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Abstract
The approximation of steady-state vibrations within non-linear dynamical systems is well-established in academics and is
becoming increasingly important in industry. However, the complexity and the number of degrees of freedom of application-
oriented industrial models demand efficient approximation methods for steady-state solutions. One possible approach to
that problem are hybrid approximation schemes, which combine advantages of standard methods from the literature. The
common ground of these methods is their description of the steady-state dynamics of a system solely based on the degrees of
freedom affected directly by non-linearity—the so-called non-linear degrees of freedom. This contribution proposes a new
hybrid method for approximating periodic solutions of systems with localised non-linearities. The motion of the non-linear
degrees of freedom is approximated using the Finite Differencemethod, whilst the motion of the linear degrees of freedom is
treated with the Harmonic Balance method. An application to a chain of oscillators showing stick-slip oscillations is used to
demonstrate the performance of the proposed hybrid framework. A comparisonwith both pureFinite Difference andHarmonic
Balancemethod reveals a noticeable increase in efficiency for larger systems,whilst keeping an excellent approximationquality
for the strongly non-linear solution parts.

Keywords Harmonic Balance method · Finite Difference method · Steady-state solution · Non-linear oscillations · Dynamic
condensation

1 Introduction and literature review

The literature provides a variety of methods for the direct
numerical approximation of steady-state solutions of non-
linear systems. These methods typically form an algebraic
equation system (AES) of the form F(X) = 0 that can
be solved e.g. by Newton-like schemes. To name some
representatives, the Harmonic Balance (HB), Finite Differ-
ence (FD) and Shooting (SH) method [5,15,18] are capable
of approximating periodicmotions and can also be extended
to quasi-periodic solutions [1,6,16]. These approaches based
on an AES are suitable for both stable and unstable solutions,

B Jonas Kappauf
kappauf@uni-kassel.de

Simon Bäuerle
baeuerle@uni-kassel.de

Hartmut Hetzler
hetzler@uni-kassel.de

1 Engineering Dynamics, University of Kassel,
Mönchebergstrasse 7, 34125 Kassel, Germany

but can differ significantly in their numerical convergence
speed depending on the problem.
The analysis of steady-state motions is also of particular
interest for practitioners and engineers. With this use and
application case in mind, the present publication focusses on
a class of mechanical structures, where non-linearities are
limited to smaller (local) areas, e.g. contacts or joints causing
frictional forces. Here, this leads to a few degrees of freedom
(DoF) whose equations of motion involve strong non-linear
terms—the so-called non-linear degrees of freedom. These
potentially exhibit locally strong non-linear behaviour. In
such cases, it is necessary to obtain a detailed picture of
the steady-state dynamics and it is consequently essential to
resolve the DoF with non-linear behaviour more finely.
There are two ways to locally improve the accuracy of a
corresponding method: On the one hand, this can be handled
within the computational method itself, as it was realized in
[9] for theHBmethod. Here, a harmonic selection technique
is utilized to enhance accuracy by increasing the number of
higher harmonics of the Fourier series for DoFs showing a
strong non-linear dynamic behaviour. For an FD scheme, it is
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Table 1 Hybrid approximation frameworks based on combination of different methods

Linear DoF Non-linear DoF

Method Domain Method Domain

Scheme 1 HB Frequency SH Time

Scheme 2 HB Frequency HB Frequency

Scheme 3 HB Frequency FD Time

Bold indicates the proposed method (FD/HB-method) in the presented framework

possible to increase the discrete resolution in time for certain
degrees of freedom, as proposed in [13] for time-domain
methods.
On the other hand, approximation methods typically have
different strengths making them more suitable for certain
problems. As an example, the HB is very efficient if only a
few harmonics are needed to approximate a solution. This
is typically the case for weakly non-linear problems [19,
p. 131]. The FD may be better suited for strongly non-linear
problems [1]. The SH method on the other hand becomes
problematic when dealing with highly repulsive solutions.1

For the case of systems with strong local non-linearities dis-
cussed here, the combination of two different computation
methods into a hybrid approximation framework is a promis-
ing approach. Strengths can be combined and weaknesses
mitigated thereby increasing computational efficiency. The
basic idea is a partitioning of the DoF of the system into
a non-linear and a linear node set [6,17,21], where dif-
ferent approximation methods will be chosen for each set.
The nodes coupling the linear and non-linear set need to be
addressed by bothmethods. The resulting AES is then solved
by Newton-like methods.
This approach of partitioning the system into a linear and a
non-linear part, and combining individual methods to hybrid
approximations schemes is common in literature [4,6,21,
22,24]. Surveying different approaches reveals that vibra-
tions of the linear subsystem are almost always approximated
using HB (cf. Table 1). For the linear part, the HB-method
yields the frequency response matrix for a defined frequency
range and thus allows for an efficiently determination of the
steady-state response to an excitation. In particular, this fre-
quency response matrix can be explicitly stated in analytical
form. In this context, the excitation of the linear sub-systems
may either stem from external forces or from the adjacent
non-linear subsystem, which is coupled in the sense of a
Master-Slave reduction. In a way, this reduction2 is similar

1 Introducing multiple shooting points can resolve this issue, but lead
to higher numerical cost [23, p. 48].
2 The separation of non-linear and linear DoF can be seen as a second
level decomposition, where the dynamics of the linear part are char-
acterised by a transfer function, cf. [14]. This transfer function is then
approximated by a Fourier serieswith adjustable truncation order. The
procedure thus corresponds to an approximation by means of HB [24].

to dynamic condensation, which is often employed in the
context of model order reduction [14,24].
Although the linear and non-linear equations of motion are
coupled, there are no general restrictions on the selection
of the approximation method for the non-linear subsystem.
Common choices are Shooting (i.e. time domain) or Har-
monic Balance (i.e. frequency domain), which yield the
following hybrid approximation schemes (cf. Table 1):

Scheme 1 [21,22], which is based on combining a
SHmethod for the non-linear node set with a HBmethod
for the linear set. The main advantage of this hybrid
method is the ability of selecting a specific numerical
time integration (NTI) scheme. This is beneficial when
dealing with non-smooth dynamical systems involving
e.g. non-smooth friction or impacts. However, the Jaco-
bianmatrix is evaluated numerically,which increases the
computational effort for systems with a high numbers of
non-linear nodes [22].
Scheme2 [4,6,24] is basedoncombining twoHB schemes
for the linear as well as for the non-linear subsystem. The
resulting AES depends only on the Fourier coefficients
of the non-linear nodes which are chosen as master-
nodes while the linear nodes are treated as dependent
slave nodes. Thus, no costly transformations from time
to frequency domain of the adjacent non-linear nodes are
needed. Nevertheless, the resulting AES for the Fourier
coefficients of the non-linear subsystem may show poor
conditioning regarding numerical convergence for strong
non-linear behaviour. One reason can be seen in the
global ansatz functions of the HB scheme, resulting in
extensive coupling of the algebraic equations and thus a
fully populated Jacobianmatrix. Here, changing of one
single entry of the solution vector causes various shifts
in the residual equations which may lead to poor conver-
gence.
Scheme 3 In this paper, a new hybrid approximation
scheme for steady-state vibrations is presented which
combines the HB and the FD method (cf. also [12]).
Here, the FDmethod is used to solve the non-linear node
set, yielding a band structured Jacobianmatrix that can
be specified with adequate knowledge of the non-linear
forces analytically. In contrast to the SH method—that
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follows the flow of the ODEwithin theNTI scheme, with
periodicity explicitly enforced by the associated AES—
the periodicity and thus the corresponding boundary
value problem is fulfilled a priori by the FD approxima-
tion. Hence, FD is less sensitive to initial conditions of a
Newton-like method when approximating highly repul-
sive solutions [19, p. 129]. Furthermore, both FD and
HB can handle differential-algebraic equations.3 without
much effort [15, p. 27]. In conjunction with the analytical
evaluation of the linear nodes’ motion, these properties
are promising prerequisites for an efficient and fast con-
verging computational method.

This contribution is divided into three parts. The first part
deals with the identification and separation of the linear and
non-linear node sets. In addition, the local non-linearities
considered within this contribution are defined. The second
part is dedicated to the proposedFiniteDifference/Harmonic
Balance (FD/HB) method itself with a more detailed view on
how the steady-state dynamics of a mechanical system4 can
be condensed to the non-linear node set. Therefore, a general
treatment of the linear domain is suggested with a trans-
formation in frequency domain by employing the Fourier
transform. This section proceeds with the application to peri-
odic solutions and finally the derivation of the algebraic
equation system of the proposed method. The third part
gives an application to a self-excited system showing peri-
odic stick-slip vibrations. A reference solution is defined and
followed by demonstrating the performance of the proposed
method compared to both FD andHB approximation applied
to the whole system. Finally, the results are discussed and a
conclusion and outlook are given.

2 Mechanical systems with localised
non-linearities

The basic idea of the proposed framework is to increase
efficiency and accuracy by applying different numerical
approximation schemes to the non-linear and linear parts of
the equations of motion (EOM) of a mechanical system. In a
first step, the DoF subjected to only linear terms are grouped
into a set �(L) denoted as the linear nodes. The remaining
DoF are collected in the set �(N) and referred to as non-linear
nodes.5

3 An example would be massless DoF such as Jenkins elements or
other hysteresis friction models that are considered in the modelling
process [2].
4 Please note, that although the proposed framework is illustrated in a
mechanical context, it is not restricted to such problems.
5 In this context, this affects all DoFwith amomentum balance contain-
ing a non-linear function as well as those DoF, that are input parameters
for the non-linear forces.

Fig. 1 Domain and node decomposition of dynamical systems with
localised nonlinearities

Now the vector u(t) containing all DoF of the system
can be split into two coordinate vectors uN(t) ∈ �(N) and
uL(t) ∈ �(L) in which all NN non-linear and NL linearDoF are
collected separately. This subdivision is illustrated in Fig. 1
and can efficiently be introduced by means of a permutation
of coordinates in u(t) 6. Inserting this permutation into the
EOM and partitioning the matrices results in

[
MNN MNL

MLN MLL

] [
üN

üL

]
+
[
PNN PNL

PLN PLL

] [
u̇N

u̇L

]

+
[
CNN CNL

CLN CLL

] [
uN

uL

]
+
[
f N (uN, u̇N)

0

]

=
[
f (N)

EX(t)
f (L)

EX(t)

]
. (1)

Here, all linear forces are expressed by corresponding
matrices while f N (uN, u̇N) collects all remaining non-linear
forces. Please note that there are no non-linear couplings
between the subsystems by definition: all coupling terms are
linear and are completely described by the off-diagonal block
matrices indexed with NL and LN.

Before embedding Eq. (1) into the proposed framework,
some further comments on the notation of the localised non-
linear forces shall be given. In general, there is no generic
mathematical structure for the non-linear forces f N(uN, u̇N).
However, since this contribution is focussed on localised
nonlinearities, a closed analytical form for this class of non-
linear forces can be found, which was adopted from Krack
and Gross [15, p. 141]. For example, if the relative motion of
an i-th and j-thDoF causes a cubic restoring force f cubic(uN)

between each other, this force has to be considered only
within the i-th and j-th equation of the momentum balance.
Since no other DoF is (directly) affected by this cubic restor-

6 This means a reassembling of the degrees of freedom with(
u�
N u�

L

)� = Bu = ũ. The Matrix B denotes a boolean permuta-
tion matrix containing exactly one unit entry in each row and each
column. The remaining entries are zero and since ‖ũ‖ = ‖u‖ the rela-
tion B−1 = B� holds. Note that applying this permutation only the
sequence of the DoF within u(t) is changed that has no impact on the
system dynamics.
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ing force, the force vector may be written

f cubic(uN) = γ a
(
a�uN

)3
, γ ∈ R, (2)

where γ is some parameter and a ∈ R
NN×1 only contains

zeros except ai = 1 and a j = −1. Here, the actual values of
uN are projected onto the vector a, so that only the relative
deflection of the i-th and j-th entry is used to calculate the
local cubic restoring force f (u) = γ u3. The evaluated force
law is then multiplied by a to get the non-linear force vec-
tor that can be added within the global momentum balance
Eq. (1).

Hence, local non-linear effects influence only the
DoF located in the same (small) area. As a popular example,
friction in joints or contacts act locally since in general the
friction force is not directly affected by state variables out-
side the contact zone. Since e.g. friction is (mostly modelled
as) velocity dependent, the example shown in Eq. (2) has to
be extended. A more general notation of Nnl local non-linear
forces summing up to f N is given by

f N(uN, u̇N) =
Nnl∑
k=1

ak fnl,k(b�
k uN, c�k u̇N), (3)

where ak, bk, ck ∈ R
NN×1 are vectors containing integers.

Here, ak selects the affected rows of the momentum balance
in Eq. (1) and the bk and ck the affected DoF. The local
non-linear behaviour is described by a scalar function

fnl,k : (R × R) → R, (u, u̇) �→ fnl,k(u, u̇). (4)

This mathematical structure of f N(uN, u̇N) is not mandatory
for the hybrid approximation method discussed below. How-
ever, it offers significant advantages since it allows for an
analytical derivation of the Jacobian matrix and, thus, an
efficient numerical solution of the non-linear AES.

3 Hybrid approximationmethod

The proposed hybrid approximation method intends to com-
bine the advantages of HB and FD. To this end, the HB is
applied to the linear subsystem in order to transform the
problem to the frequency domain: this yields an algebraic
relation between the amplitudes of the excitation and the
stationary frequency response of linear part. Using this
relation allows for expressing the linear DoFs (slave coor-
dinates) as functions of the non-linear master DoFs and thus
reduce the dimension of the problem. In a second step, the
FDmethod is used for approximating the periodic motion of
the entire system described by the non-linear master DoFs

uN(t). Since both approaches apply to different domains,
spectral-temporal transformations will be necessary.

3.1 System dynamics expressed by the non-linear
node set

Introducing the abbreviations f (N)
C and f (L)

C into equation (1)
yields

MNNüN + PNNu̇N + CNNuN + f N(uN, u̇N)

+ MNLüL + PNLu̇L + CNLuL︸ ︷︷ ︸
f (N)C (uL,u̇L,üL)

= f (N)
EX(t), (5a)

MLLüL + PLLu̇L + CLLuL

+ MLNüN + PLNu̇N + CLNuN︸ ︷︷ ︸
f (L)C (uN,u̇N,üN)

= f (L)
EX(t). (5b)

These forces f (N)
C (uL, u̇L, üL) and f (L)

C (uN, u̇N, üN) stem
from the interaction of the non-linear and linear subsystems
and are denoted as coupling forces. Equations (5b) is fully
linear within both non-linear and linear DoF and thus an eval-
uationwithin frequency domain is reasonable. First, applying
the Fourier transformation (FT) F {·} gives

UN( jω̃) = F {uN} ,

U L( jω̃) = F {uL} ,

F(L)
EX( jω̃) = F

{
f (L)

EX

}
,

with F { f (t)} =
∞∫

−∞
f (t) e −jω̃t dt, (6)

of both the non-linear and linear set uN(t) and uL(t) and of
the external forces f (L)

EX(t). By inserting into Eq. (5b), a linear
dependence from UN( jω̃) to U L( jω̃) is given by

GLL( jω̃)U L( jω̃) = −GLN( jω̃)UN( jω̃) · · · + F (L)
EX( jω̃), (7)

with Gi j ( jω̃) = ( jω̃)2M i j + ( jω̃)P i j + C i j , i, j ∈ {N , L}
being the dynamical stiffness matrix that describes the influ-
ence from the j-th on the i-th domain. The continuous
frequency axis of the frequency domain is denoted by ω̃.
Multiplicationwith the inverse ofGLL( jω̃) gives the Fourier
transform

U L( jω̃) = −G−1
LL ( jω̃) ( GLN( jω̃)UN( jω̃) · · · − F(L)

EX( jω̃)
)
(8)

of the linear subset uL(t) that is directly dependent on the
FT of the non-linear subset uN(t) and the forcing f (L)

EX(t), see
Eq. (6). Re-transforming into time domain by the inverse
Fourier transformation (iFT) gives the deflection uL(t) of
the linear subsystem.
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Now that the interaction between the non-linear and linear
subsystems has been identified, the feedback f (N)

C of the linear
to the non-linear subset is sought. Therefore, the deflection,
velocity and acceleration of the linear subset uL(t) are given
by

uL(t) = F−1 {U L( jω̃)} , (9a)

u̇L(t) = F−1 {( jω̃)U L( jω̃)} , (9b)

üL(t) = F−1
{
( jω̃)2 U L( jω̃)

}
, (9c)

with F−1 {F( jω̃)} = 1

2π

∞∫
−∞

F( jω̃) e jω̃t dω̃.

Inserting them into the linear feedback forces f (N)
C (uL, u̇L, üL)

within Eq. (5a), results in the closed form representation

f (N)
C = F−1 {GNL( jω̃)U L( jω̃)} . (10)

With Eq. (8), the coupling force f (N)
C is given by

f (N)
C (t, u(C)

N ) = f (N,L)
C (u(C)

N ) − f (N,EX)
C (t) (11)

showing a superposition of the feedback of the linear struc-
ture f (N,L)

C (u(C)
N ) purely depending on u(C)

N (t) and the external
forcing part f (N,EX)

C (t), where

f (N,L)
C (uN) = −F−1

{
GNL( jω̃) G−1

LL ( jω̃) . . . GLN( jω̃)F {
u(C)

N

} }
,

(12a)

f (N,EX)
C (t) = −F−1

{
GNL( jω̃) G−1

LL ( jω̃) . . .F {
f (L)
EX

} }
(12b)

holds. Please note, that only those non-linear DoF u(C)
N (t) ∈

∂�(N) which actually couple with the linear domain are trans-
formed into frequency domain [cf. Eq. (5b), where MLN, PLN,
CLN are typically sparse]. This is illustrated in Fig. 2.

Hence, the equations of motion cf. Eq. (1) can be con-
densed to the reduced order motion equations (ROME)

MNNüN + PNNu̇N + CNNuN + f N(uN, u̇N) . . . + f (N,L)
C (u(C)

N )

= f (N)
EX(t) + f (N,EX)

C (t). (13)

This procedure corresponds to a Master-Slave reduction
approach, where the linear node set corresponds to the slave
coordinates that are only related to the non-linear master
nodes and a given external excitation. Note that so far nei-
ther the type of the solution, e.g. periodic or quasi-periodic
motion, nor the approximation method for uN(t) and thus
u(t) are restricted. Consequently, these considerations apply
in general, provided that the solution to be approximated is
steady-state.

Fig. 2 Illustration of Eq. (13), where F(N)
C ( jω̃) is the Fourier trans-

form of the feedback force f (N)
C (t, u(C)

N ). ∂�(N) and ∂�(L) denote the
neighbouring domains of the non-linear and linear subset

3.2 Application to periodic oscillations

The approach from the previous section may be applied to
general stationary solutions with discrete frequency spectra
(equilibria, quasi-/periodic solutions), whereas this publi-
cation focusses on periodic motions. Such a steady-state,
periodic solution u(t) of Eq. (1) fulfils a boundary value
problem (BVP) in time. The boundary condition is given by

u(t) = u(t + T ), T > 0, t ∈ R, (14)

where T denotes the period of the oscillation with ω = 2π
T

being the base frequency. In order to apply the approach
from the previous section to periodic solutions, the Fourier
transforms must be specified for this BVP. Assuming uN(t),
uL(t) and f (L)

EX(t) are periodic functions in time, their Fourier
transforms can be expressed by

F {uN} = ω

∞∑
k=−∞

ÛN( jω̃) δ( jω̃ − jkω),

F {uL} = ω

∞∑
k=−∞

Û L( jω̃) δ( jω̃ − jkω),

F
{
f (L)

EX

} = ω

∞∑
k=−∞

F̂
(L)

EX( jω̃) δ( jω̃ − jkω), (15)

where δ(·) denotes the Dirac delta function and ω ÛN( jω̃),
ω Û L( jω̃) and ω F̂

(L)

EX( jω̃) are the weights of δ(·).7 This
Fourier transform notation is taken from Puthusserypady
[20, p. 66]. Substituting Eq. (15) into Eq. (8) and collecting
the coefficients of the Dirac delta function gives an implicit

7 This procedure for approximating periodic solutions corresponds to
the application of the classical HB scheme with a complex Fourier
series notation.
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relation

ω

∞∑
k=−∞

(
Û L( jkω)+ . . .

+ G−1
LL ( jkω)

(
GLN( jkω) ÛN( jkω) + . . .

− F̂
(L)

EX( jkω)
))

δ( jω̃ − jkω) = 0, (16)

where the coefficients of δ( jω̃ − jkω) must be zero to fulfil
the equation. For k ∈ Z, this leads to

Û L( jkω) = −G−1
LL ( jkω)

(
GLN( jkω) . . .

ÛN( jkω) − F̂
(L)

EX( jkω)
)
, (17)

which means that steady-state dynamics of the linear
DoF uL(t) are determined in frequency domain. In accor-
dance to Eq. (12), the coupling forces

f (N,L)
C (u(C)

N ) = 1

T

∞∑
k=−∞

F̂
(N,L)

C ( jkω) e jkωt (18a)

f (N,EX)
C (t) = − 1

T

∞∑
k=−∞

F̂
(N,EX)

C ( jkω) e jkωt (18b)

can be calculated in time domain.Here, the convolution prop-
erties of the Dirac delta function are considered and the
individual weights of the Fourier transforms are given by

F̂
(N,L)

C ( jkω) = −GNL( jkω) G−1
LL ( jkω) . . .

· GLN( jkω) ÛN( jkω), (19a)

F̂
(N,EX)

C ( jkω) = −GNL( jkω) G−1
LL ( jkω) . . .

· F̂(L)

EX( jkω), (19b)

with k ∈ Z. Finally, the steady-state solution for the linear
subsystem related to t and u(C)

N (t) is given by

uL(t, u(C)
N ) = 1

T

∞∑
k=−∞

Û L( jkω) e jkωt (20)

with the Fourier transform given in Eq. (17). Henceforth,
the relations for the linear node set given in Eqs. (18) and
(20) are understood as complex Fourier series with com-
plex Fourier coefficients Û L,k = 1

T Û L( jkω), F̂
(N,L)

C,k =
1
T F̂

(N,L)

C ( jkω) and F̂
(N,EX)

C,k = 1
T F̂

(N,EX)

C ( jkω). Truncating the
Fourier series gives the approximation

uL(t, uN) ≈
H∑

k=−H

Û L,k e
jkωt , (21a)

f (N,L)
C (uN) ≈

H∑
k=−H

F̂
(N,L)

C,k e jkωt , (21b)

f (N,EX)
C (t) ≈ −

H∑
k=−H

F̂
(N,EX)

C,k e jkωt (21c)

with the harmonic truncation order H . This corresponds to
the classical HB approach.

As was shown above, the solution of the linear subsystem
is derived analytically and hence, an approximation of the
solution of the linear subsystem is given by Eq. (21a). Note
that the approximation consists of (2 H + 1) global ansatz
functions in time domain and that the maximal accessible
truncation order H depends on the time respective frequency
resolution of the non-linear DoF and the external forces. A
detailed discussion of the selection of H is given in the fol-
lowing subsection.

3.3 Approximation of the non-linear subsystem

This section proceeds with a brief discussion of the
FD method that is chosen for the approximation of uN(t)
in time domain. In order to do so, the time derivatives of
uN(t) occurring in the ROME, cf. Eq. (13), are approximated
by the corresponding finite difference quotients on discrete
time values on a prescribed grid ti ∈ T . General forms of
these difference quotients are given by cf. [5,10]

u̇N(ti ) ≈
‖M‖∑
m=1

α
(1)

km

	t
uN

(
ti+km

)
, (22a)

üN(ti ) ≈
‖M‖∑
m=1

α
(2)

km

	t2
uN

(
ti+km

)
. (22b)

Within this contribution it is assumed that T = {t0+i 	t}i∈Z
is a set of equidistant grid points and	t is the time step.Here,
α

(1)

km
, α(2)

km
are the weights of the finite difference with index8

km ∈ M ⊂ Z. Further on, the approximations for the time
derivations in Eq. (22) are substituted into the BVP solu-
tion framework given in Eq. (14). The periodicity of uN(t) is
set with uN

(
tNFD

) = uN (t1). For the approximation method,
only one period T of the steady-state solution is considered.
With time t non-dimensionalised by θ = ωt , the relation
ūN(θ) = uN(ωt) is substituted into the difference quotients,

8 ‖M‖ is the cardinality ofM, whereM is a set of integers indicating
the position of a grid point km related to the current grid point i . A
detailed discussion on this notation and a straight forward computation
of the weights can be found in [5, p. 161].
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which gives

u̇N(ti )
!= ω

	θ

‖M‖∑
m=1

α
(1)

km
ūN (θi + km	θ) , (23a)

üN(ti )
!= ω2

	θ2

‖M‖∑
m=1

α
(2)

km
ūN (θi + km	θ) , (23b)

where 1 ≤ i ≤ NFD, 	θ = ω	t is the step size and km ∈
M. One advantage of this non-dimensionalization is that the
angle grid Tθ is independent of the period T and hence, is
a fixed grid bounded by 0 and 2π . The approximations of
u̇N(ti ) and üN(ti ) are now substituted into Eq. (13). Due to
the approximation of the derivatives and neglect of higher
harmonics k > H for f (N,L)

C (uN) and f (N,EX)
C (t), evaluating the

modified ROME at all values on the grid Tθ gives a residual
function

Rres(θi ) = ω2

	θ2
MNN

‖M‖∑
m=1

α
(2)

km
ūN (θi + km	θ)

+ ω

	θ
PNN

‖M‖∑
m=1

α
(1)

km
ūN (θi + km	θ)

+ f N

⎛
⎝ūN (θi ) ,

ω

	θ

‖M‖∑
m=1

α
(1)

km
ūN (θi + km	θ)

⎞
⎠

+CNN ūN (θi ) + f (N,L)
C

(
ū(C)

N

)∣∣
θi

− f̄
(N,L)

EX (θi ) , (24)

where f̄
(N,L)

EX (θi ) = f̄
(N)

EX(θi )+ f̄
(N,EX)

C (θi ) are the external forces
and θi = ωti are the discrete values on the angle grid Tθ . The
values of the forces f N and f̄

(N)

EX at θi related to the non-
linear subset are known. However, for the coupling forces
f (N,L)

C

(
ū(C)

N

)∣∣
θi
and f̄

(N,EX)

C (θi ) their Fourier series tied to the
analytical solution of Eq. (5b) has to be evaluated at the spec-
ified time points θi .

3.4 Residual equations of the Finite
Difference/Harmonic Balancemethod

Theapproximationof the linear subset’smotionviaHBoffers
time-continuous expressions for feedback forces f (N,L)

C (ūN)

and f (N,EX)
C (t) in form of their Fourier series, cf. Eq. (21).

The representation in time domain is required for the evalua-
tion on the FD time grid Tθ . This means that the expressions
for the Fourier coefficients F̂

(N,L)

C,k and F̂
(N,EX)

C,k [cf. Eq. (19)]
are needed, which are related to the discrete values ūN (θi )

and f̄
(L)

EX (θi ) via

ÛN( jkω) = 1

ω

π∫
−π

ūN (θ) e −jkθ dθ, (25a)

F̂
(L)

EX( jkω) = 1

ω

π∫
−π

f̄
(L)

EX(θ) e −jkθ dθ (25b)

with k = 0, . . . , H , cf. [20, p. 66]. However, since the resid-
ual (24) is only evaluated at NFD discrete points, the two
integrals in Eq. (25) can be approximated byRiemann sums.
With the relations ÛN,k = 1

T ÛN( jkω), F̂
(L)

EX,k = 1
T F̂

(L)

EX( jkω)

and NFD 	θ = 2π , the two integrals reduce to

ÛN,k
!= 1

NFD

NFD∑
i=1

ūN (θi ) e
−j 2π

NFD
i k

, (26a)

F̂
(L)

EX,k
!= 1

NFD

NFD∑
i=1

f̄
(L)

EX(θi ) e
−j 2π

NFD
i k

, (26b)

with NFD being a prescribed number of steps. In accordance to
the Nyquist Shannon sampling theorem, the number NFD

has to be sufficiently high to ensure a correct depiction of
the frequency domain [20, p. 124]. The sampling frequency
fS = NFD

T must at least behigher than two times themaximum
occurring frequency in the solution, so that no aliasing effects
will occur. Here, spectral leakage does not occur, since the
evaluation domain is a multiple of the period duration of the
lowest frequency.

Next, by inserting Eq. (26) into Eq. (19) the Fourier
coefficients F̂

(N,L)

C,k and F̂
(N,EX)

C,k can be directly expressed as

F̂
(N,L)

C,k = −GNL( jkω) G−1
LL ( jkω) GLN( jkω) . . .

1

NFD

NFD∑
i=1

ūN (θi ) e
−j 2π

NFD
i k (27a)

F̂
(N,EX)

C,k = −GNL( jkω) G−1
LL ( jkω) . . .

1

NFD

NFD∑
i=1

f̄
(L)

EX(θi ) e
−j 2π

NFD
i k (27b)

for k = 0, . . . , H . This is an analytical evaluation of Eq. (12)
for the coupling forces in frequency domain.

In a next step, the Fourier coefficients are transformed
into (non-dimensionalised) time domain by utilizing the
inverse Discrete Fourier Transformation (iDFT) respec-
tively substituting Eq. (27b) into Eq. (21) and evaluating at
all grid points of Tθ . Utilizing a complex Fourier series
expression, the previously unknown values for the coupling
forces

f (N,L)
C (ūN)

∣∣
θi

= F̂
(N,L)

C,0 + . . .

+ 2�
{ H∑
k=1

F̂
(N,L)

C,k e
j 2π
NFD

i k
}

(28)
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and the external excitation

f̄
(N,EX)

C (θi ) = −F̂
(N,EX)

C,0 + . . .

− 2�
{ H∑
k=1

F̂
(N,EX)

C,k e j 2π
NFD

i k
}

(29)

are given at i = 1, . . . , NFD grid points. This notation in
terms of real parts is more efficient, since on the one hand
the summation is only done for positive H . On the other hand,
information of the complex conjugated Fourier coefficients
is already included [15, p. 45].

At this point, all terms of the residual Rres(θi ) are deter-
mined and will be gathered within one global residual
equation. Now, the approximation to the solution xN,i ≈
ūN(θi ) is introduced, which can be determined by numeri-
cally solving Rres(θi ) = 0 for all values of θi ∈ Tθ .

The global residual equation is build up by utilizing the
Kronecker product9 ⊗, by which the sums of both the DFT
and iDFT can be written as a global matrix multiplication

W (iDFT) =
((

S e j�
)

⊗ IN
)

, (30a)

W (DFT) = 1

NFD

(
e −j�� ⊗ IN

)
, (30b)

where S = diag (1, 2, . . . , 2) ∈ R
NFD×NFD is a diagonal

matrix and IN ∈ R
NN×NN is the identity matrix. Hence,

matrix � ∈ R
NFD×(H+1) defined by the entries �ik =

2π
NFD

i (k − 1) with i = 1, . . . , NFD, k = 1, . . . , (H + 1),
contains all exponents of the exponential function within the
DFT and iDFT. The application to Eq. (26) gives the relations
Û

N
= W (DFT) X and F̂

(L)

EX = W (DFT) F(L)
EX. The global solution

vector of the BVP problem is

X =

⎡
⎢⎢⎢⎣

xN,1

xN,2
...

xN,NFD

⎤
⎥⎥⎥⎦ ∈ R

NFD N×1

that contains all values at the FD time grid points and the
global vectors Û

N
, F̂

(L)

EX ∈ R
(H+1) N×1 contain all Fourier

coefficients ÛN,k and F̂
(L)

EX,k . Analogously, the iDFT is per-
formed in Eqs. (28) and (29). For a detailed derivation of the
relations see Appendix B.

For a global notation of the residual function, the Kro-
necker product provides again a notation for both the
dynamical stiffness matrices Gi j ( jkω) and the difference
quotients. The global dynamical stiffness matrices read

9 The definition of the Kronecker product relevant in the present
context can be found in Appendix A.

G(glob)

i j (ω) = −ω2 (k(2) ⊗ M i j
)
. . .

+ jω
(
k(1) ⊗ P i j

)+ (
IH ⊗ C i j

)
, (31)

with i, j ∈ {N , L} and k(1), k(2) ∈ R
(H+1)×(H+1) given by

k(1) = diag (0, 1, 2, . . . , H) and k(2) = diag
(
0, 1, 4, . . . , H2

)
.

Here, theKronecker product allocates the equations for the
coefficients for the corresponding kth Fourier order in a
global manner. Introducing the matrices α(1), α(2) containing
the differenceweight factors, a global notation is analogously
found for the difference quotients

X ′ = ω

	θ

(
α(1) ⊗ IN

)
X, (32a)

X ′′ = ω2

	θ2

(
α(2) ⊗ IN

)
X, (32b)

where IN ∈ R
NN×NN and X ′ corresponds to the globally

stored approximated velocities and X ′′ are the approximated
accelerations, see Appendix C. Finally, the closed form alge-
braic equation system for the suggested FD/HBmethod reads

R
(
X
) =

(
ω2

	θ2

(
α(2) ⊗ MNN

)

+ ω

	θ

(
α(1)⊗ PNN) + (

INFD ⊗ CNN

))
X

+ FN

(
X
)− �

{
W (iDFT) G(glob)

NL (ω) G (glob)

NN
−1

(ω)

(
G(glob)

LN (ω)W (DFT) X − F̂
(L)

EX

)}
− F (N)

EX, (33)

where ω is the base frequency of the periodic solution and
with

F̂
(L)

EX =

⎡
⎢⎢⎢⎢⎣

F̂
(L)

EX,1

F̂
(L)

EX,2
...

F̂
(L)

EX,NFD

⎤
⎥⎥⎥⎥⎦ , F (N)

EX =

⎡
⎢⎢⎢⎣

f (N)
EX(θ1)

f (N)
EX(θ2)

...

f (N)
EX(θNFD)

⎤
⎥⎥⎥⎦ ,

being the external forces acting on both the linear and non-
linear structure. The non-linear forces are given by

FN

(
X
) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f N

(
xN,1,

ω
	θ

‖M‖∑
m=1

α
(1)

km
xN,1+km

)

...

f N

(
xN,NFD ,

ω
	θ

‖M‖∑
m=1

α
(1)

km
xN,NFD+km

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence, with Eq. (33) an algebraic equation system was
derived that is non-linear within the solution vector X , since
FN

(
X
)
is non-linear in general.
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Finding X0, being a root of the given global resid-
ual function R

(
X
)
, is a common problem in numerical

calculation and is achieved, for example, by utilizing the
Newton–Raphson algorithm.This schemeneeds the Jaco-

bian matrix J (n) = ∂R
∂X

∣∣∣
n
that is ideally sought in an

analytical form to avoid costly approximations of J (n). For
the suggested FD/HB method the Jacobian matrix can
directly be derived from Eq. (33) with

J (n) = ω2

	θ2

(
α(2) ⊗ M

)

+ ω

	θ

(
α(1) ⊗ P

)+ (
INFD ⊗ C

)

− �
{
W (iDFT) G(glob)

NL (ω) G(glob)

NN
−1

(ω)

G(glob)

LN (ω)W (DFT)

}
+ ∂FN

∂X

∣∣∣∣
n
. (34)

The crucial point is the evaluation of the derivatives of

the non-linear forces ∂FN
∂X

∣∣∣
n
. If no information of these

derivatives is available, it is calculated numerically by finite
difference approximations, which become costly for larger
dimensions of X . To circumvent the numerical approx-
imation, a detailed prescription of the non-linearities is
reasonable. Provided that the local formulation for the non-
linear forces in Eq. (3) can be used, the derivation of the
non-linear forces w.r.t. X (n) is

∂FN

∂X

∣∣∣∣
n

=
Nnl∑
k=1

Ak

[
diag

(
∂ fnl,k
∂u

∣∣∣∣
n

)
B�
k

+ diag

(
∂ fnl,k
∂ u̇

∣∣∣∣
n

)
C�
k Dθ

]
. (35)

Here, Ak = INFD ⊗ ak , Bk = INFD ⊗ bk , Ck = INFD ⊗ ck ∈
R

(NFD NN)×NFD store the local derivations ∂ fnl,k
∂u

∣∣∣
n
,

∂ fnl,k
∂ u̇

∣∣∣
n

∈
R

NFD×1 for the actual solution vector X(n) into the global
equations and Dθ = ω

	θ
(α(1) ⊗ IN ) is the operator for the

first order derivation of uN(t), cf. Eq. (32a).
Concluding this section, a hybrid approximation method

was presented, combining the benefits of FD and HB. The
scheme is valid for systems showing steady-state vibrations.
Under this assumption, it was shown that the dynamics are
purely representable by the non-linear node set in terms of
a Master-Slave reduction, cf. Eq. (13). By applying this
approach to periodic oscillations, it was shown that the
deflection of the linear DoF is analytically derived with

XL = −�
{
W (iDFT) G(glob)

NN
−1

(ω) . . .

. . .
(
G(glob)

LN (ω) W (DFT) X − F̂
(L)

EX

)}
(36)

Fig. 3 Chain of oscillators with NL linear DoF coupled with a mass on
a belt excited by Stribeck friction

related to both, the non-linear node set within X and the
Fourier coefficients of the excitation F̂

(L)

EX. When analysing
self-excited vibrations, the angular frequency ω is in general
unknown. Hence, an additional equation has to be added that
is denoted as phase condition. Some common variants are
listed in [23, p. 304].

4 Numerical investigation

This section focusses on the application of the proposed
hybrid method. Here, an important aspect is the inclusion
of the analytical solution of the linear DoF. Thus, the system
dynamics can be described solely in terms of the non-linear
DoF, which can significantly reduce the system size. Hence,
this section aims to determine the scalability of accuracy in
conjunction with relative computational effort for an increas-
ing number NL of linear DoF. This is done by investigating
a chain of oscillators with a single non-linearity allowing a
straight forward increase of the linear DoF. On this Basis,
FD/HB is compared with both the classical HB10 and pure
FD method. As reference solution the Shooting method is
selected and a nominal error metric is defined.

4.1 Stick-slip vibrations of a chain of oscillators

As a numerical example, self-excited (periodic) vibrations
of a chain of oscillators with local non-linearity (cf. Sect. 2)
are studied, see Fig. 3. Although this is a strongly abstracted
example, it exhibits essential properties that also occur in
large FE systems.

Here, the corresponding system matrices are band struc-
tured, since the state variables are often not coupled over

10 In the present context, for numerically performing theHBmethod the
AFT (alternating frequency-time) scheme of Cameron and Griffin
is used, cf. [3,15]. In contrast to the implementation suggested in [15],
the discreteFourier transformations in theAFT schemeare performed
by the matrices W (DFT) and W (iDFT) and not by means of the FFT (Fast
Fourier Transformation) in order to achieve comparability of results.
Here, Nfft = 210 time samples are considered.
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Table 2 Dimensionless parameters of the Stribeck friction curve and
the regularization

Parameter N μST μSL ε k

Value 1 0.6 0.4 1e−3 5

larger spatial distances. Depending on the FE-shape func-
tions, only the neighbouring nodes affect each other.

Within the current minimal example, the non-linearity is
located at the right end of the chain of oscillators being a
frictional contact between the corresponding DoF and a belt
movingwith velocity vB. The friction force fμ is modelled by
an exponentially decaying Stribeck friction characteristic
that causes self-excited oscillations [11]. Since the discussed
FD approach is applicable for smooth differential equa-
tions,11 the sticking domain of the friction law is softened
by a regularization

fμ(vrel) = 2N

π
atan

(vrel

ε

) (
μSL + 	μe −k‖vrel‖

)
,

where 	μ = μST − μSL and k and ε are the regulariza-
tion parameters, μSL is the sliding friction coefficient for
vrel → ∞ and μSTN is the maximal sticking force cor-
responding to Coulombs law. In accordance to the local
force representation in Eq. (3), the corresponding vectors are
a = c = −1 and relative velocity is vrel = vB + c�u̇N. The
parameters of the friction curve are given in Table 2.

For a variable number of linear DoF, the dimensionless
mass and stiffness parameter m and k of each oscillator are
selected in accordance to the discretization of an elastic rod
from which follows that

m = 2

NN + NL
, k = NN + NL

2
(37)

to ensure comparable dynamics when adding linear DoF.
The given dependence of mass and stiffness properties can
be interpreted as a finer discretization of the linear domain of
the underlying continuous system. In the following, viscous
modal damping is assumed with a damping ratio δ = NN+NL

100
and global damping matrix P = δ

kC . Since the resulting
equations of motion [cf. Eq. (1)] are autonomous, the base
frequency of the limit cycle is a variable and thus, an addi-
tional unknown in the AES. Consequently, the integral phase
condition from Doedel et al. [7] is used to close the equation
system.

11 If a fine resolution of the transition from sliding to sticking is desired,
this can be achieved as follows: On the one hand, the regularisation
can be stiffened and the local resolution in the transition region from
sticking to sliding can be increased. On the other hand, the hybrid
SH/HB method can be used [21]. Here, a suitable numerical time inte-
grator like Moreau time stepping can handle non-smooth ODE’s.

In summary, due to the (regularised) decayingStribeck fric-
tion characteristic, the rest position of the system becomes
unstable for low belt velocities vB.12

However, the amplitudes of the oscillations occurring are
limited by the non-linearity of the system. This results in an
asymptotically stable limit cycle in the sense of Ljapunow,
which is approximated in the following for different numbers
of linear DoF.

4.2 Quantitative comparison in accuracy and
computation time

To highlight the abilities of the proposed hybrid framework,
a quantitative comparison between the FD/HBmethod, pure
FD and pure HB method is carried out under the following
assumptions:

• the comparison is exemplarily shown for NFD = 60 time
samples

• for FD/HB, the Fourier series approximation in fre-
quency domain is done for four truncation orders H ∈
{3, 5, 10, Hmax}, where Hmax is the maximum number of
harmonics in accordance to theNyquist–Shannon the-
orem

• for FD and FD/HB, the same difference quotients were
used (see below)

• for the HB method, the maximum number of harmonics
is Hmax.

For all three methods, the error to reference εM and compu-
tation time are compared.

A sufficiently accurate approximation of the limit cycles
of the system shown in Fig. 3, computed via the Shoot-
ing method, is used as a reference for the comparison.13

For the FD based schemes, the time derivatives of first and
second order are approximated using the difference quotients

u̇i ≈ −2ui−1 − 3ui + 6ui+1 − ui+2

6	t
,

üi ≈ −ui−2 − 16ui−1 + 30ui − 16ui+1 + ui+2

12	t2
.

Since the approximation of the first derivative u̇i corre-
sponds to an extended formulation for a second order upwind

12 However, the viscous damping must be sufficiently low so that the
eigenvalues of the system linearised around the rest position have a
positive real part.
13 For the SH method as reference, the trapezoid rule in its imple-
mentation as ode23t in Matlab©is chosen for the numerical time
integration that has no numerical damping. For finding a root of the cor-
responding SH residual function, a trust-region dogleg algorithmwithin
the fsolve implementation is utilized. For the technical realization of
the SH method, the implementation proposed in [16, p. 301] was used.
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Fig. 4 Limit cycle of the non-linear (last) DoFwith NL = 1 at vB = 0.3
and NFD = 60: qualitative comparison of FD/HB, HB and FD versus
SH

Fig. 5 Limit cycle of linear (first) DoF with NL = 1 at vB = 0.3 and
NFD = 60: qualitative comparison of FD/HB, HB and FD versus SH

scheme, the second derivative üi is discretized by a second
order central difference scheme.14

First, the occurring stick-slip limit cycle is analysed for
FD/HB, HB and FD at vB = 0.3.

For the mechanical benchmark system consisting of one
non-linear and one linearDoF, the results are shown in Figs. 4

14 The individual treatment of the first and second derivative prevents
oscillations within the values at the grid points due to high local Péclet
numbers. Thismay occur for problemswith strong convective character,
if the first derivative is approximated using central differences at a coarse
time grid [25].

Fig. 6 Limit cycle of non-linear DoF with NL = 19 at vB = 0.3 and
NFD = 60: qualitative comparison of FD/HB, HB and FD versus SH

and 5. Please note that the motion of the linear subset within
both the HB and FD/HB is continuous in time due to its
approximation via Fourier series, which is indicated by
solid lines, see Fig. 5. In addition, the SH reference solution
is plotted in solid black into the corresponding phase planes.

This comparison shows that all three methods meet the
reference with no large deviations. In addition, no significant
differences can be seen for different approximation orders H
for the linear part of the FD/HB method.

This statement does not hold for an increasing number of
DoF. This is exemplary shown for the the limit cycles of a
chain of oscillators with 19 linear DoF, see Figs. 6 and 7.
Here, the motion of the non-linear DoF is shown in fig. 6
and the motion of the first linear DoF uL,1 being most distant
from the non-linear subset in Fig. 7.

As indicated by these plots, the truncation order of the
Fourier series for the FD/HB has a significant impact on
the approximation results. Especially for the linear DoF, the
velocity is much smaller than the reference predicts, if an
insufficient number of harmonics is considered, see H ∈
{3, 5}. In addition, oscillations for the non-linear DoF occur
within the velocity near u̇N(ti ) ≈ −vB, cf. Fig. 6. Here, the
frequency resolution of the linear node set and, thus, the cou-
pling forces is too low. That causes the additional oscillations
within the non-linear DoF.

To further examine the capabilities of the proposed
method, two aspects are examined, comparing FD/HB to
classical FD and HB: the first aspect, is a quantitative com-
parison via a nominal error to reference. Here, the error in
the non-linear state zN(t) = (uN(t), u̇N(t))� is compared over
one period T . The corresponding error norm is defined by

εM = max
ti∈T

(
‖z(�)

N (ti ) − z(SH)N (ti )‖∞
)
, (38)
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Fig. 7 Limit cycle of first linear DoF with NL = 19 at vB = 0.3 and
NFD = 60: qualitative comparison of FD/HB, HB and FD versus SH

where z(SH)N is the SH solution15 and z(�)
N the approximation

of the corresponding method. The HB solution is evaluated
in time domain on an equidistant time grid with N f f t = 210

time samples, cf. footnote 10.
The second aspect to be investigated is the computational
time for an increasing number of linear DoF. In order to
create almost comparable starting conditions in the sense of
computation time for FD, HB and FD/HB, for the initializa-
tion of the Newton- Raphson iteration, a prediction step16

from a previous known solution point at v0B = 0.3 is used.
The new solution X ext at v

1
B = 0.31 is calculated for the cor-

responding method and the mean time of ten calculation runs
T (�)
c is tracked.
These quantities are investigated for an increasing number

of (linear) DoF of the chain of oscillators. The results for the
error to reference w.r.t. the number of linear DoF are shown
in Fig. 8 and the corresponding results for the computational
time in Fig. 9. For both figures, a FD-time resolution per
DoF of NFD = 60 is used.

15 More precisely, u(SH)
N is a numerically via NTI calculated solution

to an initial value problem in the time interval from 0 to T with the
SH solution as initial condition. TheNTI is performedwith the trapezoid
rule in its implementation as ode23t in Matlab©.
16 Initial conditions are estimated using the tangent ∂X ext

∣∣
0 at the cur-

rent solution point at v0B = 0.3. The corresponding initial guess for the
Newton–Raphson iteration at v1B = 0.31 is given with

X (pre)
ext

(
v1B

)
= X ext

(
v0B

)
+ ∂X ext

∣∣
0

(
v1B − v0B

)
,

where s denotes the arc-length of the implicit curve defined by the
residual function Rext (vB, X ext) = 0. For amore detailed discussion on
prediction and continuation of implicitly defined curves, the interested
reader is referred to Allgower and Georg [8] and Marx and Vogt [16].

Fig. 8 Absolute computational error of the approximated limit cycles
of the mechanical system shown in Fig. 3 at vB = 0.3 and NFD = 60

Fig. 9 Computation time of the approximated limit cycles of the
mechanical system shown in Fig. 3 at vB = 0.3 and NFD = 60

As expected, the comparison shows that the
FD/HB becomes more accurate for higher truncation orders
H within the coupling forces, which on the other hand leads
to an increase in computation time. However, the FD/HB is
computationally more efficient than pure FD for all H for
systems with more than 10 linear DoF.

Interestingly, for the maximum harmonic order Hmax, the
computation time becomes lower than the time needed for
pure FD (at about NL = 10), whilst the relative approxi-
mation errors εM of FD/HB and FD are almost identical,
see Fig. 8. One possible explanation is that the informa-
tion content of the motion of the linear DoF is the same for
both methods. The only difference is that this information
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Fig. 10 Fourier coefficients of the SH solution with a time resolution
of NFD = 60 grid points. The yellow planes indicate the harmonic
truncation orders of the corresponding FD/HB solutions

is treated in time domain for the pure FD and in frequency
domain for the proposed method with harmonic order Hmax.
And since the approximation for the linear DoF is solved
analytically within the hybrid approach, the AES is signif-
icantly smaller for a larger number of linear DoF than for
pure FD and therefore more efficient. This effect also scales
with the number of time grid points NFD. For higher values
of NL, the FD/HB is more efficient than the pure FD is at
lower numbers of NFD and vice versa.
As expected, the HB provides sufficiently accurate results.
For all investigated numbers of linear DoF the nominal error
is on a par with that of FD and FD/HB with Hmax, see Fig. 8.
However, the HB method requires more computing time
compared to the other methods. This may be caused by the
AFT algorithm itself, where two discrete Fourier transfor-
mations17 are carried out.

A closer look at the error diagram in Fig. 8 shows that the
approximation error for truncation orders H < Hmax seems to
saturate, when increasing the number of linear DoF. In order
to be able to explain this observation, the Fourier coeffi-
cients of the non-linear deflection uN(t) of the SH solution
are shown in Fig. 10. The absolute value of the kth Fourier
coefficient ÛN,k of the non-linear DoF is plotted against the
corresponding harmonic number k and the number of lin-
ear DoF NL. As expected, it can be seen that the absolute
values of the Fourier coefficients decrease with the har-
monic order, but increase for higher numbers of NL within
the considered range. Therefore, the nominal error εM will
increase for low H since essential frequency content of the
non-linear DoF is not considered in the calculation of the lin-

17 The implementation of the DFT and iDFT via the Fast Fourier
Transformation promises a more efficient calculation [15], but was not
used for reasons of comparability between the methods.

ear DoF and the coupling forces f (N)
C (uL, u̇L, üL). Following

fig. 10, the next higher Fourier orders of H ∈ {3, 5, 10}
form a plateau for increasing NL that may cause the satura-
tion of the nominal approximation error in Fig. 8.

As a summary for this section, one can state that the pro-
posed FD/HB scheme can be more efficient than FD and
HB, if a certain number of linear DoF is surpassed. Com-
pared to both methods, the error of the proposed method
is in the same order of magnitude if a sufficient number of
harmonics is used. The decisive factor is that this method
requires less computing time as the number of linear degrees
of freedom increases. For theHB, a high sensitivity regarding
initial conditions of theNewton iteration was observed here
– especially for small deviations regarding the autonomous
base frequency. Furthermore, the results show that the har-
monic order H has a high impact on the accuracy of the
approximation and has to be selected in accordance to the
Nyquist- Shannon theorem to gain maximum accuracy.
When taking the maximum number Hmax of harmonics, there
is a characteristic point depending on NFD and NL, where it is
more efficient to use the proposed framework than pure FD.

5 Conclusion

This contribution presents a hybrid approximation method,
which combines the Finite Difference (FD) and Harmonic
Balance (HB) method, for investigating steady-state solu-
tions of non-linear dynamical systems. Themethod is derived
for, but not limited to mechanical systems. The basic idea
starts by separating the equations of motion into two sets
containing non-linear and solely linear equations. The non-
linearities are assumed to act only locally and the two sets are
bi-directionally connected, by the so-called coupling forces.
The goal is now to describe the steady-state dynamics of
the entire dynamical system just in terms of the degrees
of freedom (DoF) that occur in the non-linearities – the
so-called non-linear DoF. This is possible since the linear
equations of motion can be solved analytically by applying a
Fourier transform.Consequently, a closed form expression
for the linear DoF solely depending on the – yet unknown –
non-linear DoF and the corresponding excitation forces can
be provided. For the special case of periodic motions, the
Fourier transform leads to a periodic Fourier series in
time domain for the linear DoF.
Now, themotion of non-linear DoF is approximated byFinite
Difference. The coupling forces in the non-linear set of equa-
tions solely depend on the linear DoF that are expressed
by the closed form expression found earlier. A sole depen-
dence of the non-linear equation set on the non-linear DoF is
now achieved. However, since FD is a time domain method,
the closed form expression in frequency domain is mapped
by a Discrete Fourier Transformation into time domain.
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Finally, the corresponding algebraic equation system for the
FD/HB method is given and the Jacobian matrix is analyt-
ically derived. Compared to the HB method, the Jacobian
matrix is band structured for FD/HBmethod,which improves
convergence. In addition, this method can deal with highly
repulsive steady-state solutions in contrast to hybrid shooting
(SH) methods.

In order to study the performance of the proposedmethod,
periodic stick-slip limit cycles of a chain of oscillators with
varying numbers of DoF are approximated. The results are
compared to solutions calculated by the FD method and the
HB method each applied to both the non-linear and linear
DoF. For all methods, the computational time is compared
and the limit cycles are validated against a SH reference solu-
tion. The results of the comparison show that for systems
with a small number of non-linear DoF, the hybrid approx-
imation method can improve computational efficiency for
larger systems. The level of accuracy is directly depending
on the number of considered harmonics H of the closed
form expression for the linear DoF and the number of
FD time grid points NFD. The maximum accuracy possi-
ble is limited to the truncation order Hmax according to the
Nyquist- Shannon theorem, which depends on the num-
ber NFD. As a major advantage of the hybrid framework,
the accuracy of that approximation with Hmax is on an equal
level with the approximation gained by pure FD and pure
HB. However, it takes significantly less time for systems
with a higher number of linear DoF due to the efficient
approximation of the linear DoF via HBwithin the proposed
framework.

For future research, a harmonic selection technique will
be integrated into the hybrid framework. Here, an individual
truncation order for the Fourier series within every linear
DoF can be selected. On the basis of the general approach
via Fourier transformation, the method will be extended to
quasi-periodic oscillations.
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Appendix A: The Kronecker product

For matrices A ∈ U ⊂ R
m×n and B ∈ V ⊂ R

r×s the
Kronecker-product or matrix direct product is defined by
the operator

⊗ : U × V → W , where

(A, B) �→ A ⊗ B =
⎡
⎢⎣
A11B . . . A1nB

...
. . .

...

Am1B . . . AmnB

⎤
⎥⎦ .

Employing theKronecker-product gives amatrixC = A⊗
B ∈ W ⊂ R

(m r)×(n s). The product is bilinear, associative
and non-commutative. Concerning computational aspects, it
simplifies implementation into mathematical software such
as Matlab©and additionally, matrix multiplications are
meant to be more efficient then loops.

Appendix B: Global discrete-Fourier-transfor
mation

The sums occurring during the transformation from time to
frequency domain and reverse are rewritten as matrix multi-
plications. Here, the entries of the matrix � ∈ R

NFD×(H+1)

are defined as �ik = 2π
NFD

i (k − 1) with i = 1, . . . , NFD,
k = 1, . . . , (H + 1) and contain all exponents of the expo-
nential functions within the DFT and iDFT. Starting with the
Discrete Fourier Transformation (DFT) in Eq. (26), the
DFT of a set of discrete values {xi }i=1,...,NFD , representing
the signal of interest in time, can be written as depicted in

Eq. B1 defining W (DFT) = 1
NFD

(
e −j�� ⊗ IN

)
as the DFT

matrix and X denotes the stored set of discrete values xi .
Same is done for the inverse Discrete Fourier Transforma-
tion (iDFT) for a set {Xk}k=0,...,H of Fourier coefficients
transformed back into time domain given by eqn. B2. Here,
the matrix W (iDFT) = ((

S e j�
)⊗ IN

)
is defined as the iDFT

matrix and X denotes the stored set of Fourier coefficients
Xk . As indicated above, only the real part of Eq. (B2) is
considered and the Fourier coefficients are scaled by the
diagonal matrix S = diag (1, 2, . . . , 2). In both cases, the
matrices e j� and e −j��

are matrix exponential functions.
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1

NFD

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NFD∑
i=1

xi e
−j 2π

NFD
i 0

...
NFD∑
i=1

xi e
−j 2π

NFD
i k

...
NFD∑
i=1

xi e
−j 2π

NFD
i H

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

NFD

⎡
⎢⎢⎢⎢⎢⎢⎣

e −j�11 IN . . . e −j�i1 IN . . . e −j�NFD1 IN
...

. . .
. . .

. . .
. . .

...

e −j�1k IN . . . e −j�ik IN . . . e −j�NFDk IN
...

. . .
. . .

. . .
. . .

...

e −j�1(H+1) IN . . . e −j�i(H+1) IN . . . e −j�NFD(H+1) IN

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
...

xi
...

xNFD

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

NFD

(
e −j�� ⊗ IN

)
X (B1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0 + 2
H∑

k=1
Xk e

j 2π
NFD

k

...

X0 + 2
H∑

k=1
Xk e

j 2π
NFD

i k

...

X0 + 2
H∑

k=1
Xk e j2π k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

e j�11 IN 2 e j�12 IN . . . 2 e j�1(H+1) IN
...

. . .
. . .

...

e j�i1 IN 2 e j�i2 IN . . . 2 e j�i(H+1) IN
...

. . .
. . .

...

e j�NFD1 IN 2 e j�NFD2 IN . . . 2 e j�NFD(H+1) IN

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
X0

X1
...

XH

⎤
⎥⎥⎥⎦

=
((

S e j�
)

⊗ IN
)
X (B2)

Appendix C: Global finite difference formula-
tion

In the following, the derivation operators of the FD based
methods are expressed utilizing the Kronecker-product.
The corresponding expressions occur in Eq. (24) and read

ω2

	θ2
M

‖M‖∑
m=1

α
(2)

km
xi+km ,

ω

	θ
P

‖M‖∑
m=1

α
(1)

km
xi+km ,

ω

	θ

‖M‖∑
m=1

α
(1)

km
xi+km ,

where i = 1, . . . , NFD and ‖M‖ < NFD is the cardinality of
M ⊂ Z. This array M contains integers km ∈ M denoting
the grid points that are accounted for the difference quotient.
In accordance to the BVP in Eq. (14) xNFD+1 = x1 and
x−1 = xNFD hold, since periodic solutions are approximated.
Assuming {−2, 1, 0, 1} ⊂ M andwith IN ∈ R

NN×NN being
the identity, Eqs. (C3)–(C5) follow. Here, X is the column
vector of all states {xi }i=1,...,NFD and α(1), α(2) denote matrices
containing the weight factors α

(1)

km
resp. α(2)

km
. The components

of the matrices α(1), α(2) are given by

α
(1)

i j =
{

α
(1)

i− j , for i − j ≥ 0

α
(1)

NFD+i− j , for i − j < 0
,

α
(2)

i j =
{

α
(2)

i− j , for i − j ≥ 0

α
(2)

NFD+i− j , for i − j < 0
,

where i − j ∈ M. holds.

ω2

	θ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M
‖M‖∑
m=1

α
(2)

km
x1+km

...

M
‖M‖∑
m=1

α
(2)

km
xi+km

...

M
‖M‖∑
m=1

α
(2)

km
xNFD+km

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ω2

	θ2

⎡
⎢⎢⎢⎣

α
(2)

0 M α
(2)

1 M . . . 0 . . . α
(2)

−1M
α

(2)

−1M α
(2)

0 M . . . 0 . . . α
(2)

−2M
...

. . .
. . .

. . .
. . .

...

α
(2)

1 M . . . 0 . . . α
(2)

−1M α
(2)

0 M

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
...

xi
...

xNFD

⎤
⎥⎥⎥⎥⎥⎥⎦
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= ω2

	θ2

(
α(2) ⊗ M

)
X (C3)

ω

	θ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P
‖M‖∑
m=1

α
(1)

km
x1+km

...

P
‖M‖∑
m=1

α
(1)

km
xi+km

...

P
‖M‖∑
m=1

α
(1)

km
xNFD+km

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ω

	θ

⎡
⎢⎢⎢⎣

α
(1)

0 P α
(1)

1 P . . . 0 . . . α
(1)

−1P
α

(1)

−1P α
(1)

0 P . . . 0 . . . α
(1)

−2P
...

. . .
. . .

. . .
. . .

...

α
(1)

1 P . . . 0 . . . α
(1)

−1P α
(1)

0 P

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
...

xi
...

xNFD

⎤
⎥⎥⎥⎥⎥⎥⎦

= ω

	θ

(
α(1) ⊗ P

)
X (C4)

ω

	θ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

‖M‖∑
m=1

α
(1)

km
x1+km

...
‖M‖∑
m=1

α
(1)

km
xi+km

...
‖M‖∑
m=1

α
(1)

km
xNFD+km

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ω

	θ

⎡
⎢⎢⎢⎣

α
(1)

0 IN α
(1)

1 IN . . . 0 . . . α
(1)

−1 IN
α

(1)

−1 IN α
(1)

0 IN . . . 0 . . . α
(1)

−2 IN
...

. . .
. . .

. . .
. . .

...

α
(1)

1 IN . . . 0 . . . α
(1)

−1 IN α
(1)

0 IN

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
...

xi
...

xNFD

⎤
⎥⎥⎥⎥⎥⎥⎦

= ω

	θ

(
α(1) ⊗ IN

)
X (C5)
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