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Multiscale modeling of ferroelectrics
with stochastic grain size distribution

Stephan Lange and Andreas Ricoeur

Abstract
Macroscopic properties of ferroelectrics are controlled by processes on the microscale, in particular the switching of
crystal unit cells and the movement of domain walls, respectively. Besides these microscopic levels, the grains of a poly-
crystalline material constitute the mesoscopic scale. Interactions of grains with statistically distributed orientations, as a
consequence of mechanical and electrostatic mismatch, give rise to for example, residual stress which in turn affects
domain switching. A multiscale modeling thus has to incorporate at least three interacting scales. In this context, the
condensed method has recently been elaborated as an efficient tool with low computational cost and effort of imple-
mentation. It is extended toward statistical distributions of grain sizes in a representative material volume element and
amended with regard to the modeling of domain evolution. Each of the few parameters of the constitutive approach has
a unique physical meaning and is adapted to available experimental values of macroscopic quantities of barium titanate
taken from various sources.
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1. Introduction

The class of so-called smart materials nowadays ranges
from magnetostrictives and shape memory alloys to
electro- or magnetoactive polymers and ferroelectrics.
The latter belonging to the wider class of piezoelectrics
and being characterized by the capability of switching
spontaneous polarization, still play a crucial role herein,
combining large stiffness and actuation power with dis-
tinguished responsivity. The nonlinear constitutive
behavior of ferroelectrics, often illustrated by so-called
butterfly hysteresis loops or those of electric displace-
ment versus electric field, has extensively been investi-
gated in the past both theoretically (Chen and Lynch,
1998; Cocks and McMeeking, 1999; Huber and Fleck,
2001; Huber et al., 1999; Hwang and McMeeking,
1998; Hwang et al., 1995, 1998; Kessler and Balke,
2001) and experimentally (Förderreuther, 2003;
Franzbach et al., 2014; Huan et al., 2014; Mauck and
Lynch, 2003; Wang and Li, 2020) to name only a few of
the outstanding works. To validate constitutive models
or identify model parameters, the maximum of strain
and polarization versus electric field and the respective
remanent values are essentially taken as a basis.

Appropriate constitutive models of ferroelectrics
have to account for processes on different scales. In
particular microphysically motivated models, which

largely abstain from phenomenological parameters
recorded on an engineering scale, have to account for
the switching of crystal unit cells and the resulting
movement of domain walls. Since only the latter can be
observed under an optical microscope, however, both
processes are assigned to different scales, that is, micro-
and mesoscale. Another feature of the mesoscale in a
polycrystalline material is its grain structure. Exhibiting
statistically distributed orientations of crystalline axes
and exposed to electromechanical loading, a mismatch
of strain and polarization is observed at the grain
boundaries. The resulting interaction gives rise to i. a.
residual stress which, in turn, has an impact on domain
switching. On the macroscopic scale, a representative
volume element (RVE), containing a sufficiently large
number of grains, yields the quantities being of interest
for engineering analyses.

The first contributions to homogenization tech-
niques probably trace back to the works of Voigt
(1889) and Reuss (1929). More advanced analytical
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homogenization methods are, for example, the Mori–
Tanaka method (Mori and Tanaka, 1973), the differen-
tial scheme (Norris, 1985), the self-consistent method
(Hill, 1965; Kröner, 1958) or Hashin–Shtrikman type
formulations (Hashin and Shtrikman, 1962a, 1962b).
However, these analytical approaches have their focus
on the calculation of effective moduli of nonhomoge-
neous materials, rather than providing a coupled multi-
scale analysis. Numerical homogenization approaches
are, for example, the FE2-method, introduced by Smit
et al. (1998) and extended toward multiphysical mate-
rial behavior, for example, by Schröder and Keip
(2012), Labusch et al. (2014, 2019) or Uetsuji et al.
(2008, 2012, 2019), or FE–FFT based methods
(Kochmann et al., 2016; Moulinec and Suquet, 1998).
Semi-analytical methods have recently been applied to
multiscale problems, for example, by Wulfinghoff et al.
(2018) or Jaworek et al. (2020), where an analytical
homogenization procedure for the microscopic bound-
ary value problem and thus for each Gauss point is
considered within a FE framework.

Figure 1 illustrates multiscale modeling features of fer-
roic functional materials, where the macroscopic mixed
boundary value problem is depicted on the left hand side,
whereas the blue box on the right comprises aspects of
different scales. An RVE represents a macroscopic mate-
rial point and can involve grains of different composi-
tions and for example, microcracks. Ferroelectric grains
exhibit mesostructures with for example, 908 and 1808

domain walls in a tetragonal phase. Unit cells, in turn,
constitute the domains, whereat different types may basi-
cally coexist in one grain, for example, for morphotropic
compositions of PZT ceramics.

In the recent past, all these aspects have been
included in modeling approaches of ferroelectric, ferro-
magnetic, and multiferroic materials, based on the

so-called condensed method (CM) (Behlen et al., 2021;
Lange and Ricoeur, 2015, 2016; Ricoeur and Lange,
2019; Uckermann et al., 2018; Warkentin and Ricoeur,
2020). This semi-analytical approach comprises homo-
genization within a multiphysical framework and
scale–bridging interactions in a simple but robust and
thermodynamically and electromechanically consistent
manner. Its implementation is straightforward and
results of RVEs are obtained with comparatively low
computational cost. In comparison to most of the
above mentioned multiscale approaches, the CM is able
to calculate macroscopic as well as microscopic quanti-
ties without any kind of discretization scheme.

This work pursues two objectives. The model of tetra-
gonal ferroelectrics developed in the context of the CM
is extended at two points. Rhombohedral and ferromag-
netic systems, as indicated in Figure 1, are not consid-
ered here, however, could straightforwardly be included
in the extensions. In the averaging approach grains have
hitherto been considered as equally sized, which is now
replaced by an assumption of Gaussian distribution.
The stochastic nature of the problem is thus incorpo-
rated twofold now, that is, in terms of grain orientation
and relative size. The absolute sizes distinguishing fine
and coarse grained behaviors in terms of different hier-
archical domain levels, effects on lattice parameters
(Huan et al., 2014; Li and Wang, 2017) or influences on
material properties, see for example, Tan et al. (2015),
are disregarded at this point. Another extension of the
model introduces a lower limit for magnitudes of inter-
nal variables representing volume fractions of domains
in a grain. Physically, it ensures that moving domain
walls are not allowed to vanish due to external loading.
Introducing an additional parameter on the one hand
side, it replaces two tuning parameters on the other,
which have hitherto been included in the constitutive
equations to reduce switching strain and polarization.

The second objective of the work is to adapt essential
parameters of the model to experimental findings of bar-
ium titanate (BT) as an exemplary material and to
demonstrate the quantitative appropriateness of the
modeling approach. In this context, experiments turn
out to yield a considerable range of relevant quantities
which is recorded compiling available hystereses of
strain and electric displacement versus electric field.
Predicted remanent and maximum values of strain and
electric displacement are compared to the respective
experimental ranges. The studies target accuracy just as
computational costs, partly constituting competing fac-
tors. Residual stress is finally investigated due to its rele-
vance for strength and reliability of the brittle ceramics.

2. Constitutive framework of a
ferroelectric grain

The thermodynamic potential of the considered non-
linear ferroelectric material behavior reads, see for

Figure 1. Multiscale aspects of ferroic functional materials with
ferroelectric (FE) or ferromagnetic (FM) grains and domain
patterns on the mesoscale, tetragonal, and rhombohedral unit
cells on the microscale and a dielectric hysteresis loop
representing local macroscopic constitutive behavior of a
boundary value problem. Micrographs of the domain structures
are taken from Arlt (1990b), Egelkamp and Reimer (1990), and
Scholehwar (2010).
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example, Wingen and Ricoeur (2019) or Ricoeur and
Lange (2019):
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In equation (1) Cijkl, elij, and kil describe the elastic,
piezoelectric and dielectric properties and eirrkl and Pirr

i

denote irreversible contributions due to domain wall
motion. The independent variables within the constitu-
tive framework are ekl and El. The partial derivatives of
equation (1), with respect to the independent variables,
lead to the constitutive equations, see for example,
Lange and Ricoeur (2015),

∂Cem
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where sij and Di denote the associated variables
mechanical stress and electric displacement. In equa-
tions (2) and (3) the material properties of a grain have
been assumed constant in incremental changes of state
and are determined as weighted averages, see for exam-
ple, Avakian and Ricoeur (2016) or Huber et al. (1999),

Cijkl =
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n= 1

C
(n)
ijkln

(n), eikl =
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n= 1

e
(n)
ikl n(n),

kij =
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n= 1

k
(n)
ij n(n),

ð4Þ

where domains with homogeneous material properties
are assumed and p is associated with the number of
domain variants per grain. In equation (4) C

(n)
ijkl, e

(n)
ikl , k

(n)
ij

represent the elastic, piezoelectric, and dielectric

coefficients of the domain n. Ferroelectric materials
with tetragonal unit cells exhibit a domain structure
with 908 and 1808 domain walls, which is depicted in
Figure 2. On the right hand side the motivations for the
micromechanical model and the internal variables n(n)

are given. The 3D domain structure of a grain is repre-
sented by a microscopic material point (MiMP) with six
possible polarization directions, that is, p= 6. Each
direction is weighted by n(n), where n= 1, . . . , p.
Following the work of Huber et al. (1999), the internal
variables are interpreted as volume fractions of the
domain species and have to satisfy the following
conditions:

0 ł n(n) ł 1,
Xp

n= 1

n(n) = 1: ð5Þ

The evolution of the irreversible contributions is
obtained as follows (Ricoeur and Lange, 2019):

deirrkl =�
Xp

n= 1

esp(n)kl dn(n)H �dn(n)
� �

,

dPirr
i =�

Xp

n= 1

DP
sp(n)
i dn(n)H �dnnð Þ:

ð6Þ

The spontaneous strain esp(n)kl is induced by 908 switch-
ing domains, whereas the change of spontaneous polar-
ization DP

sp(n)
i depends on the kind of switching, see

Appendix. The HEAVISIDE-functions H �dn(n)
� �

take
the value 1 for domain species n which are switching,
thus reducing the associated internal variables, and 0
for those being enriched by the switching. In equation
(6) dn(n) describes the change of the volume fraction
n(n), see Figure 2, for a switching process from domain
variant n to domain species ~k, where the latter is associ-
ated with the maximum energy dissipation

w
diss,max
~k

= max wdiss
(n!k) jwdiss

(n!k) ø wcrit
(n!k)

n o
, ð7Þ

Figure 2. Left: three-dimensional domain structure of a ferroelectric grain with tetragonal unit cells (in the style of Arlt, 1990a);
right: motivation of the micromechanical model with six prevailing directions of spontaneous polarization P

sp(n)
i .
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which satisfies the necessary condition of exceeding a
threshold wcrit

(n!k).
The dissipative work wdiss

(n!k) of a switching process
from domain species n to k is equal to the negative ther-
modynamic driving force qem

(n!k) and is thus obtained
from the potential equation (1) by differentiation with
respect to the internal variable (Wingen and Ricoeur,
2019):

wdiss
(n!k) =� qem

(n!k) =
∂Cem

∂n(n)

= sije
sp
ij(n!k) +EiDP

sp
i(n!k)

� �
H dn(n)
� �

:

ð8Þ

It should be mentioned, that equation (8) neglects the
dependence of the material coefficients on the internal
variables. An extension for the dissipative work was
suggested by Kessler and Balke (2001) taking into
account higher order effects. The dissipative work, out-
lined in equation (8), was originally introduced in the
switching criterion by Hwang et al. (1995). A more
detailed derivation of wdiss

(n!k) is found in Ricoeur and
Lange (2019). The evolution law for the internal vari-
ables n(n) is formulated as follows:
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 !
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ð9Þ

where dn0 is a model parameter and the HEAVISIDE-
functions as usual take the value 1 for a positive argu-
ment including 0, and 0 for a negative value. The first
HEAVISIDE-function in equation (9) verifies, if
switching from domain n to k is feasible, whereas the
second ensures that the one switching process from
domain n to domain ~k associated with the maximum
energy dissipation takes place. The energy threshold
wcrit
(n!k) depends on the type of switching. For ferroelec-

tric materials with tetragonal unit cells, motions of 908

and 1808 domain walls are possible. Hence, the energy
threshold reads, see for example, Hwang et al. (1995)
and Huber et al. (1999):

wcrit
(n!k) =

ffiffiffi
2
p

P0EC, 6908

2P0EC, 1808

�
, ð10Þ

where P0 and EC denote the spontaneous polarization
and the coercive field, respectively, see Table A2.

The range of the internal variables outlined in equa-
tion (5) implies, that domains can vanish in favor of
other domains. From a physical point of view, this
behavior is inappropriate since domain walls are indis-
pensable for the reduction of potential energy in a
grain. Allowing for unconstrained switching within in
the limits of equation (5) gives rise to an overestimation
of the irreversible contributions eirrkl and Pirr

i . In
Gellmann and Ricoeur (2016) or Lange and Ricoeur

(2015) two additional parameters have been introduced
in the constitutive equations to face this deficiency and
eventually meet experimental results. Within FE-frame-
works it was further required for numerical stability. A
more physically motivated approach is the implementa-
tion of a lower limit nmin for the volume fractions, thus
adapting the range of the internal variables according
to

nmin\n(n)\1: ð11Þ

Since nmin.0 it is guaranteed that domains of a MiMP
and grain, respectively, cannot vanish. This improved
approach introduces just one additional parameter
which helps adapting numerical to experimental results.
The second model parameter dn0 of equation (9) just
has to be chosen sufficiently small to attain
convergence.

3. Micro–macro–transition with variable
grain size

On the macroscopic scale, represented by an RVE,
quantities, for example, mechanical stress sij and elec-
tric displacement Di, are microscopic volume averages,
see for example, Hori and Nemat-Nasser (1998) or
Kessler and Balke (2001):

sij

	 

=

1

VRVE

ð
VRVE

sij xlð ÞdV ,

Dih i=
1

VRVE

ð
VRVE

Di xlð ÞdV :

ð12Þ

In equation (12) and in the following, macroscopic
quantities, obtained by homogenization, are specified
by angled brackets. Assuming, homogeneous fields in a
MiMP m with the volume V (m), that is,
s
(m)
ij ,D(m)

i =const in V (m), the volume averages are
given as

sij

	 

=

1

VRVE

XM
m= 1

s
(m)
ij V (m), Dih i=

1

VRVE

XM
m= 1

D
(m)
i V (m),

ð13Þ

where M denotes the number of grains in the RVE. In
contrast to Lange and Ricoeur (2015) and Ricoeur and
Lange (2019), where VRVE=MV (m) has been consid-
ered, MiMPs and thus grains of the RVE do not hold
equal sizes now. Macroscopic quantities, outlined in
equations (12) and (13), finally read

sij

	 

=
XM

m= 1

s
(m)
ij x(m), Dih i=

XM
m= 1

D
(m)
i x(m), ð14Þ

where x(m) =V (m)=VRVE describes the volume fraction
of the MiMP m. Similar to the volume fraction of a
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domain n(n), all x(m) have to satisfy the following
conditions:

0\x(m)\1,
XM

m= 1

x(m) = 1: ð15Þ

Inserting equations (2) and (3) into equation (14),
macroscopic stress and electric displacement are
obtained as follows:

sij

	 

=
XM

m= 1

C
(m)
ijkl e(m)

kl � eirr(m)
kl

� �
� e

(m)
lij E

(m)
l

� �
x(m), ð16Þ
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+ k
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� �
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ð17Þ

It should be kept in mind that the constitutive equa-
tions of the previous section are interpreted as constitu-
tive equations of a grain m. The material properties
C

(m)
ijkl , e

(m)
ikl , and k

(m)
il as well as the irreversible contribu-

tions eirr(m)
kl and P

irr(m)
i depend on the internal variables

n(n), see equations (4) and (6). A generalized Voigt-
approximation, that is

eklh i=
PM
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PM
m= 1
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Elh i=
PM

m= 1

E
(m)
l x(m) =El

PM
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is applied for the sake of a scale transition. The macro-
scopic constitutive equations (16) and (17) finally read:

sij

	 

= Cijkl

	 

ekl � elij

	 

El � Cijkle

irr
kl

	 

, ð19Þ

Dih i= eiklh iekl + kilh iEl + Pirr
i

	 

: ð20Þ

The macroscopic material properties Cijkl

	 

, eiklh i, kilh i

and the inelastic contributions Cijkleirrkl

	 

and Pirr

i

	 

depend on the volume fractions x(m):
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Equations (19) and (20) contain known and unknown
quantities of an RVE, depending on the given problem.
In particular, these are the macroscopic mechanical
stress sij

	 

, electric displacement Dih i, strain ekl, and

electric field El. Prescribing stress and electric field as
external loads, that is

sij

	 

=sext

ij = sext
11 sext

22 sext
33 sext

23 sext
31 sext

12

� �T
,

Ei =Eext
i = Eext
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2 Eext

3

� �T
,

ð22Þ

the macroscopic strain results from equation (19):

ekl = Cijkl

	 
�1
sext

ij + Cijkle
irr
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+ elij

	 

Eext

l

� �
: ð23Þ

Inserting equation (23) in equation (20), the macro-
scopic electric displacement reads

Dih i= eiklh i Cmnklh i�1
sext

mn + eiklh i Cmnklh i�1
Cmnope

irr
op

D E
+

+ eiop

	 

Cmnop
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ð24Þ

Residual stresses s
(m)
ij and electric displacement D

(m)
i of

a grain m are obtained inserting equation (23) in equa-
tions (2) and (3):

s
(m)
ij =C

(m)
ijkl Cklmnh i�1
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mn +C

(m)
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D
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i = e

(m)
ikl Cklmnh i�1
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kl +P
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An inhomogeneous distribution of local stress and elec-
tric displacement, as typically observed in polycrystal-
line materials as a result of grain interactions, is thus
represented in the model. Interactions of domains
within a grain, however, are neglected at this point.
The influence of grain size distributions on macro-
scopic and microscopic quantities will be investigated
based on the following statistical considerations.

4. Gaussian distribution of grain sizes

The left hand side of Figure 3 exhibits a micrograph of
a BT grain. On the right hand side a truncated octahe-
dron, as a model of a three-dimensional grain, is illu-
strated. The volume of a truncated octahedron is given
by (Mendelson, 1969; Weisstein, 2003)

V = 8
ffiffiffi
2
p

a3, ð27Þ

where a represents the edge length according to Figure
3. The grain size j being interpreted as the diameter 2R

of the circumsphere, the following relation is obtained:

j= 2R= a
ffiffiffiffiffi
10
p

ˆ a=
jffiffiffiffiffi
10
p : ð28Þ
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It should be mentioned at this point that the volumes
of the truncated octahedron and the circumsphere are
not identical. The main characteristic of the circum-
sphere is that all vertices of the truncated octahedron
are located on its surface. Inserting equation (28) into
equation (27), the volume V (m) is finally given as a func-
tion of the grain size j(m):

V (m) =
4

5
ffiffiffi
5
p j(m)
� �3

: ð29Þ

The volume fraction of a grain m is thus obtained as

x(m) =
4

5
ffiffiffi
5
p j(m)
� �3

VRVE
=

j(m)
� �3

PM
m= 1

j(m)
� �3

: ð30Þ

In the model, the grain sizes are assumed normally dis-
tributed. In Figure 4(a) and (b) the probability density
function

u j(m)
� �

=
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
j

q exp �
j(m) � j
� �2

2s2
j

 !
ð31Þ

and the volume fraction x(m) according to equation
(30), respectively, are plotted versus the grain size j(m)

for an RVE with M = 40 grains. As an example, an
average grain size j= 5:9mm and a standard deviation
sj = 2:95mm are chosen. Figure 4(a) reveals the well
known Gaussian distribution, where around 68% of
the grain sizes are located in a range of 6sj with
respect to the averaged size j. In case of constant grain
sizes, that is j(m) = j, equation (30) yields

x(m) =
j

3

PM
m= 1

j
3
=

j
3

Mj
3
=

1

M
= x: ð32Þ

From equations (30) and (32) it is obvious that the vol-
ume fraction x(m) does not depend on the volume of the
RVE for a given number of grains M , which uniquely
determines the volume fractions in the case of uniform
grains. For an RVE with 40 grains x = 2:5% is
obtained, which is indicated in Figure 4(b). Since the
grain size is Gaussian distributed, around 68% of the
volume fractions are in a range of 10�1%\x(m)\3%,
whereas for the whole RVE the range is
10�3%\x(m)\20%. The MiMP with a grain size
j’16:5mm and a corresponding volume fraction
x’17% can be mentioned as one example.

5. Parametric studies of ferroelectric
RVEs
As an example for a ferroelectric material, BT is
employed. The set of material parameters is found in
the Appendix. For the numerical simulations a pure
electric loading into the e2–direction, that is

sext
ij = 0 0 0 0 0 0½ �T, Eext

i = 0 Eext
2 0

� �T
,

ð33Þ

is considered. The applied electric load is realized by a
trilinear function, where Emax

2 =62 � 106Vm�1, see

Figure 3. Micrograph of a BT grain taken from Arlt (1990b)
and truncated octahedron as model of a three-dimensional grain
(in the style of Pearce, 1978).

Figure 4. (a) Probability density function u(j(m)) and (b) volume fraction x(m) versus grain size j(m) of an RVE with M= 40 grains,
an average size j = 5:9mm and a standard deviation sj = 2:95mm.
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Figure 5. The constitutive framework has been imple-
mented in a MATLAB code and calculations haven
been performed on a MacBook Pro (2018) with a
2.7 GHz Quad-Core Intel i7 and 16 GB memory.
Goals of this section are primarily to investigate the
influences of different microscopic parameters on
macroscopic quantities and a comparison with the
available range of experimental findings.

Before keeping the focus on characteristic magni-
tudes such as remanent or maximum values for quanti-
tative investigations, Figure 6 shows hysteresis loops of
strain and electric displacement taken from the first
two load cycles. M = 40 grains are employed in the
RVE with the same arbitrary initial domain orienta-
tions as a basis for all three calculations. Whereas the
butterfly loop, Figure 6(a), exhibits a distinct influence
of statistical grain size distribution, represented by rela-
tive standard deviations of 30% and 40%, the electric
displacement, Figure 6(b), is scarcely affected by non-
uniform grain sizes. This effect can be explained by the
dominant 1808 domain wall motion, which is, with
regard to equation (8), purely electrically driven and
occurs instantaneously at 6EC. Due to the generalized

VOIGT–approximation, s. equation (18), the electric
field Ei is assumed homogeneous in the RVE and is
prescribed, that is, Ei =Eext

i . Therefore, 1808 domain
wall motion is independent of the relative standard
deviation.

5.1. Magnitudes of grains and lower limits of domain
volume fractions

In this subsection the influence of the number of grains
(MiMPs) M and the lower limit of the volume fractions
nmin on remanent strain and polarization as well as
maximum strain and computing time are investigated
assuming uniform grain size. For this purpose, RVEs
with 20, 30, 40, 50, 75, 100, and 200 grains are consid-
ered. Ten calculations with arbitrary initial domain
orientations were performed in each case, requiring 70
numerical calculations in total. It has to be kept in mind
that since absolute grain sizes are not relevant in the
model, the parameter M does not allow conclusions to
be drawn about the size of the RVE. The ‘‘representa-
tive’’ aspect of the RVE is rather given by the number
of arbitrary grain orientations increasing with the para-
meter M .

In Figure 7 error bars of the macroscopic remanent
strain er22, maximum strain emax

22 , remanent polarization
Pr

2

	 

, and the computing time tsim are plotted versus

the number of grains M . At this point nmin = 0 has
been chosen for all calculations. Error bars depict the
minimum, maximum, and mean values for each quan-
tity. The red filled areas in Figure 7(a) to (c) represent
the range of experimental data, taken from Enderlein
(2007), Förderreuther (2003), and Wang and Li (2020).
Having a look at the results of the remanent strain in
Figure 7(a) the simulations are in a good accordance
with experimental results independent of the number of
MiMPs. Here, the mean values as well as the minima

Figure 5. One cycle of a pure electric loading.

Figure 6. (a) Butterfly and (b) dielectric hystereses of first two electric load cycles according to Figure 5 for uniform and Gaussian
distributed grain size.
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and maxima are within the area of experimental find-
ings. For the maximum strain, see Figure 7(b), the
mean values of the numerical simulations are located at
the lower limit of experimental results. For 50, 100,
and 200 MiMPs, the mean values are even slightly
below the experimental range. Concerning the var-
iances, two issues should be highlighted: an increasing
number of MiMPs is basically attended by a decrease
of the variance and the scattering of the maximum
strain is larger than of the remanent strain. Both effects
can be explained by the arbitrary orientations of
MiMPs. The influence of a specific orientation in an
RVE with 20 or 30 MiMPs is much larger than in an
RVE with 100 or 200 MiMPs, since the strain ekl is an
average quantity, see equation (23).

The number of MiMPs does not have a significant
influence on the remanent polarization, Figure 7(c). In
comparison to experimental results, however, the latter
is larger, exceeding the upper value of the experimental
range by about 25%. Since nmin = 0 and interactions
between domains of a grain are not considered at this
point, domains vanish in favor of others, finally overes-
timating predominantly the polarization. Figure 7(d)
presents the effect of the number of MiMPs on the
computing time tsim. The semilogarithmic scale indi-
cates the nonlinear relation between M and tsim. The
simulation of one load cycle based on an RVE with 20

MiMPs takes about 3.5 s, whereas a simulation with
200 MiMPs takes about 1 min.

In Figures 8 and 9 the effect of a lower limit of
domain volume fractions nmin is investigated. For each
simulation discussed in Figure 7, five more with
nmin = 2%, 4%, 6%, 8%, and 10% are considered.
Requiring a total of 420 simulations, only the mean
values are presented. Figure 8(a) shows the remanent
strain er22, whereas Figure 8(b) exhibits the maximum
strain emax

22 versus the number of MiMPs and nmin.
Values within the red colored areas match the range of
experimental data outlined above. The impact of nmin

on the remanent strain er22 is negligible, see Figure 8(a).
A significant influence of nmin, however, is observed at
the maximum strain emax

22 , see Figure 8(b). An increas-
ing nmin reducing the amount of domain wall motion, a
decrease of the maximum strain is one consequence. A
nmin � 0 thus underestimates the maximum strain and
should be excluded.

Figure 9(a) and (b) illustrates the remanent polariza-
tion Pr

2

	 

and the computing time tsim, respectively, ver-

sus the number of MiMPs and nmin. As expected an
increasing nmin leads to a decreasing remanent polariza-
tion and for nmin.2% it is in a good accordance with
the experimental data. Compared to the remanent
strain of Figure 8(a), nmin has a significant influence on
the remanent polarization. This effect is caused by 1808

Figure 7. (a) Macroscopic remanent strain er
22, (b) maximum strain emax

22 , (c) remanent polarization, Pr
2

	 

and (d) computing time

tsim versus number of grains M. Red areas indicate the ranges of experimental data (Enderlein, 2007; Förderreuther, 2003; Wang and
Li, 2020).
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switching processes, having no impact on the irreversi-
ble strain. Reducing the magnitude of domain switch-
ing, an increasing nmin leads to a decreasing computing
time, see Figure 9(b). For M = 40 and nmin = 4%, for
example, a time saving of 30% is achieved. On the basis
of the above investigations, the parameters M and nmin

can now be chosen reasonably with regard to experi-
mental results and computational costs. In this context,
M = 40 and nmin = 4% seem to be a good choice for
all following investigations, whereupon er22 and Pr

2

	 

are in a very good accordance with experimental data,
while the mean value of emax

22 = 6:8073 � 10�4 is just
slightly below the experimental range. The correspond-
ing average computing time is approximately 7 s per
load cycle.

5.2. Stochastic distribution of grain size

In this subsection, the influence of normally distributed
grain sizes on the remanent strain and polarization as
well as maximum strain and computing time are inves-
tigated. Based on the study outlined in the previous

subsection, an RVE with M = 40 MiMPs and
nmin = 4% will be considered in the following.
Concerning a reasonable range for the standard devia-
tion of ceramic grain structures, relative values ranging
from 4.25%, see Chinn (1994), to 35%, see Manosso
et al. (2010), are found in the literature, where the stan-
dard deviation is normalized with respect to the aver-
age grain size. For the numerical simulations an
average grain size of j = 5:9mm is considered, repre-
senting a reasonable value for fine-grained BT. Based
on the literature, standard deviations between
sj = 0:295mm and sj = 2:36mm should be an appro-
priate range. However, for the sake of a convergence
study, standard deviations from 5:9 � 10�4 mm to
2:95mm are considered, the former representing the
limiting case of a uniform grain size. Again, ten differ-
ent RVE s are taken into account for each value of sj,
whereat the same sets of domain orientations as used in
the previous subsection were chosen.

In Figure 10er22, e
max
22 , Pr

2

	 

and tsim are plotted versus

the normalized standard deviation ranging from 0.01%
to 50%. According to Figure 10(a) and (b), only

Figure 8. Mean values of (a) macroscopic remanent strain er
22

and (b) maximum strain emax
22 taken from 10 simulations versus

number of grains M and the lower limit of the domain volume
fractions nmin. Red areas match the scope of experimental data
(Enderlein, 2007; Förderreuther, 2003; Wang and Li, 2020).

Figure 9. Mean values of (a) macroscopic remanent
polarization Pr

2

	 

and (b) computing time tsim taken from 10

simulations versus number of grains M and the lower limit of the
domain volume fractions nmin. Red area in (a) matches the scope
of experimental data (Enderlein, 2007; Förderreuther, 2003;
Wang and Li, 2020).
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standard deviations above 0.885 mm, that is,
sj=j ø 15%, have a noticeable impact on the remanent
and maximum strains in terms of the interval widths.
The grain size distribution further has no essential
influence on the remanent polarization, see Figure
10(c), where the intervals are small anyway. For the
computing time tsim, Figure 10(d), no substantial
impact is observed either.

Figure 11 presents the results of a convergence study.
Here, remanent strain and polarization, normalized
with respect to the values of the same RVE with identi-
cal initial domain orientations, however, a uniform
grain size er, 0, Pr, 0

	 

, are plotted versus the normalized

standard deviation in a range from 0.01% to 50%. All
asterisks here and in the following represent the same
set of grain orientations. The limiting values of er22 and

Figure 10. (a) Macroscopic remanent strain er
22, (b) maximum strain emax

22 , (c) remanent polarization, Pr
2

	 

and (d) computing time

tsim versus normalized standard deviation for an RVE with M= 40 grains and nmin = 4%. Red areas indicate the range of
experimental data (Enderlein, 2007; Förderreuther, 2003; Wang and Li, 2020).

Figure 11. (a) Remanent strain and (b) polarization normalized with respect to the values of a uniform grain size versus normalized
standard deviation for M= 40 grains and nmin = 4%.
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Pr
2

	 

for sj ! 0, as expected, correspond to the magni-

tudes of uniform grain size, that is,

lim
sj!0

er22 sjð Þ= er, 022 , lim
sj!0

Pr
2

	 

sjð Þ= P

r, 0
2

	 

, ð34Þ

which is confirmed by Figure 11 and emphasizes the
consistency of the model in this respect. Figure 11 also
illustrates the sudden increase of scattering of strain
and polarization for relative standard deviations above
10%.

Figure 12 finally presents principal residual stresses
at E2 =Emax

2 and E2 = 0 after unloading. The black cir-
cles represent the results of uniform grain size, while the
blue asterisks denote those of grain size distribution,
where sj = 2:36mm and sj=j = 40%, respectively.

Since sI .sII.sIII by convention, the stresses are
restricted to the area below the red dash–dotted lines.
Independent of the applied electric field, the black cir-
cles are concentrated to restricted areas in the space of
principal stresses. This issue has already been observed
in Lange and Ricoeur (2015), where the principal stres-
ses of the CM were compared to those from FE simula-
tions based on the same micro-mechanical model of
domain switching. It should be noted, that in Lange
and Ricoeur (2015) a 2D approach was considered,
while 3D is adopted in this work, however, not showing
a considerable impact on this aspect. For E2 = 0,
Figure 12(b), (d), and (f), there are no significant differ-
ences between RVE s with distributed or uniform grain
sizes, whereas at E2 =Emax

2 , Figure 12(a), (c), and (e),

Figure 12. Principal residual stresses at E2 = Emax
2 ((a), (c) and (e)) and E2 = 0 ((b), (d) and (f)) after unloading of anRVE with M= 40

MiMPs and nmin = 4% for a uniform grain size (black circles) and a standard deviation of sj = 2:36mm (blue asterisks - sj=j = 40%).
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an influence is observed, although all values are basi-
cally arranged in the same areas.

6. Conclusion

A basically approved microphysically motivated scale-
bridging polycrystalline constitutive approach has been
augmented in two different aspects. Domains are not
allowed to vanish in favor of others by introducing
constraints to domain volume fractions, and grain sizes
are non-uniform, following a Gaussian distribution.
Barium titanate, as extensively investigated ferroelectric
with unique chemical composition, has been chosen for
the sake of experimental validation. Data have been
compiled in this regard from various references to com-
pare key quantities of hysteresis loops to results of
simulations. Arbitrary orientations of grains in an RVE
require a statistical analysis, finally providing a very
good agreement with experiments, adapting not more
than two model parameters, that is, number of grains
in an RVE and lower limit of domain volume fractions.
The grain size distribution turns out to have a notice-
able impact for relative standard deviations above
10%–15%, leading to an increasing scatter of predomi-
nantly strain, whereas polarization and residual stresses
are scarcely influenced in their magnitudes. The com-
puting time of one electric load cycle on a MacBook
Pro is just a few seconds, emphasizing the efficiency of
the modeling approach.
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Labusch M, Schröder J and Lupascu DC (2019) A two-scale

homogenization analysis of porous magneto-electric two-

phase composites. Archive of Applied Mechanics 89(6):

1123–1140.
Lange S and Ricoeur A (2015) A condensed microelectrome-

chanical approach for modeling tetragonal ferroelectrics.

International Journal of Solids and Structures 54: 100–110.
Lange S and Ricoeur A (2016) High cycle fatigue damage and

life time prediction for tetragonal ferroelectrics under elec-

tromechanical loading. International Journal of Solids and

Structures 80: 181–192.
Li FX and Rajapakse RK (2007) A constrained domain-

switching model for polycrystalline ferroelectric ceramics.

Part i: Model formulation and application to tetragonal

materials. Acta Materialia 55(19): 6472–6480.
Li X and Wang J (2017) Effect of grain size on the domain

structures and electromechanical responses of ferroelectric

polycrystal. Smart Materials and Structures 26(1): 015013.
Manosso MK, Pallone EMJA, Chinelatto AL, et al. (2010)

Two-steps sintering of alumina-zirconia ceramics. Materi-

als Science Forum 660–661: 819–825.
Mauck LD and Lynch CS (2003) Thermo-electro-mechanical

behavior of ferroelectric materials part I: a computational

micromechanical model versus experimental results. Journal

of Intelligent Material Systems and Structures 14(9): 587–602.
Mendelson MI (1969) Average grain size in Polycrystalline cera-

mics. Journal of the American Ceramic Society 52(8): 443–446.
Mori T and Tanaka K (1973) Average stress in matrix and

average elastic energy of materials with misfitting inclu-

sions. Acta Metallurgica 21(5): 571–574.
Moulinec H and Suquet P (1998) A numerical method for

computing the overall response of nonlinear composites

with complex microstructure. Computer Methods in

Applied Mechanics and Engineering 157(1-2): 69–94.
Norris AN (1985) A differential scheme for the effective mod-

uli of composites. Mechanics of Materials 4: 1–16.
Pearce P (1978) Structure in Nature is a Strategy for Design.

Cambridge, MA: MIT Press.
Reuss A (1929) Berechnung der fließgrenze von mischkristal-
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Appendix

Material properties and switching quantities

In compressed VOIGT notation and for a poling into
the positive e1–direction, see Figure 2, the material
properties of BT are introduced as follows:

C(1)
pq =

C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0 1
2

C22 � C23ð Þ 0 0

0 0 0 0 C55 0

0 0 0 0 0 C55

2
6666664

3
7777775,

e
(1)
kq =

e11 e12 e12 0 0 0

0 0 0 0 0 e26

0 0 0 0 e26 0

2
4

3
5,

k
(1)
ij =

k11 0 0

0 k22 0

0 0 k22

2
4

3
5,

ðA1Þ

where the elastic, piezoelectric, and dielectric coeffi-
cients are listed in Table A1.

A cubic cell is introduced as an interim configura-
tion of a domain switching process to derive the spon-
taneous strain, related to a local Cartesian coordinate
system ei, with e1 as the dipole axis, see for example, Li
and Rajapakse (2007):

espij =
eD
3

2 0 0

0 �1 0

0 0 �1

2
4

3
5: ðA2Þ

The coefficient eD describes the elongation of the unit
cell in the dipole direction with respect to the reference
cubic unit cell of the same volume. For a tetragonal unit
cell, eD is defined as (Hwang et al., 1995):

eD =
c� a0

a0

: ðA3Þ

Here, c and a0 denote tetragonal and cubic lattice para-
meters, where eD, c and a0 are listed in Table A2.

The differential irreversible strain going along with
domain wall motion, reducing species n in favor of spe-
cies ~k, with equation (9) results in

deirr(n!
~k)

ij = esp(n)ij dn(n) + esp(
~k)

ij dn(~k)

= (esp(
~k)

ij � esp(n)ij )dn0

=Desp(n!
~k)

ij dn0,

ðA4Þ

bearing in mind that dn0 =dn(~k) =� dn(n) is a model
parameter, see Table A2, and the internal variables for
all other species, except n and ~k, remain unchanged. As
an example, applying equation (A4) to a 908–switching
in the e1–e3 plane, the corresponding differential irre-
versible strain reads:

deirr(1!5)
ij = eD

�1 0 0

0 0 0

0 0 1

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Desp(1!5)

ij

dn0: ðA5Þ

Here, the domain n= 1 points into the positive e1–
direction and the domain ~k = 5 into the positive e3–
direction, see Figure 2.

The polarization vector of a tetragonal unit cell with
e1 as dipole axis is given by

P
sp
i =P0

1

0

0

2
4
3
5, ðA6Þ

with the spontaneous polarization P0, see Table A2.
The differential change of the spontaneous polarization
from domain n to domain ~k is given as follows:

dP
irr(n!~k)
i =P

sp(n)
i dn(n) +P

sp(~k)
i dn(~k)

= (P
sp(~k)
i � P

sp(n)
i )dn0

=DP
sp(n!~k)
i dn0:

ðA7Þ

Considering the exemplified switching process of equa-
tion (A5), the change of polarization is obtained as:

dP
sp(1!5)
i = P0

�1

0

1

2
4

3
5

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
DP

sp(1!5)
i

dn0: ðA8Þ

Table A1. Material properties of BT taken from Jaffe et al. (1971).

C11 C12 C22 C23 C55 e11 e12 e26 k11 k22

1010 N m22 C m22 1029 CV21 m21

16.2 7.75 16.6 7.66 4.29 18.6 24.4 11.6 12.57 11.16

Table A2. Physical parameters of BT taken from Jaffe et al. (1971) and model parameter of equation (9).

EC 105 Vm�1
� �

P0 Cm�2
� �

c Å
� �

a0 Å
� �

eD �½ � dn0 �½ �

2 0.26 4.034 3.993 0.00673 0.001
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