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Abstract
This study examined whether learning with heuristic worked examples can improve stu-
dents’ competency in solving reality-based tasks in mathematics (mathematical mod-
eling competency). We randomly assigned 134 students in Grade 5 and 180 students in 
Grade 7 to one of three conditions: control condition (students worked on reality-based 
tasks), worked example condition (students studied worked examples representing a real-
istic process of problem-solving by fictitious students negotiating solutions to the tasks), 
and prompted worked example condition (students additionally received self-explanation 
prompts). In all three conditions, the students worked on the tasks individually and inde-
pendently for 45  min. Dependent measures were mathematical modeling competency 
(number of adequate solution steps and strategies) and modeling-specific strategy knowl-
edge. Results showed that although strategy knowledge could be improved through the 
intervention for fifth and seventh graders, modeling competency was improved only for 
seventh graders. The prompting of self-explanations had no additional effect for either fifth 
or seventh graders.

Keywords Heuristic worked examples · Mathematical word problem · Modeling 
competency · Mathematical problem solving

Introduction

An important goal of mathematics education is to enable learners to develop the ability 
to solve reality-based tasks. Accordingly, there has been an immense amount of research 
over the past 50 years on word-problem solving (Verschaffel et al., 2020). Whereas good 
problem solvers have acquired metacognitive skills that help them navigate through the 
complex task space (Newell & Simon, 1972) of reality-based tasks, many students fall 
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short of this goal (De Corte et al., 2000). It remains unclear how teachers may best support 
their students’ acquisition of the competency to solve reality-based tasks. In this paper, we 
advance and evaluate the idea of using a special sort of worked examples in mathematics 
instruction to improve students’ competence in solving reality-based tasks.

The application of mathematics to solving problem situations in the real world is 
described in the framework of mathematical modeling (Verschaffel et  al., 2002). In this 
paper, we first provide an overview of reality-based tasks and research on promoting math-
ematical problem-solving skills. Since reality-based tasks require a translation between 
extra-mathematical context and intra-mathematical content, we present relevant research 
studies on mathematical modeling. We then introduce the concept of learning using 
worked examples. Whereas previously the focus of research on worked examples was on 
well-defined problems, now several approaches attest to the efficacy of worked examples 
for complex and ill-defined problems, such as mathematical proving (Hilbert et al., 2008) 
or inquiry-based learning (Mulder et al., 2014). These worked examples were labeled heu-
ristic because they combined the teaching of problem-solving heuristics by cognitive mod-
eling (Schoenfeld, 1985) with the worked example approach (Hilbert et al., 2008).

The study presented here examines whether heuristic worked examples can be a helpful 
instructional strategy for supporting lower secondary school students’ acquisition of the 
competency to solve reality-based tasks.

Reality‑based tasks in mathematics

This section provides a brief and selective review of research on reality-based tasks in 
mathematics education. Our goal is to build on this research and extract specific steps for 
constructing heuristic worked examples. The competency to solve real-world problems by 
mathematics is a central goal of mathematical education (e.g., Common Core State Stand-
ards Initiative, 2010). Although within the mathematics research community there is no 
consensus on how to differentiate word problems and real-world problems (Verschaffel 
et  al., 2020), in agreement with Verschaffel and colleagues, we view word problems as 
valuable “simulacra” of authentic problems one could encounter in real life. Moreover, we 
concede that there is a wide range of word problems with different complexity and mod-
eling requirements (Leiss et al., 2019). In this study, we focus on word problems located in 
the middle of the spectrum between authentic problems and “dressed up” word problems; 
we call them reality-based tasks. We focus on the problem-solving process triggered by 
these tasks (see Verschaffel et al., 2020).

The research literature describes typical difficulties that students have with reality-based 
tasks. In an early study, Reusser (1988) reported that students often solve word problems 
correctly without understanding them and that the main reason for difficulties with word 
problems lies in a fundamental weakness of the students’ epistemic control behavior. Many 
students do not monitor and regulate their solution attempts enough. Daroczy et al. (2015) 
stressed that word problems belong to the most complex and challenging problem types. 
They pointed out that word problems can be differentiated by linguistic factors, numeri-
cal factors, and the interaction of linguistic and numerical factors. Not only mathematical 
abilities but also linguistic and domain-general abilities contribute to student performance. 
It can be shown that these non-mathematical abilities can help students when solving real-
ity-based problems. Though Koedinger and Nathan (2004) found that students could solve 
mathematical story problems better than equivalent equations, this effect was limited to 
simple story problems. As Koedinger et al. (2008) demonstrated, this effect was vice versa 
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for complex story problems. For complex problems, abstract, symbolic problem represen-
tations were easier to solve than verbal representations.

In the field of mathematics learning, there are different approaches to promoting the 
acquisition of competence in solving reality-based tasks. However, according to Verschaf-
fel et  al. (1999), studies show that after several years of mathematical education, many 
students have not yet acquired the skills needed to approach mathematical application 
problems efficiently and successfully. In addition to shortcomings in the domain-spe-
cific knowledge base, many learners suffer from deficits in the metacognitive aspects of 
mathematical competence. Verschaffel et al. concluded that the vast majority of students’ 
attempts to solve problems show a lack of self-regulating activities such as analyzing the 
problem, monitoring the solution process, and evaluating its results.

In the following, we summarize studies that address this deficit by explicitly promot-
ing a multi-stage solution process during instruction. Effective elements should then find 
their way into the formulation of our worked examples for solving reality-based tasks. In 
Verschaffel et al.’s (1999) experimental study, fifth graders were taught a model with five 
stages and a set of eight heuristics for solving mathematical application problems. Within 
the learning environment of the experimental condition, the aim was for learners to become 
aware of the different phases of the problem-solving process, develop an ability to monitor 
and evaluate their actions during the different phases of the problem-solving process, and 
gain mastery of the eight heuristic strategies. The five steps and heuristics of Verschaf-
fel et al.’s “competent problem-solving model” (1999, p. 202) are the following: (step 1) 
students build a mental representation of the problem using heuristics such as drawing a 
picture, making a list, a scheme, or a table, distinguishing relevant from irrelevant data, and 
using real-world knowledge; (step 2) students decide how to solve the problem using one 
specific heuristic, such as making a flowchart, guessing and checking, looking for a pattern, 
or simplifying the numbers; (step 3) students execute the necessary calculations; (step 4) 
students interpret the outcome of step 3 and formulate an answer; (step 5) students evalu-
ate the solution. Verschaffel et al. found that a learning environment based on the compe-
tent problem-solving model had a significant positive effect on the development of pupils’ 
mathematical problem-solving skill compared to a control group.

In a similar attempt, Montague et al. (2011) developed a cognitive strategy instructional 
program (Solve it!) for middle school learners. Based on a framework by Mayer (1985), 
the program focused on the development of cognitive strategies needed for the two phases 
involved in mathematical word problem solving, according to Mayer: problem representa-
tion and problem solution. In Montague et al.’s cognitive strategy instruction, students were 
introduced to a strategic approach consisting of a sequence of seven cognitive processes 
(read, paraphrase, visualize, hypothesize, estimate, compute, and check). The instructional 
setting incorporated teaching strategies such as cueing, modeling, rehearsal, and feedback. 
Although the program was designed for students with learning disabilities, low-achieving 
students and average-achieving students were found to benefit to the same extent. They 
showed a much more positive development of their mathematical problem-solving skills 
compared to students in the control group, who received typical classroom instruction.

Self-regulated learning with this type of task is also often associated with the term 
mathematical modeling. Mathematical modeling means to express a real-world task in the 
language of mathematics (mathematical model) in order to solve the given problem with 
the help of mathematical tools (Blomhøj & Jensen, 2003). It can be defined as a com-
plex process involving several phases (Van Dooren et  al., 2006). Modelers do not move 
through the different phases sequentially but instead run through several modeling cycles 
as they gradually refine, revise, or reject the original model (Panaoura, 2012). Researchers 
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on mathematical modeling describe several central stages of the modeling process (for 
example, see Blum & Leiss, 2007; Verschaffel et al., 2000, 2014): First, a situation model 
is built. It contains relevant elements, relations, and conditions that are embedded in the 
given problem (Leiss et  al., 2019). Second, a mathematical model of relevant elements, 
relations, and conditions available in the situation is constructed. Third, the mathematical 
model yields results, that, fourth, have to be interpreted within the initial problem. Fifth, 
the results must be evaluated (is the solution appropriate and reasonable for the problem?). 
Sixth, the solution must be communicated.

Some approaches have used descriptive knowledge on mathematical modeling to sup-
port learners’ mathematical problem-solving. Panaoura (2012) developed a computerized 
approach using a cartoon animation that supports the mathematical problem-solving pro-
cess by using a mathematical model. The main goals of the model were to help students 
divide the problem-solving procedure into stages, develop strategic problem-solving pro-
cedures, and apply the procedures during problem-solving. A focus of Panaoura’s inter-
vention program was to support students’ self-reflection on their learning behavior when 
they encounter obstacles. The computerized intervention program supported students in 
Grade 5 through cartoons, interactive prompts, and questions. The program was found to 
enable students to recognize their strengths and limitations compared to a control group 
and enhance their mathematical performance.

In a study by Schukajlow et al. (2015), teachers scaffolded small groups of 15-year-old 
students working with reality-based tasks using an instrument called the “solution plan.” 
The solution plan comprised four steps: (1) understanding task, (2) searching mathemat-
ics, (3) using mathematics, and (4) explaining results. The experimental group, which was 
scaffolded with this solution plan during the treatment phase, outperformed the control 
group working on the same problems without being scaffolded.

A four‑step account of mathematical modeling with heuristic worked examples

Based on the research presented, we think that four critical steps in modeling emerge. 
These four steps are strongly linked to the four principles formulated by Polya (1957) in 
How to Solve It. In that seminal work, Polya differentiated the steps understand the prob-
lem, make a plan, carry out the plan, and look back. Our model takes up Polya’s ideas 
but integrates further aspects from modeling research and formulates the following four 
steps, which correspond to the central stages of the modeling process: (1) understand the 
problem (i.e., read the task carefully, check for understanding, make a sketch, and note the 
central questions of the task), (2) mathematize it (i.e., identify relevant size specifications 
or estimate missing information, look for mathematical relations), (3) work mathematically 
(formulate and solve mathematical equations), and (4) explain the result (translate the solu-
tion into the real-world context, evaluate whether the result is correct and suited to a given 
situation).

The studies cited above contain a more or less abstract and explicit instruction of these 
solution steps. The worked-example research takes a different approach by illustrating 
abstract principles with concrete examples. This idea corresponds to Verschaffel et  al.’s 
(2014) approaches on instructional support for word problems in mathematics. They 
assume that specific teaching methods and learner activities are crucial for teaching word 
problem-solving in mathematics, such as expert modeling of strategic aspects of the prob-
lem-solving process and appropriate forms of scaffolding. We suppose that learning with 
worked examples can be a fruitful way to develop mathematical modeling competency. In 
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some way, the worked example simulates the expert model and provides a scaffold for the 
problem-solving process. We, therefore, turn now to research on worked examples.

Worked examples present a problem, describe the problem-solving steps, and provide 
the correct solution. They have been shown to be superior to unguided problem-solving in 
terms of learning outcomes and efficiency (for reviews, see Atkinson et al., 2000; Sweller 
et  al., 1998). Whereas most of the older studies on worked examples focused on highly 
structured cognitive tasks [e.g., in domains such as algebra (Carroll, 1994) or physics (Kal-
yuga et al., 2001)], more recent studies have found that worked examples can also be effec-
tive for less highly structured cognitive tasks. When problems are not very well defined, 
such as when constructing a mathematical proof (Hilbert et  al., 2008), it is usually not 
possible to present a procedure that leads directly to a successful solution (Kollar et  al., 
2014). Instead, in ill-defined domains, worked examples can demonstrate general solution 
approaches. Heuristic worked examples, specifically, focus on the strategic level and dem-
onstrate heuristics for choosing adequate principles to solve a given problem (Kollar et al., 
2014). In a wealth of non-algorithmic content areas, the effectiveness of worked examples 
has now been proven. In Hilbert et al. (2008), heuristic examples helped learners develop 
better conceptual knowledge about mathematical proving and proving skills than was 
developed by learners in a control condition focusing on mathematical contents. Mulder 
et al. (2014) found that heuristic worked examples improved inquiry-based learning in high 
school students. In Kollar et al. (2014), heuristic worked examples improved mathematical 
argumentation skills in university students studying mathematics teaching.

According to Renkl (2014), the effectiveness of worked examples depends on the learn-
ers’ self-explanation activities. Self-explanation refers to constructive cognitive activities, 
whereby the learners explain the rationale of example solutions to themselves. Self-expla-
nations can be enacted spontaneously or in response to a prompt. Bisra et al. (2018) showed 
in their meta-analysis that self-explanation prompts are a potentially powerful interven-
tion across a wide range of instructional interventions. Thus, many studies integrated the 
prompting of self-explanations into worked examples as well. For example, Hefter et al., 
(2014, 2015) investigated the effectiveness of training programs that include a video-
based worked example. Several prompts stimulated self-explanations. The studies confirm 
the excellent effectiveness of prompted worked examples in ill-defined domains, namely 
argumentation (Hefter et al., 2014) and epistemological understanding as a component of 
argumentation skills (Hefter et al., 2015). Schworm and Renkl (2007) investigated different 
types of self-explanation prompts in learning with worked examples aiming at the acquisi-
tion of argumentation skills. In this study, learners benefited from self-explanation prompts 
that focused the learner’s attention on argumentation. The study of Roelle et  al. (2012) 
showed that the combination of worked examples with self-explanation prompts fostered 
learning strategy acquisition. Renkl et al. (2009) pointed out the importance of self-expla-
nation prompts for skill acquisition using heuristic worked examples; at the same time, 
they emphasized that the benefits of self-explanation prompts can be hindered in complex 
tasks if they induce too many processing demands. In their review, Dunlosky et al. (2013) 
rate self-explanation as having moderate utility. Moreover, they see further research needed 
to establish the efficacy in representative educational contexts. A meta-analysis on the rel-
evance of self-explanations in mathematics learning (Rittle-Johnson et al., 2017) showed 
that scaffolding of high-quality explanations through structuring the responses is benefi-
cial for learning. For example, learners can fill in blanks in partially complete explanations 
(Rittle-Johnson et al., 2017).

Within the mentioned studies with worked examples in ill-defined domains, self-expla-
nation prompts and worked examples were often combined. Our study tried to disentangle 
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the effects of worked examples and of explicit prompting of self-explanations. We tried 
to encourage spontaneous self-explanations through the design of the worked examples; 
moreover, we had an additional condition with explicit self-explanation prompts.

We adapted the heuristic worked example framework to reality-based tasks in math-
ematics. Figure  1 presents an example of an ill-defined problem used in our study. For 
the worked examples, we created dialogues between two fictitious students, who discuss 
their ideas throughout the four phases of the solving process and make realistic solution 
attempts (see Fig. 2). They go a little wrong sometimes, discuss their detours and mistakes, 
but ultimately demonstrate adequate strategies. This kind of worked example demonstrates 
the cognitive and metacognitive problem-solving approaches by making them obvious. 
This specific feature of the worked examples, wherein the worked example goes wrong 
sometimes, should support the active processing of the tasks and sensitize students for 
possible pitfalls. This innovative design element also connects to studies showing benefits 
from learning with erroneous worked examples. For example, Barbieri and Booth (2020) 
demonstrated that exposure to errors improves algebraic equation solving. As the study of 
Große and Renkl (2007) showed an advantage of learning with erroneous worked examples 
only for learners with a high level of prior knowledge, the two fictitious students in our 
worked examples ultimately solve the problem adequately.

Developmental aspects

In the debate on mathematical literacy, the handling of reality-based tasks and, therefore, 
promoting modeling competency at the lower secondary level has become more and more 
important. Reality-based tasks are demanding in terms of metacognitive skills: Students 
must not only apply cognitive strategies correctly but also learn to plan and regulate their 
strategy use. Schneider (2008) reviewed research on the development of metacognitive 
knowledge in children and adolescents and concluded that meta-cognitive knowledge 
develops from early primary school age on and does not peak before young adulthood. Sch-
neider et al. (2017) differentiate between declarative, procedural, and conditional strategy 

World’s Tallest Mohawk 

The Japanese fashion designer Kazuhiro Watanabe 
has the tallest mohawk hairdo in the world. It took him a 
long time to achieve his world record, since hair grows 
only about 0.25 cm per week. The disadvantage of his 
hairdo is that his arms are too short to style his hair 
himself. He requires a team of three hairdressers who 
spend 2 hours creating the hairdo each time using gel 
and a hair dryer.  

About how long did Mr. Watanabe have to grow out his 
hair to achieve the current height of his mohawk? Show 
your work/explain your answer. 

Fig. 1  Modeling task “Mohawk.”
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knowledge. They reported a substantial gain in declarative strategy knowledge during the 
course of lower secondary school; the growth processes assessed between Grades 5 and 9 
were found to be decelerated (p. 298): During the first years of lower secondary school, 
students showed the most remarkable improvement in metacognitive knowledge. Declar-
ative strategy knowledge, as well as procedural and conditional strategy knowledge, are 

 Find the important information

As always, the two students go through the text of the word problem and check every number 

to see if it is needed in order to solve the problem: 

Paul:  “We definitely need the 0.25 cm per week. The three hairdressers are not important, 

and neither are the 2 hours for blow-drying. It’s funny; this time there is only one 

important number given.” 

Paul highlights this piece of information in the text: 

Sara:  “But we can only solve the problem if we know how long his hair is. Can we make just 

any assumption on that?” 

Paul:  “How tall is a head, then, approximately? If we knew that, we could look at the photo 

to see how much taller the hairdo is than his head.” 

Sara:  “I’ll just measure your head! And you could measure in the photo how much taller the 

hairdo is than his head.” 

The two students take out their rulers and measure. 

Sara:  “Okay; your head is about 25 cm tall.” 

Paul:  “And in the photo his hairdo is almost exactly 5 times taller than his head. That means 

we get 5 times 25, or 125 cm.” 

They write down their estimation:  .  

Fig. 2  Second section of the heuristic worked example “Mohawk.”
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necessary prerequisites in order to apply strategies effectively. Based on these findings, we 
think that instructional support of metacognitive competencies could be particularly fruit-
ful during the first years of lower secondary school, that is, for fifth to seventh graders.

The present study

This study aims at promoting the mathematical modeling competency of lower secondary 
school students through learning with heuristic worked examples. In our understanding, 
mathematical modeling competency is the ability to solve reality-based tasks using appro-
priate strategies. We developed a learning environment in which students work on reality-
based tasks for one school period (45 min duration). In the control condition the students 
worked without instructional support; in the experimental conditions the students worked 
on the same tasks using the heuristic worked examples. The study design included two 
different worked example conditions: one with and one without additional self-explana-
tion prompts. Preliminary studies showed that most students are able to study at least 3–4 
worked examples in a 45-min period. Based on other studies on heuristic worked examples 
(Hilbert et  al., 2008; Mulder et  al., 2014) that also came up with a similar intervention 
duration, this amount of time and the number of problems should have the potential to pro-
duce at least initial learning effects. Our main research questions were: (1) Does students’ 
processing of heuristic worked examples with reality-based tasks improve their mathemati-
cal modeling competency and their explicit modeling-specific strategy knowledge? and 
(2) Can this effect of heuristic worked examples be strengthened through self-explanation 
prompts?

The two research questions were separately checked for fifth and seventh graders using 
material adapted for their age and curriculum. That way, we could test our hypotheses in 
two different samples and curricular contexts, increasing the explanatory power of our 
findings. The aim was not to bring developmental psychological aspects to the fore ‒ for 
that, the materials and tasks would have to be kept constant across the age groups. More-
over, although we primarily expected short-time effects (for a relatively immediate post-
test), we also examined possible effects measured in a follow-up test several weeks after 
the treatment.

Method

Power analysis, sample, and design

Based on previous studies on heuristic worked examples (Hilbert et al., 2008), we expected 
strong effect sizes; however, we tried to reach a sample size large enough to detect medium 
size effects because our intervention was short. Moreover, we strengthened statistical pre-
cision by adding relevant covariates. Statistical power analysis for a three-group analysis 
of covariance yielded a total N = 162 to detect an effect size of η2 = .05 (corresponds to 
f = 0.25) with a reasonable power of 1 − β = .80 (Shieh, 2020). The actually analyzable 
study sample comprised 134 students in Grade 5 (Mage = 11.3 years, SD = 0.50, 49% girls) 
and 180 students in Grade 7 (Mage = 13.4 years, SD = 0.46, 54% girls) at different types of 
lower secondary level schools in Germany.
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The students were randomly assigned to one of three experimental conditions (one 
control group and two treatment groups) within each school class. In the control condi-
tion, students had to work individually on various reality-based tasks. In the worked exam-
ple condition, students had to process heuristic worked examples that were based on the 
reality-based tasks used in the control group. In the prompted worked example condition, 
students learned using the heuristic worked examples along with prompts for self-expla-
nations. In all three conditions, the time-on-task was 45 min, so although the number of 
processed tasks or examples could differ, all students worked on the instructional material 
for the same amount of time.

Instructional materials

The design was implemented in parallel for fifth and seventh graders, whereby the instruc-
tional material and the reality-based tasks in pretest and posttest were selected for fifth-
grade topics (basic numeracy, plane geometry) and seventh-grade topics (linear functions, 
plane and spatial geometry), respectively. It was not aligned with the learners’ classroom 
content; the study was detached from the usual teaching.

During the treatment, each student had to work on a sequence of materials. For stu-
dents in the control condition, this was a series of reality-based tasks comparable to 
the one presented in Fig. 1. There were two treatment conditions. A series of worked 
examples was constructed for students in the worked examples condition based on the 
control group’s reality-based tasks. The examples were constructed following the prin-
ciples presented in Sect. A four-step account of mathematical modeling with heuristic 
worked examples above. First, each example was segmented into four sections relating 
to the four specific parts of the modeling process: (1) understand the problem, (2) math-
ematize it, (3) work mathematically, (4) explain the result. Second, the examples had 
varying surface characteristics but focused on a standard structure that was determined 
by a strategic scheme for processing modeling problems. In particular, we constructed 
heuristic worked examples that depicted a realistic solution process of two fictitious stu-
dents cooperatively negotiating solutions to the given problems. For an example, see the 
second section of the heuristic worked example ‘Mohawk’ in Fig.  2. In the prompted 
worked example condition, students additionally received self-explanation prompts; 
here, for each solution step, students were additionally prompted to write down central 
solution steps along with justifications. The sequence of the reality-based tasks was held 
constant over the three treatment conditions.

Dependent measures (pretest)

The participants’ modeling competence, basic cognitive skills, and reading ability were 
assessed in a pretest. It can be assumed that basic cognitive skills and reading abil-
ity are related to modeling competence since they represent essential prerequisites for 
processing reality-based tasks. By adding these covariates, statistical precision could be 
strengthened.

Modeling competency (short version). Fifth and seventh grade students worked on 
different sets of three reality-based mathematical tasks similar to the intervention tasks 
(Fig. 1). For one of the tasks, they had to answer questions in a multiple-choice format. For 
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example, they were asked what information provided in the task was important and needed 
for solving the problem. For two of the tasks, they had to give and explain their answer. We 
used a coding scheme with several specific items to indicate the students’ use of adequate 
solution steps and strategies (e.g., marking numerical data, making assumptions or estima-
tions, giving an adequate answer; for interrater agreement see posttest). Due to low item-
total correlations, four items were excluded from analysis for the fifth graders; the subset 
of seven remaining items yielded an internal consistency of Cronbach’s α = .71. For the 
seventh graders all items could be used; Cronbachs’s α was .73 for 11 items.

Cognitive abilities: Students worked on the figural reasoning task from the Berlin 
Test of Fluid and Crystallized Intelligence (BEFKI 5–7; Schroeders et al., 2020). Stu-
dents had to detect regularities in a sequence of geometric figures that changed in cer-
tain aspects and choose two missing figures in that sequence. Internal consistency was 
Cronbach’s α = .78 for the fifth graders and .83 for the seventh graders.

Basic reading abilities: We used a standardized test measuring reading speed (Auer 
et al., 2005). A list of simple sentences, adapted to the students’ knowledge, had to be 
read as quickly as possible; for each sentence, students had to decide if it was true or 
false. Auer et al. (2005) reported parallel test reliability of rtt = .89.

Dependent measures (posttest)

Modeling competency (long version): Fifth and seventh grade students worked on different 
sets of eight reality-based mathematical tasks; compared with the pretest, the tasks were 
much more demanding. For two of the tasks, they had to answer questions in a multiple-
choice format (see pretest). For six of the tasks, they had to give and explain their answer 
in an open format. To rate the answers, we used the same coding scheme as in the pre-
test, with overall 45 evaluative items for all eight tasks, which indicated the quality of the 
answers. Interrater agreement (Cohen’s � ) was above .71 for all single ratings indicating at 
least substantial strength of agreement according to the benchmarks of Landis and Koch 
(1977). Internal consistency was Cronbach’s α = .76 for the fifth graders and .82 for the 
seventh graders.

Modeling-specific strategy knowledge: Students in Grade 5 and Grade 7 were given the 
same real-world task but were not asked to solve it. Instead, they were asked to help a 
fictitious classmate by answering four specific questions about the solution. For example, 
they were asked: “Jana is overwhelmed because the word problem text contains so many 
numbers. What would you advise her to do? Come up with several hints.” To obtain a 
measure of the students’ modeling-specific strategy knowledge, expert raters counted how 
many adequate and helpful hints the students produced. Interrater agreement (Cohen’s � ) 
was above .71 for all single ratings indicating at least substantial strength of agreement 
again according to the benchmarks of Landis and Koch (1977). Internal consistency over 
the four task-related questions was Cronbach’s α = .68 for the fifth graders and .62 for the 
seventh graders.

Procedure

First, the teachers, parents, and students were informed about the study. They received 
information about the content and the procedure of the study as well as their anonymity 
and data protection. It was pointed out that the students could develop their skills in solving 
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application-oriented mathematics problems. We further asserted the participants that their 
results would not be passed on to the teachers or even be graded. Participation was part 
of the lessons but voluntary. All tasks were done with paper and pencil. The actual study 
(see Fig. 3) began with the pretest, which lasted 45 min. Approximately two weeks later, 
the lesson with the treatment took place, in which the students were randomly assigned to 
one of the three conditions. They worked individually on the corresponding tasks for about 
45 min, the sequence of the reality-based tasks was held constant over the three treatment 
conditions. One to four days later, the posttest was conducted with a duration of 45 min 
as well. Students performed the follow-up test (again 45 min) approximately eight weeks 
later.

Results

Table 1 shows the mean scores and standard deviations for the three experimental con-
ditions for fifth and seventh graders on all study measures. Table 2 reports correlations 
between all variables for fifth and seventh graders, respectively. First, we checked if 
the three treatment groups differed in the pretest variables. For all three pretest vari-
ables (modeling competence, cognitive abilities, basic reading abilities), there were 
no significant differences between the experimental conditions for the fifth graders as 
well as for the seventh graders (all F < 1, all p’s > 0.50); all values are in an expectable 
medium range. During the treatment, all students had 45 min; the number of completed 
tasks therefore varied. Students in the control condition worked on more tasks than stu-
dents in the worked example and prompted worked example conditions F(2,127) = 82.6, 
p < .01, part. η2 = .57 for Grade 5 and F(2,175) = 185.4, p < 00, part. η2 = .68 for Grade 
7, respectively. 

In the next and central step, we checked the posttest and follow-up measures mod-
eling competency and strategy knowledge for the treatment effects. Due to different 
tasks and test materials, this was done in separate analyses for fifth and seventh graders. 
We performed analyses of covariance for the posttest and follow-up measures modeling 
competency and strategy knowledge.

Fig. 3  Overview of the study design
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In addition to the main effect of the treatment, we specifically tested each of the two 
research questions using contrast coding. The two research questions were covered by 
contrast coding with the contrast variables  Cworked-examples (−  1[control], 1/2[worked 
example], 1/2[prompted worked example]) and  Cprompts (0, −  1, 1). The contrast 
 Cworked-examples tested research question 1, comparing the two worked example conditions 
with the control condition; The contrast  Cprompts tested research question 2, comparing 
prompted worked examples with worked examples. Pretest scores (modeling compe-
tency, cognitive abilities, basic reading abilities) were included as covariates. We per-
formed analyses of covariance separately for the two dependent measures (modeling 
competency and strategy knowledge) for posttests and follow-up measurements. For the 
proportion of variances explained by the covariates for all analyses, see Table  3. The 
condition of homogenous regression slopes was met for all covariates in all analyses (all 
p’s > .05).

For fifth graders, modeling competency was not affected by the treatment; posttest: 
F(2,128) < 1, part. η2 < .01; both contrasts  Cworked-examples and  Cprompts with p > .20); 
follow-up: F(2,121) < 1, part. η2 ≤ .01; both contrasts p > .20. Strategy knowledge 
was affected by the treatment at posttest measurement, F(2,128) = 4.18, p < .05, part. 
η2 = .06. Contrast  Cworked-examples showed that students in the worked examples condi-
tions had better strategy knowledge than students in the control condition (p < .01) 
at posttest. At follow-up measurement the treatment effect was no longer significant, 
F(1,121) = 1.40, p > .20, part. η2 = .02). There was no effect of  Cprompts neither for post-
test nor for follow up measurement.

A different picture emerges for the seventh graders. The treatment affected mod-
eling competency (F(2, 174) = 5.10, p < .01, part. η2 = .06) and strategy knowledge (F(2, 
174) = 5.26, p < .01, part. η2 = .06) at posttest. Here, the  Cworked-examples contrasts were sig-
nificant for modeling competency (p < .05) as well as for strategy knowledge (p < .01) at 
posttest measurement, confirming hypothesis 1. The  Cprompts contrasts were not significant 
(modeling competency: p = .07; strategy knowledge: p > .20). The treatment effects faded 
out somewhat by the follow-up measurement (modeling competency: F(2, 163) = 3.86, 
p < .05, part. η2 = .05; strategy knowledge: F(2, 163) = 2.83, p = .06, part. η2 = .03). Regard-
ing contrast  Cworked-examples, the results indicated no effect for modeling competency 
(p > .10) but still greater use of adequate strategies after worked examples compared to con-
trol condition (p < .05). Regarding  Cprompts, the results indicated contrary to expectations an 

Table 3  The proportion of variances (partial η2) of modeling competency and strategy knowledge in post-
test and follow-up measurement explained by the pretest variables (covariates)

*p < .05; **p < .01

Pretest variables Grade Modeling competency Strategy knowledge

Posttest Follow-up Posttest Follow-up

Modeling competency (short 
version)

5 .20** .07** .00 .01
7 .33** .24** .06** .03*

Cognitive abilities 5 .16** .10** .04* .03*
7 .05** .08** .02 .03*

Basic reading abilities 5 .17** .07** .10** .06**
7 .03* .01 .02** .03*
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advantage of worked examples over prompted worked examples (p < 0.05) regarding mod-
eling competency, but not use of adequate strategies.

Discussion

The present study showed that students’ competency in solving reality-based task 
in mathematics, the so-called mathematical modeling competency, can be improved 
through worked examples showing fictitious students discussing their problem-solving 
approaches. In a field-experimental study, we investigated the potential of heuristic 
worked examples to support the development of the competency to solve reality-based 
tasks. For fifth graders, learning with worked examples improved their strategic knowl-
edge. However, the improved strategy knowledge was not reflected in actual behavior: 
There were no experimental effects on modeling competency. Self-explanation prompts 
did not show any additional effects: the prompted worked examples group did not dif-
fer from the worked example condition. For the seventh graders, in contrast, there 
were clear effects of the worked examples. For both modeling competency and strat-
egy knowledge, the experimental condition triggered effects of considerable magnitude. 
Modeling competency and strategy knowledge were improved by working with worked 
examples compared to solving comparable tasks without worked examples. Again, 
prompting self-explanations did not increase the effects for the seventh graders. Instead, 
modeling competency seemed to be impeded by the prompting of self-explanations.

The answers to our first research question are different for the Grade 5 and Grade 7 
samples: Mathematical modeling competency is improved through worked examples, 
but only for seventh graders; modeling-specific strategy knowledge is improved through 
worked examples for fifth and seventh graders. A good part of the effects even lasts 
until the follow-up measurement. Regarding the second research question, we find that 
the overall pattern of results does not confirm differential effectiveness of the worked 
example conditions with vs. without self-explanation prompts. None of the comparisons 
between these conditions yielded significant results in the postulated way. Moreover, in 
one case (modeling competency for the 7th graders), we even find detrimental effects of 
prompting self-explanations.

Furthering the knowledge of heuristic worked examples

First, we would like to look at the importance of our results for the field of worked 
example research. Our study adds to the research on worked examples in non-algorith-
mic content areas (e.g., Hefter et al., 2014, 2015; Hilbert et al., 2008; Kollar et al., 2014; 
Mulder et al., 2014; Roelle et al., 2012; Schworm & Renkl, 2007). Unlike most of the 
studies mentioned, we tried to disentangle the effects of worked examples from those 
resulting from the explicit prompting of self-explanation. Beyond that, we developed 
and tested an innovative element. Our operationalization of the worked examples sup-
ported the active processing of the tasks. It is a dialogue between two fictitious students 
who discuss their ideas, go a little wrong sometimes, discuss their detours and mistakes, 
and ultimately demonstrate adequate strategies. Our results point to the excellent effec-
tiveness of this dialogical approach.
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Instructional support for modeling competency

Although very extensive research literature on mathematical modeling exists that dis-
cusses different modeling processes and cycles, types of modeling problems, and fac-
tors influencing modeling competency, there is relatively little evidence-based research 
available on instructional methods for developing and improving this competency (e.g., 
Stillman et al., 2017). Valuable studies are available, for example, on qualitative anal-
yses of solution paths (Schukajlow et  al., 2015), but experimental classroom studies 
focusing on effects on output variables are rare. Our study closes this gap and points to 
first steps to improve modeling competency by innovative instructional means. Work-
ing through heuristic solution examples that focus on general solutions can increase a 
student’s general ability to solve reality-based mathematical tasks, at least in the sev-
enth grade. The central element of the worked examples that we used was modeling in 
four steps: (1) understand the problem, (2) mathematize it, (3) work mathematically, 
and (4) explain the result. The heuristic worked examples improved students’ strategy 
knowledge. We were thus able to show that worked examples can be used to promote 
not only algorithmic processing of solution paths but also metacognitive knowledge for 
self-regulated solving of mathematical problems.

Shortness and permanence of intervention

One might well ask how a short intervention of 45 min’ duration can at all improve such 
a complex competency. We consider this study to be a first and encouraging approach to 
the development of possible instructional designs for the training of modeling compe-
tency. To create the worked examples, we used a simple four-step approach; moreover, 
the worked examples were from selected content domains adapted to the grade curric-
ulum. Thus, the transfer to similar problems was facilitated. Our results reveal short-
term effects that are still present about 1 to 3 days after the treatment. We certainly do 
not assume that the effect of the treatment is the building of comprehensive let alone 
sustainable modeling competency. Nevertheless, the data show that the students benefit 
from working through several structure-like examples for their work on similar tasks—
at least in the short run. And this result adds a noteworthy and innovative element to 
modeling research.

Prompting self‑explanation

In our study, learning with worked examples could not be improved further by the addi-
tion of self-explanation prompts. As Renkl et  al. (2009) found, self-explanation prompts 
can only develop beneficial effects if the learners are not cognitively overwhelmed by the 
additional instructions. Perhaps the appealing solution examples in the form of dialogues 
between fictitious students provided a good potential for attentive thinking and spontane-
ous self-explanations. We suspect that the seventh graders were prone to spontaneous self-
explanations, and therefore, further instructions did not show clear-cut effects. Moreover, 
the self-explanations prompts might have induced too many processing demands due to 
the complexity of the tasks (cf. Renkl et  al., 2009). For example, Berthold et  al. (2011) 
showed that under specific conditions, prompts focusing the learner’s attention might have 
some costs for learning content that is not in the focus of the prompts. Our focus is on 
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conceptualizing, explaining, and on metacognitive aspects. Perhaps this results in a cogni-
tive overload for students in the prompted worked-example condition.

Hiller et al. (2020) differentiate two perspectives on the potential effects of self-expla-
nation prompts. Following the perspective of generative learning theory (Fiorella & Mayer, 
2016), prompts activate generative learning activities. From the point of view of retrieval-
based learning theory, self-explanations prompts rather support retrieval processes and 
stimulate episodic or contextual associations with the learning content. Like Roelle et al. 
(2017), learners in our study were working with the instructional material (here, worked 
examples) while generating self-explanations; thus, no retrieval was required. This might 
be an explanation for the explicit prompting of self-explanations not yielding effects. At the 
same time, our results do not indicate any generative learning activities stimulated by the 
prompts.

When linking our results to the meta-analysis of Bisra et al. (2018), we would catego-
rize our self-explanation prompts as follows: The inducement timing was concurrent, the 
content specificity was specific, and the inducement format was interrogative and impera-
tive. The prompts elicited conceptualizations, explanations, and metacognitions. Whereas 
the inducements of conceptualizations and explanations rendered medium to large effects, 
the prompting of metacognitions showed no significant effects. As we also prompted meta-
cognitive processes, our findings correspond to this study.

Grade level

Due to different instructional material and different pretests and posttests, our study was 
not designed to check for grade or age effects in a comprehensive model. We inves-
tigated our research questions with two samples, students in Grade 5 and students in 
Grade 7. It is interesting to note that for the younger group of fifth graders, the heuristic 
worked examples did not have the desired effect on modeling competency. Although the 
fifth graders acquired the corresponding strategic knowledge, they were not yet able to 
translate it into competent and planned solutions to the problems. The task of actually 
applying that knowledge might have been too complex for the younger students. Stud-
ies on the development of metacognitive competencies (Schneider, 2008) point out that 
these abilities remain expandable up to young adulthood. Accordingly, our results give 
first hints that the promotion of metacognitive strategies during mathematical modeling 
with reality-based tasks should not be started too early.

Limitations and perspectives

Some limitations ought to be mentioned. First, due to the confounding of task mate-
rial with grade level, this study is not suitable for drawing conclusions regarding the 
role of age development. Second, the study lacks a measure of quantity or quality of 
learners’ self-explanation activities. Therefore, statements on the non-effects of the self-
explanation prompts remain speculative. Third, although the results show short-term 
effects and even some long-term effects, we would need repeating and longer-lasting 
training or instructional interventions to find longer-lasting effects. Fourth, especially 
for the implementation of heuristic worked examples in the classroom, we need research 
on the appropriate embedding of this instructional method into teaching choreographies. 
Fifth, since the operationalization was carried out on the basis of concrete content areas, 
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the results must always be interpreted against this background. This does not rule out 
similar findings in other mathematical areas, but they cannot be postulated lightly. It is 
precisely because of the general importance of metacognitive strategies for mathematics 
teaching as a whole that further research is needed in this area.

Our study shows that when working on reality-based mathematical tasks, even com-
plex skills like metacognitive strategies can be supported by a guided example-based 
instructional approach. Further research should focus on the question as to how math-
ematics instruction can integrate the student’s autonomous learning with worked exam-
ples. Competency in dealing with reality-based mathematical tasks effectively can only 
be built up sustainably using longer-term approaches.
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