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Abstract

Knowledge computation tasks, such as computing a base of valid implications, are often
infeasible for large data sets. This is in particular true when deriving canonical bases in for-
mal concept analysis (FCA). Therefore, it is necessary to find techniques that on the one
hand reduce the data set size, but on the other hand preserve enough structure to extract use-
ful knowledge. Many successful methods are based on random processes to reduce the size
of the investigated data set. This, however, makes them hardly interpretable with respect to
the discovered knowledge. Other approaches restrict themselves to highly supported subsets
and omit rare and (maybe) interesting patterns. An essentially different approach is used in
network science, called k-cores. These cores are able to reflect rare patterns, as long as they
are well connected within the data set. In this work, we study k-cores in the realm of FCA by
exploiting the natural correspondence of bi-partite graphs and formal contexts. This struc-
turally motivated approach leads to a comprehensible extraction of knowledge cores from
large formal contexts.

Keywords k-cores - Bi-Partite graphs - Formal concept analysis - Lattices - Implications -
Knowledge base

1 Introduction

Large (binary) relational data sets are a demanding challenge for contemporary knowledge
discovery methods that use formal concept analysis [13]. This is due to the fact that many
considered problems in this realm are computationally intractable, e.g., enumerating formal
concepts, i.e., closed sets, or computing the canonical base [7, 21] of the underlying impli-
cational theory. Moreover, knowledge bases of large data sets may be incomprehensible to
human readers due to a large number of artifacts that arise from erroneous or infrequent
facts. Different methods were developed to adapt FCA tools to the growth of data sets.
Sophisticated algorithms employ filtering for data reduction. For example, formal concepts
can be filtered by their support in the data set. This is done in Apriori-like techniques [29,
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34]. More recent methods consider the minimum description length [10]. However, all these
approaches are unable to cope with large relational data sets for two reasons: first, they can-
not discover rare combinations of attributes that are (comparatively) highly supported in
the data set; secondly, the computations require an infeasible amount of steps. Moreover,
commonly employed random approaches fail to discover rare patterns, since low supported
combinations are unlikely to be sampled. Other techniques, such as feature combination or
object clustering [3, 5] lack in meaningfulness.

In general, there are two approaches to overcome the requirements of large data sets
with respect to knowledge discovery. One line of research is to introduce novel knowledge
features apart from closed sets and their related notions. This may lead to results that are
not accessible through well studied knowledge procedures, e.g., from formal concept anal-
ysis. Another line of research develops data reduction procedures such as latent semantic
analysis or unsupervised clustering of attributes [3, 5]. These, however, do often lead to
unexplainable features.

Our approach is fundamentally different, as we translate a popular graph theoretic notion
for data set reduction [1, 8, 14, 19, 20, 25], i.e., k-Cores by Seidman [27], to the realm
of formal concept analysis. The inviolable constraint for our investigation is to maintain
interpretability as well as explainability of knowledge with respect to the original data set.
To this end we study theoretically as well as experimentally the impact of the core reduc-
tion process on the conceptual knowledge, i.e., closed sets and implications. Using this, we
demonstrate a principle method to discover interesting cores of knowledge in large data sets.
In detail, we give a formal overview of to be defined pg-cores and their reduction effects
on conceptual structures and implicational theories. Furthermore, we provide specifications
for choosing interesting cores in large relational data sets. We complement our findings
by introducing core knowledge transformation algorithms. For a given data set and an ini-
tial pg-core they are able to provide a computationally efficient navigation process in the
emerging knowledge structure of all pg-core. Finally, we argue that our methods are able
to cope with arbitrary subsets of binary relational data.

The rest of our work is structured as follows. In Section 2 we first recollect common
notations from formal concept analysis and introduce cores in formal contexts thereafter
in Section 2.1. The related formal concept lattice and canonical base are investigated in
Sections 3 and 3. This is followed by an extensive experimental study in Sections 5 and 6
which is concluded by a presentation of efficient algorithms for pg-cores in Section 7. After
a discussion of related work in Section 8 we conclude with Section 9.

2 Formal concept analysis

Formal concept analysis (FCA) deals with binary relational data sets [13, 33]. These are
represented in a formal context (G, M, I) where the finite sets G and M are called objects
and attributes, respectively. The binary relation / between these sets is called incidence,
where (g, m) € [ is interpreted as “object g has attribute m”. Two derivation operators
emerge on the power sets of G and M: " : P(G) — P(M) where A — A" = {m €
M | Vg e A:(g,m)e I}and - : P(M) — P(G) dually. Composing the two operators
leads to two closure operators (i.e., idempotent, monotone, and extensive maps) on P(G)
and P(M). We investigate in this work induced sub-contexts, i.e., S = (H, N, J) with
H C G,N C M,and J = I N (H x N), denoted by S < K. When multiple formal
contexts are in play we often use the incidence relation for indicating a derivation, e.g.,
{g}! for a derivation of g € G in K and {g}’ for a derivation of g € H in S. A formal
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concept is a pair (A, B) € P(G) x P(M) with A’ = B and A = B’. We call A the extent
and B the intent of (A, B) and denote with Ext(K) and Int(K) the sets of all extents
and intents respectively. The set of all formal concepts of K is denoted by B(K). This set
can be ordered by < where (A, B) < (C,D) : < A C C for (A, B), (C, D) € B(K).
The ordered set of all formal concepts is denoted by B(K). The fundamental theorem of
FCA states that B (K) is a (complete) lattice. Furthermore, we investigate implications, i.e.,
A — B, where A,B € M. Wesay A — B is valid iff A’ C B’. The set of all valid
implications is denoted by Th(K). Usually, one does work with a base of the theory, e.g.,
Duquenne-Guigues base [15] (canonical base), denoted by Ck. It can be computed using
pseudo-intents, i.e., P € M with P # P” and Q” C P holds for every pseudo-intent
Q C P. The recursive nature of this definition is by design. Despite being the minimal base
of the implications from Tk (K), the set of all pseudo-intents can still be exponential in the
size of the context [21].

2.1 Cores in formal contexts

Our theory on pg-cores is based on bipartite cores [1, Section 3.1]. We translated their
approach to the realm of formal concept analysis, exploiting the natural correspondence
between bipartite graphs and formal contexts. This results in the following definition.

Definition 1 Let K = (G, M, I),S = (H, N, J) be formal contexts with S < K. We call
S a pg-core of K for p, g € N, iff

1. Sis pg-dense,i..,
Vg € HVm e N :|{g}| = pAlim}| = q,

2. Sis maximal, i.e.,
#O <K:O pg-dense AS O AS < Q.

We denote this by S <, ; K. In particular we call contexts S with S <q , K an attribute-
core and S <, K an object-core. We may note, that for any context K there exists a
p,q € N such that (9, @, ) is the pg-core of K. This is particular true for p > |M| and
q > |G|.

Proposition 1 (Uniqueness) Let K be a formal context and p, q € N. Then there exists a
unique S < KwithS < p, gK.

Proof LetS = (H,N,J)and T = (U, V, L) be two different formal contexts with S < K
and T < K. Furthermore, for some p, g € N we have that S<, ;K and T<, ,K. Construct
the contextD = (H UU, N UV, J U L). Then it follows that

Vee HUU,Vme NUV : |{g}JUL| >pA |{m}JUL| >q.

Hence, D is pg-dense and a S, T are proper sub-contexts of D). This contradicts the
maximality of S and T.

Given p,q € N we can construct the pg-core by filtering the context’s object and
attribute sets until they satisfy the pg-core property. O

Based on this result we refer to S <, K as the pg-core. We depict the formal context
of an example pg-core in Fig. 1. On the left is the formal context of the prominent “Living
beings and Water” example from Ganter & Wille [13] and on the right is the 4,3-core of
it. We observe that the objects “Bean” and “Leech” as well as the attributes “suckles its
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[ Tt[2[3[4[5[6[7[8]9]

1 X | x| x X |H1|2|3l4|5‘6|7‘
2| x| x| x X 2 || x | x| x X
3| x| x X X X 3| x | x X X
4| x | x | x| x X 4 || x | x| x| x X

5 || x X X 6 X | X | X | X
6 X | X | X | X 7 X | X | X | X | X
7 X | X | X | X | X 8 X X | X | X
8 X X | X | x

Attributes: 1. Can move around, 2. has limbs, 3. lives in water, 4. lives on land, 5. needs
chlorophyll, 6. needs water, 7. one seed leafs, 8. suckles its offspring, 9. two seed leafs; Objects:
1. Bean, 2. Bream, 3. Dog, 4. Frog, 5. Leech, 6. Maize, 7. Reed, 8. Spike-weed

Fig.1 Living Beings and Water context (1) and it’s 4,3-core (r)

offspring” and “two seed leafs” are removed. Even though |{Bean}'| > 4 it is removed by a
cascading effect triggered by the removal of the attribute “two seed leaves”.

3 Concept lattices of pg-Cores

In this section we investigate the relation of the concept lattice for a pg-core to the concept
lattice of the originating formal context. We investigate in particular the influence of the
parameters p and g. The computation of the pg-core for some p, ¢ can be understood as a
sequential removal of objects and attributes in arbitrary order. Based on this observation we
analyze the impact of object and attribute removal on concept lattices. To this end, we first
take a look at a proposition about structural embeddings. For some X C B(K) we use the
notation \/ X for the supremum of X in B(K) and A X for the infimum of X in B(K), cf.
Ganter & Wille [13].

Proposition 2 ([13, Proposition 31 on page 98])

Let K = (G,M,I), T = (U,M, L), andS = (G, N, J), be formal contexts with T < K
and S < K. Then the mapping B(T) — B(K) where (A, B) is mapped to the formal
concept (BI,B) isa \/-preserving order-embedding of B(T) in B(K). Dually, the map
BES) - BK) with (A, B) — (A, A isa /\-preserving order embedding of B(S) in
B(K).

For K we observe that Proposition 2 is not applicable since a pg-core has poten-
tially a modified set of objects and attributes with respect to K. Nonetheless, we can
still exploit Proposition 2 in the following way. First, there exists an order-embedding of
BMHM,I N H x M) into B(K). Secondly, there is an order-embedding from B(S) into
SBH,M,INH x M). Hence, it is easy to see that the composition of the two maps results in
an order-embedding from B(S) into B (K). However, suprema and infima are not necessar-
ily preserved. Nonetheless, the existence of the order-embedding does in particular imply
that a significant amount of structural (conceptual) information is preserved by the pg-core
with respect to the lattice *B(K) and p, g € N.

In the following we want to investigate more thoroughly how concepts change when
objects/attributes are deleted or added. We start with recalling a fact from [13, p. 99] which
is related to [13, Proposition 30 on p.98]. It describes how attribute closures alter when
attributes are removed.
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Lemma 1 Let K = (G, M, I),S = (G, N, J) be two formal contexts with S < K and
B C N, then:

iy B/ =BlnN,
iiy B =B’ U (B!\N).

Proof Initially, we note that B! = B7,since S <K implies / =1 NG x N.

i) C: From B! = B’ we can infer B’/ < B!!. Furthermore, since B/’ C N it follows
that B’/ € B//NN.D: Based on our initial observation we can deduce that forn € BI/NN
we find n € B’/. Based on i) we can write ii) as (B'/ N N) U (B!! \ N) which equals
B, O

Proposition 3 (Deleting Attributes) Let K = (G, M,I) and S = (G, N, J) be formal
contexts with S < K. Then, Int(S) = {B N N|B € Int(K)}.

Proof C:For B € Int(S) B! e Int(K) with B/ "N = B due to i) in Lemma 1. O: Since
J =1NG x N itholds for B € Int(K) that BIY = B N N. Furthermore, B!’ € Int(S)
since B!/ is the object derivation of B! € G inS. Thus, we find BN N € Int(S). O

The extent of an B € Int(S) is equal to the extent of B! sincefor BC N B/ = B! =
(B!, Note that B! is the inclusion minimal set in /n¢(K) whose intersection with N
equals B due to the monotony of closure operators. Furthermore, for all supersets D of B!/
in Int(K) it holds D! < (B'!)!. Thus, the following equality holds BY = (J{D’|D e
Int(K) : DN N = B} and is useful for algorithms as seen in the later part of this work.

Proposition 4 (Adding Attributes) Ler K = (G, M,I) and S = (G, N, J) be formal
contexts where S < K is true. Then,

i) VB e Int(K)\ Int(S): B\ N # 9,
i) VB e Int(S)\ Int(K) : 3D € Int(S) \ Int(S) with D\ N = B,

Proof Follows from Lemma 1 ii). Based on Proposition 3 there is a Delnt(K) with
DNN = B,ie., D = B! Since B ¢ Int(K) the set B// \ N is not empty and thus
D € Int(K) \ Int(S). O

Based on the insights so far we may draw a proposition that will drive our to be proposed
pg-core-algorithm. It will employ an identity: For Kt = (G, M, I) and S = (G, N, J) it
holds that Int(K) = (Int(S) U (Int (K) \ Int(S))) \ (Int(S) \ Int(K)).

Proposition 5 Let K = (G, M, I) and S = (G, N, J) with S < K. We can enumerate the
elements of the symmetric difference
A(Int(K), Int(S)) .= (Int(K) \ Int(S)) U (Int(S) \ Int(K))
in
0 (IUnt @)\ 1nt(S)| - (G- M| +1G] - IND)..

Proof We use the well-known next_closure algorithm [11]. For a given context, this
algorithm enumerates the set of all concepts in O(|G|* - |M|) time per concept. Let <y
be a total order on M such that Vim € M \ N Vn € N : m <p n. Our enumeration
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algorithm starts with N, which is the largest closure in Int(S). All concepts enumerated
by next_closure have at least one element of M \ N. This follows from the lectic
order on M induced by <j;. We know from Proposition 4 i) that the enumerated set is
equal to Int (K) \ Int(S). The so far not enumerated elements from A (Int(K), Int(S)) are
Int(S)\ Int (K). Due to Proposition 4 ii) we know that they can be determined by intersect-
ing elements from Int(K) \ Int(S) with N and applying the closure operator of S, which
takes O (|G| - |N|) time. O

Since we want to explain the relation of pg-core lattices to the concept lattice of the
original lattice we may state the following.

Corollary 1 Let K = (G, M, I) and S = (G, N, J) with S < K. One can enumerate the
elements of the symmetric difference A(B(S), B(K)) in time

O (IUnt @) \ Int ()| - (G - [M| + G| - IND)) .

The enumeration problem from Corollary 1 is up to one attribute-derivation similar to
Proposition 5.

We also see that all results in this section about attribute operations can be translated
to object operations through duality. After the theoretical consideration on the impact of
adding/removing attributes to formal contexts we now want to look into the dependence of
pg-cores to removing objects.

Proposition 6 (Object Cores) For two formal contexts K and S with S <, K and F =
{B € Int(K) | |B| > p} the equality

(XX STy =1Int(S) holds.

Proof C:Since Sis p, 0-core of K we have that VB € M : |B| > p = B! = B’/ Hence,
VX e F: X' = X'/ e Int(S). Since Int (S) is closed under intersection [13] we find that
foral ¥ € F: (X € Int(S). 2: Assume 3B € Int(S) with B # (X forall X C F.
Therefore, by construction of F we know that |B| < p, since Int(S) C Int(K)[13, dual
of Proposition 31]. Without loss of generality B is meet-irreducible in Int(S), i.e., there
isnoY € F : (Y = B. We may note that meet-irreducible among intents means join-
irreducible among the respective concepts (B, B) due to the dual order. Thus, there exists
an object g of the formal context S = (H, N, J) with gj = B, since meet-irreducibles
intents are known to be among object concepts. This contradicts |{ gy = p. O

This proof employs meet-irreducible intents of In¢(K). Computing those can be
achieved in time polynomial in the size of K using join-irreducible concepts and the down-
arrow relation [13, Definition 25]. Forg e Gandm e Misg ,/ m : < (g, m) &€ I
andforallh € G : g C h' = (h,m) € I.Based on this definition, join-irreducible
concepts are (g, g’) for which there exists am m € M with g /' m. Alternatively, we can
employ the cover relation among concepts in 2B (K). In this relation the meet-irreducible
elements of *B(K) are the concepts with exactly one lower neighbor. The above impacts the
computation of pg-core concept lattices.

Remark 1 For S = (H,N,J) and K = (G, M, I) with S <, , K it holds that S <, ¢
(G,N,ING x N).
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Using this remark we find a useful correspondence between the concept lattices of a
context, its induced sub-contexts and, in particular, its cores. For any two pg-cores S <, ,
Kand T <;; K we are able to efficiently compute (Corollary 1) the difference in their
concept lattices, i.e., A(B(S), B(T)). This difference, we claim, enables navigating the
order structure of all pg-cores for a given formal context K, see Fig. 2.

Given formal context K, the set K := {S < K} constitutes a complete lattice. One can
see this using the map P(G) x P(M) — K, (H, N) — (H, N, I N (H x N)), which is an
order isomorphism from the lattice P(G) x P(M) to K. Hence, for two arbitrary induced
sub-contexts S = (H,N,J) and T = (U, V,L) of K = (G, M, I) one may compute
B/{S, T}) and B(AS, T}) in order to infer B(T) efficiently using B(S), or vice versa.
The set of all pg-cores is contained in K, however, it does not constitute a lattice. To see
this a counter example is presented in Fig. 3.

3.1 A Small Case Study

We apply our notion for pg-cores on a particularly small example, the Forum Romanum
(FR) context (cf. Ganter & Wille [13, Figure 1.16]), in order to study the applicability to
real world data sets. The data set consists of monuments on the Forum Romanum (objects)
and their star ratings by different travel guides (attributes). In Fig. 4 we depicted the concept
lattice for FR and indicated by the red dashed lines the 2,4-core of FR.

At least all concepts between the red lines remain after the core reduction. In detail, the
parameter p = 2 results in removing all objects that have a derivation of size less than two,
as indicated by the upper horizontal dashed line. We understand (acc. to Proposition 6) that
in this process all join-irreducible concepts (A, B), i.e., BF € B(FR) : \/ F=(A, B),
above the p = 2 threshold are removed. For example, the concepts above the horizontal red
dashed line having the shorthand notation labels B*, GB¥*, and P* are join-irreducible and
therefore removed. Their attributes are then contained by those lower concepts that are in
cover relation to the removed concepts. In contrast, the concept with shorthand label M* is

(0,0,0)

Fig. 2 Principle approach for analyzing multiple pg-cores from a formal context K (left) and their
order/lattice relation (right)
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[ T[ox [ [os [aa [a [a [ b2 [ B [ [ Bs [

al X X X X X X
as X X X
b1 X X X
bo X X X
b3 X X X
c1 X X
(L1),2,1)

({a1, agsby, by b3, 1},
{(I,] T..0as, b],bQ,(ﬁ]})

(3,1 (12),(2.2)
({a]7a27b17b2‘,03}1 ({a]¢a2,b17b2,b3,(:]}7
{(l]...(L{,,b]...b[,,(f] ) {(l]...a57b]...bs})
(4,1),(51) (312) (213)
({mk; ({23, ({br: b2, bs}.
{a1...as,¢1}) {a1,a2,a3}) {b1,b2})

(3:31(4215.1)

(0,0)

Fig. 3 An example context (upper) and the order relation of all pg-cores (lower). Each node in the order
diagram represents a pg-core with its p, g values written above the node

join-reducible and is therefore closed after the removal of objects. The removal of attributes
results in dual observations, i.e., meet-irreducible concepts are removed.

4 Implications of pg-Cores

Any pg-core allows for computing its canonical base of valid implications. The question
at hand is, to what extent can the rules found be applied to the original data set? We start
with investigating the impact of object set manipulations on implications. Consider the fol-
lowing two formal contexts K = (G, M, I) and S = (H, M, J) with S < K. By removing
objects, i.e., there are objects present in G that are missing in H, we possibly remove unique
counterexamples g € G. Hence, implications previously invalid in K, e.g., A — B with
A, B C M and A! Z B!, become validin S, i.e., AJ\{g} C B’ Therefore, new valid impli-
cations may emerge in S. On the other hand, valid implications in K cannot be disproved by
removing objects. Thus, Th(K) C Th(S). Cores with p € N and g = 0 are of particular
interest to us due to Remark 1. For those, i.e., S <, o K, we find that all valid implications
A — Bin Th(S) \ Th(K) have |A < p, since in this core we only remove objects g € G
with |{g}'| < p. Hence, these are only able to refute implications with premise |A| < p.
For the special case of S <¢ , K we can deduce that Th(S) C Th(K).

There are two essential notions when discussing implications in data sets, confidence
and support. Given A, B € M, the support of an implication A — B in K is defined by
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ASS=Arch of Septimus Severus,

AT=Arch of Titus, BJ=Basilica Julia,
BM=Basilica of Maxentius, Cu=Curia,
HV=House of the Vestals, PC=Phocas

AOS C\J/l Column, PTG=Portico of Twelve Gods,
Mf** TAF=Temple of Antonius and Fausta,
T?F TCP=Temple of Castor and Pollux,

(e}
TCP

Z0

TR=Temple of Romulus, TS=Temple
of Saturn, TVa=Temple of Vesta,
TVe=Temple of Vespasian

Fig.4 The 2,4-core of the concept lattice is indicated by the red lines. All objects present in the shorthand
notation above the p = 2 barrier are removed as well as all attributes below p = 4 line are removed

supg (A — B) := |(AUBY'|/|G| and the confidence of A — B in K by confx(A — B) =
I(AUB)'|/|A’|. We may note that only implications with confidence one are considered valid
in FCA and therefore included in 7/ (K).

Proposition 7 (Core Implications) Let K, S be formal contexts, with S <, , K where K =
(G,M,I)andS = (H, N, J). Forall A — B € Th(S) it holds that

i) IHl/|G| - sups(A — B) < supg(A — B),

ii) supg(A — B) < IHl/|G| - supg(A — B) + IG\HI/|G|,
iii) confg(A — B) > [(AUBY|/jaY|+|G\H|,

iv) |Al>p = confg(A — B) =1,

v) |[AUB|>p = supg(A — B) =IHl/|G| - supg(A — B).

Proof i) Since J C I we can infer that |A/| < |A’| and that |HI/|G| - supg(A) < supg (A).
ii) With the same argument as in i) we can find |A’| < |A’| +|G \ H|, from which one can
deduce the statement.

Using i) and ii), which would be the best-case / worst-case for supports, since all additional
objects are counter examples for A — B, we find confg (A — B) = [(AUB)'|/|A!| is greater
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than or equal to |H1/|G| - supg(A — B) divided by IH|/|G| - supg(A) + IG\HI/|G|. This can be
simplified to confg (A — B) > I(AUB)'I/|A7 | +|G\H]|.

For |A| > p we have A’ = A’ by definition of pg-cores and also (A U B)) = (AU B)'.
Together with the definition of confidence we obtain the statement.

With |A U B| > p we see that [(A U B)!| = |(A U B)’|, which results in special case of
i). O

Note that i), ii), and iii) are also valid for arbitrary sub-contexts. Based on this result we
study minimal representations of implicational theories, i.e., the canonical base of T/ (K).
So the next logical question is on how to (partially) derive the canonical base for some
formal context K using one of its pg-cores. However, this endeavor is so far not under-
stood, with the exception of simple cases. For example, when computing the canonical
base of (G, N\UN,, J,UJ») using the bases of (G, Ny, J1), (G, Na, I), there is a simple
solution [32].

Another important base for a set of implications is its canonical direct base [6, 13]
(CDB), i.e., a complete, sound and iteration-free base. Such a set of implications for a for-
mal context K = (G, M, I) is constituted by the set of proper premises, i.e., sets A € M
where A"\ (AUUpc 4 B'Y) # ¥ does hold, cf. [12].

Proposition 8 (Induced Contexts CDB) Let K = (G, M, I), S = (G, N, J) be two formal
contexts with S < K and let L »(S), L p(K) be their canonical direct bases, then

LyS) € L,(K).

Proof Let A € N be a proper premise of S. Hence, we know by definition that A7/ \ (A U
Usgca B77) % {. Following, there is an n € A’/ € N withn ¢ A andn ¢ B’/ for all
B C A. With Lemma 1, we find that forall B C A we have B!l = /7y (B! \ N).
Therefore, we find thatn ¢ B'!. From this we can conclude thatn € A"\ (AUJpc, B')
which is therefore not empty. O

4.1 A Small Case Study on pq-core Implications

We want to motivate the applicability of our theoretical findings with a case study on a
small real-world data set, the Ben and Jerry’s context Kgy (Fig. 5, left) and its 2,3-core Spj
(Fig. 5, right). This context contains seven ice cream flavors of the Ben and Jerry’s brand
(objects) and nine ingredients (attributes). The incidence indicates which ingredients are
included in an ice cream flavor. The 2,3-core consists of six flavors and five ingredients.
We also depicted their concept lattices (Fig. 5). The original context Kpj has sixteen con-
cepts and the pg-core Sgy has thirteen. In Sg; we note the absence of one object (PBC),
four attributes (PB, PI, CI, D) and almost a third of the incidence pairs of Ig;. How-
ever, we observe that the concept lattices of Kgy, Sgj are very similar in terms of their
structure.

Using the findings of the previous section, we can partially analyze the implicational
structure of the original context Kpy through the use of Sgy. We do this in terms of the
canonical direct basis. The basis of Kpj contains thirty-two proper implications and the
basis of the Spj contains six. Again, this is surprising given the similarity of the concept
lattices. The set of all proper implications of Sgj is:
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\ [BPB[PL]C]CAI][CI][CP[D]VI]

[ [BJCJCI[CP]VI]

CCC X X X

CCC X X
CFB X X

CFB X X
CD X X X

CD X X
HB X X X X X

HB X X X X
CS X X X X =

CS X X X
PBC al l X SCB X | X X X
SCB X X X X

Attributes: B=Brownie, PB=peanut butter, PI=peanut ice, C=caramel, CAl=caramel ice,
Cl=choco ice, CP=choco pieces, D=dough, VI=vanilla ice; Objects: CCC=Caramel Chew
Chew, CFB=Chocolate FudgeBrownie, CD=Cookie Dough, HB=Half Baked, KS=Karamel Sutra,
PBC=Peanut Butter Cup, SCB=Salted Caramel Brownie

Fig.5 Ben and Jerry’s context (left) and its 2,3-core (right)

1) Brownie, Choco P. — Vanilla Ice 4) Vanilla Ice — Choco P.
2) Brownie, Caramel — Vanilla Ice 5) Vanilla Ice, Caramel — Brownie
3) Caramel — Choco P. 6) Vanilla Ice, Choco Ice — Brownie

We note that all implications are supported in Sgy and thus in Kgj. In detail, the support
of 1) in Spy is 33% and using Proposition 7 v) we can infer that the support of 1) in Kpj is
of 28%. As for the confidence of 1), we can use Proposition 7 iv) to deduce that 1) is also
an implication of Kgy, i.e., has confidence 1. For implication 4) we find that its support in
Spy is 50% and in Kgy 42% (Proposition 7 v)). The confidence of implication 4) can be
estimated to be at least 75% (Proposition 7 iii)).

Based on these results, we suggest that the canonical direct base of a pg-core is useful
for a meaningful investigation of the implicational structure of large contexts.

5 Experimental study

To support our observations from the last sections, we conducted an experimental study on
larger real-world data sets. The most pressing question is to identify particularly interesting
cores of a given formal context. A commonly used technique to assess the interestingness of
k-cores in networks is to investigate the number of connected components depending on the
core parameter k. A well-known observation is that the number of connected components
increases the greater k is. Parameters that are considered interesting are those around the
steepest rate of increase in the number of components. Also often considered are changes
of some valuation function, such as the size of the largest connected component or some
network statistical property. We will adapt the former idea and analyze the component
structures.
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Table 1 Numerical description of data sets. We included the number of non-empty pg-cores as well as the
number of formal concepts

Name |G| |M| |2B(K)| # pg-cores density
Water 8 9 19 20 0.47
Romanum 14 7 19 34 0.45
Spices 56 37 421 136 0.23
Knives 159 108 1061 1072 0.11
Mushroom 8124 119 238710 80136 0.22
Wikid4k 45021 101 21923 ~ 98000 0.05

5.0.1 Data Sets

We conduct our investigation on five data sets of different sizes and domains.
Living beings in Water is the well known FCA data set [13, Figure 1.1]. It consists of
living beings as objects and their properties as attributes. Forum Romanum as already used
in Section 3.1, is also taken from [13]. It is made of places of interest as objects and their
ratings in different tour guides as attributes. Spices is created by the authors. The objects
are dishes and the attributes are Spices to be used for these dishes. The incidence relation
is extracted from a Spices planer [23]. Mushroom is an often used classification data set
provided by UCI [9]. The objects are Mushrooms and the non-binary attributes are common
Mushroom properties. Those were scaled using a nominal scale. The Pocket Knives data set
was self-created by the authors through crawling the Victorinox AG website! in April 2019.
The context contains all pocket knives as objects and their features as attributes. Wikid4k
was created in an experimental study [18] on finding implications in Wikidata. It is a scaled
context drawn from the most dense part of the Wikidata knowledge graph.

All presented data sets are available in the FCA software conexp-clj [16] through
GitHub.> We collected their numerical properties in Table 1.

5.0.2 Interesting pq-cores

For all data sets we applied different combinations of parameters p and ¢ and evaluated to
what extent this leads to interesting pg-cores using the steepest increase method. For this
we regarded all non-empty pg-cores as bipartite graphs and counted the resulting connected
components. We observed that no data set has a pg-core with more than one connected
component. This is surprising since constructing a formal context falling apart into multiple
connected components for some p and ¢ is easy. This might indicate that real-world data sets
do not exhibit this property. However, we acknowledge that the number of considered data
sets is comparatively low. Nonetheless, this observation might be attributed to the following
fact: in all data sets there is a small number of objects with high support, i.e., many attributes,
covering in union all attributes and having at least pairwise one attribute in common. These
objects are contained in all pg-cores. Hence, we need to adapt the idea of components to
the realm of formal contexts differently. For this we consider the context size distribution
among all pg-cores. In this distribution we may characterize sub-contexts that are removed

Uhttps://www.victorinox.com
2https://github.com/tomhanika/conexp-clj
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while computing a pg-core as structural components. This is in contrast to the classical
component analysis for graph k-cores. Using those we define interesting pg-cores as those
where a further increase of p or ¢ would result in a high increase in the size of the removed
structural component. In our experiments we find that there are many such critical p and
q for the investigated data sets. To narrow this set we propose the following pragmatic
selection criteria due to computational limitations: 1. The size of a selected core should
be in the range of computational feasibility (with respect to the to be employed analysis
procedures). 2. The parameters p and ¢ of a selected core should differ in magnitudes, i.e.,
either p < g or p > ¢q. The interpretation of either criterion depends on the particular
data analysis application. For example, if one is more interested in keeping a larger attribute
domain then one should choose an interesting core with low g and high p. Analogously one
might want to keep more objects. Furthermore, the second criterion may only be suited for
larger contexts with many pg-cores available.

This being said we want to propose a different approach for characterizing interesting
pg-cores. In contrast to solely considering a pg-core S <, , K of some context K one
might look into the concept lattice that is created by this pg-core, i.e., B(S). With this
approach the size of the resulting concept lattice could be a criterion to select pg-core. The
motivation for this is that we rather select a pg-core depending on the entailed conceptual
knowledge than purely on contextual size. This approach is computationally costly since
we need to compute a large number of concept lattices. However, relying on Proposition
5, Proposition 6 and Remark 1 we may ease this cost significantly. Analogously we pro-
pose selection criteria: 1. The diagram of a selected core lattice should be human readable,
(e.g., the number of concepts should be in a human feasible range) 2. The parameters p
and ¢ of a selected core lattice should differ in magnitudes, i.e., either p < g or p > q.
Again, the concrete employment of either criterion depends on the particular data analy-
sis application. For example, we find a lattice with more than thirty concepts too large for
human comprehension, even if drawn with sophisticated drawing algorithms. Hence, we
will consider this number for the rest of this work as a bound. In addition to that, we apply
the criterion of p < g or p > ¢ only on larger context. On a final note in this section,
we consider the special cases of object- and attribute cores not to be interesting. They
remove attributes or objects simply by their object/attribute support and do not represent an
interesting sub-structure.

5.0.3 Experiment: Water

We analyze the living beings and water context Fig. 1 and present our core analysis in
Fig. 6. For this we computed the size of all core concept lattices. A first observation is
that interesting cores, with respect to our just introduced notion of interestingness, are the
4,3-, 3,4- and 2,4-core. We suspect that they include important knowledge. Increasing the
core parameters more would lead to an (almost) empty concept lattice. From this list of
interesting pg-cores we present the lattice diagram of 4,3 in Fig. 6. This lattice contains
thirteen formal concepts in contrast to the nineteen in the original concept lattice. The 4,3-
core captures a significant portion of knowledge from the original domain, however, only
six out of eight objects and seven out of nine attributes are in the picture. We can still infer
two different groups of beings, plants and animals. Nonetheless, the original lattice is much
more refined. For example, the original concept lattice is more distinct in the subsets of
beings that need chlorophyll or those who can move around. We consider the pg-core to be
a more coarse representation of the entailed domain knowledge.
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Fig.6 Figure on the left shows the concept lattice sizes for all pg-cores of living beings and water data set,
the abscissa indicates p and the ordinate ¢. On the right we present the 4,3-core

5.0.4 Experiment: Spices

In this experiment we analyze a spice recommendation data set. This context is derived from
a spice planer published in [23]. It contains 56 meals and 37 Spices. Meals in the data set
cover nine categories which are not part of the formal context. There are fifteen vegetables,
nine meat, three poultry, five fish, five potato, four rice dishes, as well as three sauces, eight
baked goods and four diverse dishes. The incidence relation is which meal requires which
Spices. The resulting concept lattice of the original context contains 531 formal concepts.
The results of applying pg-cores to this data set with different parameters are depicted in
Fig. 7. There is a great number of candidate cores to be considered, i.e., cores with a steep
decrease in the number of formal concepts while increasing parameters p or g. However,
many of those are still very large with respect to the number of formal concepts, e.g., 5,7-
core or the 9,4-core. Following our pragmatic criterion for human readability those are not
interesting. In contrast is the 5,11-core (cf. light red color in figure) which covers a dense
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Fig.7 Concept lattice sizes for all pg-cores of Spices data set, the abscissa indicates p and the ordinate ¢
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object and attribute selection of readable size. There are twelve dishes using six Spices in
the 5,11-core.

As another selection we present two different cores exhibiting a large attribute coverage
and large object coverage respectively. A real-world motivation for this is: one wants to
cook lots of different dishes with possibly fewer Spices; one is focused on a diverse usage
of Spices with possibly fewer meals. We exemplify this with the 2,18-core and the 14,1-
core, as depicted in Fig. 8. The 2,18-core includes 28 concepts with 33 out of the 56 dishes.
The 14,1-core has 32 concepts with 29 out of the 37 Spices. While having less than 10% of
the size of the original concept lattice, both concept lattices cover a vast amount of human
recognizable knowledge. A thorough investigation with respect to implications is done later
in this work.

6 The problem of large contexts

Large formal contexts constitute an infeasible problem for classical formal concept analysis.
This is in particular true when computing implicational theories of them. Applying FCA
notions only to pg-cores may be a possible resort. However, this results in a large number
of pg-cores to be considered, which constitutes a problem in its own, see Table 1. Since
our ultimate goal in this work is to present a novel method for coping with large formal
contexts, we demonstrate and evaluate an approach for reducing the search space for p
and ¢ in this section. For S <, , K we know from Proposition 2 that |B(S)| decreases
monotonously in p and ¢. Let p € N be the maximal number such that for all S <, , K
with p > g and [B(S)| < 30 we have that S <, ; T <p; K. Furthermore, let ¢ € N be
the maximal number such that for all S <, , K with p < ¢ and |B(S)| < 30 we have
that S <, , T <y, K. This implies that cores with human readable sized concept lattices
are sub-contexts of particular object- and attribute cores. Our computational approach now
is based on finding those particular cores. Equipped with these contexts we only need to
consider pg-cores S <, , K that are sub-contexts of T <5 Kor T <;, K. Since a
direct computation of p and g is infeasible we suggest an estimation. A naive solution for
this would be to examine the derivation size distribution of all objects or attributes. For the
data sets investigated in this work this approach was unsuccessful. More fruitful is a binary
search among the parameters. We set for this the bound for the concept lattice size to 60 as
threshold (which is twice as large as what we consider as readable). Therefore, even if the
P, 1-core is not human readable, we may encounter p, g-core with ¢ > 1 that is readable.
A general observation for large formal contexts in the following experiments is that cores
with readable concept lattices tend to having extreme values for parameters p, g, i.e., either
p<KLqgorqg L p.

6.0.5 Binary Search for cores in mushroom

Due to its size (in context as well as in concept lattice terms) the Mushroom data set is an
ideal candidate for the just proposed binary search. Computing the sizes of all core concept
lattices is infeasible. We search as an initial core for our search paradigm ¢ with p = 1.
We start with ¢ = |G|, which results almost surely in an empty context for real-world
data sets. The binary search in [1, |G|] gives a pg-core with p = 1 and ¢ = 4937. With
38 formal concepts the concept of this sub-context has less than two times 30 concepts,
which we considered human readable. Using this core we reduce the search space to 12832
different p, g, which are all bound by 38 in the number of formal concepts. We may note
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that searching for some p is impractical for this data set. This is due to the fact that it was
created by scaling twenty-three non-binary attributes into 119 nominal-scaled attributes.
Hence, there are only two sub-contexts of the Mushroom context which are in core relation
for ¢ = 1. More accurately, these are the Mushroom context and the empty context. We
depicted a heat-map of the core concept lattices in Fig. 9 for ¢ € [4937,8123] and p €
[1, 5]. We are interested in cores with as much readable conceptual information as possible,
which are cores with 4937 < g < 5176 (indicated by the darker red color), that are also
interesting. Out of those we find the 5,5176-core (at the corner of the dark red area) to be the
most interesting. This core contains seven distinct attributes and 7930 Mushrooms. In the
depiction of the corresponding concept in Fig. 9 we refrained from annotating all objects and
indicated the number of Mushrooms instead (using shorthand notation from FCA). Hence,
to get the total number of objects associated to some concept one has to add to the object
count all numbers from concepts in the order ideal of that concept. When comparing the
core lattice with the original lattice we notice that the object number for all concepts with
at least five attributes is similar, which is expected from our theoretical considerations.

6.0.6 Binary search for cores in Wiki44k

To provide another example, we perform the same search in the Wiki44k data set. The corre-
sponding concept lattice contains 21,923 formal concepts and we were able to compute that
there are approximately 98,000 non-empty pg-core contexts. Hence, computing all inter-
esting (Section 5) cores is costly. Therefore, we resort again to the binary search approach.
As the largest attribute core with a readable concept lattice we identified 1,5202-core, hav-
ing 54 formal concepts. We display a heat-map for the concept lattice size distribution of
all sub-cores starting from this bound in Fig. 10. As for the object core we discovered that
the 15,1-core has 139 concepts. However, the 16,1-core is empty, thus we are constrained to
employ the 15,2-core. Starting from this we can report that the 15,3-core and the 15,4-core
have twenty-five concepts and beyond that the cores are empty. Hence, those two are inter-
esting candidates. Despite having more concepts than we considered readable we looked
more thoroughly into the 15,2-core. Using background knowledge about the Wikidata prop-
erties we are able to present a well-drawn diagram of its lattice, as depicted in Fig. 11. We
realized that in this core we only cover eighteen out of 101 attributes. This is, for example,
in contrast to our observations for the Spice data set, where more than 50% were covered
using a similar sized pg-core. Nonetheless, the 15,2-core provides a rough overview about
the most important properties in the Wiki44k data set, in terms of usage for items, and how
they are connected.

Coming back to the object core investigation, we start with the 1,5202-core. From
there we find two candidates for interesting pg-core contexts, namely the 1,8290-core on
41735 objects, seven attributes with 34 formal concepts and the 4,7115-core on 20748
objects, eight attributes with 38 formal concepts. Although the latter covers more attributes
we decided to look into the former. The reason for this is the increased readability (due
to a lower number of concepts) and the higher object coverage. Cores with a higher
object coverage entail implications with a higher confidence in the original concept lattice,
see Proposition 7. For the visualizations of Fig. 11 we decided to indicate the objects using
their Wikidata item numbers instead of their labels. This core describes a majority of the
WikiData entities contained in the data set. The Wiki44k data set employs properties used
for countries or people for the majority of statements. Using our proposed core analysis we
are able to provide a human readable diagram representing how these properties are related.
This, in turn, enables us to identify logical errors. For example, we found that there are
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Fig. 10 The heatmapt of all core concept lattice sizes of the 1,5202-core of the Wiki44k data set.

entities which are countries with an occupation and a gender, see the concept in Fig. 11
indicated in red. The Wikidata description of these properties, however, states that the coun-
try property should not be used on human. By a closer look into the data set we found that
one of these entities is ”Alfred A. Knopf”, which is both a person (Q61108) and the name
of an American book publisher (Q1431868). Hence, someone added claim to Wikidata on
a wrong item. Besides the study of property usage we can also employ our analysis method
for the identification of missing information, i.e., missing statements in Wikidata. We see
in Fig. 11 that all properties that are depicted on the right part of the diagram describe human
features, e.g., occupation (P106), country of citizenship (P27), and gender (P21). Honor-
ing the constraint that occupation is only to be used for instances of (P31) human (Q5), we
find 66 items having P106 but missing the property P27. For example, one is ”James Blunt”
(Q130799), an English singer-songwriter.

The approach described above can be conducted for arbitrary combinations of Wikidata
properties. Hence, pg-cores enable the user to validate or contradict reasonable constraints
in incomprehensibly sized data sets, at least to some confidence. Furthermore, the pg-core
approach enables an automated procedure for checking implicational bases, cf. Proposi-
tion 7. In particular, one could employ methods from [18] to investigate implicational bases
in Wikidata through pre-computing pg-core contexts of feasible size.

6.1 Comparison with the TITANIC approach

TITANIC [30] is an Apriori based approach that computes all formal concepts satisfy-
ing the minimum-support threshold in the data set. TITANIC computes these concepts in
a bottom-up fashion, with respect to the concept lattice. The result is an ordered set of
minimum supported concepts, which constitutes a join-semilattice. We show the TITANIC
concept lattice of the Mushroom data set in Fig. 12 (right). In the following we compare
this join-semilattice to the concept lattice of a pg-core. For this, we reuse the pre-identified
interesting 5,5176-core S of Mushroom (see Fig. 12, left) and noted the support-values (in
S) for all object concepts, i.e., for all concepts that fulfill (gj I, gj ) for g € H. These num-
bers are to be read as follows: the true support value for some concept ¢ is the sum of all
support values of concepts in the order ideal | ¢ from c. We refer the reader to Proposi-
tion 7 regarding the support estimations in K. We observe that S comprises seven attributes
compared to the TITANIC result, which has twelve. Both conceptual structures are built on
thirty-two formal concepts.
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place of birth (P19), family (P53), child (P40), father (P22),
award received (P166), religion (P140), instance of (P31),
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Fig. 11 The concept lattice of the 15,2-core (above) and the 1,8290-core (bottom) of the Wiki44k data set.

In the following, we want to study more thoroughly the difference in applicability
between pg-cores and TITANIC concept lattices on real-world data sets. We applied both
procedures to Mushroom and Wiki44k data sets. For TITANIC we used the (hyper-) param-
eters min-support € {0.05, 0.1, 0.3} for Wiki44k and € {0.1, 0.3, 0.55} for Mushroom. The
latter values we drew from Stumme et al [30]. The pg-core (hyper-)parameters for p and ¢
were selected using the method described in Section 5.

We show the results of our analysis in Fig. 2. First, we observe in column two that the
sizes of the resulting concept lattices for the Wiki44k data set are comparably sized whereas
the TITANIC concept lattices of the Mushroom data set are larger in general compared to
pg-cores. To compare the applicability of the knowledge that results form TITANIC and
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Fig. 12 The concept lattice of the 5,5176-core of the Mushroom (left) and the TITANIC output with
minimum support value of 55% of the same context (right)

Table2 Comparing the canonical base of the TITANIC iceberg lattice Ct and pg-cores for the Wiki44k and
Mushroom data set Cc

Data Set |B| IC| Valid[ %] Conf[%] Sup[%] Confin[%]
Mushroom 238710 2323

6,4464-core 338 15 86.6 99.9+ 0 32.5+ 36.8 99.8
6,4852-core 63 3 33.3 99.94+ 0 98.3£1.2 99.8
5,5176-core 32 3 33.3 99.94+ 0 98.3£1.2 99.8
TITANIC m=0.1 4885 2237 24.7 247+ 43.1 9.9+7.5 0
TITANIC m=0.3 427 414 14.3 14.3£ 35.0 21.0£13.6 0
TITANIC m=0.55 30 134 6.7 6.7£ 25.0 21.3£22.1 0
Wikid4k 21923 7040

5,3432-core 100 14 50 87.3£24.4 59+11.1 25
5,3579-core 71 10 30 78.4+25.5 11.8£16.1 25
4,7115-core 38 6 0 65.6+ 25.5 17.6£18.1 25
TITANIC m=0.05 120 140 29.3 29.3+ 455 1.3+£2.8 0
TITANIC m=0.1 58 117 16.2 16.2+ 36.9 1.6+3.2 0
TITANIC m=0.3 12 98 0 0£0 2.8+5.0 0

Besides the size of their bases (column 3), we show for Ct and Cc how many implications semantically
follow from the original context Cx (column 4), the average confidence/support in K including the standard
deviation (column 5 and 6), as well as the lowest confidence of an implication in K (column 7)
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pg-cores, we analyze the quality of the implicational structures that arise from their respec-
tive concept lattices. To do this efficiently, we employ the canonical base representation of
said implicational structures. In the case of pg-cores we compute the canonical base of the
sub-context, for TITANIC this canonical base arises from closure system corresponding to
frequent intents.

We see in column three (Fig. 2) that TITANIC leads to larger canonical bases by at
least one magnitude in our experiments. We depicted in column four the proportion of
implications from the canonical base that can be inferred from the original data set, i.e.,
correct implications. Apparently, pg-cores lead to a lower number, yet more correct impli-
cations. The observations in column five, in which we depicted the average confidence
per implication with respect to the original data set, go in the same direction. This can
be seen in particular, when comparing the standard deviation values for the average confi-
dence. Finally, in column six, we find that the average support of the implications computed
through pg-cores is higher with respect to” TITANICs results.

Overall, while both techniques are used to reduce the size of the data set, they reflect
different parts of the original data. The pg-core provide an accurate view on a dense part
whereas TITANIC produces a coarsened overview over the complete data set. For the Mush-
room data set the computation of the largest investigated core including its set of concepts,
i.e. 6,4464-core, was nine times faster then the computation of the smallest TITANIC out-
put, i.e. for minimum support of 55%. However, neither our TITANIC implementation nor
pq-core implementation was optimized for speed. Hence, a thorough run-time comparison
is deemed future work.

7 Algorithms

For a novel data reduction approach it is essential to have efficient algorithms available.
In this section we present two computational problems concerned with pg-cores and their
algorithmic solution. We start with the fundamental problem of computing the pg-core
S for a given formal context K. Our solution to this problem is an adaption of an algo-
rithm by Matula and Beck 1983 [24] for computing k-cores of graphs. Given some graph
G = (V,E) with E C (‘2/) it uses bucket queues to repeatedly find and remove vertices
of small degree. The bucket queue Q is generated with Q [k] :={v € V | degs(v) = k}.
After that, the algorithm removes iteratively all vertices in buckets with index smaller than
k and reassigns the remaining vertices to buckets of corresponding degree. Our adaption to
pg-cores employs this algorithm. However, due to the bipartite nature of our data we pro-
vision two bucket queues, for objects and attributes, respectively. The computational cost
for initializing these bucket queues for a context (G, M, I) is O(|G| - |M]). The cost for
one removal iteration on both queues is bound by O(|H|p + |N|gq), where H, N are the
objects and attributes contradicting the pg-core property, i.e., H = {g € G|{g}/| < p} and
N ={m € M | {m}/| < g}. In particular the algorithm has to update at most p incidences
of each removed object and ¢ incidences of an removed attribute. The following iteration is
bound by the number of the remaining objects and attributes, i.e., O(|G\ H|p+|M \ N|q).
Thus, the total cost for removal process bound by O (|G |p +|M|q). A extreme case is to set
p = |M|, g = |G| which would result in a single iteration step of complexity O (|G| - |M]).

The total cost of the algorithm, as presented in Algorithm 1 is bound by O (|G| - |M|). A
worst-case context is one of interordinal scale as seen in Fig. 13.

@ Springer



Knowledge cores in large formal contexts 559

L Trr2[37475[6] [ TrT2374]5] [ TL1[2[3[4]5] L1
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Fig. 13 Example for a worst-case instance data set for Algorithm 1. Computing the 3,2-core (right) results

in a cascading sequence of removing either one object or attribute (left, middle) in each step

7.0.1 Navigating between pqg-core lattices

In Section 5 we characterized the interestingness of cores. This required knowledge about
the corresponding concept lattice sizes of pg-cores. However, every computation of such a
concept lattice is (possibly) costly and the number of these computations is large. For exam-
ple, we have seen that the Wiki44k data set has 97,773 non-empty pg-cores. To overcome
this issue (to some extent), we developed an algorithm based on the theory presented in
Fig. 2 (right).

Problem 1 (Core Lattice) Given K and the set of all its concepts B(K) compute for S <, 4
K the set of concepts B(S).

For solving this problem we present Algorithm 2, which is based on Propositions 3 and
6. This algorithm employs a so far not recollected notion in FCA, duality. We say that the
dual of a formal context S = (H, N, J) is sS4 = (N, H, J~Y). Furthermore, by abuse
of notation, we denote by B(S)? the set of concepts of the dual context. The algorithm
solves Problem 1 in the following manner. First, all attributes not in S are removed by the
method remove_attributes and inputs T = (U,V,L),0 = (U,N,L N (U x N))
(Line 7). This is realized by intersecting all intents B with N (Line 4, left) where B N (V \
N) # () (Line 2). We construct the new extent as follows: we compute all extents associated
to the same intent, i.e., intersection with N yields f ¢ N N and form the union of them (Line
4, right). We justify this using our considerations after Proposition 3.

Secondly, we remove all objects that are not contained in S from the extents of B and
apply the same remove_attributes method to the duals (see Line 8).

The overall time complexity of Algorithm 2 is O(|B(T)| + |B(T) \ B(S)| - |U*|V]),
where the first summand accounts for the dualization (Line 8) and the latter summand is

Algorithm 1 Compute p, g-core.

Input : Acontext K= (G,M,I)and p,q € N
Output: S, with S €, K
// initialize core context
1 init output (H, N, J) as (G, M, I)
// initialize bucket lists
init A, with A[i]={g e H | |g’| =i}
init B, with B[i] = {m € N | |m”’| = i}
while 3g € A[i < p] or 3m e B[i <gq]do
H=H\{g e Ali <pl}
N =N\ {m e B[i <k]}
J=JNHXN
update A and B

return : S= (H, N, J)

® AR W N
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Algorithm 2 Transform Core Concepts.

Input : T=(U,V,L)andS = (H, N, J)
with S <, ;, T and B(T) (as hashmap: intent —> extent)
Output: B(S)
1 def remove_attributes(Q;=(0, Py, F1), 0,=(0, P>, F»), *B):
// input: B =25(0;) and P2 P,
// init order < on attributes P; such that
// Ym e PI\P,,Yne P, :m <n
B =next_closure on O in lectic(<) starting with P,
for (A, B) € B do
B[BN P,] =B[BN P,J]UA // Not existing key on r.h.s. implies empty set
remove the concept (A, B) from B

s W N

L return : 3
6 O:=(U,N,LNUXN)

7 B = remove_attributes(T, O, B(T))
8 B(S) = remove_attributes(09¢, ¢, %d)d

the computational effort for remove_attributes (Line 1-5). If the size of B(T) \ B(S)
(see Corollary 1) is small, i.e., S and T differ in a small number of concepts, the com-
putation via Algorithm 2 is superior to next_closure on S, i.e., O(|B(S)| - |[H|*|N)).
This is an improvement compared to the output polynomial time complexity of the common
computation of B(S).

The computational effort for Algorithm 2 can be reduced even further, which we did not
address in the pseudocode, but want to reflect here. In cases where we only require to com-
pute the set of all concept intents of a pg-core, we can apply Proposition 6 in combination
with the cover relation of the concept lattice. This relation of (%B(K), <) is given by <C<
such that for all ¢,d € B(K) we have ¢ < d iff ¢ < d and there is no e € B(K) with
¢ < e < d. After removing all attributes that are not in the pg-core, (cf. Algorithm 2, Line 7)
we need to remove intents that are no longer closed after a removal of non-core objects.
This is equivalent to computing the p, O-core and can be done using the cover relation <
(see Proposition 6).

We have shown that this can be achieved by removing meet-irreducible intents with
cardinality < p. These can be identified easily using the cover relation among intents, i.e.,
the elements with exactly one upper neighbor, or using the cover relation of B(K), i.e.
elements with one lower neighbor due to duality. Note that after the removal of a meet-
irreducible element, its neighbor elements can become meet-irreducible and thereby may
be removed to. This saves the dualization step in Line 8 and a second enumeration using
next_closure in Line 2 of Algorithm 2.

In the following we illustrate a generalization of Problem 1 to arbitrary sub-contexts.

Problem 2 (Navigating contexts) Let S = (H, N, J) be a formal context and B(S) its
concepts. Compute the set of concepts B(T) of T = (U, V, L), with LNHxN = JNU X V.

With Algorithm 3 we present an approach for solving Problem 2, which is based
on Propositions 3 and 4. The algorithm starts by adapting the intents of S to the attribute
set of T in two steps. First, attributes not included in T are removed. For this we apply
the remove_attributes method of Algorithm 2. Second, to insert missing intents the
algorithm employs the insert_attributes method which enumerates the set of miss-
ing intents from 2B(T) \ B(S). For this, we use the contexts (H, NNV, _) and (H,V, )
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Algorithm 3 Transform Concepts.

Input : K= (G, M, I)
S = (H, N, J), induced sub-context of K
T = (U, V, L), induced sub-context of K
$B(S) (as hashmap: intent —>extent)
Output: B(T)
1 def insert_attributes(Q;=(0, Py, F1), 0,=(0, P>, F»), *B):
// input: B =25(0;) and P C P,
// init order < on attributes P, such that
// VYm e P,\P,Yne€ P :m <n

B =next_closure on O, in lectic(<) starting with Py

for (A, B) € B do
L if BN P, not closed in O, then

R W N

L remove the concept ((B N P9, BNP)) from B

L return : BUB
// Adjust the set of attributes
6 Oy =(H,NNV,), Op=(HV,)
7 By, =remove_attributes(S, Oq1, B(S))
8 By, =insert_attributes(Q41, Ou, Bai)
// Adjust the set of objects
9 Opy=(HNU,V,))
10 %Z], =remove,attributes(@;l2, @ZI, %Zz)
11 ‘Bg?:insert,attributes(@gl , T, %gl)
12 B(T) =By,

as inputs for insert_attributes. Since any intent of this set contains at least one ele-
ment of V \ N the algorithm starts with computing next_closure of N (see Line 9) in
a pre-chosen order < on V such that Vm € V\N,Vn € N : m < n. Finally in this step,
concepts in B(S) \ B(T) need to be removed (cf. Proposition 4, ii). Thus, we can perform
the removal (see Line 5) using a simple check (see Line 4). The result 2B8(H, V, _) is then
stored as indicated (see Line 8). The necessary adjustment of the set of objects is performed
in a similar fashion due to duality.

The overall run-time complexity of Algorithm 3 can be estimated analogously to Algo-
rithm 2 by O(|B(S)|+ B (T) |+ BT\ B(S)|- (JU|?>-|V])) (again enabled by Corollary 1).
The additional summand B(S) arises from the additional dualization in Line 11. This is
apparent since the first step is the same as in Algorithm 2 and the second step employs
one scan of T. This result enables a fast solution of Problem 2, in particular in the case
of pg-cores.

The advantage of the navigation algorithm over a new computation of 8 (T) for similar
contexts is especially clear when comparing its computational complexity to that of the
next-closure algorithm, i.e., O (|*B(T)| - |G1|? - |Mt)). In settings where S, T are similar,
their difference in concepts becomes smaller B(T) \ B(S) << B(T), resulting in a better
performance of our algorithm.

7.1 Run-Time Performance
We determine the practical applicability of pg-cores by measuring the run-time on a real-

world data set. In particular, we investigate the performance of our methods Algorithms 1,
2, and 3. For this, we implemented them in conexp-clj[16], a contemporary research
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tool for FCA. We start with the computation of pg-cores using Algorithm 1, by applying it
on the Wiki44k data set.

According to the two parameters of pg-cores, we split the evaluation into two parts.
First, we measure the impact on the performance when increasing p and secondly ¢g. We
start the computations with the 2,2-core. For the parameters p and g we used step widths
of 250 due to the number of objects in Wiki44k. This does also impact the number of pg-
cores. We depicted the run-time performance (in seconds) on the ordinate axis in the first
column in Fig. 14. We observe that the time per pg-core computation does not decrease
monotonously with increasing p or g. This may be attributed to the cascading nature of
the pg-core computation, as seen in Fig. 13, i.e., worst-case on the number of removal
iterations. In the second column of Fig. 14 we show the number of concepts with respect
to the pg-core parameters. We find the overall decrease in the number of concepts to be
different for p and ¢.

In the third column of Fig. 14 we compare the run-times of Algorithm 2 and
next_closure for computing all concepts of pg-cores. The task is to navigate the
set of pg-core lattices, i.e., starting from the 1,1-core lattice we compute for all p, 2-
cores (top) as well as 2, g-cores (bottom) the concept lattice, with p € {2,..., 16} and
q € {250, ...,19000} in steps of 250. The output of each pg-core concepts computation
is used as input for the next iteration. We observe that excluding very low and very high
values for p and ¢ the Algorithm 2 outperforms the next_closure algorithm by at
least one magnitude. Although, we may note that Algorithm 2 depends for the initial com-
putation on next_closure. Given this initialization, or any other initialization for a
p, g-core we can apply Algorithm 2 to efficiently derive the concept lattices of p, g-core
forp < p.q<q.

Compute Core in Seconds Number of Concepts Algorithm Time in Seconds

80
— 102
70 20000 \
60 10t
50 15000
40 10° i
10000
30 \
20 1071 \
5000 \
10 \ —— Transf
° o N 10-2 N_C
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
p,2-core p,2-core p,2-core
Compute Core in Seconds Number of Concepts Algorithm Time in Seconds
50 | 102
|
104 “ 10| |/
40 \ '
l 100 "\
\ Ny -
30 \ \
L 107t \ |
103 \ |
20 1072
\ -3
10 . 10
\Lx I Transf
102 ~ 10 N.C
V]
o 10000 20000 o 10000 20000 V] 10000 20000
2,q-core 2,q-core 2,q-core

Fig. 14 Time performance of the core computation and concept intent navigation for the Wikid4k data set
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7.2 Application for general context alterations

Next, we investigated the performance of the general navigation (Problem 2) among con-
cept lattices that do not necessarily arise from pg-core contexts. For this, we employ
Algorithm 3. The baseline for this algorithm is again the regular concept computation of
conexp-clj. We evaluate the algorithm on randomly generated contexts [4] in three
sizes, i.e., |G| x |M| equals 20 x 20, 50 x 50 and 100 x 100. In each of these size settings, we
computed five initial random contexts with an incidence density between 10 and 90 percent
in steps of 10 percent (cf. abscissa Fig. 15). We refer to these contexts as start contexts.

For each of the start contexts we then computed five random contexts by removing 5%,
10% and 20% of the start context’s objects as well as attributes and adding new samples for
them. We refer to the set as target contexts. We ensured that the number of incidence pairs
in any start context equals the number of incidence pairs in the related target context.

The parameters are encoded into the plot’s legends, e.g., s20p5N_C denotes a start-
ing context size of 20 x 20, a randomization rate of five percent and the use of the
next_closure algorithm. We observe that the performance impact is greater for larger
contexts. In particular we find for the largest contexts in our experiment that the perfor-
mance impact is about one magnitude in run-time. We suspect, since larger contexts tend to
have larger concept lattices it becomes more efficient to update differences with our algo-
rithm rather then recalculating the entire concept lattice. Yet, we may note that our report
does include only lower densities for the larger contexts, due to the increasing computa-
tional intractability of applying next _closure. However, since real-world data sets are
of particularly low density [18], we claim that our findings prevail in practical applications.

8 Related Work

As FCA is interested in representing knowledge through formal concepts and knowledge
bases, it is computationally demanding. Hence, it is crucial to develop methods that can
compute meaningful reductions of data sets or enable a computationally feasible navigation
in them. A popular and simple technique to achieve this is random sampling from contexts.
This approach, however, does not allow for a meaningful control of the result. Moreover, the
computed concept lattices do mostly elude from interpretation or even explanation. Also,
another disadvantage of randomly sampling objects (attributes) from K, is that rare attribute
(object) combinations of otherwise frequent attributes are unlikely to be drawn. Yet, these

Performance (|k| =20x20) Performance (|k| = 50x50) Performance (|k| =100x100)
10°
103
3 $10* 8100
£ ; 3 -
8102 § - $50p5N_C g | $100p5N_C
E —— s20p5Transf é 103 s50p5Transf é —— s100p5Transf
= s20p10N_C = s50p10N_C = 3 ) s100p10N_C
s20p10Transf s50p10Transf 10 // s100pl0Transf
! 2T s20p20N_C s50p20N_C e s100p20N_C
s20p20Transf s50p20Transf 5100p20Transf
0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4 0.5 0.1 0.2
Context Density Context Density Context Density

Fig. 15 Time performance of the conceptual navigation algorithm compared to regular concept computation
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may represent essential counter-examples for learning a sound propositional Horn logic of
the domain.

There are a multitude of methods to filter pre-computed concept lattices by importance
measures, e.g., the stability index [22], and robustness of concepts [26, 31]. In empirical
studies these reduction procedures performed well, however, in contrast to pg-cores, they
require the computation of all formal concepts beforehand.

Other approaches compress formal contexts with popular machine learning procedures
such as latent semantic analysis or unsupervised clustering algorithms on the object set/
attribute set [3, 5]. However, we find the resulting concept lattices do lack on meaningful-
ness. Since all mentioned approaches introduce new attributes, e.g., as linear combinations
of the original attributes, they often loose their human explainability. Contrary there are
also procedures to automatically/manually select attributes and objects of relevance to the
user [2, 17]. However, these approaches may require a fair amount of domain knowledge,
which is not always available. Furthermore, such processes are very often time-consuming
for large data sets, e.g., with hundreds of attributes, when done manually. A major shortfall
of these techniques is that they do not provide proper estimations for their impact on the
concept lattice of the original data set.

Another course of action to cope with large formal contexts are techniques such as
TITANIC [29]. They address the computational and knowledge size issue by omitting rare
attribute combinations, i.e., less supported ones. We consider this a problem as discussed in
the first paragraph. Nonetheless, an advantage of TITANIC is that the resulting iceberg “lat-
tice” is reasonably sized and does not introduce any error with respect to the original concept
lattice. Nonetheless, the implicational knowledge derivable from the iceberg concept lattice
is not well supported and lacks confidence, cf. Fig. 2.

A well-established method for data set reduction originates from the research field of
network analysis, called cores [1, 8, 14, 19, 20, 25]. The original idea for this goes back
to k-cores by Seidman [27]. In there, a network is reduced to a densely connected part. A
variation of this notion for bipartite networks are pg-cores [1]. A further application for
cores is in the realm of pattern structures as done in [28]. Our presented work on pg-cores
is based on the research results mentioned in this paragraph and extends them to knowledge
cores in formal contexts. Notions, like the impact of pg-cores on concept lattices and the
canonical bases are so far not investigated, to the best of our knowledge.

9 Conclusion

In this work we presented an approach to define and investigate the knowledge core of a for-
mal context. For this we employed a notion from two-mode networks, called pg-cores. We
transferred the idea from graph theory to formal concept analysis and introduced the notion
of pg-core formal contexts. Based on that, we show how one can identify the essential dif-
ferences between pg-core lattices and their originating concept lattices. In particular we
investigated conceptual differences for arbitrary sub-contexts and demonstrated their appli-
cation to cores. Secondly, we derived several approaches to analyze data using pg-cores.
Crucial for this was the formal characterization of inferestingness among the set of core
lattices.

To demonstrate the applicability of pg-cores to real data we analyzed seven different
data sets from a qualitative and quantitative point of view. We were able to show that our
method is capable to compute two meaningful core lattices for the Spices data set that are
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also human comprehensible in size. For the Wiki44k data set, we illustrated how to pinpoint
wrongly used properties as well as missing information using pg-cores.

Furthermore, our theoretical findings allowed us to derive three algorithms for comput-
ing and transforming core structures from a formal context. As for implicational knowledge
bases, we were able to show how to estimate the confidence and support of core implica-
tions within the original concept lattice. In particular, we presented core transformations
that can be computed in time linear with respect to the size of the original concept lat-
tice. An exceptionally interesting result is therewith achieved ability to navigate efficiently
between arbitrary core lattices of a data set without recalculating shared concepts. The more
two contexts have in common, with respect to their closure systems, the faster a transforma-
tion will perform. We have verified this theoretical result by means of a practical runtime
analysis. All algorithms presented in this work are implemented and provided via the FCA
software conexp-c13j[16], a free and open-source research tool written in Clojure.

For future work we identify different meaningful lines of research. First of all a large
experimental study on real-world data sets is required. In such a study domain experts from
different fields should evaluate the meaningfulness of core knowledge to their respective
research domain. Second, we envision a combination of pg-cores with other data reduction
approaches. In our experiments we showed that core implications are, in general, more
supported and have a higher confidence than implications derived from iceberg concept
lattices. Yet, we are confident that both techniques might be coupled for applications on
very large data sets. In such a setup one could compute an initial interesting core with our
method and employ in a second step TITANIC to compute a highly supported fraction. In
a third research thread we propose a more thorough investigation of the set of all pg-cores.
Although we could show that this set does not constitute a lattice structure, one may draw
meaningful knowledge from investigating the shown order relation with tools from directed
graph analysis. Finally, we anticipate an application of pg-cores in temporal knowledge
settings. Due to the shown efficient adaptability to small changes in objects or attributes
pg-cores are an ideal candidate to maintain the dynamic conceptual knowledge of a domain.
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