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Abstract
Complementary decompositions of monomial ideals—also known as Stanley 
decompositions—play an important role in many places in commutative algebra. In 
this article, we discuss and compare several algorithms for their computation. This 
includes a classical recursive one, an algorithm already proposed by Janet and a 
construction proposed by Hironaka in his work on idealistic exponents. We relate 
Janet’s algorithm to the Janet tree of the Janet basis and extend this idea to Janet-
like bases to obtain an optimised algorithm. We show that Hironaka’s construction 
terminates, if and only if the monomial ideal is quasi-stable. Furthermore, we show 
that in this case the algorithm of Janet determines the same decomposition more 
efficiently. Finally, we briefly discuss how these results can be used for the computa-
tion of primary and irreducible decompositions.
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1 Introduction

Combinatorial decompositions of polynomial ideals often appear in commutative 
algebra, as they are very useful for many theoretical considerations [34]. Actually, 
they were first prominently used by Riquier [25] and Janet [22] in their works on 
general systems of partial differential equations and Janet also provided effective 
algorithms for their determination. Within commutative algebra, such decompo-
sitions were studied with an emphasis on complementary ones only much later: 
first by Rees [24] in a generic situation and then generally by Stanley [31] in 
the context of Hilbert function computations. Algorithms for the construction of 
complementary decompositions were presented e.g. by Sturmfels and White [33]. 
A particular combinatorial decomposition was also crucial for Dubé’s analysis of 
the complexity of Gröbner bases without genericity assumptions [12]. Combina-
torial decompositions were also studied recently by Ceria [10].

As the theory of involutive bases (see [30] for a general introduction and an 
overview of applications) was developed by Gerdt and Blinkov [18] following 
ideas underlying the Janet-Riquier theory of differential equations, it is not sur-
prising that involutive bases are closely related to combinatorial decomposi-
tions. Any (strong) involutive basis induces a direct sum decomposition of the 
ideal as linear space and thus allows for the immediate construction of the vol-
ume function of the ideal (and indirectly of its Hilbert function). Complemen-
tary decompositions, i.  e. decompositions of the factor ring, are a bit harder to 
get, but the two types of involutive bases most often used in practise, Janet and 
Pommaret bases, also induce such decompositions. We will show that Janet-like 
bases—which may be considered as a condensed version of Janet bases intro-
duced by Gerdt and Blinkov [19, 20]—provide a more efficient algorithm for the 
construction of a (condensed) complementary decomposition than Janet’s origi-
nal algorithm.

In his work on idealistic exponents, Hironaka [21] constructed a complemen-
tary decomposition for monomial ideals in generic position. We will show that 
his construction terminates with a finite decomposition, if and only if the mono-
mial ideal is quasi-stable, i. e. we find here a by now well studied genericity con-
dition. This observation also implies that Hironaka essentially just rediscovered 
Rees’ decomposition. We will show furthermore that Janet’s algorithm presented 
almost 50 years before Hironaka’s work constructs the same decomposition more 
efficiently.

This article is structured as follows. The next section collects and recalls the 
basic notations and concepts used later on. Section 3 discusses a classical recur-
sive algorithm for the construction of a complementary decomposition. We deter-
mine its complexity and describe an iterative variant of it. The construction of 
complementary decomposition following Janet’s ideas is the topic of Section 4. 
We formulate his algorithm in a graph theoretical language showing that it cor-
responds to a simple breadth-first traversal of the Janet tree associated with the 
given monomial ideal. This observation immediately gives us its complexity. We 
then show how Janet-like bases can be used for obtaining a more efficient version 
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of the algorithm. In Section 5, we recall Hironaka’s construction and relate it to 
Pommaret bases and thus quasi-stable ideals. We then proceed to discuss in the 
following section the relation of complementary decompositions with primary 
and irreducible decompositions. We show that Hironaka’s construction yields as a 
by-product a primary decomposition and explain how an irreducible decomposi-
tion can be extracted from a complementary one. Finally, some conclusions are 
given.

2  Preliminaries

We review some basic definitions and notations from the theory of Gröbner and 
involutive bases which are used throughout the article. We consider the polynomial 
ring P = �[X] = �[x1,… , xn] over a field � . Let f1,… , fk ∈ P be some polyno-
mials and I = ⟨f1,… , fk⟩ the ideal generated by them. We denote the total degree 
and the degree with respect to the variable xi of a polynomial f ∈ P by deg(f ) and 
degi(f ) , respectively. If Y = {y1,… , yk} ⊆ X is a subset of variables, then we denote 
by TY = {y

�1

1
⋯ y

�k

k
∣ �i ∈ ℕ0, 1 ≤ i ≤ k} the monoid of all terms in P depending 

only on the variables in Y. We write shortly T = TX , if all variables are considered. A 
term ordering on T  is denoted by ≺ . The leading term of a given polynomial f ∈ P 
with respect to ≺ is denoted by lt(f ) . If F ⊂ P is a finite set of polynomials, we 
denote by lt(F) the set {lt(f ) ∣ f ∈ F}.

A finite set G ⊂ P is called a Gröbner basis for I  with respect to ≺ , if it satisfies 
lt( I ) ∶= ⟨lt(f ) ∣ f ∈ I ⟩ = ⟨lt(G)⟩ . Gröbner bases and the first algorithm to com-
pute them were introduced by Buchberger in his PhD thesis [8], for more details on 
them see e.g. [11]. A key property of them is given by the following result due to 
Macaulay which will allow us to restrict in the rest of this article to monomial ideals 
(which we will identify with the set of terms contained in them).

Proposition 1 ( [11, Prop. 4, pp. 250]) Let G be a Gröbner basis of the ideal I ⊲ P . 
Then, the factor ring P∕ I  is isomorphic as a �-linear space to the space generated 
by all terms t ∉ ⟨lt(G)⟩.

Involutive bases are a special kind of Gröbner bases with additional combinato-
rial properties. We recall some basic notions; for more details see [17, 30].

Definition 2 An involutive division L on T  associates to any finite set U ⊂ T  of 
terms and any term u ∈ U a set of L-non-multipliers L̄(u,U) given by the terms 
contained in a prime monomial ideal. The variables generating this prime ideal are 
called the non-multiplicative variables NML(u,U) ⊆ X of u ∈ U . The set of L-mul-
tipliers L(u,U) is given by the order ideal T ⧵ L̄(u,U) ; defining the set of multiplica-
tive variables ML(u,U) = X ⧵ NML(u,U) , we have T ⧵ L̄(u,U) = TML(u,U) . For any 
term u ∈ U , its involutive cone is defined as CL(u,U) = u ⋅ L(u,U) . Finally, L must 
satisfy the following conditions: 
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1. For two terms v ≠ u ∈ U with CL(u,U) ∩ CL(v,U) ≠ � , we have u ∈ CL(v,U) or 
v ∈ CL(u,U).

2. If a term v ∈ U lies in an involutive cone CL(u,U) , then L(v,U) ⊆ L(u,U).
3. For any term u in a subset V ⊂ U , we have L(u,U) ⊆ L(u,V).

We write u ∣L w for a term u ∈ U and an arbitrary term w ∈ T  , if w ∈ CL(u,U) . In 
this case, u is called an L-involutive divisor of w and w an L-involutive multiple 
of u.
Definition 3 For a finite set of terms U ⊂ T  and an involutive division L on T  , the 
involutive span of U is the union CL(U) =

⋃
u∈U CL(u,U) . The set U is involutively 

complete or a weak involutive basis of the ideal generated by U, if CL(U) = T ⋅ U . 
For a (strong) involutive basis the union must be disjoint, i. e. every term in CL(U) 
has a unique involutive divisor. An involutive division is Noetherian, if every mono-
mial ideal in P possesses an involutive basis.

One of the simplest involutive divisions is the Pommaret division:

Definition 4 Define the class of a term x� ∈ T  with exponent vector � = (�1,… ,�n) 
as the index cls (x�) = min {i ∣ �i ≠ 0} . The Pommaret division P is defined as fol-
lows: Any variable xi with i ≤ cls (x�) is P-multiplicative for x� ≠ 1 . For x(0,…,0) = 1 , 
all variables are multiplicative.

Remark 5 The Pommaret division P is a global division, i. e. the assignment of mul-
tiplicative variables to a term x� is independent of any ambient set x𝜇 ∈ U ⊂ T  . The 
Pommaret division is not Noetherian, as e.g. the ideal I = ⟨x1x2⟩ does not possess a 
finite Pommaret basis, as it does not contain any element of class 2.

Each finite set U ⊂ T  contains a unique minimal subset A ⊆ U such that 
⟨A⟩ = ⟨U⟩ as monomial ideals, but no term a ∈ A is Pommaret divisible by any 
other term b ∈ A ⧵ {a} . We say that A is derived from U by the process of Pommaret 
autoreduction.

The fact that the Pommaret division is not Noetherian singles out those mono-
mial ideals which do have a finite Pommaret basis. It turns out that this class of 
monomial ideals is already well-known, as it appears in many different contexts. 
Its classical characterisation is of a combinatorial nature.

Definition 6 A monomial ideal I ⊂ P is called quasi-stable, if for any term 
x� ∈ I  and for any index k = cls (x𝜇) < i ≤ n an exponent s ≥ 0 exists such that 
xs
i
x�∕xk ∈ I .

Proposition 7 ( [30, Prop. 5.3.4]) A monomial ideal I  possesses a finite Pommaret 
basis, if and only if it is quasi-stable.

One of the most important involutive divisions is the Janet division which like 
the Pommaret division was already introduced by Janet [22, pp. 16-17].
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Definition 8 Let U ⊂ P be a finite set of terms. For each sequence d1,… , dn of non-
negative integers and for each index 1 ≤ i ≤ n , we introduce the corresponding Janet 
class as the subset

The variable xn is Janet multiplicative (or shorter J -multiplicative) for the term 
u ∈ U , if degn (u) = max {degn (v) ∣ v ∈ U} . For i < n the variable xi is Janet multi-
plicative for u ∈ U[di+1,…,dn]

 , if degi (u) = max {degi (v) ∣ v ∈ U[di+1,…,dn]
}.

Remark 9 In contrast to the Pommaret division, the Janet division is Noetherian [30, 
Lem. 3.1.19], but not global.

Example 10 

1. The ideal ⟨x1x2⟩ ⊆ �[x1, x2] has the one-element set {x1x2} as Janet basis.
2. The ideal ⟨x2

1
, x2

2
⟩ has the set {x2

1
, x2

1
x2, x

2
2
} as smallest possible Janet basis. Note 

that, for example, also {x2
1
, x2

1
x2, x

2
2
, x3

2
} is another Janet basis of the same ideal.

To improve the computation of Gröbner bases for ideals where the Janet basis is 
much larger than the reduced Gröbner basis, Gerdt and Blinkov in [19] introduced a 
generalisation of Janet bases, the so-called Janet-like bases.

Definition 11 Let U ⊂ T  be a finite set of terms. For any term u ∈ U and any index 
1 ≤ i ≤ n , we set

If hi(u,U) > 0 , the power xki
i
 with

is called a non-multiplicative power of u for the Janet-like division. The set of all 
non-multiplicative powers of u ∈ U is denoted by NMP (u,U) . The elements of the 
set

are called the J-non-multipliers for u ∈ U . The terms outside of it are the J-multipli-
ers for u. An element u ∈ U will be called a Janet-like divisor of w ∈ T  , if w = u ⋅ v 
with v a J-multiplier for u.

Example 12 Consider the set U = {x3
3
, x3

2
x3 , x1x2x3} ⊂ �[x1, x2, x3] . We can deter-

mine the Janet-like non-multiplicative powers of the elements of U as follows: 

1. x3
3
 has maximal x3-degree in U. This implies immediately that no non-multiplica-

tive power exists for it at the variable x3 ; moreover, since its x3-degree is unique 

(1)U[di,…,dn]
=
{
u ∈ U ∣ degj (u) = dj, i ≤ j ≤ n

}
⊆ U .

hi(u,U) = max
{
degi (v) ∣ u, v ∈ U[di+1,…,dn]

}
− degi (u) .

ki = min
{
degi (v) − degi (u) ∣ v, u ∈ U[di+1,…,dn]

, degi (v) > degi (u)}

NM(u,U) = {v ∈ T ∣ ∃w ∈ NMP (u,U) ∶ w ∣ v}
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in U, no Janet class of U containing this term will contain any other term. Hence, 
NMP (x3

3
,U) = �.

2. x3
2
x3 and x1x2x3 both have x3-degree 1. Comparing with x3

3
 , it follows that 

x2
3
∈ NMP (x3

2
x3,U) ∩ NMP (x1x2x3,U) , 2 being the difference of the x3-degrees. 

Since x2
2
x3 has the highest x2-degree in U, we can conclude NMP (x2

2
x3,U) = {x2

3
}.

3. Looking at the Janet class U[1] = {x3
2
x3, x1x2x3} , we observe a difference of 2 in 

the x2-degrees. Hence, x2
2
∈ NMP (x1x2x3,U) . Now, noting that U[1,1] = {x1x2x3} , 

we conclude that NMP (x1x2x3,U) = {x2
2
, x2

3
}.

The Janet-like division is not an involutive division, because it assigns sets of 
non-multipliers that are generated by powers of variables instead of only variables. 
Nevertheless, it preserves all algorithmic properties of the Janet division and allows 
for the construction of Janet-like bases and in turn Gröbner bases. Indeed, the main 
algorithmic idea for the construction of Janet-like bases is similar to that of Janet 
bases, instead of multiplying with non-multiplicative variables one now multiplies 
with non-multiplicative powers. One can show that any ideal has a Janet-like basis 
which is a subset of its Janet basis [20, Thm. 3].

2.1  The Janet tree

The lattice of the Janet classes together with the set theoretic inclusion relation pos-
sesses a natural tree structure for any finite set U ⊂ T  of terms. Following Gerdt 
et al. [15], we call this tree the Janet tree of U, although our tree is not the same as 
theirs. As their main concern was efficiency, they presented immediately a represen-
tation as binary tree which somewhat obscures the very natural underlying math-
ematical structure. Our presentation follows [30, Addendum §3.1] adapted to our 
purposes here. One should note that the bar codes of Ceria encode essentially the 
same information in a different manner [9]. Janet trees allow us to perform many 
operations relevant for Janet bases—like determining multiplicative variables or 
finding an involutive divisor—in a very efficient manner. We will show later that 
one can read off a complementary decomposition without any further computations 
by simply traversing the Janet tree.

Each node in the Janet tree corresponds to a non-empty Janet class and the 
edges represent inclusions. It turns out to be convenient to represent the Janet class 
U[di,…,dn]

 by the term xdi
i
⋯ x

dn
n  (although this term is not necessarily contained in the 

class!). Furthermore, we store in each node a list of variables which are multiplica-
tive for any term contained in the class so that each node is a pair (x� ,V) consisting 
of a term and a subset of the variables X.

Assume that U = {x�1 ,… , x�m} where �i = (�i1,… ,�in) for each i and 
x𝜇1 ≺lex ⋯ ≺lex x

𝜇m with x1 ≺lex ⋯ ≺lex xn . We divide the tree into n + 1 levels with 
the root being at level n + 1 and all leaves at level 1. The root contains the term 1 
(corresponding to the Janet class U[] = U ) and the empty set. Its children corre-
spond to the non-empty classes U[dn]

 with 0 ≤ dn ≤ �mn and each contains the term 
x
dn
n  and the empty set except for dn = �mn which contains the set {xn} , as xn is mul-

tiplicative for all terms in this Janet class. Then we continue recursively. Assume 
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that we have a node (x� ,V) at level i + 1 with i < n , i.  e. cls x� ≥ i + 1 . Then its 
children correspond to the non-empty Janet classes represented by terms of the 
form xa

i
x� and they all contain the same set V except for the one with the maximal 

value of a where xi is added to V. We sort the children according to increasing 
values of a, so that it is always the rightmost child which obtains the additional 
multiplicative variable xi . The nodes at level 1 contain then in lexicographic order 
the terms in U together with their Janet multiplicative variables. Figure 1 shows 
the Janet tree of the set U =

{
x1x2x3, x

3
2
x3, x

3
3

}
⊂ �[x1, x2, x3].

2.2  The Janet‑like tree

To adapt this tree representation to the Janet-like division, we add to each node 
a set M of Janet non-multipliers and obtain what we call the Janet-like tree of 
U. Assume as above that at level i + 1 we have the node (x� ,V ,M) and that it 
has �  children represented by the terms xaj

i
x� where a1 < a2 < ⋯ < a

𝓁
 . Then 

the first � − 1 children are given by the nodes (xaj
i
x� ,V ,M ∪ {x

aj+1−aj

i
}) and 

the last child is (xa�
i
x� ,V ∪ {xi},M) . We find then again at level 1 the terms of 

U in lexicographic order together with their multiplicative variables and their 
non-multiplicative powers. Figure  2 contains the Janet-like tree of the set 
U =

{
x1x2x3, x

3
2
x3, x

3
3

}
⊂ �[x1, x2, x3].

(1, ∅)

(x3, ∅)

(x2x3, ∅)

(x1x2x3, {x1})

(x3
2x3, {x2})

(x3
2x3, {x1, x2})

(x3
3, {x3})

(x3
3, {x2, x3})

(x3
3, {x1, x2, x3})

Fig. 1  Janet tree of U = {x1x2x3, x
3

2
x3, x

3

3
} ⊂ �[x1, x2, x3]

(1, ∅, ∅)

(x3, ∅, {x2
3})

(x2x3, ∅, {x2
2, x

2
3})

(x1x2x3, {x1}, {x2
2, x

2
3})

(x3
2x3, {x2}, {x2

3})

(x3
2x3, {x1, x2}, {x2

3})

(x3
3, {x3}, ∅)

(x3
3, {x2, x3}, ∅)

(x3
3, {x1, x2, x3}, ∅)

Fig. 2  Janet-like tree of U = {x1x2x3, x
3

2
x3, x

3

3
} ⊂ �[x1, x2, x3]
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3  Complementary decompositions from arbitrary generating sets

In this section, we recall the definition of complementary decompositions and 
give a more efficient variant of a well-known recursive approach for their con-
struction for the special class of monomial ideals, for more details see [30, pp. 
168-175].

Definition 13 A cone is a set of the form CY (t) = TY ⋅ t for some term t ∈ T  , its 
vertex, and some set of multiplicative variables Y ⊆ X . A cone decomposition of 
an arbitrary subset S ⊆ T  is a representation as a disjoint finite union of cones: 
S =

⨆
(t,Y)∈D CY (t) for some finite set D of pairs (t ∈ T, Y ⊆ X).

In the above definition, we consider arbitrary subsets S ⊆ T  . In practice, two 
cases are particularly relevant: S = I ∩ T  consists of the terms contained in a 
monomial ideal I  or S is the complement of such a set, i.  e. S consists of the 
terms contained in an order ideal. In this work, we are mainly concerned with the 
second case which we call a complementary decomposition of the monomial ideal 
I  . By Proposition 1, a complementary decomposition corresponds to a decompo-
sition of the factor ring P∕ I  as a �-linear space. Complementary decompositions 
are often called Stanley decomposition, as Stanley [31] used them for comput-
ing the Hilbert function of an ideal I  (actually, this approach to Hilbert func-
tions goes back already to Janet [22]). Rees [24] considered already earlier the 
special case where all sets Y of multiplicative variables are of the special form 
Y = {xi, xi+1,… , xn} for some index i; one then speaks of a Rees decomposition.

Given any finite complementary decomposition D of an ideal I  , it is indeed 
straightforward to read off the Hilbert series and the Hilbert polynomial of I  . 
Given a cone induced by the pair (t, Y) ∈ D , we write qt = deg (t) for the degree 
of its vertex and kt = |Y| for its dimension. The Hilbert series of I  is then given 
by

and the Hilbert polynomial by

This follows immediately from the disjointness required from a cone decomposition 
and from the fact that the above binomial coefficient gives the number of terms of 
degree q in the cone (t, Y) (for degrees q ≥ qt ). For the Hilbert function, one must 
enforce that the cone (t, Y) contributes nothing for any degree q ≤ qt . Hence, using 
the Kronecker-Iverson symbol [⋅] which yields 1 if the condition in the bracket is 
satisfied and 0 otherwise, we can write

HS I (�) =
∑

(t,Y)∈D

�qt

(1 − �)kt

HP I (q) =
∑

(t, Y) ∈ D

kt > 0

(
q − qt + kt − 1

kt − 1

)
.
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Thus complementary decompositions provide us with an elementary proof of the 
fact that the Hilbert function of any ideal is of polynomial type and the maximal 
value of qt bounds the Hilbert regularity. In [7], one can find a number of further 
results on Hilbert series that can be derived via complementary decompositions 
stemming from Pommaret bases.

Remark 14 By definition, any involutive basis of a monomial ideal I  induces a cone 
decomposition of I  . As we will discuss in more details in the subsequent sections, 
Janet and Pommaret bases also induce complementary decompositions. In the case 
of a Pommaret basis, both the decomposition of I  and the complementary decom-
position are Rees decompositions, see [30, Cor. 5.1.9].

The subject of computing complementary decompositions for monomial ide-
als has a long tradition, see e.g. [30–33]. The recursive Algorithm  1 represents a 
slightly optimised form of an approach which seems to be folklore. It can be found 
implicitly in [11] or explicitly in [33] (see also [30, Alg. 5.1] or [26] for variants). 
However, it seems that its complexity has never been studied. We shall note that in 
the sequel, the order of variables that we use for the recursive process is x1,… , xn , 
however, we can impose any order of the variables that we might want to use.

(2)
HF I (q) =

∑

(t, Y) ∈ D

kt > 0

[q ≥ qt]

(
q − qt + kt − 1

kt − 1

)
+

∑

(t, Y) ∈ D

kt = 0

[q = qt] .
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Theorem 15 Algorithm 1 terminates in finitely many steps and is correct. Its arith-
metic complexity is O

(
(�m)n

)
 where

with 𝜆(i)
0
< 𝜆

(i)

1
< ⋯ < 𝜆

(i)

𝓁
 the sequence of the xi-degrees of the terms tj used to gen-

erate the ideal I .

Proof The termination and the correctness follow from [30, Prop. 5.1.3]. To prove 
the complexity bound, we first note that one can construct the Janet tree of U using 
O(m2 + nm) comparisons, see [23, Thm. 4.2]. Now, it suffices to show (by an induc-
tion over the number n of variables) that at each iteration the number of constructed 
cones in D is O

(
(�m)n

)
 . Here, following the notations used in the algorithm, we may 

assume without loss of generality that the elements of U are distributed uniformly 
and thus U′

�i
 contains m∕(� + 1) elements for each i. If n = 1 , then there is nothing to 

prove. Assume now that the assertion holds for n − 1 . Then the for-loop is repeated 
� + 1 times and in each iteration the set 

⋃i

j=0
U�

�j
 has (i + 1)m∕(� + 1) elements. 

Thus, by the lines 16 and 18, the number of cones in D is 
� ×

∑�

i=0
O
�
(�(i + 1)m∕(� + 1))n−1

�
∼ O

�
�(� + 1)(�m)n−1

�
 . It follows from the fact 

that � + 1 ≤ m that the total number of elements added to D is O
(
(�m)n

)
 . Finally, 

we may assume that �,m, n ≥ 2 and therefore (�m)n is the dominant factor in the 
complexity O

(
(�m)n + m2 + nm

)
 and this ends the proof.   ◻

Example 16 Let us consider the ideal I = ⟨x2
1
x2x3, x

3
2
x3, x

3
3
⟩ in the polynomial ring 

P = �[x1, x2, x3] . By considering x1 as the first variable, we have �0 = 0 , �1 = 2 , 
U�

0
= {x3

2
x3, x

3
3
} and U�

2
= {x2x3} . By applying the algorithm to U′

0
 , we get

Thus, by multiplying the first component of the elements of this set by both 1 and x1 , 
we obtain the first version of D . Now, we continue with �1 . Here, one observes that

and the ideal generated by this set is ⟨x2x3, x33⟩ . Applying the algorithm to it, on 
obtains its complementary decomposition 

{
(1, �), (x3, �), (x

2
3
, �), (x2, {x2})

}
 and 

finally

defines a complementary decomposition for I .

� = max
{
�
(i)

0
, �

(i)

1
− �

(i)

0
,… , �

(i)

�
− �

(i)

�−1
∣ i = 1,… , n

}

D�
0
=
{
(1, �), (x3, �), (x

2

3
, �), (x2, �), (x2x3, �), (x2x

2

3
, �),

(x2
2
, �), (x2

2
x3, �), (x

2

2
x
2

3
, �), (x3

2
, {x2})

}
.

U�
�0
∪ U�

�1
= {x2x3, x

3
2
x3, x

3
3
}

D ∪
{
(x2

1
, {x1}), (x

2
1
x3, {x1}), (x

2
1
x2
3
, {x1}), (x

2
1
x2, {x1, x2})

}
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For a better understanding of the structure of the recursive Algorithm  1, we 
describe now an iterative variant of it: Algorithm 2. In it, we first order the set U 
according to the lexicographical order and then construct sets Di,j , where—with 
the notations used in the algorithm—Di,j provides a complementary decomposition 
for the ideal ⟨tj,… , tm⟩�x1=⋯=xi−1=1

 . Thus, D1,1 defines the desired complementary 
decomposition for the given ideal I .

Theorem 17 Algorithm 2 terminates for any input and is correct. Its arithmetic com-
plexity is O

(
�m(�m)n−1

)
 where

with 𝜆(i)
0
< 𝜆

(i)

1
< ⋯ < 𝜆

(i)

𝓁
 being the sequence of the xi-degrees of the generators tj 

and � = �
(n)

�
.

Proof Since this algorithm is a non-recursive variant of Algorithm 1, its finite termi-
nation and correctness follow from those of Algorithm 1. To prove the arithmetic 
complexity, we mainly follow the lines of the proof of Theorem 15. We proceed to 
find the number of cones in the decomposition ∪m

j=1
Di,j for each index i = n,… , 1 

and the total number of constructed cones determines the complexity of the 

� = max
{
�
(i)

0
, �

(i)

1
− �

(i)

0
,… , �

(i)

�
− �

(i)

�−1
∣ i = 1,… , n

}
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algorithm. We observe that for i = n the number of constructed cones is O(�m) . It 
follows from line 11 by applying a simple induction, that the number of cones in Di,j 
is O

(
�(�m)n−i

)
 . Thus, the total number of constructed cones is 

�m + �m(�m) +⋯ �m(�m)n−1 . We may assume that �m ≥ 2 and this shows the 
claim.   ◻

Remark 18 One can see that arithmetic complexity of this algorithm is very close to 
that of Algorithm 1. However, at each iteration of Algorithm  2, we get complemen-
tary decompositions for the ideals ⟨tj,… , tm⟩�x1=⋯=xi−1=1

 which provide additional 
information about the input ideal. More precisely, for each 1 ≤ i ≤ n and 1 ≤ j ≤ m , 
the set Di,j , constructed during the algorithm, forms a complementary decomposi-
tion for this ideal.

The following example illustrates the steps of the algorithm.

Example 19 Let us consider the ideal I = ⟨U⟩ in the polynomial ring 
P = �[x1, x2, x3] with U = {x2

1
x2x3, x

3
2
x3, x

3
3
} . Obviously, we have �(3)

1
= 1 , �(3)

2
= 1 , 

and �(3)
3

= 3 . We get D3,3 =
{
(1, �), (x3, �), (x

2
3
, �)

}
 and D3,2 = D3,1 =

{
(1, �)

}
 . Note 

that D3,2 = D3,1 since x3 ∈ ⟨x3, x33⟩ . Entering into the main for-loop, we must con-
sider in the iteration with i = 2 the three terms x2x3, x32x3, x

3
3
∈ �[x2, x3] and hence 

obtain �(2)
1

= 1 , �(2)
2

= 3 , �(2)
3

= 0 . The algorithm then yields

It is worth noting that we may simplify the construction of D2,1 by removing the 
extra term x3

2
x3 and considering only the two terms x2x3, x33 . For i = 1 , we consider 

the given set U and obtain �(1)
1

= 2, �
(1)

2
= �

(1)

3
= 0 . Thus,

D = D1,1 is the constructed complementary decomposition for I  . Finally, we note 
that since the sequence of the x1-degrees in U is 2, 0, we do not need to construct 
D1,3.

D2,3 =
{(

1, {x2}
)
,
(
x3, {x2}

)
,
(
x
2

3
, {x2}

)}
,

D2,2 =
{
(1, �), (x3, �), (x

2

3
, �), (x2, �), (x2x3, �), (x2x

2

3
, �), (x2

2
, �), (x2

2
x3, �), (x

2

2
x
2

3
, �),

(
x
3

2
, {x2}

)}
,

D2,1 =
{
(1, �), (x3, �), (x

2

3
, �),

(
x2, {x2}

)}
.

D1,3 = {1, {x1, x2}), (x3, {x1, x2}), (x
2

3
, {x1, x2})} ,

D1,2 = {(1, {x1}), (x3, {x1}), (x
2

3
, {x1}), (x2, {x1}), (x2x3, {x1}), (x2x

2

3
, {x1}),

(x2
2
, {x1}), (x

2

2
x3, {x1}), (x

2

2
x
2

3
, {x1}), (x

3

2
, {x1, x2})} ,

D1,1 =
{
(1, �), (x3, �), (x

2

3
, �), (x2, �), (x2x3, �), (x2x

2

3
, �), (x2

2
, �), (x2

2
x3, �),

(x2
2
x
2

3
, �),

(
x
3

2
, {x2}

)
, (x1, �), (x1x3, �), (x1x

2

3
, �), (x1x2, �),

(x1x2x3, �), (x1x2x
2

3
, �), (x1x

2

2
, �), (x1x

2

2
x3, �), (x1x

2

2
x
2

3
, �),

(
x1x

3

2
, {x2}

)
,
(
x
2

1
, {x1}

)
,
(
x
2

1
x3, {x1}

)
,
(
x
2

1
x
2

3
, {x1}

)
,
(
x
2

1
x2, {x1, x2}

)}
.
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4  Complementary decompositions from Janet and Janet‑like bases

Janet 22, Sect.  15] presented an algorithm for the construction of a complemen-
tary decomposition from a Janet basis. Gerdt [14, Lem. 24] proposed a version that 
related the form of the cones to the Janet division. However, his proof is not com-
pletely correct. Algorithm 3 corresponds to the version appearing in [30, Alg. 5.2] 
(more precisely, an improved form contained in the errata to [30 obtainable at the 
web page of the author). It has been formulated in a manner that makes it appar-
ent that this algorithm does nothing but a breadth-first transversal of the Janet tree 
associated to the given monomial ideal. Thus this algorithm does not need any real 
computations, but simply writes down a complementary decomposition. All compu-
tations have already taken place when the Janet tree was determined as an extended 
form of the Janet basis.

Theorem 20 Let the ideal I  be generated by the terms t1,… , tm . Algorithm 3 ter-
minates in finitely many steps and is correct. Its arithmetic complexity is O(nm2�2n) 
where

Proof It follows from [30, Lem. 3.1.19] that the set

contains a Janet basis of I  . The maximal number of elements in this set is m�n . On 
the other hand, the construction of the Janet tree corresponding to the Janet basis of 
I  needs O(m2�2n + mn�n) comparisons, see [23, Thm. 4.2]. By the structure of the 
algorithm, it is seen that the number of constructed cones is at most nm�n+1 . These 
arguments show that the arithmetic complexity of the algorithm is O(nm2�2n).  ◻

Remark 21 If we compare the algorithmic complexity of the Algorithms 1 and 2 on 
the one hand and of Algorithm 3 on the other hand (and in particular the number of 

� = max
i,j

degi(tj) .

{x�ti ∣ i = 1,… ,m, x� ∣ lcm(t1,… , tm)∕ti}
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constructed cones), then we see that in the algorithms from the last section the cardi-
nality m of the generating set of I  is the decisive factor, as it appears in the form mn . 
For the algorithm using a Janet basis, the maximal degree � in an individual variable 
is the dominant factor, whereas m plays only a minor role. Thus for ideals with a 
large number of generators it should be preferable. One should also note that the fac-
tor m�n coming from the use of [30, Lem. 3.1.19] is generally much larger than the 
actual size of the Janet basis.

If the monomial ideal I ⊴ P is quasi-stable and H is its Pommaret basis, then 
H is also the minimal Janet basis of I  by [16, Thm. 17]. In this situation, for each 
term t ∈ H , we have the equality MJ(t,H) = MP(t) of the sets of Janet and Pom-
maret multiplicative variables. This means that in order to compute a comple-
mentary decomposition for a quasi-stable ideal, we can apply Algorithm 3 to the 
minimal Pommaret basis of I .

Remark 22 Note that we can apply Algorithm 3 to any Janet basis H, i.  e. also to 
non-minimal bases. Since the minimal Janet basis Hmin is a subset of any other Janet 
basis H of the same ideal, each Janet class of the minimal basis Hmin is also a Janet 
class of H. This observation implies that each leftmost child node chosen in Line 5 
of Algorithm 3 when applied to Hmin is also chosen when the algorithm is applied 
to H. Hence, in the complementary decomposition obtained from the basis H, we 
get at least as many cones as in the decomposition obtained from Hmin . Since a term 
t ∈ Hmin possesses potentially less Janet-multiplicative variables when considered as 
element of the non-minimal basis H, some of these cones may be of smaller dimen-
sion than their counterparts in the decomposition obtained from Hmin . Hence the 
decomposition obtained from H will contain in general strictly more cones than the 
decomposition obtained from Hmin . So we may speak of the minimal Janet comple-
mentary decomposition which is obtained from the minimal Janet basis Hmin.

In the remainder of this section, we will describe how we can obtain the Janet 
complementary decomposition of a monomial ideal I  already from its minimal 
Janet-like basis, which is always a subset, and most often a proper subset, of the 
minimal Janet basis of I  . As a starting point, we recall the following result which 
explains how the minimal Janet-like basis is related to the minimal Janet basis.

Proposition 23 Given a Janet-like basis U ⊂ T  of the monomial ideal I = ⟨U⟩ ⊴ P , 
a Janet basis U′ of the same ideal is defined by

Proof The assertion follows immediately from elementary properties of the Janet 
and Janet-like division, respectively. See also [20, Thm.  3], a related, though not 
identical, statement.   ◻

U� =

{
t ⋅ x� ∣ t ∈ U ∧ x� ∣

∏

x
pa
a ∈NMP (t,U)

xpa−1
a

}
.
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Algorithm  3 traverses the Janet tree of the minimal Janet basis and adds for 
each node which is the left-most node of its parent certain cones to the comple-
mentary decomposition. The Janet-like tree of the same ideal can be regarded as 
a subtree of this tree. To be able to read off the Janet complementary decompo-
sition already from this subtree, one needs to relate the minimal child nodes of 
the larger tree to certain nodes of the smaller tree. This is indeed possible with 
Proposition 23.

Proposition 24 Let I ⊴ P be a monomial ideal with Janet basis U′ and Janet-like 
basis U. We denote by JT and JLT its Janet and Janet-like tree, respectively. Moreo-
ver, for any tree S, we denote by Lef t i(S) the set of nodes at level i which are the 
minimal children of their respective parent nodes. Then for each i with 1 ≤ i ≤ n the 
sets Lef t i(JT) , Lef t i(JLT) are related by

Proof Let (t,V) ∈ Lef t i(JT) be a minimal child node at level i in the Janet tree. The 
term t is of the form t̃|x1=⋯=xi−1=1

 , with t̃ ∈ U� . Then, by Proposition 23, there is a 
term s̃ ∈ U such that s̃ ∣ t̃ . We can consider its projection s ∶= s̃|x1=⋯=xi−1=1

 ; this 
term is contained in a node (s,V ,M) ∈ JLT  . Moreover, again by Proposition 23, we 
have the degree conditions degj(s) ≤ degj(t) < degj(s) + hj , where hj is defined by 
x
hj

j
∈ M , for all j > i with xj ∉ V  . Now, if degi (s) < degi (t) were true, then s̃ would 

induce a term x
degi (s)

i
(t̃∕x

degi (t)

i
) in the Janet basis U′ , a contradiction to 

(t,V) ∈ Lef t i(JT) . Hence degi (s) = degi (t) . In addition, if (s,  V,  M) were not in 
Lef t i(JLT) , then there would be a node (u,W,N) ∈ Lef t i(JLT) with 
degi (u) < degi (s) but with degj (u) = degj (s) for all j > i . In particular, we would 
have N ∩ K[xi+1,… , xn] = M ∩ K[xi+1,… , xn] . Hence it would induce a node 
(v,W) ∈ JT  with degi (v) = degi (u) and degj (v) = degj (t) for all j > i . This is again 
a contradiction to (t,V) ∈ Lef t i(JT) . Thus, we have shown the inclusion ⊆ in 
equality (3).

Conversely, if (s,V ,M) ∈ Lef t i(JLT) and (t,V) ∈ JT  is a node in the Janet tree 
derived from it by the rules stated in equality (3), then, using a basic fact about the 
Janet-like division [20, Prop. 2], it is not hard to see that (t, V) is indeed in Lef t i(JT) , 
proving the inclusion ⊇ and finishing the proof.   ◻

The very technical Proposition 24 has the benefit that the Janet complementary 
decomposition of a monomial ideal I  can, with its help, be read off already from 
its Janet-like tree. Moreover, the cones come in a natural grouping. This grouping 
helps to write the decomposition down in a much better readable way. The cones 
of the decompositions are sorted into groups. The cones in each group have the 
same multiplicative variables and there is one cone in the group whose vertex 
divides all other cone vertices of the group:

(3)
Lef t i(JT) =

{

(t,V) ∣ ∃(s,V ,M) ∈ Lef t i(JLT):s ∣ t ∧ (t∕s) ∣
∏

xhaa ∈ M,
a > i

xha−1a

}

.
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Corollary 25 Let I ⊴ P be a monomial ideal and let JLT be its Janet-like tree. Let 
MinNodes( I ) denote the set of nodes in JLT which are minimal children of their 
respective parent nodes. For each such node (x� ,V ,M) , let k denote its level in the 
tree. Then, a complementary decomposition of I  is given by

Proof The assertion is an immediate consequence of Proposition 24 and the correct-
ness of Algorithm 3.   ◻

Corollary 25 induces Algorithm 4 computing a complementary decomposition 
of a monomial ideal from a Janet-like basis of it.

The following example serves to illustrate how Proposition 24 can be applied.

Example 26 Let I = ⟨xn
1
,… , xn

n
⟩ ⊂ P . Its minimal Janet basis has 

1 + n +⋯ + nn−1 = (nn − 1)∕(n − 1) elements and its Janet tree has, including the 
root, (

∑n−2

k=0

∑k

�=0
n�) + 2(nn − 1)∕(n − 1) = O(nn−1) nodes. There are nn−1 nodes 

in the tree which contribute cones to the Janet complementary decomposition. 
They are all at the lowest level 1 of the tree, and they are of the form (t, V, M) with 
deg1 (t) = n and V ⊆ {x1} . This means that each of them contributes exactly n zero-
dimensional (one-element) cones to the complementary decomposition of I .

By contrast, the minimal Janet-like basis of I  is equal to its minimal gen-
erating set, it has n elements and its Janet-like tree has (counting also the root) 
n + (n2 + n)∕2 nodes, of which exactly one contributes cones to the complementary 
decomposition. It is the node 

(
xn
1
, �, {xn

2
,… , xn

n
}
)
 at level 1. It yields the complemen-

tary decomposition of I  without any further computation:

(4)

 =
⋃

(x� ,V ,M) ∈ MinNodes( )
with parent (x�,V ′,M′)

{

(

x� ⋅ x� , {x1,… , xk−1} ∪ V ′) ∣ x� ∣ x�k−1k

∏

xhaa ∈M′

xha−1a

}

.

D =
{
(x�, �) ∣ x� ∣ xn−1

1
⋯ xn−1

n

}
.
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If I ⊂ P is a monomial ideal, then its complementary decomposition obtained 
from its Janet-like tree as described in (4) can be used to derive a representa-
tion of the Hilbert polynomial and function of I  as linear combinations of bino-
mial coefficients. By (4), the cones of the Janet complementary decomposi-
tion D of I  can be collected into groups. Each group contains all cones of the 
form (t ⋅ s,Yt) where (t, V, M) is a node in the Janet-like tree of I  and the term 
s varies in the complement of a zero-dimensional irreducible monomial ideal 
At = ⟨x�1

a1
,… , x

�r

ar
⟩ ⊴ �[xa1 ,… , xar ] ⊂ P . Note that, according to (4), the genera-

tors of At are the non-multiplicative powers M of the node (t, V, M) together with 
x
�k
k

 , where (x𝜈 , Ṽ , M̃) is the minimal child node of (t, V, M) at level k. The main 
point here is that all cones in such a group have the same set of multiplicative 
variables Yt . Define the compressed decomposition Dc ⊆ D which contains for 
each such group only its minimal representative (t, Yt) together with the irreduc-
ible ideal At . The Hilbert function of At has non-zero values only for integers i 
in the range 0 ≤ i ≤ mt ∶=

∑r

j=1
(�j − 1) . Additionally, we write again qt = deg (t) 

and kt = |Yt| . Summing up, we then obtain:

Proposition 27 With the above notations and assumptions, the Hilbert function of 
the monomial ideal I  is

Moreover, the Hilbert polynomial of I  is obtained by simply dropping the contribu-
tions of zero-dimensional cones and all Kronecker-Iverson symbols:

If we compare (5) with the expression obtained by applying (2) to the Janet 
complementary decomposition, then it will in general have much less sum-
mands. However, it is not fully explicit, as the numbers HFAt

(i) (the h-vectors 
of the zero-dimensional ideals At ) have to be computed for each vertex  t. Thus, 
one may say that Proposition  27 reduces the problem of computing the Hil-
bert function of an arbitrary monomial ideal to the determination of the Hilbert 
function of zero-dimensional irreducible ideals. As these are very special ide-
als, it is not difficult to obtain the required values. For simplicity, we work with 
A = ⟨x�1

1
,… , x

�r

r ⟩ ⊴ �[x1,… , xr] . It is easy to see that the Hilbert series of the 
ideal A is

(5)

HF I (q) =
∑

(t,Yt ,At)∈D
c

kt>0

mt∑

i=0

[
q ≥ qt + i

]
HFAt

(i)

(
q − (qt + i) + kt − 1

kt − 1

)

+
∑

(t,Yt ,At)∈D
c

kt=0

mt∑

i=0

[
q = qt + i

]
HFAt

(i) .

(6)
HP I (q) =

∑

(t, Yt,At) ∈ Dc

kt > 0

mt∑

i=0

HFAt
(i)

(
q − (qt + i) + kt − 1

kt − 1

)
.
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Hence, the values to be computed are just the coefficients of zk in HSA(z) for all 
0 ≤ k ≤

∑r

i=1
(�i − 1) . One way to proceed is to use known fast algorithms for poly-

nomial multiplication, using fast Fourier transforms and related techniques.
However, irreducible monomial ideals are highly structured and possess a sym-

metry which can be exploited to achieve a lower complexity. Observe that the map

is a bijection with inverse f −1 = f  . This implies HFA(k) = HFA

��∑r

i=1
(�i − 1)

�
− k

�
 

for all integers 0 ≤ k ≤
∑r

i=1
(�i − 1) . Hence the computation of the first half of the 

values HFA(k) suffices. Assume now that we have already expanded the Hilbert 
series of the “truncated” ideal Ã = ⟨x�1

1
,… , x

�r−1

r−1
⟩ ⊴ �[x1,… , xr−1] in one variable 

in the explicit form HSÃ(z) =
∑d̃

j=0
cjz

j and want to compute now the Hilbert series 
HSA(z) =

∑d

j=0
djz

j of the original ideal A . This is then easily achieved by multiply-
ing HSÃ with (1 + z +⋯ + z𝓁r−1) . The coefficients are dj =

∑j

k=0
ck for 

0 ≤ j ≤ �r − 1 and dj =
∑j

k=j−�r+1
ck for �r − 1 ≤ j ≤ ⌈d∕2⌉ . This implies that all 

these new coefficients can be obtained by either one single addition or by an addi-
tion followed by a subtraction. The number of required additions and subtractions is 
O(d). Overall, building up the Hilbert series HSA(z) step by step, we see that 
O
(
r2 ⋅ 𝓁

)
 additions are needed, where � = max{�i ∣ i = 1,… , r}.

5  Hironaka’s construction

Using ideas of Hironaka [21, §4], one can design an algorithm for the computation 
of a complementary decomposition of a quasi-stable monomial ideal. Before giving 
the algorithm, let us first recall Hironaka’s combinatorial definitions, leading to a 
description of a complementary decomposition via projection operators.

Construction 28 (Hironaka’s construction) Let I ⊴ P = �[x1,… , xn] be a mono-
mial ideal and let k ∈ {0, 1,… , n} . Consider the projection

For t ∈ T  , define the monomial cone Ck(t) = C{x1,…,xk}
(t) . Finally, let 

Nk( I ) ∶= C{xk+1}
( prk+1( I ) ∩ T) ⧵ prk( I ) . Then, a complementary decomposition 

of the ideal I  is given by T ⧵ I =
⨆n−1

k=0
Ck(Nk( I )) , where 

Ck(Nk( I )) =
⋃

s∈Nk( I )
Ck(s).

Construction 28 works for arbitrary monomial ideals I  , but the decompositions 
obtained by it can be infinite; more precisely, the set 

⋃n−1

k=0
Nk(I) can be infinite.

HSA(z) =

r∏

i=1

�i−1∑

j=0

zi .

f ∶ T ⧵A → T ⧵A, u ↦

( r∏

i=1

x
�i−1

i

)
∕u

prk ∶ T → T, t ↦ t|x1=⋯=xk=1
.
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Example 29 Consider first the monomial ideal I ∶= ⟨x1x2⟩ ⊴ �[x1, x2] . Since no 
multiindex of class 2 is contained in I  , this ideal is not quasi-stable. Observe that 
pr1( I ) ∩ T = {x�

2
∣ � ≥ 1} and pr2( I ) ∩ T = {1} . Hence, Hironaka’s construction 

yields the two sets

Thus we obtain the infinite complementary decomposition

Consider now the quasi-stable ideal J = ⟨x1x2, x22⟩ = ⟨ I , x2
2
⟩ . As for I  , we have 

pr1(J) ∩ T = {x�
2
∣ � ≥ 1} and pr2(J) ∩ T = {1} , but this time Hironaka’s construc-

tion yields the two sets

This time we obtain the finite complementary decomposition

In the remainder of this section, we show show that those monomial ideals for 
which Hironaka’s construction yields a finite complementary decomposition are 
exactly the quasi-stable monomial ideals (or equivalently, by Proposition 7, the ide-
als with finite Pommaret bases).

First, we present Algorithm 5, which computes the complementary decomposition 
from Construction 28 given a minimal Pommaret basis as input. Recall from Remark 5 
the notion of Pommaret autoreduction, which we call as a subroutine in Algorithm 5.

N0( I ) = Cx1

(
{x�

2
∣ � ≥ 1}

)
⧵ I =

{
xk
1
x�
2
∣ k ≥ 0,� ≥ 1

}
⧵ I = {x�

2
∣ � ≥ 1} ,

N1( I ) = Cx2

(
{1}

)
⧵ pr1( I ) =

{
x�
2
∣ � ≥ 0

}
⧵
{
x�
2
∣ � ≥ 1

}
= {1}.

T ⧵ I =
(⨆

n∈ℕ

C0(x
n
2
)
)
⊔ C1(1) .

N0(J) = Cx1

(
{x�

2
∣ � ≥ 1}

)
⧵ J =

{
xk
1
x�
2
∣ k ≥ 0,� ≥ 1

}
⧵ J = {x2} ,

N1(J) = Cx2

(
{1}

)
⧵ pr1(J) =

{
x�
2
∣ � ≥ 0

}
⧵
{
x�
2
∣ � ≥ 1

}
= {1} .

T ⧵ J = C0(x2) ⊔ C1(1) .
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Proposition 30 Given the minimal Pommaret basis of a quasi-stable monomial ideal 
as input, Algorithm 5 terminates and its output is exactly the decomposition from 
Hironaka’s construction.

Proof The algorithm obviously terminates on its input. Let k ∈ {1,… , n} . We will 
show iteratively that:

– At the start of the kth iteration of the outer for loop, H is the minimal Pommaret 
basis of prk−1( I ).

– During this iteration of the outer for loop, exactly the cones Ck−1
(
Nk−1( I )

)
 from 

Hironaka’s decomposition of I  are added to D.
– At the end of this iteration of the outer for loop, H is the minimal Pommaret 

basis of prk( I ).

So let k = 1 . Obviously, H = H is the minimal basis of the input ideal I = pr0( I ) 
at the start of the first iteration of the outer for loop. The elements of class 1 are 
collected in A and the set pr1(A) is assigned to B. Let x� ∈ pr1( I ) be a term in the 
first projection ideal. Then x� is divisible by either an element of B = pr1(A) or by 
an element of pr1(H ⧵ A) , but not by any element of A, proving that (H ⧵ A) ∪ B 
generates pr1( I ) . Let x� ∈ I  with pr1(x�) = x� ; then x� possesses a Pommaret divi-
sor x� ∈ H . One can easily show that pr1(x�) is a Pommaret divisor of pr1(x�) = x� . 
Putting things together, ( H ⧵ A) ∪ B is a Pommaret basis of pr1( I ) and its autore-
duction then yields the minimal Pommaret basis of pr1( I ) . Note that, by these argu-
ments, we have shown that pr1( I ) is quasi-stable.

Now we consider the cones that are added to D in this iteration of the loop. It 
is obvious that their vertices are elements of C{1}( pr1( I )) , but not of pr0( I ) = I  . 
So all added cones are of the form C0

(
N0( I )

)
 from Hironaka’s construction. Con-

versely, let x� ∈ N0( I ) . Then x� ∉ I  , but there exists an exponent � > 0 such that 
x𝓁
1
⋅ x� ∈ I  . For the minimal � with this property, we have that x�

1
x� is an element 

of the minimal Pommaret basis of the input ideal I  , since otherwise x𝓁−1
1

⋅ x� ∈ I  , 
contradicting the minimality of � . Now, in order to see that C0(x� ) is added to D in 
this iteration of the loop, it only remains to be shown that cls (x𝓁

1
⋅ x� ) = 1 . But this 

is clear, since � > 0 . So, this multiindex is of class 1 and an element of the mini-
mal Pommaret basis of the input ideal, proving that x� is a (zero-dimensional) cone 
added to D in this iteration of loop.

If k > 1 , similar arguments lead to the desired result, since the for loop gets the 
input H , which at this point of the algorithm is the minimal Pommaret basis of the 
quasi-stable ideal prk−1( I ) .   ◻

Example 31 We illustrate how Algorithm 5 works by applying it to the quasi-stable 
monomial ideal I = ⟨H⟩ ⊴ �[x1, x2, x3] generated by the minimal Pommaret basis

– In the first iteration of the outer for loop, we have 

H =
{
x3
3
, x3

2
x3, x

3
2
x2
3
, x1x2x3, x1x

2
2
x3, x1x2x

2
3
, x1x

2
2
x2
3

}
.
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 and the cones C0
(
{x2x3, x

2
2
x3, x2x

2
3
, x2

2
x2
3
}
)
 are added to D . The set 

 is involutively autoreduced to the minimal Pommaret basis 
{
x3
3
, x2x3, x2x

2
3

}
.

– In the second iteration of the outer for loop, we have A = {x2x3, x2x
2
3
} 

and B = {x3, x
2
3
} and the cones C1

(
{x3, x

2
3
}
)
 are added to D . The set 

(H ⧵ A) ∪ B = {x3
3
, x3, x

2
3
} is involutively autoreduced to the minimal Pomma-

ret basis {x3}.
– In the third iteration of the outer for loop, we have A = {x3} and B = {1} . The 

cone C2
(
{1}

)
 is added to D . The set (H ⧵ A) ∪ B = {1} is computed. (This is 

a general property of the algorithm: In the last instance of the outer for loop, 
always the set {1} is obtained.)

Since we can apply Algorithm  3 to a Janet basis of an arbitrary monomial 
ideal, it also works for quasi-stable ideals where any Janet basis is simultaneously 
a Pommaret basis. Moreover, since the Janet algorithm only performs a traversal 
of the Janet tree, it has a lower complexity than Algorithm 5 performing Pomma-
ret autoreductions in intermediate steps. Hence, for the computation of a comple-
mentary decomposition, it is preferable to apply Algorithm 3 whenever possible. 
The following result states that in the considered situation the outputs of both 
algorithms are identical.

Theorem  32 Given the minimal Pommaret basis H of the quasi-stable ideal I  as 
input, Algorithms 3 and 5 produce the same output.

Proof Choose an index k ∈ {1,… , n} and let x� ∈ H be a term contained in the 
Janet class H[�k+1,…,�n]

 with �k minimal. Algorithm 3 adds all cones of the form

with i ∈ {0,… ,�k − 1} to D . If we can show that Algorithm 5 does the same, then 
we are done: under this assumption, the algorithm adds at least all cones to the com-
plementary decomposition which are found by Algorithm 3, but then, by the dis-
jointness of such decompositions, it cannot add any additional cones, meaning the 
decomposition produced by Algorithm 5 is exactly the same as the decomposition 
found by Algorithm 3. Moreover, we may assume that 𝜇k > 0 , since if �k = 0 , then 
x� does not contribute any monomial cones to D during Algorithm 3.

Define I q as the ideal generated by H at the very end of the qth iteration of the 
outer for loop of Algorithm 3. Certainly, t� ∶= x�|x1=⋯=xk−1=1

∈ I k−1 . We need to 
show that no strict Pommaret divisor of t� is in I k−1 , since if this is the case, then t� 
belongs to H also at the beginning of the kth iteration of the outer for loop of Algo-
rithm 3 (that is, after Pommaret autoreduction) applied to H, and the desired mono-
mial cones are then added to D in this loop iteration.

A =
{
x1x2x3, x1x

2
2
x3, x1x2x

2
3
, x1x

2
2
x2
3

}
, B =

{
x2x3, x

2
2
x3, x2x

2
3
, x2

2
x2
3

}

(H ⧵ A) ∪ B =
{
x3
3
, x3

2
x3, x

3
2
x2
3
, x2x3, x

2
2
x3, x2x

2
3
, x2

2
x2
3

}

(
xi
k
⋅ (x�|x1=⋯=xk=1

), {1,… , k − 1}
)



812 A. Hashemi et al.

1 3

So let us suppose t� ∶= x
�k
k
x
�k+1
k+1

⋯ x
�n
n ∈ H with 𝜈k < 𝜇k and t� ∣P t� . Observe 

that if s > 0 , then t�|xk=1 = t�|xk=1 . Let x� ∈ �[x1,… , xk−1] be a term such that 
x� ∶= x� ⋅ t� ∈ H — such a term must exist, because in order to construct I k−1 dur-
ing Algorithm 3, coming from elements of H, one only divides out powers of the 
first k − 1 variables or leaves out some superfluous terms during autoreductions. We 
must distinguish several cases:

– cls (x�) ≥ k : This case cannot occur, since x� would be a strict Pommaret divisor 
of x� in this case: x� = 1 and x� = t� ∣P t� ∣P x� . This is a contradiction to x� ∈ H.

– cls (x𝜈) < k and 𝜈k > 0 : Then x� is in the Janet class H[�k+1,…,�n]
 and 𝜈k < 𝜇k , a 

contradiction to the minimality of �k.
– cls (x𝜈) < k and �k = 0 : If also t�|xk=1 = t�|xk=1 , then x� is in the Janet class 

H[dk+1,…,dn]
 and �k = 0 , which is a contradiction to the minimality of �k (recall 

that 𝜇k > 0 ). If t�|xk=1 ≠ t�|xk=1 , then the nontrivial Pommaret-nonmultiplica-
tive prolongation x� ⋅ (t�|xk=1) of x� possesses a unique Pommaret divisor x� 
in H. If cls (x𝜏) < k , then x� is in the Janet class H[�k+1,…,�n]

 and �k = 0 , again 
a contradiction to the minimality of �k . And finally, cls (x�) ≥ k cannot occur, 
since then x� would be a proper Pommaret divisor of x� , impossible because of 
the Pommaret autoreducedness of H.   ◻

   ◻

Example 33 Consider, as in Example  31, the quasi-stable ideal 
I = ⟨x3

3
, x3

2
x3 , x1x2x3⟩ . We follow the steps of Algorithm 3 for I  to see that it pro-

duces indeed the same output as Algorithm 5. Note that I  has the minimal Janet 
(and Pommaret) basis

– For k = 3 , we have the non-empty Janet class H[] = H at level k + 1 = 4 . It cor-
responds to the root of the Janet tree and its leftmost child node is (x3, �) . We add 
the cone 

(
1, {x1, x2}

)
 to D.

– For k = 2 , we have the non-empty Janet classes H[3], H[2], H[1] at level k + 1 = 3 
and their left-most child nodes are 

(
x3
3
, {x3}

)
 , (x2x23, �) , and (x2x3, �) . For the first 

node, no cone is added, since the x2-degree of its first entry is zero. The two 
cones that are added are 

(
x2
3
, {x1}

)
 and 

(
x3, {x1}

)
.

– For k = 1 , we have the non-empty Janet classes 

at level k + 1 = 2 . Only the last four classes yield leftmost child nodes that 
contribute cones to D , namely 

(
x1x2x3, {x1}

)
 , 
(
x1x

2
2
x3, {x1}

)
 , 
(
x1x2x

2
3
, {x1}

)
 and (

x1x
2
2
x2
3
, {x1}

)
 . The added cones are, accordingly, 

H =
{
x3
3
, x3

2
x3, x

3
2
x2
3
, x1x2x3, x1x

2
2
x3, x1x2x

2
3
, x1x

2
2
x2
3
} .

H[0,3], H[3,1], H[3,2], H[1,1], H[2,1], H[1,2], H[2,2]

(x2x3, �), (x
2
2
x3, �), (x2x

2
3
, �), (x2

2
x2
3
, �) .
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Remark 34 As just mentioned, Algorithms 3 and 5 produce the same number of 
cones (see Theorem 20). However, since in the latter algorithm we apply a Pomma-
ret autoreduction procedure, its complexity is not easily determined.

Proposition 35 Let I  be a monomial ideal. Hironaka’s construction yields a finite 
complementary decomposition of I  , if and only if I  possesses a finite Pommaret 
basis.

Proof If I  is quasi-stable, then Hironaka’s construction is realised by Algorithm 5, 
which obviously yields a finite output. The correctness proof of the algorithm (see 
Proposition 30) then finishes this direction of the proof.

If Hironaka’s construction applied to I  yields a finite decomposition, then it is a 
complementary decomposition of I  of the form

Define the set H ∶=
⋃n−1

k=0

�⋃
𝓁>k

�
x
𝓁
⋅ Nk( I )

��
∩ I ⊂ I  . This set is obviously 

finite. We will now show that it is a Pommaret basis of I .
Let t ∈ T ∩ I  be an arbitrary term in I  and set a ∶= cls (t) . There is a mini-

mal integer � ∈ {a, a + 1,… , n} such that pr
�
(t) ∉ I  (assume I ≠ P ; if I = P , 

then it is obviously quasi-stable) . Since pr
�−1(t) ∈ I  , there is an integer d with 

0 ≤ d < deg
�
(t) such that s ∶= xd

�
pr

�
(t) ∉ I  and x

𝓁
⋅ s = xd+1

𝓁
pr

𝓁
(t) ∈ I  . We 

claim that there is an integer k ≤ � such that s ∈ Nk( I ).
Since s ∉ I  , there is some integer b ∈ {0, 1,… , n − 1} and a term u ∈ Nb( I ) 

such that s ∈ Cb(u) by equality (7). If b ≤ � , then obviously u = s and s ∈ Nb( I ) , 
and setting k ∶= b yields the claim. Otherwise, b > � . From definition of Nb( I ) , 
we know that u ∉ prb( I ) , but u ∈ C{b+1}( prb+1( I )) . In particular, cls (u) ≥ b + 1 . 
By definition of u, we must also have degr(u) = degr(s) for all r ≥ b + 1 . But 
now it is clear that u is exactly prb(s) , and since s = xd

�
pr

�
(t) , we then have 

u = prb(s) = prb
(
xd
�
pr

�
(t
)
) = prb(t) , contradicting u ∉ prb( I ) . Thus we have 

proven the claim.
Now, obviously x

�
s = xd+1

�
pr

�
(t) ∈ H is a Pommaret divisor of t. Since t was an 

arbitrary element of I  , this observation finally proves that H is a finite Pommaret 
basis of I  and we are done.   ◻

6  Primary and irreducible decompositions

The cone decompositions of the complements of monomial ideals that we have stud-
ied so far are not the only way in which one can decompose such a complement. 
Primary and irreducible decompositions of monomial ideals are representations of 
such an ideal as the intersection of associated ideals with an easier structure. Dually, 
they can be interpreted as a representation of the complement of the decomposed 

(7)T ⧵ I =

n−1⨆

k=0

Ck
(
Nk( I )

)
.
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ideal as a union of the complements of ideals that are easier to study. In this section, 
we review the definitions of these different types of decompositions, study how they 
are related to each other and finally give an algorithm to compute minimal primary 
decompositions of quasi-stable ideals using Pommaret bases.

Remark 36 A monomial ideal I ⊴ P is prime if and only if it can be generated by a 
set of variables. A monomial ideal Q is primary to I = ⟨xi1 ,… , xir⟩ , if and only if it 
has a generating set that only depends on the variables generating I  and that con-
tains for each xij a pure power xkj

ij
 . The associated primes of a monomial ideal are 

again monomial ideals. A primary decomposition of a monomial ideal I  is a repre-
sentation I = Q1 ∩⋯ ∩Qk with each Q

�
 a primary monomial ideal. Such a decom-

position is called minimal, if the associated primes 
√
Q

�
 are pairwise different and 

none of the Q
�
 can be omitted in the representation.

Definition 37 A monomial ideal Q ⊴ P is called irreducible, if there is a term 
x� ∈ T  such that Q = ⟨x𝜇i

i
∣ 1 ≤ i ≤ n, 𝜇i > 0⟩ . An irreducible decomposition of a 

monomial ideal I ⊴ P is a decomposition I = Q1 ∩⋯ ∩Qk of I  into irreducible 
monomial ideals Q1,… ,Qk . Such a decomposition is called irredundant, if none of 
the ideals Q

�
 can be omitted in the decomposition.

Remark 38 Since irreducible monomial ideals are obviously primary, it is clear 
that one can obtain a minimal primary decomposition from an irredundant irreduc-
ible decomposition by simply collecting, for each appearing prime, the irreduc-
ible components primary to it. Hence, irreducible decompositions can be regarded 
as being finer than primary ones. In turn, if an irredundant irreducible decom-
position I = Q1 ∩⋯ ∩Qk of the monomial ideal I  is known, then obviously 
T ⧵ I = (T ⧵Q1) ∪⋯ ∪ (T ⧵Qk) provides a decomposition of the complement of 
I  into sets which are easy to describe. A term x� is in the complement T ⧵Q of a 
monomial irreducible ideal Q , if and only if 𝜈i < 𝜇i for each variable xi dividing the 
term x� describing Q . This decomposition is of course not disjoint, unless I  is itself 
irreducible. Since cone decompositions are disjoint, they can be regarded as an even 
finer type of decomposition than the irreducible ones.

We now present a way of obtaining irreducible decompositions from cone 
decompositions. The key point is the following lemma.

Lemma 39 Let I ⊴ P be a monomial ideal and {(t,Xt) ∣ t ∈ U} a complementary 
cone decomposition of it, where U ⊆ T ⧵ I  is some subset. Then a (generally redun-
dant) irreducible decomposition of I  is given by:

Proof We show the equivalent statement

(8)I =
�

t∈U

⟨x�i+1

i
∣ t = x�, xi ∉ Xt⟩ .
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First, let x� ∉ I  be a term from the complement. Since {(t,Xt) ∣ t ∈ U} decomposes 
T ⧵ I  , there is a term t = x� ∈ U and a term x� ∈ �[Xt] such that x� = x�x� . This 
implies, for each variable xi ∉ Xt , �i ≤ �i , and hence x� ∉ ⟨x�i+1

i
∣ xi ∉ Xt⟩ . Thus, the 

inclusion ⊆ in (9) follows.
Now, let t = x� ∈ U be a term appearing in the cone decomposition of T ⧵ I  and 

let x� ∉ ⟨x�i+1

i
∣ xi ∉ Xt⟩ . An immediate consequence are the inequalities �i ≤ �i for 

each index i with xi ∉ Xt . Moreover, multiplying with powers of the variables from 
Xt , we find a term tx� ∈ t�[Xt] such that x� divides tx� . Observe that tx� ∉ I  and 
hence also x� ∉ I  . This proves the inclusion ⊇ in (9), finishing the proof.   ◻

Once we have obtained an irreducible decomposition, we can always extract 
an irredundant decomposition by discarding redundant components. Note that, if 
the irreducible ideals Q�,Q� with 

√
Q� =

√
Q�  are described by the terms x�, x� , 

then Q𝜇 ⊆ Q𝜈 if and only if x� divides x� . In this case we can discard the larger 
one, Q� . This means we have to keep those components Q� with x� maximal with 
respect to the partial order of divisibility. This amounts to a form of monomial 
autoreduction. It is desirable to be able to detect a number of redundant compo-
nents already from the structure of the cone decomposition. This can be done via 
Janet-like bases.

Proposition 40 Let U ⊆ T  be the minimal Janet-like basis of the monomial ideal 
I = ⟨U⟩ ⊴ P . Let the partial multiindex M = [�k,… ,�n] belong to a minimal node 
in the Janet-like tree of V induced by the term x� ∈ U and contributing cones to the 
complementary decomposition of I  . Then at most one of the cones belonging to M 
leads to an irredundant component in the irreducible decomposition of I  . This com-
ponent is given by the irreducible ideal

Proof By Corollary 25, the cones contributed to the complementary decomposition 
by the partial multiindex M all have the same set of multiplicative variables. Moreo-
ver, they are supported on terms of the form xi

k
x
�k+1+ak+1
k+1

⋯ x
�n+an
n  with 1 ≤ i < 𝜇k and 

x
ak+1
k+1

⋯ x
an
n �

∏
xb𝓁
𝓁
∈NMP (x� ,U) x

b
𝓁
−1

𝓁
 . Among them, there is only one term which is max-

imal with respect to divisibility, namely

Hence, applying Lemma 39, we are done.  ◻

Remark 41 The algorithm for the computation of irreducible decompositions 
implied by Proposition 40 can be seen to be largely equivalent to an algorithm devel-
oped by Gao and Zhu [13, Alg. 1]. There, also tree structures of monomial bases are 

(9)T ⧵ I =
�

t∈U

�
T ⧵ ⟨x�i+1

i
∣ t = x�, xi ∉ Xt⟩

�
.

(10)Q =
⟨
x
𝜇k

k

⟩
+
⟨
x
𝜇
�
+b

�

�
∣ � > k ∧ x

b
�

�
∈ NMP (x𝜇,U)

⟩
.

x
𝜇k−1

k
x
𝜇k+1

k+1
⋯ x𝜇n

n
⋅

∏

𝓁>k,x
b𝓁
𝓁
∈NMP (x𝜇 ,U)

x
b
𝓁
−1

𝓁
.
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exploited. While the authors report good performance for highly non-generic mono-
mial ideals [13, Sect. 7], their algorithm is not the fastest available. Roune’s slice 
algorithm [27, 28] shows overall better performance. However, his algorithm con-
tains Gao and Zhu’s approach as a special case for some choices of splitting strate-
gies [27, Sect. 5.2]. For another approach to the computation of irreducible decom-
positions via corner sets see [5].

With the results of the present paper in mind, it is not surprising that algorithms 
specialised to computing the irreducible decomposition will show better perfor-
mance than algorithms based on tree structures or Janet-like bases, because these 
give not only irreducible decompositions but also the finer disjoint complementary 
decompositions and hence compute more information.

Example 42 Let us revisit the ideal of Examples 31 and 33 and compute 
an irredundant irreducible decomposition for it. One can easily check that 
U = {x2

1
x2x3, x

3
2
x3, x

3
3
} is already the minimal Janet-like basis of the ideal 

I = ⟨U⟩ . The minimal nodes in the Janet tree are given by the partial multiin-
dices [1], [1,  1], and [2,  1,  1]. These are all induced by x� = x2

1
x2x3 ∈ U with 

NMP (x�,U) = {x2
2
, x2

3
} . Applying Proposition 40, we get the candidates J1 = ⟨x3⟩ , 

J2 = ⟨x2, x33⟩ , and J3 = ⟨x2
1
, x3

2
, x3

3
⟩ for components of the irreducible decomposi-

tion. Their associated primes are pairwise different, so the decomposition cannot be 
reduced any further and we are done: I = J1 ∩ J2 ∩ J3 is the desired irredundant 
irreducible decomposition.

We now specialise to quasi-stable monomial ideals. If we want to compute 
minimal primary decompositions for them, we can apply an extended version 
of Algorithm 5, which not only gives such a decomposition, but also Pommaret 
bases for each component, thus also proving that the components are quasi-stable, 
too.

Remark 43 From the operations performed during the first iteration of the for loop 
in Algorithm  5, it is immediately clear that after it, H is the minimal Pommaret 
basis of the saturation I ∶ ⟨x1⟩∞ . By one of the many equivalent characterisations 
of quasi-stable ideals, see e.g. [30, Prop.  5.3.4(iii)], we know that for I  the chain of 
inclusions

holds. From it and by a well-known property of ideal quotients, we get for any 
1 ≤ i < n the inclusions ( I ∶ ⟨xi⟩∞) ∶ ⟨xi+1⟩∞ ⊆ I ∶ ⟨xi+1⟩∞ . Since the saturations 
on the left hand side commute, we even get an equality. Hence Algorithm 5 com-
putes in the kth iteration of its for loop a Pommaret basis of the saturation I ∶ ⟨xk⟩∞
.

Now, let d be the smallest class of a term in the Pommaret basis H of I  and let D 
be maximal among the indices j such that no pure power xpj

j
 appears in H and for 

d ≤ j ≤ D let sj be the maximal exponent of the variable xj appearing in any term 
of H. Then, by [30, Prop. 5.3.9], a minimal primary decomposition of I  is given by

(11)I ∶ ⟨x1⟩∞ ⊆ I ∶ ⟨x2⟩∞ ⊆ ⋯ ⊆ I ∶ ⟨xn⟩∞
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where Q ⊆ {d, d + 1,… ,D} is the subset of those indices 1 ≤ j ≤ n for which we 
have a proper inclusion I ∶ ⟨xj⟩∞ ⊊ I ∶ ⟨xj+1⟩∞ and where 
Qj = I ∶ ⟨xj⟩∞ + ⟨xsj+1

j+1
, x

sj+2

j+2
,… , x

sD
D
⟩ . Note that Qj is a ⟨xj+1, xj+2,… , xn⟩-primary 

ideal.
To test the condition I ∶ ⟨xj−1⟩∞ ⊊ I ∶ ⟨xj⟩∞ in Algorithm 5, we note that it is 

equivalent to the condition that at least one term of class j appears in the Pommaret 
basis of I ∶ ⟨xj−1⟩∞ . This means that in the current iteration the set C ≠ ∅ is not 
empty. Whenever this condition is satisfied, we can add the primary ideal 
⟨H, x

sj

j
, x

sj+1

j+1
,… , x

sD
D
⟩ to the primary decomposition to be computed. For a concrete 

computation, see Example 44.

From Remark 43, we get Algorithm 6, an adapted version of Algorithm 5, which 
computes a minimal primary decomposition for a quasi-stable monomial ideal, 
instead of a complementary decomposition.

Example 44 Consider, as in Example 31, the quasi-stable ideal I = ⟨x3
3
, x3

2
x3, x1x2x3⟩ . 

Note that I  has the minimal Pommaret basis

We show how to obtain a minimal primary decomposition of this ideal using the com-
putations performed in Algorithm 5. We use the arguments described in Remark 43. 

⋂

d ≤ j ≤ D

j ∈ Q

Qj ,

H = {x3
3
, x3

2
x3, x

3
2
x2
3
, x1x2x3, x1x

2
2
x3, x1x2x

2
3
, x1x

2
2
x2
3
} .



818 A. Hashemi et al.

1 3

First, note that 1 is the least class of an element of H and 2 is the maximal index 
such that no pure power of its corresponding variable appears in H. We have the 
maximal exponents s1 = 1 and s2 = 3 . Since there is a term of class 1 in H, already 
in the first loop iteration we need to add ⟨H, x1, x

3
2
⟩ = ⟨x1, x32, x

3
3
⟩ to the minimal 

primary decomposition. The minimal Pommaret basis of the saturation I ∶ ⟨x1⟩∞ is 
computed as H1 = {x3

3
, x2x3, x2x

2
3
} (cf. Example 31). It has a term of class 2. Hence, 

we need to add ⟨H1, x
3
2
⟩ = ⟨x3

2
, x2x3, x2x

2
3
, x3

3
⟩ to the minimal primary decomposi-

tion as a new component. The minimal Pommaret basis of the saturation I ∶ ⟨x2⟩∞ 
is computed as H2 = {x3} (cf. again Example 31). It has a term of class 3 and hence 
we must add ⟨H2⟩ = ⟨x3⟩ as a third component to the minimal primary decomposi-
tion. The algorithm stops after this loop iteration. Hence, all in all, we obtain the 
minimal primary decomposition I = ⟨x1, x32, x

3
3
⟩ ∩ ⟨x3

2
, x2x3, x2x

2
3
, x3

3
⟩ ∩ ⟨x3⟩.

Example 45 Consider the quasi-stable ideal I = ⟨x1x3, x2x3, x23⟩ ⊴ �[x1, x2, x3] . 
We compute a minimal primary decomposition of I  using Algorithm  5 and 
Remark  43. Note first that I  is already given by its minimal Pommaret basis 
H = {x1x3, x2x3, x

2
3
} . There is a term of class  1 in H, so d = 1 , and the maximal 

index j such that no pure xj-power appears in H is D = 2 . Moreover, we have the 
maximal degrees s1 = 1 for x1 and s2 = 1 for x2 . Since there is a term of class  1, 
we must immediately add the primary ideal ⟨H, x

s1
1
, x

s2
2
⟩ = ⟨x1, x2, x23⟩ as a first 

component to the primary decomposition. Algorithm 5 now computes the minimal 
Pommaret basis H1 = {x3} of I ∶ ⟨x1⟩∞ . There is no term of class 2 in H1 , so no 
component is added to the primary decomposition in this loop iteration. In the next 
iteration, simply ⟨x3⟩ is added and the algorithm terminates. Thus, we get the mini-
mal primary decomposition I = ⟨x1, x2, x23⟩ ∩ ⟨x3⟩ , in which no ⟨x2, x3⟩-primary 
ideal appears.

7  Conclusions

In [34, pp. 23], Vasconcelos called complementary decomposition an approach that 
is not greatly useful computationally but it is often nice theoretically. We believe 
that the first part of his assessment is not really correct. Involutive bases have proven 
to be a very useful computational tool for many purposes and the key idea under-
lying both their theory and their algorithmics are combinatorial decompositions. 
The simplest application is that because of these induced decompositions one can 
straightforwardly read off Hilbert function and polynomial of the ideal generated 
by an involutive basis. But also deeper applications like the existence of an induced 
free resolution with a special structure (see e.g. [1–3] and references therein) rely 
strongly on these disjoint decompositions.

In this work, we discussed and compared different approaches to complementary 
decompositions proposed in the literature, in particular with respect to their com-
plexity. It turned out that the oldest approach, namely the one presented by Janet 
almost 100 years ago, is the most efficient one, in particular in the novel optimised 
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form based on Janet-like bases presented here. As already remarked above, the 
presented complexity of the algorithms using Janet(-like) bases includes and is 
dominated by the cost for computing the basis; the decomposition itself requires 
essentially only the operations needed to write it down. We considered here only 
monomial ideals. In actual applications, these typically arise as the leading ideals of 
polynomial ideals and either a Gröbner or a Janet(-like) basis is used to determine 
them. In this case, the advantage of Janet’s approach is even more pronounced.

When Gerdt and Blinkov [19, 20] introduced Janet-like bases, they were mainly 
concerned with the algorithmic advantages of this “condensed” form of Janet bases. 
But they also noted that it is possible to read off Hilbert function and polynomial 
directly from a Janet-like basis. However, they did not use a complementary decom-
position, but instead computed the Hilbert function as the difference of the volume 
functions of the full polynomial ring and the ideal, respectively (this approach is 
applicable for any involutive basis, as one needs only a cone decomposition of the 
ideal itself). Furthermore, they did not use any compressed form, but provided for 
the volume function of the ideal a sum containing as many summands as the Janet 
basis obtained by expanding the Janet-like basis contains elements. Thus strictly 
speaking, they did not really use the Janet-like basis, but derived exactly the same 
expression one obtains from the Janet basis. By contrast, our Proposition 27 is based 
on a compressed complementary decomposition and the expression for the Hilbert 
function given there contains generally much less summands than the one by Gerdt 
and Blinkov. Although it is not completely explicit, we have shown that it can be 
evaluated very efficiently.

We did not consider specifically Rees decompositions [24], i. e. decompositions 
where the sets of the multiplicative variables are always of the form {x1, x2,… , xk} 
for some index k depending on the vertex of the cone, which are of interest for some 
theoretical applications. Their construction requires some generic choices and an 
expensive algorithm was presented by Sturmfels and White [33]. Bayer [6] stud-
ied already earlier complementary Rees decompositions for the special case of 
Borel ideals under the name wild card partition. It is much simpler to obtain such 
decompositions directly from a Pommaret basis using Janet’s algorithm (the generic 
choices appear then in the construction of the Pommaret basis); a direct comparison 
with the algorithm of Sturmfels and White can be found in an appendix of [29]. We 
also mention that a rather redundant Rees decomposition can be immediately writ-
ten down in closed form from any Pommaret basis [30, Prop. 5.1.6]. However, the 
decompositions obtained by Janet’s algorithm contain usually much less cones.

Our results on Hironaka’s construction are mainly of theoretical interest. First of 
all, they clarify the meaning of his genericity condition (called Hironaka’s box con-
dition in [4] where it plays an important role). By Proposition 35, the construction 
yields a finite decomposition only for ideals from a well-known class, namely for 
quasi-stable ideals. This observation shows again that Hironaka worked implicitly 
frequently with Pommaret bases. Then Theorem  32 shows that Janet’s algorithm 
produces for such ideals the same result as Hironaka’s construction, but typically 
much more efficiently. However, as we discussed in the last section, Hironaka’s 
construction actually provides more than just a complementary decomposition. 
Using Algorithm 6, a slight extension of Hironaka’s construction, it determines as 
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“by-product” Pommaret bases of the chain of saturations associated with any quasi-
stable ideal and this chain contains all information required to write down an irre-
ducible primary decomposition of the ideal.
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