
Regelungs- und Systemtheorie

Universität Kassel

Consistent Hierarchical Control

in

Cooperative Autonomous Driving

Dissertation zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

vorgelegt im Fachbereich Elektrotechnik/Informatik

der Universität Kassel

von

Jan Michael Eilbrecht

Eingereicht am: 30. September 2021

Disputation am: 22. April 2022

Erstgutachter: Prof. Dr.-Ing. Olaf Stursberg

Zweitgutachterin: Prof. Dr. Kathrin Flaßkamp

Contents

Zusammenfassung v

Summary vii

1. Introduction 1

1.1. Setting and Assumptions . 2

1.2. Overall Problem Statement and Thesis Outline 3

1.3. Statement of Contribution . 4

1.4. Notation . 5

I. Maneuver-based Decision Making 7

2. The Maneuver Concept 9

2.1. Related Work on Trajectory Planning . 14

2.2. Basic Concepts . 18

2.2.1. Maneuvers . 18

2.2.2. Controllable Sets . 20

2.3. Modeling of Maneuvers . 22

2.3.1. Longitudinal Collision Avoidance 23

2.3.2. Lateral Collision Avoidance . 28

2.4. Using Maneuvers for Planning . 29

3. Feasibility Assessment and Efficient Planning 33

3.1. Inner Approximations of Controllable Sets and Tubes 35

3.1.1. Iterative Approximation . 37

3.1.2. Initialization of the Approximation Scheme 39

3.2. Fast Planning using Approximated Controllable Sets 40

3.2.1. Triangulation . 42

3.2.2. Warren’s Coordinates . 43

4. Examples and Discussion 51

4.1. Example I: A Cooperative Overtaking Maneuver 51

4.1.1. Maneuver Formulation . 52

4.1.2. Example Results: Controllable Sets and Trajectories 54

4.2. Example II: Highway Entry of Autonomous Vehicles 57

4.2.1. Maneuver Formulations . 59

iii

Contents

4.2.2. Simulation Results . 63

II. Low-level Tracking Control 67

5. A Novel Approach to Trajectory Tracking with Guarantees 69

5.1. Related Work on Trajectory Tracking . 70

5.2. Preliminaries . 73

5.3. Partial Compensation of Nonlinearities by Feedback 78

6. Characterizing Admissible Vehicle States and Reference Trajectories 83

6.1. Constraints on the Vehicle Dynamics . 83

6.2. Admissible Reference Trajectories . 86

7. Boundedness of the Tracking Error 91

7.1. Feedback Gain Synthesis . 93

7.2. Analysis of the Yaw Error Dynamics . 95

8. Examples and Discussion 101

8.1. Validation in Simulation . 101

8.2. Discussion . 104

III. Conclusions and Future Work 107

9. Conclusions 109

10.Future Work 111

Appendix 113
A. Invariant Set Computation for Longitudinal Collision Avoidance 113

B. Transformation of Reference Trajectory Representations 114

C. Uncertainty in the Tire Model . 117

D. Polytopic acceleration constraints A . 122

E. Linearization of Front Side Slip Angle Constraints 126

F. Projection of Cvāµ on the Velocity-Acceleration-Space 128

G. Derivation of Parameter Bounds . 133

H. Bounds on w̃1 . 136

I. Parameter Values . 138

List of Symbols 139

References 145

iv

Zusammenfassung
Diese Arbeit thematisiert das Problem der Wegfindung für Gruppen kooperierender au-

tonomer Fahrzeuge im Straßenverkehr. Dieses ist aufgrund nichtlinearer Systemdynamiken

und nichtkonvexer Beschränkungen selbst unter vereinfachenden Annahmen (z. B. Einhal-

tung von Verkehrsregeln durch nicht-kooperative Verkehrsteilnehmer, fehlerfreie Kommu-

nikation zwischen Fahrzeugen, Abwesenheit von Messfehlern) schwierig. Übliche Lösungs-

ansätze beruhen auf einer oft hierarchischen Zerlegung in leichter, nacheinander zu lösende

Teilprobleme. Dabei bestehen Abhängigkeiten, da nachfolgende auf der Lösung vorherge-

hender aufbauen. Existierende Verfahren ignorieren diese, weshalb nachgelagerte Teilprob-

leme ggf. unlösbar sind, da Lösungen vorhergehender Teilprobleme ungeeignet sind.

Diese Arbeit stellt eine Entwurfsmethodik vor, die Abhängigkeiten in einem hierarch-

ischen Ansatz berücksichtigt. Zur Untersuchung wird ein Ansatz mit drei Ebenen ange-

setzt: neben der Erstellung von Referenztrajektorien (dem Planen) und der unterlagerten

Folgeregelung legt eine dritte, diesen überlagerte Ebene die kooperierenden Gruppen sowie

von diesen durchzuführende Aktionen fest. Neben dem Garantieren hierarchischer Kon-

sistenz, also sicheren Zusammenwirkens, ist ein Fokus der Arbeit die Recheneffizienz.

Kern der Planung von Referenztrajektorien ist die Problemformulierung als gemischt-

ganzzahliges Programm, dessen Lösung global optimal ist und Einhaltung von Beschrän-

kungen garantiert. Dabei werden Prädiktionen zukünftiger Werte verwendet. Um Ab-

weichungen zum tatsächlich resultierenden Verhalten gering zu halten, werden die Opti-

mierungsprobleme nach dem Prinzip des gleitenden Horizonts regelmäßig erneut gelöst.

Zur Verbesserung der Recheneffizienz nutzt das sog. Manöverkonzept die inhärente Struk-

tur des Straßenverkehrs aus. Ein Manöver charakterisiert eine Menge qualitativ ähnlicher

Trajektorien einer Gruppe von Fahrzeugen und wird als hybrider Automat formuliert. Dies

ermöglicht die Berechnung steuerbarer Mengen, die Anfangszustände enthalten, für die eine

Durchführung des Manövers möglich ist. So können zulässige Optionen schnell und ohne

jedesmalige Planung bestimmt und anschließend die vielversprechendste ausgewählt wer-

den. Die approximative Berechnung der steuerbaren Mengen erlaubt die Anwendung des

Konzepts auf höherdimensionale Zustandsräume sowie die Approximation der Lösung des

Planungsproblems. Dies umgeht das Optimieren im Betrieb und reduziert Rechenzeiten.

Da die Umsetzung von Referenztrajektorien durch Fahrzeuge oft nicht fehlerfrei erfolgt,

sind Sicherheitsabstände zu Hindernissen einzuplanen, während sichere Interaktion mit der

Folgeregelung erfordert, nur Trajektorien zu planen, für die der größtmögliche Regelfehler

definierte Sicherheitsabstände nicht verletzt. Dieser wird ermittelt anhand einer invari-

anten Menge der Fehlerdynamik unter Berücksichtigung von Beschränkungen, Unsicher-

heiten und möglicher Referenztrajektorien. Dies erfolgt nur beim Entwurf; der Betrieb des

Reglers erfordert lediglich recheneffiziente Operationen. Sowohl theoretische Resultate als

auch numerische Simulationen zeigen die Funktionsfähigkeit des Ansatzes.

v

Summary

This thesis is set within the context of the problem of motion planning in autonomous
driving. Due to nonlinear system dynamics and non-convex constraints, this problem is
challenging even under simplifying assumptions (e.g. non-cooperating traffic participants
obey traffic rules, lossless inter-vehicle communication, absence of measuring errors). Typ-
ical solution approaches rely on a decomposition of the problem into subproblems which
are easier to solve. This decomposition often results in a hierarchy of subproblems which
are to be solved sequentially, where succeeding problems rely on the solution of preceding
ones, such that dependencies between subproblems exist. Existing procedures for the de-
sign of such approaches have in common that these dependencies are not accounted for by
the solution methodology. This can lead to situations where succeeding problems cannot
be solved due to unsuitable solutions of preceeding subproblems.

This thesis presents a design methodology which is able to account for such dependencies
in a hierarchical solution approach. The methodology is developed under the assumption of
a three-layer hierarchical solution approach comprising trajectory planning, tracking con-
trol, and a high-level controller which is to determine cooperating groups and their actions.
While the major focus of the thesis is on hierarchical consistency, i.e., safe interaction of
the framework’s layers, computational efficiency is also a main concern.

The basis of the planning problem is its formulation as a mixed-integer optimization
problem, whose globally optimal solution guarantees constraint compliance. This approach
uses predictions of future values and conducts the optimization frequently anew in the spirit
of receding horizon control in order to limit the impact of uncertainty.

The so-called maneuver concept is introduced in order to improve computational effi-
ciency by exploiting structure in on-road traffic. A maneuver characterizes a set of qualita-
tively similar trajectories of a group of vehicles and is modeled as a hybrid automaton. This
allows to compute controllable sets, containing initial states for which a maneuver can be
executed. Given these, the high-level controller can assess the feasibility of many different
options without computing plans when choosing the most promising one. Approximative
set computations allow for both the application to typically high-dimensional state spaces
in cooperative autonomous driving and for the approximation of solutions to the planning
problem. Thus, no optimization is required online, which reduces computation times.

As vehicles often fail to perfectly follow a reference trajectory, safety margins to obsta-
cles must be provided during planning. Safe interaction between planning and tracking
layer then requires to only plan trajectories for which the maximum tracking error does
not violate the pre-defined safety margins. The maximum error is determined based on
computation of an invariant set of the tracking error dynamics, accounting for a set of pos-
sible reference trajectories, constraints on states and inputs, and uncertainty in a vehicle’s
tire model. This step is only carried out during offline design, while online operation of
the tracking controller only requires computationally efficient algebraic operations. Both
theoretical results and numerical simulations demonstrate the efficacy of the framework.

vii

Acknowledgments

The rank is but the guinea’s stamp,
the man’s the gowd for a’ that.

Robert Burns

First of all, I would like to thank my supervisor Prof. Dr.-Ing. Olaf Stursberg for his

enduring support throughout the past years. On the one hand, he has given me much

freedom in conducting the research which lead to this thesis, while at the same time, he

was always willing to provide feedback, and feedback is crucial in control!

Next, I thank Prof. Dr. Kathrin Flaßkamp for serving as co-supervisor, as well as Prof.

Dr. Bernhard Sick and Prof. Dr. Ludwig Brabetz for serving on the thesis committee. To

all of them, I am grateful for their valuable comments throughout the process.

Special thanks go to Prof. Dr. Arno Linnemann: having assisted in several of his lectures

during the past years has shaped my view on control quite a bit. Not in the field of control,

but with significant impact on my education, my former teachers Helmut Bambey, Lars

Böttner, and Hans-Dieter Pitz have my sincerest gratitude. On the administrative side,

Elena Rapp deserves gratitude for running the group smoothly. Furthermore, I want to

thank my former collegues for numerous discussions, prolonged coffee and lunch breaks at

all-you-can-eat restaurants, conference trips, and the fun we had in general.

Having spent significant parts of the non-research related time in boats on the Fulda, I

also thank all the people involved in the Kassel University Rowing Team for the fun during

practice and regattas, training camps, and long hours on the bus.

Finally, this thesis would not have been possible without support from my friends from

Brakeler and Braunschweiger days as well as from my family. I’ll thank all of you in person

at some point and dedicate this thesis to my late father, Elmar Eilbrecht.

ix

1. Introduction

This thesis considers the topic of guidance and control of cooperative autonomous vehicles

in on-road traffic. In the recent past, the field of autonomous driving has experienced

substantial research efforts, motivated amongst others by the following anticipated ben-

efits [106]: As a driver’s attention is not required anymore, long commutes must not be

considered wasted time, but can be put to good use. Also, autonomy makes efficient car

sharing a realistic opportunity, which saves resources and parking lots, as less cars are

required to meet the same transportation demand. Another important promise of au-

tonomous driving is increased road safety, as better reactions in safety-critical situations

are expected from technical systems. In addition to these already substantial benefits, co-

operative autonomous driving has the potential to achieve a more efficient road and energy

utilization, as agreements between vehicles and information sharing allow for less cautious

driving and an improved traffic flow [70].

The development of fully autonomous vehicles requires contributions from diverse fields

such as machine vision [122], localization [27], communication [145], and control [115]. The

focus of this thesis lies on the control aspect, which – in its broadest notion – comprises

the entire decision making process of routing a vehicle from a start to a destination.

The decision making process in autonomous driving is characterized by an ever-changing

environment, in which much room for decisions exists (Which road to take? Overtake?

If so, when? How hard to accelerate?), which nonetheless must be made quickly, while

wrong decisions can have devastating consequences. When considering cooperation as

the willingness and ability of multiple vehicles to share information and to adapt their

behavior, the decision making process is further complicated by an increase in both the

amount of information to be considered and the number of possible decisions.

Typical realizations of the decision making process for an autonomous vehicle rely on

a modular, hierarchical architecture, e.g. [118, 38, 39]. Such an architecture is attributed

with computational efficiency and also flexibility of design, as sub-components are envi-

sioned to be easiliy replacable [118]. The upper-most layer of such architectures is typically

concerned with the guidance within a road network, while the lower-most layer, in contrast,

is tasked with the actuation of the vehicle (often referred to as “stabilization task”[149]).

Layers in between target the guidance within a road segment. Often, qualitative descrip-

tions of a vehicle’s actions (termed for example “maneuvers” [136] or “behaviors” [118])

are used in this context. Information in such architectures mainly flows top-down [105],

with bottom-up flow being limited to status reports in online operation, cf. [118, 10].

Despite its potential advantages, a modular, hierarchical architecture for the realization

of the decision making process also introduces new challenges and can even put the safety of

a vehicle and its passengers at risk, as such an architecture relies on solving subproblems

1

1. Introduction

separately. These subproblems, however, are actually often intertwined, such that the

solution of a subproblem on an upper level of the hierarchy can prevent the solution of one

on a subordinate level if the interdependence has been ignored throughout the solution

process. In such a situation, the decision making module potentially fails to return an

appropriate control command in time, which can have severe consequences. Even though

it should be addressed in the specification of the interfaces between modules of hierarchical

architectures, this challenge does not seem to have gained attention. Accordingly, no

constructive advice for its solution is available.

Even when ignoring this issue, it might still be possible to deploy a system which is

functional in many (but not necessarily all) situations by careful system design. However,

such an approach forbids itself in safety-critical applications such as autonomous driving.

Rather, methodologically sound methods are desirable which explicitly account for the

interdependence of subproblems during their solution and can therefore guarantee flawless

interaction of the problem solving modules under specified conditions. Such procedures,

however, do not seem to have been in the focus of research, which motivates the following

investigations. These evolve from the setting described in Section 1.1, from which a detailed

problem statement is then derived in Section 1.2.

1.1. Setting and Assumptions

As a starting point of the investigation, the hierarchical decision making framework shown

in Figure 1.1 is assumed. It divides the decision making process into a sequence of simpler

decisions, which are – focusing on cooperative autonomous driving – made for groups of

cooperating vehicles. Qualitatively, the three layers of the framework interact as follows:

First, on the high-level control layer, the intended behavior of one (or several) vehicle(s)

is determined, for example whether a group is to cooperatively enable another vehicle to

merge onto a lane. Then, from this decision, a plan is derived, i.e., a sequence of way points

at defined time instances which each cooperating autonomous vehicle should follow in order

to realize the behavior prescribed by the high-level control layer. Plans are generated on

the trajectory planning layer. However, a plan as a sequence of way points does not define

how to actuate a vehicle; this is facilitated on the tracking control layer, where steering

angle and acceleration commands are generated based on a given plan.

While decisions (i.e., the intended behaviors and the plans) are communicated explic-

itly downwards from upper to lower layers, an implicit dependency exists in the opposite

direction because a vehicle’s operation is subject to physical constraints, which likewise

reduce the freedom of decision of the upper layers.

The following assumptions are made about the setting in which the framework is de-

ployed – not necessarily because they all are deemed realistic, but in order to limit the

scope of this thesis: First, all following considerations focus on a highway setting, which is

arguably the most structured traffic environment in the sense that the number of emerging

behaviors is comparably small, amongst others due to strict traffic rules and the absence

of pedestrians and cyclists. For this reason, autonomous driving is likely to be realized in

2

1.2. Overall Problem Statement and Thesis Outline

Tracking
Control

Trajectory
Planning

Plan Constraints

High-level
Control

Intended
behavior

Constraints

Legend:
Explicit communication
Implicit dependency

1
Figure 1.1.: Starting point of the thesis: a hierarchical decision making framework.

highway settings first. Note that even though pedestrians and cyclists will not be consid-

ered in this thesis, a first attempt in that direction has been presented in [42].

Furthermore, it is assumed that other traffic participants (especially the non-cooperating

ones) do not violate traffic rules, as all other cases are primarily a concern of law reinforce-

ment. No differences are assumed regarding the dynamics of all vehicles, which is obviously

unrealistic, but does not make a conceptual difference for the following considerations, as

the assumption can be resolved in a conceptually simple, yet tedious way. For the same

reason, no curved roads are considered, refering to the method devised in [48] for reducing

planning on curved roads to planning on straight roads.

Finally – and this is not unrealistic – it is assumed that each vehicle knows a route

between its current position and the destination of its journey, e.g. determined by con-

ventional navigation systems. This assumption allows to focus on guidance of the vehicle

within the sequence of roads defined by the route. Questions pertaining to the problem of

cooperative guidance, but not a subject of control engineering, such as communication be-

tween cooperating vehicles or distributed computation, are not considered in the following.

More technical assumptions will be given throughout the thesis where required.

1.2. Overall Problem Statement and Thesis Outline

As pointed out in the beginning, a hierarchical framework can fail to operate correctly if

dependencies between its layers are not accounted for. Given the setting from the previous

section, the main objective of this thesis is to design the elements of the architecture shown

in Fig. 1.1, ensuring hierarchical consistency, i.e., flawless interaction of the different layers

despite implicit dependencies resulting from physical constraints on the dynamics of the

controlled vehicles. This task consists of two subtasks, where the first one considers the

3

1. Introduction

consistent interaction between the high-level control and the trajectory planning layer,

while the second one focuses on the interaction of the trajectory planning and the tracking

control layer. Furthermore, as in all real-time control systems, an important requirement

is the need for computational efficiency, which must be accounted for in both subtasks.

Paralleling these two, the remainder of this dissertation consists of two major parts:

Because it interacts with both other layers, the design of the trajectory planning layer

is of fundamental importance and the main concern of part I. There, the design of the

high-level control layer – while also relevant to the first subtask – will turn out to be

less crucial, owing to the chosen design of the planning layer. Chapter 2 first provides a

review of the literature related to trajectory planning, followed by the introduction of the

so-called maneuver concept and the formal statement of the trajectory planning problem

in the maneuver context. Also, controllable sets are introduced for feasibility assessment.

On that basis, Chapter 3 first develops methods for the approximation of controllable sets,

followed by methods for the approximation of solutions to the planning problem. Chapter 4

provides examples for the application of the methods derived in the two preceding chapters

as well as for the interaction with an example high-level control algorithm.

Part II targets the interaction between the trajectory planning and the trajectory track-

ing layer. Because at this point, the trajectory planner will already have been designed as

detailed in part I, the focus is on the design of the tracking controller. At first, Chapter 5

outlines the main idea and relates the approach to existing ones. Chapter 6 is concerned

with the characterization of a set of vehicle states respectively reference trajectory and

tracking error quantities for which admissible control inputs exist. This set is then used in

Chapter 7 to prove the boundedness of the tracking error. Chapter 8 illustrates the use of

the controller in an overtaking maneuver. Conclusions regarding the devised methods are

drawn in Part III, which also outlines directions of future research.

1.3. Statement of Contribution

This thesis is not solely concerned with the solution of a practical problem, nor is its only

focus on the development of a methodology without connection to a practical problem.

Rather, it is an application-guided attempt to develop a methodology that could also be

applied to similar fields (such as mobile robots or UAVs), contributing in several ways.

A major contribution with regard to the problem of vehicle guidance and control is the

proposal of the so-called maneuver concept, which establishes a connection to the field

of hybrid systems and their verification. This allows to reduce computation times by ex-

ploiting structure in mixed-integer programming formulations of the planning task and to

characterize the admissible region of these optimization problems. Because exact compu-

tations are challenging in this context, approximation-based procedures are identified to

mitigate this problem.

Another major contribution is the development of a tracking controller which substan-

tially improves on existing approaches with respect to computational efficiency, capability

to account for constraints on inputs and states, consideration of uncertainty, and depth of

4

1.4. Notation

analysis of the properties of the resulting closed-loop system. These results are enabled

by use of symbolic quantifier elimination, which is identified as a valuable tool, potentially

also for problems beyond those considered in this thesis.

The results presented in this thesis have partly been published in a preliminary form

in [44, 45, 42, 46, 47, 49]. The results in [43, 48], while providing the basis for some

assumptions outlined in Section 1.1, are of no direct relevance to the major questions of

this thesis and therefore not detailed in the following in order to limit the scope of the

thesis.

1.4. Notation

Apart from the fairly standard notation being used throughout this thesis, the following

conventions deserve mentioning: Given a matrix M ∈ Rn×m and integers 1 ≤ i ≤ n and

1 ≤ j ≤ m, the entry in the ith row and jth column is addressed as M[i,j]. Entries of

the entire ith row or jth column are selected as M[i,:] and M[:,j], respectively. Subsets

of all rows/columns can be selected by index sets; for example, the entries of all rows

corresponding to the indices in a set I can be addressed as M[I,:] (returning the rows

in order of ascending indices as a convention), etc. The entries of the main diagonal of

a matrix M can be extracted by diag (M), while diag (d1, d2, . . . , dn) is used to denote

a diagonal matrix with (block) entries d1, d2, etc. on the main diagonal. Matrices of

dimension n×m with entries all-zero or all-one are denoted by 0n×m and 1n×m, respectively.

Sets will typically be denoted by calligraphic upper-case letters. For a polyhedron P ⊂
Rd, denote by f (P) the set of outward-pointing unit normals of the facets of P , i.e., the

faces of dimension d− 1. A bounded polyhedron is referred to as a polytope, whose set of

vertices is denoted as v (P), such that the polytope is given by:

P = convh (v (P)) ,

where convh () denotes the convex hull of a set. The interior of a polytope P is denoted by

int(P) and its boundary by ∂P . Projections of a set on lower dimensions are obtained by

application of the proj-operator, where the corresponding dimensions are given as indices.

For example,

projx

{[
x

y

]
| some predicate

}

denotes the projection on the dimension(s) corresponding to x. While the elements of sets

are enclosed by curly brackets, those of sequences are contained by round brackets, e.g.

s = (s1, s2, . . . , sN), or shorthand s = (si)
N
i=1. If the number N of elements of the sequence

is of relevance, it is provided as an index: sN , while s(·) is used to emphasize the sequence

nature of a symbol.

5

Part I.

Maneuver-based Decision Making

7

2. The Maneuver Concept

In order to make the rather generic hierarchical architecture from Figure 1.1 more concrete,

the framework as shown in Figure 2.1 is proposed. There, the high-level controller consists

of a scheduler and a maneuver library. The general functionality (which will be detailed in

the following chapters) of these units is such that the maneuver library contains encodings

of different cooperative behaviors (the maneuvers) of a group of vehicles, from which

the scheduler selects one and determines those among the nearby vehicles which are to

execute this maneuver. For a scheduled maneuver, a trajectory planner computes reference

trajectories for each vehicle of a cooperative group, which are then passed to the tracking

controllers of the individual vehicles. This process, however, only reflects the top-down

interaction, while also a dependency of the superior layers on the subordinate ones exists,

because the capability of a vehicle to follow a reference trajectory must be considered by

both the trajectory planner and the scheduler (cf. Figure 1.1).

The maneuver concept to be proposed in this part is the key to account for this require-

ment: on the one hand, it allows the trajectory planner to account for constraints resulting

from the tracking control task, while on the other hand, it enables a quick evaluation of

the feasibility of a certain maneuver in a given traffic situation. The latter aspect is very

beneficial for the design of the scheduler, as it allows to reduce the scheduling problem

to a choice solely between those maneuvers from the library which are admissible in the

current situation. This decouples concerns of admissibility of a decision from other aspects

such as its optimality, which can be addressed separately by the design of corresponding

rules for choosing between the admissible maneuvers. As the main focus of this thesis is on

the smooth interaction of the different hierarchical layers – which pertains to the admissi-

bility aspect of scheduled decisions rather than optimality – no realizations of scheduling

algorithms are considered here in detail, even though an example for a possible design is

provided in Section 4.2. Similarly, topics pertaining to the real-world implementation of

the scheduler and trajectory planner, such as decentralized computation or inter-vehicle

communication, are beyond the scope of this thesis.

The admissibility of a decision is generally difficult to assess in advance because it

requires to predict the decision’s effect on the involved vehicles. The common approach

to obtain predictions of a system’s behavior (which is also followed in this thesis) is based

on the use of mathematical models, which are supposed to reflect the most important

properties of the actual system. Many model-based control algorithms exist which allow

to establish properties such as stability and constraint compliance for a model of a system.

This is especially beneficial in safety-critical applications, where the (typically iterative)

design process does not have to be carried out during operation of the actual system (just

consider control of an unstable system!). However, model-based approaches are challenged

9

2. The Maneuver Concept

Group 1 Group 2

Trajectory
Planner

Tracking
Controller

Tracking
Controller

Tracking
Controller

Ref. 1

Ref. 3

Trajectory
Planner

Tracking
Controller

Tracking
Controller

Ref. 2

Ref. 4

Ref. 5

Scheduler

Maneuver
Library

High-level Control

Maneuver 1 Maneuver 2

Figure 2.1.: Hierarchical Framework.

by the difficulty to establish how properties of a model transfer to the actual system.

Even though verification methods and field testing can reduce this gap and therefore the

likelihood of failure, the conceptual challenge remains. This thesis does not focus on such

questions, but rather aims to establish consistency within the model-based controller design

process. While this is clearly not sufficient to ensure the absence of harm, it is necessary

for safety when a modular, hierarchical approach is chosen.

Even though non-cooperating vehicles cannot be controlled, it is necessary to predict

their future behavior, because they can impact the cooperating, controlled vehicles. How-

ever, obtaining such predictions is especially challenging because one must rely on assump-

tions about the unknown intents of the non-cooperating vehicles. This represents another

source of uncertainty in addition to that introduced by a potential mismatch between the

actual system and its model. If uncertainty is high, decision making becomes difficult. The

need to reduce the impact of uncertainty motivates to make frequent updates during the

execution of decisions in line with the receding horizon principle [123]. Such updates allow

to account for changes in the environment which have not been considered when making

a current prediction. Updates are made on different time scales for the different layers of

the framework, as a qualitative decision for a certain maneuver is typically made every few

seconds, while the execution of a maneuver requires updates of the corresponding reference

trajectory several times per second and the computation of control inputs is carried out in

the millisecond range.

This part considers the problem of cooperative trajectory planning, which is concerned

with settings like the one shown in Figure 2.2: a group of autonomous, cooperating vehicles

is driving on a road, each given knowledge of the sequence of roads (a route) that lead it

from its starting point to its destination. The cooperative vehicles share the road with non-

cooperating ones, where neighboring non-cooperative vehicles driving ahead of cooperative

10

non-cooperating vehicles

cooperating vehicles

Figure 2.2.: The general setting: cooperating and non-cooperating vehicles share the road.

ones deserve special attention. Let each of these vehicles be uniquely identified by integers

in C ⊂ N (the cooperating group) and N ⊂ N (the group of non-cooperative, leading

neighboring vehicles), respectively. Let a model for the temporal behavior (the dynamics)

of a cooperating vehicle i ∈ C be given by a function fi : Rnxi ×Rnui ×Rnνi → Rnxi :

χ̇i(t) = fi (χi(t), µi(t), νi(t)) , (2.1)

with the state χi ∈ Xi ⊆ Rnxi , controlled inputs µi ∈ Ui ⊂ Rnui , and disturbances νi ∈
Vi ⊂ Rnνi at the current time t ∈ R≥0. Assume Ui and Vi to be bounded sets. Further, let

the inputs µi at time t be determined based on the current state χi(t) and a time-varying

reference value x̄i(t) ∈ Rn̄xi by a controller function ki : Rnxi ×Rn̄xi → Rnui :

µi(t) = ki (χi(t), x̄i(t)) , (2.2)

where x̄i(t) (and correspondingly, the entire model of the controlled dynamics) is defined

for t ∈ [t0, tplan] ⊆ R≥0, tplan > t0.

In the following, denote by •(·) a sequence of vectors • over a (not necessarily explicitly

specified) time range (as opposed to •(t), giving the vector at a single point t in time).

Let the state χi contain information about longitudinal and lateral positions p
(i)
x , p

(i)
y ,

respectively, such that matrices C
(i)
pos ∈ R2×nxi allow to extract the position of vehicle i

from its state χi:

[
p

(i)
x (t)

p
(i)
y (t)

]
= C

(i)
posχi(t). (2.3)

Then, the following notion of reference values and sequences thereof is employed:

Definition 2.1 (Reference Trajectory of vehicle i). Let a sequence of position coordi-

nates
(
p̄

(i)
x , p̄

(i)
y

)
in an earth-fixed, cartesian coordinate system be given such that p̄

(i)
x :

11

2. The Maneuver Concept

[t0, tplan]→ R and p̄
(i)
y : [t0, tplan]→ R, where p̄

(i)
x and p̄

(i)
y are n-times continuously differ-

entiable on the open interval. Then, a reference trajectory x̄i(·) is defined as a sequence

of vectors x̄i : [t0, tplan]→ Rn̄xi , n̄xi = 2(n+ 1):

x̄i(t) := (2.4)
[
p̄

(i)
x (t) ˙̄p

(i)
x (t) ¨̄p

(i)
x (t) . . . p̄

(n+1),(i)
x (t) p̄

(i)
y (t) ˙̄p

(i)
y (t) ¨̄p

(i)
y (t) . . . p̄

(n+1),(i)
y (t)

]T
.

Along with given reference trajectory x̄i(·), initial state χ0, initial time t0, final time

tplan, and a disturbance trajectory νi(·), (2.1) together with (2.2) defines an initial value

problem. Its solution (whose existence and uniqueness is assumed) is the trajectory χi(·).
If the dependency on the above parameters is to be emphasized, it is alternatively written

as:

χi(·; t0, tplan, x̄i(·), νi(·)), (2.5)

where a semicolon is used to separate the varying time argument from constant parameters

of the trajectory, and

χ0 = χi(t0; t0, tplan, x̄i(·), νi(·)),
d

dt
χi(·; t0, tplan, x̄i(·), νi(·)) = fi(χi(t), ki (χi(t), x̄i(t)) , νi(t))

for all t ∈ [t0, tplan].

According to (2.5), the only means to actively influence the closed-loop trajectory is

the choice of the reference trajectory x̄i, which consequently must be chosen such that

χi(t) ∈ Xi and ki (χi(t), x̄i(t)) ∈ Ui hold for all considered disturbances and future times.

These constraints stem from a vehicle’s dynamics and define admissible values for, e.g.,

its velocity or acceleration. In contrast, the road topology or the need to avoid collisions

with other vehicles specify forbidden values (typically positions). Let these be encoded by

a time-varying set Fi(t) ⊂ R2, which – as an additional requirement – must be avoided by

proper choice of x̄i. Thus, the constraints Xi, Ui, and Fi(t) on the state and control of the

vehicle eventually also constrain the reference trajectory which is to be computed by the

trajectory planner. This is the implicit dependency between the tracking control and the

trajectory planning layer as indicated in Figure 1.1.

In order to make this dependency explicit, two preliminary assumptions are made at

this point: First, considering obstacle avoidance, the choice of a reference trajectory must

ensure that C
(i)
posχi(t) /∈ Fi(t). Given matrices C̄

(i)
pos ∈ R2×n̄xi such that:

[
p̄

(i)
x

p̄
(i)
y

]
= C̄

(i)
posx̄i,

the following assumption – to be validated later on in Theorem 7.1 – provides the basis

for collision avoidance:

12

Assumption 2.1 (Bounded Tracking Errors). Assume that there exists a positive scalar

kpos such that the deviation between reference positions and resulting positions fulfills:
∣∣∣
∣∣∣C(i)

posχi(t; t0, tplan, x̄i(·), νi(·))− C̄(i)
posx̄i(t)

∣∣∣
∣∣∣
∞
≤ kpos ∀ νi(t) ∈ Vi, t0 ≤ t ≤ tplan.

In addition, it is reasonable to assume that no initial position error exists, as planning

commences in the current position of a vehicle.

Furthermore – as the focus of the thesis is on regular planning and not emergency

maneuvering – assume:

Assumption 2.2 (Collision-free Initial State). At t0, no collision between any of the

considered vehicles exists or is inevitable.

Collisions can be avoided also at future times if the reference is chosen such that it does

not intersect with the set of forbidden positions plus a safety margin ∆p ∈ R2 as follows:

C̄
(i)
posx̄i(t) /∈ Fi(t)⊕ {∆p| ||∆p||∞ ≤ kpos} , (2.6)

where ⊕ denotes the Minkowski sum. Then, χi(t) /∈ Fi(t) ∀t ∈ (t0, tplan].

Next, in order to account for state and input constraints Xi and Ui, assume further:

Assumption 2.3 (Admissible Reference Trajectory). A set Cx̄ is given such that:

x̄i(t) ∈ Cx̄ ∀t ∈ [t0, tplan]⇒
χi(t; t0, tplan, x̄i(·), νi(·)) ∈ Xi,
ki
(
χi(t; t0, tplan, x̄i(·), νi(·)), x̄i(t)

)
∈ Ui

∀νi(t) ∈ Vi, ∀t ∈ [t0, tplan].

A justification for this assumption along with a procedure to design a controller ki is

given in Part II. In summary, these two assumptions allow to directly impose the constraints

on the reference trajectory, which is a tremendous advantage in terms of computational

efficiency. The less efficient alternative would be the following: first, a reference trajectory

is computed, then, its effect on the closed-loop dynamics is predicted, and after that, the

constraint compliance is considered.

It must be noted that (2.6) introduces a dependency of x̄i on Fi and therefore on the

behavior of other vehicles. The problem of computing a reference which fulfils these require-

ments is considered here in a cooperative setting, where vehicles within the cooperating

group C are willing and able to communicate information with other vehicles in C and

to adapt their behavior. The behavior of a cooperating group as well as the impact of

non-cooperating neighbors is modeled by a so-called maneuver as will be detailed in the

following. Assume in this part that the assignment of vehicles to the groups C and N
as well as the selection of a maneuver have been made. An exhaustive treatment of the

design of the corresponding decision algorithms is a topic on its own and, focussing on the

interaction between high-level controller and trajectory planner, beyond the scope of this

thesis. Nonetheless, an example procedure is given in Section 4.2. The following section

gives a review of related work on the planning problem, followed by the introduction of

basic concepts which will be used in the proposed approach to be outlined afterwards.

13

2. The Maneuver Concept

2.1. Related Work on Trajectory Planning

Different notions of the planning problem exist in the literature: if the objective is only

to compute a sequence of position coordinates without temporal information – a so-called

path –, the corresponding problem is often referred to as path planning. If temporal infor-

mation is assigned to the position coordinates, a trajectory results, and its computation

is termed trajectory planning. In the past decades, a large number of approaches to ei-

ther problem has been proposed in stationary and mobile robotics, aerospace or marine

applications, and on-road autonomous driving or racing. This diversity and the corre-

spondingly large number of approaches – consider only the recent survey articles just for

autonomous driving [60, 115, 61, 31] – puts an exhaustive review beyond the scope of this

thesis. Rather, a sketch of general developments as well as a discussion of approaches

relevant for the following chapters is provided.

A related problem exists in control theory, where the computation of reference trajecto-

ries is a common task. Often, it is cast as an optimal control problem, which can sometimes

be solved analytically [29], but usually requires specialized numerical methods, cf. [20] for

a general overview or [93] for an application in an automotive context. If applied in online

operation, these methods are typically realized according to the receding-horizon principle,

where problems are solved repeatedly for a certain time horizon, e.g. [163]. Solutions are

often computed based on nonlinear, non-convex optimization, which is computationally

demanding and makes an analysis of convergence difficult. Analytical solutions, on the

other hand – even though sometimes helpful [142, 149] – typically do not fulfill the re-

quirements of autonomous driving such as compliance with state and input constraints.

Especially state constraints for obstacle avoidance are a major contributor to the prob-

lem’s complexity, as these make the space in which planning is conducted non-convex.

These reasons have motivated the development of specialized algorithms for the trajectory

planning problem in robotics.

Gridding-based methods

A very popular class of algorithms generates plans by connecting a finite number of points

in an agent’s (i.e., a robot, ship, UAV, autonomous vehicle,. . .) state space. These points

are taken from a set which has been specified during the design process, for example as

a (not necessarily equidistant) grid in the state space, omitting the positions of obstacles.

Early approaches typically did not account for the dynamics of the controlled vehicle and

considered only its position. In order to extract a path from a set of points in position space,

these approaches relied on graph-searching procedures such as Dijkstra’s algorithm or the

A∗-algorithm, cf. [88] for an introduction. If a trajectory rather than a path is desired, the

so-called path-velocity-decomposition [77] can be applied, which assigns a velocity profile

to a given path. However, depending on the shape of the path, the resulting profile may

not be compatible with an agent’s actual dynamics.

As the run-time of graph searching algorithms depends (for a fixed dimension of the

search space) on the number of points to be considered, the general desire is to reduce the

14

2.1. Related Work on Trajectory Planning

number of points, while still obtaining results of sufficient quality. The need to achieve

this online has motivated the development of randomized algorithms such as probabilistic

road maps (PRM) or rapidly-exploring random trees (RRT), which provide probabilistic

guarantees regarding their ability to find a solution as well as the quality of a solution.

More recent sampling-based algorithms such as RRT∗ or Monte Carlo trees [71, 84] are

able to account for dynamics and have been successfully applied in practical experiments

in a vehicle context [86]. Nonetheless, gridding-based methods suffer from the curse of

dimensionality, as for higher dimensions, it gets increasingly difficult to sufficiently cover

the state space by samples and to search over them. This is especially problematic in

the context of cooperative autonomous driving, where the state space dimension is higher

than when considering only a single vehicle. At the same time, especially the strength

of sampling-based methods of being able to navigate cluttered environments cannot fully

unfold in highly-structured on-road traffic.

Learning-based Approaches

After early applications to autonomous driving, e.g. [119], and a general interest in the

context of dynamic programming [18], learning-based methods did not play a major role in

the planning community until a recent renewal of interest in the wake of the deep-learning

trend. A wide variety of different approaches exists, for example relying on supervised

learning, where training data is obtained from human experience [130, 90, 141] or numerical

optimal control [104]. If no training data is available, unsupervised learning techniques

such as reinforcement learning can be employed [91], which tries to find solutions on its

own.

These methods offer the advantage to not require a deep understanding of the problem

in order to return somewhat useful results, and aspects such as nonlinear dynamics, which

are problematic for more classical approaches, do not necessarily pose a challenge. In

addition, it seems possible to capture aspects which are difficult to describe by more

classical methods, such as driving styles. Also, online computation times are negligible for

the planning itself, while the learning process – mainly carried out offline, but potentially

continued online – can be computationally very demanding.

However, just as learning-based methods in general, these approaches face the conceptual

challenge of being currently unable to give guarantees regarding the outputs resulting for

inputs which have not been considered during the learning process. In particular, it is not

– at least not yet – possible to guarantee constraint compliance and obstacle avoidance,

which is problematic in a safety-critical application like the one considered in this thesis.

Exploiting structure: Maneuvers, Motion primitives, and Homotopies

The complexity of the planning task has motivated the development of approaches which

seek to reduce it by exploiting problem structure, often relying on so-called motion prim-

itives, maneuvers, or homotopies as reviewed below. Even though many different realiza-

tions exist, the general idea underlying such approaches is to reduce the size of the search

15

2. The Maneuver Concept

space. This had already motivated probabilistic approaches such as RRT/PRM mentioned

above, however possibly leading to a reduced performance. Methods which rely on maneu-

vers/motion primitives/homotopies, in contrast, suppose that in a structured environment,

control based on a small set of admissible decisions specified in advance allows to achieve

almost equivalent results as approaches without such a reduced decision set. While this

reduces the computational effort required during online operation, the design task carried

out offline is typically more complicated, as it now requires to devise a reduced decision

set. As outlined in the sequel, another advantage of such offline computations is to en-

able the use of set-based methods, cf. [23] and Chapter 3. Thus, it becomes possible to

give guarantees regarding properties of the result, while the complexity of the design task

further increases.

An early use of a motion primitive concept targeting a stationary robot is reported

in [9], yet without detailing its realization. Later, the term maneuver was formally de-

fined [55, 54] in an approach to the guidance and control of nonholonomic mechanical

systems which exhibit symmetries and relative equilibria (trajectories of constant inputs

and velocities) – two requirements which are reported there to be fulfilled by most vehicles,

being equivalent to invariance to translation and rotations around the vertical axis. For

such systems, a maneuver library is devised which contains so-called trajectory primitives :

classes of trajectories which are equivalent under mentioned translations and rotations.

Two types of primitives are considered in [55, 54]: trim trajectories, i.e., relative equilib-

ria, and maneuvers, which encode finite-time transitions between these. The interaction

of these primitives is modeled by a hybrid automaton termed the maneuver automaton.

Two major tasks are addressed: first, the design of maneuvers, which can be solved in

different ways, e.g. by numerical optimal control or relying on the flatness property of

a system [80]. Second, safe transition between the discrete states of the hybrid automa-

ton must be guaranteed, for which set-based concepts are employed. On this basis, the

planning problem is cast as an optimal control problem and solved offline by approximate

dynamic programming [18]. As the maneuvers are defined for the system model itself (and

not a simplified planning model), all generated reference trajectories are executable and

can be robustly controlled, given a corresponding controller. However, in order to account

for moving obstacles, it is required to combine the approach with another approach for the

selection of a collision-free maneuver, which can be difficult.

A different approach to structuring is considered in [135] and relies on hybrid automata,

cf. [98]. Each discrete state of such an automaton in [135] models different continuous dy-

namics of a controlled system; different states can be enabled by a supervisory controller,

and safety of transitions is envisioned (though not realized) to rely on reachability anal-

ysis. The approach is applied to an overtaking example with three involved vehicles. A

conceptually similar approach is pursued by [37, 59], which rely on hybrid system models

to address the problem of automatic aerial refueling of UAVs and the aerobatic flight of

an autonomous quadrotor, respectively. There, a maneuver consists of a sequence of dis-

crete states, between which a transition is only admissible if the system’s continuous state

is within a certain set, which is computed using the Level Set toolbox [108]. While the

approach is able to account for disturbances and can guarantee the successful completion

16

2.1. Related Work on Trajectory Planning

of a maneuver, it is limited to low-dimensional systems by the computational burden of

the set computations. Also, no obstacles are considered.

The approach in [69], similar in spirit to [137, 100], considers a motion primitive as

the set of possible trajectories of the closed-loop dynamics of an agent and a tracking

controller under bounded disturbances and a given reference input. Trajectories result

from concatenation of several motion primitives by a graph-searching algorithm. As a

primitive describes all possible behaviors of the controlled system, guarantees for collision

avoidance can be given. To ensure conditions under which a concatenation is admissible

is a major challenge in this kind of approach.

Sometimes, similar concepts are found under the notion of homotopy, for example to limit

the search space of gridding-based planners [125, 157]. The strand of work [81, 82, 83]

in contrast focuses on continuous solutions, essentially relying on interpolation of pre-

computed trajectories to ensure collision avoidance. In the context of autonomous driving,

the work [16] exploits the structure inherent in on-road traffic in order to compute trajec-

tories. There, structure is understood as the existence of a limited number of homotopies

(also referred to as maneuver variants) when planning in a given situation. Extensions of

the maneuver notion to cooperative driving can be found in [101, 46].

Approaches based on Mixed-Integer Linear or Quadratic Programming

Originally mainly applied in operations research problems [22], mixed-integer linear pro-

gramming (MILP) and mixed-integer quadratic programming (MIQP) [153] have gained

increasing interest in the control community due to their ability to encode logical implica-

tions, which in turn allows to encode switching processes, changes in a system’s dynamics,

certain types of non-convex constraints, and so on. After first applications in the modeling

of hybrid systems such as piecewise-affine systems or hybrid automata [98], MILP/MIQP

were quickly discovered to allow for efficient solution of the planning problem. After first

applications in aerospace [127, 126, 85] or robotics [117, 35], MILP/MIQP have found ap-

plication to trajectory planning in autonomous driving [112, 120, 45, 46, 30, 109]. This

growing interest in various application domains is complemented by further advances on

the system-theoretical side [95, 103].

A major reason for the wide use of MILP/MIQP is the observation that, despite adverse

theoretical run-time bounds, state-of-the-art solvers such as those in [72, 63] perform very

well in practice and are guaranteed to find a globally optimal solution. Nonetheless, much

research effort is devoted to a reduction of problem complexity by exploitation of problem-

specific structure. Often, this either aims at a reduction of complexity in terms of the

number of binary variables required for a problem formulation or at a reduction of the

number of possible value combinations. This can be facilitated by imposing additional

constraints, for example on the temporal sequence of variables [143, 46].

The following chapters present an approach which is both able to reduce the problem

complexity and to characterize the feasible domain of the resulting MIQP – an aspect

which is crucial for safe and computationally efficient operation of autonomous vehicles.

17

2. The Maneuver Concept

Vehicle 1

×

Vehicle 2

×
Vehicle 3

×

Phase 1

Phase 2

Phase 3

Figure 2.3.: Partition of an example maneuver into different phases.

2.2. Basic Concepts

The basic approach of this part is to generate reference trajectories for the tracking con-

troller of a vehicle as outputs of a dynamical system in such a way that constraints on the

resulting states and control inputs of the controlled vehicles i ∈ C hold and no collisions

occur. While generally a difficult problem due to the presence of non-convex, time-varying

constraints, the planning problem also exhibits a certain structure: many behaviors in

onroad traffic are qualitatively similar in so far as that they exhibit a similar temporal

order of events. Consider, for example, the overtaking maneuver in Fig. 2.3, which can be

divided into three phases: in the first phase, the overtaking Vehicle 1 is behind Vehicle 2,

in the second phase, it is next to it, and in the third phase, it has overtaken, yet not neces-

sarily attained a position on the target right lane. Once this has been accomplished before

the oncoming Vehicle 3 is too close, the maneuver is completed. The approach proposed

in this section, referred to as maneuver concept, seeks to exploit such structure in order to

enable computationally efficient planning.

2.2.1. Maneuvers

The following definition, modifying that in [134], is the basis of the maneuver concept:

Definition 2.2 (Syntax of a Hybrid Automaton). A hybrid automaton HA is a tuple

(T,Q, q0, qT, inv,U ,W ,X0,XT,Θ, g, f), defining:

� a time domain T := {tk := t0 + k · Ts|k ∈ N} with sampling time Ts > 0 and initial

time t0 ≥ 0,

� a finite set Q of phases with initial phase q0 ∈ Q and target phase qT ∈ Q,

� a state vector x ∈ Rnx, an input vector u ∈ U ⊂ Rnu, and a disturbance vector

w ∈ Rnw such that

[
x

w

]
∈ W, with compact constraint sets U and W,

18

2.2. Basic Concepts

� an affine flow function f : Rnx × U × projwW → Rnx:

f(x, u, w) := Ax+Bu+B1w + a, (2.7)

with matrices A ∈ Rnx×nx, B ∈ Rnx×nu, B1 ∈ Rnx×nw , and a ∈ Rnx,

� a map inv : Q → 2R
nx

called invariant, assigning to each phase q ∈ Q a set inv(q) ⊆
Rnx in which the state x may evolve over time,

� the sets X0 ⊆ inv(q0) and XT ⊆ inv(qT) of initial and target states, respectively,

� a set T = {θ1, θ2, . . . } of discrete transitions θ ∈ Q × Q and a map Θ : Q → 2T ,

which assigns to each phase q the set Θ(q) =
{
θ = (q−, q)|θ ∈ T

}
of admissible

discrete transitions leading to it, where in particular a sequence of transitions from

q0 to qT must exist,

� a guard map g : Θ(q)→ 2R
nx

which assigns a guard set g(θ) ⊆ Rnx to each transition

θ = (q−, q) ∈ Θ(q), with g(θ) ⊆ inv(q−) ∩ inv(q) 6= ∅, where no two guard sets

intersect by design,

� a linear, n-times continuously differentiable output function, mapping state x and

input u to a reference value x̄ (with n as in Definition 2.1):

x̄ = h(x, u) := Cx+Du. (2.8)

Note that the requirement regarding the intersection of guards and invariants does not

arise in standard definitions of hybrid automata, e.g. [134], owing to the use of so-called

jump functions, which are not employed in this thesis, however.

An example for a hybrid automaton is shown in Fig. 2.4. Often [98], the evolution of a

hybrid system is considered on a continuous time domain. However, digital and especially

optimization-based control cannot be realized in continuous time, which motivates the use

of a discrete time domain T in Definition 2.2. The temporal evolution of states and phases

of a hybrid automaton occurs according to Definition 2.3:

Definition 2.3 (Admissible Run of HA). Defining sequences of phases and states:

qj+1(·) :=
(
q(t0), q(t1), . . . , q(tj−2), q(tj)

)

xj+1(·) :=
(
x(t0), x(t1), . . . , x(tj−2), x(tj)

)

as well as inputs and disturbances:

uj(·) :=
(
u(t0), u(t1), . . . , u(tj−2), u(tj−1)

)

wj(·) :=
(
w(t0), w(t1), . . . , w(tj−2), w(tj−1)

)
,

an admissible run of the automaton is a sequence

(
qj+1(·)
xj+1(·)

)
which fulfills the following:

Starting in X0, the continuous state x evolves according to the flow function (2.7), depend-

ing on the state, input, and disturbance values. The input u is chosen such that u ∈ U , but

19

2. The Maneuver Concept

q0: Phase 1
x(tk+1) = f(x(tk), u(tk), w(tk))

x(tk) ∈ inv(q0)

u(tk) ∈ U[
x(tk)
w(tk)

]
∈ W

q1: Phase 2
x(tk+1) = f(x(tk), u(tk), w(tk))

x(tk) ∈ inv(q1)

u(tk) ∈ U[
x(tk)
w(tk)

]
∈ W

q2: Phase 3
x(tk+1) = f(x(tk), u(tk), w(tk))

x(tk) ∈ inv(q2)

u(tk) ∈ U[
x(tk)
w(tk)

]
∈ W

g(θ0,1) g(θ1,2)

start complete

Figure 2.4.: Example hybrid automaton corresponding to an overtaking maneuver.

without knowledge of the disturbance w, for which

[
x(tk)

w(tk)

]
∈ W holds for all 0 ≤ k ≤ j+1.

Upon entry of x into a guard set g(θ) = (q0, qi), an immediate transition from q0 to phase

qi is enforced, where the evolution of x continues with x ∈ inv(qi) until another guard set

is entered, and so forth. Once x enters the terminal set XT, its evolution stops.

From the state x, reference trajectories for the involved cooperating vehicles will be

derived in the sequel. Even though the dynamics (2.1) of a vehicle is typically nonlinear,

an affine flow function is chosen in Definition 2.2 to describe the evolution of x because it

allows for efficient computations. As the automaton is not involved in direct actuation of

a vehicle, but is only used for the computation of reference trajectories for the low-level

tracking controller, this mismatch is not per se a problem. The challenges associated with

this choice are the topic of Part II. Also for reasons of computational efficiency, let all sets

in Definition 2.2 be polyhedral. A hybrid automaton based on this definition is a central

element of a maneuver:

Definition 2.4 (Maneuver). A maneuver is a tuple M =
(
C,N , Hplan, HA

)
, consisting of a

set C of cooperating vehicles, their non-cooperating leading neighbor vehicles N , a planning

horizon Hplan, and a hybrid automaton HA according to Definition 2.2.

Apart from maneuvers, controllable sets are another important concept, which is intro-

duced next.

2.2.2. Controllable Sets

In the sequel, it will be important to characterize (sets of) states from which an admissible

run of a given hybrid automaton exists which ends in the target set XT in target phase qT

despite the influence of all admissible disturbances. Adapting [24, p. 184], [34, p. 42],

or [79], this leads to the following concept:

Definition 2.5 (j-step robust controllable set of a hybrid automaton). Given a hybrid

automaton as in Definition 2.2 and a target set XT in the invariant inv(qT) of a target

phase qT, the set

Kj =
{
K(1)
j ,K(2)

j , . . .
}

(2.9)

20

2.2. Basic Concepts

contains sets K(i)
j ⊆ Q×Rnx, i = 1, 2, . . . , |Kj |, of states x ∈ Rnx and phases q ∈ Q which

can be robustly (i.e., for all considered actions of the disturbance) steered to the target

set XT in the target phase qT within j steps in T. Its computation bases on the operator

pre : Rnx ×Rnx → Rnx:

pre(Xstart,Xend) =

{
x ∈ Xstart|∃u ∈ U : Ax+Bu+B1w ∈ Xend ∀ w :

[
x

w

]
∈ W

}
.

This operator is the basis for the operator prec : Q×Rnx → Q×Rnx:

prec

(
K(i)
j−1

)
= {q} × pre

(
inv (q) , projxK

(i)
j−1

)
, with q such that ∃x :

[
q

x

]
∈ K(i)

j−1

and the operator pred : Q×Q×Rnx → Q×Rnx:

pred

(
θ = (q−, q+),K(i)

j−1

)
= {q−} × pre

(
inv
(
q−
)
,
(
projxK

(i)
j−1

)
∩ g(θ)

)
,

where q+ is such that ∃x :

[
q+

x

]
∈ K(i)

j−1. Given these operators, a controllable set is

defined recursively, starting with K0 := {{qT} × XT}:

Kj =

|Kj−1|⋃

i=1

prec

(
K(i)
j−1

)
∪


 ⋃

θ∈Θ(q)

pred

(
θ,K(i)

j−1

)

 , with q such that ∃x :

[
q

x

]
∈ K(i)

j−1.

In Definition 2.5, pre returns all states from a specified set of initial states which can

be robustly steered to a given target set in one step under affine dynamics and constraints

on control and disturbance inputs. In the context of a hybrid automaton, the operator

prec makes use of pre to determine all controllable states within the same invariant as the

target set, while pred focuses on controllable states from other invariants with admissible

transitions to that of the target set. The operator pre can generate several (potentially

even overlapping) predecessor sets, depending on the number of discrete transitions. Thus,

Kj is a set whose elements are denoted by K(i)
j and whose union is non-convex.

According to [24], for affine dynamics (2.7) and polyhedral constraint sets of the form

U = {u|Auu ≤ bu}, Xend = {x|Aendx ≤ bend}, Xstart = {x|Astartx ≤ bstart}, pre(Xstart,Xend)

can be computed as follows: :

pre(Xstart,Xend) =

projx

{[
x

u

]
|
[
AendA AendB

0 Au

][
x

u

]
+

[
AendB1

0

]
w ≤

[
bend

bu

]
∀w :

[
x

w

]
∈ W

}
∩ Xstart,

which in turn is equivalent to:

projx

{[
x

u

]
|
[
AendA AendB

0 Au

][
x

u

]
≤
[
bend

bu

]
− b̃
}
∩ Xstart, (2.10)

21

2. The Maneuver Concept

where the l-th entry of b̃ results from:

b̃[l] := max
w

Aend[l,:]B1w s.t.

[
x

w

]
∈ W . (2.11)

It is important to note that – contrasting the standard setting considered in [24] – the

coupling constraintW introduces a dependency of b̃ on x into (2.10), which requires special

attention as detailed in Sec. 2.3.1.

Another important concept in the following is the notion of robust control invariant

sets [23]:

Definition 2.6 (Robust Control Invariant Set). A set O ⊂ Rn is robust control invariant

if and only if:

x(tk) ∈ O ⇒ ∃u ∈ U : f(x(tk), u(tk), w(tk)) ∈ O ∀ w :

[
w(tk)

x(tk)

]
∈ W .

These concepts will be employed in the following to model maneuvers and to approach

the planning problem on that basis.

2.3. Modeling of Maneuvers

In order to model a set of qualitatively similar behaviors of a group of vehicles based on the

maneuver definition in Definition 2.4, proper choice of the elements of the corresponding

hybrid automaton is required. Starting point in the modeling process is the choice of the

sampling time Ts and of a desired degree n of continuity of the reference trajectory, which

eventually determines the number of entries in the vector (2.4).

The next step considers the interaction and cooperation between all vehicles. Perceiving

each vehicle as a subsystem, the entity of all vehicles forms a distributed system. In the

theory of distributed systems, three interaction types are generally considered [74]: through

common objectives (typically represented by a cost function), dynamics, and constraints.

The definition of a maneuver targets the description of admissible behaviors, without

judging about their quality. Therefore, the definition of a cost function is irrelevant at this

point. Similarly, vehicles do not impact the dynamics (2.1) of each other, which leaves

interaction through constraints:

As discussed earlier, this interaction is via the time-varying set Fi(t) of positions forbid-

den for vehicle i. Such restrictions not only apply at one point in time, but throughout the

entire duration of a maneuver. Therefore, it is required to consider the temporal evolu-

tion of the vehicles’ positions, which is modeled by the flow function f for all cooperating

vehicles in C as well as the neighboring vehicles in N together. Therein, the inputs of the

vehicles in C are associated with the control input u, while the inputs of those vehicles

in N correspond to the disturbance w. States and inputs are then related to the reference

trajectory by choice of the output function h according to (2.8). At this point, the differ-

ence between the flow function and the model (2.1) of the dynamics of vehicle i must be

22

2.3. Modeling of Maneuvers

overapproximation of Fi(t)

Fi(t)

Figure 2.5.: Example for a lane-aligned, rectangular overapproximation of Fi(t).

emphasized: first, the flow function considers multiple vehicles. Second, while the typically

nonlinear dynamics (2.1) models position dynamics due to (2.3), the dynamics (2.7) only

models the evolution of reference positions; an affine system is chosen there for reasons of

computational efficiency.

In on-road traffic, the interaction between vehicles is constrained by the existence of

lanes, which allows for the separate consideration of longitudinal and lateral interaction

between vehicles. This corresponds to abstracting from a set Fi(t) and to consider a lane-

aligned, rectangular overapproximation instead, cf. Figure 2.5. For example, during lane

keeping, only the distance to a leading vehicle constrains the action of a following vehicle,

while during overtaking or lane changing, the distance to vehicles next to each involved

vehicle and both their longitudinal and lateral motion must be considered. Assume:

Assumption 2.4 (Interaction between Vehicles). During the execution of a maneuver,

non-cooperating vehicles only impact cooperating ones through their longitudinal motion.

Lateral interaction is not admissible.

In particular, this assumption ensures that no non-cooperating neighboring vehicle leaves

its lane in the direction of an occupied neighboring lane, e.g. by merging into the safety

gap between two cooperating vehicles.

In order to model these rules for interaction between vehicles, the general approach in

the following is to define a hybrid automaton HA for all vehicles in C and N combined,

where the temporal evolution of a certain cooperative behavior to be modeled is divided

into sequential phases Q. To each phase q, an invariant inv(q) is associated, specifying

admissible states x in that phase, while the discrete transitions Θ(q) and the corresponding

guard maps g(θ), θ ∈ Θ(q), define admissible transitions from one phase to another.

These choices must be made subject to two major requirements: First, the states and

inputs must be constrained such that, based on Assumption 2.3, the reference trajectory is

suitable for tracking purposes as discussed in Part II. Second, the invariants and transitions

must ensure that no vehicle in C causes a collision. In the following, longitudinal and

lateral collisions are considered separately as discussed in Section 2.3.1 and Section 2.3.2,

respectively.

2.3.1. Longitudinal Collision Avoidance

This section aims at the derivation of constraints which, if considered in the definition

of the invariants of a hybrid automaton when modeling a maneuver, ensure longitudinal

23

2. The Maneuver Concept

Vehicle F

×

Vehicle L

×v
(F)
x v

(L)
x

py

px
dLF

p
(F)
x p

(L)
x

Figure 2.6.: Longitudinal distance between two vehicles.

collision avoidance between all considered vehicles. To that end, the constellation shown

in Figure 2.6 is considered, where a vehicle L is driving ahead of a vehicle F. Denoting

the longitudinal positions of these vehicles by p
(L)
x and p

(F)
x , respectively, and the relative

distance by dLF := p
(L)
x −p(F)

x , a longitudinal collision between these two occurs if a negative

relative velocity is maintained for too long; this results if F is driving faster than L. Because

traffic rules forbid F to cause a collision by purposely tail-gating L, the following analysis

focuses on the case where braking of L leads to negative relative velocity – for example in

case of emergency braking.

In order to simplify the exposition of the following derivations, the vehicles’ longitudinal

acceleration/braking is considered as input, with identical and symmetric bounds:

|u(F)
x | ≤ ux,max, |u(L)

x | ≤ ux,max.

The objective is to characterize an invariant set of relative distances and velocities, such

that a minimum longitudinal safety distance lx,safe > 0 can be maintained by the vehicle F

despite all acceleration/braking actions of vehicle L for all times. In this, it is assumed

that F immediately notices when L brakes, such that there is no time delay in a reaction of F

(the consideration of delays, while possible, would unnecessarily complicate the following

exposition). Assume further that both F and L obey to velocity constraints which are

imposed by traffic rules:

vx,min ≤ v
(F)
x ≤ vx,max, vx,min ≤ v

(L)
x ≤ vx,max.

This constrains the accelerations in dependency on the velocity: if the velocity of a vehicle

is extremal, it must not accelerate further beyond that velocity, but only in the opposite

direction. Under these assumptions, it is irrelevant whether L is cooperating/autonomous

or not because the necessary safety distance only depends on acceleration/braking capa-

bilities of the two vehicles.

Let the dynamics of the relative position and the vehicle velocities be modeled by zero-

order hold discretization with sampling time Ts of:

d

dt



d(LF)

v
(F)
x

v
(F)
x


 =




0 1 −1

0 0 0

0 0 0





d(LF)

v
(F)
x

v
(F)
x


+




0

1

0


u(L)

x +




0

0

1


u(F)

x , (2.12)

24

2.3. Modeling of Maneuvers

leading to:

x(tk+1) = Ax(tk) +Bu(tk) +B1w(tk), (2.13)

with:

x :=



d(LF)

v
(L)
x

v
(F)
x


 , u := u

(F)
x , w := u

(L)
x , A =




1 Ts −Ts

0 1 0

0 0 1


 , B =



−T 2

s

2

0

Ts


 , B1 =



T 2

s

2

Ts

0


 .

(2.14)

It should be noted that this simple model actually reflects the purely longitudinal dynamics

of more complex vehicle models such as the bicycle model as considered in Part II. The

state is confined to the set

X :=







d(LF)

v
(L)
x

v
(F)
x


 |d(LF) ≥ lx,safe, vx,min ≤ v

(F)
x ≤ vx,max



 , (2.15)

while the control inputs are taken from:

U =
{
u

(F)
x | |u(F)

x | ≤ ux,max

}
. (2.16)

In order to model constraints on the disturbance input u
(L)
x , it should be noted that the

interval [vx,min, vx,max] is control invariant for the leading vehicle L, i.e., the vehicle can

always choose u
(L)
x such that it complies with the velocity constraints. Compatible inputs

are encoded by:

W :=

{[
x

u
(L)
x

]
|
[
v

(L)
x

u
(L)
x

]
∈ [vx,min, vx,max]× [−ux,max, ux,max],

[
v

(L)
x + Tsu

(L)
x

u
(L)
x

]
∈ [vx,min, vx,max]× [−ux,max, ux,max]

}
,

or equivalently,

W =

{[
x

u
(L)
x

]
| |u(L)

x | ≤ ux,max,
vx,min − v(L)

x

Ts
≤ u

(L)
x ≤ vx,max − v(L)

x

Ts
, vx,min ≤ vx ≤ vx,max

}
.

(2.17)

The objective of the remainder of the section is to compute a robust control invariant

set Xsafe, containing according to Definition 2.6 those states for which an admissible safety

distance can be maintained despite all actions of the leading vehicle. If vx,min = 0, these

actions comprise braking to standstill of L and consequently also F. Let

XT =
{
x|d(LF) ≥ lx,safe, v

(F)
x = 0

}
. (2.18)

25

2. The Maneuver Concept

Then, the computation of Xsafe relies on the fact that if the following vehicle F can avoid

a collision for maximum braking of the leading vehicle L, it can do so for all admissible

accelerations. More formally:

Proposition 2.1. The set

{
x ∈ X |∃j ∈ N, uj(·), xj+1(·) : Axj+1(tk) +Buj(tk) +B1wj(tk) = xj+1(tk+1),

xj+1(t0) = x, uj(tk) ∈ U , xj+1(tj) ∈ XT,

wj(tk) = max

{
−ux,max,

vx,min − v(L)
x (tk)

Ts

}
∀k = 0, 1, 2, . . . , j − 1

}

is robust control invariant under the dynamics (2.13).

Even though intuitive, Proposition 2.1 is elementary for the rest of this part and therefore

proven in detail:

Proof. First, note that the target set XT is a robust control invariant set: vehicle F is at

standstill in a safe distance to the leading vehicle L, which can only increase the safety

distance as it must not drive backwards. By definition, every set of states that can be

robustly controlled to a robust control invariant set is also robust control invariant [23].

The general idea is to compute a sequence of j of such sets:

(
Kk(XT)

)j
k=1

according to Section 2.5, which is simplified by the fact that not a hybrid automaton, but

only a linear, time-invariant system is considered, such that phases and transitions do not

appear in the computations. Each k-step controllable set is of the form:

Kk = {x|Akx ≤ bk} .

Next, it is shown that these sets are equivalent to the corresponding sets which result

for maximum admissible braking of the leading vehicle. Computations are based on the

recursion in Definition 2.5, requiring application of the pre-operator (2.10). In iteration k,

pre reads:







Ak




1 Ts −Ts

0 1 0

0 0 1


 Ak



−T 2

s

0

Ts




0 Au



[
x

u

]
≤ bk − b̃




∩ X . (2.19)

The computation of b̃ requires to solve the optimization problem (2.11), where the optimal

value of w depends on Ak[l,:]. These result from preceding iterations and can be explicitly

computed. More specifically, given Ak such that sgnAk[l,1] ≤ 0 and sgnAk[l,2] ≤ 0 for each

26

2.3. Modeling of Maneuvers

row l, the same property holds for Ak+1. The transition from Ak to Ak+1 consists of three

steps: multiplication of Ak by A, projection, and intersection with X . Clearly, based on A

in (2.14), the signs of the first and second column remain unaltered for AkA. The projection

operation projx is typically facilitated based on Fourier-Motzkin elimination [162], which

is equivalent to multiplication with a matrix D of non-negative entries, such that the

projection in (2.19) is equivalent to:

D



Ak




1 Ts −Ts

0 1 0

0 0 1


 Ak



−T 2

s

0

Ts




0 Au



[
x

u

]
≤ D

(
bk − b̃

)
,

Thus, the signs of the first two columns of the resulting matrix are non-positive. The

intersection with the state constraints X only adds a negative entry to the first column,

as with (2.15) in half-space representation,

X =



x|



−1 0 0

0 0 −1

0 0 1


 ≤



−lx,safe

−vx,min

vx,max





 ,

while the added positive value in the third column is irrelevant for the optimization

of (2.11).

The beginning of the induction is the target set (2.18). Re-writing equality constraints

into two inequality constraints then leads to:

A0 =



−1 0 0

0 0 −1

0 0 1


 , b0 =



−lx,safe

0

0


 ,

and therefore,

A0A =



−1 −Ts Ts

0 0 −1

0 0 1


 .

Consequently,

Ak[l,:]B1 ≤ 0

for every row l and any step k. Combined with (2.11), this implies that

arg maxAk[l,:]B1w = max

{
−ux,max,

vx,min − v(L)
x

Ts

}

for every row l and any k, completing the proof.

27

2. The Maneuver Concept

While a valuable tool in the proof of Proposition 2.1, two major reasons prevent the

application of the recursion in Definition 2.5 to the actual computation: first, it would,

depending on the chosen number of steps, return a large number of polytopes, making it

computationally expensive. Second – and even more severe – the state-dependent distur-

bance prevents the use of the standard tools from computational geometry for computation

of the projection operation that is required to implement the pre-operator, cf. (2.10). On

the other hand, it is possible to compute a robust control invariant set analytically:

Proposition 2.2 (Robust control invariant set X̄safe). The set

X̄safe =







d(LF)

v
(L)
x

v
(F)
x



∣∣∣∣d(LF) +

1

2|ux,min|
(
v

(L)
x

2
− v(F)

x

2)
≥ lx,safe





is robust control invariant for the dynamics (2.13) and the corresponding constraints (2.15),

(2.16), and (2.17).

Proposition 2.2 is proven in Appendix A. While the set X̄safe is non-convex, polytopes

are preferable for computational reasons. This leads to:

Proposition 2.3 (Longitudinal Collision Avoidance). Given a robust control invariant

set X̄safe according to Proposition 2.2, a polytope

Xsafe = {x|Asafex ≤ bsafe} ⊂ X̄safe, (2.20)

and a current state x ∈ Xsafe, longitudinal collision between L and F can be avoided at all

future times.

Proof. Clearly, x(tk) ∈ Xsafe ⇒ x(tk) ∈ X̄safe. By definition of X̄safe, there exists u(F)(tk)

such that x(tk+1) ∈ X̄safe ∀ u(L)
x .

With X̄safe being a three-dimensional set, it is possible to obtain the polyhedral inner

approximation Xsafe in (2.20) manually by visual inspection. Longitudinal collisions in a

platoon of multiple vehicles can obviously be avoided if Proposition 2.3 holds for according

pairs of neighboring vehicles of the platoon.

2.3.2. Lateral Collision Avoidance

While the derivations of the previous section give conditions for longitudinal safety be-

tween any pair of vehicles and while non-cooperating vehicles will not cause a collision by

lateral movement according to Assumption 2.4, the planning algorithm must actively en-

sure lateral collision avoidance for the cooperating vehicles. Many approaches to collision

avoidance specify forbidden regions of positions to be avoided during the planning process.

In the presence of moving obstacles, this leads to time-varying constraints as illustrated

in the space-time diagram (cf. [16]) in Fig. 2.7a for an example overtaking maneuver: at

28

2.4. Using Maneuvers for Planning

each time, the rectangular over-approximation of the space occupied by the vehicle which

is being overtaken must be avoided by the overtaking vehicle.

An alternative representation of the same collision avoidance constraints is shown in

Fig. 2.7b, relying on relative positions (relative to a chosen vehicle) between the involved

vehicles. While both representations of obstacle avoidance constraints encode equivalent

information regarding the set of forbidden positions, the approach based on relative posi-

tions is simpler, as constraints are now time invariant. In addition – even though it would

be possible to specify sets of forbidden relative positions in this approach – the notion of

admissible positions as the complement of forbidden regions is more advantageous: If sets

of states X0 and XT are defined which denote start and end of a maneuver, it is possible

to partition a set of admissible positions into a sequence of convex sets which connects

these initial and target sets (consider again Fig. 2.3!). This reduces the planning problem

to the task of planning inside convex constraints. Each such convex set can be composed

with further constraints on states, yielding the invariants of the phases of a maneuver.

While the times of transitions between phases are unknown (except in the unrealistic case

of known longitudinal velocities of all involved vehicles), their computation is simpler than

general avoidance of forbidden sets at each time instance, as the corresponding planning

problem as detailed in the next section is easier to solve. Further simplifications can be

obtained by imposing constraints on the temporal order of phases, for example excluding a

behavior where the overtaking vehicle drives next to the preceding vehicle, not overtaking,

but falling back and coming up again.

2.4. Using Maneuvers for Planning

Cooperative trajectory planning, i.e., the computation of a reference trajectory for a

group of cooperating vehicles, requires to account for many different constraints in high-

dimensional state spaces. The maneuver concept as proposed in the previous sections is

a structured way to encode these constraints. Yet, while a maneuver implicitly defines a

set of admissible runs of the corresponding hybrid automaton HA, controlling a group C of

autonomous vehicles requires to determine a single reference trajectory starting at a given

initial state. In the following, an optimization-based procedure is used to approach this

t

py

px

Fi(t)Admissible

position

trajectories

(a) Time-varying constraints on positions.

p
(2)
x − p(1)x

py

(b) Time-invariant constraints (dashed) on
relative positions for different phases.

Figure 2.7.: Constraints and example position trajectories during an overtaking maneuver

with two vehicles.

29

2. The Maneuver Concept

challenge – not only for optimality, but to automatically ensure constraint compliance.

However, the formulation of an optimization problem is impeded by the fact that a

hybrid automaton as in Definition 2.2 is an uncertain system due to the influence of the

disturbance w, whose future values are unknown and beyond control. In this context, opti-

mization is typically considered either in a stochastic [132] or a game-theoretic setting [12].

Both philosophies make assumptions on the future values of w in order to predict future

values of the state x, based on the semantics as given in Definition 2.2. Predictions of a

quantity • made for time step tk+j based on information available at time tk will be de-

noted by •Jj|kK, j ∈ N, as opposed to the actually resulting (but unknown at the moment)

value •(tk+j).

In a stochastic setting, predictions are based on probabilistic information regarding

future values of w, while the game-theoretic setting typically makes worst-case assumptions

with respect to the effect of w on a cost function or constraints. Even though a first attempt

towards a stochastic setting has been made in [42], obtaining stochastic information for

behavior prediction of traffic participants is a field on its own [21] and beyond the scope of

this thesis. Instead, a cautious, yet simple (with respect to assumptions on w) approach

is chosen. Based on Assumption 2.4, it is noted that assumptions regarding the future

cannot threaten safety as long as the safety distances as encoded by Xsafe in Section 2.3.1

are maintained at any time. In the proof of Proposition 2.1, this requirement was shown to

be equivalent to proper reaction to maximum braking of non-cooperating leading vehicles.

Thus, preparing for the worst-case acceleration (in the sense of constraint compliance),

i.e., letting:

w[i]Jj|kK = max

{
−ux,max,

vx,min − v(i)
x Jj|kK

Ts

}
(2.21)

for all vehicles i ∈ N guarantees the ability to avoid longitudinal collisions. Because future

values of v
(i)
x for these vehicles only depend on their initial velocity and w, the maximum

in (2.21) can be computed. The result is a behavior where a vehicle i ∈ N brakes as hard

as possible until vx,min is reached.

This insight allows to replace the unknown disturbance in (2.7) by a known, time-varying

affine term B1wJj|kK. Combining these terms in a sequence, where the jth element reads:

ã(j) := a+B1wJj|kK, (2.22)

allows to replace the flow function (2.12) by undisturbed dynamics, parametric in ã:

f̃(x, u, ã(j)) = Ax+Bu+ ã(j). (2.23)

Then, the basis for computationally efficient planning is the well-known fact that a hybrid

automaton as given by Definition 2.2 can be encoded as a system of affine inequalities [15]:

E1xJj|kK + E2xJj + 1|kK + E3βJj + 1|kK + E4βJj|kK + E5uJj|kK ≤ E0, (2.24)

using the so-called big-M method, cf. [151], with matrices Ei of appropriate dimensions,

i = 1, 2, . . . , 5, and vectors of auxiliary binary variables β. Regarding these, assume that

the modeling process ensures the following:

30

2.4. Using Maneuvers for Planning

Assumption 2.5. There is a one-to-one correspondence between the phase q(tk) and β(tk).

Besides constraints, an optimization-based approach also requires the definition of a

cost function which assigns a cost value to each run. In the given context, not necessarily

all entries of the state vector x are relevant for a cost function. This can, for example,

apply to longitudinal positions of vehicles, as long as collision avoidance is ensured by the

constraints. In order to select the states relevant to the cost function, z ∈ Rnz and a

full-rank matrix Cz ∈ Rnz×nx are introduced, where nz < nx, such that:

z = Czx.

Next, positive definite matrices C1 ∈ Rnz×nz and D1 ∈ Rnu×nu are introduced, penalizing

both the predictions of the weighted magnitude of the control inputs u and the deviation

of z from a constant reference value z̄ ∈ Rnz (for example encoding the center of a lane as

desired lateral position):

Hplan∑

j=0

‖C1(zJj + 1|kK− z̄)‖2 + ‖D1uJj|kK‖2 (2.25)

over a planning horizon Hplan, based on information given at time instance tk. Let only

the states of the cooperating vehicles be considered in the cost function by appropriate

choice of Cz; then, the matrices C1 and D1 can – for example – be used to encode the

preferred driving style of the vehicles in C. In order to enforce completion of the maneuver

within the prescribed duration Ts ·Hplan, it is necessary that:

xJHplan|kK ∈ XT.

While (2.21) preserves safety, it is problematic because uncertainty in the predictions

of future values of x is accumulated over the planning horizon as j increases: while the

predictions xJ1|kK only depend on wJ0|kK, the prediction of xJHplan|kK depends on all

wJj|kK, 0 ≤ j ≤ Hplan − 1. This accumulation of uncertainty requires to make according

provisions, which can drastically reduce performance. Even more severe, if the assumption

is that the leading vehicle brakes to standstill, then the only plan a following vehicle can

make is to also stop, which would prevent execution of any maneuver.

This problem is typically counteracted by the concept of feedback, which makes use of

the fact that the actual values x(tk+j), 1 ≤ j ≤ Hplan, become available one after another

during execution of a plan which was initially made at time tk. These values will typically

deviate from the predicted values xJj|kK due to the uncertainty, in which case at time

step tk+j , all subsequent predictions based on xJj|kK a posteriori turn out to have been

made on an incorrect basis. To correct this, a new plan is generated at time tk+j , typically

starting from less pessimistic initial conditions as were predicted. Note that unlike in

model-predictive control [123], no receding, but rather a shrinking horizon is employed, as

a finite-time problem is considered. This leads to the following problem definition:

31

2. The Maneuver Concept

Problem 2.1 (Planning Problem). For a maneuver scheduled to start at initial time tk
with planning horizon Hplan, given the momentary state x(tk+i), i = 0, 1, . . . , Hplan − 1,

determine input signals uJj|k + iK, j = 0, 1, . . . , Hplan − 1− i as solution of:

min

Hplan−1−i∑

j=0

‖C1(zJj + 1|k + iK− z̄)‖2 + ‖D1uJj|k + iK‖2

subject to

E1xJj|k + iK + E2xJj + 1|k + iK + E3βJj + 1|k + iK + E4βJj|k + iK + E5uJj|k + iK ≤ E0,

and xJ0|k + iK = x(tk+i). The reference values result from the output function in (2.8):

x̄(tk+1+i) = CxJ1|k + iK +DuJ1|k + iK.

Problem 2.1 is a mixed-integer quadratic program, which can, e.g., be solved using

software such as CPLEX [72] or GUROBI [63].

In addition to feedback, another, more application-specific means to limit the effect of

uncertainty is to assume that a leading, non-cooperating vehicle, while braking with maxi-

mal deceleration, does not brake to stand-still in regular operation, but only to vx,min � 0.

In a highway setting, this assumption is legitimate as minimum velocities are imposed by

traffic rules in order to increase traffic flow. Note that this does not put safety at risk as

long as safety distances according to Section 2.3.1 are maintained.

With a formulation of the planning problem at hand, the next chapter focuses on the

approximate solution of this problem as well as the approximate computation of control-

lable sets, which have been introduced in this chapter as a concept that allows to quickly

assess the feasibility of a maneuver.

32

3. Feasibility Assessment and Efficient

Planning

In Chapter 2, the maneuver concept has been introduced, allowing for computationally

efficient planning. This is beneficial for computing a plan if a single maneuver has already

been selected. The process in the hierarchical framework in Figure 2.1, however, requires to

very quickly assess the feasibility of several maneuvers in order to build a set of candidates

from which the high-level planner then can choose one maneuver. This requirement is

possibly not met by solely ensuring computational efficiency of the trajectory planning

procedure, as it still requires to carry out this procedure for every single maneuver in

order to identify the feasible ones. Considering that eventually, only one maneuver will be

scheduled for execution while all others are discarded, this kind of approach is not even

desirable.

The maneuver concept offers a solution to this problem, as it not only increases com-

putational efficiency, but – being based on hybrid automata – also allows to make use of

concepts from the well-established field of formal verification of hybrid systems [98]. As

outlined in Section 2.1, these methods often rely on the computation of sets with certain

properties; in the following, feasibility assessment is carried out relying on controllable

sets as defined in Definition 2.5. Assume that during the recursive computation of such

sets according to Definition 2.5 (i.e., the computation of an N -step controllable set for

target phase qT and target set XT), a map post : Kj → Kj−1 is established for each

j = 1, 2, . . . , N , which allows to determine the set to which each K(i)
j ∈ Kj is controllable.

That is, given K(i1)
j ∈ Kj and K(i2)

j−1 ∈ Kj−1:

post

(
K(i1)
j

)
= K(i2)

j−1 ⇔ prec

(
K(i2)
j−1

)
= K(i1)

j ∨ pred

(
θ,K(i2)

j−1

)
= K(i1)

j .

Based on post, define:

Definition 3.1 (Controllable Tube and Entry Set). Given controllable sets Kj, where

j = 0, 1, 2, . . . , N , for a target set XT in target phase qT, the controllable tube T =(
T (0), T (1), . . . , T (N)

)
emanating from K(i)

N ∈ KN is a sequence of controllable sets such

that:

T (l) = post

(
T (l−1)

)

holds for l = 1, 2, . . . , N . Especially, T (N) = K0 ≡ XT and T (0) = K(i)
j . In the following,

T (0) is referred to as the entry set of the tube.

33

3. Feasibility Assessment and Efficient Planning

This concept offers the advantage to explicitly characterize those states for which a

solution to the first instance of Problem 2.1, i.e. i = 0, exists for a given maneuver. Given

the current state of a group of vehicles, this allows to quickly assess the feasibility of a

maneuver prior to planning by simply checking inclusion of the initial state:

x0 ∈ projxT (0) (3.1)

for some entry set T (0) of a controllable tube of the respective maneuver and the current

state x0 of the involved vehicles. For affine flow functions and polyhedral constraints as

in Definition 2.2, controllable sets are typically described by linear inequalities, such that

checking set inclusion reduces to a matrix-vector product. This is computationally very

efficient and allows the high-level scheduling algorithm to quickly evaluate feasibility of

different options (i.e., different maneuvers and/or different maneuver durations).

Furthermore, it becomes possible to ensure recursive feasibility of the planning proce-

dure, which is understood here as the possibility to find a solution not only to the first

planning instance in Problem 2.1, but also for future instances with i > 0. Note that

this only pertains to a finite number of future problem instances, as an optimal control

problem with shrinking horizon is solved – contrasting model-predictive control, where re-

cursive feasibility ensures feasibility of an infinite number of problem instances [123] with

constant prediction horizon length. Unlike in the case of undisturbed system dynamics,

(3.1) is only sufficient to ensure the existence of a solution to Problem 2.1 at instance i = 0,

but not at future instances. This is due to the fact that not all states which are admissible

at the next time step j+1 can safely be steered to the target set under the influence of the

disturbance [24]. Rather, in order to ensure recursive feasibility, it is necessary to enforce

that at instance i, the first predicted state xJj + 1|k + iK again lies in a controllable set

despite the worst-case disturbances as represented by the sequence ã(·):

Proposition 3.1 (Recursive Feasibility of Problem 2.1). Consider the setting of Prob-

lem 2.1. There, given controllable sets KHplan−i, i = 0, 1, . . . , Hplan − 1, the additional

constraint

xJj + 1|k + iK ∈ projxKHplan−i

ensures that a solution exists for all i = 0, 1, . . . , Hplan − 1.

The proof follows immediately from Definition 2.5 and is therefore ommitted. Note that

the realization of the planning problem corresponding to this proposition is not advanta-

geous due to reasons of computational efficiency. Rather, (approximations of) controllable

tubes should be employed, which are detailed lateron in this chapter. These are computa-

tionally more efficient, while Proposition 3.1 still holds.

Even though it is – in principle – possible to compute controllable sets (numerically) ex-

actly, using for example methods as provided by the MPT-toolbox [67], this is impractical

for two reasons: Firstly, for a fixed sequence β(·) (according to Assumption 2.5, correspond-

ing to a fixed sequence of phases q(·)), these computations are based on algorithms from

34

3.1. Inner Approximations of Controllable Sets and Tubes

T (0) ≡ X0
. . . T (l) . . .

T (N) ≡ XT

Figure 3.1.: An example for the resulting structure of sets which are controllable to target

XT in different numbers of steps. The projection of a controllable tube is

shown in black with entry set X0.

computational geometry (especially Minkowski addition of polytopes) which are known

to scale badly with increasing state space dimensionality. Secondly, depending on Hplan

and the number of phases and discrete transitions of a specific maneuver formulation, the

number of polytopes to be computed may be large. This motivates approximate computa-

tions as detailed in Section 3.1. These approximations not only extend the applicability of

controllable sets to more complex scenarios, but can also be used to drastically speed up

the planning process itself, relying on interpolation of optimal trajectories as detailed in

Section 3.2. Both sections rely on the fact that a controllable tube T provides information

about the chronological sequence of phases during the completion of a maneuver:

qHplan+1(·) = projqT , (3.2)

which in turn allows to infer the corresponding sequence β(·) in the planning Problem 2.1.

3.1. Inner Approximations of Controllable Sets and Tubes

As detailed in the following, the approximation of controllable sets relies on two concepts:

First, in order to keep the number of sets to be computed sufficiently low, these are only

computed for a subset of all admissible sequences (3.2). Second, for a given sequence,

inner approximations of the controllable sets are computed such that these have a lower

complexity of representation than the exact sets.

The approximation of controllable sets pertains to the problem of approximating 1)

the solution set of optimization problems as well as 2) the projection of a set onto a

lower-dimensional space. For convex problems, these sets are convex and can thus be

35

3. Feasibility Assessment and Efficient Planning

approximated by inscribing a simpler convex body in the more complex original set. This

approach has been considered in different contexts, with a main difference being the shape

of the simpler body used for approximation: in [161], ellipsoids are used, [160] relies on

polytopes of pre-defined shape, while [14] relies on boxes. First attempts even exist for the

approximation of non-convex sets [155, 156]. In this chapter, polytopic approximations are

employed, motivated by the fact that these can approximate a convex body with arbitrary

accuracy as opposed to less versatile set representations such as ellipsoids, simplices, boxes,

or zonotopes. Approximations of controllable sets are defined recursively:

Proposition 3.2 (Approximations of Controllable Sets). Given are a positive integer N ,

the projection AN−1 of an approximation of a controllable set K ∈ KN−1 of a maneuver

as in Definition 2.5, a polytope A0 ⊆ XT, m different states x
(l)
0 ∈ Rnx, l ∈ {1, 2, . . . ,m},

an integer j with 0 ≤ j ≤ N , a single sequence βN+1(·) of binary variables (and the

sequence qN+1(·) corresponding to it), m input sequences u
(l)
N (·), and sequences ã

(l)
N (·) ac-

cording to (2.22). Then, define:

ξ(l)(·) := x
(
·; 0, N · Ts, x(l)

0 , u
(l)
N (·), ã(l)

N (·)
)

(3.3)

as short-hand for the solution of (2.23) from time steps 0 to N for the listed parameters

as given on the right-hand side, with x
(l)
0 = ξ(l)(0). Let all ξ(l)(·), u

(l)
N (·), ã

(l)
N (·), as well as

βN+1(·) be admissible with respect to Problem 2.1 for i = 0 and let

convh

({
ξ(1)(1), ξ(2)(1), . . . , ξ(m)(1)

})
⊆ AN−1 (3.4)

hold. Then, with

AN := convh

({
x

(1)
0 , x

(2)
0 , . . . , x

(m)
0

})
, (3.5)

it holds that {qN+1(0)} × AN is an inner approximation of a N -step controllable set. An

approximated controllable tube is defined as

T̃ :=
(
{qN+1(j)} × convh

({
ξ(l)(j)

}m
l=1

))N
j=0

(3.6)

Proof. Because the sequences u
(l)
N (·) and ã

(l)
N (·) lead to admissible trajectories ξ(l)(·) which

by virtue of (3.4) pass through the projection AN−1 of the inner approximation of an

N − 1-step controllable set, for each x
(l)
0 there must exist some il ∈ {1, 2, . . . , |KN |},

such that x
(l)
0 ∈ projxK

(il)
N for K(il)

N ∈ KN . All m trajectories are admissible for the

same βN+1(·), which reduces Problem 2.1 to a convex quadratic program [25]. The solution

set of this problem class is convex, which implies that there exists a single i∗ such that

x
(l)
0 ∈ projxK

(i∗)
N ∀ l ∈ {1, 2, . . . ,m} and consequently also AN ∈ projxK

(i∗)
N . Lifting to

the q-x-space then gives the result.

36

3.1. Inner Approximations of Controllable Sets and Tubes

While it may be possible to derive sequences βN+1(·) in an automated way, for ex-

ample based on measurements taken from corresponding human driving maneuvers, in

the following, such sequences are assumed to be given by the designer’s decision. For a

given sequence, the construction of an approximation requires to determine m points x
(l)
0 ,

l = 1, 2, . . . ,m, with corresponding admissible input trajectories u
(l)
N (·). In [97], an ap-

proach to this problem is given which relies on iterative extension of a given initial set.

This approach is used in the following, where Section 3.1.1 detailes the iterative procedure,

while its initialization is described in Section 3.1.2.

3.1.1. Iterative Approximation

A detailed study of the problem of approximating convex bodies is provided by the

book [97], which, however, seems to be overlooked by the control community, consider-

ing more recent, yet conceptually similar approaches such as the algorithm in [40] or the

concept of template polyhedra [89]. In the following, the so-called Estimate Refinement

method ([97, p. 258]) will be employed, whose basic idea is to extend an initial inner

polytopic approximation P(0) of a polytope P ⊂ Rnx by incrementally adding new ver-

tices. In iteration n, a new polytope P(n+1) results as convex hull of the existing set P(n)

and a new vertex v(n), the choice of which is an elementary aspect of each iteration. For

completeness, the main elements of the method are restated here in a condensed form. It

relies on the following concepts:

Definition 3.2 (Support function and points of tangency [97]). The support function

gP : Rnx → R of a polytope P ⊂ Rnx is defined as:

gP(p) = max
{
pTx|x ∈ P

}
. (3.7)

Denoting the boundary of P by ∂P, corresponding maximizers are contained in the set of

points of tangency

TP(p) =
{
x ∈ ∂P|pTx = gP(p)

}
.

Definition 3.3 (Hausdorff distance [97]). The Hausdorff distance between two compact,

non-empty sets C1 ⊂ Rnx, C2 ⊂ Rnx is defined as:

δH (C1, C2) = max {sup {ρ(x,C2) : x ∈ C1} , sup {ρ(x,C1) : x ∈ C2}}

with distance ρ between a point x and a set C:

ρ(x,C) := inf
{
||x− x′|| : x′ ∈ C

}
.

Termed an adaptive scheme in [97], the choice of a new point relies on information about

the approximated set P . This is possible even if no explicit characterization of P is known,

as long as its support function can be evaluated. Given an initial approximation P(0) and

a maximum number Nmax of vertices to be added to it, the major steps of the procedure

37

3. Feasibility Assessment and Efficient Planning

are summarized in Algorithm 3.1: in the nth iteration, at first, the facets, i.e., the faces

of dimension nx − 1, of the latest approximation P(n) are computed. To that end, denote

by f (P) the set of outward-pointing unit normals of the facets of polytope P . Among all

unit normal vectors of these facets, the one is selected which maximizes a lower bound on

the Hausdorff distance between the approximation and the original (yet unknown) set:

p(n) = arg max
p∈f(P(n))

{gP(p)− gP(n) (p)} . (3.8)

Then, the new vertex v(n) is chosen as corresponding support vector:

v(n) ∈ TP
(
p(n)
)
.

As the evaluation of the support function requires the solution of a linear program, the

selection of a maximizer can be entrusted to the numerical optimization algorithm even

if TP is no singleton, because such algorithms are designed to return only one solution.

Having determined v(n), it is then added to the set of vertices of P(n), yielding the vertices

of P(n+1):

v

(
P(n)

)
∪
{
v(n)
}
.

From these, the facets can be constructed, which serve as the basis for the next iteration.

The procedure enjoys several properties, e.g. upper and lower bounds on δH
(
P(n),P

)
can

be derived (see [97, Chapter 8]). Most importantly, the following holds:

Proposition 3.3. The sequence of generated polytopes P(n) converges to the original set P
in the Hausdorff distance([97, Theorem 8.5]):

lim
n→∞

δH
(
P(n),P

)
= 0,

from which convergence in the volumetric sense follows.

While a valuable insight, practical application of the procedure focuses on the compu-

tational complexity of the representation of P(n), which is equivalent to the number of

added vertices and iterations n. These are limited by Nmax, which must be chosen as a

compromise between approximation quality and complexity of the set representation.

The computational complexity of Algorithm 3.1 is dominated by two tasks: First,

the maximum in (3.8) is determined by enumeration of the values resulting for each

facet normal p ∈ f
(
P(n)

)
, every time requiring to determine gP(p) and gP(n)(p). For

P(n) = {x|Anx ≤ bn}, computations are not necessary as gP(n)(p) = bn; for gP(p), however,

every evaluation of the support function corresponds to solving an optimization problem

similar to Problem 2.1, but with given sequence β(·) (respectively q(·)) and the support

function (3.7) as a cost function (3.7), resulting in one linear program per facet.

Second, maintaining both vertex and facet representations and especially computing

the facets from a vertex representation of a polytope in each iteration is computationally

expensive. In this thesis, this motivates the use of a so-called incremental convex hull

algorithm [113] in line 3, which allows to incrementally build on the results from previous

iterations, i.e., already existing convex hulls of a set of points.

38

3.1. Inner Approximations of Controllable Sets and Tubes

Input P(0), Nmax

1: for n = 0 to Nmax − 1 do

2: ∆g ← 0, p← 0

3: fP ← f
(
P(n)

)
. Compute facets

4: for p ∈ fP do

5: if ∆g ≤ gP(p)− gP(n)(p) then . Evaluate support functions

6: p(n) ← p

7: ∆g ← gP(p)− gP(n)(p)

8: end if

9: end for

10: v(n) ← x ∈ TP
(
p(n)
)

. Obtain new vertex

11: P(n+1) = convh
({
v(n), v

(
P(n)

)})

12: n← n+ 1

13: end for

Output P(Nmax)

Algorithm 3.1.: Estimate refinement algorithm from [97, p. 258].

3.1.2. Initialization of the Approximation Scheme

Algorithm 3.1 requires an initial polytopic inner approximation P(0) ⊆ P of the unknown

polytope P . If a good approximation is the objective, it is generally desirable to make P(0)

as similar to P as possible; in the following, however, the objective is slightly different,

aiming to maximize the approximation’s volume while keeping the number of its vertices

low.

Because the problem of maximizing the volume of a general polytope inscribed in another

polytope is non-convex, it cannot be solved to global optimality in general. Instead, a

possible approach [13] is to compute an inner approximation by choosing a set of template

vectors [89] indicating directions along which one attempts to find the furthest point that

still yields a solution to Problem 2.1. In this chapter, the following approach is used, based

on a modified version of Problem 2.1:

Problem 3.1 (Computation of an initial inner approximation). Given a full-dimensional

polytopic set X0,des ⊂ Rnx with m vertices x̂
(l)
0 , l ∈ {1, 2, . . . ,m}, a weighting matrix W ∈

Rnx×nx, W ≥ 0, a planning horizon Hplan ∈ N+, a single sequence β̂Hplan+1(·), and se-

quences ã
(l)
N (·), determine sequences x

(l)
Hplan+1(·) and u

(l)
Hplan

(·) as solution to the problem:

min
(
x(l)(t0)− x̂(l)

0

)T
W
(
x(l)(t0)− x̂(l)

0

)

subject to (recall (2.24)):

E1x
(l)(tk) + E2x

(l)(tk+1) + E3β̂(tk+1) + E4β̂(tk) + E5u
(l)(tk) ≤ E0

39

3. Feasibility Assessment and Efficient Planning

for all k = 0, 1, . . . , Hplan − 1. Then, obtain an initial approximation as follows:

P(0) = convh

({
x(l)(t0)

}m
l=1

)
.

The sequence β̂Hplan+1(·) can be obtained by solving a single instance of Problem 3.1, with

β̂Hplan
(·) treated as variables; this results in a MIQP instead of a QP. The solution of Prob-

lem 3.1 allows the designer to specify desirable vertices by choice of X0,des. Alternatively,

instead of solving m problems sequentially, a single (however large and computationally

more expensive) MIQP could be solved.

3.2. Fast Planning using Approximated Controllable Sets

The basic idea to ensure fast planning is to add constraints to Problem 2.1 which confine

the run of the corresponding hybrid automaton to a controllable tube. This determines

the temporal sequence of phases according to (3.2), from which a speed-up of the planning

procedure can be expected. Generally, two realizations are conceivable: On the one hand,

the mixed-integer program in Problem 2.1 can be reduced to a quadratic program by fixing

the sequences β(·) resp. q(·). While this would lead to a less complex problem class, it

would still require optimization online, i.e. during the operation of a vehicle. On the

other hand – and this approach is pursued in the following – it is possible to avoid online

optimization, relying on computations which have been carried out offline and from which

a (not necessarily optimal) plan can be obtained online, depending on the initial state as

a parameter.

An approach which (independently of the application considered here) even obtains opti-

mal solutions in this way is based on multi-parametric programming [24], which, however,

is known to be tractable only for relatively low-dimensional systems due to its computa-

tional complexity. In cooperative driving, in contrast, groups of vehicles are considered,

which typically leads to high-dimensional state spaces, such that exact multi-parametric

programming is not applicable. The exact computation of controllable sets is subject to

similar limitations. Therefore, the following procedure relies on approximations of con-

trollable sets as described in the previous section. A conceptually similar approach is

described in [13], yet not in the context of controllable sets for hybrid systems. It may also

be interpreted as a form of approximate dynamic programming as in [17]. The following

approach relies on barycentric coordinates :

Definition 3.4 (Barycentric Coordinates [76]). Given a polytope P ⊂ Rnx with m ver-

tices contained in v (P) = {v1, v2, . . . , vm} and an interior point x ∈ int (P), barycentric

coordinates λ ∈ Rm fulfill:

x =
∑

vi∈v(P)

λ[i]vi, λ[i] ≥ 0 ∀i = 1, 2, . . . ,m, 1 =

m∑

i=1

λ[i].

Note that depending on the polytope P , barycentric coordinates may not be unique.

The computation of trajectories relies on interpolation:

40

3.2. Fast Planning using Approximated Controllable Sets

Proposition 3.4 (Trajectory Interpolation). Given an approximated controllable tube T̃
as in Proposition 3.2 along with its determining quantities, let:

X̂(tk) :=
[
ξ(1)(tk) ξ(2)(tk) . . . ξ(m)(tk)

]
,

Û(tk) :=
[
u(1)(tk) u(2)(tk) . . . u(m)(tk)

]
.

Then, for any x ∈ projxT̃ (0) there exist barycentric coordinates λ ∈ Rm, λ[i] ≥ 0 ∀i =

1, 2, . . . ,m,
∑m

i=1 λ[i] = 1, such that the input sequence

uN (·) =
(
Û(tk)λ

)N−1

k=0

is admissible and leads to an admissible trajectory ξ(·) as in (3.3), with

uN (tk) ∈ U ,
ξ(tk) ∈ projxT̃ (k)

for all k ∈ {0, 1, . . . , N}.

Proof. Suppose that x(tk) ∈ projxT̃ (k) . Existence of λ such that x(tk) = X̂(tk)λ follows

directly from convexity. Defining

Fk :=
[
ã(1)(k) ã(2)(k) . . . ã(m)(k)

]
∈ Rnx×m,

it holds for the affine dynamics underlying Proposition 3.2 that

X̂(tk+1) = AX̂(tk) +BÛ(tk) + Fk,

which, by multiplying by λ and defining:

x(tk+1) := X̂(tk+1)λ,

u(tk) := Û(tk)λ,

ã(tk) : = Fkλ,

reduces to affine dynamics (2.7). Due to convexity of U and projxT̃ (k+1), both x(tk+1) ∈
projxT̃ (k+1) and u(tk) ∈ U hold. Since x = x(t0) ∈ projxT̃ (0), induction over k leads to

the result.

Proposition 3.4 suggests the procedure summarized in Algorithm 3.2 for online trajectory

planning at a certain time instance, given an approximated controllable tube T̃ which has

been selected before by the high-level controller: after having extracted the time-varying

matrices of state and input trajectories X̂(·) and Û(·) associated with the vertices of the en-

try set T̃ (0), barycentric coordinates are computed for the given initial state x0 as outlined

in the following. These coordinates allow to interpolate between the vertex trajectories in

order to obtain state and input trajectories for the maneuver starting in x0, from which

a reference trajectory can then be obtained based on the function h as in Definition 2.2.

41

3. Feasibility Assessment and Efficient Planning

Input x0, T̃ , Hplan

1: [X̂(·), Û(·)]← GetVertexTrajectories
(
T̃
)

2: λ← ComputeLambda
(
x0, T̃

)
. cf. Section 3.2.2

3: x(t0)← x0

4: for k = 0 to Hplan − 1 do

5: x(tk+1)← X̂(tk+1)λ

6: u(tk)← Û(tk)λ

7: end for

Output xHplan+1(·), uHplan
(·)

Algorithm 3.2.: Schematic: Online trajectory planning.

Employing Algorithm 3.2 according to the receding horizon as in the planning problem 2.1

requires to run this at every time instance until completion of a maneuver, rendering all

but the first step of the iteration starting in line 4 obsolete.

The computation of barycentric coordinates for a given state x0 is a central element of

Algorithm 3.2. Even though barycentric coordinates have found wide application in linear

parameter-varying (LPV) control (cf. [150] for an overview), usually only simplified settings

are considered where coordinates are computed for hyperrectangles and not for general

polytopes as in this work. While it is always possible to compute λ by solving a linear

program, the approach pursued here explicitly aims at avoiding online optimization in

order to ensure fast planning. In the following, two possibilities are detailed which provide

expressions which do not require iterative numerical computations and can therefore be

evaluated efficiently online.

3.2.1. Triangulation

The first option, for example used in [13, 75, 128], relies on triangulation of general poly-

topes into simplices according to the following definitions:

Definition 3.5 (Simplex [162]). A simplex in Rnx is a polytope of dimension nx with

nx + 1 vertices.

Definition 3.6 (Triangulation [24]). Given a finite set of points V = {v1, v2, . . . , vnv} ⊂
Rnx and a matrix V =

[
v1 v2 . . . vnv

]T
, a triangulation of V is a finite set tri (V) =

{S1, S2, . . . , Sns} of index sets, such that

1. Si := convh

({(
V[j,:]

)T |j ∈ Si
})

defines a full-dimensional simplex for all i =

1, 2, . . . , ns,

2. convh (V) ≡ ∪nsi=1Si and int (Si) ∩ int (Sj) = ∅ for i 6= j.

An example for a triangulation of a polyhedron in a two-dimensional space is illustrated

in Fig. 3.2. In general, different triangulations of a polytope exist, such as different methods

42

3.2. Fast Planning using Approximated Controllable Sets

Figure 3.2.: Triangulation of an example polytope.

for its computation [139, Chpt. 27, 29]. In the following, a Delaunay triangulation is

employed [139, Chpt. 27], which can be computed relying on the qhull-library [11].

For a simplex Si as introduced above and an interior point x0 ∈ int(Si), barycentric

coordinates can be computed by:

λ =

[
11×nx+1(
V[Si,:]

)T
]−1 [

1

x0

]
. (3.9)

Note that for online application, the matrix inverse in (3.9) can be pre-computed offline

for each simplex, such that online computations are limited to identifying the simplex

containing the current state x0 and executing the above matrix-vector-product. The num-

ber of simplices resulting from the triangulation, however, is reported to be of the order

n
bnx+1

2
c

v in the worst case, depending on the dimension nx of the state space, the number

of vertices, and the shape of the triangulated set [58].

3.2.2. Warren’s Coordinates

The second option for the computation of coordinates λ for a given initial state does not

rely on triangulation of the considered polytope, but directly assigns coordinates to it.

Generally, barycentric coordinates are non-unique, such that different approaches to this

task exist, cf. e.g. [144] for polygons. In this section, an approach based on [146, 147], and

mainly [76] is employed. The basic theory is outlined in [146] and extended to arbitrary

convex sets in [147], however being vague about details required for handling so-called non-

simple polytopes, which often arise in practically relevant problems. Nonetheless, it has

found application to approximate explicit MPC [75]. These details regarding non-simple

polytopes are then given in [76], which, according to [52], provides a “cleaner solution” to

this very topic than [146, 147]. While full generality is claimed, the focus of the derivation

in [76] is on two- and three-dimensional sets. For completeness, this section states the

procedure independently of the dimensionality of a polytope and contributes in addition a

consideration of questions of online computation.

43

3. Feasibility Assessment and Efficient Planning

General Procedure

A fundamental concept in the procedure devised by [76] is the polar dual of a polyhedron P :

Definition 3.7 (Polar Dual [76]). For a convex polyhedron P = {x|Ax ≤ b} ⊂ Rnx,

A ∈ RnA×nx, b ∈ RnA, that contains the origin and whose nv vertices are arranged row-

wise in a matrix V ∈ Rnv×nx such that P = convh

({(
V[i,:]

)T |i = 1, 2, . . . , nv

})
, the

polar dual is a convex polyhedron of the form

d(P) =
{
y|yT · x ≤ 1 ∀x ∈ P

}

which contains the origin in its interior. Also, there is a one-to-one correspondence between

the matrix V of vertices of the primal and the facets of the dual according to:

d(P) = {y|V y ≤ 1nv×1} ,

d(P) = convh

({
A[j,:]

b[j]
| j ∈ {1, 2, . . . , nA}

})
.

The procedure devised by [76] is motivated by the fact that for a general polytope,

barycentric coordinates can be expressed as ratios of volumes pertaining to the polar dual of

the polytope, as outlined in the following. For a given polytope P ⊂ Rnx and a point x1 ∈
int (P), the objective is to compute barycentric coordinates according to Definition 3.4.

Without loss of generality, it is assumed that P is full-dimensional; otherwise, projection

on its affine hull can ensure this condition (which is also applied for points on the boundary

of P). Given both a vertex- and a halfspace-representation of P as:

P = convh ({v1, v2, . . . , vnv}) = {x|Ax ≤ b} ,

the first step in the procedure is to shift it by x1, defining v̄i := vi−x1 for i = 1, 2, . . . , nv,

and x̄ := x− x1, such that:

P̄ := convh ({v̄1, v̄2, . . . , v̄nv}) = {x̄|A(x̄+ x1) ≤ b} . (3.10)

This ensures that P̄ contains the origin. Then, define:

V̄ :=
[
v̄1 v̄2 . . . v̄nv

]T ∈ Rnv×nx ,

b̄ := b− Ax1.

For the following procedure, the polar dual of P̄ must be obtained in both vertex- and

halfspace-representation:

D̄ := d
(
P̄
)

=
{
y|Ây ≤ b̂

}
= convh

({
¯̂v1, ¯̂v2, . . . , ¯̂vnA

})
, (3.11)

which is not difficult, as according to Definition 3.7,

Â = V̄ , b̂ = 1nv×1, ¯̂vTj =
A[j,:]

b̄[j]
, j ∈ {1, 2, . . . , nA}.

44

3.2. Fast Planning using Approximated Controllable Sets

Next, define

V̂ :=
[
¯̂v1

¯̂v2 . . . ¯̂vnA
]T ∈ RnA×nx .

Given this data, for the ith facet of D̄ as defined by the corresponding normal vector(
Â[i,:]

)T
and b̂[i] = 1, i = 1, 2, . . . , nv, the incident vertices are determined. The corre-

sponding index set is defined as:

Fi : =
{
j ∈ N+|V̂[j,:]

(
Â[i,:]

)T
= 1
}

=
{
j ∈ N+|V̂[j,:]v̄i = 1

}
.

Based on these index sets, a triangulation

T̄i = tri

({(
V̂[j,:]

)T |j ∈ Fi
})

= {S1, S2, . . . , Ssi} (3.12)

of each facet can be computed, consisting of si simplices in Rnx−1. The convex hull of the

simplex in Rnx−1 corresponding to Sj ∈ T̄i:

Sj := convh

({(
V̂[i,:]

)T |i ∈ Sj
})

,

and the origin:

convh (Sj ∪ {0}) (3.13)

defines a simplex in Rnx . Its volume is given by:

vol (convh (Sj ∪ {0})) =

∣∣∣∣
1

nx!
det V̂[Sj ,:]

∣∣∣∣ . (3.14)

Summation of the corresponding volumes for all simplices defined by a partition gives the

so-called weight ωi of vertex v̄i:

ωi :=
∑

S∈T̄i

∣∣∣∣
1

nx!
det V̂[S,:]

∣∣∣∣ . (3.15)

From this, the coordinates λ[i] can be computed as:

λ[i] =
ωi∑nv
j=1 ωj

,

where the denominator
∑nV

j=1 ωj is the volume of the dual polytope D̄. The procedure

(starting after the pre-processing of the input polytope P as in (3.10)) is summarized in

Algorithm 3.3a.

45

3. Feasibility Assessment and Efficient Planning

Online Computation

The computations outlined in the previous section operate on a polytope P̄ which results

from shifting a set P by a given point x1 for which barycentric coordinates λ are sought.

In the considered context, P corresponds to the entry set of a controllable tube and x1 to

the momentary state of the vehicles involved in the corresponding maneuver. This state

is not known offline, but becomes available only at the time a maneuver is to be planned.

Therefore, the operations from the previous sections would have to be performed online.

Especially the computation of a triangulation can be computationally demanding, such

that no conceptual advantage against a procedure relying on online optimization would be

gained. The following section demonstrates how to resolve this problem by modifying the

algorithm such that it can be applied online at low computational cost.

Having determined barycentric coordinates λ and all related quantities for some point

x1 ∈ P offline as outlined in the previous section and given some initial state x2 ∈ P for

which barycentric coordinates λ̃ are sought, the basic procedure is to shift P̄ by x2 − x1

and to then establish a relation to the results obtained offline for P̄ which can be evaluated

more easily online. This approach requires to investigate the impact of a shift on 1) the dual

polytope (3.11), 2) the triangulations (3.12) of the dual’s facets, and 3) the weights (3.15).

Proposition 3.5. Given a vertex-representation V̂ ∈ RnA×nx of the dual of a polytope P
shifted by x1 ∈ int(P), triangulations T̄i, i = 1, 2, . . . , nv, of the dual polytope’s facets,

and a point x2 ∈ int(P), defining:

σj :=
1

1− ¯̂vTj · (x2 − x1)

for all j = 1, 2, . . . , nA allows to compute modified weights

ω̃i :=
∑

S∈T̄i

∣∣∣∣
1

nx!
det V̂[S,:]

∣∣∣∣ ·
∏

k∈S

σk.

Then, barycentric coordinates λ̃ for x2 ∈ P are given by:

λ̃[i] =
ω̃i∑nv
j=1 ω̃j

for i = 1, 2, . . . , nv such that x2 = V Tλ̃, λ̃[i] ≥ 0, and
∑

i=1 λ̃[i] = 1.

Proof. Application of Algorithm 3.3a to P and x2 ∈ P would result in a shifted primal

P̃ := convh ({v1 − x2, v2 − x2, . . . , vnv − x2}) = {x̃|A(x̃+ x2) ≤ b} ,

where x̃ := x− x2, with the corresponding dual

D̃ := d
(
P̃
)

= convh
({

˜̂v1, ˜̂v2, . . . , ˜̂vnA
})

46

3.2. Fast Planning using Approximated Controllable Sets

and triangulations T̃i of all of the dual’s facets, i = 1, 2, . . . , nv. According to Definition 3.7,

with b̃ := b− Ax2, the dual’s vertices result from:

˜̂vj =

(
A[j,:]

)T

b̃[j]
, j = 1, 2, . . . , nA.

Equivalently, P̃ , D̃, and T̃i can be expressed in terms of P̄ , D̄, and T̄i:

P̃ = convh ({v1 − x1 + x1 − x2, v2 − x1 + x1 − x2, . . . , vnV − x1 + x1 − x2})
= convh ({v̄1 + x1 − x2, v̄2 + x1 − x2, . . . , v̄nV + x1 − x2})

and, as

b̃ = b− Ax2 = b− A(x2 − x1 + x1) = b̄− A(x2 − x1),

it holds according to Definition 3.7 that

˜̂vj =
AT

[j,:]

b̄[j]

1

1− A[j,:]

b̄[j]
· (x2 − x1)

=
1

1− ¯̂vTj · (x2 − x1)
¯̂vj = σj ¯̂vj .

This allows to relate the matrix of vertices of D̃ to that of D̄:

˜̂
V :=

[
˜̂v1

˜̂v2 . . . ˜̂vnA
]T

= diag (σ1, σ2, . . . , σnA) V̂ , (3.16)

which reveals that D̃ – for given x2 – results as a linear transformation of the polar dual D̄.

Because

x1, x2 ∈ int(P)⇒ x2 − x1 ∈ int(P̄)

and because P̄ contains the origin, it holds that

A[j,:]

b̄[j]
· (x2 − x1) < 1 ⇒ σj > 0, j = 1, 2, . . . , nA.

Thus, (3.16) is a linear transformation that scales the vertices ˜̂vj of the dual along rays

defined by ¯̂vj as illustrated in Fig. 3.3. Therefore, in general, shifting P scales the corre-

sponding polar duals. As scaling is a linear transformation, vertices are mapped to vertices

and facets remain facets; this especially implies that

T̃i ≡ T̄i,

47

3. Feasibility Assessment and Efficient Planning

Figure 3.3.: Example: scaling the triangulation of a facet of a dual polytope along rays

corresponding to ¯̂vj (bullets mark vertices ˜̂vj).

as these only contain indices of the corresponding vertices. The volume of the sim-

plices (3.13), however, is changed by scaling according to:

vol
(
convh

(
S̃j ∪ {0}

))
=

1

nx!

∣∣∣det
˜̂
V[Sj ,:]

∣∣∣

=
1

nx!

∣∣∣det
(
diag (σ1, σ2, . . . , σnA) · V̂

)
[Sj ,:]

∣∣∣

=
1

nx!

∣∣∣det
(
diag (σk)k∈Sj

)
· det V̂[Sj ,:]

∣∣∣

= vol (convh (Sj ∪ {0})) ·
∏

k∈Sj

σk

= ω̃i.

Thus, the volume of a scaled simplex can be related to the volume of the initial simplex,

which allows to compute the weights ω̃i and coordinates λ̃i as claimed.

The online computation of Warren’s coordinates as outlined in this section is summarized

in Algorithm 3.3b.

Given these algorithms for approximation of controllable sets and solutions of the plan-

ning problem, it becomes possible to assess the efficacy of the maneuver-based planning

method in an example. This is provided in the following chapter and serves as the basis

for a discussion of the approach.

48

3.2. Fast Planning using Approximated Controllable Sets

Input V̂ , Â, nv, nA, nx
1: ω ← 0

2: for i ∈ {1, 2, . . . , nv} do

3: Fi ← ∅, T̄i ← ∅, ωi ← 0, λ[i] ← 0

4: for j ∈ {1, 2, . . . , nA} do

5: if V̂[j,:]Â
T
[i,:] == 1 then

6: Fi ← Fi ∪ {j}
7: end if

8: end for

9: T̄i ← tri

({(
V̂[k,:]

)T |k ∈ Fi
})

10: for S ∈ T̄i do

11: ωi ← ωi +
∣∣ 1
nx! det V̂[S,:]

∣∣
12: end for

13: ω ← ω + ωi
14: end for

15: for i ∈ {1, 2, . . . , nv} do

16: λ[i] ← ωi
ω

17: end for

Output λ

(a) Offline computation [76].

Input V̂ , x1, x2, nv, nA, T̄i, i = 1, 2, . . . , nv
1: ω̃ ← 0

2: for i ∈ {1, 2, . . . , nA} do

3: σi ← 1
1−V̂[i,:]·(x2−x1)

4: end for

5: for i ∈ {1, 2, . . . , nv} do

6: ω̃i ← 0

7: for S ∈ T̄i do

8: ϑ← LoadVolume(S)

9: ω̃i ← ω̃i + ϑ ·
∏

k∈S σk
10: end for

11: ω̃ ← ω̃ + ω̃i
12: end for

13: for i ∈ {1, 2, . . . , nv} do

14: λ̃[i] ← ω̃i
ω̃

15: end for

Output λ̃

(b) Extension of [76] to online computation.

Algorithm 3.3.: Online and offline versions of Warren’s algorithm.

49

4. Examples and Discussion

The purpose of this chapter is to demonstrate the efficacy of the devised maneuver concept.

To that end, at first, a simple example for the modeling of a maneuver is given, followed

by a comparison of the optimization-based planning procedure and the interpolation-based

one in terms of computation times. Then, in Section 4.2, the interaction with the high-level

planner is exemplified. In the following, assume for simplicity:

Assumption 4.1 (Homogeneous Vehicle Dynamics). All vehicles have the same dynamics.

While this assumption is clearly unrealistic, it is possible to extend the framework to het-

erogeneous dynamics, e.g. by assuming the existence of classes of similar vehicle dynamics

and formulating maneuvers for combinations of different classes. While this extension is

conceptually simple, it increases the number of possible maneuvers in the maneuver library

(and therefore, the required design effort) such that it is deferred to future work.

4.1. Example I: A Cooperative Overtaking Maneuver

In the following, a simple overtaking maneuver as illustrated in Fig. 4.1 will be considered,

where Vehicle 1 is scheduled to overtake Vehicle 2. This must be enabled by Vehicle 2 and

the oncoming Vehicle 3. Focusing on modeling of this maneuver and a demonstration of the

computational advantage of the interpolation-based approach over the optimization-based

one, non-cooperating traffic participants are not considered until Section 4.2 for clarity of

exposition.

Vehicle 1

×

Vehicle 2

×
Vehicle 3

×

p
(3)
x − p(1)

x

p
(2)
x − p(1)

x

p
(1)
y

Figure 4.1.: Example Maneuver: cooperative overtaking with oncoming traffic.

51

4. Examples and Discussion

4.1.1. Maneuver Formulation

Choosing the same model for all three vehicles for the generation of reference trajectories,

the dynamical state of the ith vehicle, i ∈ {1, 2, 3}, is described by its longitudinal position

and velocity, p
(i)
x and v

(i)
x , respectively, and its lateral position and velocity, p

(i)
y and v

(i)
y .

In line with Section 2.3.2, the relative positions:

p
(2)
rel := p

(2)
x − p(1)

x , p
(3)
rel := p

(3)
x − p(1)

x

are introduced. In addition, vehicles 2 and 3 are constrained to keep their lanes during

the maneuver, such that the lateral velocities v
(2)
y and v

(3)
y are set to zero, leading to

constant lateral positions p
(2)
y and p

(3)
y . These simplifications reduce the dimensionality of

the continuous state space Rnx of the hybrid automaton to be defined. The resulting state

vector reads:

x =
[
p

(2)
rel p

(3)
rel p

(1)
y v

(1)
x v

(2)
x v

(3)
x v

(1)
y

]T
.

As inputs, the accelerations in the different directions are chosen, i.e., u
(i)
x := v̇

(i)
x and u

(i)
y :=

v̇
(i)
y , such that:

u =
[
u

(1)
x u

(2)
x u

(3)
x u

(1)
y

]T
.

The flow function then results from zero-order hold discretization of:

ẋ = Acx+Bcu, (4.1)

with

Ac =




03×3

−1 1 0 0

−1 0 1 0

0 0 0 1

04×7


 , Bc =

[
03×4

I4×4

]
.

This model uses double integrator dynamics for both longitudinal and lateral dynamics.

Despite its simplicity, it has been successfully employed in planning problems, e.g. by [127,

120, 46]. This has several reasons: on the one hand, proper choice of the state and

input constraints can capture many behaviours of more complex models. For example,

it is possible to introduce coupling between longitudinal and lateral dynamics [120] or

to approximate the so-called friction circle [101]. Furthermore, plans are to be obtained

for comfortable on-road driving, which occurs in state space regions where more complex

vehicle models are only mildly nonlinear, qualitatively speaking. Most importantly, in this

thesis, obtained plans are not directly applied as control inputs to the vehicle, but serve

as references for a tracking controller. As described in Part II, it is possible to quantify

the maximum tracking error for a given model, which can then be accounted for during

the maneuver formulation by providing safety distances accordingly.

52

4.1. Example I: A Cooperative Overtaking Maneuver

0 20 40 60
0

50

100

150

200

p
(1)
x

p
(2

)
x

0 20 40 60

−1

0

1

2

p
(1)
x

p
(1

)
y

0 20 40 60
0

10

20

p
(1)
x

v
(1

)
x

0 20 40 60
0

10

20

p
(1)
x

v
(2

)
x

0 20 40 60

−20

−10

0

p
(1)
x

v
(3

)
x

0 20 40 60
0

1

1

2

2

p
(1)
x

v
(1

)
y

0 50 100 150 200

−1

0

1

2

p
(2)
x

p
(1

)
y

0 50 100 150 200
0

10

20

p
(2)
x

v
(1

)
x

0 50 100 150 200
0

10

20

p
(2)
x

v
(2

)
x

0 50 100 150 200

−20

−10

0

p
(2)
x

v
(3

)
x

0 50 100 150 200
0

1

1

2

2

p
(2)
x

v
(1

)
y

−1 0 1 2
0

10

20

p
(1)
y

v
(1

)
x

−1 0 1 2
0

10

20

p
(1)
y

v
(2

)
x

−1 0 1 2

−20

−10

0

p
(1)
y

v
(3

)
x

−1 0 1 2
0

1

1

2

2

p
(1)
y

v
(1

)
y

0 10 20
0

10

20

v
(1)
x

v
(2

)
x

0 10 20

−20

−10

0

v
(1)
x

v
(3

)
x

0 10 20
0

1

1

2

2

v
(1)
x

v
(1

)
y

0 10 20

−20

−10

0

v
(2)
x

v
(3

)
x

0 10 20
0

1

1

2

2

v
(2)
x

v
(1

)
y

−20 −10 0
0

1

1

2

2

v
(3)
x

v
(1

)
y

Figure 4.2.: Projections of an example 5-step controllable set: exact set (white) and ap-

proximation (gray).

The inputs are subject to the constraints:

ux,min ≤ u
(i)
x ≤ ux,max, uy,min ≤ u

(1)
y ≤ uy,max,

and the velocities are chosen such that the vehicles cannot reverse their driving direction:

0 ≤ v
(1)
x ≤ vx,max, 0 ≤ v

(2)
x ≤ vx,max, − vx,max ≤ v

(3)
x ≤ 0.

The overtaking maneuver is divided into three phases Q = {q1, q2, q3}: in the first,

Vehicle 1 is behind Vehicle 2, in the second, Vehicle 1 overtakes and is somewhere next to

Vehicle 2, and in the third phase, Vehicle 1 drives in between Vehicle 2 and the oncoming

Vehicle 3, always maintaining pre-specified, constant safety distances in longitudinal and

lateral direction, lx,safe and ly,safe, respectively, which are assumed to be chosen such that

bounded tracking errors are accounted for. Transitions are only allowed from phase 1

to phase 2 and from phase 2 to phase 3. Note that this does not allow to fall back to

a prior phase, which may limit flexibility of the maneuver, but decreases computational

complexity by reducing the number of admissible phase transitions. The relative positions

are bounded from above and below by px,rel,max and px,rel,min respectively py,rel,max and

py,rel,min. For each phase, a definition of different invariant and guard sets is given in

Table 4.1. Since location q3 is the target phase of the automaton, no transitions exist from

here. Once the state of the hybrid automaton has reached the target set:

XT =
{
x|x ∈ inv(q3), 1.1p

(2)
y ≤ p

(1)
y ≤ 0.9p

(2)
y , |v(1)

y | ≤ 0.1
}

in phase q3, the maneuver is completed. For numerical values of the employed parameters,

cf. Table A.2.

53

4. Examples and Discussion

Location Invariant Guard

q1

−
(
p

(2)
x − p(1)

x

)
≤ lx,safe,

p
(2)
x − p(1)

x ≤ p
(3)
x − p(1)

x − lx,safe,

p
(3)
x − p(1)

x ≤ px,rel,max,

py,rel,min ≤ p
(1)
y ≤ py,rel,max,

0 ≤ v
(1)
y ≤ vy,max.

g(θ1,2) = {x|p(2)
x − p(1)

x ≤ lx,safe}

q2

px,rel,min ≤ p
(2)
x − p(1)

x ≤ lx,safe,

lx,safe ≤ p
(3)
x − p(1)

x ≤ px,rel,max,

p
(2)
y + ly,safe ≤ p

(1)
y ≤ py,rel,max,

vy,min ≤ v
(1)
y ≤ vy,max.

g(θ2,3) = {x|p(2)
x − p(1)

x ≤ −lx,safe}.

q3

px,rel,min ≤ p
(2)
x − p(1)

x ≤ −lx,safe,

lx,safe ≤ p
(3)
x − p(1)

x ≤ px,rel,max,

py,min ≤ p
(1)
y ≤ py,max,

vy,min ≤ v
(1)
y ≤ 0.

—

Table 4.1.: Definition of the locations used to model the maneuver.

4.1.2. Example Results: Controllable Sets and Trajectories

In order to set up a planning problem based on this maneuver, the parameters of the cost

function (2.25) must be chosen. The matrix Cz is defined as:

Cz =
[
05×2 I5×5

]
,

while C1 = I, D1 = I. As reference values in z̄, a longitudinal speed of 20 m s−1 is defined

for all vehicles, while the reference for the lateral speed and position of the overtaking

vehicle is zero. These values, along with a planning horizon and constraints (2.24) derived

from the maneuver definition, define the planning problem.

The given definition of the hybrid automaton for the overtaking maneuver allows to

determine controllable sets for the target set XT, containing states for which a solution to

the planning problem exists. An example projection of such a 7-dimensional set on R2 is

shown in Fig. 4.2, along with a projection of an approximation obtained by the procedure

described in Section 3.1. The quality of a given approximation can be quantified by the

54

4.1. Example I: A Cooperative Overtaking Maneuver

difference in volume or the Hausdorff distance to the original set; however, in light of

Proposition 3.3, such values are only of interest during computation of the approximation,

as it can be made arbitrarily precise at the price of an increase in complexity. This

indicates a trade-off, to which a compromise must be found during the design phase: while

complexity should be low, the volume of the approximated controllable set should be as

large as possible, where the maximum is given by the exact controllable set.

Despite the need to compromise, approximations are nonetheless necessary: because the

number of facets of j-step controllable sets and therefore computation time grow exponen-

tially as j increases, an exact (within numerical tolerances) computation of controllable

sets is generally only possible for a few steps. Because controllable sets are intended for

feasibility assessment of planning problems, this also limits the planning problems to only

a few time steps. Maneuvers require a certain amount of time for completion; if this time

span is divided into only a few steps, a long sampling time Ts results, which can threaten

safety because the inter-sample behavior is not accounted for in the discrete-time planning

problem. This issue is exemplified in Fig. 4.3 and Fig. 4.4, where position and velocity

trajectories for the three vehicles resulting during an overtaking maneuver are shown. The

left plot in Fig. 4.3 is based on a sampling time Ts = 1 s for zero-order hold discretization

of (4.1), which allows to complete the maneuver in 5 steps (being the maximum number of

steps for which exact controllable sets could be computed in this case, cf. Figure 4.2). The

right plot in Fig. 4.3, in contrast, results from approximations as described in Section 3.1,

which allow for longer planning horizons and shorter sampling times because the number

of time steps is less critical in the approximation scheme.

Despite this difference, in both cases, Vehicle 1 overtakes Vehicle 2 and avoids collision

with Vehicle 3 as intended, illustrating the capability of the maneuver concept to reliably

ensure execution of a maneuver. This is a major advantage over approaches which model

vehicles by bounding boxes, e.g. [120]; in these approaches, a certain driving behavior can

only be stimulated by tuning of the cost function and proper choice of reference values,

but it cannot be guaranteed to result for all admissible initial states. Furthermore, these

admissible initial states cannot even be computed in advance in the bounding box approach.

Thus, when planning online, it is neither known whether an intended maneuver is feasible

for the given initial state, nor if the planning algorithm will return a corresponding reference

trajectory. The maneuver approach resolves both issues.

These drawbacks of the bounding box approach make it difficult to compare its compu-

tation times to those of the maneuver approach because it will often return results which

do not comply with the desired behavior of the vehicles. A better indicator of computa-

tional complexity is the combinatorial complexity of the binary variables used in a specific

planning problem formulation. Note, however, that combinatorial complexity does not

completely determine the resulting computation times, as it is sometimes possible to ob-

tain reductions by adding further binary variables [151]. Also, highly performant solvers

such as [72, 63] make use of heuristics, whose success may differ for two different problem

formulations.

The bounding box approach requires one binary variable per side of the bounding box

per vehicle. For the considered example scenario, a number of five binary variables (three

55

4. Examples and Discussion

0 50 100 150
−2

−1

0

1

2

1

1

12

2

2

3

3

3

4

4

45

5

5

6

6

6

7

7

7

px in m

p y
in

m

0 50 100 150 200 250

−2

0

2

px in m

p y
in

m

tplan

Figure 4.3.: Example position trajectories of the three vehicles during overtaking: opti-

mization (left) vs. approximation (right) (numbers indicate time steps).

0 2 4 6
10

15

20

25

time in s

|v x
|

0 2 4 6
15

20

25

time in s

|v x
|i

n
m

s−
1

Vehicle 1 Vehicle 2 Vehicle 3

Figure 4.4.: Example velocity magnitude trajectories.

for bounding vehicle 2, two for vehicle 3) is reasonable. Since no temporal constraints

exist among these variables (arbitrary switches between two consecutive time instants

are allowed), a total of 2(5·Hplan) different combinations exists. The proposed method, in

contrast, only requires two binary variables to implement the optimal control problem

via (2.24), which are in addition connected by temporal constraints, namely, the switching

order imposed by the set of allowed transitions Θ. Since the sequence in which the locations

are traversed is known, only the switching times must be determined. For at most two

switching times, there exist

(
Hplan

2

)
possibilities, which is significantly less than the

above mentioned 2(5·Hplan) combinations.

The cooperative nature of the maneuver becomes clear by the fact that – even though the

vehicles try to maintain their reference speed – Vehicle 2 and Vehicle 3 brake cooperatively

in order to facilitate overtaking of Vehicle 1, cf. Figure 4.4. In this example, a rather

tight longitudinal safety distance of lx,safe = 5 m was prescribed between the vehicle center

points, which could of course be increased.

56

4.2. Example II: Highway Entry of Autonomous Vehicles

0 100 200 300 400 500 600 700 800 900 1,000
10−4

10−3

10−2

10−1

Test instance

C
om

p
u
ta

ti
on

ti
m

es
in

s

optimization-based

interpolation-based

Figure 4.5.: Comparison of run-times.

While a comparison between the bounding box and the maneuver approach is method-

ically difficult, it is simple to compare computation times for the optimization-based and

the approximated solution of a maneuver-based planning problem. This comparison was

carried out for a large number of initial states randomly chosen from an entry set obtained

as solution to Problem 3.1.

Computation of the barycentric coordinates λ was facilitated based on triangulation as

discussed in Section 3.2.1, where a total of ns = 4858 simplices resulted from triangu-

lation of the considered entry set. The resulting run-times in milliseconds are shown in

Fig. 4.5. The scenario was implemented in Matlab using Yalmip [96] and was run on a

PC with an Intel i7 CPU (8 cores, each 3.4 GHz) and 16 GB RAM. Clearly, owing to

the non-real time nature of the employed operating system, these run-times mainly serve

as an illustrative indicator. While the optimization-based procedure (using Gurobi [63])

requires about 12.11 ms on average, the interpolation-based method only requires a mean

of about 0.25 ms.

4.2. Example II: Highway Entry of Autonomous Vehicles

The example in the previous section focused on a single maneuver without considering

non-cooperating traffic participants. This section, in contrast, demonstrates the ability of

the maneuver concept to enable safe interaction between cooperating and non-cooperating

traffic participants as well as efficient scheduling of different maneuvers. To that end,

the scenario shown in Fig. 4.6 is considered, in which autonomous vehicles are driving on

a highway (left lane in driving direction), while other autonomous vehicles are trying to

57

4. Examples and Discussion

Vehicle NF

×

Vehicle F

×

Vehicle L

×

Vehicle E

×

Vehicle NL

×

pmerge,min pmerge,max

py

px

?

Figure 4.6.: Highway Entry: Where and when to merge?

merge from a merging lane (right lane). The following rules are imposed: a minimal velocity

vx,min,left > 0 is enforced on the highway (as is common e.g. on German highways). The

merge lane enables vehicles to accelerate such that, at the end of the merging process, this

constraint is fulfilled. Merging must take place between longitudinal coordinates pmerge,min

and pmerge,max. If it should be impossible because no gap opens, a vehicle must stop on

the merge lane in a position that allows to sufficiently accelerate prior to merging later on.

The scenario is to be controlled by the hierarchical framework as depicted in Figure 2.1.

Regarding the infrastructure setup, similar assumptions are made as in [159] for intersec-

tion control: At first, to limit the scope of the example, assume that only autonomous

vehicles are driving on the road. Then, assume that the high-level controller is part of

the infrastructure, i.e., a road side unit, and controls a certain section (the control zone)

of the road up- and downstream (1.5 km in each direction). Events outside this zone will

not be considered for simplicity. This setting allows to focus on the basic functionality

of the approach without considering questions of decentralized computations, inter-vehicle

communication, or changing road topology.

Focusing on feasibility, the high-level controller implements the following simple rules

for maneuver scheduling: all vehicles on the merge lane except for the first one are to keep

the lane. For the first vehicle, it is assessed whether a feasible merging maneuver exists in

the maneuver library of the high-level controller, depending on the vehicles currently on

the highway. If this is the case, the maneuver with shortest duration Hplan is executed.

Otherwise, the vehicle must keep the lane until merging becomes possible. Note that both

the gap into which and the time at which merging occurs are determined online by the

high-level controller, i.e., these are not fixed a priori.

In order to compute reference trajectories for a vehicle i, affine system equations are

used:

ẋ(i)(t) = Acx
(i)(t) +Bcu

(i)(t), (4.2)

with the state and input vectors:

x(i) =
[
p

(i)
x p

(i)
y v

(i)
x v

(i)
y

]T
, u(i) =

[
u

(i)
x u

(i)
y

]T

58

4.2. Example II: Highway Entry of Autonomous Vehicles

Table 4.2.: Parameter values used in the case study.

ux,min = −3 m s−1 pmerge,min = 200 m vx,min = 0 m s−1

ux,max = 3 m s−1 pmerge,max = 400 m vx,max = 33.3 m s−1

uy,min = −3 m s−1 vx,min,left = 22.2 m s−1 vy,min = 0 m s−1

uy,max = 3 m s−1 px,min = −∞ m vy,max = 5.56 m s−1

lx,safe = 5 m px,max =∞ m Ts = 0.5 s

and – just as in Section 4.1 – double integrator dynamics in longitudinal and lateral

direction, such that:

Ac =




0 0 1 0

0 0 0 1

02×4


 , Bc =

[
02×2

I2×2

]
. (4.3)

Zero-order hold discretization using sampling time Ts – which also determines the fre-

quency at which the high-level controller operates – and appropriate, maneuver-dependent

combination with the dynamics of other vehicles then give the flow function of the cor-

responding hybrid automaton as in Definition 2.2. States and inputs are constrained by

polyhedral sets:

x(i) ∈ X (i), u(i) ∈ U (i). (4.4)

In the following, let

U (i) = [ux,min, ux,max]× [uy,min, uy,max]

and

X (i) = [px,min, px,max]× [py,min, py,max]× [vx,min, vx,max]× [vy,min, vy,max].

Parameter values used in this case study are given in Tab. 4.2.

4.2.1. Maneuver Formulations

In order to enable collision-free interaction of all vehicles on the highway and the merge

lane, the high-level controller may choose between several maneuvers, which are formulated

in the following.

Lane Change: Single Vehicle

The first maneuver defines the admissible behavior of a single vehicle during merging (which

reduces to a simple lane change in the absence of other vehicles). Despite its simplicity, this

maneuver is important because it allows to characterize those longitudinal positions and

59

4. Examples and Discussion

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
0

10

20

30

p
(E)
x in m

v
(E

)
x

in
m

/s

Figure 4.7.: Projection of the control invariant set Xmerge.

velocities of a vehicle on the merge lane for which merging is physically possible, which is

also a necessary condition for successful completion of all merging maneuvers which involve

other vehicles. Starting on the merge lane with zero lateral velocity:

X0 :=
{
x(i) ∈ X (i)|p(i)

y = py,min, v
(i)
y = 0, pmerge,min ≤ p

(i)
x ≤ pmerge,max

}
,

the maneuver is complete if the vehicle has merged on the highway before reaching the

end of the merge lane:

XT :=
{
x(i) ∈ X (i)|p(i)

y = py,max, v
(i)
y = 0, pmerge,min ≤ p

(i)
x ≤ pmerge,max

}
. (4.5)

The maneuver can be modeled to consist of only one phase q0 with inv(q0) = X (i), such

that no guards and transitions must be defined. For this maneuver, the computation of

controllable sets based on the recursion in Definition 2.5 can be observed to converge to a

set Xmerge, i.e.,

Xmerge := Kj , where pre(Kj) = Kj , j ∈ N.

This makes Xmerge a control invariant set. Its projection on the space of longitudinal

position and velocity is shown in Fig. 4.7. Enforcing x ∈ Xmerge as long as no merging

maneuver is scheduled has the effect that vehicles will automatically adapt their speed

on the merge lane and even come to standstill if required in order to be able to merge

sometime in the future; no special braking maneuver is required.

Lane Keeping: Single Vehicle

Another simple maneuver defines the behavior of a single vehicle which is driving on

a lane without any other vehicles in the closer surrounding. The corresponding hybrid

automaton contains only one phase q0 and therefore no guards or transitions. Inputs,

60

4.2. Example II: Highway Entry of Autonomous Vehicles

states, dynamics, and input and state constraints correspond to those defined above, while

the invariant (equivalent to the initial set X0) depends on the lane the vehicle is driving

on: on the left lane,

inv(q0) =
{
x ∈ X (i)|v(i)

y = 0, p
(i)
y = py,max, v

(i)
x ≥ vx,min,left

}
,

while on the right (merge) lane, the vehicle’s state must also lie in the control invariant

set Xmerge from (4.5):

inv(q0) =
{
x ∈ X (i) ∩ Xmerge, v

(i)
y = 0, p

(i)
y = py,min

}
,

where it must be ensured by the designer that the intersection of the sets is non-empty.

Lane Keeping: Two Vehicles

A slightly more complex maneuver defines the behavior of a vehicle E driving behind a

non-cooperating vehicle NL, while both keep the lane (similar to Fig. 2.6, with E , F and

NL , L). The hybrid automaton of this maneuver also consists of only one phase q0 and

no transitions or guard sets. The dynamics now also incorporates those of NL, leading

to the combined state vector x =
[
x(E)T x(NL)T

]T
, while the input vector only consists

of u
(E)
x ∈ U (E) because the inputs u

(NL)
x ∈ U (NL) of NL cannot be controlled within the

maneuver, such that U = U (E) andW = X (E)×X (NL)×U (NL). For planning, conservative

assumptions for the behavior of NL according to Sec. 2.3.1 are used. Similar to the single

vehicle’s lane keeping maneuver, the invariant depends on the lane the vehicles are driving

on. Generally, X0 = inv(q0), with

inv(q0) =
{
x ∈ X (E) ×X (NL), v

(E)
y = 0,

[
p

(NL)
x − p(E)

x v
(E)
x v

(NL)
x

]T
∈ Xsafe,

p
(i)
y =

{
py,max (left)

py,min (right)
, v

(E)
x ≥

{
vx,min,left (left)

vx,min (right)

}
,

where “left” and “right” refer to the respective lanes.

Cooperative Merging

The very core of the maneuver library in this example is a cooperative merging maneuver.

It defines roles for five vehicles, cf. Fig. 4.6: the non-cooperating leading and following

vehicles NL and NF, respectively, the vehicle E which is to merge, and the vehicles coop-

erating with it, L and F. Note that E is only allowed to merge between F and L, while

NF and NL are incorporated into the maneuver formulation in order to model the interac-

tion between the cooperating vehicles and their surrounding according to Sec. 2.3.1, i.e.,

C = {E,F,L}, and N = {NF,NL}. The associated hybrid automaton consists of three

phases Q = {q0, q1, q2} and has the topology as shown in Fig. 2.4, i.e., allows transitions

from q0 to q1 and from q1 to q2. The phases correspond to: 1) E driving on the right lane

61

4. Examples and Discussion

with zero lateral velocity, 2) E changing lanes, not having reached the end of the accelera-

tion lane pmerge,max yet, and 3) E having passed pmerge,max (which is only admissible after

having merged onto the highway).

Based on (4.2), the continuous state vector of the automaton combines the states of the

involved vehicles in:

x =
[
x(NF)T x(F)T x(L)T x(NL)T x(E)T

]
∈ X := X (NF) ×X (F) ×X (L) ×X (NL) ×X (E).

(4.6)

The corresponding input vector is:

u =
[
u(F)T u(L)T u(E)T

]T ∈ U := U (F) × U (L) × U (E). (4.7)

Note that the inputs of the non-cooperating vehicles NF and NL are not contained because

they are beyond control. Rather,

w =
[
u

(NFT)
x u

(NLT)
x

]T
,

with
[
x

w

]
∈ W := X × U (NF) × U (NL),

where conservative predictions according to Section 2.3.1 are used for w. The flow func-

tion in Definition 2.2 results from combining each vehicle’s dynamics (4.2) appropriately

according to the state vector (4.6), the input vector (4.7), and the conservative predic-

tions. The state constraints in each phase combine: 1) general constraint sets X (i) on the

dynamics of single vehicles with 2) safety constraint sets Xsafe in the state spaces of pairs

of vehicles, and 3) location-dependent constraints. Let:

XY =
{
x ∈ X |v(i)

y = 0, p
(i)
y = py,max

}
, i ∈ {NF,F,L,NL},

and define X̃ := (X × X × X × X × X) ∩ XY . Denote the projection on the state space

of vehicle i by proj(i), with i ∈ {NF,F,L,NL}. Then:

inv(q0) =
{
x|x ∈ X̃ , proj(NL,L)(x) ∈ Xsafe,

proj(L,F)(x) ∈ Xsafe, proj(F,NF)(x) ∈ Xsafe,

v
(NF)
x = vx,max, v

(NL)
x = vx,min

}
,

inv(q1) =
{
x|x ∈ X̃ , proj(NL,L)(x) ∈ Xsafe,

proj(L,E)(x) ∈ Xsafe, proj(E,F)(x) ∈ Xsafe,

proj(F,NF)(x) ∈ Xsafe, p
(E)
x ≥ pmerge,min,

v
(NF)
x = vx,max, v

(NL)
x = vx,min

}
,

inv(q2) =
{
x|x ∈ inv(q1), p

(E)
y = py,max, v

(E)
y = 0

}
.

62

4.2. Example II: Highway Entry of Autonomous Vehicles

The initial set is

X0 = {x ∈ inv(q0) : p
(E)
y = py,min, v

(E)
y = 0},

and the target set reads:

XT =
{
x|p(E)

y = py,max, v
(E)
x ≥ vx,min,left, v

(E)
y = 0

}
,

which enforces that E is driving on the left lane with zero lateral velocity and longitudinal

velocity above vx,min,left. The guard sets corresponding to the transitions are:

g(θ0,1) =
{
x ∈ X̃ |p(E)

y > py,min

}
, g(θ1,2) =

{
x ∈ X̃ |p(E)

x > pmerge,max

}
.

From this cooperative merging maneuver, other merging maneuvers can be derived by

omitting vehicles and their states from the hybrid automaton and adapting its formula-

tion accordingly. This allows to cover situations in which fewer vehicles are present than

depicted in Fig. 4.6, thus making the maneuver library more flexible. For example, a non-

cooperative merging maneuver which only considers E and a single non-cooperating vehicle

(either NF or NL is defined, depending on whether E should merge before another vehicle

or behind). This maneuver is non-cooperative in the sense that E must plan without other

vehicles adapting their behavior, only relying on the conservative treatment as described

in Sec. 2.3.1.

4.2.2. Simulation Results

A Matlab-based simulation environment has been implemented in order to analyze the

effectiveness of the proposed framework. The test setup was chosen as follows: vehicles are

generated every t seconds, where t is randomly chosen anew every time a vehicle has been

generated, with t ∈ [3, 5] s (left lane) and t ∈ [3, 4] s (right lane). The initial longitudinal

position is set to 0 and the lateral position to the respective lane center with zero lateral

velocity. Longitudinal velocities are chosen in compliance with velocity-dependent safety

constraints Xsafe to a preceding vehicle, but are completely random apart from that (right

lane) or as close to 100 km h−1 as possible (left lane).

The simulation was run for 40 s, during which five vehicles were generated on the left lane

and three on the right lane. Fig. 4.8 shows the final constellation of the vehicles, where

the numbering reflects the order of their generation (2, 4, and 7 started on the merge

lane). The emerging behavior is as follows: after 19 s, Vehicle 2 executes a cooperative

merging maneuver with Hplan = 13, where the vehicles C = {2, 5, 6} are cooperating, while

the vehicles N = {3, 8} are considered as non-cooperative. The resulting longitudinal

velocities of the cooperating vehicles 2, 5, and 6 are shown in Fig. 4.9. The cooperative

nature of the maneuver is illustrated by the fact that the leading vehicle 5 accelerates

slightly in order to allow vehicle 2 to merge behind it. The following vehicle 6, on the

other hand, is so far behind that it does not need to adapt its velocity to open a gap.

Vehicles 4 and 7 are unable to find a gap into which they can merge cooperatively, such

63

4. Examples and Discussion

0 100 200 300 400 500 600 700 800 900 1,000 1,100
−2

0

2

4
12 34 567 8

px in m

p y
in

m

Figure 4.8.: Constellation after 40 s of simulation (bullets mark vehicles; numbers indicate

order of their generation).

that they wait until all vehicles have passed and merge behind 9.5 s respectively 14.5 s

after having appeared on the map, with Hplan = 18 and Hplan = 14, respectively. These

maneuvers take so long because they already include the process of slowing down and

waiting on the merge lane. The lateral velocities of the merging vehicles 2, 4, and 7 are

given in Fig. 4.11, while Fig. 4.10 compares the actual longitudinal distances for a selected

pair of vehicles to the constraints resulting from Proposition 2.2 and those resulting from

the approximation Xsafe as in Proposition 2.3. The plot shows that the constraints are

never violated and demonstrates that the approximation does not lead to overly cautious

driving.

The fact that vehicles 4 and 7 cannot find a gap to merge between the other vehicles can

be attributed to three major reasons: on the one hand, the constellation of the involved

vehicles might simply be such that safe merging is impossible. On the other hand, however,

it is possible that the entry sets of the maneuvers contained in the maneuver library are too

small, either because the planning horizons have not been chosen long enough, or because

approximations of the actual controllable sets are too coarse. Third, it is possible that the

number of different maneuvers in the library is too small. While in the given example, an

alternative maneuver (merge behind all other vehicles) could be found, in general, it could

happen that no maneuver is admissible at all, which would force the affected vehicles to

emergency brake. Thus, the design of the maneuver library is of paramount importance,

aiming to prevent such situations.

Having analyzed the efficacy of the planning method in the two examples considered

in this chapter, the focus of the thesis now shifts towards the task of tracking a planned

trajectory, which is considered in the following part.

64

4.2. Example II: Highway Entry of Autonomous Vehicles

19 19.5 20 20.5 21 21.5 22 22.5 23 23.5 24 24.5 25 25.5 26

10

20

Vehicle 5

Vehicle 6

Vehicle 2

tk in s

v x
in

m
s−

1

Figure 4.9.: Longitudinal velocities of cooperating vehicles during merging of vehicle 2.

16 18 20 22 24 26 28 30 32 34 36 38 40
0

50

100

tk in s

d
L

F
in

m

Figure 4.10.: Longitudinal distance (dashed) and required safety distance (gray: conserva-

tive; solid: exact) for vehicle pairing: L = 4, F = 7.

18 20 22 24 26 28 30 32 34 36 38 40
0

0.5

1

1.5

2

Vehicle 2

Vehicle 4
Vehicle 7

tk in s

v y
in

m
s−

1

Figure 4.11.: Lateral speed of vehicles 2, 4, and 7.

65

Part II.

Low-level Tracking Control

67

5. A Novel Approach to Trajectory

Tracking with Guarantees

Feedback controllers are typically deployed in order to stabilize a system, to impose a

desired behavior, and to counteract the effect of disturbances. The trajectory planning

layer of Part I introduces feedback by frequent re-planning and therefore allows to react to

changes in the environment. However, this does not ensure that a vehicle actually follows

a planned trajectory, owing to a mismatch between the typically simpler dynamic models

used for planning and the actual vehicle dynamics. Also, the inputs of the planning model

correspond to different physical quantities than the input signals of the actual vehicle, such

that the input signals from the trajectory planner simply cannot be directly applied to a

vehicle. Therefore, in the proposed framework, the planning algorithm is complemented by

a low-level trajectory tracking controller, which is based on a more detailed vehicle model

and enables a vehicle to closely follow a planned trajectory.

In addition to the model mismatch, deviations from a planned behavior can result from

external disturbances such as wind gusts, varying road surface conditions, or slope of the

road. While the following derivations could in principle be extended to account for these

effects, detailed disturbance models, parameters, and corresponding assumptions would be

required, lying beyond the scope of this thesis. Finally, the discrete-time implementation

of a continuous-time controller always leads to deviations at the inter-sample times, being

a further source of disturbance. As it is common practice, this problem is adressed by a

sufficiently high control frequency, which poses no challenge from a computational point

of view for the tracking controller to be derived subsequently.

The mismatch between the planned and the resulting behavior of a vehicle will be referred

to as tracking error in the following. Consistency between the planning and tracking layers

requires a characterization of the set of reference trajectories for which guarantees about

a bound on the magnitude of the tracking error can be given. Such a guarantee allows to

make provisions for tracking errors during the design phase by including sufficient safety

margins in the maneuver formulations of the trajectory planning problem. This enables

the trajectory planner to plan trajectories which can be tracked with an error small enough

to not put safety at risk.

The general functionality of the control algorithm to be used in the proposed framework

is described in this chapter. Related to the boundedness of the tracking error is the

question of the existence of admissible control inputs, which is considered in Chapter 6. The

synthesis of the controller parameters and analysis of the resulting closed-loop dynamics

is detailed in Chapter 7, while the efficacy of the approach is illustrated by simulation

examples in Chapter 8, followed by a discussion of the overall approach.

69

5. A Novel Approach to Trajectory Tracking with Guarantees

5.1. Related Work on Trajectory Tracking

As one of the fundamental challenges in control theory, the task of tracking time-varying

reference values has gained considerable attention, cf. [80] for an introduction. Considering

the control of autonomous vehicles, different notions of the reference tracking problem

exist. While no strict categorization exists, the following terminology is widely used: the

so-called lateral control or path following task is concerned with the control of a vehicle

along a path. As mentioned in Part I, a path is understood as an ordered set of coordinates

without temporal information, such that the longitudinal position along the path is not

prescribed, cf. [41, 4, 158]. It typically finds application in control of slowly-moving vehicles

such as autonomous underwater vehicles [87, 3] for which collision avoidance with moving

obstacles is not as relevant as in on-road traffic.

In the following, the more complex problem of trajectory tracking is considered, which

not only prescribes reference positions, but also corresponding points in time. This imposes

stricter requirements, which are, however, necessary in the presence of moving obstacles,

where collision avoidance requires information about an obstacle’s position at a certain

time.

Several aspects contribute to the complexity of the tracking task in the considered con-

text: first, even after simplifying assumptions, the vehicle dynamics is nonlinear [121, 114].

Furthermore, constraints on the states and inputs of the controlled vehicles must be con-

sidered. This typically motivates the use of model-predictive control (MPC), which allows

to explicitly account for constraints. This advantage comes at a price: as vehicles have

nonlinear dynamics, computation of inputs by optimization of predicted values in gen-

eral leads to nonlinear optimization problems. These are comparably expensive to solve

and lack guarantees of convergence to a globally optimal solution due to their non-convex

nature [25]. Nonetheless, several approaches to the tracking problem based on nonlinear

MPC exist in the vehicle context [50, 62, 53]. An alternative [51, 78, 64, 45, 94, 92, 154] to

the direct use of nonlinear vehicle models within the online optimization is the linearization

of these models around the initial state or along a given reference trajectory. This leads to

a linear, time-varying model and inevitably introduces approximation errors, but reduces

computational complexity at run-time. Nonetheless, MPC in general is computationally

demanding when compared to most non-predictive controllers. Also, it is relatively difficult

to establish properties such as stability or recursive feasibility for model-predictive con-

trollers. A third way to address the nonlinearity of a prediction model is parameter-varying

control [19, 111, 8, 33, 5], in which nonlinearities are perceived as parameters which vary

linearly over a convex domain; whatever result is to be obtained must then be enforced

for all possible parameter values. While this reduces the computational complexity, it also

increases the conservatism with which a result can be stated.

A different approach to the tracking task relies on input-output linearization of an often-

used vehicle model, the so-called bicycle model. Originating in the work of [57] and further

analyzed and also applied in practical experiments by [148], the tracking controller in this

approach generates inputs by solution of a nonlinear system of equations, which – just as

in the case of MPC – must be solved online. Just as in the case of MPC, this requires more

70

5.1. Related Work on Trajectory Tracking

computational effort than an algebraic feedback controller and has effectively prevented a

stability analysis so far, as no closed-form expression of the controller is available. Also,

despite first attempts [116], no input or state constraints are considered in this kind of

approaches.

More recently, the focus in tracking control for autonomous vehicles has shifted towards

safety and the ability of tracking controllers to guarantee properties such as stability,

boundedness, or constraint compliance. A classical way of testing a design for such prop-

erties relies on experiments and simulation. For example, a simulation-based assessment

of the performance in emergency situations of inversion-based controllers such as the one

proposed in [57] is given in [68]. There, the set of possible solutions under time-varying

disturbances and different initial states is explored, relying on Monte-Carlo simulation and

rapidly-exploring random trees. While these methods aim to assess both the average and

the worst-case performance, the results are only of stochastic nature. In general, even

though a valuable tool for falsification of a design, such methods are not able to guarantee

safety, as typically, only a finite set of test cases can be considered. This is problematic in

the face of an infinite number of possible reference trajectories in the tracking task, which

are unknown prior to run-time. Both makes it impossible to check all relevant cases during

system design.

The need for statements pertaining to an infinite number of trajectories has motivated

the use of set-based methods from the early days of control theory on, when A. M. Lyapunov

proposed to characterize invariant sets by sub-level sets of a certain class of functions [99].

In addition, numerical tools for the explicit computation of (robust) (control) invariant

sets, reachable, or controllable sets have been devised more recently:

(Robust) control invariant and (robust) controllable sets often find application in the

context of MPC [79, 123, 24], where they can be employed to ensure stability or recursive

feasibility even in the presence of bounded disturbances. For an example in the tracking

context cf. [36], where a model-predictive controller is employed to control a linear system

along a reference trajectory which is the output of a reference generator driven by unknown,

but bounded inputs. The controller must guarantee compliance with constraints on inputs,

states, and the magnitude of the tracking error, which is enabled by the computation of a

robust control invariant set for an augmented system comprising both the plant and the

reference generator. Also, persistent feasibility can be guaranteed in this way.

Reachable sets and their numerical computation have gained considerable attention in

the context of system verification [34, 108, 134, 7, 56]. These sets allow, for example,

to check whether a controlled system can reach a forbidden region in its state space, in

which case the design would be deemed unsafe. Examples in the vehicle tracking context

are given in [69, 6, 129, 100], where the reachable sets of a vehicle while tracking different

reference trajectories are computed.

Despite the conceptual promises of set-based methods for system verification, the corre-

sponding numerical computations are generally too demanding to be carried out in real-

time during operation of a system. This problem is often met by pre-computing and storing

sets offline, making it possible to quickly carry out computations during online operation

by resorting to the stored sets. For example, the approach in [129] relies on reachable sets

71

5. A Novel Approach to Trajectory Tracking with Guarantees

for the closed-loop system of a vehicle and a tracking controller; these sets are computed

offline for different reference values, while in online operation, a planned trajectory is then

partitioned and matched to the reachable sets which have been computed for similar ref-

erence values before. In doing so, the reachable set of the vehicle state relative to the

reference can be assembled online. However, the approach is only able to verify the ability

to track a reference trajectory after it has been planned, without specifying constructive

criteria which could be used by a planning algorithm to produce admissible trajectories.

The approach in [137] combines trajectory planning and tracking for nonlinear systems

based on so-called LQR trees. These consist of pre-computed reference trajectories, to

which a linear, time-varying quadratic regulator is assigned. The reference trajectories end

in the region of attraction of a feedback controller that stabilizes a target state. Estimates

of the domain of attraction of the time-varying controller of a trajectory characterize

states which can be guaranteed to reach the target state. Branches of a tree can be

combined to transfer a state over longer distances, provided that the end of one branch

is within the region of attraction of the controller associated with the succeeding branch.

Computation of approximations of the regions of attraction is facilitated based on sums-

of-squares programming, which limits the approach to rather low dimensions. Also, it is

difficult to account for moving obstacles and state constraints, as the control inputs depend

completely on the pre-computed tracking controllers of the reference trajectories, which

cannot be modified online.

The work of [100], while mainly focusing on the planning rather than the tracking task,

extends on [137]: now, both parametric and external uncertainty are accounted for and

it is possible to account for moving obstacles by shifting reference trajectories in state

space. This, however, requires the online solution of a convex, yet comparably expensive

quadratically-constrained quadratic program. As a conceptual difference to [137], approx-

imations of reachable sets – similar to [69, 129] – are computed instead of the domain of

attraction of controllers, guaranteeing collision-free tracking if the reachable sets do not

intersect with obstacles.

The framework in [131] also relies on a separation into an online/offline part in order to

ensure robust motion planning for robots with nonlinear dynamics under bounded distur-

bances and constraints. In the offline part, which is most relevant for the tracking task,

a controller is devised which can guarantee robust tracking despite the impact of distur-

bances. Unlike the approaches [69, 100], it does not rely on computation of reachable sets

for finitely many reference trajectories separately; rather, the use of contraction theory al-

lows to establish an invariant tube of fixed size around any feasible trajectory. While this

introduces conservatism, it decreases the dependency on the expressiveness of the chosen

pre-computed reference trajectories as in [69, 100], such that this approach is claimed to

be well-suited for unstructured environments.

In [94], the viability kernel, a concept pertaining to robust control invariant sets, is com-

puted in a gridding-based approach in order to enable collision-free driving of autonomous

race cars. While a gridding-based approach has the potential to reduce conservatism as

its results are not confined to a certain set representation (such as polytopes, ellipsoids, or

zonotopes), it is computationally expensive and therefore limited to low-dimensional state

72

5.2. Preliminaries

spaces.

The modular approach in [66, 65] can ensure safe tracking for many different planning

algorithms, which is enabled by modeling the interaction between the planner and the

tracking algorithm as a pursuit-evasion differential game. The value function of the game

is defined such that its sub-level sets allow a mapping between an initial tracking error

and the maximum error that can occur during tracking under worst-case assumptions for

disturbances and planner actions. This information enables the construction of a hybrid

controller which makes the sub-level sets of the value function invariant: as long as the

tracking error is within predefined bounds, a controller designed by standard methods

is active. Once the error approaches the boundary of the admissible region, a safety

controller is enabled, which computes control inputs based on gradient information of the

value function. The methodology relies on the numerical computation of the value function

based on level-set methods [108], which is – despite endeavors to mitigate this drawback

by problem decomposition – notoriously expensive.

As outlined in Chapter 1, it should be well noted that all of these methods – just like

the method to be presented subsequently – can only provide guarantees with respect to a

system model, but not to the actual system itself, as long as the relation between these

has not been determined. The field of robust control seeks to establish conditions under

which system properties still hold under perturbations of the system’s parameters (cf. [2]

for a general introduction and also a discussion in the vehicle control context); however,

assumptions on the perturbations are still required. Despite this conceptual limitation, it

is important to characterize the conditions under which a control algorithm is able to work

without causing problems.

5.2. Preliminaries

Prior to detailing the tracking algorithm used in this part, several preliminaries regarding

coordinate systems, reference trajectories, vehicle and tire models, and the tracking error

dynamics are given in this section.

Coordinate Systems

The following derivation relies on the use of three different planar coordinate systems, which

are depicted in Fig. 5.1: a cartesian, earth-fixed reference frame with unit basis vectors ex
and ey, a curvilinear, so-called Frenet frame with basis et and en, and a moving, body-

fixed coordinate system with basis eX and eY . In the cartesian frame, the position of a

point r =
[
px py

] [
ex ey

]T
is given relative to an earth-fixed origin by its projections

px and py on the two orthogonal basis vectors. While a cartesian coordinate system

is beneficial for planning purposes, the tracking problem can be better approached in a

curvilinear coordinate system, the so-called Frenet frame. Instead of using a fixed origin

as reference, a Frenet frame locates positions relative to their projection on a reference

path, in which a point on the path is given by the path coordinate s and a normal offset

to it by the coordinate n in direction of en. The reference path is parameterized in terms

73

5. A Novel Approach to Trajectory Tracking with Guarantees

ey

ex

en
et

θ

r

eY eX

ψ

s

Figure 5.1.: Relation between the cartesian, the body-fixed, and the Frenet coordinate

system.

of its orientation θ(s) with respect to an earth-fixed reference line, which depends on the

path coordinate s. The body-fixed coordinate system to be considered is also a cartesian

frame, but without an earth-fixed origin. Rather, its origin is attached to the center of

gravity of a vehicle and follows its translational and rotational motion. The basis vector

eX is aligned with the vehicle longitudinal direction, the vector eY with the lateral one.

This body-fixed coordinate system conveniently allows to express the vehicle kinetics.

Reference Trajectory

Assume in the following that the planning procedure from Part I provides a reference

trajectory x̄cart(·) consisting of discrete-time samples from a trajectory in line with Def-

inition 2.1, i.e., of finite duration, given as a sequence of positions p̄x and p̄y along with

corresponding temporal derivatives (of order three, i.e. n = 2 is assumed in the following)

in the cartesian reference frame, where the vector x̄cart is defined as:

x̄cart =
[
p̄x ˙̄px ¨̄px

...
p̄ x p̄y ˙̄py ¨̄py

...
p̄ y
]T
. (5.1)

Assume that the trajectories of all elements of x̄cart except for the third-order derivatives

are sampled from continuous solutions to a differential equation, while
...
p̄ x and

...
p̄ y were

taken from a piecewise constant, but not necessarily continuous signal. Given a reference

trajectory x̄cart(·) in the cartesian frame with these continuity properties, it is possible to

compute a corresponding reference trajectory x̄(·) in the Frenet frame, where the vector x̄

is defined as:

x̄ =
[
s ṡ s̈

...
s θ θ̇ θ̈

]T
, (5.2)

where ṡ, s̈,
...
s , θ̇ and θ̈ denote the temporal derivatives of s and θ. The transformation

can be carried out according to Appendix B.

74

5.2. Preliminaries

×center of gravity

vY
ω

ψrear tire

FX,r

FY,r

αr

FY,f

FX,f

front tire

δ

αf

lr

lf

vX

Figure 5.2.: Standard model for vehicle control: the so-called bicycle model.

Vehicle Model

The basis for the design of the tracking controller is the so-called bicycle model as illustrated

in Figure 5.2; the quantities shown there will be introduced throughout this section. This

model is widely used for vehicle control purposes. Its state vector comprises the position[
px py

]T
of the center of gravity and the vehicle orientation ψ in the cartesian reference

frame, the longitudinal and lateral vehicle speed vX and vY in body-fixed coordinates, and

the yaw rate ω. The state vector reads:

χ :=
[
px py ψ vT

]T
, v :=

[
vX vY ω

]T
, (5.3)

while the input vector contains as actuator inputs the longitudinal tire slip sX and the

front wheel steering angle δ:

µ :=

[
sX
δ

]
.

Roll, pitch, and heave dynamics are neglected just as elastic deformations of the vehicle

body. Therefore, a separate consideration of left and right wheels is not necessary, such

that these are lumped together, resulting in the bicycle-like shape.

Next, the orthogonal rotation matrix R : R→ R2×2 is introduced, transforming vectors

from the body-fixed vehicle frame into the global cartesian coordinate frame:

R(•) =

[
cos(•) − sin(•)
sin(•) cos(•)

]
.

Along with the vector of external accelerations:

a :=



aX
aY
aψ


 ,

75

5. A Novel Approach to Trajectory Tracking with Guarantees

the equations of motion of the vehicle’s center of gravity are given by:




ṗx
ṗy
ψ̇

v̇X
v̇Y
ω̇




=




R(ψ)

[
vX
vY

]

ω

aX
aY
aψ


+



vY ω

−vXω
0






. (5.4)

The accelerations aX , aY , aψ result from external forces such as gravity, wind, or tire

forces. All these components are difficult to model and therefore a major source of uncer-

tainty in (5.4). This is explicitly accounted for by defining:

∆a =




∆aX
∆aY
∆aψ


 := a− ā, ā :=



āX
āY
āψ


 (5.5)

as mismatch between the actual external accelerations a and the nominal accelerations ā

based on a given model. It is assumed that the magnitude of the mismatch is bounded by

a scalar ∆amax, which allows to define a set:

A∆ := {∆a| ||∆a|| ≤ ∆amax} . (5.6)

In the following, the discussion of external accelerations will focus on tire forces, which are

the main cause for external accelerations that can be influenced. Additional forces and

corresponding uncertainties could be considered in the same framework, but are beyond

the scope of the exposition. It is assumed that ā models the dependency on the following

variables:

ā = ā(δ, sX , vX , vY , ω), (5.7)

while other influences are not modeled explicitly, but attributed to the uncertainty ∆a.

Tire model

External accelerations due to longitudinal and lateral tire force vectors (in the body-fixed

frame)
[
FX,f FY,f

]T
and

[
FX,r FY,r

]T
at front and rear axle, respectively, result from:



m 0 0

0 m 0

0 0 Θ


 atire =



[
FX,r
FY,r

]
+

[
cos δ − sin δ

sin δ cos δ

][
FX,f
FY,f

]

(
FY,f cos δ + FX,f sin δ

)
lf − FY,rlr




=




1 0

0 1

0 −lr



[
FX,r
FY,r

]
+




1 0

0 1

0 lf


R(δ)

[
FX,f
FY,f

]
, (5.8)

76

5.2. Preliminaries

with vehicle mass m and yaw inertia Θ as well as the distances lr and lf between center of

gravity and rear respectively front axle, cf. Figure 5.2. The tire forces are highly affected

by the front and rear tire slip vectors sf and sr, respectively (note that different definitions

exist in the literature):

sf =

[
sX,f
sY,f

]
:=

([
vwheel,f

0

]
−R(δ)T

[
vX

vY + lfω

])

∣∣∣∣
∣∣∣∣
[

vX
vY + lfω

]∣∣∣∣
∣∣∣∣

,

sr =

[
sX,r
sY,r

]
:=

([
vwheel,r

0

]
−
[

vX
vY − lrω

])

∣∣∣∣
∣∣∣∣
[

vX
vY − lrω

]∣∣∣∣
∣∣∣∣

,

which quantify the deviation of the vehicle wheels’ rim speed, vwheel,f and vwheel,r, and the

corresponding motions of the vehicle body. Front and rear longitudinal slip are assumed

to be related through the control input sX :

sX,f = γsX , sX,r = (1− γ)sX ,

where the vehicle parameter γ ∈ [0, 1] determines the distribution of traction force between

front and rear axle in an all-wheel drive train. Between the lateral tire slips, no such relation

exists. For simplicity, they are substituted by the tire side slip angle:

αi := arcsin sY,i, i ∈ {f, r}. (5.9)

Apart from tire slip, many other quantities impact the tire forces, such as camber angle,

normal load, or the friction of the road surface. Accordingly, a variety of tire models of

different complexity exists [114, 121]. In the following, a model is considered which linearly

relates tire forces and tire slip through longitudinal and lateral tire stiffness cX , cY :

FX,f = cXsX,f = cXγsX , FX,r = cXsX,r = cX(1− γ)sX ,

FY,f = cY αf, FY,r = cY αr.
(5.10)

It is assumed that the tire stiffness parameters cX and cY are subject to additive uncer-

tainties ∆cY and ∆cX around nominal values c̄X and c̄Y :

cX = c̄X + ∆cX , cY = c̄Y + ∆cY . (5.11)

These uncertainty terms are assumed to be bounded:

|∆cX | ≤ ∆cX,max, |∆cY | ≤ ∆cY,max

and contribute to the acceleration disturbance ∆a. Postponing a detailed discussion of the

effects of the tire uncertainty to Section 5.3, the combination of (5.10) and (5.8) gives:

atire =




1
m 0

0 1
m

0 − lr
Θ



[

(1− γ)cXsX
cY arctan

(
lrω−vY
vX

)
]

+




1
m 0

0 1
m

0 lf
Θ


R(δ)

[
γcXsX

cY
(
δ − arctan

(
lfω+vY
vX

))
]
.

(5.12)

77

5. A Novel Approach to Trajectory Tracking with Guarantees

Table 5.1.: Vehicle parameters (from [57])

Parameter m Θ γ lf lr c̄X c̄Y
Value 1529 kg 1344 kg m2 0.6 1.481 m 1.08 m 100 000 N

rad 100 000 N
rad

Error Dynamics

The mismatch between a reference trajectory and the vehicle states is described by the

error state vector:

e :=
[
et en ėt ėn eψ eω

]T
=
[
eTpos ėTpos eTyaw

]T
,

where

epos :=

[
et

en

]
=

[
cos θ sin θ

− sin θ cos θ

]([
px
py

]
−
[
p̄x
p̄y

])
(5.13)

gives the offset in tangential and lateral direction relative to the reference trajectory, with

temporal derivative:

ėpos :=
d

dt
epos =

[
ėt

ėn

]
= θ̇

[
0 1

−1 0

]
epos −

[
ṡ

0

]
+R(ψ − θ)

[
vX
vY

]
, (5.14)

and the orientation error and its derivative:

eyaw :=

[
eψ
eω

]
, eψ : = ψ − θ, eω :=

d

dt
eψ. (5.15)

The relation to the external accelerations a is given by:

d

dt
ėpos =

[
θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0

][
epos

ėpos

]
−
[
s̈

θ̇ṡ

]
+R(eψ)

[
aX
aY

]
, (5.16)

d

dt
eω = aψ − θ̈. (5.17)

Note that substantial simplifications of the dynamics can be obtained if the longitudinal ve-

locity is assumed to be constant [121, 2]. For planning purposes, however, this assumption

is too restrictive.

5.3. Partial Compensation of Nonlinearities by Feedback

Combining (5.14) with (5.16) and replacing the actual acceleration a by ā and ∆a according

to (5.5) gives:

d

dt

[
epos

ėpos

]
=




0 0 1 0

0 0 0 1

θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0



[
epos

ėpos

]
−




0

0

s̈

θ̇ṡ


+




0 0

0 0

R(eψ)



[
āX
āY

]
+




0 0

0 0

R(eψ)



[

∆aX
∆aY

]

(5.18)

78

5.3. Partial Compensation of Nonlinearities by Feedback

and similarly, based on (5.15) and (5.17),

d

dt

[
eψ
ėω

]
=

[
0 1

0 0

][
eψ
ėω

]
+

[
0

1

]
(āψ + ∆aψ − θ̈). (5.19)

According to (5.7), the nominal acceleration ā can be controlled for given vehicle velocities

vX , vY , and ω by choice of δ and sX , while ∆a acts as an acceleration disturbance and is

beyond control. Tracking requires to influence the tracking error dynamics by feedback,

such that it is desirable to determine sX and δ and, thereby, ā, in dependency of e. A

common way [148, 57] to achieve this is to introduce

µ̃ : =

[
θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0

][
epos

ėpos

]
−
[
s̈

θ̇ṡ

]
+R(eψ)

[
āX
āY

]
(5.20)

⇔
[
āX
āY

]
= R(eψ)T

(
µ̃+

[
s̈

θ̇ṡ

]
−
[
θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0

][
epos

ėpos

])
(5.21)

and to substitute (5.21) into (5.18), leading to:

d

dt

[
epos

ėpos

]
=

[
0 I

0 0

][
epos

ėpos

]
+

[
0

I

]
µ̃+




0 0

0 0

R(eψ)



[

∆aX
∆aY

]
. (5.22)

Considering µ̃ as an artificial input quantity and letting

µ̃ = −K
[
epos

ėpos

]
, (5.23)

with a feedback matrix K ∈ R2×4 to be designed subsequently, the resulting closed-loop

position and velocity error dynamics Σpos becomes:

Σpos :
d

dt

[
epos

ėpos

]
= fpos(e,∆a) :=

[
02×2 I2×2

−K

][
epos

ėpos

]
+




0 0

0 0

R(eψ)



[

∆aX
∆aY

]
.

(5.24)

The translation of a prescribed value for ā as given in (5.21) into control inputs δ and sX
as well as the yaw error dynamics resulting from it are detailed in the following.

Input Computation

Introducing (5.11) into (5.12) and replacing nonlinear terms by first-order Taylor series

expansion gives:

atire =




1
m 0

0 1
m

0 − lr
Θ



[

(1− γ)c̄XsX
c̄Y

lrω−vY
vX

]
+




1
m 0

0 1
m

0 lf
Θ



[

1 −δ
δ 1

][
γc̄XsX

c̄Y
(
δ − lfω+vY

vX

)
]

+ ∆aR + ∆ac,

(5.25)

79

5. A Novel Approach to Trajectory Tracking with Guarantees

where

∆ac :=
[
∆aX,c ∆aY,c ∆aψ,c

]T

accounts for the tire uncertainty according to (5.11) and

∆aR =
[
∆aX,R ∆aY,R ∆aψ,R

]T

contains the series expansion remainder. A detailed discussion of these two uncertainty

terms is given in Appendix C along with a derivation of upper bounds such that ||∆a|| ≤
∆amax as in (5.6). The subsequent analysis is based on:

ā :=




1
m 0

0 1
m

0 − lr
Θ



[

(1− γ)c̄XsX
c̄Y

lrω−vY
vX

]
+




1
m 0

0 1
m

0 lf
Θ



[

1 −δ
δ 1

][
γc̄XsX

c̄Y
(
δ − lfω+vY

vX

)
]

(5.26)

and:

∆a := ∆aR + ∆ac. (5.27)

From the first two lines of (5.26), it follows that the inputs sX and δ can be obtained from:

0 = δ3 − δ2 lfω + vY
vX

+ δ

(
m

c̄Y
āX +

1

γ

)
+
ω(lr − lf)− 2vY

γvX
− m

γc̄Y
āY , (5.28)

sX =
c̄Y
c̄X

(
δ2 − lfω + vY

vX
δ +

m

c̄Y
āX

)
. (5.29)

In general, the solution of (5.28) is not unique. However, constraining both the parameters

of the polynomial (5.28) as well as the variable δ as derived in Chapter 6 allows to bypass

this problem (cf. also Appendix F). Also, the solution(s) can be obtained using an explicit

formula, such that no iterative numerical computations are required. The tracking control

algorithm as given in Algorithm 5.1 summarizes the results from this section.

Resulting Yaw Error Dynamics

The control law in Algorithm 5.1 allows to derive a closed-form expression for the yaw

error dynamics (5.19), which has not been possible in earlier work [148, 57]. Starting point

is the third line of (5.26), from which it follows that

Θāψ =

(
lf
[
δ 1

] [γsX 0

0 δ − lfω+vY
vX

]
+
[
0 1

] [0 0

0 −lr lrω−vYvX

])[
c̄X
c̄Y

]

and, according to (5.29),

δ · sX =
c̄Y
c̄X

(
δ3 − δ2 lfω + vY

vX
+ δ

m

c̄Y
āX

)
=
c̄Y
c̄X

(
m

c̄Y γ
āY +

lfω + vY
γvX

− lrω − vY
γvX

− δ

γ

)
.

80

5.3. Partial Compensation of Nonlinearities by Feedback

Algorithm 5.1.: Proposed Tracking Control Algorithm

1: procedure TrackingController(χ,x̄cart(·))
2: x̄(·)← Cart2Curved(x̄cart(·)) . Transformation according to Appendix B

3: epos ←
[

cos θ sin θ

− sin θ cos θ

]([
px
py

]
−
[
p̄x
p̄y

])

4: ėpos ← θ̇

[
0 1

−1 0

]
epos −

[
ṡ

0

]
+R(ψ − θ)

[
vX
vY

]

5: eψ ← ψ − θ

6:

[
āX
āY

]
← R(eψ)T

(
−K

[
epos

ėpos

]
+

[
s̈

θ̇ṡ

]
−
[
θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0

][
epos

ėpos

])

7: δ ← Solve 0 = δ3 − δ2 lfω+vY
vX

+ δ
(
m
c̄Y
āX + 1

γ

)
+

ω(lr−lf)−2vY
γvX

− m
γc̄Y

āY

8: sX ← c̄Y
c̄X

(
δ2 − lfω+vY

vX
δ + m

c̄Y
āX
)

9: return µ =

[
sX
δ

]

10: end procedure

Combining these and introducing the result into (5.19) gives:

ėω =
1

Θ

([
lfγ

c̄Y
c̄X

(
m
c̄Y γ

āY + lfω+vY
γvX

− lrω−vY
γvX

− δ
γ

)
lf
(
δ − lfω+vY

vX

)
− lr lrω−vYvX

])[
c̄X
c̄Y

]
− θ̈ . . .

+ ∆aψ

=
c̄X
Θ

(
m

c̄X
lfāY −

c̄Y
c̄X
δlf +

c̄Y
c̄X
lf

(
lfω + vY
vX

− lrω − vY
vX

))
. . .

+
c̄Y
Θ

(
lfδ − lf

lfω + vY
vX

− lr
lrω − vY
vX

)
− θ̈ + ∆aψ

=
m

Θ
lfāY −

c̄Y (lf + lr)

Θ

lrω − vY
vX

− θ̈ + ∆aψ, (5.30)

with ∆aψ from (5.27). Because the effect of δ cancels out in (5.30), it is not necessary to

substitute the explicit solution of (5.28). Rewriting (5.14) as:

[
vX
vY

]
= R(eψ)T

([
ṡ

0

]
+

[
0 −θ̇ 1 0

θ̇ 0 0 1

][
epos

ėpos

])
(5.31)

and recalling the definition of āY according to (5.21) as well as that ω = θ̇ + eω by

virtue of (5.15), (5.30) can be rewritten such that the yaw error dynamics is given by

fyaw : R6 ×R2(n+1) ×R3 → R2:

d

dt

[
eψ
eω

]
= fyaw(e, x̄,∆a),

81

5. A Novel Approach to Trajectory Tracking with Guarantees

with

fyaw(e, x̄,∆a) := (5.32)


eω

m
Θ lf

[
0 1

]
R(eψ)T

(
−K

[
epos

ėpos

]
+

[
s̈

θ̇ṡ

]
−
[
θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0

][
epos

ėpos

])
. . .

− c̄Y lr(lf+lr)

Θ

[1 0
]
R(eψ)T


0 −θ̇ 1 0

θ̇ 0 0 1


epos

ėpos


+ṡ cos eψ


θ̇ . . .

− c̄Y lr(lf+lr)

Θ

[1 0
]
R(eψ)T


0 −θ̇ 1 0

θ̇ 0 0 1


epos

ėpos


+ṡ cos eψ


eω . . .

+
c̄Y (lf+lr)

Θ

[
0 1

]
R(eψ)T


0 −θ̇ 1 0

θ̇ 0 0 1


epos

ėpos


−ṡ sin eψ

[
1 0

]
R(eψ)T


0 −θ̇ 1 0

θ̇ 0 0 1


epos

ėpos


+ṡ cos eψ

− θ̈ + ∆aψ




.

The closed-loop yaw error dynamics (5.32) is nonlinear and subject to external distur-

bances. In addition, it varies over time in dependency of the reference trajectory x̄(·).
Having detailed both the control law and the error dynamics resulting from its appli-

action to the vehicle model, the following chapter details the constraints which must be

accounted for during operation.

82

6. Characterizing Admissible Vehicle

States and Reference Trajectories

Both the vehicle states and the control inputs are subject to constraints, which must be

explicitly accounted for during tracking in order to ensure safe operation of a vehicle. The

following chapter characterizes those vehicle states which are admissible and, given the

control law as in Algorithm 5.1, result in admissible control inputs. Then, temporarily

making assumptions on the error dynamics (which will be validated in the next chapter),

the resulting implications on admissible parameters of the reference trajectory are analyzed.

6.1. Constraints on the Vehicle Dynamics

Constraints on the vehicle dynamics result from different sources: physical laws impose

limits on the possible accelerations, maximum velocities, and actuator inputs; these limits

are immutable for a given vehicle design and enforce themselves. The passengers’ driving

comfort typically requires more conservative bounds than those imposed by physical lim-

itations, and if no special care is taken in the design of the control algorithm, violations

of these constraints can occur. This also holds for velocity constraints resulting from legal

restrictions. In addition, it may be desirable to impose constraints due to modeling con-

siderations, e.g. in order to explicitly account for the region of validity of a model used in

the controller design process. In the following, constraints on different quantities resulting

from such considerations are collected.

The simplest constraints on the vehicle velocities are imposed as magnitude constraints:

vX,min ≤ vX ≤ vX,max, |vY | ≤ vY,max, |ω| ≤ ωmax, (6.1)

where it is assumed that vX,min > 0, i.e., a vehicle may not come to standstill nor back up

during regular operation on a highway. Additional velocity constraints result from bounds

on the rear side-slip angle αr, which follows from (5.9) as:

αr = arctan

(
lrω − vY
vX

)
.

Motivated by the fact that a linear tire model is widely considered a good approximation

of the actual vehicle dynamics for small tire slip angles, the constraint:

|αr| ≤ α̃max (6.2)

83

6. Characterizing Admissible Vehicle States and Reference Trajectories

is imposed with a positive scalar α̃max. In addition, the so-called body side-slip angle αbss:

αbss := arctan
vY
vX

is introduced, which can be related to the handling limits of a vehicle [121]. This motivates

the requirement that |αbss| ≤ αbss,max. Then, all constraints on the vehicle’s velocities in

the tuple v as defined in (5.3) can be combined in the polyhedral, convex set:

V :=
{
v|vX,min ≤ vX ≤ vX,max, |vY | ≤ vY,max, |ω| ≤ ωmax,

|lrω − vY | ≤ vX tan(α̃max), |vY | ≤ vX tan(αbss,max)
}
. (6.3)

According to (5.4), interval constraints:

|v̇X | ≤ v̇X,max, |v̇Y | ≤ v̇Y,max

on the resulting accelerations v̇X and v̇Y impose constraints on the velocities v and external

accelerations a. According to (5.5), the value of a is subject to uncertainty; while the

acceleration constraints apply for the sum of ā and ∆a, only ā can be controlled to actually

meet the requirements on a. Therefore, it is desirable to derive constraints on ā which, if

met, also guarantee compliance with those on a despite possible uncertainty ∆a. To that

end, consider that

|aX + vY ω| = |āX + ∆aX + vY ω| ≤ |āX + vY ω|+ |∆aX | ,
|aY − vXω| = |āY + ∆aY − vXω| ≤ |āY − vXω|+ |∆aY | .

Noting that |∆ai| ≤ ||∆a||, i ∈ {X, Y }, and defining

āX,max := v̇X,max − ||∆a||,
āY,max := v̇Y,max − ||∆a||,

it clearly holds that

|āX + vY ω| ≤ āX,max ⇒ |aX + vY ω| ≤ v̇X,max, (6.4)

|āY − vXω| ≤ āY,max ⇒ |aY − vXω| ≤ v̇Y,max. (6.5)

Unlike the pure velocity constraints V , the acceleration constraints on the left side of

the implications (6.4) and (6.5) are nonlinear. Also, they pertain to both accelerations

and velocities and thus introduce a coupling between these quantities. In Appendix D,

a polytopic inner approximation A of the admissible set defined by combination of (6.4)

and (6.5) is derived, such that

[
v

ā

]
∈ A ⇒ |aX + vY ω| ≤ v̇X,max, |aY − vXω| ≤ v̇Y,max.

84

6.1. Constraints on the Vehicle Dynamics

An important step towards safe trajectory tracking is to characterize the circumstances

under which an admissible control input exists. Just like the velocities and accelerations,

the control inputs are subject to magnitude constraints:

|sX | ≤ sX,max, |δ| ≤ δmax. (6.6)

Under the control law from Algorithm 5.1, a magnitude constraint on the longitudinal

slip sX according to (5.29) requires that:

∣∣∣∣δ2 − lfω + vY
vX

δ +
m

c̄Y
āX

∣∣∣∣ ≤
c̄X
c̄Y
sX,max,

which is a coupling constraint on δ, vX , vY , ω, and āX . Based on (5.9), the front side slip

angle αf depends on the input δ according to:

αf = δ − arctan

(
lfω + vY
vX

)
, (6.7)

such that a magnitude constraint |αf| ≤ α̃max introduces another coupling constraint.

For practical reasons, subsequent derivations require polynomial expressions, such that

trigonometric terms must be approximated. Linearizing (6.7) and obtaining an upper

bound on the linearization error as detailed in Appendix E eventually leads to:

lfω + vY
vX

− αmax ≤ δ ≤ lfω + vY
vX

+ αmax, (6.8)

with modified upper bound αmax ≤ α̃max such that (6.8)⇒ |αf| ≤ α̃max, cf. Appendix E.

A magnitude constraint on δ is equivalent to the requirement that a solution of the cubic

equation (5.28) must lie in a certain interval on the real axis. Collecting all constraints

pertaining to the control inputs gives:

U :=







v

ā

µ



∣∣∣∣δ −

lfω + vY
vX

∣∣∣∣ ≤ αmax,

∣∣∣∣δ2 − lfω + vY
vX

δ +
m

c̄Y
āX

∣∣∣∣ ≤
c̄X
c̄Y
sX,max, (6.9)

|δ| ≤ δmax, δ
3 − δ2 lfω + vY

vX
+ δ

(
m

c̄Y
āX +

1

γ

)
+
ω(lr − lf)− 2vY

γvX
− m

γc̄Y
āY = 0

}
.

In order to account for all constraints on velocities, accelerations, and control inputs si-

85

6. Characterizing Admissible Vehicle States and Reference Trajectories

multaneously, the constraints V , A, and U are combined in a set Cvāµ:

Cvāµ :=

({[
v

ā

]
|v ∈ V ,

[
v

ā

]
∈ A

}
×R2

)
∩ U

=







v

ā

µ


 |vX,min ≤ vX ≤ vX,max, |vY | ≤ vY,max, |ω| ≤ ωmax, (6.10)

|lrω − vY | ≤ vX tan(αmax), |vY | ≤ vX tan(αbss,max),

|āX + vY ω| ≤ āX,max, |āY − vXω| ≤ āY,max,∣∣∣∣δ −
lfω + vY
vX

∣∣∣∣ ≤ αmax,

∣∣∣∣δ2 − lfω + vY
vX

δ +
m

c̄Y
āX

∣∣∣∣ ≤
c̄X
c̄Y
sX,max,

|δ| ≤ δmax, δ
3 − δ2 lfω + vY

vX
+ δ

(
m

c̄Y
āX +

1

γ

)
+
ω(lr − lf)− 2vY

γvX
− m

γc̄Y
āY = 0

}
.

This set characterizes velocities, accelerations, and inputs which are admissible based on

the control law from Algorithm 5.1.

6.2. Admissible Reference Trajectories

The objective of this section is to derive information about the admissibility of velocity

and acceleration values which, if used by the trajectory planning layer, result in reference

trajectories which can be tracked such that all constraints from the previous section hold.

The set Cvāµ in (6.10) characterizes admissible combinations of vehicle velocities and accel-

erations, yet under consideration of control inputs µ. Information regarding these are not

available on the planning layer when plans are made; nonetheless, Cvāµ provides valuable

information, as it allows to derive a characterization of the velocities and accelerations for

which the existence of admissible control inputs can be guaranteed under a given control

law. To that end, a (for computational efficiency polytopic) inner approximation Cvā of

the projection of the set (6.10) on the space of velocities and accelerations:

Cvā :=

{[
v

ā

]
|Ava

[
v

ā

]
≤ bva

}
⊆ projvāCvāµ =





[
v

ā

]
|∃µ :



v

ā

µ


 ∈ Cvāµ



 , (6.11)

is determined. The computation of this set is detailed in Appendix F.

In order to analyze the implications on the reference trajectory resulting from the set Cvā,
the inequality in the definition of (6.11) is written as:

Ava[:,1:2]

[
vX
vY

]
+ Ava[:,4:5]

[
āX
āY

]
+ Ava[:,3]ω ≤ bva.

86

6.2. Admissible Reference Trajectories

Replacing the vehicle states and external accelerations by error and reference quantities

according to (5.21) and (5.31) results in:

Ava[:,1:2]R(eψ)T
[
ṡ

0

]
+ Ava[:,4:5]R(eψ)T

[
s̈

θ̇ṡ

]
+ Ava[:,3]θ̇ . . .

+ Ava[:,3]eω + Ava[:,1:2]R(eψ)T
[

0 −θ̇ 1 0

θ̇ 0 0 1

][
epos

ėpos

]
. . .

− Ava[:,4:5]R(eψ)T
[
θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0

][
epos

ėpos

]
+ Ava[:,4:5]R(eψ)Tµ̃ ≤ bva.

This inequality determines the following set of admissible errors and reference values:

C̃x̄e :=








ṡ

θ̇

s̈

θ̇ṡ


 ,




epos

ėpos

eψ
eω


 |
[
Ava[:,1:2] Ava[:,4:5]

] [R(eψ)T 0

0 R(eψ)T

]



ṡ

0

s̈

θ̇ṡ


 . . . (6.12)

+ Ava[:,3]θ̇ + Ava[:,3]eω + Ava[:,4:5]R(eψ)Tµ̃ . . .

+
[
Ava[:,1:2] −Ava[:,4:5]

] [R(eψ)T 0

0 R(eψ)T

]



0 −θ̇ 1 0

θ̇ 0 0 1

θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0



[
epos

ėpos

]
≤ bva




.

The appearance of error terms prevents the use of (6.12) on the planning layer because

future tracking errors are unknown during the planning stage. However, as will be shown

in Chapter 7, it is valid to assume that the error state is confined to a bounded set:

Assumption 6.1 (Bounded Error). Assume that there exist positive scalars ξ, eψ,max,

and eω,max such that during tracking of a reference trajectory, it holds for the error state

vector e:

e ∈ E :=

{
[
eTpos ėTpos eTyaw

]T |
∣∣∣∣
∣∣∣∣
[
epos
ėpos

]∣∣∣∣
∣∣∣∣
2

≤ ξ, |eψ| ≤ eψ,max, |eω| ≤ eω,max

}
. (6.13)

If constraints on the reference trajectory parameters are formulated in a way such that

they hold for all errors e ∈ E , no information regarding the error at a certain time in online

operation is required. As a second requirement for the set of admissible reference parame-

ters, computational efficiency requires a simple set representation such as a polytopic set,

whereas the set (6.12) contains nonlinear terms. Thus, the objective is to determine:

C̃x̄ :=








ṡ

θ̇

s̈

θ̇ṡ


 |Ãx̄




ṡ

θ̇

s̈

θ̇ṡ


 ≤ b̃x̄




⊆








ṡ

θ̇

s̈

θ̇ṡ


 |




ṡ

θ̇

s̈

θ̇ṡ

e



∈ C̃x̄e∀e ∈ E




.

A solution to this problem is given by the following theorem:

87

6. Characterizing Admissible Vehicle States and Reference Trajectories

Theorem 6.1. Given a set E of possible errors as in Assumption 6.1, assume without loss

of generality that
∣∣∣∣[Ava[i,1:2] Ava[i,4:5]

]∣∣∣∣ = 1 for all nva rows of Ava, i = 1, 2, . . . , nva,

and define a function b̃ : R×R→ Rnva, where

b̃[i](θ̇max, θ̈max) := |Ava[i,3]|eω,max + max
|θ̇| ≤ θ̇max,

|θ̈| ≤ θ̈max

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

[
02×4

−K

]
+




0 −θ̇ 1 0

θ̇ 0 0 1

θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0




∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
.

Also, define

b̃x̄ := bva − b̃(θ̇max, θ̈max),

a map Rp : R×R→ R4×4 using the Kronecker product ⊗:

Rp(p1, p2) :=

[
1 0

0 1

]
⊗
[
p1 p2

−p2 p1

]
,

and

Ãx̄ :=




[
Ava[:,1:2] Ava[:,4:5]

]
Rp(p1,min, p2,min)[

Ava[:,1:2] Ava[:,4:5]

]
Rp(p1,min, p2,max)[

Ava[:,1:2] Ava[:,4:5]

]
Rp(p1,max, p2,max)[

Ava[:,1:2] Ava[:,4:5]

]
Rp(p1,max, p2,min)


+




Ava[:,3]

Ava[:,3]

Ava[:,3]

Ava[:,3]



[
0 θ̇ 0 0

]
, (6.14)

where p1,min = cos(eψ,max), p1,max = 1, p2,min = − sin(eψ,max) = −p2,max. Then, if there

exist θ̇max and θ̈max such that the set

C̃x̄ =
{[
ṡ θ̇ s̈ θ̇ṡ

]T |Ãx̄
[
ṡ θ̇ s̈ θ̇ṡ

]T ≤ b̃x̄

}

is non-empty and projθ̇C̃x̄ ⊆ [−θ̇max, θ̇max], it holds that C̃x̄ × E ⊂ C̃x̄e.

88

6.2. Admissible Reference Trajectories

Proof. For each row of the left-hand side of the inequalities in (6.12), it holds that:

[
Ava[i,1:2] Ava[i,4:5]

] [R(eψ)T 0

0 R(eψ)T

]



ṡ

0

s̈

θ̇ṡ


+ Ava[i,3]θ̇ + Ava[i,3]eω + Ava[i,4:5]R(eψ)Tµ̃ . . .

+
[
Ava[i,1:2] −Ava[i,4:5]

] [R(eψ)T 0

0 R(eψ)T

]



0 −θ̇ 1 0

θ̇ 0 0 1

θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0



[
epos

ėpos

]

≤
[
Ava[i,1:2] Ava[i,4:5]

] [R(eψ)T 0

0 R(eψ)T

]



ṡ

0

s̈

θ̇ṡ


+ Ava[i,3]θ̇ + max

|eω|≤eω,max

∣∣Ava[i,3]eω
∣∣ . . .

+ max
|θ̇| ≤ θ̇max, |θ̈| ≤ θ̈max,∣∣∣∣
∣∣∣∣
[
epos

ėpos

]∣∣∣∣
∣∣∣∣ ≤ ξ

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣



[

02×4

−K

]
+




0 −θ̇ 1 0

θ̇ 0 0 1

θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0






[
epos

ėpos

]
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

≤
[
Ava[i,1:2] Ava[i,4:5]

] [R(eψ)T 0

0 R(eψ)T

]



ṡ

0

s̈

θ̇ṡ


+ Ava[i,3]θ̇ . . . (6.15)

+
∣∣Ava[i,3]

∣∣ eω,max + max
|θ̇| ≤ θ̇max, |θ̈| ≤ θ̈max

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣



[

02×4

−K

]
+




0 −θ̇ 1 0

θ̇ 0 0 1

θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0







∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
· 1

ξ2
.

Furthermore, for all eψ ∈ projeψE ,

[
R(eψ)T 0

0 R(eψ)T

]
∈
{
Rp(p1, p2)|

[
p1

p2

]
∈ [p1,min, p1,max]× [p2,min, p2,max]

}

= convh

({[
p1,min

p2,min

]
,

[
p1,min

p2,max

]
,

[
p1,max

p2,min

]
,

[
p1,max

p2,max

]})
=: R.

Thus,

[
Ava[:,1:2] Ava[:,4:5]

]
Rp(p1, p2)

[
ṡ 0 s̈ θ̇ṡ

]T
+ Ava[:,3]θ̇ ≤ b̃x̄ ∀

[
p1

p2

]
∈ v (R)

implies that (6.12) holds for all e ∈ E ; replacing the all quantifier by enumeration of the

inequalities resulting for each vertex eventually gives the definition of Ãx̄ as in (6.14).

89

6. Characterizing Admissible Vehicle States and Reference Trajectories

Combination of C̃x̄ with interval constraints on θ, θ̈, and
...
s allows to characterize ad-

missible values of a reference trajectory:

Cx̄ :=




x̄|




ṡ

θ̇

s̈

θ̇ṡ


 ∈ C̃x̄, |θ̈| ≤ θ̈max, | ...s | ≤ ...

s max, |θ| ≤ θmax




⊂ R7. (6.16)

The different set operations required to derive this set are summarized in Figure 6.1. Note

that the set Cx̄ is unbounded as no constraints on s are imposed, which is, however, unprob-

lematic. The set (6.16) encodes constraints on a reference trajectory in the Frenet frame,

while the planning procedure in Part I is based on the cartesian frame. This mismatch

can be overcome by either planning in the Frenet frame or transforming the constraints

to the cartesian frame according to Appendix B. Planning in the Frenet frame is difficult

because collision checking requires a nonlinear transformation to cartesian coordinates at

run-time. A transformation of (6.16) to the cartesian frame, on the other hand, is also

nonlinear, but at least not required at run-time, making it the more promising option.

However, even though it was possible to obtain admissible trajectories in this thesis (cf.

the example in Chapter 8), an automated solution of this problem is beyond the scope of

this work and must be considered an open problem. Note that in any case, it is possible to

employ Cx̄ to quickly assess the admissibility of a planned trajectory. Given an admissible

reference trajectory, it now is possible to analyze properties of the error dynamics of the

vehicle under the control law devised in the previous chapter, which is carried out in the

following.

Cvāµ

Cvā

C̃x̄e

C̃x̄

Cx̄

projection

transformation to

x̄− e-space

approximation ∀ admissible e

lift to full

reference space

Figure 6.1.: Relation of the different sets used in Section 6.2.

90

7. Boundedness of the Tracking Error

As motivated in Chapter 5, safe trajectory tracking requires guarantees regarding the

boundedness of the tracking error in the sense of Assumption 6.1. The following chapter

justifies this assumption, building on the notion of quadratic boundedness as defined in [28]:

Definition 7.1 (Quadratic Boundedness). Given a bounded and closed set W ⊂ Rnw and

a function V (x) = xTPx, x ∈ Rnx, P ∈ Rnx×nx, a system:

ẋ = Ax+Bww (7.1)

with w ∈ W is quadratically bounded with Lyapunov matrix P if P is a positive definite

symmetric matrix and if

xTPx > 1⇒ d

dt
V (x) < 0

for all w ∈ W.

According to [28], using arguments from Lyapunov analysis, the following holds for a

quadratically bounded system:

Proposition 7.1. The set

{
x|xTPx ≤ 1

}

is positive invariant for the dynamics (7.1), that is, every trajectory starting in the set

remains in it forever.

Define the tracking error dynamics Σe as combination of (5.24) and (5.32):

Σe :
d

dt



epos

ėpos

eyaw


 = fe(t, e, x̄,∆a) :=

[
fpos(t, e, x̄,∆a)

fyaw(t, e, x̄,∆a)

]
. (7.2)

Fig. 7.1 shows the system structure: the position error dynamics Σpos influences the

yaw error dynamics Σyaw, together with the planning layer. The dashed line indicates a

minor interaction, reflecting the impact of Σyaw on Σpos through the orientation error eψ
and the disturbance ∆a. This interaction vanishes when no uncertainty is considered such

that Σyaw becomes the zero dynamics of the system, as is the case in [57, 148].

Stability would imply boundedness of the error quantities, but is difficult to proof for

time-varying, nonlinear systems. In cases where the reference trajectory is a solution of

91

7. Boundedness of the Tracking Error

Σe
Σpos

ΣyawPlanner

Figure 7.1.: Decomposition of the tracking error dynamics into interconnected subsystems.

the system equations, the origin e = 0 of the error dynamics can be an equilibrium. In

the considered application, however, this is not the case and a constant equilibrium state

might not even exist in general. Rather, a so-called steady-state response will result when

tracking a reference trajectory for an undisturbed system:

Definition 7.2 (Steady state response [73]). For the controlled nominal dynamics ė =

fe(t, e, x̄(·), 0) of a system with fe(t, 0, 0, 0) = 0, let e(t, e0, x̄(·), 0) denote the trajectory

resulting for a given reference trajectory x̄(·) and an initial state e0. Suppose there exists

an initial state e∗ and reference x̄∗(·) such that

lim
t→∞
||e(t, e0, x̄

∗(·), 0)− e(t, e∗, x̄∗(·), 0)|| = 0

for every e0 in some neighborhood of e∗. Then,

essr(t) = e(t, e∗, x̄∗(·), 0)

is called steady state response to x̄∗(·).

Given a steady state response for a specific reference trajectory, the stability of the

considered dynamics relative to this trajectory (rather than relative to a constant equilib-

rium) can be analyzed. Existence and computation of a steady state response are discussed

by [73] in the context of periodic reference trajectories as generated by an autonomous ref-

erence generator. In that case, the steady state trajectory results as solution of a nonlinear

system of partial differential equations. An extension to non-periodic reference trajecto-

ries is not given in [73] and would be of questionable practical value in the considered case

because it would have to be solved for every admissible reference trajectory separately,

which is impossible for an infinite number. Therefore, no attempt to analyze the stability

of the error dynamics is made in this chapter.

Instead, the focus is put on boundedness of the error quantities, which does not hinge

on the notion of equilibrium. The following approach is pursued: the dynamics (7.2) is

decomposed into the two subsystems Σpos and Σyaw. Assuming that the vehicle velocities

and accelerations do not leave the admissible domain Cvā as given by (6.11), the worst-case

impact of Σyaw on Σpos, whose magnitude depends only on the uncertainty ∆a, but not on

eψ, can be bounded independently of the state of Σyaw, cf. Appendix C. This resolves the

feedback interconnection of the subsystems by disconnecting the dashed line in Figure 7.1

92

7.1. Feedback Gain Synthesis

and allows analysis as cascade interconnection, where the state of Σpos has influence on

Σyaw, but not vice versa. Then, boundedness of the state trajectories of each subsystem

can be analyzed separately. Unlike in the case of a feedback interconnection, where a

small-gain like argument would be required, boundedness of the subystems’ states implies

boundedness of the overall system in a cascade structure [73].

In the case of Σpos, state boundedness and the magnitude of the impact on Σyaw can be

influenced by design of the feedback gain K in (5.23). In the case of Σyaw, no such degree

of freedom exists. Rather, an analysis must consider both the influence of Σpos and of the

reference trajectory.

Regarding the reference trajectory, the admissibility of single values is considered, not

of temporal sequences thereof. While this removes all temporal information, it allows to

cover the entire reference set at once, without considering separate trajectories. Also, it is

not necessary to specifically account for the finite duration of reference trajectories, which

would otherwise require special care when analyzing asymptotic properties such as stability

or boundedness.

7.1. Feedback Gain Synthesis

Preparing the computation of the feedback gain K used in (5.23), (5.22) is rewritten as:

d

dt

[
epos

ėpos

]
= A

[
epos

ėpos

]
+Buµ̃+Bww, (7.3)

with

A :=

[
02×2 I2×2

02×2 02×2

]
, Bu :=

[
02×2

I2×2

]
, Bw := ∆amax ·Bu, w :=

1

∆amax




0 0

0 0

R(eψ)



[

∆aX
∆aY

]
.

Appendix C details the computation of ∆amax with 0 <

∣∣∣∣
∣∣∣∣
[

∆aX
∆aY

]∣∣∣∣
∣∣∣∣ ≤ ∆amax, such that

W :=
{
w|wTw ≤ 1

}
.

The objective in the design of the feedback controller K is to ensure quadratic boundedness

of epos, ėpos, and consequently µ̃ despite the impact of w, where the magnitude of the states

should be as small as possible in order to reduce the impact of Σpos on Σyaw. The following

problem formulation is considered:

Problem 7.1 (Synthesis). Given a positive scalar ε1 and assuming that wTw ≤ 1, deter-

mine matrices X ∈ R4×4, X = XT, Y ∈ R2×4, and scalars ξ1 and ξ2 by solving:

min
X,Y,ξ1,ξ2

ξ1 + ξ2

93

7. Boundedness of the Tracking Error

subject to:

AX +XAT +BuY + Y TBT
u +

BwB
T
w

ε1
+ ε1X ≤ 0, (7.4)

[
X Y T

Y ξ2I

]
≥ 0, X > 0, ξ1I −X ≥ 0, ξ2 > 0, ξ1 > 0. (7.5)

This problem is a semidefinite program and can be solved efficiently using numerical

solvers such as [133] or [110]. Similar settings have been considered by [1, 26, 124, 140].

Combining several results from [26] leads to the following theorem:

Theorem 7.1 (Bounded state of the position error dynamics Σpos). Given X, Y , ξ1, and

ξ2 as solution to Problem 7.1 and letting K = −Y X−1, the system (7.3) is quadratically

bounded with Lyapunov matrix Ppos := X−1, such that

Epos :=

{[
epos
ėpos

]
|
[
eTpos ėTpos

]
Ppos

[
epos
ėpos

]
≤ 1

}

is an invariant set for the position error dynamics (5.24). Furthermore, it holds that
[
eTpos ėTpos

]T
[
epos
ėpos

]
≤ ξ1 and µ̃Tµ̃ ≤ ξ2 for all times t ≥ 0.

Proof. With Acl := A−BuK and temporarily letting x :=
[
eTpos ėTpos

]T
, according to the

S-procedure [26], the implication:

([
x

w

]T [
Ppos 0

0 0

][
x

w

]
− 1 ≥ 0

∧
1−
[
x

w

]T [
0 0

0 I

][
x

w

]
≥ 0

)

⇒ −
[
x

w

]T [
ATPpos + PposA PposBw

(PposBw)T 0

][
x

w

]
≥ 0

(7.6)

holds if and only if there exist ε1 > 0, ε2 > 0 such that for all x,w:

−
[
x

w

]T [
ATPpos + PposA PposBw

(PposBw)T 0

][
x

w

]
− ε2

(
1−
[
x

w

]T [
0 0

0 I

][
x

w

])
. . .

−ε1

([
x

w

]T [
Ppos 0

0 0

][
x

w

]
− 1

)
≥ 0

or equivalently,



x

w

1



T

ATPpos + PposA+ αPpos PposBw 0

(PposBw)T −ε2I 0

0 0 ε2 − ε1





x

w

1


 ≤ 0. (7.7)

94

7.2. Analysis of the Yaw Error Dynamics

Without loss of generality, it is possible to let ε1 = ε2 [26]. With X = P−1
pos and Y := −KX,

(7.7) is equivalent to:

[
X 0

0 I

]T [
ATPpos + PposA+ ε1Ppos PposBw

(PposBw)T −ε1I

][
X 0

0 I

]

=

[
AX +XAT + ε1X +BuY + Y TBT

u Bw
BT
w −ε1I

]
≤ 0,

or, by the Schur complement, to (7.4). With V (x) := xTPposx and

V̇ (x) = xT(ATPpos + PposA)x+ xTPposBww + wTBT
wPposx

=

[
x

w

]T [
ATPpos + PposA PposBw

(PposBw)T 0

][
x

w

]
,

(7.6) (and equivalently (7.4)) implies that V̇ (x) ≤ 0 for all wTw ≤ 1 and xTPposx ≥ 1, thus

fulfilling the conditions of Definition 7.1. Invariance of Epos follows from Proposition 7.1.

Denote the smallest and largest eigenvalue of a matrix by λmin and λmax, respectively.

If the initial state is inside the set Epos, 1 ≥ xTX−1x ≥ λmin

(
X−1

)
xTx ≥ 0. Along with

ξ1 · I −X ≥ 0⇔ λmax (X) =
1

λmin (X−1)
≤ ξ1,

it follows that xTx ≤ ξ1. Furthermore, temporarily defining z := X−
1
2x, it holds that:

[
X Y T

Y ξ2I

]
> 0⇔

(
X − 1

ξ2
Y TY > 0

∧
ξ2 > 0

)
⇔
(
ξ2I −X−

1
2

T

Y TY X−
1
2 > 0

∧
ξ2 > 0

)

⇔

ξ2 > λmax

(
X−

1
2

T

Y TY X−
1
2

)
=
∣∣∣
∣∣∣Y X− 1

2

∣∣∣
∣∣∣
2

= max
||z||=1

∣∣∣
∣∣∣Y X− 1

2 z
∣∣∣
∣∣∣
2

= max
x∈Epos

∣∣∣
∣∣∣Y X− 1

2X−
1
2x
∣∣∣
∣∣∣
2

= max
x∈Epos

∣∣∣∣−Y X−1x
∣∣∣∣2 = max

x∈Epos

||−Kx||2 ≥ max
t≥0
||−Kx(t)||2 = max

t≥0
||µ̃(t)||2 .

7.2. Analysis of the Yaw Error Dynamics

As discussed in Section 5.3, the direct analysis of the yaw error dynamics (5.32) is impeded

by its nonlinear, time-varying nature. In the following section, a polytopic linear differential

inclusion [26, p. 53] is derived from (5.32), relying on the fact that the domain Dyaw of

fyaw:

Dyaw := E × Cx̄ ×A∆ (7.8)

is bounded. The differential inclusion will be simpler to analyze, while obtained analysis

results carry over to the nonlinear dynamics (5.32).

95

7. Boundedness of the Tracking Error

Theorem 7.2 (Polytopic Linear Differential Inclusion of the Yaw Error Dynamics). Let

there be given polytopes Cx̄ and E as in Sec. 6.2, a set Y and a polytope P ⊂ R4 such that

Y ⊆ P, and a function fparam : E × Cx̄ → Y:

fparam(e, x̄) :=




s̈

1
vX
ṡ
vX

m
Θ lfθ̇ṡ−

c̄Y lr(lf+lr)
Θ

θ̇
vX



, (7.9)

with vX = vX(e, x̄) as a function defined by (5.31). Next, define p :=
[
p3 p5 p6 p7

]T
,

Ayaw(p) :=

[
0 1

−
(
p6

c̄Y (lf+lr)
Θ + m

Θ lfp3

)
−p5

c̄Y lr(lf+lr)
Θ

]
, Bw2 :=

[
0 0 0 0

0 0 0 1

]
,

and, with constants c1 and c2 according to Theorem A.2, w1,max(p) := c1 + c2 · p5 and

Bw1(p) :=

[
0

w1,max(p)

]
. (7.10)

Further, introduce the function w̃1 : Dyaw → R:

w̃1(e, x̄,∆a) :=
m

Θ
lf
(
θ̇ṡ(cos eψ − 1)− s̈(sin eψ − eψ)

)
− ṡ

vX(e, x̄)

c̄Y (lf + lr)

Θ
(sin eψ − eψ)

+ ∆aψ − θ̈ +
[
0 1

]
R(eψ)T

m

Θ
lfK

[
epos
ėpos

]
+ . . . (7.11)

+
[
0 1

vX(e,x̄)
c̄Y (lf+lr)

Θ 0 −mΘ lf
] [
R(eψ)T 0

0 R(eψ)T

]



0 −θ̇ 1 0

θ̇ 0 0 1

θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0



[
epos
ėpos

]

and a scalar w1 ∈ R. Then, it holds that

fyaw (e, x̄,∆a) ∈ Fyaw
([

eψ
eω

])
:=

{
Ayaw(p)

[
eψ
eω

]
+Bw1(p)w1 +Bw2p

∣∣∣∣wT
1w1 ≤ 1, p ∈ P

}

(7.12)

for all
[
eT x̄T ∆aT

]T ∈ Dyaw.

Proof. Rewriting (5.21) as:

m

Θ
lfāY =

m

Θ
lf
(
θ̇ṡ cos eψ − s̈ sin eψ

)
+
m

Θ
lf
[
0 1

]
R(eψ)T

(
µ̃−

[
θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0

][
epos

ėpos

])

=
m

Θ
lf
[
−s̈eψ − (sin eψ − eψ)s̈+ θ̇ṡ+ (cos eψ − 1)θ̇ṡ

]
. . .

+
m

Θ
lf
[
0 1

]
R(eψ)T

(
µ̃−

[
θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0

][
epos

ėpos

])
,

96

7.2. Analysis of the Yaw Error Dynamics

the second line of (5.31) as:

c̄Y (lf + lr)

Θ
vY =

c̄Y (lf + lr)

Θ

([
0 1

]
R(eψ)T

[
0 −θ̇ 1 0

θ̇ 0 0 1

][
epos

ėpos

]
− ṡ sin eψ

)

=
c̄Y (lf + lr)

Θ

([
0 1

]
R(eψ)T

[
0 −θ̇ 1 0

θ̇ 0 0 1

][
epos

ėpos

]
− ṡeψ − ṡ(sin eψ − eψ)

)
,

and – using the definition of w̃1 as above – introducing these into (5.30) gives:

ėω =

(
− ṡ

vX

c̄Y (lf + lr)

Θ
− m

Θ
lfs̈

)
eψ −

1

vX

c̄Y lr(lf + lr)

Θ
eω . . . (7.13)

+ w̃1(e, x̄, vX) +
m

Θ
lfθ̇ṡ−

c̄Y lr(lf + lr)

Θ

θ̇

vX
.

As is shown in Theorem A.2 in the appendix, it holds that:

w̃1(e, x̄,∆a) ≤ w1,max (fparam(e, x̄)) ∀
[
eTx̄T∆aT

]T ∈ Dyaw,

such that (because w1,max > 0):

w̃1(e, x̄,∆a)T

w1,max(p)

w̃1(e, x̄,∆a)

w1,max(p)
≤ 1.

Letting w1 := w̃1

w1,max
and making substitutions in (7.13) then gives:

fyaw(e, x̄,∆a) ∈
{
Ayaw(p)

[
eψ
eω

]
+Bw1(p)w1 +Bw2p|wT

1w1 ≤ 1, p = fparam(e, x̄)

}
.

Because by requirement,

fparam(e, x̄) ∈ Y ⊆ P ∀
[
eT x̄T ∆aT

]T ∈ Dyaw,

the result follows.

An important aspect is the computation of the polytope P as required in Theorem 7.2.

This rather technical derivation is provided in Appendix G. On that basis, the analysis

problem can be formulated as a semidefinite program:

Problem 7.2 (Analysis). Having chosen design parameters ε3, ε4 > 0, a polytope E as in

Assumption 6.1, a polytope P ⊂ R4, and assuming that wT
1w1 ≤ 1, determine a matrix X ∈

R2×2 by solving:

min
X

− log detX

97

7. Boundedness of the Tracking Error

subject to:

X > 0, (7.14)

XAyaw(p)T + Ayaw(p)X + ε3X Bw1(p) Bw2p

Bw1(p)T −ε3I 0

(Bw2p)
T 0 ε3 − ε4


 ≤ 0 ∀p ∈ v (P) , (7.15)

[
1

eψ,max
0
]
X

[
1

eψ,max

0

]
≤ 1,

[
0 1

eω,max

]
X

[
0
1

eω,max

]
≤ 1, (7.16)

with Ayaw(p), Bw1(p), and Bw2 according to Theorem 7.2.

Extending ideas from [26], the following theorem holds.

Theorem 7.3 (Bounded state of the yaw error dynamics Σyaw). Given X as solution to

Problem 7.2 and defining Pyaw := X−1, the set

Eyaw :=

{[
eψ
eω

]
|
[
eψ eω

]
Pyaw

[
eψ
eω

]
≤ 1

}

is a subset of projeψ,eωE and an invariant set for the yaw error dynamics (5.32).

Proof. Along the lines of the proof to (7.1), a function

V (eψ, eyaw) =
[
eψ eω

]
Pyaw

[
eψ
eω

]

is defined with

V̇ = 2
[
eψ eω

]
Pyawfyaw(e, x̄,∆a)

=




eψ
eω
w1

1




T

Ayaw(p)TPyaw + PyawAyaw(p) PyawBw1 PyawBw2w2

(PyawBw1)T 0 0

(PyawBw2w2)T 0 0







eψ
eω
w1

1




According to the S-procedure, the implication:

(
wT

1w1 ≤ 1
∧[

eψ eω
]
Pyaw

[
eψ
eω

]
≥ 1⇒ V̇ ≤ 0

)

holds if and only if there exist positive scalars ε3 and ε4 such that:



Ayaw(p)TPyaw + PyawAyaw(p) + ε4Pyaw PyawBw1 PyawBw2w2

(PyawBw1)T −ε3I 0

(PyawBw2w2)T 0 ε3 − ε4


 ≤ 0 ∀p ∈ P .

98

7.2. Analysis of the Yaw Error Dynamics

Left- and right-multiplying this by diag
(
P−1

yaw, I, I
)
, equivalence to (7.15) is established.

Defining

Ae :=




1 0

−1 0

0 1

0 −1


 , be :=




eψ,max

eψ,max

eω,max

eω,max


 ,

as noted in [26, Sec. 5.2.2],

Eyaw ⊂ projeψ,eωE =

{[
eψ
eω

]
| Ae

[
eψ
eω

]
≤ be

}
,

holds if and only if

Ae[i,:]

be[i]
P−1

yaw

AT
e[i,:]

be[i]
≤ 1

for all i = 1, 2, 3, 4 as encoded by (7.16). This holds because

Eyaw ⊂ projeψ,eωE

is equivalent to the requirement that (with z := P
1
2

yawx):

1 ≥ max

{
Ae[i,:]

be[i]
x|x ∈ Eyaw

}
= max

zTz≤1

Ae[i,:]

be[i]
P
− 1

2
yawz

=
Ae[i,:]

be[i]
P
− 1

2
yawP

− 1
2

yaw

Ae[i,:]

be[i]
· 1√

Ae[i,:]
be[i]

P−1
yaw

AT
e[i,:]

be[i]

,

where the last step is equivalent to (7.16). Thus, (7.15) ensures quadratic boundedness of

the differential inclusion (7.12), for which, according to Theorem 7.1, Eyaw is an invariant

set inside projeψ,eωE . Because of Theorem 7.2, it is also an invariant set for the original

yaw error dynamics (5.32).

In order to illustrate these findings and the interplay of the components derived in this

chapter and the preceding ones, the following chapter provides an example along with a

discussion of the approach.

99

8. Examples and Discussion

In the following, the results obtained by theoretical analysis so far in this part are com-

plemented by an analysis based on numerical simulation, which also serves as basis for a

discussion of the devised methodology.

8.1. Validation in Simulation

For the purpose of numerical simulation, Simulink [138] models of the proposed controller

and the employed vehicle model are used. While the controller design and analysis have

been carried out in the continous time domain, numerical simulation relies on fixed- or

variable-step discretization of the time domain. In the following, in order to allow for

rapid simulation of thousands of test cases, simulations are run with fixed time steps

of Ts = 10 ms. Because the dynamics under control is a mechanical system, it does not

evolve much during this time period, such that this can be assumed to provide a good

approximation of the actual system behavior.

The objective is to apply the proposed tracking controller to a reference trajectory

obtained for a specific maneuver based on Part I. The tracking performance in terms of

constraint compliance is evaluated for a large number of initial error states, randomly

chosen from a set E0, defined as:

E0 :=

{[
eTpos ėTpos eTyaw

]T |
[
eTpos ėTpos

]
Ppos

[
epos

ėpos

]
≤ 1, eTyawPyaweyaw ≤ 1

}

based on Theorems 7.1 and 7.3. Questions of measurement errors and robustness against

external disturbances are beyond the scope of this thesis; accordingly, this simulation

setup relies on perfect information of all required state quantities and considers only those

uncertainties as specified in Chapter 5.

For planning purposes, the cooperative overtaking maneuver from Section 4.1.1 is con-

sidered, with the slight modification that the longitudinal and the lateral jerk are used as

inputs of the ego vehicle instead of the accelerations. Again, cf. Table A.2 and Table 5.1

for the parameter values used throughout the example. The boundedness of the tracking

error is analyzed for an uncertainty bound ∆amax = 0.1 m s−2 as defined in (5.6).

The projection of the set E0 on the yaw error coordinates eψ and eω is shown in Figure 8.1,

along with the trajectories resulting from the random initial states. This phase portrait

suggests the invariance of the set; in addition, the quick convergence of the trajectories

towards a closer vicinity of the origin suggests the existence of a smaller ellipsoid, i.e., of

smaller error bounds.

101

8. Examples and Discussion

Figure 8.1.: Invariant set Eyaw (solid black ellipsoid) inside domain of admissible yaw errors

(shaded grey) with trajectories starting in randomly chosen initial states close

to the set boundary.

(a) Tangential position error et. (b) Tangential velocity error ėt.

Figure 8.2.: Tangential tracking errors.

102

8.1. Validation in Simulation

(a) Normal position error en. (b) Normal velocity error ėn.

Figure 8.3.: Normal tracking errors.

(a) Orientation error eψ. (b) Yaw rate error eω.

Figure 8.4.: Yaw errors.

(a) Input ut. (b) Input un.

Figure 8.5.: Components of the control input vector µ̃ =
[
ut un

]T
.

103

8. Examples and Discussion

(a) Longitudinal velocity vX . (b) Longitudinal acceleration v̇X .

Figure 8.6.: Longitudinal velocity and acceleration.

(a) Lateral velocity vY . (b) Lateral acceleration v̇Y .

Figure 8.7.: Lateral velocity and acceleration.

Further insight is provided by Figure 8.2, Figure 8.3, and Figure 8.4, showing the trajec-

tories of all error quantities separately. Starting from different initial states, all trajectories

converge not to the origin, but to a close vicinity of what is assumed to be a steady-state

trajectory according to Definition 7.2. The artificial control inputs µ̃, being related to the

tangential and normal error quantities through the feedback matrix K, exhibit a corre-

sponding behavior as shown in Figure 8.5, whereas the resulting actuator inputs sX and δ

are given in Figure 8.9. The trajectories of the actual vehicle states corresponding to the

error and reference trajectories are shown in Figure 8.6, Figure 8.7, and Figure 8.8, empha-

sizing that no constraints as imposed by the set Cvā are violated. The resulting external

accelerations a are shown in Fig. 8.10.

8.2. Discussion

While the theoretical results of Chapter 7 state conditions for the operational capabil-

ity of the devised tracking controller, the simulation results from the previous section

demonstrate the existence of parameter values that fulfill these conditions. The described

approach has several significant benefits: Most importantly, it represents a feedback con-

troller for which it is precisely known under which conditions constraint compliance is

guaranteed. This not only enables safe tracking, but, based on a guaranteed upper bound

104

8.2. Discussion

(a) Yaw rate ω. (b) Yaw acceleration ω̇.

Figure 8.8.: Vehicle orientation and yaw rate.

(a) Longitudinal tire slip sx. (b) Front wheel angle δ.

Figure 8.9.: Actuator inputs.

(a) Longitudinal external acceleration aX . (b) Lateral external acceleration aY .

Figure 8.10.: External accelerations.

105

8. Examples and Discussion

on the tracking error, also problem-free interaction with the planning layer in Part I, which

can provide sufficient safety margins when planning, such that no collisions occur.

Guarantees concerning constraint compliance typically require the employment of model-

predictive controllers, which, however, are computationally demanding. The proposed

controller, in contrast, is computationally very efficient, even in comparison to related

approaches such as [148, 57]. These rely on almost the same procedure as described in

Algorithm 5.1, however with one crucial difference in line 7: instead of finding the roots of

a cubic polynomial, the system of nonlinear equations (5.7) must be solved for δ and sX .

Because no analytical solution is known, the use of numerical methods is required. Even for

such a small number of equations, this is computationally more demanding than a closed-

form expression control law and complicates control at low sampling times (such as the

10 ms used in the example). The proposed approach, in contrast, allows for short sampling

times in digital implementations of the controller, such that analysis results from the

continuous-time domain can hold and even high-frequency disturbances are counteracted.

This advantage not only pertains to the actual implementation, but also to numerical

simulation, which plays an important role during the design stage. There, the evaluation

of simulation runs for many different initial states is drastically accelerated.

Another difference to approaches along the lines of [148, 57] lies in the fact that these

typically assume that ∆a = 0 in the position error dynamics (5.24). This ignores matters of

robustness, but has the advantage to remove the influence of the yaw error states eψ and eω
on the position error dynamics, which can then be analyzed independently of (5.32). The

yaw error dynamics in turn becomes part of the zero dynamics of the error system, whose

behavior must be carefully analyzed nonetheless in order to judge about the behavior

of the vehicle during trajectory tracking. The non-explicit nature of the feedback law

in approaches along the lines of [148, 57] severely complicates this analysis because the

replacement of δ and sX is prevented such that no closed-form expression for the closed-

loop yaw error dynamics can be given. First attempts to analyze the stability of the zero

dynamics [148] are limited to the case of a vehicle driving on a straight line with constant

velocity. The approach proposed in this thesis, in contrast, is able to give guarantees for

far more general driving scenarios.

Despite all advantages of the proposed method, the simulation results also indicate room

for improvement. A major challenge arises from the fact that its outcome can be conser-

vative, meaning that either no result can be found even if it exists, or only under relatively

restrictive conditions (such as the comparably small value of ∆amax chosen in this simula-

tion setting). This is caused by the fact that the procedure relies on over-approximation of

parameter sets and only sufficient, but not necessary conditions for boundedness – an inher-

ent feature of Lyapunov/LPV-based approaches in general, as already discussed in [124].

There, the LMI-conditions in Problem (7.1) and Problem (7.2) are emphasized to be a

major source of conservatism, depending on the choice of the ε-parameters, whose values

are not obvious to choose during the design phase. While this is inherent to the stated

LMI-conditions, the over-approximation of parameter sets as detailed in Appendix F offers

room for improvement.

106

Part III.

Conclusions and Future Work

107

9. Conclusions

This thesis has addressed the topic of consistency in hierarchical planning architectures

for use in cooperative autonomous driving. An example for such an architecture has been

proposed, consisting of three layers. Besides hierarchical consistency, the design of these

layers has aimed at computational efficiency as outlined in Part I. To that end, several

requirements had to be considered:

In order to enable fast selection of a maneuver, many different options must be checked

quickly for their feasibility. For a chosen maneuver, a plan must then be obtained with

as little delay as possible, because its admissibility can only be guaranteed for the current

situation, while unforeseen changes could make the schedule obsolete. During planning,

safety margins must be provided in order to allow for minor tracking errors; bounds on

these errors must be derived during the design of the tracking controller, which in turn

requires the reference trajectories’ parameters to lie in a pre-defined set.

Several methods have been employed for fulfillment of these requirements, with the

aim to demonstrate the potential of the overall concept. The encoding of the planning

problem as optimization problem within the maneuver concept enables computationally

efficient planning and constraint compliance, while computation of polytopic controllable

sets allows for feasibility assessment and, based on approximations, for a further increase

in computational efficiency. The tracking task was approached by extending an existing

controller design based on input-output linearization, additionally considering state and

input constraints and proving boundedness of the resulting tracking error.

These choices are certainly not the only possible realizations of the concept and far from

perfect. Yet, when evaluating, one must differentiate between the hierarchical framework

and the different elements for its realization: the framework itself clearly has the disadvan-

tage to be inflexible in so far as that it completely relies on the maneuvers specified prior

to deployment. The more maneuvers and corresponding controllable sets are designed, the

higher both the design effort and the memory requirements. On the other hand, as can

be concluded from both the theoretical results and the simulation studies, the hierarchical

approach is actually able to fulfill the requirements with respect to consistency and com-

putational efficiency, such that it seems a very promising subject for future investigations.

Concerning the realization of the framework, several disadvantages must be noted: first,

the exact computation of controllable sets is both computationally demanding and, es-

pecially when dealing with polytopic set representations, numerically challenging, which

makes the design process difficult. While approximations mitigate these issues, they are

unlikely to be ever overcome completely, as the problem itself is subject to the curse of

dimensionality. However, planning without controllable sets seems even less attractive,

as it implies that for a given situation, online planning must be carried out without any

109

9. Conclusions

knowledge of the potential outcome. This makes situations possible in which neither a

feasible plan can be found for a chosen parameter set of the planning problem, nor a new

attempt to planning can be made, as the first search took too long. This is even more

critical when assessing the feasibility of many different options – two problems which are

resolved by the use of controllable sets, such that these should be a main ingredient of any

planning method despite the associated challenges.

The tracking controller requires not less design effort than the planning part; espe-

cially the computation of the admissible sets using symbolic quantifier elimination and the

analysis of the yaw error dynamics is intricate and requires careful choice of parameters.

The chosen approach to the analysis task is complicated by the fact that it relies on only

sufficient conditions, such that obtained results are very likely to be conservative. Also, ob-

taining such a result is difficult, as it relies on the appropriate choice of design parameters

which have no clear physical meaning and are beyond a designer’s intuition. This, how-

ever, is a problem in all approaches somehow related to the design of a Lyapunov function

and even a conservative result must be regarded a success, considering the difficulty of the

problem to compute an invariant set for a highly nonlinear, time-varying, and disturbed

system. A thinkable alternative approach based on numerical computation of reachable

sets would likewise produce conservative results, while the handling of this problem class

would pose a conceptual challenge. Apart from the proof of boundedness of the yaw error

dynamics, the proposed tracking controller represents a consequent improvement of the

existing approaches in various directions: it is computationally more efficient than its pre-

decessors as it does not anymore require solution of a system of nonlinear equations and

it is able to account for constraints. Also, a first attempt to consider uncertainty has been

made. Despite these advances, room for improvement remains, which is outlined in the

following chapter.

110

10. Future Work

With the focus of this thesis being on the development of a methodology and numer-

ical simulations for validation purposes, an obvious extension of the presented work is

its implementation and testing on an experimental vehicle. Besides that, regarding the

methodology, various directions of future research exist:

First, being the major bottleneck in the realization of the maneuver concept, it is desir-

able to develop more efficient methods for the computation of controllable sets. However,

as this task is subject to the curse of dimensionality, there is not much hope for a concep-

tually simple solution and even an increase in computational capabilities would not lead

to a major improvement. Rather, approximation-based methods should be developed fur-

ther – for example by obtaining safety-guarantees for approximate dynamic programming

algorithms. Also, decomposition approaches could help to reduce the dimensionality of

the relevant state spaces. Such approaches could be combined with real-world data, for

example to specify different temporal evolutions of a maneuver based on human-driven

vehicles. Unlike in reinforcement learning, these data would not be directly used to train

a policy, but to identify promising parameters for the devised framework. This approach

could also help to address the problem of coverage, i.e., the problem of providing the ma-

neuver library with a sufficient amount of maneuvers with sufficiently large entry sets. As

such questions are difficult to answer solely based on the intuition of the system designer,

real-world data could prove beneficial.

Another aspect, which was only touched upon in this thesis, is the design of strategies

for the scheduling algorithm, e.g. optimizing traffic flow or a weighted sum of each involved

vehicle’s individual cost function. The effectiveness of different strategies could be evalu-

ated in a large-scale traffic simulator. This should also account for heterogeneous vehicle

dynamics, for example computing maneuvers for classes of vehicles in order to limit the

complexity of the resulting maneuver libraries.

As far as the tracking controller from Part II is concerned, several extensions are con-

ceivable: so far, perfect knowledge of the states of the error dynamics has been assumed. In

practical deployment of the controller, this assumption will not hold; rather, the required

information must be obtained from sensor readings by use of observers. These introduce

measurement and estimation errors, which must be accounted for in the computation of

the bound on the tracking error. Practical considerations necessitate to make the controller

robust not only against uncertainty in the tire characteristics, but also against external

disturbances such as wind gusts or varying road surface conditions or road incline. Larger

uncertainty typically increases the conservatism of results, as these must be obtained for all

possible realizations of a disturbance. The employed methods must counteract this mech-

anism in order to still produce meaningful results, which could, for example, be facilitated

111

10. Future Work

by use of parameter-dependent Lyapunov functions.

Finally, the thesis has made use of polytopic inner approximations of non-convex sets

several times, which were obtained manually. The development of a structured, automated

approach to this problem would prove beneficial. Some of the considered non-convex sets

resulted from application of algorithms for symbolic quantifier elimination, which – even

though only applicable to small-scale problems – deserve more attention in the control

community.

112

Appendix

A. Invariant Set Computation for Longitudinal Collision

Avoidance

This section provides the proof for Proposition 2.2:

Proof. The objective is to compute for each initial longitudinal velocity the minimum

time for a vehicle to come to standstill. If this is possible without collisions, then it is

possible for all other initial velocities and corresponding input trajectories, as these lead

to longer braking times. Considering the longitudinal position and velocity dynamics of

each vehicle i ∈ {L,F} in continuous time:

d(LF) = p
(L)
x − p(F)

x

ṗ
(L)
x = v

(L)
x v̇

(L)
x = u

(L)
x

ṗ
(F)
x = v

(F)
x v̇

(F)
x = u

(F)
x ,

the minimum times result for maximum braking, i.e. u
(L)
x = u

(F)
x = −ux,max, such that

Vehicle L can come to stand-still in:

t
(L)
stp =

v
(L)
x (t0)

|ux,min|

and Vehicle F in:

t
(F)
stp =

v
(F)
x (t0)

|ux,min|
.

This gives the position trajectories:

p
(L)
x (t) =

{
p

(L)
x (t0) + v

(L)
x (t0) · (t− t0) + 1

2ux,min(t− t0)2 t < t
(L)
stp

p
(L)
x (t

(L)
stp) t ≥ t

(L)
stp

and

p
(F)
x (t) =

{
p

(F)
x (t0) + v

(F)
x (t0) · (t− t0) + 1

2ux,min(t− t0)2 t < t
(F)
stp

p
(F)
x (t

(F)
stp) t ≥ t

(F)
stp

113

10. Future Work

Letting t0 = 0 and assuming a collision-free initial state, i.e., p
(L)
x (0) − p(F)

x (0) ≥ lx,safe, a

velocity-dependent safety distance is only required if v
(F)
x ≥ v

(L)
x because then t

(F)
stp ≤ t

(L)
stp ,

such that d(LF) ≥ lx,safe ∀t ≥ 0. Under these assumptions,

d(LF)(t) =



p
(L)
x (0)− p(F)

x (0) +
(
v

(L)
x (0)− v(F)

x (0)
)
· t 0 ≤ t < t

(L)
stp

p
(L)
x

(
t
(L)
stp

)
− p(F)

x

(
t
(L)
stp

)
− v(F)

x

(
t
(L)
stp

)(
t− t(L)

stp

)
− 1

2ux,min

(
t− t(L)

stp

)2

t
(L)
stp ≤ t < t

(F)
stp

p
(L)
x

(
t
(L)
stp

)
− p(F)

x

(
t
(F)
stp

)
t
(F)
stp ≤ t

with the positions at stand-still:

p
(L)
x

(
t
(L)
stp

)
= p

(L)
x (0) + v

(L)
x (0) · t(L)

stp +
1

2
ux,min

(
t
(L)
stp

)2

= p
(L)
x (0) + v

(L)
x (0)

v
(L)
x (0)

|ux,min|
− 1

2
|ux,min|

(
v

(L)
x (0)

|ux,min|

)2

= p
(L)
x (0) +

v
(L)
x (0)2

|ux,min|
− v

(L)
x (0)2

2|ux,min|

= p
(L)
x (0) +

v
(L)
x (0)2

2|ux,min|

and

p
(F)
x

(
t
(F)
stp

)
= p

(F)
x (0) + v

(F)
x (0) · t(F)

stp +
1

2
ux,min

(
t
(F)
stp

)2

= p
(F)
x (0) +

v
(F)
x (0)2

2|ux,min|
,

such that the relative distance at stand-still reads:

d(LF)
(
t
(F)
stp

)
= p

(L)
x (0)− p(F)

x (0) +
1

2|ux,min|
(
v

(L)
x (0)2 − v(F)

x (0)2
)
.

As d(LF)(t) is a strictly monotonically decreasing function, the constraint d(LF) ≥ lx,safe

holds at any time if it holds at the minimum, i.e., at stand-still. This determines the set

in Proposition 2.2.

B. Transformation of Reference Trajectory

Representations

This section summarizes the relation between a reference trajectory in cartesian coordinates

with state vector (5.1) and a reference trajectory in a Frenet frame as represented by the

114

B. Transformation of Reference Trajectory Representations

state vector (5.2). From Fig. 5.1, it is clear that:
[
ṡ

ṅ

]
= R(ψ − θ)

[
vX
vY

]
−
[
nθ̇

0

]
. (A.1)

Cartesian Frame → Frenet Frame

A reference trajectory x̄(·) in the cartesian frame is interpreted as motion of a point with

n(·) = 0 and ψ(·) = 0, such that vX = ˙̄px and vY = ˙̄py. Then, (A.1) becomes
[
ṡ

0

]
= R(−θ)

[
˙̄px
˙̄py

]
. (A.2)

The velocity vector is, per definition, tangential to the reference path in the Frenet frame,

such that (A.2) is compatible with:

ṡ =

∣∣∣∣
∣∣∣∣
[

˙̄px
˙̄py

]∣∣∣∣
∣∣∣∣ =
√

˙̄p2
x + ˙̄p2

y

and

θ = arctan2 (˙̄px, ˙̄py) .

Assuming sufficient continuity of the trajectories, the tangential acceleration s̈ reads:

s̈ =
dṡ

dt
=

∂ṡ

∂ ˙̄px

∂ ˙̄px
dt

+
∂ṡ

∂ ˙̄py

∂ ˙̄py
dt

=
[
∂ṡ
∂ ˙̄px

∂ṡ
∂ ˙̄py

] [¨̄px
¨̄py

]
=

[
˙̄px ˙̄py

]
√

˙̄p2
x + ˙̄p2

y

[
¨̄px
¨̄py

]
=

[
˙̄px ˙̄py

]

ṡ

[
¨̄px
¨̄py

]
.

(A.3)

Also, it holds that:
[...
s

0

]
= R(θ)T

[...
p x...
p y

]
−
[
−ṡθ̇2

2s̈θ̇ + ṡθ̈

]

(this expression can be obtained either by differentiation of (A.3), or – and much simpler

– by rearranging (A.4)). Also, using that d
dx arctan(x) = 1

1+x2 , where x =
˙̄py
˙̄px

:

θ̇ =
dθ

dt
=

˙̄p2
x

˙̄p2
x + ˙̄py

2

· d
dt

(
˙̄py
˙̄px

)

=
1

˙̄p2
x + ˙̄p2

y

[
− ˙̄py ˙̄px

] [¨̄px
¨̄py

]
=

1

ṡ2

[
˙̄px ˙̄py

] [0 1

−1 0

][
¨̄px
¨̄py

]

and

θ̈ =

1

ṡ2

([
¨̄px ¨̄py

] [0 1

−1 0

][
¨̄px
¨̄py

]
+
[

˙̄px ˙̄py
] [0 1

−1 0

][...
p̄ x...
p̄ y

])
− 2s̈

ṡ3

([
˙̄px ˙̄py

] [0 1

−1 0

][
¨̄px
¨̄py

])

=
1

ṡ2

([
¨̄px ¨̄py

] [0 1

−1 0

][
¨̄px
¨̄py

]
+
[

˙̄px ˙̄py
] [0 1

−1 0

][...
p̄ x...
p̄ y

])
− 2s̈θ̇

ṡ

115

10. Future Work

Frenet Frame → Cartesian Frame

If a reference trajectory x̄curv in the Frenet frame is given, it can be related to a trajectory

in the cartesian frame by rearranging (A.2) and subsequent differentiation as follows:

[
˙̄px
ṗy

]
= ṡ

[
cos θ

sin θ

]
= R(θ)

[
ṡ

0

]
,

[
p̈x
p̈y

]
= s̈

[
cos θ

sin θ

]
+ ṡθ̇

[
− sin θ

cos θ

]
= R(θ)

[
s̈

ṡθ̇

]
,

[...
p x...
p y

]
=

...
s

[
cos θ

sin θ

]
+ 2s̈θ̇

[
− sin θ

cos θ

]
+ ṡ

(
θ̈

[
− sin θ

cos θ

]
− θ̇2

[
cos θ

sin θ

])
= R(θ)

[...
s − ṡθ̇2

2s̈θ̇ + ṡθ̈

]

(A.4)

116

C. Uncertainty in the Tire Model

C. Uncertainty in the Tire Model

In this section, bounds on the uncertainty terms of Section 5.3, ∆aR, ∆ac, and, combining

these, ∆a, are derived. Introducing the tire uncertainty (5.11) into (5.12) leads to:

atire =




1
m 0

0 1
m

0 − lr
Θ



[

(1− γ)(c̄X + ∆cX)sX
(c̄Y + ∆cY) arctan

(
lrω−vY
vX

)
]

+ . . .




1
m 0

0 1
m

0 lf
Θ


R(δ)

[
γ(c̄X + ∆cX)sX

(c̄Y + ∆cY)
(
δ − arctan

(
lfω+vY
vX

))
]

=






1
m 0

0 1
m

0 − lr
Θ



[

(1− γ)sX 0

0 arctan
(
lrω−vY
vX

)
]

+ . . .




1
m 0

0 1
m

0 lf
Θ


R(δ)

[
γsX 0

0 δ − arctan
(
lrω−vY
vX

)
]

[
c̄X + ∆cX
c̄Y + ∆cY

]

Further derivations require polynomial expressions. Thus, trigonometric terms are replaced

by their series expansion:

sin(x) =

∞∑

k=0

(−1)k
x2k+1

(2k + 1)!
= P1(x) +R1(x)

cos(x) =

∞∑

k=0

(−1)k
x2k

(2k)!
= P2(x) +R2(x)

arctan(x) =

∞∑

k=0

(−1)k
x(2k+1)

2k + 1
= P3(x) +R3(x)

in all terms which do not depend on ∆cX or ∆cY , with polynomials Pi, i ∈ {1, 2, 3}, and

corresponding remainders Ri. This gives:

atire =






1
m 0

0 1
m

0 − lr
Θ



[

(1− γ)sX 0

0 P3

(
lrω−vY
vX

)
+R3

(
lrω−vY
vX

)
]

+




1
m 0

0 1
m

0 lf
Θ


 · . . .

[
P2(δ) +R2(δ) −P1(δ)−R1(δ)

P1(δ) +R1(δ) P2(δ) +R2(δ)

][
γsX 0

0 δ − P3

(
lfω+vY
vX

)
−R3

(
lfω+vY
vX

)
])[

c̄X
c̄Y

]
+ . . .






1
m 0

0 1
m

0 − lr
Θ



[

(1− γ)sX 0

0 arctan lrω−vY
vX

]
+




1
m 0

0 1
m

0 lf
Θ


R(δ)

[
γsX 0

0 δ − arctan lfω+vY
vX

]

[

∆cX
∆cY

]
.

117

10. Future Work

Then, atire is partitioned according to atire = ā+ ∆ac + ∆aR, with:

ā :=






1
m 0

0 1
m

0 − lr
Θ



[

(1− γ)sX 0

0 P3

(
lrω−vY
vX

)
]

+ . . .




1
m 0

0 1
m

0 lf
Θ



[
P2(δ) −P1(δ)

P1(δ) P2(δ)

][
γsX 0

0 δ − P3

(
lfω+vY
vX

)
]

[
c̄X
c̄Y

]
,

∆ac :=






1
m 0

0 1
m

0 − lr
Θ



[

(1− γ) 0

0 arctan lrω−vY
vX

]
+ . . .




1
m 0

0 1
m

0 lf
Θ


R(δ)

[
γ 0

0 δ − arctan lfω+vY
vX

]

[

∆cXsX
∆cY

]
, (A.5)

and

∆aR :=






1
m 0

0 1
m

0 − lr
Θ



[

0 0

0 R3

(
lrω−vY
vX

)
]

+




1
m 0

0 1
m

0 lf
Θ


R(δ)

[
0 0

0 −R3

(
lfω+vY
vX

)
]

+




1
m 0

0 1
m

0 lf
Θ



[
R2(δ) −R1(δ)

R1(δ) R2(δ)

][
γsX 0

0 δ − P3

(
lfω+vY
vX

)
]

[
c̄X
c̄Y

]
.

In a first-order series expansion of the trigonometric terms, R1(x) = sin(x) − x, R2(x) =

cos(x) − 1, and R3(x) = arctan(x) − x. Then, the nominal external accelerations (5.26)

result. While (A.5) is not affected by this, ∆aR becomes:

∆aR =

(


1
m 0

0 1
m

0 − lr
Θ



[

0 0

0 arctan
(
lrω−vY
vX

)
− lrω−vY

vX

]
+ . . .




1
m 0

0 1
m

0 lf
Θ


R(δ)

[
0 0

0 − arctan
(
lfω+vY
vX

)
+ lfω+vY

vX

]

+




1
m 0

0 1
m

0 lf
Θ



[

cos(δ)− 1 − sin(δ) + δ

sin(δ)− δ cos(δ)− 1

][
γsX 0

0 δ − lfω+vY
vX

])[
c̄X
c̄Y

]
. (A.6)

The following proposition holds for bounds on ∆aR:

Proposition A.1 (Bounds on ∆aR). For given vehicle parameters lr, lf, m, Θ, c̄X , c̄Y ,

bounds:

vX,min ≤ vX ≤ vX,max, |vY | ≤ vY,max, |ω| ≤ ωmax, |sX | ≤ sX,max, |δ| ≤ δmax,

118

C. Uncertainty in the Tire Model

and with

M1 := max∣∣∣ lrω−vYvX

∣∣∣≤ lrωmax−vY,min
vX,min

∣∣∣∣
∣∣∣∣arctan

(
lrω − vY
vX

)
− lrω − vY

vX

∣∣∣∣
∣∣∣∣ ,

M2 := max∣∣∣ lfω+vY
vX

∣∣∣≤ lfωmax+vY,max
vX,min

∣∣∣∣
∣∣∣∣arctan

(
lfω + vY
vX

)
− lfω + vY

vX

∣∣∣∣
∣∣∣∣ ,

M3 := max
|δ|≤δmax

∣∣∣∣∣

∣∣∣∣∣

[
cos(δ)− 1 − sin(δ) + δ

sin(δ)− δ cos(δ)− 1

] ∣∣∣∣∣

∣∣∣∣∣ ≤ max
|δ|≤δmax

√
(δ − sin(δ))2 + (cos(δ)− 1)2,

and, with b := − lfω+vY
vX

,

M4 := max


[sX δ b

]



(γsX)2 0 0

0 c̄2Y c̄2Y
0 c̄2Y c̄2Y





sX
δ

b






1
2

s.t.

|sX | ≤ sX,max,

|b| ≤ lfωmax+vy,max

vx,min
,

|δ| ≤ δmax

it holds that:

∣∣∣∣
∣∣∣∣
[

∆aX,R
∆aY,R

]∣∣∣∣
∣∣∣∣ ≤

c̄Y (M1 +M2) +M3 ·M4

m

and

||∆aψ,R|| ≤
c̄Y (lrM1 + lfM2) + lfM3 ·M4

Θ
.

Proof. Noting that

[
∆aX,R
∆aY,R

]
=

[
1 0 0

0 1 0

]
∆aR and ∆aψ,R =

[
0 0 1

]
∆aR, from (A.6),

119

10. Future Work

it follows that:

m

∣∣∣∣
∣∣∣∣
[

∆aX,R
∆aY,R

]∣∣∣∣
∣∣∣∣ =

∣∣∣∣∣

∣∣∣∣∣

([
0 0

0 arctan
(
lrω−vY
vX

)
− lrω−vY

vX

]
+R(δ)

[
0 0

0 − arctan
(
lfω+vY
vX

)
+ lfω+vY

vX

]

+

[
cos(δ)− 1 − sin(δ) + δ

sin(δ)− δ cos(δ)− 1

][
γsX 0

0 δ − lfω+vY
vX

])[
c̄X
c̄Y

] ∣∣∣∣∣

∣∣∣∣∣

≤
∣∣∣∣∣

∣∣∣∣∣

([
0 0

0 arctan
(
lrω−vY
vX

)
− lrω−vY

vX

]
+R(δ)

[
0 0

0 − arctan
(
lfω+vY
vX

)
+ lfω+vY

vX

])[
c̄X
c̄Y

] ∣∣∣∣∣

∣∣∣∣∣

+

∣∣∣∣∣

∣∣∣∣∣

[
cos(δ)− 1 − sin(δ) + δ

sin(δ)− δ cos(δ)− 1

][
γsX 0

0 δ − lfω+vY
vX

][
c̄X
c̄Y

] ∣∣∣∣∣

∣∣∣∣∣

= c̄Y

∣∣∣∣∣

∣∣∣∣∣

[
0

arctan
(
lrω−vY
vX

)
− lrω−vY

vX

]
+R(δ)

[
0

− arctan
(
lfω+vY
vX

)
+ lfω+vY

vX

] ∣∣∣∣∣

∣∣∣∣∣ . . .

+

∣∣∣∣∣

∣∣∣∣∣

[
cos(δ)− 1 − sin(δ) + δ

sin(δ)− δ cos(δ)− 1

][
γsX 0

0 δ − lfω+vY
vX

][
c̄X
c̄Y

] ∣∣∣∣∣

∣∣∣∣∣

≤ c̄Y

∣∣∣∣∣

∣∣∣∣∣ arctan

(
lrω − vY
vX

)
− lrω − vY

vX

∣∣∣∣∣

∣∣∣∣∣+ c̄Y

∣∣∣∣∣

∣∣∣∣∣− arctan

(
lfω + vY
vX

)
+
lfω + vY
vX

∣∣∣∣∣

∣∣∣∣∣ . . .

+

∣∣∣∣∣

∣∣∣∣∣

[
cos(δ)− 1 − sin(δ) + δ

sin(δ)− δ cos(δ)− 1

] ∣∣∣∣∣

∣∣∣∣∣ ·
∣∣∣∣∣

∣∣∣∣∣

[
γsX 0

0 δ − lfω+vY
vX

][
c̄X
c̄Y

] ∣∣∣∣∣

∣∣∣∣∣
≤ c̄y(M1 +M2) +M3 ·M4,

where ∣∣∣∣∣

∣∣∣∣∣

[
γsX 0

0 δ − lfω+vY
vX

][
c̄X
c̄Y

] ∣∣∣∣∣

∣∣∣∣∣ =

∣∣∣∣∣

∣∣∣∣∣

[
γsX c̄X

c̄Y
(
δ − lfω+vY

vX

)
)

] ∣∣∣∣∣

∣∣∣∣∣ =






sX
δ

b



T


(γsX)2 0 0

0 c̄2Y c̄2Y
0 c̄2Y c̄2Y





sX
δ

b







1
2

.

Similarly, from (A.6),

||∆aψ,R|| =∣∣∣∣∣

∣∣∣∣∣

(
− lr

Θ

[
0 arctan

(
lrω−vY
vX

)
− lrω−vY

vX

]
+R(δ)

[
0 0

0 lf
Θ

(
− arctan

(
lfω+vY
vX

)
+ lfω+vY

vX

)
]
. . .

+
[
0 lf

Θ

] [cos(δ)− 1 − sin(δ) + δ

sin(δ)− δ cos(δ)− 1

][
γsX 0

0 δ − lfω+vY
vX

])[
c̄X
c̄Y

]∣∣∣∣∣

∣∣∣∣∣

≤ c̄Y (lrM1 + lfM2) + lfM3 ·M4

Θ
.

120

C. Uncertainty in the Tire Model

Note that the computation of M4 is a non-convex quadratic program, which, however, can

be solved to global optimality by [63] or [152].

In a similar way, bounds on the tire parameter uncertainty can be obtained:

Proposition A.2 (Bounds on ∆ac). Given αmax as in Appendix E, it holds that
∣∣∣∣
∣∣∣∣
[

∆aX,c
∆aY,c

]∣∣∣∣
∣∣∣∣ ≤

M5 +M6

m

∣∣∣∣
∣∣∣∣
[

∆cX,max

∆cY,max

]∣∣∣∣
∣∣∣∣

and

||∆aψ,c|| ≤
lrαmax + lfM6

Θ

∣∣∣∣
∣∣∣∣
[

∆cX,max

∆cY,max

]∣∣∣∣
∣∣∣∣

where

M5 : = max

∣∣∣∣
∣∣∣∣
[

(1− γ)sX 0

0 arctan lrω−vY
vX

]∣∣∣∣
∣∣∣∣ s.t. |sX | ≤ sX,max,

∣∣∣∣arctan
lrω − vY
vX

∣∣∣∣ ≤ αmax

= max
{

(1− γ)sX,max, αmax

}

and

M6 : = max

∣∣∣∣
∣∣∣∣
[
γsX 0

0 δ − arctan
lfω+vY
vX

]∣∣∣∣
∣∣∣∣ s.t. |sX | ≤ sX,max,

∣∣∣∣δ − arctan
lfω + vY
vX

∣∣∣∣ ≤ αmax

= max{γsX,max, αmax}.

Proof. From (A.5), it follows that:
∣∣∣∣
∣∣∣∣
[

∆aX,c
∆aY,c

]∣∣∣∣
∣∣∣∣ =

1

m

∣∣∣∣
∣∣∣∣
([

(1− γ)sX 0

0 arctan lrω−vY
vX

]
+R(δ)

[
γsX 0

0 δ − arctan lfω+vY
vX

])[
∆cX
∆cY

]∣∣∣∣
∣∣∣∣

≤ M5 +M6

m

∣∣∣∣
∣∣∣∣
[

∆cX,max

∆cY,max

]∣∣∣∣
∣∣∣∣

as well as:

||∆aψ,c|| =
∣∣∣∣
∣∣∣∣
([

0 − lr
Θ

] [(1− γ)sX 0

0 arctan lrω−vY
vX

]
+ . . .

[
0 lf

Θ

]
R(δ)

[
γsX 0

0 δ − arctan lfω+vY
vX

])[
∆cX
∆cY

]∣∣∣∣
∣∣∣∣

≤
(
lr
Θ

∣∣∣∣
∣∣∣∣arctan

lrω − vY
vX

∣∣∣∣
∣∣∣∣+

lf
Θ

∣∣∣∣
∣∣∣∣
[
γsX 0

0 δ − arctan lfω+vY
vX

]∣∣∣∣
∣∣∣∣
) ∣∣∣∣
∣∣∣∣
[

∆cX,max

∆cY,max

]∣∣∣∣
∣∣∣∣

≤ lrαmax + lfM6

Θ

∣∣∣∣
∣∣∣∣
[

∆cX,max

∆cY,max

]∣∣∣∣
∣∣∣∣ .

121

10. Future Work

(a) Non-convex constraint on āX , vy, and ω.
(b) Non-convex constraint on āY , vx, and ω.

Figure A.1.: Non-convex constraint sets C̃āX (left) and C̃āY (right).

D. Polytopic acceleration constraints A
In this section, the nonlinear acceleration constraints (6.4) and (6.5) are linearized. In

doing so, it is important to obtain inner approximations of the admissible space in order

to comply with the original, nonlinear constraints. At first, define:

C̃āX :=







āX
vY
ω


 | |āX + vY ω| ≤ āX,max,∃vX : v ∈ V





and

C̃āY :=







āY
vX
ω


 | |āY − vXω| ≤ āY,max,∃vY : v ∈ V





Plots of these sets are shown in Fig. A.1a and A.1b.

Linear bounds on āX

From Fig. A.1a, it is apparent that the set CāX is mildly non-convex, in which the impact

of the non-convex part varies with ω. This motivates to determine a set of constraints

122

D. Polytopic acceleration constraints A

which hold for all admissible values of ω:

{[
āX
vy

]
| |āX + vY ω| ≤ āX,max∀ω ∈ [−ωmax, ωmax]

}

⇔
{[

āX
vY

]
| max
|ω|≤ωmax

āX + vY ω ≤ āX,max, min
|ω|≤ωmax

āX + vY ω ≥ −āX,max

}
.

While the elimination of the quantifier could be facilitated by using [152], an analytical

solution is also possible. For fixed values of āX and vY , it holds that:

Proposition A.3.

max
|ω|≤ωmax

āX + vY ω =

{
āX − vY ωmax vY < 0

āX + vY ωmax vY ≥ 0
.

Proof. Definining a Lagrange function

L(ω, λ1, λ2) := −(āX + vY ω) + λ1(ω − ωmax) + λ2(−ω − ωmax),

the KKT-conditions [25] read:

∇ωL = −vY + λ1 − λ2 = 0

ω = ωmax ⇒ λ2 = 0⇒ λ1 = vY > 0

ω = −ωmax ⇒ λ1 = 0⇒ λ2 = −vY > 0

The considered problem of optimizing a linear function on a polytopic domain is convex,

such that the KKT-conditions are necessary and sufficient, giving the result.

Similarly, it holds that:

Proposition A.4.

min
ω∈[ωmin,ωmax]

āX + vY ω =

{
āX + vY ωmax vY < 0

āX + vY ωmin vY ≥ 0
.

Proof. Again, define:

L(ω, λ1, λ2) = āX + vY ω + λ1(ω − ωmax) + λ2(−ω − ωmax),

with KKT-conditions:

∇ωL = vY + λ1 − λ2 = 0

ω = ωmax ⇒ λ2 = 0⇒ λ1 = −vY > 0

ω = −ωmax ⇒ λ1 = 0⇒ λ2 = vY > 0

123

10. Future Work

-3 -2 -1 0 1 2 3
-4

-2

0

2

4

v Y

a
X

(a) Resulting constraints (black) on āX and
vY when eliminating ω vs. box con-
straints on āX (gray).

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-4

-2

0

2

4

ω

a
Y

(b) Resulting constraints (black) on āY and
vY when eliminating vX vs. box con-
straints on āY (gray).

Figure A.2.: Resulting linearized constraint sets; parameters: −10 km h−1 ≤ vY ≤
−10 km h−1, −20 deg /s ≤ ω ≤ 20 deg /s

The following polytopic set results from these propositions:

CāX =

{[
āX
vY

]
||vY | ≤ vY,max, āX − vY ωmax ≤ āX,max, āX + vY ωmax ≤ āX,max,

− āX − vY ωmax ≤ −āX,min,−āX + vY ωmax ≤ −āX,min

}

or equivalently, lifting to the full velocity-acceleration-space,

CāX :=








vX
vY
ω

āX
āY



|




0 1

0 −1

1 −ωmax

1 ωmax

−1 −ωmax

−1 ωmax




[
0 0 0 1 0

0 1 0 0 0

]



vX
vY
ω

āX
āY



≤




vY,max

vY,max

āX,max

āX,max

−āX,min

−āX,min








.

A plot of the resulting set is shown in Fig. A.2a. The resulting degree of conservatism is

small (however, depending on the bounds on ω). Note that instead of deriving constraints

for all ω, it is possible to identify constraints which hold for all vX . Because the derivation

parallels the one shown and because the result is much more conservative, it is omitted.

124

D. Polytopic acceleration constraints A

Linear bounds on āY

Even though the set shown in Fig. A.1b appears to be more difficult to linearize than

the set C̃āX , a similar approach is chosen, i.e., a polytopic constraint set is derived which

holds for all vX , such that it is valid over the entire operating range of the vehicle:
{[

āY
ω

]
|∀vX ∈ [vX,min, vX,max] : − āY,max ≤ āY − vXω ≤ āY,max

}

⇔{[
āY
ω

]
| max
vX∈[vX,min,vX,max]

āY − vXω ≤ āY,max, min
vX∈[vX,min,vX,max]

āY − vXω ≥ āY,min

}

Paralleling the derivations for the longitudinal accelerations, it holds that:

Proposition A.5.

max
vX∈[vX,min,vX,max]

āY − vXω =

{
āY − vX,maxω ω < 0

āY − vX,minω ω ≥ 0
.

Proof. For the maximization problem, the Lagrange function reads:

L(vX , λ1, λ2) = −(āY − vXω) + λ1(vX − vX,max) + λ2(−vX + vX,min),

while the following KKT-conditions result:

∇vXL = ω + λ1 − λ2 = 0,

vX = vX,max ⇒ λ2 = 0⇒ λ1 = −ω > 0,

vX = vX,min ⇒ λ1 = 0⇒ λ2 = ω > 0.

Similarly,

Proposition A.6.

min
vX∈[vX,min,vX,max]

āY − vXω =

{
āY − vX,minω ω < 0

āY − vX,maxω ω ≥ 0

Proof.

L(vX , λ1, λ2) = āY − vXω + λ1(vX − vX,max) + λ2(−vX + vX,min)

KKT-conditions:

∇vXL = −ω + λ1 − λ2 = 0,

vX = vX,max ⇒ λ2 = 0⇒ λ1 = ω > 0,

vX = vX,min ⇒ λ1 = 0⇒ λ2 = −ω > 0.

125

10. Future Work

The following polytopic set results from these propositions:
{[

āY
ω

]
||ω| ≤ ωmax, āY − vX,maxω ≤ āY,max, āY − vX,minω ≤ āY,max,

− āY + vX,minω ≤ −āY,min,−āY + vX,maxω ≤ −āY,min

}

or equivalently, lifting to the full velocity-acceleration-space,

CāY :=








vX
vY
ω

āX
āY



|




0 1

0 −1

1 −vX,max

1 −vX,min

−1 vX,min

−1 vX,max




[
0 0 0 0 1

0 0 1 0 0

]



vX
vY
ω

āX
āY



≤




ωmax

ωmax

āY,max

āY,max

−āY,min

−āY,min








. (A.7)

See Fig. A.2b for a plot of the resulting set. Admissible combinations of accelerations and

velocities are then summarized in the set:

A := CāX ∩ CāY .

E. Linearization of Front Side Slip Angle Constraints

A magnitude constraint on (6.7) is equivalent to a velocity-dependent interval constraint:

−α̃max + arctan

(
lfω + vY
vX

)
≤ δ ≤ α̃max + arctan

(
lfω + vY
vX

)

on the front wheel angle δ. The resulting bounds on δ are shown in Fig. A.3a. Working

towards linear constraints, introduce:

R3

(
lfω + vY
vX

)
:= arctan

(
lfω + vY
vX

)
− lfω + vY

vX
, (A.8)

such that:
∣∣∣∣δ − arctan

(
lfω + vY
vY

)∣∣∣∣ =

∣∣∣∣δ −
lfω + vY
vX

−R3

(
lfω + vY
vX

)∣∣∣∣ ,

from which it follows that
∣∣∣∣δ −

lfω + vY
vX

∣∣∣∣ ≤ α̃max −
∣∣∣∣R3

(
lfω + vY
vX

)∣∣∣∣⇒
∣∣∣∣δ − arctan

(
lfω + vY
vX

)∣∣∣∣ ≤ α̃max.

Along with the magnitude constraint on δ according to (6.6), this defines the set:
{[

δ

x

]
| |δ − x| ≤ α̃max − |R3 (x)| , |δ| ≤ δmax

}
(A.9)

126

E. Linearization of Front Side Slip Angle Constraints

(a) Interval constraints on δ, resulting from constraint on αf.

(b) Constraints on δ after series expansion (dashed), combined with input magnitude con-
straints (horizontal lines).

(c) Constraints when using the conservative bound on the series expansion remainder (solid
black, zoomed in).

Figure A.3.: Bounds on δ in dependency of x = lfω+vY
vX

.

127

10. Future Work

which is shown in Fig. A.3b. In order for this set to be non-empty, it is necessary that
∣∣∣∣R3

(
lfω + vY
vX

)∣∣∣∣ < α̃max.

The relation holds if it holds for the maximum possible value:
∣∣∣∣R3

(
lfω + vY
vX

)∣∣∣∣ ≤
∣∣∣∣R3

(
lfωmax + vY,max

vX,min

)∣∣∣∣ =: R̄3.

As the variable remainder R3 introduces a dependency of (A.9) on a trigonometric term,

it is replaced by the maximum R̄3. Introducing this into the first inequality of (A.9) gives:

lfω + vY
vX

− α̃max + R̄3 ≤ δ ≤ α̃max +
lfω + vY
vX

− R̄3.

With αmax := α̃max − R̄3, the constraint (6.8) results, which is depicted in Figure A.3c.

F. Projection of Cvāµ on the Velocity-Acceleration-Space

Computation of the projection (6.11) relies on cylindrical algebraic decomposition (CAD),

a procedure which can be used for quantifier elimination in logical expressions involving

polynomials [32], implemented in symbolic computation software such as Wolfram Math-

ematica [152] or Maple [102]. Because CAD is computationally demanding, the original

expression (6.10) is simplified prior to application of CAD. First, it is noted that:

projvā

({[
v

ā

]
|v ∈ V ,

[
v

ā

]
∈ A

}
×R2 ∩ U

)
=

{[
v

ā

]
|v ∈ V ,

[
v

ā

]
∈ A

}
∩ projvā (U) .

(A.10)

Thus, projecting Cvāµ reduces to the problem of projecting the set U defined in (6.9). In

a second step, the following substitutions are made in the definition of (6.9):

b := − lfω + vY
vX

, c :=
m

c̄Y
āX +

1

γ
, d :=

ω(lr − lf)− 2vY
γvX

− m

γc̄Y
āY . (A.11)

Third, interval bounds on these quantities are derived. Note that these bounds are not

necessarily tight, but nonetheless helpful for computations. Considering (6.8), bounds on b

can be obtained from:

bmax := arg max
b,δ

b s.t. |δ + b| ≤ αmax, |δ| ≤ δmax, (A.12)

bmin := arg min
b,δ

b s.t. |δ + b| ≤ αmax, |δ| ≤ δmax, (A.13)

giving bmax = αmax − δmin and bmin = −bmax. Similarly,

cmax := arg max
āX ,vY

m

c̄Y
āX +

1

γ
s.t.
[
āX vY

]T ∈ CāX ,

cmin := arg min
āX ,vY

m

c̄Y
āX +

1

γ
s.t.

[
āX vY

]T ∈ CāX .

128

F. Projection of Cvāµ on the Velocity-Acceleration-Space

Based on (A.11),

d− b

γ
=
ωlr − vY
γvX

− m

γc̄Y
āY .

Considering the side-slip constraint (6.2), the bounds on b according to (A.12) and (A.13),

and the constraints on āY according to (A.7), it holds that dmin ≤ d− b
γ ≤ dmax, with

dmin := min
āY ,ω
−tan(αmax)

γ
− m

γc̄Y
āY +

bmin

γ
s.t.

[
āY ω

]T ∈ CāY ,

dmax := max
āY ,ω

tan(αmax)

γ
− m

γc̄Y
āY +

bmax

γ
s.t.

[
āY ω

]T ∈ CāY .

Given these bounds, the objective is to search for a set

CI :=







b

c

d


 |∃δ : |δ + b| ≤ αmax,

∣∣∣∣δ2 + bδ + c− 1

γ

∣∣∣∣ ≤
c̄X
c̄Y
sX,max, (A.14)

|δ ∈ R| ≤ δmax, δ
3 + bδ2 + δc+ d = 0, |b| ≤ bmax, cmin ≤ c ≤ cmax, dmin ≤ d ≤ dmax

}
.

129

10. Future Work

Using Wolfram Mathematica [152], the following set results, based on the parameter set

in Table 5.1 (note: the representation of numbers is owed to Wolfram Mathematica):

CI =







b

c

d


 |
(
b = − 1329191146657

20000000
√

116662779049 + 6869720980000
∧ d =

−20b− 649

8000

)
∨

(
− 1329191146657

20000000
√

116662779049 + 6869720980000
< b ≤ − 993

20000
∧

−20b− 649

8000
≤ d ≤ 397200000000b2 + 13719441960000b+ 680191146657

8000000000000

)
∨

(
− 993

20000
< b ≤ − 7

20000
∧

−20b− 649

8000
≤ d ≤ 397200000000b2 + 12999441960000b+ 644443146657

8000000000000

)
∨

(
− 7

20000
< b ≤ 7

20000
∧ −397200000000b2 + 12999441960000b− 644443146657

8000000000000
≤ d

≤ 397200000000b2 + 12999441960000b+ 644443146657

8000000000000

)

∨
(

7

20000
< b ≤ 993

20000
∧

−397200000000b2 + 12999441960000b− 644443146657

8000000000000
≤ d ≤ 649− 20b

8000

)
∨

(
993

20000
< b <

1329191146657

20000000
√

116662779049 + 6869720980000
∧

−397200000000b2 + 13719441960000b− 680191146657

8000000000000
≤ d ≤ 649− 20b

8000

)
∨

(
b =

1329191146657

20000000
√

116662779049 + 6869720980000
∧ d =

649− 20b

8000

)
∧ 81

50
≤ c ≤ 171

100

}
.

Note that this set not necessarily ensures that a unique real root δ of the cubic polynomial

in (A.14) exists on the considered interval. In principle, this could be enforced by requiring

the discriminant of the polynomial to be positive during the computation, which, however,

turned out to be computationally too demanding. Instead, the sign was checked a posteriori

using Mathematica.

Also note that the variable c is not coupled with the other variables, such that it suffices

to consider the projection of the set on the b-d-plane, as shown in Fig. A.4 (a). Even

though this set appears to be convex, its representation is based on nonlinear polynomials,

130

F. Projection of Cvāµ on the Velocity-Acceleration-Space

-0.10 -0.05 0.00 0.05 0.10

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

b

d

(a) Projection of the nonlinear set CI . (b) Projection of the polytopic inner approx-
imation CII .

Figure A.4.: Projection of the nonlinear set CI and of the polytopic inner approximation CII
on the b-d-plane.

whereas the following steps require a polytopic representation. Therefore, a polytopic inner

approximation of CI is obtained (cf. Fig. A.4(b)):

CII :=







b

c

d


 |AII



b

c

d


 ≤ bII



 ⊆ CI . (A.15)

In a next step, the auxiliary parameters b, c, and d are re-substituted in order to obtain

constraints on the original quantities. To that end, (A.11) is rewritten as:



b

c

d


 =:



−lf −1 0 0

0 0 m
c̄Y

0
lr−lf
γ − 2

γ 0 − m
c̄Y γ







1
vX

0
1
vX

1

0 1







ω

vY
āX
āY


+




0
1
γ

0


 .

Introducing this into (A.15) leads to a set CIII :

CIII :=








vX
vY
ω

āX
āY



|AIII




ω

vY
āXvX
āY vX


 ≤ bIII · vX





131

10. Future Work

with

AIII := AII



−lf −1 0 0

0 0 m
c̄Y

0
lr−lf
γ − 2

γ 0 − m
c̄Y γ


 , bIII :=


bII − AII




0
1
γ

0




 ,

which can equivalently be expressed as:

CIII =








vX
vY
ω

āX
āY



|
[
AIII [:, 1 : 2] −bIII

]


ω

vY
vX


 ≤ −AIII [:, 3 : 4]

[
āX
āY

]
vX




. (A.16)

Working towards a polytopic set representation, the nonlinear products of accelerations

and longitudinal velocity are linearized by finding lower bounds on the right-hand side:

min
vX∈[vX,min,vX,max]

− AIII [i, 3 : 4]

[
āX
āY

]
vX

=





−AIII [i, 3 : 4]

[
āX
āY

]
vX,min if − AIII [i, 3 : 4]

[
āX
āY

]
> 0

−AIII [i, 3 : 4]

[
āX
āY

]
vX,max if − AIII [i, 3 : 4]

[
āX
āY

]
< 0

.

Replacing row-wise the right-hand side of (A.16) with these minima gives:

CIV : =








vX
vY
ω

āX
āY



|
[
AIII [:, 1 : 2] −bIII AIII [:, 3 : 4]vX,min

AIII [:, 1 : 2] −bIII AIII [:, 3 : 4]vX,max

]



ω

vY
vX
āX
āY



≤ 0





=








vX
vY
ω

āX
āY



|AIV




vX
vY
ω

āX
āY



≤ 0




,

where

AIV :=

[
−bIII AIII [:, 2 : 1] AIII [:, 3 : 4]vX,min

−bIII AIII [:, 2 : 1] AIII [:, 3 : 4]vX,max

]
,

and clearly,

CIV ⊂ CIII .
In a last step, the intersection with the sets A and V according to (A.10) is carried out,

yielding:

Cvā :=

{[
v

ā

]
|v ∈ V ,

[
v

ā

]
∈ CIV ∩ A

}
.

132

G. Derivation of Parameter Bounds

Parameter p1 p2 p3 p4 p5 p6 w2

Correspondence ṡ θ̇ s̈ θ̇ṡ 1
vX

ṡ
vX

m
Θ lfθ̇ṡ−

c̄Y lr(lf+lr)
Θ

θ̇
vX

Table A.1.: Parameters and corresponding expressions.

G. Derivation of Parameter Bounds

The objective of this section is to determine a polytope P as used in Theorem 7.2, requiring

to over-approximate the range of the non-convex function fparam as defined in (7.9) on the

convex domain E × C̃x̄. Starting point is the following:

Theorem A.1 (Parameter set P). With E according to Assumption 6.1 and Cx̄ ⊂ R7

from (6.16), denote by Y the image of E × Cx̄ under a function fparam : E × Cx̄ → R4.

Further, assume to be given a set I = {1, 2, 3, 4} and matrices Ai and vectors bi, defining

polytopes

Pi :=

{[
x̄

zi

]
|x̄ ∈ Cx̄, zi ∈ R, Ai

[
x̄

zi

]
≤ bi

}
⊂ R8, i ∈ I,

for which
[

x̄

fparam,i(e, x̄)

]
∈ Pi ∀e ∈ E ∀x̄ ∈ Cx̄.

Then, with the set

P := projz1,z2,z3,z4

⋂

i∈I

{[
x̄T z1 z2 z3 z4

]T |
[
x̄

zi

]
∈ Pi, zj ∈ R for j 6= i

}
, (A.17)

it holds that

Y ⊆ P .
Proof. For each element of the image set it holds that:

y ∈ Y ⇒ ∃e ∈ E , x̄ ∈ C̃x̄ : y = fparam(e, x̄).

By requirement, this implies that
[
x̄

yi

]
∈ Pi ∀ i ∈ I,

which is equivalent to:
[
x̄

y

]
∈

{[
x̄

y

]
|
[
x̄

yi

]
∈ Pi, i ∈ I

}
=
⋂

i∈I

{[
x̄T y1 y2 y3 y4

]T |
[
x̄

yi

]
∈ Pi, yj ∈ R for j 6= i

}
,

from which (A.17) follows.

133

10. Future Work

The computation of the polytopes Pi is detailed in the following. Note that it is simple

to obtain the polytope P1, as it contains admissible values of fparam,1 ≡ s̈ = x̄[3] according

to (5.2), which is already constrained by Cx̄. Thus, the (low-dimensional) set

P1 :=

{[
x̄

z1

]
|x̄ ∈ Cx̄, z1 = x̄[3]

}

fulfills the requirements.

Polytope P2
In order to derive bounds on 1

vX
(the second component of fparam) note that according

to (5.31),

vX =

[
1 0

]
R(eψ)T

[
0 −θ̇ 1 0

θ̇ 0 0 1

][
epos

ėpos

]
+ ṡ cos eψ ≤

∣∣∣∣
∣∣∣∣
[

0 −θ̇ 1 0

θ̇ 0 0 1

][
epos

ėpos

]∣∣∣∣
∣∣∣∣+ |ṡ cos eψ|.

While this expression depends on the errors as well as the two reference trajectory quanti-

ties θ̇ and ṡ, the impact of θ̇ is small. With a set E of admissible errors as in Assumption 6.1,

the need to further account for both the errors and θ̇ is eliminated by noting that
∣∣∣∣
∣∣∣∣
[

0 −θ̇ 1 0

θ̇ 0 0 1

][
epos

ėpos

]∣∣∣∣
∣∣∣∣ ≤ max

x̄∈Cx̄

∣∣∣∣
∣∣∣∣
[

0 −θ̇ 1 0

θ̇ 0 0 1

]∣∣∣∣
∣∣∣∣ ·

1

ξ2
=

1

ξ2

√
1 + θ̇2

max =: n1,

and especially, ṡ cos eψ � n1 ∀ eψ ∈ projeψE because eψ,max := max projeψE is small.

Therefore,

cos(eψ,max)ṡ− n1 ≤ vX ≤ ṡ+ n1

and consequently

1

ṡ+ n1
≤ 1

vX
≤ 1

cos(eψ,max)ṡ− n1
∀e ∈ E . (A.18)

Computation of the McCormick envelope [107] of the graph of the upper and lower bounds

of 1
vX

on projṡCx̄ then gives the set shown in Figure A.5, which can be lifted to the full

space of x̄ to give the desired polytope P2. Note that this can be done automatically, e.g.

relying on Yalmip [96].

Polytope P3
Bounds on the third component of fparam, ṡ

vX
, are obtained similarly to the computation

of P2. From (A.18), it follows that

ṡ

ṡ+ n1
≤ ṡ

vX
≤ ṡ

cos(eψ,max)ṡ− n1
∀ e ∈ E .

Because the upper (lower) bound is a convex (concave) function, a polytopic over-approximation

is obtained easily, cf. Figure A.6, which can again be lifted to the full parameter space.

134

G. Derivation of Parameter Bounds

5 10 15 20 25
0.05

0.1

0.15

0.2

Figure A.5.: McCormick-envelope of 1
vX

.

5 10 15 20 25
0.998

1

1.002

Figure A.6.: Polytopic over-approximation of the bounds on the graph of ṡ
vX

.

135

10. Future Work

Polytope P4
The fourth component of fparam:

m

Θ
lfθ̇ṡ−

c̄Y lr(lf + lr)

Θ

θ̇

vX
(A.19)

depends on both ṡ and θ̇, if vX is not perceived as function as in (5.31), but as parameter

which is bounded along with x̄ by P1. Plotting (A.19) for minimum and maximum values of

vX on P1 gives the non-convex set shown in Figure A.7, along with a (manually obtained)

bounding polytope. Again, a lifting gives P4.

H. Bounds on w̃1

Theorem A.2. Given the function w̃1(e, x̄,∆a) as defined in (7.11) and the corresponding

domain Dyaw, it holds that

w̃1(e, x̄,∆a) ≤ w1,max (fparam(e, x̄)) ∀
[
eTx̄T∆aT

]T ∈ Dyaw,

where according to (7.10),

w1,max(p) := c1 + c2 · p5,

with

c1 := ∆aψ,max + θ̈max +
∣∣∣∣[cos eψ,max − 1 sin eψ,max − eψ,max

]∣∣∣∣ . . .

+
m

Θ
lf ·max

x̄∈Cx̄

∣∣∣∣
∣∣∣∣
(
−K +

[
θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0

])
P
− 1

2
pos

∣∣∣∣
∣∣∣∣+ max

p∈P

∣∣∣∣
∣∣∣∣
[

m
Θ lfp4

−mΘ lfp3 − c̄Y (lf+lr)
Θ p6

]∣∣∣∣
∣∣∣∣

and

c2 :=
c̄Y (lf + lr)

Θ
·max
x̄∈Cx̄

∣∣∣∣
∣∣∣∣
[

0 −θ̇ 1 0

θ̇ 0 0 1

]
P
− 1

2
pos

∣∣∣∣
∣∣∣∣ . (A.20)

Proof. From the definition of w̃1 in (7.11) and the triangle inequality, it holds that:

w̃1(e, x̄,∆a) ≤ ||w̃1(e, x̄,∆a)||

≤
∣∣∣∣[cos eψ − 1 sin eψ − eψ

]∣∣∣∣ ·
∣∣∣∣
∣∣∣∣
[

m
Θ lfθ̇ṡ

−mΘ lfs̈−
c̄Y (lf+lr)

Θ
ṡ
vX

]∣∣∣∣
∣∣∣∣+ |∆aψ|+ |θ̈| . . .

+
m

Θ
lf

∣∣∣∣
∣∣∣∣
(
−K +

[
θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0

])[
epos

ėpos

]∣∣∣∣
∣∣∣∣ . . .

+ p5
c̄Y (lf + lr)

Θ

∣∣∣∣
∣∣∣∣
[

0 −θ̇ 1 0

θ̇ 0 0 1

][
epos

ėpos

]∣∣∣∣
∣∣∣∣

≤ c2 · p5 + c1

136

H. Bounds on w̃1

Figure A.7.: Component fparam[4] (gridded; shown for extremal values of vX) and a bound-

ing polytope.

137

10. Future Work

where c1 and c2 encode the maximum values:

c2 : = max
c̄Y (lf + lr)

Θ
·
∣∣∣∣
∣∣∣∣
[

0 −θ̇ 1 0

θ̇ 0 0 1

][
epos

ėpos

]∣∣∣∣
∣∣∣∣

subject to

x̄ ∈ Cx̄,
[
epos ėpos

]T
Ppos

[
epos

ėpos

]
≤ 1.

The solution is given by (A.20), where the maximum of the matrix norm expression can

be computed explicitly for a given Ppos. Similarly,

c1 := max |∆aψ|+ |θ̈|+
∣∣∣∣[cos eψ − 1 sin eψ − eψ

]∣∣∣∣ ·
∣∣∣∣
∣∣∣∣
[

m
Θ lfp4

−mΘ lfp3 − c̄Y (lf+lr)
Θ p6

]∣∣∣∣
∣∣∣∣ . . .

+
m

Θ
lf

∣∣∣∣
∣∣∣∣
(
−K +

[
θ̇2 θ̈ 0 2θ̇

−θ̈ θ̇2 −2θ̇ 0

])[
epos

ėpos

]∣∣∣∣
∣∣∣∣

subject to

[
epos ėpos

]T
Ppos

[
epos

ėpos

]
≤ 1, p ∈ P ,

[
θ̇

θ̈

]
∈ projθ̇,θ̈Cx̄, eψ ∈ projeψE .

The single terms can be maximized separately and mostly without a problem, as for the

low-dimensional expressions, even graphical solutions are possible. The exception is:

max
p∈P

∣∣∣∣
∣∣∣∣
[

m
Θ lfp4

−mΘ lfp3 − c̄Y (lf+lr)
Θ p6

]∣∣∣∣
∣∣∣∣ ,

which is a non-convex optimization problem, but nonetheless solvable to global optimality

by [63].

I. Parameter Values

Table A.2.: Parameter values used in planning and tracking example.

Param. vX,min vX,max v̇X,min v̇X,max v̇Y,min v̇Y,max βmax δmin

Value 20 km h−1 80 km h−1 −5 m s−2 5 m s−2 −5 m s−2 5 m s−2 3 deg −3 deg

Param. vY,min vY,max ωmin ωmax sX,min sX,max αmax δmax

Value −10 km h−1 10 km h−1 −20 deg /s 20 deg /s −0.1 0.1 3 deg 3 deg

138

List of Symbols

Functions

δH(•1, •2) Hausdorff-distance between two compact, non-empty sets •1 and •2

inv map assigning invariants to a phase of a hybrid automaton

ρ distance between a point and a set

Θ map assigning the set of inbound transitions to a phase of a hybrid automaton

f : Rnx × U × projwW → Rnx flow function of a hybrid automaton

fi : Rnxi ×Rnui ×Rnwi → Rnxi model of the dynamics of vehicle i

g map assigning a guard set to a transition

gP : Rnx → R support function of a polytope P

ki : Rnxi ×Rn̄x → Rnui controller of vehicle i

General

• wildcard character

•[:,j] jth column of matrix •

•[I,:] entries of all rows of matrix • addressed by index set I (ordered by magnitude of

indices)

•[i,:] ith row of matrix •

•[i,j] entry in the ith row, jth column of matrix •

•[i] ith entry of vector •

∂P boundary of polytope P

Operators

convh (•) gives the convex hull of the vectors in set •

139

List of Symbols

diag (•1, •2, . . .) diagonal matrix with diagonal entries •1, •2,. . .

diag (•) main diagonal entries of matrix •

d(•) polar dual of a polyhedron •

f (•) gives the set of outward-pointing unit normal vectors of the facets of polyhedron •

int(•) gives the interior of polytope •

⊕ Minkowski sum

post(•) given controllable sets, it indicates to which set a set is controllable

pre operator used for computation of controllable sets

prec(•) returns states controllable in one step to target • without phase transitions

pred(•) returns states controllable in one step to target • with phase transitions

proj(•) projection of set •

× Cartesian product of two sets (if not used to indicate dimension of a matrix)

tri (•) triangulation of a finite set of points

vol (•) volume of simplex •

v (•) gives the the set of vertices of polytope •

Scalars and Physical Quantities

αbss Side-slip angle

p̄x(t) longitudinal reference position at time t

p̄y(t) lateral reference position at time t

θ̈ Yaw acceleration (reference trajectory)

s̈ Tangential acceleration (reference trajectory)

δ Front wheel steering angle

θ̇ Yaw rate (reference trajectory)

ṡ Tangential velocity (reference trajectory)

lx,safe longitudinal safety distance between two vehicles

ω Yaw rate of a vehicle

140

List of Symbols

ωi weight of vertex i in Warren’s algorithm

ψ Vehicle heading (global coordinate system)

p
(i)
x (t) longitudinal position of vehicle i at time t

p
(i)
y (t) lateral position of vehicle i at time t

Θ Moment of inertia (vertical vehicle axis; through center of gravity)

tk, k quantities indicating discrete time instances

Ts sampling time

ux,min, ux,max (uy,min, uy,max) bounds on admissible longitudinal (lateral) acceleration

u
(i)
x longitudinal acceleration of vehicle i

u
(i)
y lateral acceleration of vehicle i

vX,min, vX,max (vY,min, vY,max) bounds on admissible longitudinal (lateral) velocities

v
(i)
x longitudinal velocity of vehicle i

v
(i)
y lateral velocity of vehicle i

aψ External yaw acceleration of a vehicle

cY Lateral tire stiffness

cX Longitudinal tire stiffness

eω Tracking yaw rate error

eψ Tracking heading error

Hplan planning horizon

kpos upper bound on the ∞-norm of the position deviation from a reference

lr Distance from vehicle center of gravity to rear axle

lf Distance from vehicle center of gravity to front axle

m Vehicle mass

n degree of continuity of a reference trajectory

px Vehicle position (1st direction of global coordinate system)

py Vehicle position (2nd direction of global coordinate system)

141

List of Symbols

s Path coordinate (reference trajectory)

sX Longitudinal tire slip

t0, tplan start and end time of a trajectory

tplan Duration of a reference trajectory

vY Lateral velocity of a vehicle

vX Longitudinal velocity of a vehicle

Sets

P̄ a shifted version of polyhedron P

X̄safe a robust control invariant set used to derive Xsafe

HA a hybrid automaton

M a maneuver

N set of natural numbers

R set of real numbers

T time domain of a hybrid automaton

A inner approximation of a controllable set’s projection on the continuous state space

C set of identifiers of cooperating vehicles

Eyaw Invariant set of the yaw error dynamics

Fi in Warren’s algorithm: index set of incident vertices of facet i

Fi(t) ⊂ R2 set of positions forbidden for vehicle i at time t

Kj set containing j-step robust controllable sets of a hybrid automaton

N set of identifiers of non-cooperating, leading vehicles

P a polyhedron

Q set of phases of a hybrid automaton

S a simplex

T controllable tube (temporal sequence of controllable sets)

T set of discrete transitions of a hybrid automaton

142

List of Symbols

U compact set of admissible control inputs of a hybrid automaton

Ui admissible control inputs of vehicle i

Vi disturbance set of vehicle i

W compact, state-dependent set of possible disturbance inputs

X0, XT sets from a hybrid automaton’s continuous state space denoting admissible initial

and target states

Xsafe set of safe distances/velocities between two vehicles

Xi admissible states of vehicle i

T̃ inner approximation of a controllable tube

Si ith set of a triangulation, containing vertex indices

TP(•) set of points of tangency for direction • and polytope P

V matrix whose rows contain vertices of a polyhedron

Vectors and Matrices

0n×m n-by-m matrix of zeros

1n×m n-by-m matrix of ones

C̄
(i)
pos matrix which extracts position references for vehicle i from x̄i

x̄ in Warren’s algorithm: coordinate after shift of a polyhedron

x̄(·) Reference trajectory

x̄i(t) ∈ Rn̄x reference value for the controller of vehicle i at time t

z̄ reference value for z as used in planning problem

β vector of auxiliary binary variables

χi(t) state vector of vehicle i at time t

∆p positional safety margin

λ barycentric coordinates

µ Vector of vehicle control inputs

µi(t) disturbance vector of vehicle i at time t

143

List of Symbols

νi(t) disturbance vector of vehicle i at time t

θ In part I: tuple of two phases, indicating a possible transition between them; in

part II: reference heading angle

µ̃ Artificial control input in feedback linearization

A, B, B1, a determining quantities of affine flow function of a hybrid automaton

aY External lateral acceleration of a vehicle

aX External longitudinal acceleration of a vehicle

C1, D1 weighting matrices of cost function of planning problem

C
(i)
pos matrix which extracts vehicle i’s position from its state vector

Cz matrix extracting the vector z from the state vector x

D a matrix

e State vector of the tracking error

en Tracking position error (normal direction)

epos Tracking position error state vector

et Tracking position error (tangential direction)

eyaw Tracking yaw dynamics error state vector

Ei, i = 1, 2, . . . , 6 matrices used in inequality representation of a hybrid automaton

K feedback matrix in tracking controller

q (q0, qT) vector with one-to-one correspondence to the phase of a hybrid automaton (ini-

tial and target phase)

u control input to the flow function of a hybrid automaton

w disturbance input to the flow function of a hybrid automaton

x vector from the continuous state space of a hybrid automaton

z vector of states relevant to the cost function of the planning problem

144

References

[1] J. Abedor, K. Nagpal, and K. Poolla, “A linear matrix inequality approach to peak-

to-peak gain minimization,” International Journal of Robust and Nonlinear Control,

vol. 6, no. 9-10, pp. 899–927, 1996.

[2] J. Ackermann, Robust control: the parameter space approach. Springer Science &

Business Media, 2012.

[3] A. P. Aguiar and J. P. Hespanha, “Trajectory-tracking and path-following of under-

actuated autonomous vehicles with parametric modeling uncertainty,” IEEE Trans-

actions on Automatic Control, vol. 52, no. 8, pp. 1362–1379, 2007.

[4] A. Ailon, N. Berman, and S. Arogeti, “On controllability and trajectory tracking of

a kinematic vehicle model,” Automatica, vol. 41, no. 5, pp. 889–896, 2005.

[5] E. Alcalá, V. Puig, J. Quevedo, and U. Rosolia, “Autonomous racing using lin-

ear parameter varying-model predictive control (LPV-MPC),” Control Engineering

Practice, vol. 95, p. 104270, 2020.

[6] M. Althoff and J. M. Dolan, “Online verification of automated road vehicles using

reachability analysis,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 903–918,

2014.

[7] E. Asarin, T. Dang, and A. Girard, “Reachability analysis of nonlinear systems

using conservative approximation,” in International Workshop on Hybrid Systems:

Computation and Control. Springer, 2003, pp. 20–35.

[8] H. Atoui, O. Sename, E. Alcala, and V. Puig, “Parameter varying approach for a

combined (kinematic + dynamic) model of autonomous vehicles,” in Proceedings of

the 21st IFAC World Congress. IFAC, 2020, pp. 15 280 – 15 285.

[9] P. G. Backes, “Generalized compliant motion task description and execution within

a complete telerobotic system,” in Proceedings of the IEEE International Conference

on Systems Engineering. IEEE, 1990, pp. 515–518.

[10] G. Bagschik, M. Nolte, S. Ernst, and M. Maurer, “A system’s perspective towards

an architecture framework for safe automated vehicles,” in 2018 21st International

Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 2438–

2445.

145

References

[11] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex

hulls,” ACM Transactions on Mathematical Software, vol. 22, no. 4, pp. 469–483,

1996.

[12] T. Başar and G. J. Olsder, Dynamic noncooperative game theory. SIAM, 1998.

[13] A. Bemporad and C. Filippi, “An algorithm for approximate multiparametric convex

programming,” Computational optimization and applications, vol. 35, no. 1, pp. 87–

108, 2006.

[14] A. Bemporad, C. Filippi, and F. D. Torrisi, “Inner and outer approximations of

polytopes using boxes,” Computational Geometry, vol. 27, no. 2, pp. 151–178, 2004.

[15] A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics, and

constraints,” Automatica, vol. 35, no. 3, pp. 407–427, 1999.

[16] P. Bender, Ö. S. Tas, J. Ziegler, and C. Stiller, “The combinatorial aspect of motion

planning: Maneuver variants in structured environments.” in Proceedings of the IEEE

Intelligent Vehicles Symposium, 2015, pp. 1386–1392.

[17] D. P. Bertsekas, Dynamic programming and optimal control. Athena Scientific,

Belmont, MA, 1995, vol. 1.

[18] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming. Athena Scientific,

1996.

[19] T. Besselmann and M. Morari, “Hybrid parameter-varying model predictive control

for autonomous vehicle steering,” European Journal of Control, vol. 14, no. 5, pp.

418–431, 2008.

[20] J. T. Betts, Practical methods for optimal control and estimation using nonlinear

programming. SIAM, 2010.

[21] M. Bieshaar, G. Reitberger, S. Zernetsch, B. Sick, E. Fuchs, and K. Doll, “Detecting

intentions of vulnerable road users based on collective intelligence,” in Proceedings

of the AAET. ITS Automotive Nord, 2017, pp. 67–87.

[22] R. E. Bixby, “A brief history of linear and mixed-integer programming computation,”

Documenta Mathematica, vol. Optimization Stories, pp. 107–121, 2012.

[23] F. Blanchini and S. Miani, Set-theoretic methods in control. Springer, 2008.

[24] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and hybrid

systems. Cambridge University Press, 2017.

[25] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge uni-

versity press, 2004.

146

References

[26] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in

system and control theory. SIAM, 1994, vol. 15.

[27] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localization and map-

ping: A survey of current trends in autonomous driving,” IEEE Transactions on

Intelligent Vehicles, vol. 2, no. 3, pp. 194–220, 2017.

[28] M. L. Brockman and M. Corless, “Quadratic boundedness of nominally linear sys-

tems,” International Journal of Control, vol. 71, no. 6, pp. 1105–1117, 1998.

[29] A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation,

and Control. Hemisphere, New York, 1975.

[30] C. Burger and M. Lauer, “Cooperative multiple vehicle trajectory planning using

MIQP,” in Proceedings of the IEEE International Conference on Intelligent Trans-

portation Systems. IEEE, 2018, pp. 602–607.

[31] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of motion plan-

ning for highway autonomous driving,” IEEE Transactions on Intelligent Transporta-

tion Systems, vol. 21, no. 5, pp. 1826–1848, 2019.

[32] G. E. Collins and H. Hong, “Partial cylindrical algebraic decomposition for quantifier

elimination,” Journal of Symbolic Computation, vol. 12, no. 3, pp. 299–328, 1991.

[33] M. Corno, G. Panzani, F. Roselli, M. Giorelli, D. Azzolini, and S. M. Savaresi,

“An LPV approach to autonomous vehicle path tracking in the presence of steering

actuation nonlinearities,” IEEE Transactions on Control Systems Technology, pp.

1–9, 2020.

[34] T. X. T. Dang, “Verification and synthesis of hybrid systems,” Ph.D. dissertation,

Institut National Polytechnique de Grenoble, 2000.

[35] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with mixed-integer

convex optimization,” in Proceedings of the IEEE-RAS International Conference on

Humanoid Robots. IEEE, 2014, pp. 279–286.

[36] S. Di Cairano and F. Borrelli, “Reference tracking with guaranteed error bound for

constrained linear systems,” IEEE Transactions on Automatic Control, vol. 61, no. 8,

pp. 2245–2250, 2016.

[37] J. Ding, J. Sprinkle, S. S. Sastry, and C. J. Tomlin, “Reachability calculations for

automated aerial refueling,” in Proceedings of the IEEE Conference on Decision and

Control. IEEE, 2008, pp. 3706–3712.

[38] E. Donges, “A conceptual framework for active safety in road traffic,” Vehicle System

Dynamics, vol. 32, no. 2-3, pp. 113–128, 1999.

147

References

[39] J. Du, J. Masters, and M. Barth, “Lane-level positioning for in-vehicle navigation

and automated vehicle location (AVL) systems,” in Proceedings of the International

Conference on Intelligent Transportation Systems. IEEE, 2004, pp. 35–40.

[40] D. Dueri, B. Acikmese, M. Baldwin, and R. S. Erwin, “Finite-horizon controllability

and reachability for deterministic and stochastic linear control systems with convex

constraints,” in Proceedings of the American Control Conference. IEEE, 2014, pp.

5016–5023.

[41] M. Egerstedt, X. Hu, and A. Stotsky, “Control of mobile platforms using a virtual

vehicle approach,” IEEE Transactions on Automatic Control, vol. 46, no. 11, pp.

1777–1782, 2001.

[42] J. Eilbrecht, M. Bieshaar, S. Zernetsch, K. Doll, B. Sick, and O. Stursberg, “Model-

predictive planning for autonomous vehicles anticipating intentions of vulnerable

road users by artificial neural networks,” in Proceedings of the Symposium Series on

Computational Intelligence. IEEE, November 2017, pp. 2869 – 2876.

[43] J. Eilbrecht, M. Jilg, and O. Stursberg, “Distributed H2-optimized output feedback

controller design using the ADMM,” in Proceedings of the 20th IFAC World Congress.

IFAC, 2017, pp. 10 389–10 394.

[44] J. Eilbrecht and O. Stursberg, “Auction-based cooperation of autonomous vehicles

using mixed-integer planning,” in Proceedings of the AAET. ITS Automotive Nord,

February 2017, pp. 266–286.

[45] J. Eilbrecht and O. Stursberg, “Cooperative driving using a hierarchy of mixed-

integer programming and tracking control,” in Proceedings of the IEEE Intelligent

Vehicles Symposium. IEEE, June 2017, pp. 673–678.

[46] J. Eilbrecht and O. Stursberg, “Optimization-based maneuver automata for coop-

erative trajectory planning of autonomous vehicles,” in Proceedings of the European

Control Conference, June 2018, pp. 82–88.

[47] J. Eilbrecht and O. Stursberg, “Sichere Trajektorienplanung für autonome Fahrzeuge

unter Verwendung steuerbarer und erreichbarer Mengen (in German),” in Proceedings

of the AAET. ITS Automotive Nord, February 2019, pp. 66–91.

[48] J. Eilbrecht and O. Stursberg, “Challenges of trajectory planning with integrator

models on curved roads,” in Proceedings of the 21st IFAC World Congress. IFAC,

2020, pp. 15 588–15 595.

[49] J. Eilbrecht and O. Stursberg, “Set-based scheduling for highway entry of au-

tonomous vehicles,” in Proceedings of the 21st IFAC World Congress. IFAC, 2020,

pp. 15 396–15 403.

148

References

[50] P. Falcone, F. Borrelli, J. Asgari, H. Tseng, and D. Hrovat, “Low complexity MPC

schemes for integrated vehicle dynamics control problems,” in Proceedings of the

International Symposium on Advanced Vehicle Control, 2008, pp. 875–880.

[51] P. Falcone, M. Tufo, F. Borrelli, J. Asgari, and H. E. Tseng, “A linear time varying

model predictive control approach to the integrated vehicle dynamics control problem

in autonomous systems,” in Proceedings of the IEEE Conference on Decision and

Control. IEEE, 2007, pp. 2980–2985.

[52] M. S. Floater, “Generalized barycentric coordinates and applications,” Acta Numer-

ica, vol. 24, pp. 161–214, 2015.

[53] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli, and M. Diehl,

“An auto-generated nonlinear MPC algorithm for real-time obstacle avoidance of

ground vehicles,” in Proceedings of the European Control Conference. IEEE, 2013,

pp. 4136–4141.

[54] E. Frazzoli, “Robust hybrid control for autonomous vehicle motion planning,” Ph.D.

dissertation, Massachusetts Institute of Technology, 2001.

[55] E. Frazzoli, M. A. Dahleh, and E. Feron, “A hybrid control architecture for aggressive

maneuvering of autonomous helicopters,” in Proceedings of the IEEE Conference on

Decision and Control, vol. 3. IEEE, 1999, pp. 2471–2476.

[56] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,

A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable verification of hybrid sys-

tems,” in Proceedings of the International Conference on Computer Aided Verifica-

tion. Springer, 2011, pp. 379–395.

[57] S. Fuchshumer, K. Schlacher, and T. Rittenschober, “Nonlinear vehicle dynamics

control-a flatness based approach,” in Proceedings of the IEEE Conference on Deci-

sion and Control. IEEE, 2005, pp. 6492–6497.

[58] K. Fukuda, “Frequently asked questions in polyhedral computation,” ETH,

Zürich: https://www.cs.mcgill.ca/∼fukuda/soft/polyfaq/node31.html (retrieved

2020-10-15), June 2004.

[59] J. H. Gillula, H. Huang, M. P. Vitus, and C. J. Tomlin, “Design of guaranteed safe

maneuvers using reachable sets: Autonomous quadrotor aerobatics in theory and

practice,” in Proceedings of the International Conference on Robotics and Automa-

tion. IEEE, 2010, pp. 1649–1654.

[60] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning algorithms from

the perspective of autonomous UAV guidance,” Journal of Intelligent and Robotic

Systems, vol. 57, no. 1-4, p. 65, 2010.

149

https://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node31.html

References

[61] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion planning

techniques for automated vehicles.” IEEE Transactions on Intelligent Transportation

Systems, vol. 17, no. 4, pp. 1135–1145, 2016.

[62] A. Gray, Y. Gao, T. Lin, J. K. Hedrick, H. E. Tseng, and F. Borrelli, “Predic-

tive control for agile semi-autonomous ground vehicles using motion primitives,” in

Proceedings of the American Control Conference. IEEE, 2012, pp. 4239–4244.

[63] Gurobi Optimization, Inc., “Gurobi optimizer,” 2020, version 9.0.1.

[64] B. Gutjahr, L. Gröll, and M. Werling, “Lateral vehicle trajectory optimization using

constrained linear time-varying MPC,” IEEE Transactions on Intelligent Transporta-

tion Systems, vol. 18, no. 6, pp. 1586–1595, 2016.

[65] S. Herbert, “Safe real-world autonomy in uncertain and unstructured environments,”

Ph.D. dissertation, EECS Department, University of California, Berkeley, Aug

2020. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/

EECS-2020-147.html

[66] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin, “FaSTrack:

a modular framework for fast and guaranteed safe motion planning,” in Proceedings

of the IEEE Conference on Decision and Control. IEEE, 2017, pp. 1517–1522.

[67] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric Toolbox 3.0,”

in Proceedings of the European Control Conference, 2013, pp. 502–510.

[68] D. Heß, M. Althoff, and T. Sattel, “Comparison of trajectory tracking controllers for

emergency situations,” in Proceedings of the IEEE Intelligent Vehicles Symposium.

IEEE, 2013, pp. 163–170.

[69] D. Heß, M. Althoff, and T. Sattel, “Formal verification of maneuver automata for

parameterized motion primitives,” in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 1474–1481.

[70] R. Hult, G. R. Campos, E. Steinmetz, L. Hammarstrand, P. Falcone, and H. Wymeer-

sch, “Coordination of cooperative autonomous vehicles: Toward safer and more ef-

ficient road transportation,” IEEE Signal Processing Magazine, vol. 33, no. 6, pp.

74–84, 2016.

[71] J. hwan Jeon, R. V. Cowlagi, S. C. Peters, S. Karaman, E. Frazzoli, P. Tsiotras,

and K. Iagnemma, “Optimal motion planning with the half-car dynamical model for

autonomous high-speed driving,” in Proceedings of the American Control Conference.

IEEE, 2013, pp. 188–193.

[72] IBM, “IBM ILOG CPLEX optimization studio,” 2019, version 12.10.

[73] A. Isidori, Nonlinear Control Systems. Springer, 1995.

150

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-147.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-147.html

References

[74] M. Jilg, Hierachical and Cooperative Control of Complex Distributed Systems. Kassel

University Press GmbH, 2018.

[75] C. N. Jones and M. Morari, “Polytopic approximation of explicit model predictive

controllers,” IEEE Transactions on Automatic Control, vol. 55, no. 11, pp. 2542–

2553, 2010.

[76] T. Ju, S. Schaefer, J. D. Warren, and M. Desbrun, “A geometric construction of

coordinates for convex polyhedra using polar duals.” in Symposium on Geometry

Processing. Citeseer, 2005, pp. 181–186.

[77] K. Kant and S. W. Zucker, “Toward efficient trajectory planning: The path-velocity

decomposition,” The international journal of robotics research, vol. 5, no. 3, pp.

72–89, 1986.

[78] A. Katriniok and D. Abel, “LTV-MPC approach for lateral vehicle guidance by front

steering at the limits of vehicle dynamics,” in Proceedings of the IEEE Conference

on Decision and Control and European Control Conference. IEEE, 2011, pp. 6828–

6833.

[79] E. C. Kerrigan, “Robust constraint satisfaction: Invariant sets and predictive

control,” Ph.D. dissertation, University of Cambridge, 2000. [Online]. Available:

http://hdl.handle.net/10044/1/4346

[80] H. K. Khalil, Nonlinear systems. Prentice Hall, 2002.

[81] D. Kontny and O. Stursberg, “Fast control using homotopy properties for obstacle-

avoidance of systems with input constraints,” in Proceedings of the IEEE Conference

on Computer Aided Control System Design. IEEE, 2016, pp. 654–660.

[82] D. Kontny and O. Stursberg, “Fast optimizing control for non-convex state con-

straints using homotopy properties,” in Proceedings of the IEEE Conference on De-

cision and Control. IEEE, 2016, pp. 4894–4900.

[83] D. Kontny and O. Stursberg, “Online adaption of motion paths to time-varying

constraints using homotopies,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 3331–3337,

2017.

[84] K. Kurzer, C. Zhou, and J. M. Zöllner, “Decentralized cooperative planning for

automated vehicles with hierarchical Monte Carlo tree search,” in Proceedings of the

IEEE Intelligent Vehicles Symposium. IEEE, 2018, pp. 529–536.

[85] Y. Kuwata, “Trajectory planning for unmanned vehicles using robust receding hori-

zon control,” Ph.D. dissertation, Massachusetts Institute of Technology, 2007.

[86] Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P. How, “Motion planning for

urban driving using RRT,” in Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems. IEEE, 2008, pp. 1681–1686.

151

http://hdl.handle.net/10044/1/4346

References

[87] L. Lapierre and D. Soetanto, “Nonlinear path-following control of an UAV,” Ocean

engineering, vol. 34, no. 11-12, pp. 1734–1744, 2007.

[88] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[89] C. Le Guernic, “Reachability analysis of hybrid systems with linear continuous dy-

namics,” Ph.D. dissertation, Université Joseph-Fourier - Grenoble I, 2009.

[90] S. Lefèvre, A. Carvalho, and F. Borrelli, “A learning-based framework for velocity

control in autonomous driving,” IEEE Transactions on Automation Science and

Engineering, vol. 13, no. 1, pp. 32–42, 2016.

[91] X. Li, X. Xu, and L. Zuo, “Reinforcement learning based overtaking decision-making

for highway autonomous driving,” in Proceedings of the International Conference on

Intelligent Control and Information Processing. IEEE, 2015, pp. 336–342.

[92] Y. Li, X. Chen, and J. Mårtensson, “Linear time-varying model predictive control

for automated vehicles: Feasibility and stability under emergency lane change,” in

Proceedings of the 21st IFAC World Congress. IFAC, 2020, pp. 15 928–15 933.

[93] D. J. N. Limebeer and A. V. Rao, “Faster, higher, and greener: Vehicular optimal

control,” IEEE Control Systems, vol. 35, no. 2, pp. 36–56, April 2015.

[94] A. Liniger, “Path planning and control for autonomous racing,” Ph.D. dissertation,

ETH Zürich, 2018.

[95] Z. Liu and O. Stursberg, “Optimal trajectory planning of hybrid systems by efficient

MIQP encoding,” in Proceedings of the IEEE Conference on Decision and Control.

IEEE, 2018, pp. 1548–1553.

[96] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” in

Proceedings of the IEEE International Symposium on Computer Aided Control Sys-

tems Design. IEEE, 2004, pp. 284–289.

[97] A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Interactive decision maps:

Approximation and visualization of Pareto frontier. Springer, 2004.

[98] J. Lunze and F. Lamnabhi-Lagarrigue, Handbook of hybrid systems control: theory,

tools, applications. Cambridge University Press, 2009.

[99] A. Lyapunov, “On the problem of stability of motion,” Stability of Motion, 1893.

[100] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feedback motion

planning,” The International Journal of Robotics Research, vol. 36, no. 8, pp. 947–

982, 2017.

152

References

[101] S. Manzinger, M. Leibold, and M. Althoff, “Driving strategy selection for cooperative

vehicles using maneuver templates,” in Proceedings of the IEEE Intelligent Vehicles

Symposium. IEEE, 2017, pp. 647–654.

[102] Maplesoft, a division of Waterloo Maple Inc., “Maple,” 2020.

[103] T. Marcucci and R. Tedrake, “Mixed-integer formulations for optimal control of

piecewise-affine systems,” in Proceedings of the ACM International Conference on

Hybrid Systems: Computation and Control, 2019, pp. 230–239.

[104] L. Markolf, J. Eilbrecht, and O. Stursberg, “Trajectory planning for autonomous

vehicles combining nonlinear optimal control and supervised learning,” in Proceedings

of the 21st IFAC World Congress. IFAC, 2020.

[105] R. Matthaei and M. Maurer, “Autonomous driving–a top-down-approach,” at-

Automatisierungstechnik, vol. 63, no. 3, pp. 155–167, 2015.

[106] M. Maurer, J. Christian Gerdes, B. Lenz, and H. Winner, Autonomous driving:

technical, legal and social aspects. Springer Nature, 2016.

[107] G. P. McCormick, “Computability of global solutions to factorable nonconvex pro-

grams: Part I — convex underestimating problems,” Mathematical Programming,

vol. 10, no. 1, pp. 147–175, 1976.

[108] I. M. Mitchell, “Application of level set methods to control and reachability problems

in continuous and hybrid systems.” Ph.D. dissertation, Stanford University, 2002.

[109] F. Molinari, N. N. Anh, and L. Del Re, “Efficient mixed integer programming for

autonomous overtaking,” in Proceedings of the American Control Conference. IEEE,

2017, pp. 2303–2308.

[110] MOSEK ApS, “Mosek optimization suite 9.0,” 2019.

[111] K. Natesan, D.-W. Gu, and I. Postlethwaite, “Design of linear parameter varying

trajectory tracking controllers for an unmanned air vehicle,” Proceedings of the In-

stitution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol.

224, no. 4, pp. 395–402, 2010.

[112] J. Nilsson and J. Sjöberg, “Strategic decision making for automated driving on two-

lane, one way roads using model predictive control,” in Proceedings of the IEEE

Intelligent Vehicles Symposium. IEEE, 2013, pp. 1253–1258.

[113] Y. Ohta, Y. Nagai, and L. Gong, “Beneath-beyond method and construction of

Lyapunov functions,” in Proceedings of the International Symposium on Nonlinear

Theory and its Applications. IEICE, 1997, pp. 354–356.

[114] H. Pacejka, Tire and vehicle dynamics. Elsevier, 2005.

153

References

[115] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion

planning and control techniques for self-driving urban vehicles,” IEEE Transactions

on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[116] G. J. Pappas, J. Lygeros, and D. N. Godbole, “Stabilization and tracking of feedback

linearizable systems under input constraints,” in Proceedings of the IEEE Conference

on Decision and Control, vol. 1. IEEE, 1995, pp. 596–601.

[117] J. Park, S. Karumanchi, and K. Iagnemma, “Homotopy-based divide-and-conquer

strategy for optimal trajectory planning via mixed-integer programming,” IEEE

Transactions on Robotics, vol. 31, no. 5, pp. 1101–1115, 2015.

[118] D. Payton, “An architecture for reflexive autonomous vehicle control,” in Proceed-

ings. 1986 IEEE International Conference on Robotics and Automation, vol. 3.

IEEE, 1986, pp. 1838–1845.

[119] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” in

Proceedings of the Conference on Advances in neural information processing systems,

1989, pp. 305–313.

[120] X. Qian, F. Altché, P. Bender, C. Stiller, and A. de La Fortelle, “Optimal tra-

jectory planning for autonomous driving integrating logical constraints: An MIQP

perspective,” in Proceedings of the IEEE International Conference on Intelligent

Transportation Systems. IEEE, 2016, pp. 205–210.

[121] R. Rajamani, Vehicle dynamics and control. Springer Science & Business Media,

2011.

[122] B. Ranft and C. Stiller, “The role of machine vision for intelligent vehicles,” IEEE

Transactions on Intelligent vehicles, vol. 1, no. 1, pp. 8–19, 2016.

[123] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control : theory, com-

putation, and design, 2nd ed. Nob Hill Pub., 2017.

[124] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback control via

LMI optimization,” IEEE Transactions on Automatic Control, vol. 42, no. 7, pp.

896–911, 1997.

[125] E. Schmitzberger, J.-L. Bouchet, M. Dufaut, D. Wolf, and R. Husson, “Capture

of homotopy classes with probabilistic road map,” in Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, vol. 3. IEEE, 2002,

pp. 2317–2322.

[126] T. Schouwenaars, “Safe trajectory planning of autonomous vehicles,” Ph.D. disser-

tation, Massachusetts Institute of Technology, 2006.

154

References

[127] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed integer programming

for multi-vehicle path planning,” in Proceedings of the European Control Conference.

IEEE, 2001, pp. 2603–2608.

[128] B. Schürmann, A. El-Guindy, and M. Althoff, “Closed-form expressions of convex

combinations,” in Proceedings of the American Control Conference. IEEE, 2016,

pp. 2795–2801.

[129] B. Schürmann, D. Heß, J. Eilbrecht, O. Stursberg, F. Köster, and M. Althoff, “En-

suring drivability of planned motions using formal methods,” in Proceedings of the

IEEE International Conference on Intelligent Transportation Systems. IEEE, 2017,

pp. 1–8.

[130] D. Silver, J. A. Bagnell, and A. Stentz, “Learning autonomous driving styles and ma-

neuvers from expert demonstration,” in Proceedings of the 13th International Sym-

posium on Experimental Robotics. Springer, 2013, pp. 371–386.

[131] S. Singh, A. Majumdar, J.-J. Slotine, and M. Pavone, “Robust online motion plan-

ning via contraction theory and convex optimization,” in 2017 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 5883–5890.

[132] R. F. Stengel, “Stochastic optimal control: theory and application.” New York, 1986.

[133] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-

metric cones,” Optimization methods and software, vol. 11, no. 1-4, pp. 625–653,

1999.

[134] O. Stursberg and B. H. Krogh, “Efficient representation and computation of reach-

able sets for hybrid systems,” in Proceedings of the International Workshop on Hybrid

Systems: Computation and Control. Springer, 2003, pp. 482–497.

[135] O. Stursberg and S. Lohmann, “Synthesizing safe supervisory controllers for hybrid

nonlinear systems,” in Proceedings of the 17th IMACS World Congress, 2005.

[136] Ö. Ş. Taş, F. Kuhnt, J. M. Zöllner, and C. Stiller, “Functional system architectures

towards fully automated driving,” in Proceedings of the Intelligent vehicles sympo-

sium (IV). IEEE, 2016, pp. 304–309.

[137] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-trees: Feed-

back motion planning via sums-of-squares verification,” The International Journal

of Robotics Research, vol. 29, no. 8, pp. 1038–1052, 2010.

[138] The MathWorks Inc., “MATLAB version 9.4.0.813654 (r2018a),” Natick, Mas-

sachusetts, 2018.

[139] C. D. Toth, J. O’Rourke, and J. E. Goodman, Handbook of discrete and computa-

tional geometry. CRC press, 2017.

155

References

[140] P. Usoro, F. Schweppe, D. Wormley, and L. Gould, “Ellipsoidal set-theoretic control

synthesis,” Journal of Dynamic Systems, Measurement, and Control, pp. 331–336,

December 1982.

[141] C. Vallon, Z. Ercan, A. Carvalho, and F. Borrelli, “A machine learning approach for

personalized autonomous lane change initiation and control,” in Proceedings of the

IEEE Intelligent Vehicles Symposium. IEEE, 2017, pp. 1590–1595.

[142] E. Velenis and P. Tsiotras, “Optimal velocity profile generation for given acceleration

limits: Theoretical analysis,” in Proceedings of the American Control Conference.

IEEE, 2005, pp. 1478–1483.

[143] M. P. Vitus, S. L. Waslander, and C. J. Tomlin, “Locally optimal decomposition for

autonomous obstacle avoidance with the tunnel-MILP algorithm,” in Proceedings of

the IEEE Conference on Decision and Control. IEEE, 2008, pp. 540–545.

[144] E. L. Wachspress, “Barycentric coordinates for polytopes,” Computers & Mathemat-

ics with Applications, vol. 61, no. 11, pp. 3319–3321, 2011.

[145] J. Wang, J. Liu, and N. Kato, “Networking and communications in autonomous

driving: A survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp.

1243–1274, 2018.

[146] J. Warren, “Barycentric coordinates for convex polytopes,” Advances in Computa-

tional Mathematics, vol. 6, no. 1, pp. 97–108, 1996.

[147] J. Warren, S. Schaefer, A. N. Hirani, and M. Desbrun, “Barycentric coordinates for

convex sets,” Advances in computational mathematics, vol. 27, no. 3, pp. 319–338,

2007.

[148] M. Werling, L. Groll, and G. Bretthauer, “Invariant trajectory tracking with a full-

size autonomous road vehicle,” IEEE Transactions on Robotics, vol. 26, no. 4, pp.

758–765, 2010.

[149] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory generation for

dynamic street scenarios in a Frenet frame,” in Proceedings of the IEEE International

Conference on Robotics and Automation. IEEE, 2010, pp. 987–993.

[150] A. P. White, G. Zhu, and J. Choi, Linear parameter-varying control for engineering

applications. Springer, 2013.

[151] H. Williams, Model building in mathematical programming. Wiley, 1990.

[152] Wolfram Research, “Wolfram Mathematica,” 2020, version 10.2.

[153] L. A. Wolsey and G. L. Nemhauser, Integer and Combinatorial Optimization. John

Wiley & Sons, 1999, vol. 55.

156

References

[154] Y. Xu, H. Zheng, W. Wu, and J. Wu, “Robust hierarchical model predictive control

for trajectory tracking with obstacle avoidance,” in Proceedings of the 21st IFAC

World Congress. IFAC, 2020, pp. 15 954 – 15 959.

[155] B. Xue, Z. She, and A. Easwaran, “Under-approximating backward reachable sets

by polytopes,” in Proceedings of the International Conference on Computer Aided

Verification. Springer, 2016, pp. 457–476.

[156] B. Xue, Z. She, and A. Easwaran, “Under-approximating backward reachable sets by

semialgebraic sets,” IEEE Transactions on Automatic Control, pp. 5185–5197, 2017.

[157] D. Yi, M. A. Goodrich, and K. D. Seppi, “Homotopy-aware RRT*: Toward human-

robot topological path-planning,” in Proceedings of the 11th ACM/IEEE Conference

on Human Robot Interaction, 2016, pp. 279–286.

[158] X. Yin and A. Eckert, “A novel strategy for high-performance vehicle lateral motion

control,” in Proceedings of the 21st IFAC World Congress. IFAC, 2020, pp. 14 142–

14 148.

[159] Y. Zhang and C. G. Cassandras, “Decentralized optimal control of connected auto-

mated vehicles at signal-free intersections including comfort-constrained turns and

safety guarantees,” Automatica, vol. 109, p. 108563, 2019.

[160] L. Zhao, H. Hao, and W. Zhang, “Extracting flexibility of heterogeneous deferrable

loads via polytopic projection approximation,” in Proceedings of the IEEE Confer-

ence on Decision and Control. IEEE, 2016, pp. 6651–6656.

[161] J. Zhen and D. Den Hertog, “Computing the maximum volume inscribed ellipsoid of

a polytopic projection,” INFORMS Journal on Computing, vol. 30, no. 1, pp. 31–42,

2017.

[162] G. M. Ziegler, Lectures on polytopes. Springer Science & Business Media, 2012, vol.

152.

[163] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for Bertha — A

local, continuous method,” in Proceedings of the IEEE Intelligent Vehicles Sympo-

sium. IEEE, 2014, pp. 450–457.

157

	Zusammenfassung
	Summary
	Introduction
	Setting and Assumptions
	Overall Problem Statement and Thesis Outline
	Statement of Contribution
	Notation

	Maneuver-based Decision Making
	The Maneuver Concept
	Related Work on Trajectory Planning
	Basic Concepts
	Maneuvers
	Controllable Sets

	Modeling of Maneuvers
	Longitudinal Collision Avoidance
	Lateral Collision Avoidance

	Using Maneuvers for Planning

	Feasibility Assessment and Efficient Planning
	Inner Approximations of Controllable Sets and Tubes
	Iterative Approximation
	Initialization of the Approximation Scheme

	Fast Planning using Approximated Controllable Sets
	Triangulation
	Warren's Coordinates

	Examples and Discussion
	Example I: A Cooperative Overtaking Maneuver
	Maneuver Formulation
	Example Results: Controllable Sets and Trajectories

	Example II: Highway Entry of Autonomous Vehicles
	Maneuver Formulations
	Simulation Results

	Low-level Tracking Control
	A Novel Approach to Trajectory Tracking with Guarantees
	Related Work on Trajectory Tracking
	Preliminaries
	Partial Compensation of Nonlinearities by Feedback

	Characterizing Admissible Vehicle States and Reference Trajectories
	Constraints on the Vehicle Dynamics
	Admissible Reference Trajectories

	Boundedness of the Tracking Error
	Feedback Gain Synthesis
	Analysis of the Yaw Error Dynamics

	Examples and Discussion
	Validation in Simulation
	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	Invariant Set Computation for Longitudinal Collision Avoidance
	Transformation of Reference Trajectory Representations
	Uncertainty in the Tire Model
	Polytopic acceleration constraints A
	Linearization of Front Side Slip Angle Constraints
	Projection of Cvbara on the Velocity-Acceleration-Space
	Derivation of Parameter Bounds
	Bounds on 1
	Parameter Values
	List of Symbols
	References

