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Abstract

Background:Different regression approaches may be useful to predict dynamics of cop-

per (Cu), an essential element for plants and microorganisms that becomes toxic at

increased contents, in soils.

Aim: Our objective was to explore the usefulness of mixed-effects modeling and rule-

based models for a description and prediction of Cu contents in aqua regia (CuAR) in

surface soils using site, pH, soil organic carbon (SOC), and the cation exchange capacity

(CEC) as predictors.

Methods: Three sites in northern Germany were intensively monitored with respect to

CuAR and SOC contents, pH, and CEC. Data analysis consisted of calibrations using the

entire data set and of calibration/validation approaches with andwithout spiking.

Results: There was no consistent temporal trend, so data could be combined for the sub-

sequent regressions. Calibration using the entire data set and calibration/validation after

random splitting (i.e., pseudo-independent validation) were successful for mixed-effects

and cubist models, with Spearman’s rank correlation coefficients rs ranging from 0.83 to

0.91 and low rootmean squared errors (RMSEs). Both algorithms included SOC, CEC, and

pH as essential predictors, whereas site was important only in the mixed-effects models.

Three-foldpartitioningof thedata according to site to create independent validationswas

again successful for the respective calibrations, but validation results were variable, with

rs ranging from 0.04 to 0.76 and generally high RMSEs. Spiking the calibration samples

resulted in generally marked improvements of the validations, with rs ranging from 0.45

to 0.67 and lower RMSEs.

Conclusions:Overall, the information provided by SOC, pH, andCEC is beneficial for pre-

dicting CuAR contents in a closed population of sites using either mixed-effects or cubist

models. However, for a prediction of CuAR dynamics at new sites in the region, spiking is

required.
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1 INTRODUCTION

Copper (Cu), a micronutrient, is essential for plant growth, and ade-

quate Cu concentrations in crop tissues are usually considered to be

in the range of 5–30 mg kg–1 (Adriano, 2005). At high concentrations

in soils, however, Cu is a toxic pollutant for plants, microorganisms

and other living organisms (Anatole-Monnier, 2014; Zhou et al., 2011).

Its typical oxidation state in soils is +II, but compounds with Cu+I

or elementary Cu0 may also exist. Cu concentrations in soils consist

of geogenic and anthropogenic contributions, to which agricultural

management, especially organic fertilization and application of Cu-

containing pesticides, can be of quantitative importance (Kamermann

et al., 2015; Panagos et al., 2018). For European surface soils, Ballabio

et al. (2018) reported the highest mean soil Cu concentrations for

vineyards (49.3 mg kg–1), followed by olive groves and orchards, which

had considerably increased contents relative to the overall average Cu

concentration of 16.9 mg kg–1. Cu inputs due to anthropogenic activi-

ties affectmostly surface soils, since Cumobility in soils is very low. For

instance, Bigalke et al. (2010) and Blotevogel et al. (2018) estimated

themean transport rate of anthropogenic Cu to be approximately 1 cm

year–1.

A large number of factors control Cu concentrations and mobility

in soils. In the soil solution, CuII is present as an aqueous complex or

organically complexed form. To aminor extent, Cu2+ may be reversibly

bound as an exchangeable cation. However, the dominant control of Cu

mobility in soil is sorption on organic matter and, to a lesser extent,

clay, Fe- and Mn-(hydr)oxides, and carbonate (Amelung et al., 2018;

Baker & Senft, 1995; Blotevogel et al., 2018; Droz et al., 2021; Groe-

nenberg et al., 2006). Overall, it is well established that geogenic

Cu concentrations are determined to a great extent by parent mate-

rial, mineralogical composition, and soil texture (Amelung et al., 2018;

EFSA, 2008; Huschek et al., 2004). The importance of the soil tex-

ture for Cu concentrations of European soils may be explained by

the contents of clay minerals and the Fe- and Mn-(hydr)oxides in the

clay fractions. Additionally, Cu mobility is affected by pH, since higher

pH increases sorption sites (e.g., negative charge) for Cu on clay and

organic matter, and sand-containing carbonate (Sposito, 2008). The

cation exchange capacity (CEC) is also related to Cu in soils within a

limited range of parent materials, because of the indirect relationship

between CEC and concentrations of clay-size minerals and soil organic

carbon (SOC) (Wu et al., 2003).

Different process-based (e.g., Mallants et al., 2017; Michel et al.,

2007) and statisticalmodeling approaches exist for the description and

prediction of Cu contents in soils. Statistical approaches have ranged

from multiple linear regression (Romić et al., 2004) to general linear

models in combination with kriging (Ballabio et al., 2018) and machine

learning algorithms such as neural networks, random forests and bag-

ging trees (Droz et al., 2021). The usefulness and limitations of the

statistical approachesmay depend on themeasured variables available

for prediction, the scale and resolution of the variables, the pres-

ence of collinearity among the variables, sample size, sampling design,

and research aims. For many studies, however, especially those that

consider temporal dependencies and/or include a hierarchical (multi-

stratum) sampling, mixed-effects models may be the method of choice

for elucidating potential relationships betweena response variable and

independent variables (Galecki & Burzykowski, 2013).

Recent developments in machine learning algorithms may also

be promising for predictions of Cu contents in soils (Lantz, 2019).

For instance, the use of the rule-based model cubist can result in

improved predictions by using a boosting-like procedure called com-

mittees. Moreover, model predictions can be automatically adjusted

using neighboring points from the calibration (or training) set data

(Kuhn & Quinlan, 2021). However, model outcomes need to be inter-

preted cautiously in studies with hierarchical (multi-stratum) sampling

designs, since these are not adequately considered in themodel.

For the assessment of predictive capabilities of modeling

approaches, calibration–validation procedures may be employed.

Multiple partitioning of data into calibration and validation sets is

recommended for a thorough investigation of the usefulness and

limitations of predictive modeling approaches (Cawley & Talbot,

2010). Different calibration–validation procedures may be performed

depending on the intended use of the algorithms to be calibrated.

For a data set with multi-stratum sampling design, random splitting

of the data set only allows the usefulness of Cu predictions to be

tested as a function of the predictors for the closed population of

sites (pseudo-independent validation), whereas the usefulness of Cu

predictions for new sites may be tested after splitting the data set

according to sites (see, e.g., Brown et al., 2005), for example, in the field

of SOC and spectroscopy in the visible and near infrared range.

For our study, high-resolution data on Cu content in aqua regia

(CuAR), SOC content, pH, and CEC were available for four soil moni-

toring sites in northern Germany (see Barth et al. (2000) for main aims

and additional information). The presence of independent (sites) and

dependent data (observations per site) makes application of mixed-

effects models promising, and this can additionally be compared with

the powerful rule-based cubist algorithm. In our study, the variable

“site” was assumed to aggregate various site-specific variables (e.g.,

parent material and specific mineral composition) for CuAR regres-

sions. The objective was to explore the usefulness of mixed-effects

modeling and rule-based models for a description and prediction of

CuAR contents in surface soils affected by site, pH, SOC, and CEC.

We hypothesized that (1) mixed-effects models and rule-basedmodels

may be similarly successful in predicting CuAR contents; (2) both algo-

rithms may point to a similar importance of the independent variables

included in the final models; and (3) CuAR contents may be predicted

successfully in a closed population (i.e., after random splitting of the

data set) (a) andwith decreased accuracy for new sites (b).

2 MATERIALS AND METHODS

2.1 Monitoring and soil analyses

In Schleswig-Holstein, there are currently five intensive soilmonitoring

sites located in the four main soil natural areas: marshland, Vorgeest,

Hohe Geest, and the eastern hill country. This study analyzed three

of these sites (sites 9, 35, and 36) for which at least 50 complete
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TABLE 1 Characteristics of the three intensively monitored sites in northern Germany

Site and land use Parentmaterial Soil type Texture (%) sand, silt, clay

9 (Schuby) arable land Weichselian sandur sands Gleyic Podzol 87.5, 8.2, 4.3 in 0–30 cm

35 (Lindhöft 1) grassland Weichselian periglacial sandy-loamy cover layers over

Weichselian boulder clay

Luvisol 63.1, 28.4, 8.5 in 0–5 cm

36 (Lindhöft 2) arable land Weichselian periglacial sandy-loamy cover layers over

Weichselian boulder sand, silt and clay in themoraine

Luvisol 61.8, 27.6, 10.2 in 0–30 cm

observations (CuAR, SOC, CEC, and pH) are available for the surface

soils. The remaining two sites were excluded from the analysis because

the amount of data was too limited for meaningful analyses (site 23)

or because the chemical characteristics were very different from other

sites (site 6 has considerably higher clay concentrations, pH values,

and CEC than the other sites; data not shown). The sites include one

arable field in Schuby (site 9) and one arable field (site 36) and one

grassland (site 35), both located in Lindhöft (Table 1). The soil types

include a gleyic Podzol with sandy texture (site 9) and Luvisols with

loamy sand texture (sites 35 and36; Table 1). Additional information on

soil monitoring in Schleswig-Holstein is given by Nerger et al. (2011).

The sites were established as basic monitoring sites in 2000 (sites

35 and 36) or 1989 (site 9). From 2003 (sites 35 and 36) to 2005 (site

9) onward, monitoring has been carried out as intensive monitoring,

and annual soil measurements (arable sites 9 and 36: 0–30 cm; grass-

land site 35: 0–5 cm) have been undertaken since 2006. This study

focuses on those dates, for which results for all four variables (CuAR

concentrations, pH, SOC, and CEC) were available from the destruc-

tive samplings, that is, from2003 (sites 35 and 36) or 2005 (site 9) until

2019. During this period, CuAR concentrations were measured fre-

quently, with different numbers of spatial replications per sample date

(Figure 1 shows detailed information). In total, 97, 162, and 85 CuAR

concentrations were determined for the sites 9, 35, and 36, respec-

tively, over the observation periods (Figure 1), and the numbers of

complete observations for the four variables amounted to 62, 66, and

52 for the three sites 9, 35, and 36.

At the initial sampling date, soil texture, contents of SOC, and heavy

metals aswell as pHandCECweredeterminedusing standardmethods

(Barth et al., 2000). CuAR concentrationsweremeasuredusingDIN ISO

11466 (1997). SOC concentrations were determined using a CN ele-

ment analyzer (DIN ISO 10694, 1996). The pH was measured using a

volume ratio of soil to water of 1:5, and the CECwas determined using

an unbuffered NH4Cl solution.

2.2 Statistical analyses

2.2.1 General statistical analyses: Correlations and
95% confidence intervals

Statistical analyses were carried out with R version 4.05 (R Core Team,

2021). Correlation analyses between CuAR concentrations and the

measured variables pH, SOC, and CEC were carried out using Pearson

correlation coefficients r (in cases of bivariate normality) or Spearman

rank correlation coefficients rs. Normality of the variables given above

was tested using the Shapiro–Wilk test.

Boxplots were plotted for CuAR concentrations and two 95% con-

fidence intervals of differences in means of CuAR concentrations

between two sampling dates were calculated for each site to study

whether there was any long-term trend in CuAR concentrations over

time. For each 95% confidence interval of difference in means, CuAR

concentrations of both sampling dates were inspected for normality

using the Shapiro–Wilk test, which requires a minimum sample size of

3. Specifically, 95% confidence intervals of differences in means were

calculated for the periods involving the last observation dates (2019

for all three sites) and the years 2008, 2005, and 2006 for sites 9,

35, and 36, respectively (Figure 1). Earlier observation dates were not

considered due to a lack of normality (2006 at site 9) or sample sizes

less than 3 (Figure 1). Additionally, we also calculated 95% confidence

intervals of difference in means for the periods involving the penulti-

mate observation dates (2018) and the years 2008, 2005, and 2006

(Figure 1). For all three sites, there was no general trend of increas-

ing or decreasing CuAR concentrations, as indicated by five out of six

95% confidence intervals. Only for site 36, one 95% confidence inter-

val suggested a slight increase in CuAR, but the large overall variability

of CuAR concentrations for this site sheds doubts on this interpre-

tation. Since there was no general trend of increasing or decreasing

CuAR concentrations with time, we combined the data of different

sampling dates for each site and studied whether the information of

site, SOC concentration, pH, and CEC is sufficient to describe and pre-

dict CuAR concentrations in soils. Two different modeling approaches,

mixed-effects models and rule-based cubist models, were tested in the

following modeling variants: I. Description of the CuAR concentrations

using the entire data set; II. Prediction of the CuAR concentrations for

the closed population of the three sites using random partitioning of

the data; III. Prediction of theCuAR concentration for a new site using a

three-fold partitioning of the data according to site; and IV. Prediction

of the CuAR concentrations for a new site using a three-fold partition-

ing of the data according to site using spiking. The approaches and

parameterizations are presented below.

2.2.2 Description of the CuAR concentrations using
the entire data set

Mixed-effects modeling

For mixed-effects modeling, we used the packages lme4 (Bates et al.,

2015) and lmerTest (Kuznetsova et al., 2017). The predictors SOC,
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F IGURE 1 Boxplots of the CuAR concentrations over time for the A horizons of the different sites. Numbers below the boxplots indicate the
number of observations per date. Note that 95% confidence intervals for the difference inmeans of CuAR concentrations between two sampling
dates are shown for cases in which data of the different sampling times were normally distributed. Note that 95% confidence intervals of
differences in means which contain 0 are interpreted as nonsignificant differences.

CEC, and pH were included in the regression as fixed effects and the

structural component site as a random effect. Besides the first order

contributions of the predictors, second order polynomial terms, all

two-way interactions and the three-way interaction were considered

in themodels.

We simplified the model in a stepwise procedure as described by

Crawley (2012). First, the three-way interaction was removed if it

was nonsignificant. Then, nonsignificant two-way interactions were

deleted in a stepwise process and finally nonsignificant second and first

order main effects were removed from the model. In summary, fixed

effects were only kept in the model in cases of significant (p ≤ 0.05)

contributions. As described by Crawley (2012), nonsignificant effects

of the main effects were only included in the case of a significant inter-

action or a significant second order contribution of themain effects.
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TABLE 2 Parameterization and performance of fixed andmixed-effects modelsa for the response variable CuAR (mg kg–1 soil)

Model variant and sample size n Final equationa
Random components (assumed

mean of 0 and variance)

I. Calibration using the entire data set, n= 179 –42.8+ 10.7 SOC+ 12.0 pH – 0.42 CEC

–0.71 pH2
+ 0.08 CEC2

–1.68 SOC× pH

Site∼N(0, 4.8)

Residual∼N(0, 0.42)

II. Calibration after random splitting of the data set, n= 89 –12.1+ 8.83 SOC+ 1.95 pH+ 0.75 CEC

–1.37 SOC× pH

Site∼N(0, 5.5)

Residual∼N(0, 0.44)

IIIa. Calibration using sites 35 and 36, n= 117 0.36+ 1.13 SOC+ 0.75 CEC Site∼N(0, 6.2)

Residual N(0, 0.51)

IIIb. Calibration using sites 9 and 35, n= 127 –93.0+ 9.61 SOC+ 28.8 pH – 0.70 CEC

–0.38 SOC2 –2.21 pH2
+ 0.09 CEC2

–1.07 SOC× pH

Site∼N(0, 5.0)

Residual∼N(0, 0.41)

IIIc. Calibration using sites 9 and 36, n= 114 –6.89+ 6.13 SOC+ 1.41 pH+ 0.64 CEC

–1.01 SOC× pH

Site∼N(0, 5.5)

Residual∼N(0, 0.36)

IVa. Calibration using sites 35 and 36, n= 117+ 4 spiked

observations

–82.5+ 18.5 SOC+ 21.1 pH+ 0.72 CEC

–1.27 pH2

–2.93 SOC× pH

Site∼N(0, 4.5)

Residual∼N(0, 0.46)

IVb. Calibration using sites 9 and 35, n= 127+ 4 spiked

observations

–14.6+ 11.1 SOC+ 2.66 pH – 0.58 CEC

–0.34 SOC2
+ 0.08 CEC2

–1.35 SOC× pH

Site∼N(0, 9.2)

Residual∼N(0, 0.42)

IVc. Calibration using sites 9 and 36, n= 114+ 4 spiked

observations

–44.9+ 0.07 SOC+ 8.08 pH+ 7.00 CEC

+0.71 SOC2
+ 0.23 CEC2

–0.69 SOC×CEC – 1.22 pH×CEC

Site∼N(0, 0.14)

Residual∼N(0, 0.34)

aThe unit for the intercept is mg kg–1 soil. The units for the regression terms are mg kg–1 soil multiplied by the respective reciprocals of the units of the

variables (first and second order contributions and interactions, SOC: g 100 g–1, CEC: cmol(+) kg–1).

Abbreviations: CEC, cation exchange capacity; SOC, soil organic carbon.

Restricted maximum likelihood was used as estimation procedure

for the mixed-effects models, and the Kenward–Roger method was

used for the estimation of the denominator degrees of freedom.

Residuals were inspected for homoscedasticity and normality. In

total, one extreme value (the maximum CuAR concentration) had to

be removed from the data set to fulfil the distributional requirements

for the residuals. Thus, for all modeling approaches, the total number

of observations n was decreased by 1 to 179. Table 2 shows the final

mixed-effects model for variant I.

Rule-based cubist models

For the rule-based cubist modeling, we used packages Cubist (Kuhn &

Quinlan, 2021) and caret (Kuhn, 2021). Themodel was calibrated using

10-fold cross-validation and the number of committee models was

optimizedusing the values1, 10, 50, and100. Table 3 shows theoptimal

number of committeemodels for a description of CuAR concentrations.

2.2.3 Prediction of the CuAR concentrations for
the closed population of the three sites

In this variant, the 179 observations were randomly split into a cal-

ibration (n = 89) and validation sample (n = 90). Since the random

split observations of the three sites are present in the calibration and

validation sample, the variant is a pseudo-independent calibration–

validation. This variant is useful for data sets inwhich the population of

interest is fixed and there is no intention of an extension to new sites.

A successful validation indicates a potential for adequate predictions

only for the sites included in the study.

Mixed-effectsmodelingwas carriedout for the calibration sampleas

described above includingmodel simplification and residual inspection.

The optimalmodel consisted of the first order contributions of all three

fixed effects and additionally of the interaction of SOC and pH, and site

as a random effect (Table 2).

For the cubist model, the optimal number of committeemodels (val-

ues of 1, 10, 50, and 100) and the optimal number of neighbors (0, 1, 5,

and 9) was obtained in a grid search in the cross-validation approach.

Table 3 shows the optimal values for this variant.

2.2.4 Prediction of the CuAR concentrations for a
new site using a three-fold partitioning of the data
according to site

A three-fold partitioning of the data according to site was used for

independent calibration–validation (e.g., Brown et al., 2005; Ludwig

et al., 2017). In each partition, one site was used as the validation

sample. We carried out mixed-effects modeling as described above.

The final optimal models differed depending on the sites used in

the calibrations. Notably, residual inspection was not successful for

variant IIIa, where the residuals were not normally distributed. In

all three variants, site was again included as a random effect in the
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TABLE 3 Parameterization and performance of rule-based cubist models for the response variable CuAR (mg kg–1 soil)

Model variant and sample size n
Number of

committees

Number of neighbors from

the calibration set data

used for the validation

Variable usage

in conditionsa
Variable usage in themodel

committeesb

I. Calibration using the entire data set, n= 179 10 not applicable SOC (51%) SOC (97%), pH (84%), CEC (56%)

II. Calibration after random splitting of the

data set, n= 89

10 9 SOC (50%) SOC (100%), pH (23%), CEC (90%)

IIIa. Calibration using sites 35 and 36, n= 117 1 0 SOC (100%) SOC (100%), pH (50%), CEC (100%)

IIIb. Calibration using sites 9 and 35, n= 127 10 9 SOC (50%) SOC (70%), pH (55%), CEC (95%),

site (20%)

IIIc. Calibration using sites 9 and 36, n= 114 100 0 SOC (40%), pH

(11%)

SOC (43%), pH (30%), CEC (53%)

IVa. Calibration using sites 35 and 36, n= 117

+ 4 spiked observations

10 0 SOC (50%) SOC (90%), pH (53%), CEC (100%)

IVb. Calibration using sites 9 and 35, n= 127

+ 4 spiked observations

50 0 Site (48%),

SOC (2%)

SOC (35%), pH (27%), CEC (75%),

site (38%)

IVc. Calibration using sites 9 and 36, n= 114+

4 spiked observations

1 9 SOC (100%) SOC (47%), pH (53%), CEC (100%)

aSumof percentages canbe<100%sincenot all committeemodels contain conditions or>100%sincedifferent variablesmay contribute to a single condition.
bSum of percentages can be<100% since rulesmay just contain numbers and no variables or>100% since different variablesmay contribute to a single rule.

Abbreviations: CEC, cation exchange capacity; SOC, soil organic carbon.

calibration,whichmeant that theeffectwas zero for the validationwith

new sites.

For the cubist models, the grid search for the optimal numbers

of committee models and neighbors was carried out as described

above.

2.2.5 Prediction of the CuAR concentrations for a
new site using a three-fold partitioning of the data
according to site using spiking

Spiking, which is common in soil spectroscopy (see, e.g., Stenberg et al.,

2010), was used in variant IV to provide a small amount of information

from the validation sample (site) in the calibration sample. The under-

lying hypothesis is that with a small analytical extra effort (random

sampling of only four soils from a new site and wet-chemistry analy-

sis of the variables CuAR, pH, SOC, andCEC), the bias in the predictions

for the new site may be markedly reduced and accuracy of predictions

increased.

The number of observations moved from the validation to the cal-

ibration sample was restricted to n = 4. The n = 4 observations were

randomly selected but were identical for the mixed-effects and cubist

modeling. Mixed-effects modeling and application of the cubist model

were carried out as described above.

2.2.6 Model performance parameters

Marginal (R2m) and conditional (R2c) pseudo-coefficients of determi-

nation were calculated for the mixed-effects models. They account for

the variance explained by fixed effects (R2m) and by both fixed and ran-

domeffects (R2c) (Nakagawa et al., 2017). The packageMuMIn (Barton,

2020) was used for the calculations.

Additionally, we calculated root mean squared errors (RMSEs) and

Spearman rank correlation coefficients rs betweenmeasured andmod-

eled CuAR concentrations (CuAR concentrations were not normally

distributed) for both approaches and all modeling variants. RMSEs are

useful for model comparisons. For the interpretation of rs, an exam-

ple of a conventional approach to interpreting a correlation coefficient

summarized by Schober et al. (2018) can be used, with negligible

(correlation coefficient in the range 0.00–0.10), weak (0.10–0.39),

moderate (0.40–0.69), strong (0.70–0.89), and very strong correlation

(0.90–1.00). However, several authors including Schober et al. (2018)

also emphasize that cutoff points are arbitrary and should be used

judiciously.

3 RESULTS

3.1 CuAR concentrations in soils

In the three intensively monitored surface soils in northern Germany,

there was no general measurable trend of changing CuAR concentra-

tions with time (Figure 1). Boxplots showed large scatter of the data

from replicate samplings for some sampling dates, especially in the

early periods of themonitoring. At later stages of themonitoring, when

thenumberof field replicateswas reduced, variabilities alsodecreased.

Although medians differed over time, especially for site 36, there was

no consistent trend. Note that 95% confidence intervals of differences

in means indicated no significant changes over time for five out of the

six tested differences in time (i.e., a difference of 0 was part of the 95%

confidence intervals). Only for one case at site 36, a slight significant
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F IGURE 2 Histograms for CuAR for the surface soils of the three intensivelymonitored sites. Scatter plots for CuAR and pH, soil organic carbon
(SOC) content, and the cation exchange capacity (CEC) are also shown. Different colors indicate soils from different sites. Spearman rank
correlation coefficients rs and Pearson correlation coefficients r are also shown, with p-values indicating the significance of the correlations.

increase was noted, but no general trend was observed (Figure 1). The

absence of a general trend can be explained by the uses of the soils

as arable land or grassland without excessive application of Cu pesti-

cides or high organic fertilization. Data were therefore combined for

the different sampling times.

CuAR concentrations in surface soils were approximately normally

distributed at site 36 and right-skewed at the other sites (Figure 2).

Scatter plots showed positive, negative, and no relationships between

CuAR concentration and the measured variables (Figure 2). Spearman

rank correlation coefficients rs (sites 9 and 35) and Pearson correlation

coefficients r (site 36) indicated significant moderate positive relation-

ships between CuAR and CEC (rs = 0.42 and 0.69 for sites 9 and 35 and

r = 0.63 for site 36; Figure 2). A significant weak positive relationship

between CuAR and pH was found only for site 36 (r = 0.28; Figure 2).

For CuAR and SOC, there was a significant moderate positive relation-

ship (rs = 0.69) for site 35, but a significant negative one (r= –0.49) for

site 36 (Figure 2).

3.2 Variant I. Description of CuAR concentrations
depending on site, SOC, pH and CEC

A mixed-effects model was very useful to describe the CuAR concen-

trations in the surface soils of the three sites as a function of the fixed

effects of CEC, SOC, and pH, and the random effect of site (Figure 3).

The difference between the conditional pseudo-coefficient of determi-

nation R2c (0.93) and marginal R2m (0.14) indicated the importance of

site for the successful modeling (see also the large variance of the site

effect [4.8 mg2/kg2] relative to the residual variance [0.42 mg2/kg2;

Table 2]). For all fixed effects, relationships with CuAR had positive

(SOC, pH, CEC2) and negative (CEC, pH2, SOC × pH) contributions

(Table 2), indicating a change of the direction of the effects on CuAR

with increasing values of the fixed effects.

The cubist model was as successful as the mixed-effects model in

describing the CuAR concentrations (Figure 3). In the model, site was

not required (Table 3)

3.3 Variant II. Prediction of CuAR concentrations
for a closed population

In variant II, where the data set was randomly split into a cali-

bration and validation sample (i.e., pseudo-independent validation),

the mixed-effects model and the cubist model were similarly suc-

cessful as in variant I in calibration (Figure 3). However, final mod-

els differed due to the reduced information available in variant

II compared to variant I. In the validation, mixed-effects modeling

slightly outperformed the cubist modeling as indicated by the slightly

lower RMSE and slightly higher rs of the mixed-effects modeling

(Figure 3).
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F IGURE 3 Modeled versus measured CuAR concentrations resulting frommixed-effects models (top) and rule-based cubist models (bottom)
using the entire data set (left, variant I) or after random-splitting of the data set (variant II, middle: calibration, right: validation). Conditional and
marginal pseudo-coefficients of determination are indicated as R2c and R2m. Additionally, Spearman’s rank correlation coefficient rs and the root
mean squared error (RMSE) in mg kg–1 are given. Different colors indicate soils from different sites.

3.4 Variants III and IV. Prediction of the CuAR
concentrations for a new site using a three-fold
partitioning of the data according to site with and
without spiking

In variant III, we tested the possibility of independent predictions of

CuAR concentrations for a new site using a calibration equation based

on twodifferent sites. Again,mixed-effectsmodelingwas very success-

ful in the calibration with R2c of 0.94 for all three partitions of the sites

(variant IIIa–IIIc; Table 2, Figure 4) and RMSEs ranging from 0.58 to

0.70 mg kg–1 (Figure 4). Independent validations, however, were gen-

erally unsuccessful, with high RMSEs in variant IIIa (validation using

site 9) and IIIb (validation using site 36). In contrast, for variant IIIc,

validation was successful (rs = 0.76, RMSE = 0.82 mg kg–1; Figure 4).

Cubist modeling showed the same pattern: all three calibrations in the

variants IIIa–IIIb were successful, but independent validations were

unsuccessful in variant IIIa and IIIb. Moreover, validation in variant

IIIc was less successful compared to mixed-effects modeling for that

variant due to bias in the estimates (Figure 4).

In variant IV (Iva–IVc), spiking was carried out using only four

observations from the respective validation site (thus, in all variants,

four observations were shifted from the validation samples to the

calibration samples). For mixed-effects models, these shifts had only

minor effects on the performance data (R2c, rs and RMSE) in the

three calibrations (Figure 5), but considerably affected the underly-

ing equations (Table 2). Independent validations after calibration with

spiking showed marked reductions in the RMSEs in variants IIIa and

IIIb, whereas for variant IIIc, a slight increase was noted (Figure 5).

Cubist modeling was also very successful in the three calibrations. In

the independent validations, RMSEs decreased markedly in all three

variants Iva–IVc compared to IIIa–IIIc, which shows the benefits of

spiking with only a small number of observational units from the

new site.

4 DISCUSSIONS

4.1 CuAR concentrations in soils and control
variables

The CuAR concentrations in the surface soils of the intensively moni-

tored sites in northern Germany ranged from 1.0 to 12.2 mg kg–1 in
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F IGURE 4 Modeled versus measured CuAR concentrations of themixed-effects models (first two columns) and rule-based cubist models (last
two columns) for three-fold partitioning of the data according to site (variant III). Additionally, R2c, R2m, Spearman’s rank correlation coefficient rs,
and the root mean squared error (RMSE) in mg kg–1 are given. Different colors indicate soils from different sites.

the observation period from 2000 to 2019, indicating the absence of

the main pollution sources such as high application rates of Cu pesti-

cides (as in viticulture), high organic fertilization, or any metallurgical

or mining sources, where much higher concentrations are observed

(Reinhold, 2008).

Predictions of CuAR concentrations usingCEC, SOC concentrations,

and pH appeared to be promising, not only because of their relation-

ships with CuAR for the three monitoring sites (significant correlation

coefficients for the pairsCuAR/CEC [three sites], CuAR/SOC [two sites],

and CuAR/pH [one site], see above), but also due to their known role in

Cu dynamics. The importance of CEC for the CuAR concentrations may

be mainly indirect, since CEC and clay contents are typically closely

related (e.g., Amelung et al., 2018) and soil with increased clay con-

tents have been reported to have higher Cu contents (Huschek et al.,

2004). SOCmay be useful for predicting CuAR concentrations because

of the key role of soil organic matter in Cu retention and a reported

large fraction of organically bound Cu in soils (Amelung et al., 2018;

Fijałkowski et al., 2012). The contribution of pH as a control variable

for CuAR concentrations appears plausible because of the pH depen-

dency of Cu adsorption and desorption processes in soils (Caporale &

Violante, 2016; Sposito, 2008).

4.2 Variant I. Description of CuAR concentrations
depending on site, SOC, pH, and CEC

Description of CuAR concentrations using a mixed-effects model was

very successful for the entire data set consisting of the three sites,

indicating the usefulness of the variables site, SOC, pH, and CEC.

Mixed-effects models are typically powerful modeling tools (Galecki

& Burzykowski, 2013) and are the method of choice in many regres-

sion studies in soil science, since they are able to adequately consider

hierarchical sampling designs as in this monitoring study with three

independent sites and large numbers of observations per site.

The rule-based cubist model was as successful as the mixed-effects

model, as indicated by the same Spearman correlation coefficient rs of

0.90which indicates a strong correlation betweenmeasured andmod-

eled CuAR concentrations and RMSE of 0.63mg kg–1. Thus, hypothesis
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F IGURE 5 Modeled versus measured CuAR concentrations of themixed-effects models (first two columns) and rule-based cubist models (last
two columns) for three-fold partitioning of the data according to site with spiking (variant IV). Additionally, R2c, R2m, Spearman’s rank correlation
coefficient rs, and the root mean squared error (RMSE) in mg kg–1 are given. Different colors indicate soils from different sites.

1 was supported: mixed-effects models and rule-based models were

similarly successful in predicting CuAR contents. The very good per-

formance of the cubist model is due to the use of rules in the cubist

models, which can be simplified or pruned in a way that observations

are covered bymultiple rules and the optional boosting-like procedure

called committees. For variants II–IV, which included validation pre-

dictions, this modeling approach also provides the possibility to adjust

predictions generated by the model rules using nearby points from

the calibration sample to create successful models (Kuhn & Johnson,

2018).

We hypothesized that both algorithms may point to a similar

importance of the independent variables included in the final models.

However, this hypothesis was not confirmed. For instance, in contrast

to themixed-effectmodel, the site effect was not important in variant I

for the cubist model. A main reason for a different importance of inde-

pendent variables for the two algorithms may be the multicollinearity

in the data set (Wehrens, 2020;Welhamet al., 2014), which is typical in

observational studies. For instance, the comparison of the scatter plots

of CuAR versus SOC and CuAR versus CEC for site 35 indicates a high

correlation between SOC and CEC (rs = 0.66).

4.3 Variant II. Prediction of CuAR concentrations
for a closed population

In agreement with our hypothesis 3a, CuAR concentrations were

predicted successfully in a closed population (i.e., after random split-

ting of the data set) using either a mixed-effects model or a cubist

model. Thus, in future samplings at the three sites, CuAR concen-

trations can likely be predicted with high accuracy as a function

of site, SOC, CEC, and pH in this fixed set of observational sites.

However, the random split of the data set into a calibration and val-

idation sample is only a pseudo-independent calibration–validation

approach, since the three sites are present in both the calibration

and validation sample (see, e.g., Brown et al. [2005] and Ludwig et al.

[2017]).
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4.4 Variants III and IV. Prediction of the CuAR
concentrations for a new site using a three-fold
partitioning of the data according to site with and
without spiking

We hypothesized that CuAR concentrations may be successfully pre-

dicted for a new site (with an assumed reduced accuracy), and tested

this in a three-fold calibration–validation approach. For both algo-

rithms, mixed-effects, and cubist models, this hypothesis was not

supported in two out of the three folds, indicating the importance of

the variable site (which aggregates, among others factors, information

on parent material and specific mineral composition) for predictions.

The best performance was observed when validation was carried out

for site 35 with CuAR concentrations in the intermediate range, that is,

when the sites with smallest (site 9) and highest CuAR concentrations

(site 36) were used in the calibration. Thus, models were most useful

when the calibration set includedall variability present in thevalidation

set.

Variants Iva–IVc indicated that the use of only four observations

of the new site in the calibrations, that is, spiking, was sufficient to

markedly improve the quality of the subsequent predictions as indi-

cated by the generally (with one exception) considerable decreases of

the RMSEs after spiking. Thus, only little analytical extra-effort (four

samples in this study) is required to extend an existing calibration for a

new site.
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