such that φx is led (if
possible) through the appropriate series of invariants and guards. Formally, a phase
sequence is denoted by φp = {p0, . . . , pL}, where pl with l ∈ {0, . . . , L} is set to
the index of the discrete state, which is invariant in the l-th phase (i.e., φp ⊂ φz is
obtained from eliminating consecutive equal elements in φz).

The phases are now important to identify the number of binary variables required
to encode the execution of HA within the optimization problem: consider a phase
pi, as shown in Fig. 2.8, from a hybrid state (xk, zk) with zk = z(i) (reached by a
preceding transition) up to the state (xk+5, zk+5) with zk+5 = z(j), reached through
the transition τ(i,j). Note that x′ ∈ G(i,j) is an intermediate state, which is imme-
diately transferred into xk+5 := r(τ(i,j), x′) ∈ I(j) by the transition with reset upon
v(i,j),k+4 = 1, according to the definition of an admissible run above. Two points
are obvious from this figure:

1. for any of the states {xk, . . . , xk+4, x′} the same invariant constraint (element
of I(i)) applies, i.e. one binary variable per phase is sufficient to express this
fact;

2. the intermediate state x′ must be associated with an additional binary variable
to encode x′ ∈ G(i,j) for pi.

Since x′ must be treated separately, an extended index set for the states is considered
here, namely, k̃ ∈ TÑ = {0, · · · , N + L}, see Fig. 2.9 for a better understanding of
such extension mechanisms.

Within this set, the following assignments are provided corresponding to an ad-
missible run of HA:

• the new initial time step k̃ = 0 still refers to x0;

I(i)
I(j)G(i,j)

xk

x′

xk+3

xk+4

xk+5

Figure 2.8.: Execution of HA within one phase.
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xk(xk̃)

x′(xk̃+1)

xk+1(xk̃+2)

k k + 1

k̃ k̃ + 1 k̃ + 2

TN

TÑ

Figure 2.9.: Extension of the time index set TN to account for the intermediate
states x′ occurring for transitions.

• L steps from set TN are additionally assigned to the intermediate states x′

(and thus an exit from a discrete state);

• N + 1 steps (including the initial step) from set TN belong to the evolution of
continuous states in each discrete state;

• the last step in set TN encodes the entry into Xg.

Next, the constraints on the continuous states xk̃ have to be formulated suit-
ably. Recall that all invariants, guard sets, and Xg are given as polytopic sets.
Exemplarily for an invariant set I(i), the efficient algebraic encoding is explained:
using the principles proposed in [165], the constraint C(i) · xk̃ ≤ d(i) can be modeled
equivalently by:

C(i) · xk̃ ≤ d(i) + b(i),k̃ · M(i) (2.4)

if M(i) ∈ Rnpi×1 is a vector of large constants, and b(i),k̃ ∈ {0, 1} one binary vari-
able. If b(i),k̃ = 0, the invariant constraint is enforced, while b(i),k̃ = 1 relaxes the
constraint. Likewise, a guard constraint xk̃ ∈ G(i,j) results in:

C(i,j) · xk̃ ≤ d(i,j) + b(i,j),k̃ · M(i,j). (2.5)

Consider that two binary variables are required per phase (one for the invariant
conditions, and one for the guard condition (or the terminal set, respectively)), a
vector of 2(L + 1) binary variables is introduced, namely:

bk̃ = [b(0),k̃, b(0,1),k̃, b(1),k̃, . . . , b(L),k̃, bg,k̃]T (2.6)

for each k̃ ∈ {0, · · · , N + L}. The last entry represents containment in the goal set
Xg. For k̃ = 0, the numeric values of this vector are b0 = [0, 1, . . . , 1]T, and for the
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transition from phase pi to pi+1, there exists: (a) bk̃ = [1, . . . , 1, 0︸︷︷︸
2i+1

, 0︸︷︷︸
2i+2

, 1, . . . , 1]T

corresponding to the intermediate state x′, and (b) bk̃ = [1, . . . , 1, 0︸︷︷︸
2i+3

, 1, . . . , 1]T for

the entry in the next invariant. For k̃ = N+L, the vector is: bN+L = [1, . . . , 1, 0, 0]T,
and all of these vectors are collected in a matrix:

Bm = [b0, b1, . . . bN+L] = (2.7)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
...
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
...
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸︷︷︸
k̃out

0 −1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
...
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸︷︷︸
k̃out

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
1
...
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸︷︷︸
k̃in

1

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
1
0
0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸︷︷︸
k̃out

L−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
1
1
1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸︷︷︸
k̃in

L

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
1
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
...
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The last line refers to the time indexing, where k̃ = k̃out
0 encodes the instance in

which the first invariant is left, and k̃ = k̃in
1 encodes the instance in which the

second invariant of φz is reached. The following holds by construction:

Proposition 2.1. If φx and φz determine an admissible run of HA with zN = zg

and xN ∈ Xg, then a matrix Bm ∈ {0, 1}(2L+2)·(N+L+1) exists according to the rules
(2.4) to (2.7), and each column in Bm uniquely determines which constraints apply
to xk̃ for k̃ ∈ {0, · · · , N + L}. �

This proposition is a direct consequence of using the Big-M-approach to refor-
mulate the invariant, guard and terminal constraints in (2.4) – (2.7). Then, by
collecting all large constants M(i) and M(i,j) into a vector M with suitable dimen-
sion, and letting all constraints of the form (2.4) and (2.5) be collected in the order
of the indexing of xk̃ in:

C · xk̃ ≤ D + diag(Bm(:, k̃ + 1)) · M, (2.8)

the search for an admissible run φx and φz thus means to satisfy with (2.8) for
all k̃ ∈ {0, . . . , N + L}. The number of (2L + 2) · (N + L) binary variables (with
b0,k̃ being known) in Bm encode in principle 2(2L+2)·(N+L) combinations, which is
prohibitively large for an efficient solution of Problem 2.1 with larger N and L
values. Nevertheless, the particular structure in (2.7) that Bm has to satisfy for any
admissible execution reduces the number of possible combinations significantly, i.e.,
from 2(2L+2)·(N+L) to

(
N+L

2L

)
, and for the case when N = 10, L = 3, the combinations

are reduced from 2104 to 1716. The following section proposes a scheme to efficiently
exploit this structure in searching for an optimal φx and φz.
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2.2.2. Formulation of the Optimization Problem

In order to explain how Bm enables to search only over those value combinations
of binary variables that represent admissible runs of HA, the first two rows of the
matrix Bm are focused on first. They represent the values of the binary variables
b(0),k̃, b(0,1),k̃ over k̃ ∈ {0, · · · , N +L}, and these variables model that xk̃ is contained

in the invariant of the first discrete state (value 0) and, respectively, that the first
transition is triggered (again value 0):[

Bm(1, :)
Bm(2, :)

]
=

[
0 0 · · · 0 0 1 1 · · · 1
1 1 · · · 1 0 1 1 · · · 1

]
. (2.9)

Note that the column in which Bm(1, :) changes from 0 to 1 is not yet determined, as
the transition time is still not clear. Nevertheless, the value of Bm(1, k̃+1) in Bm(1, :
) can be noticed to depend on an auxiliary vector dT

1,k̃+1
= [Bm(1, k̃), Bm(2, k̃)]

according to:

Bm(1, k̃ + 1) =

{
0
1

}
if dT

1,k̃+1 =

{
[0, 1]

[0, 0] or [1, 1]

}
. (2.10)

Now, define two arbitrary parameter vectors α1 ∈ R3×1 and β1 ∈ R3×1 satisfying
the following conditions: ⎡

⎢⎢⎣
−∞

0
0

⎤
⎥⎥⎦ <

⎡
⎢⎢⎣
0 1 1
0 0 1
1 1 1

⎤
⎥⎥⎦ · α1 <

⎡
⎢⎢⎣
0
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0
1
1

⎤
⎥⎥⎦ <

⎡
⎢⎢⎣
0 1 1
0 0 1
1 1 1

⎤
⎥⎥⎦ · β1 <

⎡
⎢⎢⎣

1
∞
∞

⎤
⎥⎥⎦ , (2.11)

where the first two columns of the matrices in front of the vectors α1 and β1 encode
the possible values of dT

1,k̃+1
in (2.10). Then the relation (2.10) can be algebraically

and equivalently formulated as:

Bm(1, k̃ + 1) ≥ αT
1 (1 : 2) · d1,k̃+1 + α1(3),

Bm(1, k̃ + 1) ≤ βT
1 (1 : 2) · d1,k̃+1 + β1(3). (2.12)

While this encoding relates to the first phase, the principle can be transferred to
the subsequent phases as well. For a phase with index l ∈ {1, · · · , L − 1}, the
row with index 2l + 1 of Bm is relevant. It refers to the binary variable b(l),k̃,

and the value of Bm(2l + 1, k̃ + 1) is written depending on an auxiliary vector
dT

2l+1,k̃+1
= [Bm(2l, k̃), Bm(2l + 1, k̃), Bm(2l + 2, k̃)]:

Bm(2l + 1, k̃ + 1) =

{
0
1

}
if dT

2l+1,k̃+1 =

{
[0, 1, 1] or [1, 0, 1]
[1, 1, 1] or [1, 0, 0]

}
. (2.13)

29



2. Optimization Based Control of Hybrid Systems

If parameter vectors αl ∈ R4×1 and βl ∈ R4×1 are defined similarly to (2.11), the
assignment (2.13) can be equivalently formulated as:

Bm(2l + 1, k̃ + 1) ≥ αT
l (1 : 3) · d2l+1,k̃+1 + αl(4),

Bm(2l + 1, k̃ + 1) ≤ βT
l (1 : 3) · d2l+1,k̃+1 + βl(4). (2.14)

With respect to the penultimate row of Bm, which refers to bL,k̃, the value of Bm(2L+

1, k̃ + 1) depends likewise on an auxiliary vector dT
2L+1,k̃+1

= [Bm(2L, k̃), Bm(2L +

1, k̃)] with:

Bm(2L + 1, k̃ + 1) =

{
0
1

}
if dT

2L+1,k̃+1 =

{
[0, 1] or [1, 0]

[1, 1]

}
. (2.15)

Using parameter vectors αg ∈ R
3×1 and βg ∈ R

3×1, (2.15) is translated into:

Bm(2L + 1, k̃ + 1) ≥ αT
g (1 : 2) · d2L+1,k̃+1 + αg(3),

Bm(2L + 1, k̃ + 1) ≤ βT
g (1 : 2) · d2L+1,k̃+1 + βg(3). (2.16)

For any 2l-th row of Bm (with l ∈ {1, · · · , L}), which refers to b(l−1,l),k̃, only one

entry equals 0 (indicating that the reset is only triggered once), and can be enforced
by:

N+L∑
k̃=0

Bm(2l, k̃ + 1) = N + L, ∀l ∈ {1, · · · , L}. (2.17)

Finally, for the last row, referring to bg,k̃, only the last entry Bm(2L + 2, N + L + 1)
is forced to 0, modeling xN ∈ Xg. This is translated into:

Bm(2L + 2, N + L + 1) = 0. (2.18)

The condition that xk̃ ∈ Xg if xk̂ ∈ Xg for k̃ ≥ k̂ is modeled by:

Bm(2L + 2, k̃) ≥ Bm(2L + 2, k̃ + 1). (2.19)

Note that the options considered for dT
1,k̃+1

in (2.10), for dT
2l+1,k̃+1

in (2.13), and

for dT
2L+1,k̃+1

in (2.15) are sufficient to encode the part of Bm which corresponds to

the change of phases. Using this fact, and the constructive rules provided above to
determine the linear inequalities formulated for elements of Bm, the following fact
can be established:

Proposition 2.2. If a binary matrix Bm ∈ {0, 1}(2L+2)·(N+L+1) with first column
Bm(:, 1) = b0 and last column Bm(:, N + L + 1) = bN+L satisfies the constraints
(2.12), (2.14), and (2.16) to (2.19), then it has the same structure as in (2.7). �

30



2.2. Optimal Control of Hybrid Systems with Given Phase Sequences

Proof. Constraint (2.12) enforces the first row of Bm to satisfy the structure in (2.7);
Constraint (2.14) enforces the (2l + 1)-th row of Bm, for all l ∈ {1, · · · , L − 1}, to
satisfy the structure in (2.7), while constraint (2.16) is for the 2l-th row of Bm, for
all l ∈ {1, · · · , L}; Constraint (2.19) ensures the last row of Bm satisfy the desired
structure. Finally, all 2L + 2 rows of Bm are ensured to follow the desired structure
in (2.7) and thus finishes the proof.

Theorem 2.1. The task of finding an admissible trajectory of HA for given phase
sequence φp is equivalent to finding a matrix Bm ∈ {0, 1}(2L+2)·(N+L+1), with first
column Bm(:, 1) = b0 and last column Bm(:, N + L + 1) = bN+L, satisfying con-
straints (2.4), (2.5), (2.12), (2.14), and (2.16) to (2.19). �

This theorem is a direct result of Proposition 2.1 and 2.2 and thus the proof is
omitted. Now, all constraints introduced for the matrix Bm can be collected in the
set of linear constraints:

Q · [B�
m(:, 1), · · · , B�

m(:, N + L + 1)]� ≤ W , (2.20)

where the matrices Q and W depend on the various parameter vectors α and β.
The constraints in (2.20) also reduce the value combinations of the respective binary
variables in Bm from 2(2L+2)·(N+L) to

(
N+L

2L

)
, as the obtained Bm must follow the

structure in (2.7). The search for an admissible run φx and φz of HA now means
to let Bm satisfy (2.8) and (2.20). Thus, by introducing auxiliary variables ξk̃,i, πk̃,i

and ξk̃,(i,i+1) for all k̃ ∈ {1, . . . , N + L} (details of such reformulations can be found

in [152]), and additional parameters Θ+
i , Θ−

i , Θ+
u , Θ−

u determined by :

Θ+
i =

[
max
x∈I(i)

x1 · · · max
x∈I(i)

xnx

]T

, (2.21)

Θ−
i =

[
min
x∈I(i)

x1 · · · min
x∈I(i)

xnx

]T

,

Θ+
u =

[
max
u∈U

u1 · · · max
u∈U

unu

]T

,

Θ−
u =

[
min
u∈U

u1 · · · min
u∈U

unu

]T

,

as well as parameter vectors λx ∈ Rnx, λu ∈ Rnu to have for all x ∈ X and u ∈ U :

x + λx � 0nx×1, x − λx 
 0nx×1, (2.22)

u + λu � 0nu×1, u − λu 
 0nu×1,

the following transformed problem is obtained:

Problem 2.2. For a given phase sequence φp, determine input sequences φ∗
u and a

matrix B∗
m as solution to:

31



2. Optimization Based Control of Hybrid Systems

min
φu, Bm

N+L∑
k̃=0

{(x̂k̃+1 − xg)TQ(x̂k̃+1 − xg) + uT
k̃ Ruk̃} + qg ·

N+L∑
k̃=0

Bm(2L + 2, k̃ + 1)

(2.23a)

s.t.: Q · [B�
m(:, 1), · · · , B�

m(:, N + L + 1)]� ≤ W ; (2.23b)

for k̃ ∈ {1, . . . , N + L} :

x̂k̃ ≤ xk̃ + λx · (L −
L∑

i=1

Bm(2i, k̃ + 1)), (2.23c)

x̂k̃ ≥ xk̃ − λx · (L −
L∑

i=1

Bm(2i, k̃ + 1)), (2.23d)

x̂k̃ ≤ λx · (
L∑

i=1

Bm(2i, k̃ + 1) + 1 − L), (2.23e)

x̂k̃ ≥ −λx · (
L∑

i=1

Bm(2i, k̃ + 1) + 1 − L); (2.23f)

xk̃ =
L∑

i=0

[A(i) · ξk̃,i + B(i) · πk̃,i] +
L−1∑
i=0

ξk̃,(i,i+1); (2.23g)

C · xk̃ ≤ D + diag(Bm(:, k̃ + 1)) · M, uk̃−1 ∈ U ; (2.23h)

for i ∈ {0, · · · , L − 1} :

ξk̃,i ≤ Θ+
i · (Bm(2i + 2, k̃) − Bm(2i + 1, k̃)), (2.23i)

ξk̃,i ≥ Θ−
i · (Bm(2i + 2, k̃) − Bm(2i + 1, k̃)), (2.23j)

ξk̃,i ≤ xk̃−1 + λx · (1 − Bm(2i + 2, k̃) + Bm(2i + 1, k̃)), (2.23k)

ξk̃,i ≥ xk̃−1 − λx · (1 − Bm(2i + 2, k̃) + Bm(2i + 1, k̃)), (2.23l)

πk̃,i ≤ Θ+
u · (Bm(2i + 2, k̃) − Bm(2i + 1, k̃)), (2.23m)

πk̃,i ≥ Θ−
u · (Bm(2i + 2, k̃) − Bm(2i + 1, k̃)), (2.23n)

πk̃,i ≤ uk̃−1 + λu · (1 − Bm(2i + 2, k̃) + Bm(2i + 1, k̃)), (2.23o)

πk̃,i ≥ uk̃−1 − λu · (1 − Bm(2i + 2, k̃) + Bm(2i + 1, k̃)), (2.23p)

ξk̃,(i,i+1) ≤ Θ+
i+1 · (1 − Bm(2i + 2, k̃)), (2.23q)

ξk̃,(i,i+1) ≥ Θ−
i+1 · (1 − Bm(2i + 2, k̃)), (2.23r)

ξk̃,(i,i+1) ≤ E(i,i+1) · xk̃−1 + e(i,i+1) + λx · Bm(2i + 2, k̃), (2.23s)

ξk̃,(i,i+1) ≥ E(i,i+1) · xk̃−1 + e(i,i+1) − λx · Bm(2i + 2, k̃). (2.23t)

The cost function (2.23a) is an equivalent reformulation of the one in Problem
2.1, where the sum in the last term counts the total number of steps in which xk̃ is
not in Xg. The constraints (2.23c) to (2.23f) ensure that the costs induced by the
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intermediate states x′ are not recorded in the cost function. The conditions (2.23b)
and (2.23h) force the resulting trajectory φx to comply to φp. The equations and in-
equalities (2.23i) to (2.23t) refer to reformulate the hybrid dynamics into linear ones
by using auxiliary variables. Note that Problem 2.2 can be eventually reformulated
into the form of (2.1) at the beginning of this chapter. In addition, as all constraints
in Problem 2.2 are linear, together with a quadratic cost function, the optimization
problem represents an MIQP problem and thus can be solved by existing solvers.
After Problem 2.2 has been solved, the obtained B∗

m can straightforwardly deter-
mine the φ∗

z and φ∗
v according to the zero entries in B∗

m. Furthermore, since (2.23b)
admits all possible values of Bm corresponding to the structure in (2.7) and since
no approximation is involved, the following applies:

Corollary 2.1. If no feasible solution exists to Problem 2.2, then there exists no
admissible trajectory corresponding to the given phase sequence φp. �

Thus, Problem 2.2 can be used to verify the existence of an admissible trajectory
satisfying Problem 2.1 for the considered φp.

Theorem 2.2. If the solution of Problem 2 returns a feasible solution φ∗
u and B∗

m,
then it represents the optimal solution of Problem 2.1 for the given phase sequence
φp. �

This result follows from the relation between Problem 2.2 and 2.1 for the given φp

as established by Proposition 2.1 and 2.2, and from the fact that the branch-and-
bound algorithms for MIQP problems are capable to terminate with the optimal
solution, if the search tree is fully explored [26]. If now Problem 2.1 is addressed
without restriction to certain single φp, the solution is obtained by solving one
instance of Problem 2.2 for any possible phase sequence connecting z0 with zg.
If the number of possible phase sequences connecting the initial discrete state z0

and the target state zg is not very large, the search can be carried out by full
enumeration.

2.2.3. Numeric Examples

To illustrate the procedure, the following example considers an HA with x ∈ R3

and 5 discrete states Z = {z(0), z(1), z(2), z(3), z(g)}. The invariant sets of these states
are marked by yellow regions and the guard sets by orange regions in Fig. 2.10
and the following figures. The continuous dynamics, reset functions, and input
constraints are parametrized suitably (but not shown here for brevity), and the set
of transitions follows from the adjacency of the invariant sets.

The initial state is x0 = [12, −7, 0]T ∈ I(0), and the terminal state is set to

xg = [−2, −12, −2]T ∈ I(g). The terminal region Xg is marked as a green region
in the figures, and N is first selected to be 15, which leads to a number of 102
binary variables to be employed in Problem 2.2. Three different phase sequences
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x0 z(0)

z(1)

z(2)

z(3)

z(g)

Figure 2.10.: Optimal trajectories for the two phase sequences φp = {z(0), z(2), z(g)}
and φp = {z(0), z(3), z(g)}, where the trajectories in magenta are resets
of transitions.

z(0)

z(1) z(2) z(3)

z(g)

Figure 2.11.: Transitions map of the HA in Fig. 2.10.

are possible as shown in Fig. 2.11. Nevertheless, only for φp = {z(0), z(2), z(g)}
and φp = {z(0), z(3), z(g)} optimal admissible trajectories are found with selected
horizon N = 15, leading to costs of 3135.18 and 3429.26, and requiring computation
times of 0.08 sec and 0.09 sec on a 3.4GHz processor using Matlab 2015a and the
solver CPLEX. Through constraint (2.20), the relevant combinations of the binary
variables are reduced from 2102 to

(
17
4

)
= 2380 according to previous discussion, and
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x0

z(0)

z(1)

z(2)

z(3)

z(g)

Figure 2.12.: Optimal trajectory for φp = {z(0), z(1), z(g)} with N = 25.

the time to verify the infeasibility of φp = {z(0), z(1), z(g)} for N = 15 is about 0.01
sec. If, for the latter φp, the time horizon is increased to N = 25, then the admissible
trajectory shown in Fig. 2.12 is obtained with optimal cost of 6160.51 computed
in 0.72 sec. A further test on a new HA with unique φp = {z(0), z(1), z(2), z(g)}, i.e.,
a longer phase sequence than in the last test, and a horizon N = 24, the optimal
trajectory (determined in 1.06 sec) is illustrated in Fig. 2.13.

x0

z(0)

z(1)

z(2)

z(g)

Figure 2.13.: Optimal trajectory for φp = {z(0), z(1), z(2), z(g)} with N = 24.
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2.3. Controller Synthesis without Enumerating Phase
Sequences

In the last section, the solution of Problem 2.1 has been realized by first enumerating
all available phase sequences in a given HA, and then formulating and solving Prob-
lem 2.2 for each phase sequence and comparing their costs. This scheme, however,
may not be suitable for HA with larger sets of discrete states and transitions, as
the number of available phase sequences increases exponentially (in the worst case)
when more discrete states and transitions are included in HA. This section, in con-
trast, proposes a solution of Problem 2.1 by avoiding the enumeration procedure,
and shows that the globally optimal solution can be determined by solving only one
MIQP problem. This scheme is especially beneficial for some simpler tasks, such as
checking the feasibility of a state-to-set transfer problem with a given finite horizon.
In addition, a constraint purely among the binary variables is also formulated in
the MIQP problem, in order to reduce the solution complexity.

The key idea of the approach, which was first proposed in the publication [97], is
still to encode the logic conditions contained in Def. 2.1, namely:

1. starting from state xk, an intermediate state x′ is first reached according to
x′ := A(i) · xk + B(i) · uk;

2. the reset function r is triggered and the state xk+1 is reached according to
xk+1 := E(i,j) · x′ + e(i,j), if a transition is triggered,

and to cast them into a set of linear constraints using binary variables. Note that
the extension of the index set of the time horizon is still necessary here. But as
the phase sequence φp is not enumerated and thus unknown here, the extent of this
extension also belongs to the variables to be optimized. Accordingly, the extended
index set is defined as TÑ = {0, 1, . . . , N + |φp| − 1}, and for any step k̃ ∈ TÑ , the
semantics in Def. 2.1 is equivalently reformulated into the following:

If xk̃ ∈ I(i), xk̃ /∈ G(i,j), ∀G(i,j) ∈ G, then xk̃+1 := A(i)xk̃ + B(i)uk̃ ∈ I(i), zk̃+1 := z(i);

If xk̃ ∈ G(i,j) and v(i,j),k̃ = 0, then xk̃+1 := A(i)xk̃ + B(i)uk̃ ∈ I(i), zk̃+1 := z(i);

If xk̃ ∈ G(i,j) and v(i,j),k̃ = 1, then xk̃+1 := E(i,j)xk̃ + e(i,j) ∈ I(j), zk̃+1 := z(j).

(2.24)

For convenience of description, the index extension is first bound to TÑ = {0, 1, . . . ,
N + Lmax} conservatively, where Lmax is an upper bound of the times in which
a transition τ may be triggered along an admissible trajectory. It will be shown
that the feasibility and optimality of Problem 2.1 will not be affected by such a
conservative extension.

36



2.3. Controller Synthesis without Enumerating Phase Sequences

After the time horizon is extended, by introducing one binary variable for each
invariant set, guard set, and the terminal set for any step k̃ ∈ TÑ as in the last
section, a number of (|Z| + |G| + 1) · (N + Lmax + 1) binary variables are defined
and are collected in a set B. Meanwhile, the following constraints are obtained for
all k̃ ∈ {0, · · · , N + Lmax}:

C(i) · xk̃ ≤ d(i) + b(i),k̃ · M(i), ∀z(i) ∈ Z;

C(i,j) · xk̃ ≤ d(i,j) + b(i,j),k̃ · M(i,j), ∀G(i,j) ∈ G;

Cg · xk̃ ≤ dg + bg,k̃ · Mg. (2.25)

The value of the binary variables for k̃ = 0 is known according to the initial hybrid
states (as in the last section). But unlike the scheme in the last section where
the constraint (2.25) is only used to encode the logic conditions for a single phase
sequence, here it will be applied to directly encode the transition rule in (2.24), and
thus the original semantics in Def. 2.1. Following this line, the transition rule in
(2.24) will first be decomposed into the parts of the discrete and the continuous
dynamics in the coming section. Then, a type of encoding techniques based on
(2.25) will be introduced for each part to cast them into linear constraints.

2.3.1. Invariant Sets

When abstracting from the continuous dynamics in (2.24) for a moment, the fol-
lowing logical relations are obtained:

If xk̃ ∈ I(i), xk̃ /∈ G(i,j), ∀G(i,j) ∈ G, then xk̃+1 ∈ I(i) must apply; (2.26)

If xk̃ ∈ I(i), xk̃ ∈ G(i,j) and v(i,j),k̃ = 0, then xk̃+1 ∈ I(i) must apply; (2.27)

If xk̃ ∈ I(i), xk̃ ∈ G(i,j) and v(i,j),k̃ = 1, then xk̃+1 ∈ I(j) must apply. (2.28)

As an auxiliary means, let a set of possible discrete successor states of a discrete
state z(i) ∈ Z be defined as Zout

(i) , where z(j) ∈ Z, z(j) �= z(i) is included in Zout
(i)

exactly if a transition τ(i,j) ∈ T exists. Now, to encode the logical relations in
(2.26) – (2.28) in terms of binary variables, the following constraints together with
the constraint (2.25) are introduced for k̃:

|Z|∑
i=1

b(i),k̃ = |Z| − 1. (2.29)

|Zout
(i) |∑

l=1

b(i,l),k̃ ≥ |Zout
(i) | − 1,

|G|∑
G(i,j)∈G

b(i,j),k̃ ≥ |G| − 1. (2.30)

If b(i),k̃ = 0, b(i,j),k̃ = 1,

|Zout
(i) |∑

l=1

b(i,l),k̃ = |Zout
(i) |, then b(i),k̃+1 = 0 must apply. (2.31)
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If b(i),k̃ = 0, b(i,j),k̃ = 0,

|Zout
(i) |∑

l=1

b(i,l),k̃ = |Zout
(i) | − 1, then b(j),k̃+1 = 0 must apply.

(2.32)

Note that for given continuous state xk̃ and xk̃+1, as well as discrete input v(i,j),k̃, if

the logical relations in (2.25) and (2.29) – (2.32) are satisfied, then the continuous
states and discrete input must also satisfy the constraints (2.26) – (2.28):

• For the first relation (2.26), if xk̃ satisfies the condition xk̃ ∈ I(i), xk̃ /∈ G(i,j)

for all G(i,j) ∈ G, then there must exist b(i),k̃ = 0 and b(i,j),k̃ = 1, ∀G(i,j) ∈ G

according to constraints (2.25) and (2.29). Then, based on constraint (2.31)

one knows that if b(i),k̃ = 0 and b(i,j),k̃ = 1 are satisfied, as well as
|Zout

(i) |∑
l=1

b(i,l),k̃ =

|Zout
(i) | (since b(i,j),k̃ = 1, ∀G(i,j) ∈ G), there must exist b(i),k̃+1 = 0, which

implies xk̃+1 ∈ I(i) according to (2.25), i.e., the logical relation in (2.26) is
satisfied;

• For relations (2.27) and (2.28), if xk̃ satisfies the condition xk̃ ∈ I(i) and
xk̃ ∈ G(i,j), then there must exist b(i),k̃ = 0 and b(i,j),k̃ ∈ {0, 1} in the light of

constraint (2.25). Thus, if the state xk̃ is inside of the guard set G(i,j), the

relation: If b(i,j),k̃ = 0, then
|Zout

(i) |∑
l=1

b(i,l),k̃ = |Zout
(i) | − 1, must apply according to

constraint (2.30). Now, based on (2.31), if b(i,j),k̃ = 1 and
|Zout

(i) |∑
l=1

b(i,l),k̃ = |Zout
(i) |,

there must exist b(i),k̃+1 = 0, which means xk̃+1 ∈ I(i) due to (2.25). Thus, the

relation in (2.27) is satisfied. For the case that b(i,j),k̃ = 0 and
|Zout

(i) |∑
l=1

b(i,l),k̃ =

|Zout
(i) | − 1, there must exist b(j),k̃+1 = 0 according to (2.32), which means

xk̃+1 ∈ I(j) according to (2.25), i.e., the relation in (2.28) is also satisfied.

Following the description above, it is not hard to notice that the selection of the
discrete input v(i,j),k̃ in (2.27) and (2.28) is cast into the value selection of the binary

variable b(i,j),k̃ in constraints (2.29) – (2.32) and (2.25). However, besides constraint

(2.29) and (2.30) are formulated in linear form, the other two constraints (2.31) and
(2.32) do still contain logical expressions. Thus the following steps aim at casting
the (2.31) and (2.32) into linear form as well.

First note that both (2.31) and (2.32) are actually representing a mapping from

the vector

[
b(i),k̃ b(i,j),k̃

|Zout
(i) |∑

l=1
b(i,l),k̃

]
in step k̃ to the vector

[
b(i),k̃+1 b(j),k̃+1

]
in

the succeeding step k̃ + 1. This mapping is summarized in Table 2.1. The binary

choice of
|Zout

[i] |∑
l=1

b(i,l),k̃ in this table, together with constraint (2.29), take four value
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Table 2.1.: Relevant cases of the vector [b(i),k̃ b(i,j),k̃

|Zout
(i) |∑

l=1
b(i,l),k̃].

b(i),k̃ b(i,j),k̃

|Zout
(i) |∑

l=1
b(i,l),k̃ implies b(i),k̃+1 b(j),k̃+1

0 1 |Zout
(i) | → 0 1

0 0 |Zout
(i) | − 1 → 1 0

0 1 |Zout
(i) | − 1 → 1 1

1 1 |Zout
(i) | → {0, 1} {0, 1}

combinations of the vector

[
b(i),k̃ b(i,j),k̃

|Zout
(i) |∑

l=1
b(i,l),k̃

]
into account. The remaining

combinations are all not related or not feasible due to (2.25), (2.29) and (2.30). It
has to be emphasized that for the combination

[
1 1 |Zout

(i) |
]

in Table 2.1, it only
implies that the state xk̃ is not in the set I(i). Whether xk̃+1 ∈ I(i) or xk̃+1 ∈ I(j)

applies, still has to be considered.

Next, the mappings from

[
b(i),k̃ b(i,j),k̃

|Zout
(i) |∑

l=1
b(i,l),k̃

]
to

[
b(i),k̃+1 b(j),k̃+1

]
in Table

2.1 are cast into a set of linear constraints by using a similar method introduced in
Sec. 2.2.2: a set of arbitrary parameter vectors αi,1 ∈ R

4×1, βi,1 ∈ R
4×1, and αi,2 ∈

R4×1, βi,2 ∈ R4×1 are first introduced, which satisfy the following four conditions:

⎡
⎢⎢⎢⎢⎣
−∞

0
0

−∞

⎤
⎥⎥⎥⎥⎦ <

⎡
⎢⎢⎢⎢⎢⎣
0 1 |Zout

(i) | 1

0 0 |Zout
(i) | − 1 1

0 1 |Zout
(i) | − 1 1

1 1 |Zout
(i) | 1

⎤
⎥⎥⎥⎥⎥⎦ · αi,1 <

⎡
⎢⎢⎢⎢⎣
0
1
1
0

⎤
⎥⎥⎥⎥⎦ ;

⎡
⎢⎢⎢⎢⎣
0
1
1
1

⎤
⎥⎥⎥⎥⎦ <

⎡
⎢⎢⎢⎢⎢⎣
0 1 |Zout

(i) | 1

0 0 |Zout
(i) | − 1 1

0 1 |Zout
(i) | − 1 1

1 1 |Zout
(i) | 1

⎤
⎥⎥⎥⎥⎥⎦ · βi,1 <

⎡
⎢⎢⎢⎢⎣

1
∞
∞
∞

⎤
⎥⎥⎥⎥⎦ ;

⎡
⎢⎢⎢⎢⎣

0
−∞

0
−∞

⎤
⎥⎥⎥⎥⎦ <

⎡
⎢⎢⎢⎢⎢⎣
0 1 |Zout

(i) | 1

0 0 |Zout
(i) | − 1 1

0 1 |Zout
(i) | − 1 1

1 1 |Zout
(i) | 1

⎤
⎥⎥⎥⎥⎥⎦ · αi,2 <

⎡
⎢⎢⎢⎢⎣
1
0
1
0

⎤
⎥⎥⎥⎥⎦ ;

⎡
⎢⎢⎢⎢⎣
1
0
1
1

⎤
⎥⎥⎥⎥⎦ <

⎡
⎢⎢⎢⎢⎢⎣
0 1 |Zout

(i) | 1

0 0 |Zout
(i) | − 1 1

0 1 |Zout
(i) | − 1 1

1 1 |Zout
(i) | 1

⎤
⎥⎥⎥⎥⎥⎦ · βi,2 <

⎡
⎢⎢⎢⎢⎣
∞
1
∞
∞

⎤
⎥⎥⎥⎥⎦ . (2.33)

Here, the first three columns in the matrix before the parameter vectors encode
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all value combinations of the vector [b(i),k̃ b(i,j),k̃

|Zout
(i) |∑

l=1
b(i,l),k̃] in Table 2.1. With the

help of αi,1, βi,1, αi,2 and βi,2, the mappings in Table 2.1 can be algebraically and
equivalently formulated as the following linear constraints:

b(i),k̃+1 ≥ αT
i,1(1 : 4) ·

[
b(i),k̃ b(i,j),k̃

|Zout
(i) |∑

l=1
b(i,l),k̃ 1

]T

;

b(i),k̃+1 ≤ βT
i,1(1 : 4) ·

[
b(i),k̃ b(i,j),k̃

|Zout
(i) |∑

l=1
b(i,l),k̃ 1

]T

;

b(j),k̃+1 ≥ αT
i,2(1 : 4) ·

[
b(i),k̃ b(i,j),k̃

|Zout
(i) |∑

l=1
b(i,l),k̃ 1

]T

;

b(j),k̃+1 ≤ βT
i,2(1 : 4) ·

[
b(i),k̃ b(i,j),k̃

|Zout
(i) |∑

l=1
b(i,l),k̃ 1

]T

. (2.34)

Finally, as the mappings in Table 2.1 also represent the logical relations in (2.31)
and (2.32), the latter relations are now successfully cast into linear constraints
(2.34). These linear constraints, together with constraint (2.29) and (2.30), are
thus sufficient to represent the logical constraints (2.26) – (2.28), i.e., the logic
behind the discrete state transition in (2.24).

2.3.2. Continuous Dynamics

For the logical relations in (2.24), by only considering the continuous dynamics to
be followed in step k̃, the following relations are established:

If xk̃ ∈ I(i), xk̃ /∈ G(i,j), ∀G(i,j) ∈ G, then xk̃+1 := A(i)xk̃ + B(i)uk̃;

If xk̃ ∈ G(i,j) and v(i,j),k̃ = 0, then xk̃+1 := A(i)xk̃ + B(i)uk̃;

If xk̃ ∈ G(i,j) and v(i,j),k̃ = 1, then xk̃+1 := E(i,j)xk̃ + e(i,j). (2.35)

This together with the constraint (2.25), (2.29), and (2.34) can be equivalently
represented by:

If b(i),k̃ = 0, b(i,j),k̃ = 1, and

|Zout
(i) |∑

l=1

b(i,l),k̃ = |Zout
(i) |, then xk̃+1 := A(i)xk̃ + B(i)uk̃;

If b(i),k̃ = 0, b(i,j),k̃ = 0, and

|Zout
(i) |∑

l=1

b(i,l),k̃ = |Zout
(i) | − 1, then xk̃+1 := E(i,j)xk̃ + e(i,j).

(2.36)

Now by introducing auxiliary variables ξ(i),k̃, π(i),k̃, and η(i,l),k̃ similar to those in

Problem 2.2, as well as vectors Θ+
(i), Θ−

(i), Θ+
u , Θ−

u and λx, λu determined according
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to (2.21) and (2.22), the continuous dynamics in step k̃ in (2.24) can be reformulated
by using the following linear constraints:

xk̃+1 := A(i)ξ(i),k̃ + B(i)π(i),k̃ +

|Zout
(i) |∑

l=1

η(i,l),k̃, (2.37)

where for all z(l) ∈ Zout
(i) :

Θ−
(i) · (b(i,l),k̃ − b(i),k̃) ≤ ξ(i),k̃ ≤ Θ+

(i) · (b(i,l),k̃ − b(i),k̃), (2.38a)

xk̃ − λx · (1 − b(i,l),k̃ + b(i),k̃) ≤ ξ(i),k̃ ≤ xk̃ + λx · (1 − b(i,l),k̃ + b(i),k̃), (2.38b)

Θ−
u · (b(i,l),k̃ − b(i),k̃) ≤ π(i),k̃ ≤ Θ+

u · (b(i,l),k̃ − b(i),k̃), (2.38c)

uk̃ − λu · (1 − b(i,l),k̃ + b(i),k̃) ≤ π(i),k̃ ≤ uk̃ + λu · (1 − b(i,l),k̃ + b(i),k̃), (2.38d)

λx · (b(i,l),k̃ − 1) ≤ η(i,l),k̃ ≤ λx · (1 − b(i,l),k̃), (2.38e)

E(i,l)xk̃ + e(i,l) − λx · b(i,l),k̃ ≤ η(i,l),k̃ ≤ E(i,l)xk̃ + e(i,l) + λx · b(i,l),k̃. (2.38f)

Now, through the derivations above, both the discrete state and continuous state
transitions in (2.24) are reformulated into a set of linear constraints (2.25), (2.29),
(2.30), (2.34), (2.37) and (2.38a)-(2.38f). This means that the admissibility of φx, φz

in Problem 2.1 can be ensured through these linear constraints. Note for the re-
maining constraints contained in Problem 2.1, uk ∈ U is already in linear form and
v(i,j),k ∈ {0, 1} has already been ensured through constraint (2.34). The only con-
straint that has not yet been considered is the terminal constraint xN ∈ Xg, zN = zg,
which will be the focus of the coming part.

2.3.3. Encoding the Terminal Constraint

The requirement that, once xk̃ ∈ Xg applies, then xk̂ ∈ Xg for k̃ ≥ k̂ can be
equivalently modeled by:

bg,k̃ ≥ bg,k̃+1. (2.39)

This constraint implies that once bg,k̃ = 0, then bg,k̃+1 = 0 must apply, i.e., enforcing
xk̃+1 ∈ Xg according to (2.25). For the terminal constraint xN ∈ Xg, recall that
it corresponds to the constraint xN+Lmax ∈ Xg for the extended time set TÑ , if a
number of Lmax transitions were indeed triggered.

In the general case, the terminal constraint xN ∈ Xg is equal to xN+ρ ∈ Xg,
where ρ denotes the amount of additional steps caused by transitions. However,
as mentioned earlier the exact number of necessary additional steps is only known
after solving Problem 2.1, since it is an outcome of the optimization. Nevertheless,
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one can still compute the number ρ by:

ρ = (N + Lmax + 1) · |G| −
N+Lmax∑

k̃=0

∑
G(i,j)∈G

bk̃,(i,j). (2.40)

This is because, if the constraints (2.25), (2.29), (2.30) and (2.34) hold, then the
transition from z(i) to z(j) can only be triggered if the binary variable bk̃,(i,j) is 0 for

all k̃ ∈ {0, · · · , N + Lmax}. As a result, the right hand side of (2.40) is actually
recording how many bk̃,(i,j) are equal to 0 among all guard sets, which forces the

outcome of the right hand side of (2.40) to be equal to the number of the transitions
being executed.

Accordingly, together with the constraint (2.39), the terminal constraint xN ∈ Xg

can be equivalently reformulated into the following linear form:

N+Lmax∑
k̃=0

bg,k̃ ≤ N + ρ. (2.41)

It implicitly requires bg,N+ρ = 0, which enforces xN+ρ ∈ Xg according to (2.25).
Now, all the constraints in Problem 2.1 are reformulated into linear form, leading
to the following equivalent problem:

Problem 2.3. For HA initialized to (x0, z0), z0 := z(s), let a time set TN and a
goal (Xg, zg) be given. Then, determine continuous input sequences φ∗

u and the set
of binary variable 1 B, as the solution of:

min
φu, B

N+Lmax∑
k̃=1

{(x̂k̃ − xg)TQ(x̂k̃ − xg) + uT
k̃−1Ruk̃−1} + qg · (

N+Lmax∑
k̃=1

bg,k̃ − ρ)

s.t.: Constraints (2.25), (2.39) − (2.41), and (2.42a)

for k̃ ∈ {0, . . . , N + Lmax − 1} :

uk̃ ∈ U, (2.42b)

xk̃+1 :=
|Z|∑
i=1

{A(i) · ξ(i),k̃ + B(i) · π(i),k̃} +
|Z|∑
i=1

|Zout
(i) |∑

j=1

η(i,j),k̃ (2.42c)

xk̃ − λx · (|G| −
∑

G(i,j)∈G

b(i,j),k̃) ≤ x̂k̃ ≤ xk̃ + λx · (|G| −
∑

G(i,j)∈G

b(i,j),k̃), (2.42d)

− λx · (
∑

G(i,j)∈G

b(i,j),k̃ + 1 − |G|) ≤ x̂k̃ ≤ λx · (
∑

G(i,j)∈G

b(i,j),k̃ + 1 − |G|), (2.42e)

Constraints (2.29), (2.30), (2.34), (2.38a) − (2.38f), ∀z(i) ∈ Z, ∀z(j) ∈ Zout
(i) . (2.42f)

The state evolution (2.42c) is an extension of (2.37) by taking all invariant sets
and guard sets into account. The constraints (2.42d) to (2.42e) ensure that the

1Note that through constraint (2.34), the optimization of the sequence φv has been cast into the
optimization of binary variables b(i,j),k̃ for all G(i,j) ∈ G and for all k̃ ∈ {0, · · · , N + Lmax − 1}.
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costs induced by the intermediate states x′ of the transition are not recorded in the
cost function. The cost term Ng in the original cost function (2.2) is equivalently

cast into
N+Lmax∑

k̃=1

bg,k̃ −ρ, which counts the number of steps that the state x is not in

the terminal set Xg. Note that the Problem 2.3 is once more in the form of (2.1),
i.e., it represents an MIQP problem with linear constraints, and can thus be solved
by CPLEX.

Furthermore, as all the constraints and the cost function defined in Problem 2.3
are obtained through equivalent reformulation of the constraints in Problem 2.1,
both problems share exactly the same feasibility and optimality. This property
enables one to use the set of constraints defined in Problem 2.3 to specify the fea-
sibility of Problem 2.1 (a verification task rather than optimization). Moreover,
the constraint (2.34) only involves the binary variables and can thus reduce the set
of possible value combinations, i.e., reduce the overall complexity (same reason as
for constraint (2.20) in the last section). At last, compared with the last approach
where enumeration is required, the new approach can realize the optimization and
verification task in one program. In addition, when new transitions are included
or certain transitions are prohibited in given HA, or certain discrete states must
be visited in the obtained trajectory, one only has to adapt the corresponding con-
straints in this approach, instead of enumerating all discrete state sequences once
more (this property is illustrated in the following example).

2.3.4. Numeric Examples

The HA considered here for numeric illustration is similar to the one in Sec. 2.2.3,
but contains more transitions and thus makes the enumeration of all phase sequences
difficult. Again, the invariant sets are marked in yellow, the guard sets in orange
and the target set in green, see Fig. 2.15. The transition map of the considered
HA with a number nz = 7 of discrete states is shown in Fig. 2.14. The weighting
factors, the continuous dynamics in each invariant set, the reset function of each
guard set, and the input set are parametrized suitably.

In the first test, the initial state is selected to be x0 = [15, −6, 0]T ∈ I(1) and the

terminal state xg = [−4, −10, 0]T ∈ I(3). The considered horizon is N = 20, Lmax is
chosen to be 5, so that a number of (7 + 17 + 1) · (20 + 5 + 1) = 650 binary variables
is needed. By solving Problem 2.3 for the given setting, the optimal trajectory is
obtained in 18.77 sec with a cost of 1385.40, as shown in Fig. 2.15. There, the
optimal continuous state sequence starts from z(1), enters into guard set G(1,3), and
then reaches z(3). If one only seeks for a feasible trajectory instead of the optimal
one (a verification task), the considered program terminates within only 0.13 sec.

In the second test, an additional requirement is considered, that the discrete
state z(5) must once be visited. This requirement can be equivalently formulated

as constraint
N+Lmax∑

k̃=0

b(5),k̃ ≤ N + Lmax in Problem 2.3, which implies that the
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z(1)

z(2)

z(3) z(4)

z(5)

z(6)

z(7)

Figure 2.14.: Transition map of the considered HA.

z(1)

z(2)z(3)

z(4)

z(5)

z(6)

z(7)

x0

xg

G(1,3)

Figure 2.15.: Optimal trajectory of the first test, where the reset of the continuous
states by transition z(1) → z(3) is marked in magenta.

binary variable b(5),k̃ must at least once be zero over the horizon. The new optimal

trajectory is obtained in 23.75 sec with a cost of 1496.21 (while the first feasible
trajectory in found in only 0.63 sec), and is shown in Fig. 2.16.

For the alternative requirement that the discrete state z(7) must be visited, the
infeasibility of the task is verified within 0.35 sec. The tests above shows the high
flexibility with which Problem 2.3 can be adapted when the control task changes,
as well as efficiency with respect to computation time. All the tests were carried
out on a 3.4GHZ processor using Matlab 2015a with the solver CPLEX.
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z(1)

z(2)
z(3)

z(4)

z(5)

z(6)

z(6)

x0

xg

G(1,5)

G(5,3)

Figure 2.16.: Optimal trajectory with visiting z(5) once.

2.4. Case Study: An Overtaking Problem for an
Autonomous Vehicle

The case study of automated driving is an example of a CPS being composed of
several subsystems (representing the automated vehicles) which evolve over time in
interacting manner, see Fig. 2.17. The number of vehicles involved in a scenario
determines the information exchanged through the communication network and the
number of restrictions to be considered for the driving plans of each vehicle.

For each local vehicle in the network, such as s1 marked in Fig. 2.17, its basic
objective is to guarantee that the local maneuvers are safe with respect to avoiding
inter-vehicle collision. The maneuvers of s1 are thus determined by its local dynam-
ics and the information sent from other vehicles, which contains, e.g., the region of

s1

s1

x

y

Figure 2.17.: Vehicle overtaking scenario on a straight road for an automated car.
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possible positions to be occupied over a future time span (marked in red). Based on
this information, the controller of s1 can identify the regions that it can freely move
(marked in green and blue) over the future time span. If, in addition, the controller
of s1 intends to overtake the vehicle in front, a set of new regions on the road are
assigned (marked in blue), within which the lane-change maneuver is allowed to be
executed safely. The goal of this study is to plan a trajectory for s1 by constructing
a hybrid system HA, such that the overtaking task can be accomplished, while all
safety issues are taken into account.

Model of the Vehicle Dynamics

For the considered trajectory planning problem, the selected vehicle model directly
affects the quality of the obtained trajectory. For reducing the complexity of plan-
ning, a double integrator model is often used [54, 53], since only the position and
velocity of the vehicle are relevant. If, however, a precise model of the vehicle was
used in planning, e.g. a high-dimensional nonlinear model consisting of the vehi-
cle position, velocity, acceleration, yaw angle, yaw rate, steering angle [135], the
complexity of the planning would increase significantly.

As a compromise between accuracy and complexity, the vehicle dynamics is here
approximated by a set of linear differential equations, each of which models a typical
behavior of the vehicle during the overtaking. In detail, the state of the vehicle
contains longitudinal position px(t) and velocity vx(t), and lateral position py(t)
and velocity vy(t), satisfying the differential equation:

⎡
⎢⎢⎢⎢⎣
ṗx(t)
ṗy(t)
v̇x(t)
v̇y(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
px(t)
py(t)
vx(t)
vy(t)

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

0
0

cos(θ(t))
sin(θ(t))

⎤
⎥⎥⎥⎥⎦u(t), (2.43)

where θ(t) is the angle of the vehicle to the longitudinal road axis and u(t) denotes
the acceleration along the driving direction (local coordinate). Both θ(t) and u(t)
are the inputs to be selected in (2.43), and it is assumed that θ(t) can only take
value from the finite set {−π

9 , 0, π
9 }, each representing a typical angle during the

overtaking. The change of θ(t) from one value to another in the finite set can be
modeled by using reset functions. The other constraints are chosen suitably.

Trajectory Planning with HA

As different θ-values lead to different linearized dynamics in (2.43), a hybrid system
HA is constructed to model the hybrid behavior of s1 during the overtaking scenario
(also as an approximation of the original nonlinear dynamics (2.43)). In detail, a
number of 5 discrete states Z = {z(0), z(1), z(2), z(3), z(4)} are assigned to encode the
green (straight drive) and blue (lane change allowed) regions (see Fig. 2.18) and
the following hybrid dynamics is applied:
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• for z(0), z(2) and z(4), angle θ(t) = 0 applies in (2.43);

• for z(1), θ(t) = π
9

applies;

• for z(3), θ(t) = −π
9 applies.

A set of guards G = {G(0,1), G(1,2), G(2,3), G(3,4)}, G(j,j+1) ⊆ Iz(j)
, ∀j ∈ {0, 1, 2, 3} are

also assigned through a partition of the road, representing the transition condition of
the discrete states, see Fig. 2.18. A set of discrete inputs v(j,j+1), j ∈ {0, 1, 2, 3} are
also applied together with the guards, in order to decide the time of the transition.
Clearly, for a more precise approximation of the nonlinear dynamics (2.43), one can
take more available θ-values into account. But this will also lead to an increase
of discrete states and transitions in the obtained HA, and thus complicates the
corresponding control problems.

After the HA is determined and by selecting a suitable objective function, e.g.,
the time-optimal one, the overtaking problem is cast into a trajectory planning
problem connecting z(0) and z(4), see Fig. 2.18. To achieve the overtaking task, an
optimization problem in the form of Problem 2.2 is formulated (as there is only one
possible phase sequence in the HA) and solved by using CPLEX. With a sampling
time of 0.5sec and a planning horizon of 15 sec, the trajectory in Fig. 2.19 is found
after 0.28 sec, as well as the velocity profile plotted in Fig. 2.20. Note that the
impulsive change of the velocities in step 8 and 15 are due to an impulse change
(jump) of the angle θ(t) when discrete state changes. This issue of non-smoothness

I(0)

I(1)

I(2)

I(3)

I(4)

z(0)

z(1) z(2)
z(3)

z(4)G(0,1)

G(1,2)
G(2,3)

G(3,4)

x0

s1

Figure 2.18.: The vehicle overtaking problem of s1 is cast into an optimal control
problem of a hybrid system HA: before the overtaking procedure
starts, each invariant I and guard G of the HA is obtained by par-
titioning the road, and the partition is based on the local status of
s1 (including position, speed and acceleration) and the status of the
vehicles around (through communication or observation).
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Figure 2.19.: Trajectory obtained by solving Problem 2.2.
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Figure 2.20.: Longitudinal and lateral velocity of s1 during the overtaking.

may not be desired in practical realization of the plan, but can be overcome by
providing an additional (subordinated) controller to smooth the sharp changes.

2.5. Summary and Discussion

In this chapter, a class of hybrid systems that can describe a large variety of transi-
tion mechanisms has been proposed to model the local dynamics of CPS. Compared
to commonly considered hybrid systems (such as PWA systems), more interleav-
ing schemes between the discrete and continuous dynamics can be modeled in the
proposed HA. The enhanced modeling ability, however, also makes the optimal
control problem more complicated, primarily due to the extended degree of free-
dom by describing the hybrid dynamics including: 1.) the discrete state path; 2.)
the allocation of time points to the discrete states; 3.) the evolution of the con-
tinuous state in each discrete state; 4.) the continuous/discrete inputs. Efficient
methods for the solution are thus required to meet the real-time requirement when
controlling CPS online.

With this task in mind, a method requiring that the possible phase sequences of
HA are enumerated (before the optimization is started) has first been proposed in
Sec. 2.2. For each phase sequence, the semantics of the corresponding admissible
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trajectories are cast into a tailored set of linear constraints, reducing the value
combinations of binary variables required to formulate the transition dynamics.
The significant reduction of the number of value combinations also reduces the
search space of the underlying MIP, and thus increases the computational efficiency.
The procedure does not involve approximation and thus ensures that the globally
optimal solution is found.

The requirement that all phase sequences must be enumerated, however, may not
be efficient, since the enumeration procedure may become intractable for a large
number of discrete states/transitions of HA. To avoid the enumeration process, a
new method has been proposed in Sec. 2.3, which determines the optimal control
actions through only one numerical program. The basic idea is to directly cast the
semantics of HA into linear constraints, instead of the semantics for each phase
sequence, and it enables efficient solution as demonstrated for simulation examples.

A limiting assumption of the HA in this chapter is that the flow functions are
assumed to be linear (affine). For a more general case in which nonlinear functions
arise, the results published recently in [101] can enable the two solution schemes
above be further applied. In a nutshell, the nonlinear flow function f(i) for each
discrete state z(i) ∈ Z can first be approximated by a piecewise affine system, using
the technique called hybridization [13, 50]. The hybridization also partitions each
invariant set I(i) into a finite number of sub-invariants, so that a linear flow function
is obtained for each sub-invariant. As a result, the original HA with nonlinear flow
functions can be approximated by a new HA, in which only linear flow functions
are followed, but with linearization error and more invariants (discrete states) than
before. The two solution schemes can then be applied to solve the optimal control
problem of the approximated HA, which indirectly solves the original problem. For
the linearization error caused by approximation, a set of advanced methods are
introduced in [101], so that the feasibility of the original problem can be ensured,
while the performance loss is also bounded.

Nevertheless, the setting at the beginning of the chapter that the interaction
among the subsystems of CPS is static and can be cast into deterministic constraints
(e.g. deterministic invariants and guards) of a local subsystem may seem unrealistic
especially for online control. This implies that uncertainties should be taken into
account during the controller synthesis of HA, which will be the main topic of the
following chapter.
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3. Robust Control of Hybrid Systems
with Uncertain Dynamics and
Environments

In this chapter, different classes of uncertainties encountered in CPS will be taken
into account, including additive disturbances and parametric uncertainties affecting
the local hybrid dynamics, and time-varying state constraints (with unknown but
bounded change) caused by the interaction among the subsystems, see Fig. 3.1.
For the additive disturbances and parametric uncertainties, they may be obtained
by unpredictable disturbances or the use of an approximated model, e.g., the use
of a double integrator model to describe the nonlinear vehicle dynamics. The un-
known change of state constraints, on the other hand, is primarily due to incomplete
knowledge of the behavior of the environment around the local subsystem, e.g., the
vehicle to be overtaken may suddenly start to accelerate.

Starting from the uncertainties affecting local plants, a robust control strategy is
proposed first in this chapter, ensuring that the given control objective can always
be achieved despite the uncertainties. This is realized by constructing a nominal
HA (without uncertain terms affecting the flow and reset functions) as in the last
chapter, by using a „robust invariant tube”. Then, the robust control problem of
the uncertain HA is cast into the optimal control problem of the nominal one.

Next, the local controller synthesis problem with a time-varying environment is

Plant pi

Controller ciConstraints

Interaction

Uncertain + Varying

Figure 3.1.: Uncertainty may arise in both the local plant and the environment
around.
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considered. In this case, the MPC strategy is applied to control the local subsys-
tem, and important properties such as recursive feasibility and stability have to be
(and are) investigated in this chapter, especially for two types of changes of the
environment:

• If no detailed model is available to describe the change of the environment
precisely, the maximal change of the environment within one time step may
still be known to be bounded, and it may be possible to conservatively estimate
the bound a priori.

• If a dynamic model of the change of the environment exists but is subject to
uncertainties, the model can be used to specify the change of the environment
conservatively.

For the two cases, means to guarantee the above named properties of MPC are
presented. However, if the over-approximation of the uncertain changes is large,
quite conservative control strategies may result, and no feasible control action may
be found in the worst case. To overcome this issue, a method using a penalty term
(added to the cost function) to preserve the desired properties is proposed, and no
conservativeness with respect to reducing feasible solution space is introduced in
this approach.

Eventually, a human-robot collaboration example is considered, in which the
robot dynamics is affected by additive disturbances, and the prediction of human
motion also contains uncertainties. By applying the methods proposed in this chap-
ter simultaneously, it is shown that the desired task of the robot can be accomplished
while the safety of the humans is ensured. This chapter is based on results published
partly already in [100, 98].

3.1. Robust Point-to-Set Control with Uncertain
Dynamics

An important extension to the HA introduced in the last chapter is that the contin-
uous as well as discrete dynamics (more precisely the reset functions) are subject to
uncertainties. So far, robust control of hybrid systems with focus on optimization-
based approaches, has only considered simpler system classes: In [79], PWA systems
with additive disturbances were under study, and robust controllers were obtained
by backward computation of robust controllable sets. The work in [91] extended
the idea of backward computation for the case of parametric model uncertainties.
For the same class of PWA systems, the authors in [115] and [143] aim at setting up
min-max problems, or to employ multi-parametric linear programming (see [32]).
Specific to the considered class of hybrid systems, the work in [113] proposes a
robust switching law for the case when no continuous input is applied.
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In this section, however, both parametric uncertainties and additive disturbances
affecting the continuous dynamics are considered, as well as uncertain reset func-
tions assigned to transitions. For the task of computing robust control trajectories,
ideas that were used for simpler systems in [86, 110, 67, 136] were employed and
extended, namely to construct reachable tubes (robust invariant sets) around nomi-
nal trajectories. Through a reduction of the size (or sometimes called as tightening)
of the invariants and guard sets of the hybrid systems by use of such tubes, and
by optimizing the nominal trajectories for a obtained nominal hybrid system with
tightened invariants and guards, it is shown that the optimal point-to set control
tasks can be solved reliably despite the presence of the uncertainties.

The class of uncertain hybrid systems HAu = (T, U, X, Z, I, T , G, V, ru, fu), which
has been introduced in [100], is extended compared to the one in Sec. 2.1, which
contains:

• the discrete time domain T = {tk | k ∈ N ∪ {0}, Δ ∈ R>0 : tk := k · Δ};

• the continuous inputs u ∈ U ⊆ R
nu,

• the continuous states x ∈ X ⊆ R
nx;

• the finite set of discrete states Z = {z(1), · · · , z(nz)};

• a set I = {I(1), . . . , I(nz)} of invariants I(i);

• the finite set of transitions T ⊆ Z × Z , where the transition from z(i) to z(j)

is denoted by τ(i,j) ∈ T ;

• the set G of guard sets, of which any element G(i,j) is assigned to τ(i,j) ∈ T ;

• the finite set V of discrete inputs, where any element v(i,j) ∈ {0, 1} in V refers
to one transition τ(i,j) ∈ T ;

• an uncertain reset function ru : T ×X → X to randomly update the continuous
states x upon a transition τ(i,j) ∈ T according to the following scheme:

x̂ = F(i,j) · x + e(i,j) (3.1)

with a matrix F(i,j) and a vector e(i,j); F(i,j) is randomly taken from a polytope
F(i,j) defined by:

F(i,j) =

⎧⎨
⎩F(i,j) =

ρ(i,j)∑
l=1

γl · F
(l)
(i,j),

ρ(i,j)∑
l=1

γ≥0
l = 1

⎫⎬
⎭ (3.2)

with F
(l)
(i,j) denoting the vertices of F(i,j), and ρ(i,j) is the number of these

vertices, and γl ∈ [0, 1]. The vector e(i,j) is randomly taken from a polytopic
set E(i,j);
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• an uncertain flow function fu : X × U × Z → X defining the discrete-time
continuous-valued dynamics to:

xk+1 = A(i) · xk + B(i) · uk + w(i),k (3.3)

with xk+1 := x(tk+1) and z(i) ∈ Z. The matrices A(i) and B(i) are randomly
taken from polytopic sets A(i) and B(i) with numbers of vertices given by ρ(i,A)

and ρ(i,B):

A(i) =

⎧⎨
⎩A(i) =

ρ(i,A)∑
l=1

γl · A
(l)
(i),

ρ(i,A)∑
l=1

γl = 1

⎫⎬
⎭ ,

B(i) =

⎧⎨
⎩B(i) =

ρ(i,B)∑
l=1

γl · B
(l)
(i),

ρ(i,B)∑
l=1

γl = 1

⎫⎬
⎭ , (3.4)

and with coefficients γl ∈ [0, 1]. The additive disturbances w(i),k are taken
from a set W(i) containing the origin.

The set of admissible executions of the model HAu considering the uncertain
components of the continuous dynamics and reset functions is defined as follows:

Definition 3.1. (Admissible execution of the uncertain model HAu) Let
a finite time domain TN = {0, 1, . . . , N} ⊂ T and an initial hybrid state (x0, z0)
with z0 := z(s) ∈ Z, x0 ∈ I(s) be given. Then, for given input sequences φu =
{u0, u1, · · · , uN−1} and φv = {v0, v1, · · · , vN−1}, an admissible execution is a pair
of state sequences φx = {x0, x1, · · · , xN} and φz = {z0, z1, · · · , zN } complying to the
following rules: for k ∈ {0, . . . , N − 1}, xk ∈ φx, and zk = z(i) ∈ φz, the successor
states xk+1 ∈ φx and zk+1 ∈ φz must satisfy:

• if vk = 0, then there must exist A(i) ∈ A(i), B(i) ∈ B(i), and w(i),k ∈ W(i) to
obtain xk+1 ∈ I(i) according to (3.3) and zk+1 = z(i);

• if vk = v(i,j) = 1 and if A(i) ∈ A(i), B(i) ∈ B(i), and w(i),k ∈ W(i) exist
to obtain an intermediate state x′ = A(i) · xk + B(i) · uk + w(i),k, x′ ∈ G(i,j)

according to (3.3), then there must exist F(i,j) ∈ F(i,j) and e(i,j) ∈ E(i,j) to have
xk+1 = Fi,j · x′ + ei,j ∈ I(j) according to (3.1), and zk+1 = z(j).

Obviously, for given inputs in time k, any value of the uncertain components A(i),
B(i), w(i), F(i,j), and e(i,j) may contribute to and determine the hybrid successor
state, as long as the necessary containment in the invariants and guard sets are
observed – thus, any controller designed for a model of type HAu must consider the
complete set of possible executions according to Def. 3.1.

Turning to the control task to be addressed within this section, now consider the
optimal transfer of HAu from an initial hybrid state (x0, z0) into a set of goal states
while taking the uncertainties into account. For the hybrid goal states, assume the
pair (Xg, zg) with terminal discrete state zg ∈ Z and terminal continuous goal set
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Xg ⊆ Ig, as well as a continuous state xg ∈ X denote the volumetric center of Xg.
Furthermore, let a cost functional J (x0) be specified to quantify the performance
of transferring the system into the goal within a finite time domain of TN .

Definition 3.2. (Point-to-set control task for HAu) For an initial hybrid state
(x0, z0) of HAu, a time domain TN , as well as a set of goal states (Xg, zg), find the
pair of sequences of continuous inputs φu = {u0, u1, · · · , uN−1} and discrete inputs
φv = {v0, v1, · · · , vN−1} so that:

• the resulting pair of state sequences φx = {x0, x1, · · · , xN } and φz={z0, z1,
· · · , zN } satisfy Def. 3.1,

• the terminal states satisfy xN ∈ Xg and zN = zg,

• and the cost functional J (x0) is minimized.

Note that an equivalent problem for the case without uncertainties was already
addressed in the last chapter, proposing a particular structure to take care of the
theoretically exponential increase of the number of possible φz and φv over N .
For the variant of hybrid systems with uncertainties considered in this section, the
additional challenge is to guarantee that the selected pair of φu and φv realizes the
path into (Xg, zg) for all possible realizations of the uncertainties. To succeed in
this task, the principles inspired by the so-called tube-based predictive control for
continuous-valued dynamics [86, 110] are employed. Along this line, it is shown
that, based on tubes of reachable sets, the control problem in Def. 3.2 can be cast
into a problem for a nominal model HA with deterministic flow and reset functions,
to which the method in the last chapter can be applied. In addition, as has been
shown in the last chapter, by either enumerating the phase sequences in advance,
or not doing so, the additional time steps caused by the intermediate states can
always be properly encoded in the numerical program without affecting optimality.
Thus, to avoid redundancy, these additional time steps will not be considered in
this section.

3.1.1. Reachability Tubes to Handle Uncertain Transitions

In order to explain the principle of using reachability tubes to robustly control
HAu, this section focuses first on a single transition as part of the sequence φz

solving the problem in Def. 3.2. More precisely, an arbitrary transition τ(i,j) ∈ T
is considered, and it is shown how to ensure the semantics in Def. 3.1 in terms
of: 1.) the continuous state evolving inside of I(i) of discrete state z(i) (called the
pre-transition phase), 2.) transitioning from z(i) to z(j), and 3.) further evolving
inside of I(j) of discrete state z(i) (the post-transition phase). If this procedure is
later applied to all transitions in T , this will lead to a substitute hybrid system
HA, in which both flow and reset functions are without any uncertain term.
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3. Robust Control of Hybrid Systems with Uncertain Dynamics and Environments

Pre-Transition Phase

First, it is assumed that the polytopic sets leading to uncertainties in both the
reset function and the flow function, can be decomposed into two parts, namely a
nominal part (indicated by •), and a disturbance set containing the origin:

F(i,j) = F̄(i,j) ⊕ F(i,j), E(i,j) = ē(i,j) ⊕ E(i,j);

A(i) = Ā(i) ⊕ A(i), B(i) = B̄(i) ⊕ B(i). (3.5)

Here, the symbol ⊕ denotes the Minkowski addition (or set addition according to
[110]), and the nominal part • can be determined by, e.g., the arithmetic mean of all
vertices of the corresponding polytope. Note that the sets W(i) already contain the
origin by definition and need not to be decomposed. Next, a nominal flow function
as well as a nominal reset function is defined (considering the deterministic part in
fu and ru only) to obtain the nominal continuous state and input:

x̄k+1 := Ā(i) · x̄k + B̄(i) · ūk; (3.6)

¯̂x = F̄(i,j) · x̄ + ē(i,j). (3.7)

Now assume for step k that the state xk from (3.3) and the nominal state x̄k from
(3.6) are located inside of the invariant I(i). Then, by applying a continuous input
uk and a nominal ūk in (3.3) and (3.6) respectively, the difference between xk+1 and
x̄k+1 can be determined according to:

xk+1 − x̄k+1 =Ā(i)(xk − x̄k) + B̄(i)(uk − ūk) + w(i),k + Δ(A,i),k · xk + Δ(B,i),k · uk

(3.8)

with Δ(A,i),k ∈ A(i) and Δ(B,i),k ∈ B(i).
Suppose further that a closed-loop feedback controller with matrix Ki ∈ Rnu×nx

is defined such that ĀK,(i) := Ā(i) + B̄(i) · Ki is stable. If xk is measurable and uk

chosen to:

uk = ūk + Ki · (xk − x̄k), (3.9)

then the difference between xk+1 and x̄k+1 in (3.8) can be written as:

xk+1 − x̄k+1 =ĀK,(i)(xk − x̄k) + w(i),k + Δ(A,i),k · xk + Δ(B,i),k · uk. (3.10)

Furthermore, as xk ∈ I(i) and Δ(A,i),k ∈ A(i), and both I(i) and A(i) are polytopic,
the following applies according to [39]:

Δ(A,i),k · xk ∈ Conv
({

A
(l)
(i) · I

(q)
(i) | l ∈ {1, . . . , ρ(A(i))} , q ∈ {1, . . . , ρ(I(i))}

})
. (3.11)

Here, l and q are the indices running over the ρ(A(i)) vertices, or respectively ρ(I(i))

vertices of the respective polytopes, and Conv is the function to determine the
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3.1. Robust Point-to-Set Control with Uncertain Dynamics

convex hull over the combinations of vertices. Similarly, the value of Δ(B,i),k · uk in
(3.10) can be bounded by:

Δ(B,i),k · uk ∈ Conv
({

B
(l)
(i) · U (q) | l ∈ {1, . . . , ρ(B(i))} , q ∈ {1, . . . , ρ(U)}

})
. (3.12)

For abbreviation, the terms Conv(A(i)I(i)) and Conv(B(i)U) are used to denote the
convex set on the right hand side of (3.11), and (3.12) respectively. With it, a
disturbance invariant set Di can be determined according to (3.10) satisfying:

ĀK,(i)Di ⊕ (W(i) ⊕ Conv(A(i)I(i)) ⊕ Conv(B(i)U)) ⊆ Di. (3.13)

The set Di exists, since ĀK,(i) is stable and contains the origin according to [110],
and for the computation of Di, a series of methods are introduced in [78]. The
relation (3.13) means that, if xk − x̄k ∈ Di applies, then xk+1 − x̄k+1 ∈ Di also
follows from using the control law (3.9) despite all the uncertainties in the flow
function, and the following holds:

Lemma 3.1. If for two given states xk and x̄k ∈ I(i) applies that xk ∈ x̄k ⊕Di, then
using the control law (3.9) implies that the relation xk+1 ∈ x̄k+1 ⊕ Di holds for all
Δ(A,i),k ∈ A(i), Δ(B,i),k ∈ B(i) and w(i),k ∈ W(i). �

Note that this lemma is a direct result of (3.10) and (3.13) and the proof is thus
omitted. By use of Lemma 3.1 and when denoting the Pontryagin difference (or set
subtraction according to [110]) by �, the following fact can also be established:

Proposition 3.1. If the nominal state satisfies x̄k, x̄k+1 ∈ I(i) � Di, and xk ∈
x̄k ⊕ Di, and if the nominal input satisfies ūk ∈ U � KiDi, then there always exists
uk := ūk +Ki(xk −x̄k) ∈ U such that xk+1 ∈ I(i) for all Δ(A,i),k ∈ A(i), Δ(B,i),k ∈ B(i)

and w(i),k ∈ W(i). �

The proof of Proposition 3.1 follows the lines in [110] and is briefly sketched in
the following:

Proof. First of all, according to the property of operation ⊕ and � introduced in
[6], one knows that the relation (I(i) �Di)⊕Di ⊆ I(i) always hold. This also implies
that, if the nominal input satisfies ūk ∈ U � KiDi, then the relation ūk ⊕ KiDi ⊆
(U � KiDi) ⊕ KiDi ⊆ U must apply. Now, as relation xk − x̄k ∈ Di applies, and
the input satisfies uk = ūk + Ki(xk − x̄k) ∈ ūk ⊕ KiDi ⊆ U according to the control
law (3.9), the relation xk+1 ∈ x̄k+1 ⊕ Di thus must hold despite all uncertainties
according to Lemma 3.1. Then, as relation x̄k+1 ∈ I(i) � Di applies according to the
given setting, one can ensure that x̄k+1 ⊕ Di ⊆ (I(i) � Di) ⊕ Di ⊆ I(i) always holds.
Thus, the desired relation xk+1 ∈ x̄k+1 ⊕ Di ⊆ I(i) must apply.

This proposition indicates that, as long as the evolution of the nominal x̄k lies
inside of I(i) �Di (i.e. inside of a tightened invariant), and if the nominal continuous
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3. Robust Control of Hybrid Systems with Uncertain Dynamics and Environments

input ūk is selected from set U � KiDi (i.e. from a tightened input set), then one
can always find uk ∈ U to obtain the next continuous state xk+1 inside of I(i) despite
all the uncertainties. An exemplary evolution is illustrated in Fig. 3.2. In addition,
as all the sets in (3.13) are polytopic, the computation of Di can be assumed to be
tractable according to [28]. Furthermore, it is desired that Di is as small as possible,
in order to reduce the scale of the tightening, and thus reduce the conservatism.
With respect to the semantics of HAu in Def. 3.1, the state x can be kept inside
of I(i) during the evolution in z(i), by forcing the nominal state x̄ to be inside of
I(i) � Di.

The Transition Phase

Next, if the transition τ(i,j) is triggered in step k, it must hold that v(i,j),k = 1 and
the following two conditions must be satisfied:

1. An intermediate state x′ obtained from (3.3) must lie inside of G(i,j);

2. The state xk+1 resulting from (3.1) must be inside of I(j).

For the first condition, it is known from Proposition 3.1 that by applying the control
law (3.9) the state xk lies inside of a tube Di around the nominal state x̄k during
evolution in I(i). As the guard G(i,j) is fully contained in I(i), the tube around the
nominal state must also exist when x̄k evolves inside of G(i,j). The Proposition 3.1
can thus be extended to:

Lemma 3.2. By applying (3.9), if x̄k ∈ G(i,j) � Di is satisfied, then xk ∈ G(i,j)

holds. �

Proof. According to Lemma 3.1, the relation xk ∈ x̄k ⊕Di holds when x̄k ∈ I(i) �Di.

x̄k

x̄k

x̄k+1

x̄k+1

x̄k+2

x̄k+2

xk

xk

xk+1

xk+1

xk+2

xk+2

x̄k ⊕ Di

x̄k+1 ⊕ Di

x̄k+2 ⊕ Di

I(i)

I(i) � Di

Figure 3.2.: By applying (3.9), the difference between x and x̄ is recursively lying
inside of Di (denoted by the blue polytope in the left figure) despite
all the uncertainties; Thus, a robust evolution of xk in invariant I(i) is
guaranteed when x̄k ∈ I(i) � Di is satisfied, see the figure on the right.
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3.1. Robust Point-to-Set Control with Uncertain Dynamics

Thus, as x̄k ∈ G(i,j) � Di, and {G(i,j) � Di} ⊆ {I(i) � Di}, the relation xk ∈ G(i,j)

must apply.

The lemma implies that x′ ∈ G(i,j) exists despite the uncertainties, if a nominal
intermediate state x̄′, as obtained from (3.7), is inside of G(i,j) � Di. Thus, the first
condition is guaranteed to be satisfied by restricting the position of the nominal
intermediate state x̄′, see Fig. 3.3.

Next, due to the uncertainties on the reset function (3.1), a difference between
the states x̄k+1 and xk+1 may be obtained according to:

xk+1 − x̄k+1 = F̄(i,j)(x
′ − x̄′) + ΔF(i,j)

· x′ + Δe(i,j)
, (3.14)

where ΔF(i,j)
∈ F(i,j) and Δe(i,j)

∈ E(i,j). By Lemma 3.2, the difference between x′

and x̄′ is bounded to Di. As x′ must be inside of G(i,j), the value of ΔF(i,j)
· x′ must

be bounded by Conv(F(i,j)G(i,j)). Hence, the difference of x̄k+1 and xk+1 in (3.14)
is bounded by:

xk+1 − x̄k+1 ∈ F̄(i,j)Di ⊕ Conv(F(i,j)G(i,j)) ⊕ E(i,j). (3.15)

With the help of this bound, Lemma 3.2 can be extended to:

Lemma 3.3. If the nominal state after the transition τ(i,j) satisfies x̄k+1 ∈ I(j) �

(F̄(i,j)Di ⊕Conv(F(i,j)G(i,j))⊕E(i,j)), then the relation xk+1 ∈ I(j) holds for the state
obtained from τ(i,j) despite all the uncertainties in (3.1). �

x̄k

x̄k

x̄′

x̄′

x̄k+1

x̄k+1

xk

xk

x′

x′

xk+1

G(i,j)

G(i,j)

I(i)

I(i)

I(j)

I(j)

Figure 3.3.: For the case that x̄′ ⊕ Di is not fully contained in G(i,j) (upper part),
the transition τ(i,j) may not be correctly triggered due to the deviation
between x̄′ and x′; If x̄′ ⊕ Di ⊆ G(i,j) (lower part), then the transition
τ(i,j) is guaranteed to be triggered as required by the system semantics.
The blue polytope represents the disturbance invariant set Di.
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The proof of Lemma 3.3 is similar to that of Lemma 3.2. According to Lemma 3.3,
the second condition listed at the beginning of this section is satisfied by restricting
the position of the nominal state x̄k+1.

The Post-Transition Phase

After reaching the discrete state z(j), the further evolution inside of I(j) has to
be ensured. Obviously, this can again be achieved by applying a similar control
law as in (3.9), considering a disturbance invariant set Dj for z(j). However, such
a recursive robustness guaranty relies on the condition that the difference of the
states xk+1 and x̄k+1 is in Dj according to Lemma 3.1. But according to (3.15), the
difference is known to be inside of F̄(i,j)Di ⊕ Conv(F(i,j)G(i,j)) ⊕ E(i,j), which is not
depending on Dj, see Fig. 3.4. To avoid that robustness is lost at this point, the
following criterion is formulated:

Definition 3.3. (Robust Transition) Any transition τ(i,j) ∈ T of HAu may only
be executed, if the condition:

F̄(i,j)Di ⊕ Conv(F(i,j)G(i,j)) ⊕ E(i,j) ⊆ Dj (3.16)

is satisfied, otherwise it is prohibited, i.e., transition τ(i,j) is removed from set T .

Lemma 3.4. Let the transition τ(i,j) satisfy (3.16) and let the control law (3.9) be
applied in both z(i) and z(j). If x − x̄ is then bounded to Di before the transition
τ(i,j), then x − x̄ is also bounded to the set Dj after the transition τ(i,j). �

Proof. If xk − x̄k ∈ Di applies before the transition τ(i,j), then xk+1 − x̄k+1 ∈

F̄(i,j)Di ⊕ Conv(F(i,j)G(i,j)) ⊕ E(i,j) ⊆ Dj holds true after the transition according
to (3.15) and (3.16). Then, using Lemma 3.1, it follows that the difference will be
recursively bounded to Dj by applying the control law (3.9) in the further steps.

x̄k+1
x̄k+1

xk+1
xk+1 x̄k+2

x̄k+2

xk+2xk+2
I(j)

I(j)

F̄(i,j)Di ⊕ Conv(F(i,j)G(i,j)) ⊕ E(i,j)

F̄(i,j)Di ⊕ Conv(F(i,j)G(i,j)) ⊕ E(i,j)

Dj

Dj

Figure 3.4.: For the case xk+1 /∈ x̄k+1 ⊕ Dj due to (3.15) (the set described by the
right-hand side of (3.15) is marked in green), the further evolution of
the real continuous state in z(j) may not be bounded by the Dj around
the nominal state (left part); for xk+1 ∈ x̄k+1 ⊕ Dj (right part), such
a bound applies. The blue polytope denotes the disturbance invariant
set Dj .
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Eventually at this stage, the sequence of system evolution in z(i), of the transition
τ(i,j), and of the further evolution in z(j) was successfully cast into a set of constraints
on the nominal state and inputs as well as the condition (3.16). In the next section,
a substitute hybrid system HA with nominal dynamics is constructed based on
these constraints for all transitions in T . It is then shown that the control task for
HAu in Def. 3.2 can be transformed into a corresponding problem for HA.

3.1.2. Hybrid Systems with Nominal Dynamics

In this section, a nominal hybrid system HA = (T, Ū , X, Z, Ī, T̄ , Ḡ, V̄ , r̄, f̄) based
on the uncertain one HAu is constructed. The sets T , X and Z are identical to
those in HAu, while the other components of HA are determined according to the
following rules:

• a set Ū = {Ū(1), . . . , Ū(nz)} of continuous input sets, where for any z(i) ∈ Z,

the continuous input set is Ū(i) := U � KiDi;

• a set Ī = {Ī(1), . . . , Ī(nz)} of invariants, where the invariant of any discrete

state z(i) ∈ Z is obtained to Ī(i) := I(i) � Di;

• the finite set of transitions T̄ , obtained from deleting those of T , which do not
satisfy (3.16);

• the set Ḡ of guard sets contains one polytopic set Ḡ(i,j) := G(i,j) � Di assigned

to any transition τ̄(i,j) ∈ T̄ ;

• the finite set V̄ of discrete input variables, where any element v̄(i,j) ∈ {0, 1} in

V̄ refers to one transition τ̄(i,j) ∈ T̄ ;

• a deterministic (nominal) reset function r̄, which updates the continuous state
x̄′ according to (3.7);

• a deterministic (nominal) flow function f̄ defines the continuous dynamics
according to (3.6).

Note that all the uncertain components of HAu are excluded here, and an admis-
sible execution of the nominal HA is defined as:

Definition 3.4. (Admissible Execution of HA) For HA, let a finite time set
TN = {0, 1, . . . , N} ⊂ T and an initial hybrid state (x̄0, z0) satisfying z0 := z(s) ∈

Z, x̄0 ∈ Ī(s) be given. For selected input sequences φū = {ū0, ū1, . . . , ūN−1} and
φv̄ = {v̄0, v̄1, . . . , v̄N−1}, the pair of state sequences φx̄ = {x̄0, x̄1, · · · , x̄N } and φz =
{z0, z1, · · · , zN } is admissible, if and only if for any k ∈ {0, . . . , N} the pair (x̄k+1,
zk+1) follows from (x̄k, zk), x̄k ∈ Ī(i), zk := z(i) according to the following semantics:

1.) x̄′ := Ā(i) · x̄k + B̄(i) · ūk,
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2.) if Ḡ(i,j) ∈ Ḡ exists so that x̄′ ∈ Ḡ(i,j) and if v̄(i,j),k = 1 applies, then x̄k+1 :

= F̄(i,j) · x̄′ + ē(i,j) ∈ Ī(j) and zk+1 := z(j); otherwise, x̄k+1 := x̄′ ∈ Ī(i) and
zk+1 := z(i) is assigned.

Then, by defining the new hybrid goal set (X̄g, zg), where X̄g := Xg � Dg (while
assuming xg is still the volumetric center of X̄g), as well as assigning x̄0 := x0, the
following cost functional J (x0) is selected:

J (x0) =
N∑

k=1

{(x̄k − xg)TQ(x̄k − xg) + ūT
k−1Rūk−1} + qg · Ng, (3.17)

where Q and R are semi-positive-definite weighting matrices, and qg ∈ R
≥0. The

variable Ng := min{k ∈ {1, . . . , N} | x̄k ∈ X̄g, zk = zg} still encodes the first point
of time at which the continuous state has reached the goal set. The control problem
of the nominal HA can then be defined as:

Definition 3.5. For HA initialized to (x̄0, z0), z0 := z(s), let a time set TN =

{0, 1, . . . , N} and a goal (X̄g, zg) be given. Then, determine input sequences φ∗
ū and

φ∗
v̄ as the solution of:

min
φū,φv̄

J (x0)

s.t.: for all k ∈ {0, . . . , N − 1} :

φū with ūk ∈ Ū(i), when x̄k ∈ Ī(i), ∀ z(i) ∈ Z,

φv̄ with v̄(i,j),k ∈ {0, 1};

φx̄, φz admissible for HA;

x̄N ∈ X̄g, zN = zg.

If now the parameters of the initial and goal sets as well as that of the cost
functional in Def. 3.5 are chosen identical to that of Def. 3.2, a solution of the
previous one can be referred to the latter problem, see below. In addition, the
problem of Def. 3.5 is of the same type as the one in Problem 2.1 in the last chapter,
which implies it can be solved by using the same methods proposed there, i.e., by
solving an MIQP problem in the form of (2.1). At last, the following conclusion is
established:

Lemma 3.5. If, for the same parameterization of Def. 3.2 and Def. 3.5, a feasible
solution is obtained for the problem in Def. 3.5, then this solution also provides a
feasible solution to the control task in Def. 3.2. �

Proof. For the initial continuous state, the difference x̄0 − x0 = 0 ∈ Ds applies (up
to this point, the Lemma above also applies when x̄0 �= x0, as long as x̄0 − x0 ∈ Ds

is satisfied). The optimized inputs ū∗
k in φ∗

u obtained from the solution of the
problem in Def. 3.5 are all selected from the tightened input sets Ū . The optimal
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continuous states x̄∗
k in φ∗

x are all located in the tightened invariant sets Ī, as well
as the transitions to be executed in φ∗

z are all satisfying the condition (3.16). Thus,
according to Proposition 3.1 as well as Lemma 3.2, 3.3 and 3.4, the satisfaction of
the semantics in Def. 3.1 is always ensured during the evolution in each z∗

k, as well
as for each transition in φ∗

z when using the through control law (3.9). In addition,
for the last state x̄∗

N in φ∗
x̄, as xN − x̄∗

N ∈ Dg applies according to Lemma 3.1, and
x̄∗

N ∈ Xg � Dg applies according the last constraint in the problem in Def. 3.5, it is
ensured that xN ∈ Xg.

Accordingly, by controlling the original HAu over the time domain TN , one only
has to: 1.) solve the problem in Def. 3.5; 2.) assign v(i,j),k := v̄∗

(i,j),k and calculate

uk according to (3.9) in each step k. Then the goal states (Xg, zg) are ensured to
be reached at the end of the horizon, while satisfying the semantics in Def. 3.1.

3.1.3. Numerical Examples

The uncertain HAu considered here for illustration of the procedure consists of
four discrete states with a set of possible transitions, as shown in Fig. 3.5. The
invariants of the model are marked in red, the guards are in green, and the selected
terminal set Xg ⊆ I(2) is marked in yellow. The uncertain flow function fu and reset
function ru of the states and transitions are parametrized with different bounds of
uncertainties. The initial state is x0 = [10, 4.5]T ∈ I(1) and a horizon of N = 20
is available to realize the transition from the initial state into the goal set. The
disturbance invariant set Di should be chosen as small as possible in order to reduce
the conservativeness by constructing the nominal HA, i.e., compare the size of each
invariant and guard in Fig. 3.5 and 3.6. Thus, by requiring Di to be polytopic, the
smallest Di is obtained by using the minimum time controller Ki according to [86],
and is computed with the help of the Matlab Invariant Set Toolbox [78]. When

z(1)

z(1)

z(2)

z(2)

z(3)
z(3)

z(4)
z(4)

G(1,2)

G(1,3)

G(1,4)

G(3,2)

G(4,3)

G(4,2)

Xg

x0

Figure 3.5.: Relevant sets and the transitions of the uncertain model HAu.
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z(1)

z(2)

z(3)

z(4)

x0

Figure 3.6.: The nominal HA obtained by tightening each invariant set, guard set,
and the terminal set of HAu; The trajectory in black is the optimal
nominal state sequence of the problem in Def. 3.5, and the set of ma-
genta lines denote the resets of the continuous states for the transitions.

z(1)

z(2)

z(3)

z(4)

x0

Figure 3.7.: The set of blue trajectories are the state sequences under different re-
alizations of the uncertainties. The set of magenta points contained in
the terminal set Xg are the last states of the trajectories. The black
trajectory is the solution of the problem in Def. 3.5.

constructing the nominal HA, each invariant and guard set, the terminal set as well
as the continuous input set are tightened according to the disturbance invariant set,
see Fig. 3.6. By evaluating the condition (3.16) for each transition in HA, only
the transition τ(1,2) fails to satisfy it, and is thus prohibited. Thereafter, by solving
the problem in Def. 3.5 for the resulting nominal HA, the optimal trajectory is
found by first transferring from z(1) to z(4), and then to z(2), see Fig. 3.6. The time
required for the computation is 0.66 sec on a 3.4GHz processor using Matlab 2015a.
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Based on the solution of the problem in Def. 3.5, the original uncertain system HAu

is controlled by the control law (3.9) in each step, and for 50 different realizations
of the uncertainties, the trajectories shown in Fig. 3.7 are obtained. It can be seen
in this figure that all continuous states along these trajectories evolve inside of the
invariant, and that the transitions are correctly triggered in the guard set, despite
the uncertainties. In addition, all 50 trajectories reach the terminal set at the end
of the horizon.

3.2. Model Predictive Control with Time-Varying
Environments

Until now, this thesis has focused throughout on finite-horizon control problems,
in which the input signals over a predefined planning horizon N are optimized
once and in open-loop. There, once the optimal inputs are determined, they will
be applied to the plant for the whole horizon without any re-optimization in the
intermediate steps. Model Predictive Control (MPC) is a strategy similar to the
finite-horizon one, but it is an online strategy that solves the finite-horizon control
problem repeatedly and in closed-loop. In each discrete time step of the online
process, MPC determines the optimal inputs over a finite and moving horizon in
the future based on the new measurement of the system, but only applies the first
step of the optimized inputs to the plant. This receding horizon scheme, in general,
ensures that the input to be applied is always optimal in terms of the measured
information and the limited horizon in each time instance, thus it enhances the
control performance especially when time-varying components are present.

In most discussions of MPC, however, only the uncertainty of the dynamics is
taken into account but not of the environment around the plant. For the case that
the state constraints representing the environment remain invariant over time, it is
well known under which conditions the important properties of recursive feasibility,
stability, and robustness are obtained, see e.g. [109, 140, 69, 86]. Nevertheless,
in recent years domains such as autonomous driving or human-robot collaboration
have led to an increased interest in applying MPC also to settings, in which the
constraints imposed on the system state vary over time. This arises in autonomous
driving, e.g., when the controlled vehicle has to determine its path within the com-
plement of the space occupied by other traffic participants [54, 56], or in human-
robot cooperation, e.g., when the robot controller has to ensure that a robotic
manipulator circumvents the regions momentarily blocked by a human operator
[131, 83].

When MPC is used in these application cases, the starting point is that, in any
step of the receding horizon scheme, the state constraints of the system to be con-
trolled must also be predicted over the future time horizon. These constraints can
be obtained by reachable set computations for the environment, e.g., by encoding
the regions of a street topology that are potentially occupied by another car. These
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reachable set computations can be executed either offline or online. The state con-
straints to be considered for the system to be controlled can then be determined as
convex subsets of the complement of the reachable sets of all relevant entities of the
environment. The requirement of convexity for the state constraints is straightfor-
wardly used to simplify the computation of control strategies in real-time (and in
response to changes of the environment).

When the MPC strategy is adapted in any time instant of a discrete-time scheme
to varying constraints, obviously the question arises, whether it is possible to always
find a feasible solution for the control problem. Phrased differently, it has to be
determined which changes of the environment are permissible to ensure the existence
of a feasible control strategy, especially when the change of the environment cannot
be exactly predicted in advance. The corresponding property is known as recursive
feasibility in predictive control [104, 29, 105], and it is one important aspect of this
section. The second property to be investigated is that of stability, thus the question
of whether the system (subject to the constraints) is certainly driven into a goal set
(or towards a reference state) by the predictive controller [109, 72, 90].

While for time-invariant constraints, recursive feasibility and stability have been
studied for different settings and definitions, only very little work addresses these
properties for time-varying constraints. Accordingly, the conditions for ensuring
these important properties of MPC subject to time-varying state constraints will
be provided in this section. The discussion starts from brief review on how to
ensure recursive feasibility and stability of MPC when the state constraints are
time-invariant. Then, the discussion is extended to the cases when: (a) there is
no suitable model available to describe the change of the environment precisely,
but the maximal change of the environment within one sampling time is known to
be bounded (e.g., from the maximum acceleration of a human operating close to
a robot to be controlled); (b) a dynamic model of the change of the environment
exists, but it is subject to uncertainties for which bounds can be conservatively
specified. In both cases, the change of the environment is to be understood as being
small in between two successive sampling times, and the bounds of the change can
be obtained from reachability computations. Finally, it will be shown that under
moderate and realistic assumptions, recursive feasibility and asymptotic stability of
MPC can be preserved for the two cases.

3.2.1. Review: Time-Invariant State Constraints

This section starts from general, nonlinear dynamics of the system to be controlled,
and the properties of the MPC controller addressed here are also valid for the
case of hybrid dynamics. Consider the following nonlinear discrete-time difference
equations describing the nonlinear dynamics:

xk+1 = f(xk, uk), (3.18)
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with state vector xk ∈ Rnx and input vector uk ∈ Rnu. In each time step with
index k ∈ N ∪ {0}, the system evolution is subject to convex state constraints
X = {x | C ∈ Rnc×nx, d ∈ Rnc, x ∈ Rnx : C · x ≤ d}. The input vector uk is bounded
to a time-invariant set U ∈ Rnu.

Before indeed considering time-varying state constraints, i.e., X is varying over
time, a review of asymptotic stability and recursive feasibility of standard MPC
problems with time-invariant constraints is first provided. Let

φu,k = {uk|k, uk+1|k, . . . , uk+H−1|k} (3.19)

φx,k = {xk+1|k, xk+2|k, . . . , xk+H|k} (3.20)

denote the prediction of the input and state sequences for time index k over a pre-
diction horizon of H steps, and assume the state constraints X remains unchanged
for all k ∈ N∪{0}. To model state-dependent, input-dependent, and terminal costs,
a standard quadratic form of the cost functional J (xk) is applied:

J (xk) =
H−1∑
j=0

(xT
k+j|kQxk+j|k + uT

k+j|kRuk+j|k)︸ ︷︷ ︸
step cost L(xk+j|k,uk+j|k)

+ xT
k+H|kQgxk+H|k︸ ︷︷ ︸

terminal cost F (xk+H|k)

, (3.21)

in which Q, R, and Qg are chosen as positive-definite weighting matrices. Further-
more, let a terminal set Xg ⊆ X be selected. The problem to be solved in step k
can then be defined as:

Problem 3.1.

min
φu,k

J (xk)

s.t.: uk+j|k ∈ U, j ∈ {0, . . . , H − 1}; (3.22a)

xk+j|k ∈ X, j ∈ {1, . . . , H − 1}; (3.22b)

xk+H|k ∈ Xg. (3.22c)

When using the standard receding-horizon scheme of MPC, only the first step
input signal uk|k of the solution φ∗

u,k of Problem 3.1 is applied in time k, then the
next state xk+1 is measured, and the solution of Problem 3.1 is repeated for the
updated data in k + 1. However, the feasibility of Problem 3.1 in time k + 1 must
also be guaranteed, and this refers to the concept of recursive feasibility of the MPC
strategy (similarly defined in [104]):

Definition 3.6. (Recursive Feasibility) Given a compact set F of possible initializa-
tion x0 of the system (3.18), the MPC controller established by solving Problem 3.1
in any step k is recursively feasible if and only if for any x0 ∈ F , a feasible solution
to Problem 3.1 for k = 0 implies the existence of a feasible solution to the problem
for any k ∈ {1, 2, · · · }.
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Next, the asymptotic stabilization of the system (3.18) by the MPC controller
obtained from solving Problem 3.1 is defined similarly to [140]:

Definition 3.7. (Asymptotic Stability) If there exists a function V : Rnx → R with
V (0) = 0 on X, such that for all k ∈ {0, 1, 2, · · · }, the system (3.18) under control
of the solution to Problem 3.1 satisfies V (xk+1) < V (xk), then the controlled system
is asymptotically stabilized to the origin.

The function V (x) here is a measure for the distance of the state x to the origin.
As discussed in [109], the asymptotic stability according to Def. 3.7 can be ensured
by imposing additional assumptions on the terminal set Xg, namely:

Assumption 3.1. The terminal set Xg ⊆ X is closed, and 0 ∈ Xg applies.

Assumption 3.2. A terminal controller κg ∈ Rnu×nx exists so that κg · x ∈ U for
all x ∈ Xg, and f(x, κg · x) ∈ Xg for all x ∈ Xg, i.e., Xg is a control invariant set
of the system.

Assumption 3.3. The condition F (f(x, κg · x)) − F (x) + L(x, κg · x) ≤ 0 with L
according to (3.21) applies for all x ∈ Xg.

Then, the following lemma applies:

Lemma 3.6. If the Assumptions 3.1, 3.2, and 3.3 hold, then the solution to Prob-
lem 3.1 in any step k leads to a state xk+1, for which Problem 3.1 again leads to a
feasible solution, and the controlled system is asymptotically stabilized over k. �

Proof. To start with recursive feasibility, assume first that the state sequence φ∗
x,k =

{x∗
k+1|k, x∗

k+2|k, . . . , x∗
k+H|k} is the optimal solution to Problem 3.1 in time k. Since

x∗
k+H|k ∈ Xg according to (3.22c) applies, there must exist a new state xk+H+1|k =

f(x∗
k+H|k, κg · x∗

k+H|k) ∈ Xg and κg · x∗
k+H|k ∈ U according to Assumption 3.2.

Furthermore, each intermediate state in the sequence φ∗
x,k satisfies x∗

k+j|k ∈ X,

∀j ∈ {1, · · · , H}. Thus after moving to state x∗
k+1|k in step k + 1, a new candidate

state sequence:

φcd
x,k+1 = {x∗

k+2|k, . . . , x∗
k+H|k, xk+H+1|k}

does also satisfy all state constraints of Problem 3.1 in k+1, and recursive feasibility
according to Def. 3.6 follows from induction.

As for asymptotic stability, the state sequence φcd
x,k+1 in step k + 1 leads to costs

J cd(xk+1). This value constitutes an upper bound of the optimal cost: J cd(xk+1) ≥
J ∗(xk+1). Furthermore, the cost difference between J cd(xk+1) and J ∗(xk) can be
calculated from:

J cd(xk+1) − J ∗(xk) (3.23)

= F (f(x∗
k+H|k, κg · x∗

k+H|k)) − F (x∗
k+H|k) + L(x∗

k+H|k, κg · x∗
k+H|k) − L(xk, u∗

k|k).
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According to Assumption 3.3, the sum of the first three terms on the right-hand
side of (3.23) is non-positive, thus J cd(xk+1) − J ∗(xk) ≤ −L(xk, u∗

k|k), implying

also: J ∗(xk+1) − J ∗(xk) ≤ −L(xk, u∗
k|k). As the step cost L defined in (3.21) is

always strictly positive outside of the origin, J ∗ decreases monotonically. If J ∗(x)
is taken as the function V (x) according to Def. 3.7, then asymptotic stability of the
controlled system according to Def. 3.7 is obtained1.

3.2.2. Time-Varying Constraints

After review of the time-invariant case, the focus is shifted to the case of time-
varying state constraints. The state constraint now takes a form of Xk = {x | C ∈
Rnc×nx , dk ∈ Rnc, x ∈ Rnx : C · x ≤ dk} in each step k, indicating that its value is
varying over time k. In addition, the settings that only vector dk is indexed with
k implies that only the positions of bounding hyperplanes of the polytope Xk are
changing, while the orientation of the hyperplane remains unchanged.

Obviously, a new problem arises by applying MPC under time-varying state con-
straints Xk: the exact changes of the constraints can typically not be predicted, but
the properties such as recursive feasibility and asymptotic stability of MPC must
be further ensured. Regarding this problem, two different scenarios are considered
in which the state constraints are not precisely known, and sufficient conditions are
proposed to ensure the satisfaction of the desired properties of MPC.

Case One: Bounded Changes of the State Constraints

First, consider the case that no explicit model to predict the change of the con-
straints between two subsequent steps is available, but only an upper bound of the
change. As indicated before, assume that the state constraint changes only with
respect to the right hand sides of the inequalities, e.g., from Xk = {x | C ·x ≤ dk} to
Xk+1 = {x | C ·x ≤ dk+1}, while the matrix C remains unchanged. This is useful if a
translation from Xk to Xk+1 is sufficient to model the available subset of the state-
space, e.g., if an obstacle to the change of state xk moves, and the constraint Xk is
adapted by changing the vector dk accordingly (without changing the orientation
of Xk).

Let the maximal change of any component of the vector dk+1 compared to dk be
bounded by:

|dk+1(i) − dk(i)| ≤ wi,max, wi,max ∈ R
≥0, (3.24)

for all i ∈ {1, · · · , nc}. The value of wi,max can be obtained, e.g., by evaluating
the physical limits of the entity which constitutes the changing environment (e.g.

1The optimized cost function J ∗(x), instead of the original cost function J (x), is taken as the
function V (x) in Def. 3.7.
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the maximal acceleration of a vehicle, interacting with an autonomous car to be
controlled).

Based on this information, one can obtain a conservative estimation of the change
of the environment over the horizon by using the prediction:

Xk+j|k = {x | C · x ≤ dk+j|k, dk+j|k := dk − j · dmax}, ∀ j ∈ {1, · · · , H}, (3.25)

with dmax = [w1,max, · · · , wnc,max]T ∈ Rnc. The set Xk+j|k represents a conservative
estimation (obtained in time k) of the future measured constraint Xk+j being indeed
available for trajectory planning. Also define the set:

φX = {Xk+1|k, Xk+2|k, . . . , Xk+H|k} (3.26)

of conservatively predicted state constraints, see also Fig. 3.8 for an illustration.

Assumption 3.4. The set Xk+H|k is not empty and contains the terminal set Xg,
0 ∈ Xg, for all k ∈ {0, 1, 2, · · · }.

An interpretation of this assumption is that the environment does not block the
path from the set Xk+0|k into the terminal set Xg. Note that as long as the terminal
set Xg is contained in Xk+H|k for all k ∈ {0, 1, 2, · · · }, then it will remain to be a
control invariant set of the system by employing the terminal controller κg, despite
the change of the state constraints [28]. In other words, if the Assumption 3.4
holds, then one does not have to re-determine the terminal set Xg with respect to
the change of the environment.

Lemma 3.7. If the condition xk+j ∈ Xk+j|k is satisfied for all j ∈ {1, · · · , H}, then
xk+j ∈ Xk+j applies, too. �

Proof. According to (3.24), the relation |dk+j(i) − dk(i)| ≤ j · wi,max applies for
all j ∈ {1, · · · , H}, and for all i ∈ {1, · · · , nc}. This, implies also the relation
|dk+j − dk| ≤ j · dmax according to the definition of dmax. Thus, dk − j · dmax ≤ dk+j

holds true and implies Xk+j|k ⊆ Xk+j , i.e., the predicted set is always contained in
the measured one. Accordingly, xk+j ∈ Xk+j|k implies that xk+j ∈ Xk+j .

Xg

Xk

Xk+1|k Xk+2|k Xk+3|k Xk+4|k

Xk+1 Xk+2 Xk+3 Xk+4

Figure 3.8.: Conservative inner approximation of Xk+j through Xk+j|k for all j ∈
{1, · · · , 4} (yellow: Xk, red: Xk+j , green: Xk+j|k, blue: Xg).
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Lemma 3.8. Given j ∈ {1, · · · , H}, then for any j1 ∈ N ∪ {0} with 0 ≤ j1 ≤ j, it
applies that Xk+j|k ⊆ Xk+j|k+j1

. �

Proof. According to (3.25), for j and j1 with 0 ≤ j1 ≤ j ≤ H, the predicted
constraints Xk+j|k and Xk+j|k+j1

take the form of:

Xk+j|k = {x | C · x ≤ dk − j · dmax},

Xk+j|k+j1
= {x | C · x ≤ dk+j1 − (j − j1) · dmax}.

Then, according to (3.24), the relation dk+j1 ≥ dk − j1 · dmax implies that:

dk+j1 − (j − j1) · dmax ≥ dk − j1 · dmax − (j − j1) · dmax = dk − j · dmax, (3.27)

i.e. the right hand side of the inequality for Xk+j|k is not larger than that for
Xk+j|k+j1

. Furthermore, as the matrix C in both constraints Xk+j|k and Xk+j|k+j1

are the same, the relation Xk+j|k ⊆ Xk+j|k+j1
applies.

Note the Lemmas 3.7 and 3.8 together establish the following facts:

• The constraint Xk+j|k is a conservative (inner) estimation of the true set Xk+j

by taking all possible realizations of the changes of the environment into ac-
count.

• The relation Xk+j+1|k ⊆ Xk+j|k applies according to (3.25), meaning that the
estimation is increasingly more conservative over j.

• The estimation of the true constraint Xk+j based on set Xk+j1 with j1 ≤ j, is
less conservative than based on set Xk, according to Lemma 3.8.

Now, the following optimization problem is defined for step k with use of the
predicted state constraints:

Problem 3.2.

min
φu,k

J (xk)

s.t.: uk+j|k ∈ U, j ∈ {0, . . . , H − 1}; (3.28a)

xk+j|k ∈ Xk+j|k, j ∈ {1, . . . , H − 1}; (3.28b)

xk+H|k ∈ Xg. (3.28c)

Lemma 3.9. If the Assumptions 3.2, 3.3, and 3.4 hold for any k ∈ {0, 1, 2, · · · },
then the solution to Problem 3.2 will establish recursive feasibility and the system
(3.18) is asymptotically stabilized into the origin. �
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Proof. First, since xk+1|k ∈ Xk+1|k is ensured by constraint (3.28b) in Problem 3.2,
and Xk+1|k ⊆ Xk+1 applies according to Lemma 3.7, the state xk+1 resulting from
solving Problem 3.2 is guaranteed to be contained in constraint Xk+1 despite the
uncertainties. Then, consider the state constraints in Problem 3.2 for step k + 1,
which take a form of:

xk+1+(j)|k+1 ∈ Xk+1+(j)|k+1, j ∈ {1, . . . , H − 1}; (3.29a)

xk+1+(H)|k+1 ∈ Xg. (3.29b)

Similar to the proof of Lemma 3.6, let the state sequence φ∗
x,k = {x∗

k+1|k, x∗
k+2|k,

. . . , x∗
k+H|k} denote the optimal solution of Problem 3.2 in k, and a candidate state

sequence

φcd
x,k+1 = {x∗

k+2|k, . . . , x∗
k+H|k, xk+H+1|k}

can be obtained based on φ∗
x,k, with xk+H+1|k = f(x∗

k+H|k, κg · x∗
k+H|k) ∈ Xg.

Note that for the first H − 2 states in the candidate sequence φcd
x,k+1, it applies

that x∗
k+j+1|k ∈ Xk+j+1|k for all j ∈ {1, · · · , H − 2} according to constraint (3.28b).

Based on Lemma 3.8, the relation x∗
k+j+1|k ∈ Xk+j+1|k ⊆ Xk+1+(j)|k+1 thus holds

for all j ∈ {1, · · · , H − 2}.
Furthermore, the penultimate state x∗

k+H|k in φcd
x,k+1 is contained in Xg according

to constraint (3.28c). Then, since Xg ⊆ Xk+H|k ⊆ Xk+1+(H−1)|k+1 applies according
to Assumption 3.4 and Lemma 3.8, state x∗

k+H|k is also contained in Xk+1+(H−1)|k+1.

Finally, the last state xk+H+1|k in φcd
x,k+1 satisfies xk+H+1|k ∈ Xg according to

Assumption 3.2. Thus, the candidate sequence φcd
x,k+1 exists and satisfies all the

constraints of Problem 3.2 in step k + 1. Since in addition the corresponding input
sequence satisfies the input constraint according to Assumption 3.2 and (3.28a),
recursive feasibility of the MPC strategy according to Def. 3.7 is guaranteed.

The proof of asymptotic stability follows a path similar as in the time-invariant
case, since the relation J cd(xk+1) − J ∗(xk) ≤ −L(xk, u∗

k|k) still applies, ensuring

J ∗(xk+1) − J ∗(xk) ≤ −L(xk, u∗
k|k). Thus, the monotonic decrease of the cost of

the function J ∗ applies, leading to asymptotic stability of the controlled system
according to Def. 3.7.

Case Two: Modeled Constraint Variation with Uncertainties

In contrast to the previous case, in which the constrained sets are shrinking in
all directions over the prediction, here the changes of the constrained state set are
modeled in a way that a translation towards the goal is possible, i.e., a more general
type of uncertain prediction of the constrained sets is considered.

Now, assume that a model M for the prediction of the change of the state
constraints exists, but it contains uncertainties, which may accumulate over the
steps of the prediction horizon. Assume further that in the current step k, the
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state constraints still have the form Xk = {x | C · x ≤ dk}, but the predictions

X̂k+j|k = {x | d̂k+j|k ∈ Rnc : C · x ≤ d̂k+j|k}, for j ∈ {1, . . . , H} are iteratively
computed according to the model M:

d̂k+j+1|k := M(d̂k+j|k), ∀ j ∈ {0, . . . , H − 1}, (3.30)

where d̂k+0|k := dk, and M : Rnc → Rnc denotes a model for the variation of the

vector d̂k+j|k. This prediction scheme implies that the state constraint predicted in
the next step is derived from the one of the previous step. In addition, the model
M requires that, for two different state constraints (in step k) with a specific bound
on their difference, the predicted constraints for the succeeding step (as obtained
from the model M) is limited by the same bound:

Assumption 3.5. For any two vectors da
k, db

k ∈ Rnc with da
k �= db

k, if |da
k(i)−db

k(i)| ≤
γi, γi ≥ 0 applies for all i ∈ {1, · · · , nc}, then |M(da

k)(i) − M(db
k)(i)| ≤ γi also

applies.

After the prediction model is introduced, the prediction error by using this model
is considered next. Unlike in the last section where the maximal change of the
state constraints is considered, here the maximal prediction error by using model
M is taken into account. It is assumed that the deviation between the predicted
constraint X̂k+j|k and the measured constraint Xk+j = {x | C·x ≤ dk+j} accumulates
over the prediction step k + j, and satisfies the following property:

Assumption 3.6. For the predicted constraint X̂k+j|k = {x | C · x ≤ d̂k+j|k} and

the measured one Xk+j = {x | C · x ≤ dk+j}, each component of the vector d̂k+j|k

satisfies

|d̂k+j|k(i) − dk+j(i)| ≤ j · ŵi,max, ŵi,max ∈ R
≥0, (3.31)

for all i ∈ {1, · · · , nc}.

This implies that the uncertainty over the prediction may linearly increase over
j. Similarly to (3.24) in the last section, the requirement (3.31) is reasonable, since
the upper bound of ŵi,max can be determined offline from experiments.

To consider the maximally possible uncertainty of the predicted constraint X̂k+j|k,

a tightened constraint X̃k+j|k = {x | d̃k+j|k ∈ Rnc : C · x ≤ d̃k+j|k} is determined
according to:

d̃k+j|k := d̂k+j|k − j · d̂max, (3.32)

with vector d̂max = [ŵ1,max, · · · , ŵnc,max]T ∈ Rnc (see Fig. 3.9).

Assumption 3.7. Let the set X̃k+j|k be non-empty for all k ∈ {0, 1, 2, · · · } and

j ∈ {1, . . . , H}, and the terminal set Xg be included in X̃k+H|k, and 0 ∈ Xg.
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Xk

X̂k+j|k

X̃k+j|k

Xk+j

Xg

Figure 3.9.: Tightening the predicted set X̂k+j|k according to the knowledge of d̂max

for all j ∈ {1, · · · , 4} (yellow: present Xk, blue: predicted X̂k+j|k, green:

tightened X̃k+j|k, red: measured Xk+j , magenta: terminal Xg).

Similar to Assumption 3.4, if the Assumption 3.7 holds, then the terminal set Xg

has not to be redetermined with respect to the change of the environment2.

Lemma 3.10. Use the satisfaction of Assumption 3.6 as additional condition, and
if X̃k+j|k is obtained from (3.32), where d̂k+j|k follows from model M according to

(3.30), and if xk+j ∈ X̃k+j|k applies for all j ∈ {1, · · · , H}, then xk+j ∈ Xk+j

applies too. �

Proof. According to (3.31) and the definition of d̂max, the relation d̂k+j|k − dk+j ≤

j · d̂max applies. Furthermore, since d̃k+j|k = d̂k+j|k − j · d̂max holds, the relation

d̃k+j|k ≤ dk+j applies, implying X̃k+j|k ⊆ Xk+j . Accordingly, for all xk+j ∈ X̃k+j|k,
relation xk+j ∈ Xk+j must hold, too.

Lemma 3.11. Given the situation in Lemma 3.10 and j ∈ {1, · · · , H}, then for
any j1 ∈ N ∪ {0} with 0 ≤ j1 ≤ j, it applies that X̃k+j|k ⊆ X̃k+j|k+j1

. �

Proof. According to (3.31), it applies for the constraint Xk+j1 with 0 ≤ j1 ≤ j ≤ H,
that:

|d̂k+j1|k − dk+j1 | ≤ j1 · d̂max.

2For the case that the terminal set Xg must be newly determined due to a change of the envi-
ronment, the work in [106] introduced a method to homotheticly change the terminal region
in order to preserve the desired invariant property.

74



3.2. Model Predictive Control with Time-Varying Environments

Then, for the prediction of the constraint Xk+j by starting once from the constraint

X̂k+j1|k, and once starting from the constraint Xk+j1 , their difference is bounded by:

|d̂k+j|k − d̂k+j|k+j1
| ≤ j1 · d̂max

according to Assumption 3.5. Now, according to (3.32), substituting d̂k+j|k by

d̃k+j|k + j · d̂max, and substituting d̂k+j|k+j1
by d̃k+j|k+j1

+ (j − j1) · d̂max leads to the
relation:

(d̃k+j|k + j · d̂max) − (d̃k+j|k+j1
+ (j − j1) · d̂max) ≤ j1 · d̂max,

and thus to:

d̃k+j|k − d̃k+j|k+j1
≤ 0.

With d̃k+j|k ≤ d̃k+j|k+j1
, and given that C in the constraints X̃k+j|k and X̃k+j|k+j1

are the same, the relation X̃k+j|k ⊆ X̃k+j|k+j1
holds.

Now, the following substitute optimization problem can be defined for step k:

Problem 3.3.

min
φu,k

J (xk)

s.t.: uk+j|k ∈ U, j ∈ {0, . . . , H − 1}; (3.33a)

xk+j|k ∈ X̃k+j|k, j ∈ {1, . . . , H − 1}; (3.33b)

xk+H|k ∈ Xg. (3.33c)

Lemma 3.12. If the Assumptions 3.2, 3.3, 3.5, 3.6, and 3.7 hold, then the solution
of Problem 3.3 in step k will lead to a state xk+1 which also satisfies the constraint
Xk+1 in step k +1. Furthermore, this solution implies that Problem 3.3 again has a
feasible solution in step k + 1, and the controlled system is asymptotically stabilized
to the origin. �

Proof. Following the reasoning in the proof of Lemma 3.9, as xk+1|k ∈ X̃k+1|k is

ensured by the constraint (3.33b) in Problem 3.3, and since X̃k+1|k ⊆ Xk+1 applies
according to Lemma 3.10, the state xk+1 resulting from the solution of Problem
3.3 in step k is guaranteed to be contained in Xk+1. To obtain recursive feasibility,
consider the state constraints of Problem 3.3 in step k + 1:

xk+1+(j)|k+1 ∈ X̃k+1+(j)|k+1, j ∈ {1, . . . , H − 1}; (3.34a)

xk+1+(H)|k+1 ∈ Xg. (3.34b)
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If the state sequence φ∗
x,k = {x∗

k+1|k, x∗
k+2|k, . . . , x∗

k+H|k} is the optimal solution to

Problem 3.3, let a candidate state sequence φcd
x,k+1 = {x∗

k+2|k, . . . , x∗
k+H|k, xk+H+1|k}

be obtained from φ∗
x,k with xk+H+1|k = f(x∗

k+H|k, κg · x∗
k+H|k) ∈ Xg.

For the first H − 2 states in φcd
x,k+1, the inclusion x∗

k+j+1|k ∈ X̃k+j+1|k applies

for all j ∈ {1, · · · , H − 2} according to constraint (3.33b). Based on Lemma 3.11,
X̃k+j+1|k ⊆ X̃k+1+(j)|k+1 holds for all j ∈ {1, · · · , H − 2}, and thus x∗

k+j+1|k ∈

X̃k+j+1|k ⊆ X̃k+1+(j)|k+1, for all j ∈ {1, · · · , H − 2}. Since the penultimate state

x∗
k+H|k in φcd

x,k+1 is contained in Xg given (3.33c), and since Xg ⊆ X̃k+H|k ⊆

X̃k+1+(H−1)|k+1 applies according to Assumption 3.7 and Lemma 3.11, it also ap-

plies that x∗
k+H|k ∈ X̃k+1+(H−1)|k+1. Furthermore, the last state xk+H+1|k in φcd

x,k+1

satisfies xk+H+1|k ∈ Xg according to Assumption 3.2.

Hence, the sequence φcd
x,k+1 satisfies all state constraints of Problem 3.3. In addi-

tion, the input sequence leading to φcd
x,k+1 must satisfy the input constraints accord-

ing to Assumption 3.2 and (3.33a), thus recursive feasibility of the MPC strategy
according to Def. 3.6 is guaranteed.

The proof of asymptotic stability is the same as in Lemma 3.9, where the recursive
feasibility implies the monotonic costs decrease of the function according to Def. 3.7.
The single steps are not repeated here in detail.

3.2.3. Discussion

Determination of wmax and ŵmax

As mentioned earlier, the value of wmax can be obtained through evaluating the
physical limits of the entity which constitutes the changing environment. For the
determination of ŵmax, which represents the maximal prediction uncertainty that
may occur in a single time step, the following applies: In general, the model M
allows to account for a more detailed representation of the change of the environment
than in the first case. For example, modeling or identifying the motion of another
subsystem evolving in the same space may lead to M. If this model is evaluated
by reachability analysis, see e.g. [151, 30, 7], the region of the Rnx predicted to be
occupied by the environment over the prediction horizon can be determined. The
complement of this space can then be used to construct the time-varying convex
state constraints used within the MPC procedure (see the case study later), and
thus also to obtain the bounds wmax, or ŵmax respectively.

In addition, the assumption that the uncertainty w only affects the vector d in
the set X = {x | C · x ≤ d}, is only an example to simplify the discussion. For a
general form of the set X, or the uncertainties w also affect matrix C, the Minkowski
computations [68, 64] can be employed to the results obtained in this section.
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Requirement on the Terminal Set

Apart from common requirements on the terminal set Xg as described in Assump-
tions 3.1, 3.2, and 3.3 for time-invariant constraints, Assumption 3.4 brings in the
condition that the change of the state constraints is bounded. Furthermore, As-
sumption 3.7 demands that the maximal uncertainty of the prediction model is
bounded. Quite obviously, the latter one is less strict than the previous one (As-
sumption 3.4), since Xg only has to be contained in X̃k+H|k for all k ∈ {0, 1, 2, · · · }
according to Assumption 3.7, whereas it has to be contained in Xk+j|k for all
k ∈ {0, 1, 2, · · · } and for all j ∈ {1, · · · , H} according to Assumption 3.4 (due
to Xk+j+1|k ⊂ Xk+j|k in (3.25)). In this respect, although the true change of the
environment cannot be exactly predicted and a model M is needed, it is preferable
to employ a prediction model rather than only using a plain bound on the change of
the environment. This also allows to guarantee recursive feasibility and asymptotic
stability under less strict requirements on Xg.

3.3. The Penalty-Term Approach Controlling HA
with Time-Varying Environments

When the tightening method in the last section is applied to the predictive control
of HA in a time-varying environment, recursive feasibility and stability of MPC can
be further guaranteed in a similar way. However, as a change of the environment
usually yields a change of the invariant and guard sets for HA, tightening these sets
may introduce large conservativeness, as the tightening is based on the maximally
possible change over all prediction steps. This would cause the optimization problem
3.2 and 3.3 to become infeasible in the worst case.

Regarding this problem, a penalty term method is proposed in this section, which
intends to ensure recursive feasibility and stability of MPC through worsening the
costs, instead of tightening the feasible space. This property of the penalty term
method, thus enables it be employed as a complementary strategy to the tightening
one in case of infeasible problems.

3.3.1. The Online Control Problem

For a time-varying hybrid system HAk = (T, U, X, Z, Ik, T , Gk, V, r, f), which shares
equal components with the time-invariant one in Sec. 2.1, except the following
elements that change over time:

• in the set Ik = {I(1),k, . . . , I(nz),k}, the invariant of each discrete state z(i) in
step k takes the form: I(i),k = {x | nIi ∈ N, C(i) ∈ R

nIi
×nx, d(i),k ∈ R

nIi , x ∈
X : C(i) · x ≤ d(i),k};
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• in the set Gk, the guard for any transition τ(i,l) ∈ T in step k takes the form:

G(i,l),k = {x | C(i,l) ∈ R
nG(i,l)

×nx , d(i,l),k ∈ R
nG(i,l) , x ∈ I(i),k : C(i,l) · x ≤ d(i,l),k}.

Note that for both I(i),k and G(i,l),k, a change of the environment around HAk

is assumed to only lead to a change of the right hand sides of the inequalities, i.e.,
only the boundaries of the polytope are changing. This setting coincides with the
one in the last section to provide a good comparison. In addition, an upper bound
of the change is also assumed to exist, namely:

||d(i),k+1 − d(i),k||∞ ≤ wi,max, wi,max ∈ R
≥0, ∀z(i) ∈ Z, (3.35)

and

||d(i,l),k+1 − d(i,l),k||∞ ≤ w(i,l),max, w(i,l),max ∈ R
≥0, ∀τ(i,l) ∈ T . (3.36)

Then, for a given initial state (x0, z0), a goal state (xg, zg), and a terminal set
Xg ⊆ Ig, xg ∈ Xg (Xg is a control invariant set by applying a terminal controller
κg, and satisfies Assumptions 3.1, 3.2, 3.3 and 3.4), the following MPC problem is
solved in each step k:

Problem 3.4. For HAk and a hybrid state (xk, zk) measured in present step k,
determine the continuous input sequence φ∗

u,k = {u∗
k|k, u∗

k+1|k, . . . , u∗
k+H−1|k} and

discrete input sequence φ∗
v,k = {v∗

k|k, v∗
k+1|k, . . . , v∗

k+H−1|k} as the solution of:

min
φu,k,φv,k

J (xk) (3.37)

s.t.: φu,k with uk+j|k ∈ U, j ∈ {0, . . . , H − 1},

φv,k with v(i,l),k+j|k ∈ {0, 1}, j ∈ {0, . . . , H − 1},

φx,k, φz,k admissible for HAk,

xk+H|k ∈ Xg, zk+H|k = zg.

Similar to Problem 2.1, this problem can also be reformulated into the form of
(2.42) and solved by a MIP solver. Then, after the optimal solution (φ∗

u,k, φ∗
v,k) is

found and the first step input (u∗
k|k, v∗

k|k) is applied, a new hybrid system HAk+1 is
detected in step k + 1. Note that if HAk+1 = HAk applies, the Problem 3.4 in step
k + 1 can easily be proven to be feasible through the following feasible candidates
according to Lemma 3.6:

φcd
x,k+1 = {x∗

k+2|k, . . . , x∗
k+H|k, (Ag + Bg · κg) · x∗

k+H|k},

φcd
u,k+1 = {u∗

k+1|k, . . . , u∗
k+H−1|k, κg · x∗

k+H|k},

φcd
v,k+1 = {v∗

k+1|k, . . . , v∗
k+H−1|k, 0}, (3.38)

where the last zero in φcd
v,k+1 means that no discrete input is applied in step k + H.

With the help of these feasible candidates, recursive feasibility of MPC is demon-
strated. However, if HAk+1 �= HAk due to a change of invariants or guards, the
candidates in (3.38) may lose their feasibility in step k + 1, since:
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1. the continuous states in φcd
x,k+1 may be located outside of the new invariants

in HAk+1;

2. the transitions triggered by φcd
v,k+1 may not be executable due to the new

guards in HAk+1.

As a result, the recursive feasibility of MPC is no longer guaranteed. With respect
to this problem, the tightening method in Sec. 3.2.2 can be employed to recover
the recursive feasibility. This method, in general, will first tighten each invariant
and guard of HAk according to wi,max and w(i,l),max, and then let Problem 3.4 in
step k be subject to HAk with tightened sets. However, the tightening may cause
some invariants and guards to become empty with the increase of the horizon H
(especially the guards, since they are usually subsets of the invariants and are thus
smaller). In the worst case, all transitions in HAk are prohibited as all guards get
empty, i.e., Problem 3.4 turns out to be infeasible and the control objective can not
be achieved.

3.3.2. Planning with Penalty Term

In order to reduce the conservativeness caused by the tightening, an alternative
method by using penalty terms is introduced in this section. The idea starts from
the observation that for the candidate trajectory φcd

x,k+1 in (3.38), if the continuous
states evolve near to a boundary of Ik, or if the intermediate state x′ triggering a
transition is located near to a boundary of Gk, even a small change from HAk to
HAk+1 may render φcd

x,k+1 to lose its feasibility, see the example in Fig. 3.10.

To maintain the feasibility of φcd
x,k+1 in HAk+1 and thus to ensure recursive fea-

sibility of the MPC strategy, φcd
x,k+1 should be kept away from any boundary of Ik

or Gk (since which boundary will change is unknown in advance). This require-
ment implies that the following two tasks must be additionally taken into account
in Problem 3.4:

• If xk+j|k evolves inside of I(i),k, then the minimal distance between xk+j|k and
any boundary of I(i),k should be maximized;

• If x′ triggers a transition τ(i,l) ∈ T , then the minimal distance between x′ and
any boundary of guard G(i,l),k should be maximized.

These two additional goals are formulated into a penalty term of the cost function
J (xk) afterwards.

Remark 3.1. Besides maximizing the minimal distance to any boundary of the
invariant and guard sets, an alternative approach is to minimize the distance to the
center of each set by planning φcd

x,k+1. However, the latter choice cannot exclude the

case that all states of φcd
x,k+1 are located around the center, except one state is located

near to the boundary – the feasibility of φcd
x,k+1 may be lost due to this single state.
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I(i),k

I(i),k

I(j),k

I(j),k

G(i,j),k

G(i,j),k

x∗
k+1|k

x∗
k+1|k

x′

x′

HAk

HAk

HAk+1

HAk+1

Figure 3.10.: If the hybrid system changes from HAk (in solid line) to HAk+1 (in
dashed line), the candidate trajectory in the upper part loses its feasi-
bility in HAk+1, since it evolves near to the boundary of I(i),k and the
intermediate state x′ is located near to the boundary of G(i,j),k; For
the same change from HAk to HAk+1, the candidate trajectory in the
lower part can retain its feasibility, as it evolves away from the critical
boundaries of HAk.

Thus, the first choice is preferred as it considers the location of the most critical
state in φcd

x,k+1.

First of all, by using C(i)(h, :) to denote the h-th row of matrix C(i), and d(i),k(h)
to denote the h-th element of vector d(i),k, the distance L(xk+j|k, I(i),k(h)) between any
state xk+j|k ∈ I(i),k and any facet h ∈ {1, · · · , nIi} of set I(i),k can be computed by:

L(xk+j|k, I(i),k(h)) =

√√√√√(C(i)(h, :) · xk+j|k − d(i),k(h))2

C(i)(h, :) · CT
(i)(h, :)

. (3.39)

See also the example of L(xk+j|k, I(i),k(h)) in Fig. 3.11. Then, as C(i)(h, :) · xk+j|k −
d(i),k(h) ≤ 0 applies if xk+j|k ∈ I(i),k, the distance in (3.39) is further reformulated
into:

L(xk+j|k, I(i),k(h)) =
d(i),k(h) − C(i)(h, :) · xk+j|k√

C(i)(h, :) · CT
(i)(h, :)

. (3.40)
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L(xk+j|k, Ii,k(1))

L(xk+j|k, Ii,k(2))

L(xk+j|k, Ii,k(3))

L(xk+j|k, Ii,k(4))

xk+j|k

h = 1

h = 2

h = 3

h = 4

I(i),k

Figure 3.11.: The distance between xk+j|k and the four boundaries of I(i),k can be
calculated by using (3.39).

By computing (3.40) for all facets of I(i),k, the minimal distance between xk+j|k

and any facet of I(i),k can be determined from:

min
h∈{1,··· ,nIi

}
L(xk+j|k, I(i),k(h)). (3.41)

This implies that, if xk+j|k is a variable to be chosen, the value maximizing the
minimal distance to any facet of I(i),k can be determined by:

max
xk+j|k∈I(i),k

αI(i),k+j|k
(3.42)

s.t.: αI(i),k+j|k
≤ L(xk+j|k, I(i),k(h)), ∀h ∈ {1, · · · , nIi}.

Here, αI(i),k+j|k
is only a slack variable for the maximization. Similarly, for the

intermediate state x′ in guard G(i,l),k, the value maximizing the minimal distance
to any facet of G(i,l),k can be determined by:

max
x′∈G(i,l),k

αG(i,l),k+j|k
(3.43)

s.t.: αG(i,l),k+j|k
≤ L(x′, G(i,l),k(h)), ∀h ∈ {1, · · · , nG(i,l)

},

where

L(x′, G(i,l),k(h)) =
d(i,l),k(h) − C(i,l)(h, :) · x′√

C(i,l)(h, :) · CT
(i,l)(h, :)

. (3.44)

Now, the two tasks above are cast into the numerical programs (3.42) and (3.43),
which can be embedded into Problem 3.4. However, the computation in (3.42) and
(3.43) require that xk+j|k is contained in a certain invariant I(i),k, or x′ is contained
in a certain guard G(i,l),k. This requirement, in general, cannot be guaranteed to be
satisfied, since the phase sequence φp in Problem 3.4 is not known a priori. As only
the set of invariants and guards, which are used by φ∗

x,k, are relevant to the two
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tasks, the binary variables in (2.42) are applied here once more, in order to encode
the relevant sets.

The encoding process starts by assigning the binary variable b(i),k+j|k to invariant
I(i),k in each prediction step k + j according to (2.25). Then, the maximization task
in (3.42) can be cast into:

max αI(i),k+j|k
(3.45)

s.t.: αI(i),k+j|k
≤ L(xk+j|k, I(i),k(h)) + b(i),k+j|k · M, ∀h ∈ {1, · · · , nIi}; (3.46)

(b(i),k+j|k − 1) · M ≤ αI(i),k+j|k
≤ (1 − b(i),k+j|k) · M ; (3.47)

C(i) · xk+j|k ≤ d(i),k + b(i),k+j|k · Mi, (3.48)

where M and Mi are factor or vector of large constants. In (3.45), if b(i),k = 0 ap-
plies, the relation xk+j|k ∈ I(i),k is enforced according to (3.48), and the remaining
part of the problem turns out to be identical to (3.42). In other words, the problem
(3.45) ensures that if xk+j|k ∈ I(i),k applies, then the value of αI(i),k+j|k

will be max-
imized exactly as in (3.42). For the other case of b(i),k = 1, the constraint (3.48)
is relaxed (which implies xk+j|k /∈ I(i),k according to the constraints in (2.42)), and
the constraint (3.46) and (3.47) turn out to be:

αI(i),k+j|k
≤ L(xk+j|k, I(i),k(h)) + M, ∀h ∈ {1, · · · , nIi};

0 ≤ αI(i),k+j|k
≤ 0.

The value of αI(i),k+j|k
is thus fixed to zero through these constraints. This means

that if xk+j|k /∈ I(i),k, then the value of αI(i),k+j|k
will constantly be equal to zero and

not be maximized in (3.45).
Therefore, although the phase sequence φp in Problem 3.4 is not known in ad-

vance, the application of (3.45) ensures that only the distance to the relevant in-
variants is maximized. For the guard G(i,l),k, the problem (3.43) can be modified
in the same way by using a binary variable b(i,l),k+j|k. Finally, the following MPC
problem is proposed regarding the two additional tasks:

Problem 3.5. For HAk and a hybrid state (xk, zk), determine input sequences
φ∗

u,k = {u∗
k|k, u∗

k+1|k, . . . , u∗
k+H−1|k} and φ∗

v,k = {v∗
k|k, v∗

k+1|k, . . . , v∗
k+H−1|k} as the so-

lution of:

min
φu,k ,φv,k

J (xk) −β ·
H∑

j=1

(
∑

z(i)∈Z

αI(i),k+j|k
+

∑
τ(i,l)∈T

αG(i,l),k+j|k
)

︸ ︷︷ ︸
penalty term

(3.49)

s.t.: Constraints in (3.37); (3.50)

For all j ∈ {1, · · · , H} and z(i) ∈ Z :

αI(i),k+j|k
≤ L(xk+j|k, I(i),k(h)) + b(i),k+j|k · M, ∀h ∈ {1, · · · , nIi

}; (3.51)
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(b(i),k+j|k − 1) · M ≤ αI(i),k+j|k
≤ (1 − b(i),k+j|k) · M ; (3.52)

C(i) · xk+j|k ≤ d(i),k + b(i),k+j|k · Mi; (3.53)

For all j ∈ {1, · · · , H} and τ(i,l) ∈ T :

αG(i,l),k+j|k
≤ L(x′, G(i,l),k(h)) + b(i,l),k+j|k · M, ∀h ∈ {1, · · · , nG(i,l)

}; (3.54)

(b(i,l),k+j|k − 1) · M ≤ αG(i,l),k+j|k
≤ (1 − b(i,l),k+j|k) · M ; (3.55)

C(i,l) · xk+j|k ≤ d(i,l),k + b(i,l)k+j|k · M(i,l). (3.56)

Here β ∈ R
≥0 is the weighting factor of the two additional tasks. Compared to

Problem 3.4, the original constraints in (3.37), including the original invariants and
guards, must be further satisfied in the new problem, while the penalty term added
here forces the obtained trajectory away from the boundaries in HAk, in order to
enhance the robustness of the candidates in (3.38). In addition, as the constraints
(3.51) – (3.56) are only applied to encode the relevant invariants and guards, they
do not reduce the original feasible space in Problem 3.4 (but the penalty term may
worsen the control performance in unfavorable cases).

At last, it must be emphasized that the solution of Problem 3.5 can only enhance
the possibility that the candidates in (3.38) remain feasible in step k + 1, instead
of providing a guaranty as when using the tightening method. This is because
the extent of the uncertainties wi,max and w(i,l),max is not taken into account in
this method, i.e., although the obtained trajectory is away from any boundary, it
may still not be sufficient to preserve the recursive feasibility when the encountered
uncertainty is large. In addition, as the value of weighting factor β affects how
much effort is spent to enhance the robustness, its selection turns out to be crucial
with respect to the balance between robustness guaranty and performance loss.
Accordingly, this penalty term method should be employed as a complementary
strategy to the tightening one, when the latter indeed leads to infeasible problems.

3.3.3. Numerical Examples

The time-varying hybrid system considered here consists of three discrete states
with only one phase sequence connecting the initial and target discrete states, as
shown in Fig. 3.12. The flow function f and the reset function r of the states
and transitions are parametrized suitably. The continuous state in initial step is
x0 = [12, −8.5]T ∈ I(0) and a prediction horizon of H = 12 is chosen. The goal set
Xg (marked in green) is a control invariant set satisfying Assumptions 3.1, 3.2, 3.3
and 3.4. The maximal change of the invariants and guards between two consecutive
steps is selected to: wi,max = 0.3, ∀z(i) ∈ Z and w(i,l),max = 0.2, ∀τ(i,l) ∈ T .

When the original Problem 3.4 is solved for initial step k = 0, the transitions in
the obtained trajectory (as shown in Fig. 3.12) are triggered near to the boundaries
of the guards. As a result, the candidates in (3.38) may lose their feasibility, if the
guards do slightly change in the succeeding step. If the tightening method in Sec.
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x0

Xg

x′

I(0),k

I(1),k

I(g),k

G(0,1),k

G(1,g),k

Figure 3.12.: Shown are hybrid system HAk for k = 0 and the trajectory obtained
from solving Problem 3.4 without penalty term.

3.2.2 is applied, however, the guards turn out to be empty and no feasible solution
exists in the corresponding problem. In contrast, when the penalty-term method is

x0

Xg

x′
I(0),k

I(1),k

I(g),k

G(0,1),k

G(1,g),k

Figure 3.13.: The trajectory obtained from solving Problem 3.5 with penalty term:
the evolution of the continuous state is no longer straight to the goal
set (compared to the case without the penalty term).
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x0

Xg

x3

I(0),k

I(1),k

I(g),k

Figure 3.14.: At step k = 3: note the change of HAk compared to step k = 0, and
both coming transitions can be correctly triggered despite the change.

applied, Problem 3.5 turns out to be feasible as it shares the same feasible space as
the original Problem 3.4. Transitions in the obtained trajectory are triggered away
from the boundary (but the control performance are worsen as one can notice from
the evolution of the trajectory), as shown in Fig. 3.13. Many numeric tests have
shown that this trajectory possesses a higher robustness upon guard change. In
some tests, this trajectory can even remain feasible until the terminal set is reached
in the last step of the horizon, while the HAk changes in every intermediate step
k ∈ {1, · · · , H}. See the selected points of time in Fig. 3.14 − Fig. 3.16, in
which the trajectory φ∗

x,k=0 obtained from Problem 3.5 is tested for all H steps. By
marking the parts of φ∗

x,k=0 that have been reached in red, one can notice that the
part not yet reached can always keep being feasible despite the change of HAk in
each step.

3.4. Case Study: Robot Control with Modeling Error
and Uncertain Human Movement

In this section, the MPC strategy is applied to control a robot manipulator (RM)
cooperating with humans. Especially, it is assumed that the robot dynamics is
affected by additive disturbances, while the prediction of human motion contains
uncertainty as well. This section will show that by using the tube-based method
(developed in Sec. 3.1) to deal with the former disturbances, and the tightening
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x0

Xg
x6

I(0),k

I(1),k

I(g),k

Figure 3.15.: At step k = 6: the last transition can still be correctly triggered despite
changes in the preceding 6 steps.

x0

x10

I(0),k

I(1),k

I(g),k

Figure 3.16.: At step k = 10.

method (developed in Sec. 3.2.2) for the latter uncertainty, the safety of the human
can be guaranteed while the RM can accomplish its given task.

Traditionally, the workspace of the RM and humans are strictly separated for safety
reasons, see the left part in Fig. 3.17. Then, the RM is allowed to share some joint
workspace with humans to enhance work efficiency, but must stop when a potential
collision is detected, see the middle part in Fig. 3.17. As a sudden stop may delay
the whole manufacturing process (especially when several RMs are working in the
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Figure 3.17.: Development of human-robot collaboration.

same product line), the MPC strategy has been observed to be preferable in recent
years (see [82, 81]), so that the RM can quickly re-plan its movement (or trajectory)
when a potential collision is detected but continues its operation, see the right part
in Fig. 3.17.

The application of MPC, however, requires an exact dynamic model of the RM,
which is often not provided by the manufacturer. But according to different control
modes of the RM (provided by the manufacturer), namely:

• generate desired actuator torque;

• rotate to desired joint rotation;

• move to desired End-Effector (EE) position,

a substitute model can be derived for the MPC use. The model applied here is
based on the last control mode, where:

[
pE

x,k+1

pE
y,k+1

]
=

[
1 0
0 1

]
︸ ︷︷ ︸

A

·

[
pE

x,k

pE
y,k

]
+

[
1 0
0 1

]
︸ ︷︷ ︸

B

·

[
ux,k

uy,k

]
+

[
wx,k

wy,k

]
. (3.57)

In this discrete-time model, vector
[
pE

x,k pE
y,k

]T
∈ P = [−180, 180] × [−180, 0] (with

units mm) contains the longitudinal and lateral position of the EE. Input vector[
ux,k uy,k

]T
∈ U = [−20, 20] × [−20, 20] represents the distance that the EE can

move per sampling time (70 ms) and per direction. In addition, a disturbance term[
wx,k wy,k

]T
∈ W = [−6, 6] × [−6, 6] (i.e. a maximal error of 6 mm per sampling

time in each direction) is also considered in this model. For the motion of each joint
of the RM, they are not considered here for simplification, i.e., only the position of
the EE is relevant.

To deal with the disturbance term in (3.57), a closed-loop controller K ∈ R2×2 is
applied in MPC, which can bound the effect of the disturbance according to Sec.
3.1. With the help of K, a disturbance invariant set D ⊆ R2 can be determined,
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satisfying (A + BK)D ⊕ W ⊆ D. The controller K ensures that the measured

position
[
pE

x,k+j pE
y,k+j

]T
in step k + j will always be located in the tube D around

the predicted nominal position
[
pE

x,k+j|k pE
y,k+j|k

]T
, i.e.:

[
pE

x,k+j

pE
y,k+j

]
∈

⎡
⎣pE

x,k+j|k

pE
y,k+j|k

⎤
⎦ ⊕ D, ∀j ∈ {1, · · · , H}. (3.58)

The nominal position is determined by the nominal dynamics:

[
pE

x,k+1

pE
y,k+1

]
= A ·

[
pE

x,k

pE
y,k

]
+ B ·

[
ux,k

uy,k

]
, (3.59)

with a tightened nominal input space Ū = U � KD = [−14, 14] × [−14, 14], and a
tightened nominal state space P̄ = P � D = [−174, 174] × [−174, −6]. This implies
that when the nominal dynamics (3.59) is used in MPC, the EE always locates in
a tube D around the nominal trajectory despite the disturbances in each step.

Besides the additive disturbance, the error generated in human-motion prediction
should also be taken into account. Note that the human arm position is measured
by a camera system in each sampling time, e.g., Optitrack Prime 13w Cameras,
see http://optitrack.com/products/prime-13w/specs.html. Based on the measured
positions, the movement of the human arm is predicted according to the model
(3.60). The predicted position is then over-approximated into a rectangular set
P rec (marked in red in Fig. 3.18), and the EE must avoid these rectangular sets
when approaching to its goal position.

However, an exact prediction of the human movement is impossible – the pre-
dicted positions can deviate from the measured ones, see Fig. 3.18. Nevertheless,
consider the scenario that the human arm is moving up to the left, while the pose
is assumed to be constant during the movement. Thus, the width and rotation
of the rectangle are assumed to be constant over time. The moving distance per
sampling time is assumed to vary between vmin = 5mm and vmax = 10mm along

each direction. In each step k, the upper-left corner
[
parm

x,k parm
y,k

]T
of the rectangle

P rec
k is measured by the camera system (according to the assumption that the pose

is constant, by knowing the upper-left corner is enough to determine the rectangle
P rec

k ). Then, the following model Marm is applied to predict the movement of the
human arm: ⎡

⎣p̂arm
x,k+j|k

p̂arm
y,k+j|k

⎤
⎦ =

[
parm

x,k

parm
y,k

]
+ j ·

[
vmin+vmax

2
vmin+vmax

2

]
, ∀j ∈ {1, · · · , H}, (3.60)

where
[
p̂arm

x,k+j|k p̂arm
y,k+j|k

]T
denotes the predicted position in step k + j. Obviously,

this is a very simple model in which the moving distance of the human arm (along
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start

goal

Px

P
y

Figure 3.18.: The blue rectangles are the predicted positions over the future 12
steps. The red rectangles are the positions measured in each step.

each direction) in each step is assumed to be constant, and equals vmin+vmax

2
. By

employing this model, the maximal error generated in a single prediction step is
bounded by: ⎡

⎣|p̂arm
x,k+j|k − parm

x,k+j|k|

|p̂arm
y,k+j|k − parm

y,k+j|k|

⎤
⎦ ≤ j ·

[
vmin+vmax

2
vmin+vmax

2

]
, ∀j ∈ {1, · · · , H}. (3.61)

In addition, the following relation can also be derived according to (3.60):⎡
⎣|p̂arm

x,k+j|k − p̂arm
x,k+j|k+1|

|p̂arm
y,k+j|k − p̂arm

y,k+j|k+1|

⎤
⎦ ≤

[
vmin+vmax

2
vmin+vmax

2

]
, ∀j ∈ {2, · · · , H}. (3.62)

Based on (3.61) and (3.62), one can notice that the model Marm satisfies the As-
sumption 3.5 in Sec. 3.2.2, i.e., the following facts can be established:

• If the predicted rectangle P̂ rec
k+j|k determined by

[
p̂arm

x,k+j|k p̂arm
y,k+j|k

]T
, is enlarged

by the maximal prediction error j ·
[

vmin+vmax

2
vmin+vmax

2

]T
, then the enlarged

rectangle P̃ rec
k+j|k will always contain the measured rectangle in step k + j ac-

cording to Lemma 3.10.

• As long as the EE does not encounter into P̃ rec
k+j|k, or the following safety

condition is satisfied:[
pE

x,k+j

pE
y,k+j

]
/∈ P̃ rec

k+j|k, ∀j ∈ {1, · · · , H}, (3.63)
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start

goal

Px

P
y

Figure 3.19.: Rectangles in black are the set P̃ rec
k+j|k ⊕ D, ∀j ∈ {1, . . . , H}.

the collision with the human is guaranteed to be avoided.

Nevertheless, as the nominal dynamics (3.59) is applied to plan the movement of
EE, the safety condition (3.63) is extended to the following by taking into account
the additive disturbances (see the example in Fig. 3.19):

⎡
⎣pE

x,k+j|k

pE
y,k+j|k

⎤
⎦ /∈ {P̃ rec

k+j|k ⊕ D}, ∀j ∈ {1, · · · , H}. (3.64)

Finally, the following MPC problem is solved to plan the nominal trajectory online:

Problem 3.6. In each step k, if the position
[
pE

x,k pE
y,k

]T
of the EE and the position[

parm
x,k parm

y,k

]T
(and thus P rec

k ) of the human are measured, determine the enlarged

set P̃ rec
k+j|k, ∀j ∈ {1, · · · , H} according to the maximal prediction error, and solve

the following problem:

min
φu,k

J (
[
pE

x,k pE
y,k

]T
)

s.t.: nominal dynamics (3.59), ∀j ∈ {0, . . . , H − 1};

uk+j|k ∈ U, j ∈ {0, . . . , H − 1};[
pE

x,k+j|k pE
y,k+j|k

]T
∈ P̄ , ∀j ∈ {1, . . . , H};[

pE
x,k+j|k pE

y,k+j|k

]T
/∈ {P̃ rec

k+j|k ⊕ D}, ∀j ∈ {1, . . . , H};[
pE

x,k+H|k pE
y,k+H|k

]T
∈ Pg.
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Here Pg denotes a terminal set containing the goal position of the EE. Then, by

adopting the input uk := u∗
k|k +K(

[
pE

x,k pE
y,k

]T
−
[
pE

x,k pE
y,k

]T
) in each online step k,

the recursive feasibility and stability of the MPC are ensured according to Lemma
3.12, i.e., Problem 3.6 is always feasible and the goal set Pg is guaranteed to be
reached if the used assumptions hold. The results illustrated in Fig. 3.20 – Fig. 3.24
show the outcome of the solution of Problem 3.6 in different steps.

PxPx

P
y

P
y

Figure 3.20.: The magenta trajectory on the right is determined by solving the Prob-
lem 3.6 in step k = 0. But the desired position in step k = 1 by execut-
ing the first step of the optimized input cannot be reached due to the
disturbance, see the blue part on the left, which denotes the position
of EE measured in k = 1. The dark red rectangles in both figures are
the human position measured in step k = 0, while the transparent red
rectangle on the left is the human position measured in step k = 1.

PxPx

P
y

P
y

Figure 3.21.: Results in step k = 3.
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Figure 3.22.: Results in step k = 7.

PxPx

P
y
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y

Figure 3.23.: Results in step k = 9.

Px

P
y

start

goal

Figure 3.24.: The goal position of the EE is reached after 12 steps and the safety of
the human is ensured in all intermediate steps.
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3.5. Summary and Discussion

This chapter starts with the problem that uncertainties may act on local plants,
extends the principle of tube-based control which was established for purely contin-
uous dynamics, to hybrid system HAu with guarded transitions and mixed inputs.
As the main result, point-to-set transitions for this class of hybrid systems can be
computed by the proposed techniques in optimized fashion, while reaching the goal
set is guaranteed despite uncertainties of the flow and reset functions. This idea
can also be extended to robust control of HAu with nonlinear flow functions ac-
cording to the discussion in the last chapter: first of all, a set of PWA systems are
determined to approximate the nonlinear dynamics in each invariant, by which the
invariants are partitioned into small sub-spaces, and the linearization error is cast
into additive disturbances of the PWA dynamics [101]. Then, the partitioned state
spaces are tightened according to both original disturbances and the disturbances
caused by the linearization error. A nominal hybrid system can then be constructed
as in Sec. 3.1.2, and by planning with the nominal hybrid system, the feasibility
and the ability to attain the goal for the original uncertain and nonlinear hybrid
system are guaranteed.

For the online control problem of HA (or any general nonlinear systems) by using
MPC, the conditions on ensuring recursive feasibility and asymptotic stability of
MPC strategies are addressed in this chapter. Especially when the state constraints
representing the influence of other subsystems are with unknown changes over time,
two different change mechanisms of the state constraints are considered, and in both
cases, recursive feasibility and asymptotic stability can be and have been shown.
With respect to the problem that the conservative tightening of the state space
may lead to infeasible problems, a penalty term method is also proposed in this
chapter. It has been shown that this method does not affect the feasible space of
the original problem and often results in satisfiable outcome. However, this ap-
proach can only enhance the possibility of MPC being recursive feasible, instead of
providing a guaranty compared to the tightening method. Thus, it is worth to in-
vestigate in how far the penalty approach can replace the tightening one, as well as
to investigate the use of a time-varying penalty term to reduce the performance loss.

Until now, the interaction among the subsystems in CPS has been cast into local
constraints in the last two chapters, either with or without uncertainties. In many
cases, however, such interaction is not quantifiable and cannot be formulated as
local constraints. In this case, the use of coupling constraints is preferred to model
the interaction, i.e., the local solution of each subsystem should jointly satisfy the
coupling constraints. To ensure the satisfaction of the coupling constraints, the cen-
tralized optimization over all subsystems is the most promising way but will often
be impossible due to complexity. Therefore, newly developed distributed strate-
gies are proposed in the coming chapter, which can significantly reduce the overall
complexity, while the satisfaction of the coupling constraints remains ensured.
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4. Distributed Control of CPS with
Coupling Constraints

In contrast to the coupling scheme discussed in the previous chapters, the subsys-
tems in this chapter are assumed to interact according to joint constraints (or cou-
pling constraints). These joint constraints must be satisfied by each local controller
simultaneously, see Fig. 4.1. For instance, consider a coordinated multi-vehicle
driving scenario as sketched in Fig. 4.2, in which a building site narrows the road
so that only one vehicle can pass through at each time. In this case, the limited
width of the road can be regarded as a coupling constraint among the vehicles (sub-
systems), and the vehicles should coordinate their driving plans (i.e., adjust their
local control strategies) by traveling through the narrow passage without conflicts.

A particular difficulty of controlling CPS with coupling constraints is to provide
methods for control and optimization which scale with the system size, possibly
measured in the number of relevant subsystems. In order to ensure a safe, reliable,
and highly performant operation of the distributed systems, local control strate-

Plant pi Plant pj

Controller ci Controller cj

Coupling Constraints

Communication Network

Figure 4.1.: Interleaving structure of the subsystems in CPS.
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Figure 4.2.: Example of a distributed system with coupling constraints induced by
limited resource: the local controllers of autonomous vehicles on a three-
lane road have to observe a narrow passage at a building site, requiring
to coordinate their driving plans.

gies for each subsystem as well as mechanisms for coordinating or adapting the
interaction of subsystems must be devised. These schemes have to account for (a)
heterogenous dynamics, objectives, and constraints, and (b) limited computational
power of the local controllers to determine (optimal) control inputs. The optimal
and distributed control of this type of systems is an important problem class facing
these difficulties, typically too complicated to be solved in a centralized fashion.
Most investigations on distributed control focus on the cases when

• the subsystems are coupled by common cost, and the overall cost function is
the sum of each local costs depending on common optimization variables, see
[35, 116, 164, 117, 121, 168, 124];

• the subsystems are coupled by common constraints (the case in this chapter),
and each subsystem has to optimize local variables to fulfill the local con-
straints, while the global cost is minimized and the coupling constraints are
satisfied, see [59, 61, 47, 132, 127, 172].

For the first case, two main approaches have been developed to solve the problem
in a distributed form, namely, the consensus-based primal methods [124, 116], and
the Lagrangian-based dual methods [35, 159]. The main challenge of this problem
is to realize a faster convergence to the optimal common variables, while the re-
duction of computational complexity does not belong to the major concerns. This
is because all subsystems share the same optimization variables in this problem,
and an increase of subsystems does not typically lead to an increase of optimization
complexity, but to communication complexity. For the second case above, the dis-
tributed solution is more necessary and often preferred with respect to optimization
complexity reduction, since an increase of subsystems will raise the overall number
of optimization variables and thus increases the overall complexity. In most of the
existing work for the second case, the centralized problem is assumed to be convex,
and methods to ensure the feasibility and optimality of the distributed solution are
studied. In particular, they aim at decomposing the centralized problem into a set
of small-scale sub-problems to reduce the problem size, and at solving the resulting
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subproblems using sequential or parallel schemes. It is worth to mention that some-
times a common cost problem of the first case can also be equivalently reformulated
into a coupled constraint problem. This reformulation is usually realized by setting
up the dual problem of the original centralized problem [124]. In this respect, an
efficient distributed solution of the second case can also utilize the first case.

For the distributed control problems in CPS, especially if hybrid dynamics is used
to model the subsystems, or if the local state space is not convex, a mixed-integer
programming (MIP) problem in the form of (2.1) may have to be solved, e.g. see
Problem 2.2, 2.3 and 3.5 in the previous chapters, or the problems in [55, 96].
As the MIP problems are known to be non-convex, the solution suffers from non-
polynomial worst-case runtime [155]. Typical solution techniques for MIP problems
are the branch-and-bound [88, 112] and branch-and-cut algorithm [111, 149], which
have been reviewed at the beginning of Chapter 2. Accordingly, compared with
convex centralized problems, the investigation on efficient distributed solution of
MIP problems, while satisfying both local and coupling constraints, is becoming
even more urgent for CPS with respect to control complexity reduction.

In front of this challenge, accordingly, a set of efficient distributed solution schemes
is proposed for MIP problems in this chapter: first, a particular focus is put on the
case in which the cost function is linear and an MILP problem results. For this
case, a recently proposed method based on the Shapley-Folkman-Starr theorem
[147, 46, 16, 148], is extended by relaxing some conservative assumptions required
in state-of-the-art work, and thus the computational efficiency is enhanced. Then,
a distributed solution scheme for the case of quadratic cost functions, i.e., MIQP
problems, is proposed. This scheme partly exploits the idea of the linear case, while
feasibility as well as continuous cost reduction over the iterations are guaranteed
for both cases. Lastly, one instance of the proposed method is applied to solve the
vehicle coordination problem from Fig. 4.2. The content of this chapter is mainly
based on ideas which have been published already in [96, 99, 103, 102].

4.1. Efficient Distributed Solution for MILP Problems

Before the discussion on MIP problems starts, a brief review on existing distributed
solution techniques for convex problems is provided. First of all, consider the fol-
lowing local problem of subsystem i for all i ∈ N = {1, · · · , ns}:

min
xi

Ji(xi) (4.1)

s.t.: xi ∈ Xi ⊂ R
ri,

which is similar to the problem (2.1) but without integrality constraints. The sym-
bol Ji(xi) denotes local costs, and xi ∈ Rri denotes the local optimization variables,
consisting of local input and states in each discrete time of the horizon (according to
diverse problems appeared in previous chapters). The local constrained set Xi com-
prises the local input and state constraints as well as the dynamics of the subsystem.
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Note that Xi represents a polytopic set when both constraints and dynamics are
linear.

Next, consider a centralized problem defined over all subsystems, which takes the
form of:

min
x1,··· ,xns

∑
i∈N

Ji(xi) (4.2)

s.t.:
∑
i∈N

Aixi ≤ b (4.3)

xi ∈ Xi ⊂ R
ri, i ∈ N. (4.4)

Compared with problem (4.1), the new constraint (4.3) represents a coupling con-
straint (linear) among the subsystems. For the centralized problem (4.2), if each
local Ji is a convex function, and as each local feasible set Xi is polytopic, the
entire problem turns out to be convex. In this case, a common approach to avoid
the centralized solution of (4.2) for a large number of subsystems is to set up the
dual problem of (4.2), see [127, 59]. In the first step of this approach (which is also
called the Lagrangian-based dual method), the coupling constraint (4.3) is dualized
by a vector of multipliers λ ≥ 0, and the dimension of λ equals to the dimension of
the vector b. Then, the following dual problem is obtained:

max
λ≥0

−λT · b +
∑
i∈N

min
xi∈Xi

(Ji(xi) + λT · Aixi). (4.5)

The coupling constraint (4.3) is transferred into an objective function of (4.5), and

for any fixed value of λ := λ̂, the minimization task of all xi, i ∈ N , in problem
(4.5) becomes decomposable, and a set of local problems:

min
xi

Ji(xi) + λ̂T · Aixi (4.6)

s.t.: xi ∈ Xi

of reduced size is obtained for any subsystem i ∈ N . Then, starting from an initial

pair of λ[0] and x
[λ[0]]
i , i ∈ N , the following procedure is successively executed in

each iteration ρ:

• Solve the local problems (4.6) in parallel for all i based on the present value

of λ[ρ], and obtain x
[λ[ρ+1]]
i , i ∈ N , for the coming iteration ρ + 1;

• Update the value of λ[ρ] to λ[ρ+1] according to x
[λ[ρ+1]]
i , i ∈ N , and a cost-ascent

direction of the dual function (4.5).

This approach provides a guaranty on both primal and dual optimality1 of the
problem (4.2), while the solution of the intermediate problem (4.6) is carried out in

1The dual optimum can be obtained in the terminal iteration of this approach, while the primal
optimum must be recovered in addition by adopting some further steps, e.g., by evaluating the
KKT conditions of (4.2).
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a distributed form, see [36, 27]. Afterwards, this distributed strategy has also been
further explored with respect to the aspects of (a) how to speed up the convergence
rate [118, 120, 61], (b) whether a central coordinator is necessary to distribute the
information during the solution [168, 141], and (c) which information should be
communicated in case of privacy issues [59, 144].

However, for MIP problems in the form of (4.2), i.e. if a certain part of xi is
integer valued, the problem (4.2) turns out to be non-convex, leading to a duality
gap. In this case, the Lagrangian-based dual method may cause the distributed
solution to be non-optimal, or even infeasible. This is due to the effect that the
primal optimum and the dual optimum may no longer be a saddle-point of the
problem (4.5), if the integrality constraints imposed on each local variables xi in
(4.2) (see [36] for more detailed reasoning). As a result, the primal „solution”
recovered from the dual optimum may not coincide with the true primal optimum,
and thus may not satisfy the local and coupling constraints.

Nonetheless, recent studies have revealed that, if the local cost functions in (4.2)
are linear, leading to an MILP problem, and if the number of subsystems is large,
the duality gap vanishes under certain conditions [162]. Following this line and by
making further use of the Lagrangian dual methods, one can indeed determine an
optimal (or close-to-optimal solution) in a distributed way. In detail, the considered
MILP problem takes the form:

min
x1,··· ,xns

∑
i∈N

cT
i xi (4.7)

s.t.:
∑
i∈N

Aixi ≤ b; (4.8)

xi ∈ Xi ⊂ R
ri × Z

zi, i ∈ N. (4.9)

Similar to (2.1), the states and controls in each time step of the horizon, as well as the
additional integer and auxiliary variables (used for encoding the hybrid dynamics)
of local subsystem i, are collected into a mixed-integer vector xi. For the optimal
control problems of the local subsystems in Problem 2.2, 2.3 and 3.5, the system
dynamics and constraints can eventually be reformulated into linear form, and are
collected into local constraint (4.9), where Xi is a mixed-integer polyhedral set:

Xi = {xi ∈ R
ri × Z

zi|Dixi ≤ di}. (4.10)

For the local variable xi, the ri and zi in (4.9) denote the number of continuous
and discrete components, which depend on the state and input dimension of the
local HA, the number of invariants and guards, the auxiliary variables applied for
encoding, and the time horizon. For constraint (4.8), Ai ∈ Rm×(ri+zi) and b ∈ Rm×1

denote matrices of appropriate dimension, and it models the coupling among the
subsystems. Note that the formulation in (4.8) can represent a large variety of
coupling schemes, e.g., coupled states, inputs, or a mixture hereof, as xi contains
all local variables to be optimized. The number m of the coupling constraints will
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play an important role in the later description. The local cost function is in linear
form, while the global cost function

∑
i∈N

cT
i xi is the sum of each local costs. More-

over, J(x) :=
∑

i∈N
cT

i xi is used to refer to the global costs of problem (4.7), as well as

x∗ = [x∗
1; · · · ; x∗

ns
] to denote the optimal solution of (4.7), and J(x∗) for the optimal

global cost.

Strategies for solving the problem (4.7) in distributed form have been considered in
a few publications before, see e.g. [162, 60, 43, 161, 44]. Most of this work, which
is briefly summarized below, is based on the Shapley-Folkman-Starr theorem:

Theorem 4.1. (Shapley-Folkman-Starr theorem [147]) For MILP problem (4.7),
define a set:

Si :=

{
si ∈ R

m+1

∣∣∣∣∣ si =

[
cT

i xi

Aixi

]
, xi ∈ Xi

}

for all subsystems i ∈ {1, · · · , ns}, and a set

S :=

{
s ∈ R

m+1

∣∣∣∣∣ s = s1 + · · · + sns, si ∈ Si, i ∈ {1, · · · , ns}

}
.

If the relation ns > m + 1 is satisfied, then for every vector ŝ ∈ Conv(S), there
always exists a local vector ŝi ∈ Conv(Si) for all i ∈ {1, · · · , ns}, while ŝi /∈ Si for
at most m + 1 subsystems, such that the relation

ŝ = ŝ1 + · · · + ŝns

holds.

The proof of this theorem can be found in [25] and [162]. This theory establishes
the fact that, although each local set Si is not convex due to the integrality con-
straints on xi, one can still find a combination of ŝ1, · · · , ŝns , where most ŝi are
selected from the non-convex set Si, so that the relation ŝ = ŝ1 + · · · + ŝns applies
for any ŝ selected from Conv(S). According to this theory, let the mixed-integer
set Xi in (4.7) be replaced by a convex set Conv(Xi), denoting the convex hull of
all points in Xi. Then, by dropping the integrality constraint of all variables in xi,
i.e. xi ∈ Rri+zi, the MILP problem (4.7) is cast into a Linear Programming (LP)
problem:

min
x1,··· ,xns

∑
i∈N

cT
i xi (4.11)

s.t.:
∑
i∈N

Aixi ≤ b;

xi ∈ Conv(Xi), xi ∈ R
ri+zi , i ∈ N.

It is remarkable that Conv(Xi) does not coincide with the set R(Xi) = {xi ∈
Rri+zi |Dixi ≤ di}, where the latter is obtained by relaxing the integrality constraints
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4.1. Efficient Distributed Solution for MILP Problems

to intervals in Xi, and is more commonly used to determine a lower cost bound of
MIP problems. In fact, both sets Conv(Xi) and R(Xi) contain the original mixed-
integer set Xi, whereas the former is harder to be computed but is tighter than
the latter, see [66] for the reasoning, as well as the following example used in [157]:
Given a mixed-integer set:

X = {x1 ∈ Z, x2 ∈ R |

[
1 10 −5 −9
10 −2 −8 −3

]T [
x1

x2

]
≤

[
18 10 4 18

]T
}, (4.12)

the size of the sets X, Conv(X) and R(X) are compared in Fig. 4.3. Note that the
relation X ⊆ Conv(X) ⊆ R(X) applies.

Furthermore, it is well known that, if the LP problem (4.11) has a unique optimal
solution, then it must be attained in a vertex of the feasible set. By using x̄∗ =
[x̄∗

1, · · · , x̄∗
ns

] to denote the unique optimal solution of (4.11), the following relation
applies according to the Shapley-Folkman-Starr theorem [162]:

Theorem 4.2. If the LP problem (4.11) has a unique optimal solution x̄∗, then a
partitioning N = N1∪N2, |N1| ≥ ns−m−1, of the subsystems can be determined, so
that the local solution x̄∗

i in x̄∗ is attained at the vertices of Conv(Xi) for all i ∈ N1.
In addition, as all vertices of Conv(Xi) are also located in the mixed-integer set Xi,
the local solution x̄∗

i thus also satisfies Xi, ∀i ∈ N1, although subject to a real-valued
set in (4.11).

The proof of this theorem was provided in [162] and is briefly sketched here:

Proof. Due to the uniqueness assumption of (4.11) one knows that, for the optimal
solution x̄∗ of (4.11), there exists no other candidate x̄can = [x̄can

1 , · · · , x̄can
ns

], x̄can
i ∈

Conv(Xi), i ∈ N , to fulfil the relation

∑
i∈N

cT
i x̄∗

i =
∑
i∈N

cT
i x̄can

i ,
∑
i∈N

Aix̄
∗
i =

∑
i∈N

Aix̄
can
i .

x1x1x1

x2x2x2

X Conv(X) R(X)

Figure 4.3.: Compare the size of set X (in red) defined in (4.12), and the corre-
sponding set Conv(X) (in yellow) and set R(X) (in blue).
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4. Distributed Control of CPS with Coupling Constraints

Otherwise, the candidate x̄can will also be an optimal solution of (4.11), as it attains
the same global costs as x̄∗ and also satisfies both local and coupling constraints in
(4.11). Then, regarding the set Si, ∀i ∈ N , and the set S defined in Theorem 4.1,
the above fact implies that for a vector s∗ determined by

s∗ := s∗
1 + · · · + s∗

ns
,

where

s∗
i =

[
cT

i x̄∗
i

Aix̄
∗
i

]
, s∗

i ∈ Conv(Si) =

{
si ∈ R

m+1

∣∣∣∣∣ si =

[
cT

i xi

Aixi

]
, xi ∈ Conv(Xi)

}
, i ∈ N,

there exists no other candidate scan
i ∈ Conv(Si), ∀i ∈ N , to fulfil the relation:

s∗ = scan
i + · · · + scan

ns
.

Then, as the relation

s∗ =
∑
i∈N

s∗
i ∈ Conv(S)

applies since each s∗
i is selected from Conv(Si), one knows that there must exist a

local vector ŝi ∈ Conv(Si) for all i ∈ N , while ŝi /∈ Si for at most m+1 subsystems.
Thus, the relation:

s∗ = ŝ1 + · · · + ŝns

holds according to Theorem 4.1. However, as s∗
1, · · · , s∗

ns
is the unique candidate

to fulfil this equation, there must exist ŝi = s∗
i for all i ∈ N . This immediately

implies that for s∗
1, · · · , s∗

ns
, at most m + 1 subsystems do not satisfy the constraint

s∗
i ∈ Si. Then, as the mapping from x̄∗

i to s∗
i is linear, there must also exist at

most m + 1 subsystems in x̄∗, for which the local solution x̄∗
i does not belong to the

mixed-integer set Xi.

In case that a large number of subsystems are involved in (4.7), but only a few
coupling constraints (4.8) need to be considered, i.e. ns � m, the above theorem
implies that the majority of the subsystems can already determine their local feasible
solutions of (4.7) through the solution of the LP problem (4.11). Most importantly,
the solution of (4.11) can be carried out in a distributed way due to its convexity
(and in the same form as problem (4.2)).

Following this line, the authors in [162] introduced a method to determine a feasi-
ble candidate of (4.7), by which the LP problem (4.11) is first solved in a distributed
way, and then the local feasibility of the remaining |N2| subsystems is recovered.
However, this method faces the following drawbacks, limiting its application:

1. the condition Aixi ≥ 0, ∀xi ∈ Xi, ∀i ∈ N is assumed in problem (4.7), in order
to guarantee the success of the recovering process for the |N2| subsystems;
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4.1. Efficient Distributed Solution for MILP Problems

2. the convergence rate towards x̄∗
i by employing the Lagrangian-based dual

method is extremely slow (mainly due to the use of a sub-gradient direction2

of the dual function and the vanishing step size in each iteration [12]).

Facing these drawbacks, a new relation between (4.7) and (4.11) was established in
[161] to guide the distributed solution of (4.7):

Theorem 4.3. If the LP problem (4.11) and its dual problem

λ̄∗ := arg max
λ≥0

−λT · b +
∑
i∈N

min
xi∈Conv(Xi)

(cT
i + λT · Ai)xi (4.13)

obtained by dualizing the coupling constraints (4.8), have a unique optimal solution
x̄∗ and λ̄∗, then the local solutions xd

i obtained by solving the following local problems

xd
i := arg min

xi∈Xi

(cT
i + λ̄∗,T · Ai)xi (4.14)

for all ns subsystems, differ for at most m + 1 subsystems from the optimal solution
x̄∗ of problem (4.11).

This enables each subsystem i to first solve the dual problem (4.13) in a dis-
tributed way, until the dual optimum λ̄∗ is obtained. Then, the problem (4.14) is
solved locally by each subsystem according to λ̄∗. The resulting local solution xd

i

from (4.14) thus satisfies Xi for all i ∈ N , but may eventually violate the coupling
constraint (4.8). Accordingly, the authors in [161] tightened the coupling constraint
(4.8) in advance, i.e., each dimension j of the right-hand side of inequality (4.8) is
reduced by:

(m + 1) · max
i∈N

(max
xi∈Xi

Ai(j, :)xi − min
xi∈Xi

Ai(j, :)xi), (4.15)

where Ai(j, :) denotes the j-th row of matrix Ai. Then, the corresponding LP
problem (4.11) and dual problem (4.13) with the tightened coupling constraints is
constructed. Thereafter, the dual optimum of the new dual problem (4.13) is deter-
mined, as well as the xd

i from (4.14) based on the new dual optimum. This approach
enables each xd

i from (4.14) only to violate the tightened coupling constraint, but
not the original one – thus, they constitute a feasible candidate of (4.7). Compared
with the last approach, the assumption on Aixi ≥ 0, ∀xi ∈ Xi, ∀i ∈ N is relaxed
here, but the following significant drawbacks still exist:

1. the convergence rate towards the dual optimum λ̄∗ by using the Lagrangian-
based dual method is as slow as the one towards x̄∗

i ;

2The sub-gradient is used to determine a cost-ascent direction of the multiplier λ in each iteration.
This is because the dual function (4.5) is always concave with respect to λ, but may not always
be differentiable, i.e., no gradient can be determined. In this case, the sub-gradient is adopted
to update λ, but its selection may not always be unique in each iteration.
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2. the new LP problem (4.11) must be feasible after tightening the coupling con-
straints (4.8). However, the tightening scheme in (4.15) is quite conservative,
resulting in a substitute coupling constraint which is hard to satisfy, i.e., lead-
ing to an infeasible problem in the worst case.

Still based on the Shapley-Folkman-Starr theorem, the work in [60] proposed an
improved Lagrangian-based dual method, aiming at reducing the conservativeness
caused by the tightening. In [43, 44], the authors employed the primal decomposi-
tion method for the solution of (4.11) instead of the dual one.

Obviously, the common drawback of the work above is the slow convergence rate
towards either x̄∗

i or λ̄∗ when employing the Lagrangian-based dual method. In
addition, requirements such as Aixi ≥ 0, ∀xi ∈ Xi, ∀i ∈ N , or the feasibility of
(4.11) with tightened coupling constraints further limit the applicability of these
methods. Thus, this section proposes a novel distributed solution scheme aiming
at overcoming these issues. The main idea of the proposed method is still based
on the Shapley-Folkman-Starr theorem – but unlike the existing methods, in which
the theorem is employed to directly determine a feasible candidate of (4.7), here
it is applied to successively generate and improve the feasible candidates of (4.7),
until the global optimum (or at least a sub-optimum) is found. By using the pro-
posed method, the conservative assumptions mentioned above are relaxed, while
the computations can also be accelerated.

4.1.1. Improvement by the Lagrangian-Based Dual Method

The step of finding a first feasible candidate of a MIP problem usually constitutes
the first phase of solution in most of the existing solvers, typically incurring high
costs, as reviewed at the beginning of Chapter 2. Only after a certain number
of iterations, established search strategies like the branch-and-bound or branch-
and-cut algorithms, the quality of the candidate improves. Specifically for MILP
problems according to (4.7), many tests and applications have shown that – even if
the problem is large – the determination of the first feasible candidate is typically
much faster than the process of converging to the optimal one. As an example, for
the electric vehicle charging problem considered in [161, 60], the determination of
the global optimal solution needs over 6 hours, but the first feasible candidate was
found in less than one second.

Thus, by assuming that a first feasible candidate of (4.7) is on hand and denoted

by xf = [xf
1 ; · · · ; xf

ns
], the main task of the algorithm to be proposed for distributed

solution is to improve xf until the global optimum (or a value close to it) is found.
Recall that, if the standard branch-and-bound method is applied to improve xf , it
usually keeps branching on the integer variables (leading to nodes). This process,
however, requires heuristics for the priority of the nodes to be considered first for
branching. If the heuristics is not efficient, this causes a large amount of mean-
ingless computation, e.g., when the new nodes are infeasible, or worse than xf . It
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4.1. Efficient Distributed Solution for MILP Problems

also requires to store a large amount of data. Here instead, search directions for
continuous cost improvement in any iteration are proposed.

The considered method first starts with determining a new coupling constraint
of (4.7) based on xf , and taking the form:

∑
i∈N

Aixi ≤ bf , with bf =
∑
i∈N

Aix
f
i . (4.16)

Since xf is a feasible candidate of (4.7), the vector bf must satisfy:

bf ≤ b. (4.17)

Obviously, this implies that (4.16) constitutes a tighter coupling constraint com-
pared to the original one in (4.8). Now, by replacing (4.8) with (4.16) in problem
(4.7), the following MILP problem is obtained:

min
x1,··· ,xns

∑
i∈N

cT
i xi (4.18)

s.t.:
∑
i∈N

Aixi ≤ bf ;

xi ∈ Xi, xi ∈ R
ri × Z

zi, i ∈ N.

A similar MILP problem with tightened coupling constraint was also considered in
[161], but there, the existence of a feasible solution of the tightened problem was
only assumed, whereas the feasibility of (4.18) here always holds due to xf . Now,
by replacing the mixed-integer set Xi in (4.18) with the convexified set Conv(Xi),
an LP problem is obtained:

min
x1,··· ,xns

∑
i∈N

cT
i xi (4.19)

s.t.:
∑
i∈N

Aixi ≤ bf ;

xi ∈ Conv(Xi), xi ∈ R
ri+zi, i ∈ N.

Its dual problem obtained from dualizing the coupling constraint
∑

i∈N
Aixi ≤ bf has

the form:

sup
λ≥0

−λT bf +
∑
i∈N

min
xi∈Conv(Xi)

(cT
i + λT · Ai)xi (4.20)

referring to (4.13). Here, x̄∗,f = [x̄∗,f
1 ; · · · ; x̄∗,f

ns
] and λ̄∗,f denote the optimal solution

of (4.19) and (4.20).

Assumption 4.1. Both problems (4.19) and (4.20) have unique optimal solutions
x̄∗,f and λ̄∗,f .
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Note that this assumption is typically not conservative, since one can avoid non-
unique cases by introducing small perturbations to the cost or constraints in (4.19),
as indicated in [161].

For the set of MILP and LP problems introduced above, let the optimal costs be
compared here: By using J(x∗), J(x̄∗), J(x∗,f ) and J(x̄∗,f ) to represent the optimal
costs of the problems (4.7), (4.11), (4.18), and (4.19) respectively, as well as J(xf )
for the global costs of xf , the following relations can be established:

Lemma 4.1. For a given xf , it applies that:

J(x̄∗) ≤ J(x∗) ≤ J(x∗,f ) ≤ J(xf), (4.21)

J(x̄∗) ≤ J(x̄∗,f ) ≤ J(x∗,f ). (4.22)

Proof. The first inequality (from left to right) J(x̄∗) ≤ J(x∗) in (4.21) follows
from the relaxed integrality constraint in (4.11) than in (4.7); the second inequality
J(x∗) ≤ J(x∗,f ) in (4.21) follows from the tighter coupling constraint in (4.18) than
in (4.7); the last inequality J(x∗,f ) ≤ J(xf ) in (4.21) follows from the fact that
xf represents a feasible candidate of (4.18) only, but not necessarily the optimal
one; the first inequality J(x̄∗) ≤ J(x̄∗,f ) in (4.22) is implied by the tighter coupling
constraint in (4.19) than in (4.11); the second inequality J(x̄∗,f ) ≤ J(x∗,f ) in (4.22)
results from the relaxed integrality constraint in (4.19) compared to (4.18).

For the objective of improving xf , the relations listed in Lemma 4.1 point to a
useful direction: it can be noticed that J(x∗) and J(x̄∗,f ) are both bounded by
J(x̄∗) from below, and bounded by J(x∗,f ) from above. This fact implies that,
although the relations between J(x∗) and J(x̄∗,f ) are still unknown, their costs are
bounded by the same range and both lead to global costs lower than J(xf ) (as
J(x∗,f ) ≤ J(xf ) applies). Then, since:

• x∗ is the global optimum of (4.7), which defines the best candidate one can
find for xf ;

• and x̄∗,f is the global optimum of the LP problem (4.19), which may not satisfy
the local constraint Xi (and thus may not be feasible for (4.7)),

it is straightforward to assume that a feasible candidate of (4.7) being located close
to x̄∗,f , will attain similar global costs as J(x̄∗,f ) and J(x∗). This feasible candidate,
accordingly, can be regarded as better than xf , and it constitutes a better candidate
for (4.7). To compute this feasible candidate, however, one must first determine the
value of x̄∗,f . Note that, as x̄∗,f represents the optimal solution of the LP problem
(4.19) and this problem also shares a similar structure as the one in (4.2), the
Lagrangian-based dual method is thus employed to compute x̄∗,f in a distributed
fashion, see Algorithm 4.1.
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Note that by temporarily neglecting the lines 7 to 12 in Algorithm 4.1, this would
represent a standard Lagrangian-based dual method for the problems in the form of
(4.2). In this algorithm, ρ is the iteration counter and ρmax represents the maximal
number of iterations allowed to be executed (usually a large number to ensure the

convergence to x̄∗,f). The computation in line 4 updates the local candidate x
[λ[ρ]]
i

based on the present multiplier λ[ρ] in iteration ρ (referring to (4.6)), while the

index [λ[ρ]] in x
[λ[ρ]]
i is used to clarify that this solution to the sub-problem in line 4

is specific for the present value of λ[ρ]. The computation in line 5 is an averaging over

the x
[λ[ρ]]
i obtained in the previous iterations, in order to recover the primal optimal

solution x̄∗,f , see [59] for more details of this recovering process. The computations
in the lines 4 and 5 are carried out in a distributed form. Then, γ[ρ] in line 13

1: Initialization: ρ = 1, λ[ρ] = 0, xf , Flag = 0;
2: while ρ ≤ ρmax and Flag = 0 do
3: for all subsystem i ∈ N do

4: x
[λ[ρ]]
i := arg min

xi∈Xi

(cT
i + λ[ρ],T Ai)xi;

5: x
[ρ]
i := 1

ρ

ρ∑
j=1

x
[λ[j]]
i ;

6: end for
7: Decompose x

[λ[ρ]]
i into [x

[λ[ρ]]
i,r ; x

[λ[ρ]]
i,t ], ∀i ∈ N , and solve the LP problem:

min
x1,r,··· ,xns,r

∑
i∈N

cT
i · [xi,r; 0zi×1] (4.23)

s.t.:
∑
i∈N

Ai,r · xi,r ≤ b −
∑
i∈N

Ai,t · x
[λ[ρ]]
i,t ; (4.24)

Di,r · xi,r ≤ di − Di,t · x
[λ[ρ]]
i,t , xi,r ∈ R

ri, i ∈ N. (4.25)

8: if (4.23) – (4.25) is feasible and the optimized solution x∗
i,r, i ∈ N satisfies

that
∑

i∈N
cT

i [x∗
i,r; x

[λ[ρ]]
i,t ] < J(xf ) then

9: Flag = 1;
10: else
11: Flag = 0;
12: end if
13: γ[ρ] :=

∑
i∈N

Aix
[λ[ρ]]
i − bf ;

14: λ[ρ+1] := P+(λ[ρ] + s[ρ]γ[ρ]);
15: ρ := ρ + 1;
16: end while

Algorithm 4.1.: Distributed computation of x̄∗,f
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determines a sub-gradient of the dual function in (4.20), which is used in line 14
to update the multiplier λ[ρ]. The symbol s[ρ] in line 14 is the step length chosen
to update the multiplier λ[ρ] in each iteration ρ, and the operation P+ denotes the
projection onto the positive sub-space of Rm.

In general, this algorithm leads to x̄∗,f
i for ρ → ∞, as long as the following

conditions for the step length s[ρ] are satisfied (see [12] for the proof):

s[ρ] → 0,
∞∑

ρ=1

s[ρ] = ∞,
∞∑

ρ=1

(s[ρ])2 < ∞. (4.26)

A simple choice of s[ρ] satisfying these conditions is s[ρ] = 1
ρ , but the vanishing step

size in general, would lead to an extremely slow convergence rate. Finally, it is
remarked that the constraint xi ∈ Xi in line 4 differs from the original constraint
xi ∈ Conv(Xi) in (4.19) and (4.20), since the computation of the convexified set
Conv(Xi) is hard, especially for a large dimension. The authors in [161] suggest
to use column generation techniques, see [18, 51], to construct approximations of
Conv(Xi). Here instead, as the term to be minimized in line 4 is linear, i.e., there

must exist an optimal x
[λ[ρ]]
i located in the vertices of Conv(Xi), thus also in Xi.

Accordingly, the constraint xi ∈ Xi is adopted in line 4, since the outcome will not
be affected according to Assumption 4.1. In other words, a small-scale MILP prob-
lem with local variable only is solved in line 4, instead of an LP problem requiring
the knowledge of Conv(Xi).

Clearly, without the steps in lines 7 to 12, Algorithm 4.1 would terminate after
averaging to x̄∗,f in line 5. At this stage, an improvement of xf can be determined
based on x̄∗,f . However, since the convergence towards x̄∗,f usually requires many it-
erations due to the vanishing step size in (4.26) (and thus large computation times),
the computations in lines 7 to 12 are carried out in addition, to reduce the number
of necessary iterations: Any set of local variables xi ∈ Xi can always be decomposed
into the real-valued part xi,r ∈ Rri and the integer part xi,t ∈ Zzi. Similarly, the ma-
trices Ai and Di can also be decomposed into Ai = [Ai,r, Ai,t] and Di = [Di,r, Di,t],
so that Aixi = [Ai,r, Ai,t] · [xi,r; xi,t] and Dixi = [Di,r, Di,t] · [xi,r; xi,t] hold. With

this scheme for the x
[λ[ρ]]
i obtained in line 4 in iteration ρ, the newly assigned prob-

lem (4.23) in line 7 fixes the integer part x
[λ[ρ]]
i,t , and leaves the real part x

[λ[ρ]]
i,r to be

newly selected. This aims at achieving the following goals through the solution of
(4.23):

• reducing the global costs attained by x
[λ[ρ]]
i , i ∈ N , through the variation of

their real-valued parts;

• as x
[λ[ρ]]
i ∈ Xi applies according to line 4, the constraint (4.25) aims at pre-

serving the local feasibility in problem (4.7) during the variation of the real
variables;
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• the x
[λ[ρ]]
i obtained in iteration ρ may, in general, violate the dualized coupling

constraints (4.16) (see [161] for the reasoning, and also see the second plot in
Fig. 4.4 which demonstrates the maximal violation to (4.16) in each iteration).
However, as the original coupling constraints (4.8) determine a larger feasible

space than (4.16) according to (4.17), the x
[λ[ρ]]
i may have satisfied (4.8) even

if (4.16) is not satisfied (see the first plot in Fig. 4.4, recording the maximal

violation to (4.8)). Thus, as the real-valued part of x
[λ[ρ]]
i is allowed to be newly

selected in (4.23), the constraint (4.24) aims at ensuring that the feasibility of
(4.8) is eventually recovered after the optimization.

Let x∗
i,r, i ∈ N , denote the optimized solution of (4.23). If problem (4.23) is

feasible in iteration ρ, then a new feasible candidate xnew = [xnew
1 ; · · · ; xnew

ns
] of (4.7)

is found, in which xnew
i := [x∗

i,r; x
[λ[ρ]]
i,t ], i ∈ N . If the global costs of the new candidate

m
a
x
(
∑ i∈

N
A

ix
[λ

[ρ
] ]

i
−

b)
m

a
x
(
∑ i∈

N
A

ix
[λ

[ρ
] ]

i
−

bf
)

Figure 4.4.: Outcome of Algorithm 4.1 for randomly generated instances of prob-
lem (4.7): the upper plot shows the maximal violation of the origi-

nal coupling constraint (4.8) by x
[λ[ρ]]
i , i ∈ N , over the iterations and

values below zero indicate that no violation is observed. The term
max(

∑
i∈N

Aix
[λ[ρ]]
i − b) records the largest entry in vector

∑
i∈N

Aix
[λ[ρ]]
i − b.

The lower plot shows, to the contrary, the maximal violation of the
tightened coupling constraint (4.16) over the iterations. Notice that

x
[λ[ρ]]
i , i ∈ N , does not satisfy the tightened coupling constraint (4.16)

for the first 100 iterations by applying Algorithm 4.1, but has already
satisfied the original one (4.8) for ρ = 11, i.e., the tightened constraint
has to be assessed as overly conservative.
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J(xnew) are smaller than J(xf ), the xnew is found to be a candidate of (4.7) better
than xf , and Algorithm 4.1 terminates (but the whole improvement process does
not terminate yet, see the overall Algorithm 4.2 in the coming sections). Thus,
the objective to improve xf is realized before x̄∗,f has converged by the additional
solution of (4.23), leading to a significant reduction of the computation time, as will
be shown later.

It is remarked that the satisfaction of the conditions in line 8 of Algorithm 4.1 is
not guaranteed in general. However, the probability that the conditions are satisfied
rises with increasing ρ: since the multiplier λ[ρ] converges towards its optimal value

λ̄∗,f for ρ → ∞, the primal variable x
[λ[ρ]]
i , i ∈ N , will eventually differ in at

most m + 1 subsystems from x̄∗,f according to Theorem 4.3. In addition, as x̄∗,f

also satisfies the tightened coupling constraint (4.16) and leads to low global costs

according to Lemma 4.1, the x
[λ[ρ]]
i , i ∈ N , thus also tend to satisfy the tightened

coupling constraint (4.16) (and thus the original one (4.8)) and attain low global
costs for ρ → ∞.

At last, the solution of the LP problem (4.23) can be carried out in a centralized
fashion (e.g. by a central coordinator), since the required computational effort is
negligible compared to the MILP problem (4.7), given that only

∑
i∈N

ri real variables

are involved.

4.1.2. Further Improvement of the Solution Candidate

As mentioned in the last section, the conditions in line 8 of Algorithm 4.1 may never
be satisfied throughout the iterations. In this case, no feasible candidate better than
xf is found by the algorithm, and it terminates after x̄∗,f is converged. Then, a set
of |N1| ≥ ns − m − 1 subsystems can be determined according to Theorem 4.2, so

that for i ∈ N1 the local solution x̄∗,f
i (as contained in x̄∗,f) also satisfies Xi. At

this stage, in order to determine a feasible candidate for the solution of (4.7) being
close to x̄∗,f (thus better than xf ), the following problem is set up for the remaining
|N2| ≤ m + 1 subsystems:

min
xi,∀i∈N2

∑
i∈N2

cT
i xi (4.27)

s.t.:
∑

i∈N2

Aixi ≤ b −
∑

i∈N1

Aix̄
∗,f
i ; (4.28)

xi ∈ Xi, xi ∈ R
ri × Z

zi, i ∈ N2. (4.29)

The solution of (4.27) aims at recovering the local feasibility xi ∈ Xi of the remain-
ing |N2| subsystems (through constraint (4.29)), while the feasibility of the original
coupling constraint (4.8) is maintained (through constraint (4.28)). Note that a
new feasible candidate of (4.7) can be determined if problem (4.27) has a feasible
solution. In this case, let the optimized solution of (4.27) be denoted by x∗,rec

i ,
i ∈ N2, and a new candidate of (4.7) be denoted by xnew = [xnew

1 ; · · · ; xnew
ns

], where
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xnew
i := x̄∗,f

i , ∀i ∈ N1 and xnew
i := x∗,rec

i , ∀i ∈ N2. Then, if J(xnew) attains lower
global costs than J(xf ), the xnew constitutes a candidate of (4.7) better than xf .

However, the feasibility of problem (4.27) can not be guaranteed in general either,
in most cases due to the violation of (4.28). But the following facts indicate that
the existence of a feasible solution to (4.27) is likely:

1. Due to |N2| 
 |N1| (since m 
 ns), only a small fraction of the ns subsystems
need to re-select their local share of x̄∗,f . This implies that the left-hand side
of the coupling constraint (4.8), i.e.,

∑
i∈N

Aixi =
∑

i∈N1

Aixi +
∑

i∈N2

Aixi, will not

deviate much from
∑

i∈N
Aix̄

∗,f
i , after the |N2| subsystems have re-selected their

local candidates in (4.27);

2. For the new local candidates of the |N2| subsystems, the left-hand side of the
coupling constraint (4.8) only has to be smaller than b instead of bf in (4.28)

(since
∑

i∈N
Aix̄

∗,f
i ≤ bf ≤ b applies according to (4.19)).

Anyhow, if (4.27) has no feasible solution, or J(xnew) < J(xf ) fails to hold, no
improvement can be obtained for xf by the proposed method. Then, the maxi-
mal difference between J(xf ) and the globally optimal costs J(x∗) of (4.7) can be
assessed by the following criteria:

Lemma 4.2. For given xf , the difference between J(xf) and J(x∗) is bounded by:

J(xf ) − J(x∗) ≤ J(xf) − J(x̄∗,f ) + λ̄∗,f,T (b − bf). (4.30)

Proof. According to the relations listed in Lemma 4.1 the following applies:

J(xf ) − J(x∗) ≤ J(xf) − J(x̄∗) = J(xf ) − J(x̄∗,f ) + J(x̄∗,f ) − J(x̄∗). (4.31)

As the LP problem (4.19) is transformed into (4.11) by perturbing the dualized
constraints according to (4.17), the difference between their optimal costs are thus
bounded by:

J(x̄∗,f ) − J(x̄∗) ≤ λ̄∗,f,T (b − bf). (4.32)

See Chapter 5.6 in [36] for a detailed explanation of this inequality. By substituting
inequality (4.32) into (4.31), the relation (4.30) is obtained.

As λ̄∗,f and x̄∗,f have been both determined through Algorithm 4.1, the value of
the right-hand side of (4.30) can be directly calculated, which gives an upper bound
of the performance loss of xf compared to the global optimum x∗.
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4.1.3. The Overall Solution-Improvement Procedure

As the last two paragraphs have explained, a better candidate xnew can be ob-
tained by different mechanisms, and Algorithm 4.2 shows how these mechanisms
are combined to an overall procedure. This procedure does not require conservative
assumptions as established in previous work, i.e. the applicability of the proposed
method is significantly enhanced. Note that, in the best case for the computation
time, xnew is found when the conditions in line 8 of Algorithm 4.1 are satisfied for
the first time. Then, Algorithm 4.1 does not have to be executed until the pri-
mal/dual optimum is reached. If these conditions are not satisfied in any iteration
of Algorithm 4.1, xnew is determined by solving (4.27). Only if no feasible solution
exists for (4.27) either, or the relation J(xnew) < J(xf) fails to hold, no candidate
better than xf is found, and the performance loss of xf compared to x∗ is checked
by use of (4.30).

Finally, if a better candidate xnew is found, the value of xf is then set equal to
xnew, and the whole computation procedure, starting from line 2 in Algorithm 4.2,
is carried out once more. This scheme enables further improvement of the solution
candidate, as the properties established in Lemma 4.1 are valid for any candidate

1: Initialization: xf , flag = 0;
2: while flag = 0 do
3: determine coupling constraint (4.16) with xf

4: formulate (4.18), (4.19) and (4.20) with (4.16)
5: run Algorithm 4.1 and:
6: if the conditions in line 8 of Algorithm 4.1 are satisfied before ρmax is reached

then
7: a better candidate xnew is found and set:

xf := xnew

8: else
9: solve (4.27)

10: if a feasible candidate xnew exists for (4.27) and if it satisfies: J(xnew) <
J(xf ) then

11: set: xf := xnew

12: else
13: flag = 1 and an upper bound of the performance loss can be evaluated

according to (4.30)
14: end if
15: end if
16: end while

Algorithm 4.2.: The overall improvement procedure.
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xf , no matter how near it is located to the global optimum x∗. The whole procedure
stops if no improvement is found after one repetition in Algorithm 4.2, or an upper
bound on the computation time is reached.

4.1.4. Numerical Examples

In this section, the proposed distributed solution was tested for various MILP prob-
lems (4.7) of different size. The local cost function ci, local constraints Xi, and
the coupling constraints (4.8) are randomly generated in each test, while instances
without feasible solutions are discarded. In addition, no assumption on Aixi ≥ 0,
∀xi ∈ Xi, ∀i ∈ N is imposed, as done in [162], nor is any feasibility assumption
used for the tightened problem, as in [161].

In the first test instance, a number of ns = 40 subsystems was considered, each
with zi = ri = 15 integer and real variables. The number of coupling constraints
was m = 5. For comparison purposes, the centralized solution of this problem,
which involves in total 600 integer variables, was found in 336 seconds by using
the solver CPLEX [48] on a 3.4GHZ processor, and the optimal cost was J(x∗) =
−2.17 · 105. However, the first feasible candidate was determined already after only
3.34 seconds, but with a cost of J(xf ) = −211.92. By employing the proposed
distributed solution to improve xf , a better candidate xnew,1 was found after only 6
iterations in Algorithm 4.1 (0.35 seconds), with a cost of J(xnew,1) = −2.14 ·105, i.e.
a performance loss of only 1.13% compared to J(x∗). Then, starting from xnew,1

and executing a further iteration of Algorithm 4.2, an even better candidate xnew,2

with J(xnew,2) = −2.16 · 105 was found after only 5 iterations in Algorithm 4.1
(which is embedded in Algorithm 4.2), taking 0.48 seconds. In this iteration, the
performance loss was further reduced to 0.46%. Thereafter, no further improvement
could be made.

For a larger problem instance with ns = 80 subsystems, each with zi = ri = 25
integer and real variables (leading to overall 2000 integer variables in the centralized
problem), and with m = 8 coupling constraints, the global optimum could not be
found by centralized solution within one hour using CPLEX, but it only took 77
seconds to find the first feasible candidate xf with J(xf ) = −2.32·103. The proposed
method then generated a better candidate xnew,1 with J(xnew,1) = −6.04 · 105 after
6 iterations (6.27 seconds) in Algorithm 4.1. By employing a further iteration of
Algorithm 4.2 for xnew,1, an even better candidate xnew,2 was found after 7 iterations
in Algorithm 4.1 (in 9.06 seconds) and with J(xnew,2) = −6.07 · 105. Further
improvements were not found, but the difference between J(xnew,2) and J(x∗) was
bounded by:

J(xnew,2) − J(x∗) ≤ 0.034 · 105 (4.33)

according to (4.30). Thus, although it is hard to compute the optimal cost J(x∗)
due to the high computational complexity, one can still ensure at most 0.55% per-
formance loss for J(xnew,2) through (4.33).
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Table 4.1.: Numerical experiments for different MILP problems with T indicating
the time required for the solution of xf , xnew,1 and x∗, while J(x∗) = −
indicates that the global optimum was not found within given time limit.

N , zi/ri m T
x

f J(xf) T
x

new,1 J(xnew,1) Tx
∗ J(x∗)

10, 10 3 0.20sec 335 0.11sec −3.27 ·
104

12.23sec −3.40 ·
104

10, 40 3 4.99sec 2.89 ·
103

2.37sec −1.05 ·
105

>
20min

−

20, 10 4 0.53sec −680 0.18sec −8.29 ·
104

3.59sec −8.29 ·
104

20, 30 4 4.43sec −2.04 ·
103

0.76sec −1.37 ·
105

>
20min

−

40, 10 6 1.28sec −1.65 ·
103

0.39sec −1.67 ·
105

67.97sec −1.68 ·
105

40, 20 8 11.58sec 4.66 ·
103

1.98sec −2.53 ·
105

>
20min

−

80, 5 5 0.62sec 5.93 ·
103

0.18sec −1.93 ·
105

3.47sec −2.01 ·
105

80, 8 7 1.36sec −1.80 ·
103

0.59sec −2.50 ·
105

416sec −2.59 ·
105

160, 4 8 0.60sec 3.00 ·
103

0.10sec −2.28 ·
105

21.40sec −3.23 ·
105

160, 20 8 65sec 394 2.52sec −6.00 ·
105

>
20min

−

200, 5 9 2.70sec −5.58 ·
103

0.22sec −3.21 ·
105

72sec −5.03 ·
105

300, 20 15 231sec −1.85 ·
103

18sec −8.19 ·
105

>
20min

−

500, 10 10 23sec 9.26 ·
103

26sec −2.01 ·
106

>
20min

−

In the third test instance, a number of ns = 200 subsystems was considered, and
zi = ri = 10, m = 12. The global optimum could again not be found by centralized
computation within one hour, but the first feasible candidate xf with J(xf) =
−1.69 · 104 was obtained in only 7.23 seconds. The proposed method produced a
better candidate xnew,1 with J(xnew,1) = −7.57 · 105 after 2.09 seconds. No better
candidate was found afterwards, and the maximal performance loss compared to
J(x∗) was bounded by 3.56% according to (4.30).

The tests above have shown that the proposed method in all cases achieves drastic
improvement of xf within a very short computation time (in particular with the
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first iteration of Algorithm 4.2). The obtained candidates attain global costs that
are only slightly worse than the global optima. Even for the case that the global
optimum cannot be determined in centralized fashion due to the high complexity
of (4.7), the bound defined in (4.30) still enables one to evaluate the obtained
candidate. A set of additional tests is listed in Table 4.1.

4.2. Efficient Distributed Solution for MIQP
Problems

In the last section, the focus was put on the distributed solution of MILP prob-
lems. However, a quadratic cost function is more often applied in optimal control
problems, especially in Model Predictive Control (MPC) problems. Thus, an MIQP
problem arises with a form of:

min
x1,··· ,xns

∑
i∈N

xT
i Qixi + cT

i xi (4.34)

s.t.:
∑
i∈N

Aixi ≤ b;

xi ∈ Xi, xi ∈ R
ri × Z

zi, i ∈ N.

Recall that Problems 2.2, 2.3 and 3.5, which appeared in previous chapters, are all
with quadratic cost functions. Here it is assumed that the matrix Qi being positive-
definite and diagonal, while the other notation shares the same meaning as in (4.7).
For this problem, however, it has to be noticed that the distributed solution of the
MILP problem (4.7) cannot be applied here. This is because Theorem 4.2 does
not hold if the cost function is quadratic: Note for the proof of Theorem 4.2, the
following two sets:

Si :=

{
si ∈ R

m+1

∣∣∣∣∣ si =

[
Ji(xi)
Aixi

]
, xi ∈ Xi

}
(4.35)

and:

S̃i :=

{
si ∈ R

m+1

∣∣∣∣∣ si =

[
Ji(xi)
Aixi

]
, xi ∈ Conv(Xi)

}
(4.36)

are required to satisfy the relation:

Conv(Si) = S̃i. (4.37)

Here, the vector
[
Ji(xi) Aixi

]T
is usually referred to as the „cost-constraint” pair

according to [24]. Apparently, when the cost function is linear, i.e., Ji(xi) = cT
i xi,

the relation in (4.37) is satisfied due to the linear mapping from xi to si =

[
cT

i xi

Aixi

]
.
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However, if the cost function Ji(xi) is quadratic, as the one in (4.34), the relation
in (4.37) is no longer guaranteed to hold. As a result, Theorem 4.2 does not apply
to the MIQP problem (4.34) in general.

Notice that not many studies on the distributed solution of MIQP problems can
be found in the literature, although this kind of problem appears in many domains:
In [71], a distributed control strategy for coupled PWA systems was proposed, but
the quality of the obtained local optima (i.e. its deviation from the global optimum)
is not discussed there. In [63], a distributed computation process was proposed, in
which a lower and upper value bound of the MIQP problem were determined, but
feasibility was not thoroughly investigated there. In addition, the integer variables
there are also limited to binary ones. In [34], a distributed MPC algorithm for
networked hybrid systems was proposed, which indirectly solved an MIQP prob-
lem. However, the method is limited to a specific class of hybrid systems, leading
to a special structure of the MIQP problem and allowing only for a small number
of subsystems. In the more recent work [155], the alternating direction method of
multipliers (ADMM [35]), which is typically applied to the distributed solution of
convex optimization problems, is embedded into the distributed solution process
of MIQP problems. However, only an approximated solution (without feasibility
guarantee) can be obtained and heuristic steps are required in this work. In [153],
the authors considered the distributed solution of MIP problems with convex cost
function. There, the subsystems are coupled by a common cost function (leading
to a mixed-integer consensus problem), and a method called the „projected sub-
gradient algorithm” [4] for convex programs is adopted to the mixed-integer case.

Given the fact that the distributed solution of the MILP problem (4.7) cannot
be extended to the MIQP problem (4.34) (despite the similar structure), a novel
multi-stage distributed solution is proposed here for the latter problem. The solu-
tion process again starts from a feasible candidate xf = [xf

1 ; · · · ; xf
ns

] (Note that
the feasible candidate of (4.7) is also feasible for (4.34), since both problems share
the same solution space). Different methods are then proposed to improve xf suc-
cessively. In particular, the improvement of xf is carried out in a distributed form
and in different stages, using the following statements on the optimal condition of
problem (4.34):

• Condition 1: if xf is the global optimum of (4.34), then no subsystem can
unilaterally reduce its local costs without changing the solution of the other
subsystems;

• Condition 2: if xf is the global optimum of (4.34), then by fixing the integer
part of xf and re-optimizing the real part, the global costs of xf cannot be
reduced;

• Condition 3: if xf is the global optimum of (4.34), then no such increment
vector Δx exists, that xf + Δx is feasible for (4.34) and leads to lower global
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costs than xf .

Using these statements, the distributed solution of (4.34) is realized by employing
three different stages to improve xf , and moves from one stage to the next if the
associated terminal condition is satisfied. The feasibility of the candidates generated
over the stages is ensured in this method, as well as the continuous reduction of the
global costs. For the candidate obtained in the last stage, the solution process will
start from stage one once more, in order to realize further improvement (similar
to the scheme in Algorithm 4.2). The whole process terminates when no better
candidate is found in any stage, leading often to only moderate optimality gaps.

4.2.1. The Three-Stage Distributed Solution

Similar to the MILP problem (4.7), it is further assumed that the relation m 
 ns

applies in (4.34), i.e., the number of subsystems is much larger than the one of
the coupling constraints. In addition, Ji(xi) = xT

i Qixi + cT
i xi is used to denote

the local costs of subsystem i and J(x) =
∑

i∈N
Ji(xi) for the global costs of the

global candidate x. The optimal solution of (4.34) is denoted by x∗ = [x∗
1; · · · ; x∗

ns
]

together with the optimal costs J(x∗).

Stage One: Update of the Local Variables in xf

For a given feasible xf of (4.34), if this candidate still deviates from the global
optimum x∗, then some subsystems in N may3 be able to reduce their local costs
according to Condition 1. This is realized by fixing the candidate of other sub-
systems in xf , and re-select a local candidate by solving the following problem:

min
xi

Ji(xi) (4.38)

s.t.: Aixi ≤ b −
∑

j∈N/i

Ajx
f
j ;

xi ∈ Xi, xi ∈ R
ri × Z

zi.

Here, the symbol N/i denotes the set of subsystems in N without i. Note that, as
only local variables are involved in this problem, leading to a small-scale MIQP, its
solution is assumed to be tractable. In addition, the following properties of (4.38)
can be observed:

• The feasibility of (4.38) is always maintained.

• The optimal solution x̂i of (4.38) satisfies Ji(x̂i) ≤ Ji(x
f
i ).

3As Condition 1 only states a necessary optimal condition of (4.34), there may exist the case
that it is satisfied by some candidates other than the optimum.
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• By replacing the previous local candidate xf
i with the optimized one x̂i in xf ,

and keeping the local candidate of other subsystems unchanged, the updated
global candidate x̂f is still feasible for (4.34) and satisfies J(x̂f ) ≤ J(xf ).

The first property is based on the fact that xf
i itself is a feasible candidate of

(4.38). The second property follows from the fact that xf
i represents a feasible

candidate of (4.38), but not necessarily the optimal one. The third property is
a direct consequence of the first two properties, since the local costs of any other
subsystem in N/i are not changed.

Based on these properties, Algorithm 4.3 is proposed to improve the global can-
didate of (4.34) iteratively from xf , using an iteration counter ρ. In this algorithm,
the solution of the local problems (4.38) are carried out in parallel in each iteration.
In addition, the update scheme of x[ρ], in which only the subsystem with the largest
cost reduction is updated, guarantees the feasibility of x[ρ] over the iterations, as
well as the continuous reduction of the global costs. The algorithm terminates if no
subsystem is able to reduce its local costs in an iteration, i.e., if Condition 1 is
satisfied. The global candidate of (4.34) obtained in the terminal iteration is then
denoted by xS1 = [xS1

1 ; · · · ; xS1
ns

].
However, although the feasibility is ensured in each iteration of Algorithm 4.3, the

update scheme, that only one subsystem is permitted to improve its local solution,

1: Initialization: ρ = 0, feasible xf (known to all subsystems), x[ρ] := xf ;

2: while exists such a subsystem i ∈ N that Ji(x̂
[ρ]
i ) < Ji(x

[ρ]
i ) do

3: for all subsystem i ∈ N do
4: solve

x̂
[ρ]
i := arg min

xi

Ji(xi)

s.t.: Aixi ≤ b −
∑

j∈N/i

Ajx
[ρ]
j ;

xi ∈ Xi, xi ∈ R
ri × Z

zi.

5: broadcast optimized x̂
[ρ]
i as well as local cost reduction Ji(x̂

[ρ]
i ) − Ji(x

[ρ]
i ) to

all subsystems;
6: update the local solution for subsystem ĩ with the largest local cost reduc-

tion in x[ρ], and keep the solution of other subsystems unchanged;
7: end for
8: x[ρ+1] := x[ρ];
9: ρ := ρ + 1;

10: end while

Algorithm 4.3.: The distributed improvement process in stage one without central
coordinator C.
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1: Initialization: ρ = 0, feasible xf (known to all subsystems and the central
coordinator C), x[ρ] := xf ;

2: while exists such a subsystem i ∈ N that Ji(x̂
[ρ]
i ) < Ji(x

[ρ]
i ) do

3: for all subsystem i ∈ N do
4: solve

x̂
[ρ]
i := arg min

xi

Ji(xi)

s.t.: Aixi ≤ b −
∑

j∈N/i

Ajx
[ρ]
j ;

xi ∈ Xi, xi ∈ R
ri × Z

zi .

5: send optimized x̂
[ρ]
i as well as local cost reduction Ji(x̂

[ρ]
i ) − Ji(x

[ρ]
i ) to C;

6: end for
7: introduce a vector of binary variables r ∈ {0, 1}ns×1, and let C solve the

following problem:

min
r

ns∑
i=1

r(i) · (Ji(x̂
[ρ]
i ) − Ji(x

[ρ]
i )) (4.39)

s.t.: r ∈ {0, 1}ns×1,∑
i∈N

Ai(x
[ρ]
i + r(i) · (x̂

[ρ]
i − x

[ρ]
i )) ≤ b

8: if r∗ denotes the solution of (4.39), then replace x
[ρ]
i with x̂

[ρ]
i in x[ρ] for all

subsystems i ∈ {1, · · · , ns} with r∗(i) = 1;
9: x[ρ+1] := x[ρ];

10: ρ := ρ + 1;
11: end while

Algorithm 4.4.: The distributed improvement process in stage one with central co-
ordinator C.

may lead to only minor improvements of the global candidate in each iteration, i.e., a
slow convergence towards termination. Thus, in order to achieve faster convergence,
an alternative algorithm with a central coordinator C is proposed, which decides
upon a subset of subsystems (larger than one) for improving a part of the global
candidate in each iteration, see Algorithm 4.4.

In Algorithm 4.4, the local problems (4.38) are first solved in parallel for all
subsystems in each iteration. Then, the subsystems send their optimized solution
to the central coordinator C and let C decide who should update the local solution in
x[ρ] (major difference compared to Algorithm 4.3). The new optimization problem
(4.39) solved by C allows for a larger improvement comparing to Algorithm 4.3: for
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r(i) = 1, i.e., the i-th element of r equals to one, the relation:

x
[ρ]
i + r(i) · (x̂

[ρ]
i − x

[ρ]
i ) = x̂

[ρ]
i

applies, as well as:

r(i) · (Ji(x̂
[ρ]
i ) − Ji(x

[ρ]
i )) = Ji(x̂

[ρ]
i ) − Ji(x

[ρ]
i ).

This implies that the optimized solution of (4.38) is adopted for the global candidate
x[ρ], and the adoption also enables a reduction of the global cost. Otherwise, if

r(i) = 0, the relation x
[ρ]
i + r(i) · (x̂

[ρ]
i − x

[ρ]
i ) = x

[ρ]
i applies, together with r(i) ·

(Ji(x̂
[ρ]
i )−Ji(x

[ρ]
i )) = 0. In this case, the local subsystem i must preserve its previous

local solution x
[ρ]
i in x[ρ].

Accordingly, the solution of (4.39) aims at finding the best combination of pre-
vious and currently optimized solutions over the subsystems, i.e., more than one
subsystem is allowed to update its local solution within one iteration. As a result,
the global cost J(x[ρ]) is reduced maximally with respect to the outcome of the local
problems (4.38), while satisfying the coupling constraints. Note that only a number
of ns binary variables (but no real-valued decision variable) is involved in (4.39),
i.e., the problem constitutes an Integer Linear Programming (ILP) problem, which
can be solved in very short time for the size typically obtained for the instances
under study. Moreover, the feasibility of (4.39) can also be guaranteed, since the
choice r = 0ns×1 always establishes a feasible solution. Finally, it must be empha-
sized that both Algorithm 4.3) and 4.4) terminate when Condition 1 is satisfied,
and the global candidate of (4.34) obtained in the terminal iteration of Algorithm
4.4) is further denoted by xS1 = [xS1

1 ; · · · ; xS1
ns

]. Which algorithm should be used
during application depends on whether a central coordinator can be provided to the
distributed system.

Stage Two: Update of the Real Variables in xS1

Note that Condition 1 does not coincide with Condition 2 in general: the former
establishes a property of the local variables in the global optimum x∗, whereas the
latter describes a property of the global continuous variables in x∗. This differ-
ence indicates that the candidate xS1, satisfying Condition 1, may fail to satisfy
Condition 2 in case xS1 �= x∗. Accordingly, a method to decompose the real and
integer part of the candidate xS1, which has been similarly applied in Algorithm
4.1, is adopted here to improve the xS1.

First of all, the local candidate xS1
i in xS1, i ∈ N , is decomposed into the real

part xS1
i,r ∈ Rri and the integer part xS1

i,t ∈ Zzi, and the matrices Ai and Di are also
decomposed into Ai = [Ai,r, Ai,t] and Di = [Di,r, Di,t]. Then, by fixing the integer
part xS1

i,t , i ∈ N , and re-optimizing the real part in xS1, a global candidate with

lower costs may be obtained as long as xS1 �= x∗. This re-optimization procedure
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is realized by solving a QP problem:

min
x1,r,··· ,xns,r

∑
i∈N

Ji([xi,r, xS1
i,t ]) (4.40)

s.t.:
∑
i∈N

Ai,r · xi,r ≤ b −
∑
i∈N

Ai,t · xS1
i,t ; (4.41)

Di,r · xi,r ≤ di − Di,t · xS1
i,t , xi,r ∈ R

ri, i ∈ N. (4.42)

Note that the feasibility of (4.40) always holds, since xi,r := xS1
i,r , i ∈ N , is a feasible

one. For the optimized solution [xnew
1,r , · · · , xnew

ns,r] of (4.40), the relation

∑
i∈N

Ji([x
new
i,r ; xS1

i,t ]) ≤ J(xS1)

also applies according to Condition 2, which indicates that an improvement of
candidate xS1 is achieved. Most importantly, as (4.40) represents a convex QP
problem in the form of (4.2), its solution can be carried out in a distributed way
by using the Lagrangian-based dual method. Alternatively, as (4.40) represents a
QP problem only and the required computational effort is far less than the original
MIQP problem (4.34), one can also choose to solve (4.40) in a centralized fashion
if a central coordinator is provided. After the optimal solution xnew

i,r , i ∈ N , of

(4.40) is obtained, a better global candidate xS2 = [xS2
1 ; · · · ; xS2

ns
] is found, where

xS2
i = [xnew

i,r ; xS1
i,t ], i ∈ N .

Stage Three: Improve xS2 Through an MILP Problem

In the previous stages, the local mixed-integer variables of any subsystem are first
optimized in stage one, and the global real variables are further optimized in stage
two. For the xS2 obtained at the end of stage two, however, the global mixed-integer
variables have not yet been optimized simultaneously in any previous stage – this
may cause xS2 to still deviate from the global optimum x∗. Accordingly, an MILP
problem based on Condition 3 is constructed in this stage, in order to improve all
variables in xS2 simultaneously. This MILP problem takes a similar form as (4.7),
so that the distributed solution developed for the latter problem in Section 4.1 can
be applied to accelerate the computation in this stage.

First of all, the global cost function in (4.34) is rewritten into: J(x) = xTQx +
CTx, where Q = Diag(Q1, · · · , Qns) and C = [c1; · · · ; cns ]. Then, the increment
vector Δx∗, which denotes the difference between x∗ and xS2, can be determined
by:

Δx∗ := arg min
Δx=[Δx1;··· ;Δxns ]

J(xS2 + Δx) − J(xS2) (4.43)

s.t.:
∑
i∈N

AiΔxi ≤ b −
∑
i∈N

Aix
S2
i ; (4.44)

DiΔxi ≤ di − Dix
S2
i , Δxi ∈ R

ri × Z
zi, i ∈ N. (4.45)
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Note that (4.43) still represents an MIQP problem, since its cost function can be

reformulated into: ΔxTQΔx+f(xS2)Δx with f(xS2) := 2xS2T
Q+CT. In addition,

the number of variables involved in (4.43) is also the same as in the original problem
(4.34), i.e., the two problems share the same complexity class. This makes the direct
computation of Δx∗ impossible, and an approximation strategy is used in the sequel
to solve (4.43).

In the first step of the approximation, only the linear term f(xS2)Δx is left to be
minimized in (4.43). This is because the condition:

ΔxTQΔx + f(xS2)Δx ≤ 0 (4.46)

must be satisfied for Δx∗, as J(xS2 + Δx) must attain lower or the same global
costs than or as J(xS2). Then, as the matrix Q is positive-definite, the linear term
f(xS2)Δx in (4.46) thus must be negative and dominate the quadratic term, in
order to fulfill this inequality. This explains why only minimizing the linear term
f(xS2)Δx is a meaningful approach.

However, by only taking the linear term into account in (4.43), the obtained Δx
minimizing f(xS2)Δx may eventually fail to satisfy the inequality in (4.46) (and
thus fails to reduce the global costs). Hence, an additional constraint Δx ∈ εS2

Δx
has

to be added to the problem in (4.43), where εS2
Δx

denotes a mixed-integer ellipsoidal
set of Δx:

εS2
Δx

= {Δxi ∈ R
ri × Z

zi, i ∈ N | (4.47)

(Δx +
1

2
f(xS2)Q−1)T 4Q

f(xS2)Q−1f(xS2)T
(Δx +

1

2
f(xS2)Q−1) ≤ 1}.

Note that this ellipsoidal set describes exactly the same feasible space as in (4.46),
and thus for any Δx selected from set εS2

Δx
, the inequality in (4.46) is always satis-

fied. Now, by only minimizing the linear term f(xS2)Δx and taking the additional
constraint Δx ∈ εS2

Δx
into account, the problem (4.43) is cast into:

Δx̃ := arg min
Δx=[Δx1;··· ;Δxns ]

f(xS2)Δx (4.48)

s.t.:
∑
i∈N

AiΔxi ≤ b −
∑
i∈N

Aix
S2
i ; (4.49)

DiΔxi ≤ di − Dix
S2
i , Δxi ∈ R

ri × Z
zi, i ∈ N ; (4.50)

Δx ∈ εS2
Δx

. (4.51)

For the new optimal solution Δx̃ resulting from problem (4.48), which is an ap-
proximation of Δx∗, the feasibility of the new global candidate xS2 +Δx̃ is ensured
by (4.49) and (4.50), as well as the global costs reduction by (4.51).

However, although the cost function in (4.48) is linear, its solution process is still
quite complicated because of the quadratic constraint (4.51). An intuitive approach
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to address this problem is to approximate (4.51) by a linear one. Following this line,
one can use a mixed-integer polyhedral set P S2

Δx
, where:

P S2
Δx

= {Δxi ∈ R
ri × Z

zi, i ∈ N | DinΔx ≤ din}

inner-approximates the ellipsoidal set εS2
Δx

. By temporarily neglecting the explicit
value of Din and din in P S2

Δx
, but simply assuming that P S2

Δx
⊆ εS2

Δx
applies, an MILP

problem in a similar form to (4.7) can be obtained to approximate problem (4.48):

Δx̃ := arg min
Δx=[Δx1;··· ;Δxns ]

f(xS2)Δx (4.52)

s.t.:
∑
i∈N

AiΔxi ≤ b −
∑
i∈N

Aix
S2
i ; (4.53)

DiΔxi ≤ di − Dix
S2
i , Δxi ∈ R

ri × Z
zi, i ∈ N ; (4.54)

Δx ∈ P S2
Δx

. (4.55)

Here, (4.53) and (4.55) are the coupling constraints and (4.54) is the local one.
According to the discussion in the last section, one knows that for MILP problems
in this structure, the Shapley-Folkman-Starr theorem can be applied to guide the
distributed solution. This theorem, however, also requires the number of coupling
constraints in the MILP problem be much smaller than the subsystems. Back to
the problem (4.52), the number of coupling constraints is m + τ , where m is the
dimension of vector b (given, known as m 
 ns) and τ is the dimension of vector
din. For the value of τ , if P S2

Δx
is a full-dimensional polytope, then it has at least∑

i∈N
(ri+zi+1) facets, which means τ >

∑
i∈N

(ri+zi) must apply. Hence, the number of

coupling constraints in (4.52) is much larger than ns, and this causes the distributed
solution based on the Shapley-Folkman-Starr theorem be not applicable here.

Nevertheless, the number of coupling constraints in problem (4.52) can indeed be
reduced if a certain polyhedral set is adopted to inner-approximate εS2

Δx
. In detail,

the new polyhedral set P S2,rec
Δx

is defined by:

P S2,rec
Δx

:= {Δxi ∈ R
ri × Z

zi, i ∈ N | (4.56)

min{0, f(xS2)Q−1(j))} ≤ Δx(j) ≤ max{0, f(xS2)Q−1(j)}, j ∈ {1, · · · ,
∑
i∈N

ri + zi}},

which is a mixed-integer hyperrectangular set with points 0 and −f(xS2)Q−1 as a
pair of vertices located opposite to each other. In addition, these two vertices also
locate on the hull of εS2

Δx
.

Proposition 4.1. The hyperrectangular set P S2,rec
Δx

is contained in εS2
Δx

.

Proof. According to the definition of P S2,rec
Δx

, a diagonal matrix

A = Diag(α(1), · · · , α(
∑
i∈N

ri + zi)), α(j) ∈ [0, 1], ∀j ∈ {1, · · · ,
∑
i∈N

ri + zi}
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always exists for any Δx ∈ P S2,rec
Δx

, so that the equation

Δx = A · (−f(xS2)Q−1)

applies. By substituting this equation into the left hand side of the inequality in
(4.47), one writes:

h := (f(xS2)Q−1)T (Diag(1
2 · · · 1

2) − A) · 4Q · (Diag(1
2 · · · 1

2) − A)

f(xS2)Q−1f(xS2)T
(f(xS2)Q−1).

(4.57)

Then, as αj ∈ [0, 1] holds for all j ∈ {1, · · · ,
∑

i∈N
ri + zi} in matrix A, the following

relation thus applies:

∣∣∣∣∣Diag(
1

2
· · ·

1

2
) − A

∣∣∣∣∣ ≤ Diag(
1

2
· · ·

1

2
), (4.58)

which enables one to determine an upper value bound of (4.57) by:

h ≤
(f(xS2)Q−1)TQ(f(xS2)Q−1)

f(xS2)Q−1f(xS2)T
= 1. (4.59)

Thus, for any Δx selected from P S2,rec
Δx

, it must also be located in εS2
Δx

.

In Fig. 4.5, an exemplary ellipsoidal set εS2
Δx

and the associated hyperrectangular

set P S2,rec
Δx

are illustrated.

Remark 4.1. Note that the size of P S2,rec
Δx

may be smaller than the other polyhedral
sets used to inner-approximate εS2

Δx
. This shortage, as will be shown later, may only

lead to a minor improvement of candidate xS2 in the later program, but will not
cause infeasible problems.

By replacing P S2
Δx

with P S2,rec
Δx

in (4.52), the new problem is obtained:

Δx̃ := arg min
Δx=[Δx1;··· ;Δxns ]

f(xS2)Δx (4.60)

s.t.:
∑
i∈N

AiΔxi ≤ b −
∑
i∈N

Aix
S2
i ; (4.61)

DiΔxi ≤ di − Dix
S2
i , Δxi ∈ R

ri × Z
zi, i ∈ N ; (4.62)

Δx ∈ P S2,rec
Δx

. (4.63)

For the new constrained set P S2,rec
Δx

, apart from being contained in εS2
Δx

, the normal

vector of each facet j of P S2,rec
Δx

is also orthogonal to any axis besides j of the
coordinate system. This fact implies that the constraint (4.63) constitutes local

constraints, since each dimension of P S2,rec
Δx

is bounded separately. As a result, only
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0

−f(xS2)Q−1

Figure 4.5.: Hyperrectangular set P S2,rec
Δx

(marked in red) is contained in εS2
Δx

, and
the normal vector of each facet j ∈ {1, · · · ,

∑
i∈N

ri + zi} points into

direction of one axis of the coordinate system.

m coupling constraints arise in (4.60), which enables one to employ the distributed
solution based on the Shapley-Folkman-Starr theorem. Note that the feasibility
of this problem is guaranteed as Δx = 0 is a feasible option, and the global cost
reduction for xS2 + Δx̃ is also ensured (if xS2 does not equal the global optimum)
according to constraint (4.63). For the distributed solution of the MILP problem
(4.60), one can either adopt the method introduced in [162, 60, 43, 161, 44], or the
one in Algorithm 4.2.

Finally, a new global candidate xS3 := xS2 + Δx̂ is determined through the
solution4 of (4.60). For the new candidate xS3, however, it may fail to satisfy the
Conditions 1 and 2 due to the increment Δx̂. This fact enables one to re-use these
two conditions to further improve xS3. The overall improvement process starting
from xf is summarized in Algorithm 4.5, and this algorithm terminates when no
further improvement is found in any stage.

The Application Order of the Different Stages

Since all three stages in Algorithm 4.5 are capable to improve the candidate of
(4.34), their application order becomes crucial for a fast convergence of the algo-
rithm. However, the NP-hard nature of MIP problems makes it hard to discuss, in

4By applying the distributed solution based on the Shapley-Folkman-Starr theorem, one may
only obtain a sub-optimal solution of (4.60) according to [162, 161], but with feasibility and
bounded performance loss guaranty. This is why the notion Δx̂ is adopted to denote the
outcome of (4.60), instead of Δx̃.

127



4. Distributed Control of CPS with Coupling Constraints

1: Initialization: xf , q = 0, x[q] := xf ;
2: while J(x[q−1]) − J(x[q]) > 0 do
3: Stage one:
4: run Algorithm 4.3 or 4.4, and obtain xS1,[q];
5: Stage two:
6: solve the QP problem (4.40) (distributed or centralized), and obtain xS2,[q];
7: Stage three:
8: solve the MILP problem (4.60) (distributed), and obtain xS3,[q];
9: set x[q+1] := xS3,[q];

10: q := q + 1;
11: end while

Algorithm 4.5.: The overall algorithm for MIQP problem (4.34).

general, the convergence rate analytically.

Empirically, the computation in stage one leads to a faster convergence if the
coupling strength is low, i.e., if only a few coupling constraints are active. Then,
the coupling constraint in problem (4.38) will not cause a significant reduction of
the local feasible space Xi in problem (4.38). Accordingly, each local subsystem
only has to slightly deviate from its local optimum (by minimizing Ji and subject
to the local constraint), in order to meet the coupling constraint. As a result, the
subsystems can quickly approach their local optimum, and thus quickly reduce the
global costs.

The computation in stage two can realize a faster convergence if the integer vari-
ables in (4.40) play a minor role (for both cost function and constraints) compared
to the continuous variables. In this case, no matter which value the integer variables
in problem (4.40) take, the optimal costs of (4.40) will not differ much from each
other. In other words, the original MIQP problem (4.34) is very similar to a QP
problem, since the continuous variables are most relevant for both the feasibility
and optimality in the former problem. Accordingly, by minimizing the continuous
variables first, a faster convergence would be achieved in this case.

To start by solving problem (4.60) in stage three is not recommended. This is
because, on the one hand, the original space εS2

Δx
may be considerably reduced by

using the inner-approximation P S2,rec
Δx

. On the other hand, the distributed solution
based on the Shapley-Folkman-Starr theorem may also only lead to a sub-optimum
of the problem instead of the global optimum. All these facts imply that only a
minor improvement may be achieved in stage three, and thus leads to slow conver-
gence. Nevertheless, the solution of (4.60) provides the only chance to update all
variables simultaneously in Algorithm 4.5. This fact is especially useful if a „bug”
candidate satisfying both Conditions 1 and 2 is found. In this case, although
the global costs may not be significantly reduced by solving this problem, a slight
improvement may help one to get rid of this candidate, and thus, let the first two
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conditions be applied hereafter to realize further improvements.

4.2.2. Evaluation of the Performance

For the outcome of Algorithm 4.5, denoted by xL, the performance loss compared
to x∗ is evaluated in this section. As it is impossible to directly compute the value
of J(x∗) due to the high complexity (which was the motivation for the distributed
scheme), an upper bound of J(xL) − J(x∗) is derived here.

First, as the problem (4.60) is always feasible, the termination of Algorithm 4.5
thus implies that Δx = 0 must be its only feasible solution. Otherwise, a candidate
better than xL would be found. The following fact can thus be established:

Corollary 4.1. For a given xL, there exists no Δx ∈ P L,rec
Δx

, Δx �= 0, so that
xL + Δx is feasible for problem (4.34).

Then, for a selected value β ∈ R≤0, if a Δx enables a cost reduction J(xL +Δx)−
J(xL) ≤ β, it must satisfy:

ΔxTQΔx + f(xL)Δx ≤ β, (4.64)

where f(xL) = 2xLT
Q + CT, according to (4.46). Similar to (4.47), this condition

also determines a mixed-integer ellipsoidal set εL,β
Δx

of Δx:

εL,β
Δx

= {Δxi ∈ R
ri × Z

zi, i ∈ N | (4.65)

(Δx +
1

2
f(xL)Q−1)T 4Q

4β + f(xL)Q−1f(xL)T
(Δx +

1

2
f(xL)Q−1) ≤ 1}.

The length of each axis of εL,β
Δx

is determined by β, and by varying the value of β,

a new ellipsoidal εL,β
Δx

, being contained in the hyperrectangular set P L,rec
Δx

, can be

determined. For all εL,β
Δx

contained in P L,rec
Δx

, the one with the largest size, i.e., the
largest feasible value of β is given by:

β∗ = min
j∈{1,··· ,

∑
i∈N

ri+zi}

((f(xL)Q−1)(j))2Q(j, j) − f(xL)Q−1f(xL)T

4
. (4.66)

The value of β∗ is determined according to the fact that the sets εL,β
Δx

and P L,rec
Δx

share
the same center −1

2f(xS2)Q−1 and rotation (since matrix Q is diagonal). Thus, the
relation

εL,β
Δx

⊆ P L,rec
Δx

applies, as long as each axis of εL,β
Δx

is shorter than the edge of P L,rec
Δx

. By formulating
this requirement into the following constraint of β using (4.65):

2 · (
4Q(j, j)

4β + f(xL)Q−1f(xL)T
)− 1

2 ≤ |(f(xL)Q−1)(j)|, ∀j ∈ {1, · · · ,
∑
i∈N

ri + zi},

(4.67)
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which is equivalent to:

β ≤
((f(xL)Q−1)(j))2Q(j, j) − f(xL)Q−1f(xL)T

4
, ∀j ∈ {1, · · · ,

∑
i∈N

ri + zi}. (4.68)

The largest β∗ supporting the relation εL,β
Δx

⊆ P L,rec
Δx

can thus be determined by
(4.66), also see the example in Fig. 4.6.

Now, based on the relation εL,β∗

Δx
⊆ P L,rec

Δx
, the Corollary (4.1) can be extended

to:

Corollary 4.2. For a given xL, there exists no Δx ∈ εL,β∗

Δx
, Δx �= 0, so that xL+Δx

is feasible for problem (4.34).

This corollary implies that, in case x∗ �= xL, the difference vector Δx∗ = x∗ − xL

must be located somewhere outside of εL,β∗

Δx
. Otherwise, Corollary 4.2 would be

violated. Thus, as εL,β∗

Δx
contains the set of Δx for which J(xL + Δx) − J(xL) ≤ β∗

applies, the following relation must hold:

J(xL + (x∗ − xL)) − J(xL) > β∗ =⇒ J(xL) − J(x∗) < −β∗ (4.69)

Hence, the performance loss of xL is bounded by −β∗.

εL,β=0
Δx

P L,rec
Δx

εL,β∗

Δx

0

−f(xL)Q−1

Figure 4.6.: The ellipsoidal set εL,β=0
Δx

is marked in blue and contains the set of Δx

for which J(xL + Δx) − J(xL) ≤ 0 applies; the rectangular set P L,rec
Δx

is

an inner-approximation of εL,β=0
Δx

determined by (4.56); the ellipsoidal

set εL,β∗

Δx
for β∗ determined by (4.66) is marked in yellow and contains

the set of Δx for which J(xL + Δx) − J(xL) ≤ β∗ applies.
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4.2.3. Numerical Examples

In this section, the proposed distributed solution was tested for various MIQP prob-
lems of different sizes. The Qi and ci in the local cost functions, the local constraints
Xi, and the coupling constraints were randomly generated in each test, while the
infeasible instances were discarded.

In the first test, a number of ns = 20 subsystems was considered, each with
zi = ri = 3 integer and real variables. The number of coupling constraints was
chosen to m = 6. The centralized version of this problem for comparison purposes,
involves in total 60 integer variables and 60 real variables. Its solution was found
after 35 minutes with the optimal cost J(x∗) = 2.42 · 103 on a 3.4GHZ processor
using CPLEX. However, the first feasible candidate x[0] := xf was determined after
only 0.03 seconds, but with a cost of J(x[0]) = 7.57 · 103, i.e., almost three times
higher than the optimal one, see Fig. 4.7.

By employing Algorithm 4.5, the computation in stage one terminated after only
1.20 seconds, and the global cost was reduced to J(xS1,[0]) = 2.83 · 103. Then, the
computation in stage two was finished after 0.07 seconds, through which the global
cost was reduced to J(xS2,[0]) = 2.76 · 103. Thereafter, the global cost was further
reduced to J(xS3,[0]) = 2.57 · 103 in stage three within 0.16 seconds. Then, starting
from stage one once more with xS3,[0], the global cost was reduced to J(xS1,[1]) =
2.42·103 in 0.86 seconds, i.e., the global optimum was found and the whole algorithm
terminated after totally 2.37 seconds, see Fig. 4.7.

For a set of additional tests for more complicated MIQP problems (centralized
solution times longer than 20 minutes), the results are listed in Table 4.2.

J(x∗)

J(x[0])

J(xS1,[0])J(xS2,[0]) J(xS3,[0])

J(xS1,[1])

J(xS2,[1]) J(xS3,[1])

q

Figure 4.7.: The continuous reduction of global costs by employing Algorithm 4.5.
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Table 4.2.: Numerical experiments for different MIQP problems with T indicating
the time required for the solution of xf and xL.

N zi, ri m T
x

f J(xf ) T
x

L J(xL)

50 6 4 0.74 sec 4.48 · 105 9.34 sec 0.20 · 105

50 12 4 2.19 sec 4.45 · 104 4.02 sec 0.44 · 105

80 4 10 0.26 sec 2.51 · 104 5.99 sec 0.47 · 104

80 12 2 3.67 sec 7.03 · 104 17.43 sec 0.67 · 104

120 4 10 0.57 sec 3.89 · 104 6.91 sec 1.02 · 104

120 8 6 1.78 sec 4.86 · 104 7.34 sec 0.88 · 104

200 2 3 0.05 sec 1.17 · 105 22.09 sec 0.40 · 105

200 10 14 4.93 sec 1.48 · 105 16.60 sec 0.15 · 105

500 8 12 6.21 sec 3.75 · 105 16.41 sec 0.42 · 105

4.3. Case Study: Distributed Optimization for a
Narrow Passage Problem

In this section, a discrete time, point-to-set trajectory planning problem involving
ns = 7 autonomously driving vehicles is considered with quadratic cost function Ji

of each vehicle. Note that the number of coupling constraints in this example is
larger than the number of vehicles, thus only the Algorithm 4.3 and 4.4 are applied
here (these two algorithms are not limited to ns � m). Nevertheless, a satisfiable
suboptimal solution can already be obtained within very short time by applying
these algorithms.

For each vehicle i, the permitted state space is non-convex and consists of the
six rectangles (regions) 1© – 6© shown in Fig. 4.8. Note that this non-convex
state space equals to the union of the six rectangles (convex). Thus, according to
[96], by introducing one binary variable for each region in each discrete time k, the
non-convex state space can be reformulated into mixed-integer constraints for each
vehicle. For any vehicle i, the initial state is randomly assigned within the region
1© (see Fig. 4.9), and the target state is chosen to be located inside of region 6©.
All vehicles are assumed to share a common target region Xg (located in region 6©,
marked in green).

For simplicity, an identical double-integrator model is chosen here for the linear
discrete-time dynamics of each vehicle, but with different input sets and weighting
matrices in the local quadratic cost function. The coupling constraints are induced
by the limited width of the regions 2©, 4©, and 5© together with the following
constraining assumptions:

• in region 2©, at most two vehicles are allowed to be present for any time k;

• in region 4© and 5©, only one vehicle is allowed to be present for any k.
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�

�
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� �

Figure 4.8.: The non-convex state space consisting of 6 polytopes.

Xg

Figure 4.9.: State initialization for all vehicles within region 1©.

For a chosen horizon H = 40, the control goal is to compute a trajectory for
each vehicle which transfers it from the initial state to the target region Xg, while
taking the local constraints and the coupling constraints into account, and while

minimizing the global cost J =
ns∑

i=1
Ji. Note that the centralized problem (an MIQP

problem due to the binary variables and the quadratic local cost functions) can be
eventually formulated in the form of (4.34).

By using binary variables to encode the non-convex state space, a number of
7(ns) × 40(H) × 6(regions) = 1680 binary variables are needed for the centralized
problem (4.34). The centralized solution of this problem, which is still possible for
comparison purposes, requires a computation time of 432.18 sec by using the solver
CPLEX on a 3.4GHZ processor, and the optimal cost is J(x∗) = 2.445 · 106. In
contrast, the first feasible candidate xf of (4.34) is determined after only 1.12 sec,
but with a cost of J(xf ) = 6.553 · 106 (i.e., almost three times higher than J(x∗)).

Now, starting from the first feasible candidate xf , the distributed solution in Algo-
rithm 4.4 (in which a central coordinator is required) is employed. The termination
of this algorithm occurs after just 5 iterations, leading to cost upon termination of
J(xL) = 2.574 · 106, i.e., a performance loss of only 5.27% compared to J(x∗) is
attained. The computation time for each iteration is shown in Fig. 4.10 and varies
between 0.1 sec and 0.3 sec. The total computation time for the 5 iterations is
0.86 sec, and the course of the cost over the iterations is illustrated in Fig. 4.11.
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4. Distributed Control of CPS with Coupling Constraints

When applying Algorithm 4.3 (no central coordinator), an even better outcome is
obtained with J(xL) = 2.569 ·106 after 7 iterations within a total computation time
of 0.74 sec.

Obviously, the computation time has been significantly reduced by using the dis-
tributed solution and the performance loss is small. Most importantly, the feasibility
of the global candidate is maintained in each intermediate iteration, as well as a
continuous reduction of the cost is ensured. To give an impression of the trajectories
of the vehicles, their positions are shown for selected points of time in Fig. 4.15
– Fig. 4.22 as obtained by Algorithm 4.4. It can be seen from these plots that
the coupling constraints are satisfied and that all vehicles have reached the target
region at the end of the horizon.

In order to further evaluate the performance of the two algorithms for more
general cases, they have been applied to different instances of the problem with
ns = 2 to ns = 6 vehicles and each for 20 parameterizations (different initial position,
input and state constraints, weighting matrices) of the vehicles. Fig. 4.12 illustrates
the average performance loss obtained with the distributed strategy, compared to
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Figure 4.10.: Computation time over iterations for Algorithm 4.3 in red, and for 4.4
in blue.
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Figure 4.11.: The costs over the iterations ρ for Algorithm 4.3 in red, and for 4.4 in
blue.
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the globally optimal solution. Fig. 4.13 and 4.14 show the average computation time
and the average number of required iterations when applying the two algorithms.

Finally, for a larger problem instance with 14 vehicles, leading to overall 14×40×
6 = 3660 binary variables in the centralized problem, the global optimum could not
be found by centralized solution within 2 hours using CPLEX. However, it takes
only 11.58 sec to find the first feasible candidate. Then, by applying Algorithm 4.4
once more, a cost reduction from J(xf ) = 1.03 · 107 to J(xL) = 8.13 · 106 could be

Figure 4.12.: The average relative performance loss for different numbers of vehicles;
dark red for Algorithm 4.3 and light blue for 4.4.
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Figure 4.13.: The average computation time for different values of ns; pink for Al-
gorithm 4.3 and purple for 4.4.
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Figure 4.14.: Average number of required iterations until termination for different
values of ns; pink for Algorithm 4.3 and purple for 4.4.

achieved in only 4 iterations with a computation time of 0.40 sec.

Figure 4.15.: Positions of the vehicles for k = 6.

Figure 4.16.: Positions of the vehicles for k = 9.
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Figure 4.17.: Positions of the vehicles for k = 11.

Figure 4.18.: Positions of the vehicles for k = 13.

Figure 4.19.: Positions of the vehicles for k = 19.

Figure 4.20.: Positions of the vehicles for k = 22.
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Figure 4.21.: Positions of the vehicles for k = 26.

Figure 4.22.: Positions of the vehicles for k = 40.
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4.4. Summary and Discussion

This chapter addressed the task of distributed control for interleaving hybrid sys-
tems with coupled constraints. This type of coupled constraints arises in CPS when
the interaction among the subsystems cannot be cast into local constraints as in the
previous chapters. The discussion started by considering an MILP problem (4.7)
representing the centralized optimal control problem. A distributed solution was
proposed for (4.7) based on the Shapley-Folkman-Starr theorem, so that the central-
ized problem can be decomposed into a set of small-scale problems to be solved in
parallel. This approach reduces the overall complexity considerably and also relaxes
some conservative assumptions required in state-of-the-art work. Close-to-optimal
solutions could be obtained very efficiently for a large number of tests.

The distributed solution of MIQP problem (4.34) was then considered in this
chapter, which represents a more typical problem in the context of optimal control
than the one of MILP. The proposed distributed solution consists of totally three
stages of computation, each of which stems from one of the optimality conditions
of (4.34) to guide the decomposition and the solution process. Especially for the
last stage, the new findings of MILP problem (4.7) are successfully applied to the
distributed solution of the MIQP problem. The optimal solution (or a close-to-
optimal solution) has in all cases been obtained in a series of numerical tests, which
confirmed the efficiency of the method. Finally, part of the proposed methods were
tested for a multi-vehicle application with passage constraints, and satisfiable re-
sults have been obtained in all the tests with respect to both the quality of the
solution and the computation time.

The part that is not taken into account in this chapter, however, is the commu-
nication problem among the subsystems: the subsystems are assumed to be able
to broadcast/receive information from any other subsystems, i.e., a fully connected
communication graph, there is no package loss or delay, and the transmission chan-
nel is without noise. In addition, the limitation on the maximal communication
frequency is also disregarded, which may indeed affect the performance of the pro-
posed distributed solutions. Besides the communication problems, the local con-
straints are assumed to take the form xi ∈ Xi, xi ∈ Rri × Zzi in this chapter. This
setting is based on the observation that all local constraints arise in the previous
chapters can eventually be reformulated into this form. But by starting with this
form for the proposed distributed solution, the special structure of Xi in terms of
the hybrid dynamics in HA may be neglected, such as the sparsity of the matrix on
the left hand side of Xi. Nevertheless, these shortages or limitations also point into
meaningful research directions for the future, as summarized in the next chapter.
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5.1. Contributions

In this thesis, a series of modeling and control problems in CPS have been consid-
ered: for the modeling part, a general model class HA has been defined to describe
the continuous and discrete dynamics in each subsystem, so that a large variety of
transition mechanisms can be covered. The use of HA enhances the flexibility by
modeling local dynamics in CPS compared to standard modeling techniques, such
as PWA systems, switching systems or switched systems. For the control part, a set
of methods has been proposed according to different interacting scheme in CPS. In
general, by assuming the dynamics of each subsystem is modeled by HA, all these
control methods aim at ensuring the safety of CPS and optimality of the controlled
behavior, as well as a high computational performance.

In Chapter 2, details of the considered discrete-time hybrid system HA have been
introduced, together with a comparison with other hybrid modeling techniques.
Then, in case the influence from other subsystems in CPS can be cast into a change
of the invariants and guards of local HA, two finite-horizon control strategies have
been proposed for the local subsystem. This chapter has shown that both methods
are able to exactly cast the hybrid dynamics and the control task into an MIP prob-
lem. To avoid the high complexity caused by the MIP problem, both methods have
also constructed a set of constraints involving only the integer variables, through
which the search space of underlying MIP problem can be reduced significantly. By
applying the considered efficient solution of the MIP problems, each local subsys-
tem in the CPS can determine its best control strategy in a short time, and thus
be online applicable.

In Chapter 3, the influence from other subsystems in CPS has been further cast
into a change of local invariants and guards, but with uncertainties varying over
time. In addition, the local hybrid dynamics there has also been affected by addi-
tive disturbances and parametric uncertainties due to modeling errors. This setting,
apparently, is more realistic for real-world engineering problems than in the preced-
ing chapter. This chapter started with the case that uncertainties only arise from
the local dynamics, and a robust control strategy has been proposed by constructing
a robust invariant tube around a nominal trajectory. This robust control strategy
enables the local subsystems in CPS to safely plan its local behavior, despite the
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modeling error of the local dynamics. Then, a more complicated case has been con-
sidered, in which the environment (i.e., the invariants and guards modeling the HA)
of the local subsystems is time-varying, with changes which are not precisely known.
Problems of this kind have been rarely considered before, although being important
for online strategies such as MPC. Hence, for two types of change mechanism of the
environment, methods to guarantee the recursive feasibility and stability of MPC
have been presented. In addition, a method to guarantee the same properties of
MPC but without reducing the original feasible space has also been proposed, and
this is realized by introducing penalty terms of the cost function. With the help of
all these methods, each local subsystem in CPS can safely plan its local behavior
in each online step, despite uncertainties caused by the other subsystems.

In contrast to the preceding chapters, the interaction scheme in Chapter 4 has been
modeled by coupling constraints to be jointly satisfied by all subsystems. Each
subsystem i there has to select its control strategy from a local input space, usu-
ally a mixed-integer space due to the hybrid dynamics. The global control goal of
CPS is to minimize the global costs containing each local costs, while the coupling
constraints must also be satisfied. Obviously, the centralized solution is the most
straightforward way to ensure the satisfaction of all constraints and thus the safety
of CPS. However, as MIP problems arise in the centralized problem, the NP-hard
nature of MIP problems makes the centralized solution to become intractable if
larger numbers of subsystems are contained in the CPS. To reduce the centralized
complexity, a set of novel distributed solution schemes have been proposed in this
chapter, which decompose the centralized problem into a set of small-scale problems
solved by each subsystem in parallel. These distributed solution strategies guaran-
tee that, for an increase of subsystems in CPS, the control complexity only grows
moderately instead of exponentially. The efficiency of these strategies has also been
confirmed by a series of numerical experiments made in this chapter.

Finally, besides the numerical experiments conducted in each section, a set of
application-oriented (CPS relevant) studies has also been presented at the end of
each chapter: In Chapter 2, an autonomous vehicle overtaking problem has been
considered. It has been shown that, through the construction of a hybrid system
HA, a safe overtaking path can be determined for the local vehicle. In Chapter 3, a
human-robot collaboration problem has been considered, where uncertainties arise
in both robot modeling and human motion prediction. By using the techniques
developed in this chapter, the robot can accomplish its task while the safety of
the human is also ensured. In Chapter 4, a vehicle coordinating problem has been
considered, in which a set of autonomous vehicles need to travel through a narrow
passage. The centralized solution of this problem is not practically feasible due
to the high computation time, while the proposed distributed solution has shown
the possibility to provide a sub-optimal solution in reasonable time with negligible
performance loss.
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5.2. Future Directions

Point-to-Set-Control of Hybrid Systems with Non-Deterministic Transitions

In addition to the disturbances and parametric uncertainties affecting the hybrid
dynamics considered as in Sec. 3.1, another important class of uncertainty is when
the discrete state transition is not deterministic [1, 45]. This occurs if the discrete
input of HA also leads to uncertainties, e.g., the automatic gear transmission does
not always transfer to the desired gear, but only has a limited success probability.
The control goal in this case is to take into account all these uncertainties by
planning the continuous and discrete input sequences, such that the probability of
reaching a target region is maximized, while the expected running cost of reaching
the target region is minimized. Thus, it is worth to investigate in how far the
control strategies from Sec. 2.3 and 3.1 should be adapted, in order to handle
non-deterministic probabilistic transition structures.

Numerical Program Based Falsification of Hybrid Systems

The optimal control technique developed in Chapter 2 can also be employed to the
falsification of hybrid systems. Traditionally, reachability analysis of hybrid systems
has been applied as an important verification tool to specify the properties of the
system [8, 6]. Alternatively, a verification concept called „falsification” has been de-
veloped in the last few years [133, 123, 11], and can be regarded as the dual problem
to reachability analysis. In contrast to reachability analysis, where the reachable
part of the state space must be explored in order to prove the system to be safe, the
goal of falsification is to find one state sequence that violates safety properties in
order to show that the system is unsafe. This approach may significantly reduce the
complexity of exploring the continuous state space in reachable set computation.

Current approaches to falsification mainly use heuristics, but this may lead to
fail proving that the system is safe, in case of no violation of the safety properties
is found while it indeed exists. Hence, as the semantics of the hybrid system HA
can be exactly cast into a set of mixed-integer constraints according to Chapter
2, it is thus worth investigating whether these constraints can be embedded into
the falsification procedure, so that the falsification task can be realized through a
numerical program and thus provides guaranty. In addition, as the ultimate goal of
either reachability analysis or falsification is to ensure the safety of the controlled
systems, an efficient „safety-recovering” procedure is thus desired, if the system is
proven to be unsafe. The question is, thus, in how far can one utilize the outcome
of the falsification process to guide the recovery process.

MPC with Hardware Limitations and Low Frequency MPC

Most of the approach in this thesis aims at reducing the computation complexity
to make the proposed control strategy online applicable. However, a concrete time
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limit for the computation has not been considered in the thesis, as the computation
times are usually determined by the selected hardware. According to the standard
receding-horizon scheme of MPC, only the first step input signal of the optimized
solution is applied, and the optimization procedure is repeated after moving to the
next state. This requires that the total time to measure the environment and to solve
the numerical program is smaller than one sampling time. But this requirement
cannot always be satisfied due to the limitations of the hardware, e.g., the precise
measurement of the environment may be time-consuming, or the computational
power to solve the numerical program is timely insufficient. This may lead to the
consequence that no feasible solution can be found within one sampling time, and
the operation must be stopped. Thus, it is important to study how to further apply
MPC and continue operation, despite those hardware limitations.

An alternative approach to enhance the real time ability of MPC is to solve the
numerical program every several steps instead of in each step. This idea is similar
to the one in [40, 92]. This scheme immediately makes the time interval left for
the numerical program several times larger than before, and thus reduces the risk
of insufficient computation time. The drawback of this strategy, however, is also
obvious, since it may cause a loss of performance due to the low update rate. In
addition, if the environment is varying over time (as considered in Sec. 3.2), a low
optimization rate may cause a delayed response to the new environment and lead
to infeasibility. Accordingly, it is worth to investigate under which circumstances
lower frequencies of the optimization in MPC can be applied, while both safety and
acceptable performance loss are guaranteed.

Distributed Optimization of MIP Problems with Imperfect Communication

As mentioned in the introduction, communication imperfections in CPS are not con-
sidered in this thesis. Instead, the focus is on the decomposition techniques of the
centralized problem, so that the distributed solution can converge to an optimum
(or sub-optimum) with reduced complexity. However, when imperfect communi-
cation is encountered in CPS, the decomposition technique should be tailored to
the given communication settings, such as a time-varying communication graph,
or a partially connected graph, or a directed graph. Different distributed solu-
tions have been developed in the past to accommodate the limitations of the graph
[117, 61, 119], but most of them are limited to a consensus problem. In this type
of problems, the local state vector of all subsystems must converged to a common
value (the global optimum in most cases), despite the limitations of the imperfect
communication. The problem considered in Chapter 4, however, belongs to another
type, i.e., the constraint-coupled one, in which the local optimization variable xi of
each subsystem does not necessarily converge to the same value. Nevertheless, for
some steps in Algorithm 4.2 and 4.5, an agreement on the common dual variable
λ is required. This implies that the subsystems may fail to agree on the same λ,
if the communication is imperfect. Thus, how to preserve the desired properties of
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Algorithm 4.2 and 4.5, such as feasibility and cost reduction over iterations, despite
the limitations of the communication graph, turns out to be a meaningful and open
direction for the future research.

Distributed Optimization of MIP Problems with Non-Cooperative Behavior

When the goals of the subsystems in the CPS are not identical, the resulting setting
can be interpreted as a non-cooperative game of distributed systems. In this case,
game theory is often used to model and analyze the competitive behavior of the
subsystems. Note that a non-cooperative game is far more general than the coop-
erative one considered in Chapter 4, and reflects some real-world problems more
realistically. It is because, on the one hand, the definition of cooperative behavior
in the sense that all subsystems must follow the same goal is quite restricted, while
non-cooperative behavior is more general with respect to the local goal (allowing
also for selfish behavior). On the other hand, even if all subsystems would intend
to behave in a cooperative way, the limitations of the communication graph or the
errors in transmission channels may prevent them to follow this intention, leading
to a competitive behavior.

In a non-cooperative game, the local costs are no more purely decided by the
local variables, but also by other subsystems [138]. The corresponding optimal-
ity conditions are thus also different compared to the cooperative ones. For the
optimal solution of a non-cooperative game, which is usually referred to as the
„Nash equilibrium” [114], no subsystem can unilaterally optimize its local variables
without changing the variables of other subsystems. For the distributed compu-
tation of the Nash equilibrium, several research efforts have been published, such
as in [156, 146, 142, 169]. But they are limited to the case in which the variables
are real-valued, and the distributed computation has been carried out by solving
a real-valued variational inequalities problem [58]. Thus, in case the variables are
of mixed-integer type instead of being real-valued only, it is worth to investigate
whether the Shapley-Folkman-Starr theorem can be leveraged to solve the mixed-
integer variational inequalities problems, as was done for the cooperative problems.
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Abbreviations

ADMM alternating direction method of multipliers

BVP boundary value problem

CPS cyber-physical systems

DP dynamic programming

EE end-effector of a robot manipulator

HJB Hamilton-Jacobi-Bellman

ILP integer linear program

LP linear program

LQR linear quadratic regulator

MILP mixed integer linear program

MINLP mixed integer nonlinear program

MIP mixed integer program

MIQP mixed integer quadratic program

MLD mixed logical dynamics

MPC model predictive control

PWA piecewise affine

QP quadratic programming

RM robot manipulator

Functions

f̄ : X × U × Z → X nominal discrete-time continuous dynamics in HA
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r̄ : T × X → X nominal reset function in HA

J : X × U → R cost function

F : X → R terminal cost

f : X × U × Z → X discrete-time continuous dynamics in HA

fu : X × U × Z → X uncertain discrete-time continuous dynamics in HAu

J : X → R global cost function of all subsystems (Chapter 4)

Ji : Xi → R local cost function of the subsystem i (Chapter 4)

L : X × U → R function to assign step cost

r : T × X → X reset function in HA

ru : T × X → X uncertain reset function in HAu

General

C central coordinator

M model to predict the change of the state space

Marm model to predict the motion of a human arm

HA nominal hybrid system obtained from tightening HAu

HA a general type of hybrid system

HAu hybrid system with uncertainties of the continuous dynamics
and reset functions

HAk time-varying hybrid system measured in step k

Operators

R(. . .) relaxation of the integrality constraints of a given set (Chapter
4)

� Pontryagin difference

⊕ Minkowski addition

Conv(. . .) convex hull of a given set
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Scalars and Constants

L(x, G(i,j)(h)) distance between state x and the h-th facet of the guard set
G(i,j)

L(x, I(i)(h)) distance between state x and the h-th facet of the invariant set
I(i)

ρ iteration counter (Chapter 4)

τ(i,j) transition from z(i) to z(j)

b(i) binary variable assigned to the invariant set I(i)

b(i,j) binary variable assigned to the guard set G(i,j)

bg binary variable assigned to the terminal set Xg

k discrete time index

L length of given phase sequence

Lmax maximal length of a phase sequence

m number of coupling constraints in the centralized problem (Chap-
ter 4)

Ng the first point of time in which the goal set is reached

ns number of subsystems

pl l-th phase in a discrete state sequence

qg weighting factor for Ng

ri number of real variables in xi (Chapter 4)

s[ρ] step length (Chapter 4)

v(i,j) discrete input for the transition τ(i,j)

z0 discrete initial state

zg discrete goal state

zi number of integer variables in xi (Chapter 4)

z(i) discrete state i

149
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Sets

Ḡ finite set of nominal guards in HA

Ḡ(i,j) ⊆ Rnx nominal guard set for the nominal transition τ̄(i,j)

Ī finite set of nominal invariants in HA

Ī(i) ⊆ Rnx nominal invariant of the discrete state z(i)

Ū ⊆ Rnu nominal continuous input space in HA

P̂ rec ⊆ R2 predicted pose of the human arm by using model Marm

D ⊆ Rnx disturbance invariant set

T finite set of transitions in HA

W ⊆ Rnx set of possible additive disturbances

P̃ rec ⊆ R2 rectangular set obtained by enlarging P̂ rec with maximal pre-
diction error

εL,β∗

Δx
the largest mixed-integer ellipsoidal set contained in P L,rec

Δx

εL,β
Δx

mixed-integer ellipsoidal set of Δx, selected from which relation
J(xL + Δx) − J(xL) ≤ β applies

εL
Δx

mixed-integer ellipsoidal set of Δx, selected from which relation
J(xL + Δx) − J(xL) ≤ 0 applies

G finite set of guards in HA

Gk finite set of guards in HAk

G(i,j) ⊆ Rnx guard set for the transition τ(i,j)

I finite set of invariants in HA

Ik finite set of invariants in HAk

I(i) ⊆ Rnx invariant of the discrete state z(i)

N set of subsystems contained in given CPS (Chapter 4)

N1 set of subsystems whose local solution is attained at the vertex
of Conv(Xi), for all i ∈ N1 (Chapter 4)

N2 complementary to the set N1 of subsystems in N (Chapter 4)
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List of Symbols

P L,rec
Δx

mixed-integer hyperrectangular set inner-approximating εL
Δx

P L
Δx

mixed-integer polyhedral set inner-approximating εL
Δx

P rec ⊆ R
2 rectangular set used to over-approximate the space occupied

by a human arm

TÑ extended discrete-time horizon by taking intermediate states
into account

TN discrete-time horizon with N discrete steps

U ⊆ R
nu continuous input space in HA

V finite set of discrete inputs in HA

X ⊆ R
nx continuous state space in HA

Xg ⊆ R
nx terminal/goal set in the continuous state space

Xi mixed-integer polyhedral set representing local constraints of
subsystem i (Chapter 4)

Xk ⊆ Rnx feasible continuous state space in step k

Z finite set of discrete states in HA

Zout
(i) set of discrete successor states of the discrete state z(i)

Vectors and Matrices

ū nominal continuous input

x̄ nominal continuous state

Δx increment vector (Chapter 4)

p̂arm predicted position of the human arm

ŵmax maximal prediction error of the state space generated in a single
step

κg terminal controller applied in the terminal set Xg

λ Lagrangian multiplier used to dualize the coupling constraints
(Chapter 4)

x global optimization variable for all subsystems (Chapter 4)
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xf first feasible candidate for given MIP problem (Chapter 4)

xS1 global candidate obtained at the end of stage one (Chapter 4)

xS2 global candidate obtained at the end of stage two (Chapter 4)

xS3 global candidate obtained at the end of stage three (Chapter
4)

Bm matrix of binary variables

φcd
u candidate continuous input sequence

φcd
v candidate discrete input sequence

φcd
x candidate continuous state sequence

φp phase sequence

φu continuous input sequence

φv discrete input sequence

φx continuous state sequence

φz discrete state sequence

K closed-loop controller matrix

M a vector/factor of large constants

pE
k position of the end-effector measured in step k

parm
k position of human arm measured in step k

Q weighting matrix of the continuous state

Qg weighting matrix of the continuous state in the last step of the
horizon

R weighting matrix of the continuous input

u continuous input

w additive disturbance

wmax maximal change of the state space within one step

x continuous state
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x′ intermediate continuous state triggering a discrete state tran-
sition

x0 initial continuous state

xg target continuous state

xi local optimization variables of subsystem i (Chapter 4)

xi,r real variables in the local variables xi of subsystem i (Chapter
4)

xi,t integer variables in the local variables xi of subsystem i (Chap-
ter 4)
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