
Nowadays, environmental issues motivates the replacement of mechanical, 
hydraulic and pneumatic system by electrical system in the transport sector aiming 
to reduce emissions generated by burning of fossil fuels in vehicles. The electrical 
system must ensure high electrical efficiency and should not exceed the weight 
of the substituted components. To attend these high performance requirements 
a fault-tolerant multiphase brushless DC machine  was chosen for this research.

The present work introduces a six-phase 600 W brushless DC machine with 8 poles. 
The main challenge for the control issues of this machine is the mutual magnetic 
coupling between the phases due to the wave winding machine configuration. 

In this context, theoretical and practical investigations of different current control 
strategies based on the sliding mode control approach applied to the six-phase 
brushless DC machine are presented.
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Abstract

Nowadays, environmental issues motivates the replacement of mechanical,
hydraulic and pneumatic system by electrical system in the transport
sector aiming to reduce emissions generated by burning of fossil fuels in
vehicles. The electrical system must ensure high electrical efficiency and
should not exceed the weight of the substituted components. To attend
these high performance requirements a fault-tolerant multiphase brushless
DC machine was chosen for this research.

The present work introduces a six-phase 600W brushless DC machine
with 8 poles. The main challenge for the control issues of this machine is
the mutual magnetic coupling between the phases due to the wave winding
machine configuration.

In this context, theoretical and practical investigations of different
current control strategies based on the sliding mode control approach
applied to the six-phase brushless DC machine are presented.

Firstly, the theoretical background of the continuous time sliding mode
control is introduced. Subsequently, robust current controllers based on
discrete time sliding mode approach are developed as well as the proof
of stability and convergence of these algorithms. The controllers and
observers are developed in discrete time domain aiming to the practical
experimentation in a FPGA platform.

Due to the fact that the motion of a discrete time sliding mode system
occurs in a limited quasi-sliding mode band, the robustness of the controller
is reduced and for this reason a combination of the proposed controllers
with disturbance observers is suggested in order to diminish the chattering
effect and ensure a good performance of the system even when parameter
uncertainties and non-idealities are added to the nominal model.
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Aiming to minimize the effect caused by the mutual coupling between
the phases, and consequently the torque oscillations, an optimized current
reference is proposed in this work.

Simulation and experimental investigations are carried out in order
to validate the proposed strategies. The performance of the controllers
are analyzed considering the tracking accuracy, and mainly the resulting
torque oscillations, since the application of this techniques in traction
systems is desired.
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Zusammenfassung

Heutzutage motiviert die Umweltproblematik den Austausch bestehen-
der mechanischer, sowie hydraulischer und pneumatischer Systeme durch
hoch-effiziente elektrischen Systeme für den Verkehrssektor, um die de-
mentsprechende CO2-Emissionen zu verringern, die durch die Verbren-
nung fossiler Brennstoffe entstehen. Das elektrische System soll einen
hohen Wirkungsgrad gewährleisten und das Gewicht der ersetzten Kom-
ponenten nicht überschreiten. Zur Berücksichtigung dieser hohen Leis-
tungsanforderungen wurde eine fehlertolerante mehrphasige bürstenlose
Gleichstrommaschine für diese Dissertation ausgewählt.

Die vorliegende Arbeit stellt eine bürstenlose sechsphasige 600W Gleich-
strommaschine mit 8 Polen vor. Die Hauptherausforderung für die Regelung
dieser Maschine ist die magnetische Kopplung zwischen den Phasen auf-
grund der Maschinenkonfiguration mit Wellenwicklung.

In diesem Zusammenhang werden theoretische und praktische Unter-
suchungen verschiedener, auf dem Sliding-Mode-Regelungsansatz basierten
Stromregelungsstrategien dargestellt.

Zuerst werden die theoretischen Grundlagen der kontinuierlichen Sliding-
Mode-Regelung präsentiert. Anschließend werden robuste, auf der zeit-
diskreten Sliding-Mode-Regelung basierte Stromregler entwickelt, sowie
der Nachweis für Stabilität und Konvergenz dieser Algorithmen gezeigt.
Die Regler und Beobachter wurden für einen diskreten Zeitbereich entwi-
ckelt, da die praktischen Laboruntersuchungen in einer FPGA-Plattform
implementiert worden sind.

In Anbetracht der Tatsache, dass die Bewegung eines zeitdiskreten
Sliding-Mode-Systemzustands in einem limitierten Quasi-Sliding-Mode-
Bereich geschieht, wird die Robustheit des Reglers reduziert. Aus diesem
Grund wird eine Kombination aus den vorgeschlagenen Reglern mit
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Störungsbeobachtern zwecks der Verringerung des Chattering-Effekts und
der Gewährleistung einer guten Leistungsfähigkeit des Systems empfohlen,
selbst wenn Parameterungewissheit und Nichtidealität zum Nominalmodell
hinzu kommen.

Damit die Wechselwirkungen der magnetischen Kopplung zwischen den
Phasen und somit die Drehmomentschwingungen minimiert werden, wurde
ein optimierter Stromsollwert für die vorliegende Arbeit vorgeschlagen.

Simulations- und Laboruntersuchungen sind zwecks der Validierung
der vorgeschlagenen Strategien durchgeführt worden. Die Leistungs-
fähigkeit der Regler wurde unter Berücksichtigung der Genauigkeit der
Stromsollwertverfolgung und hauptsächlich der resultierenden Drehmo-
mentschwingungen analysiert, da die Anwendung dieser Technik in Trak-
tionssystemen erfolgen soll.
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1. Introduction

1.1. Work motivation and overview

The transportation sector — including road transport, aviation and mar-
itime sectors — is responsible for about 23% of the world’s CO2 emissions
from the combustion of petroleum-based products. These emissions have
risen about 36% as a consequence of the increase in the amount of per-
sonal and freight transport during the period between the years 1990 and
2007 [1].

As issues relating to climate change and shortage of resources now
appear more and more before the public, transport sector emissions should
be significantly reduced to minimize the depletion of natural resources and
to achieve the strict reduction targets defined in the Copenhagen Accord
(2010).

The concerns relating to environmental issues, such as global warm-
ing and the greenhouse effect, motivate the development of researches
which aim to replace the mechanical, hydraulic and pneumatic systems
by the electrical system in the transport sector. It is expected that such
replacements would help to reduce the carbon dioxide (CO2) emissions
generated by, for example, the burning of fossil fuels in personal vehicles
or in aircrafts.

The substitution of these systems by the electrical system is carried
out with the use of electric machines. Electric machines are the most
common devices for industrial, commercial and residential sectors; they
are responsible for the consumption of about 60% of the energy generated
around the world. Energy efficiency improvement in electric machines is
required in order to reduce the energy consumption. It is estimated that
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1. Introduction

increases in the energy efficiency of machine drives could reduce the energy
consumption by about 7% [1].

The air traffic grew considerably during the last few years and it is still
showing an increasing trend. To fulfill this demand, the aircraft system
should operate more efficiently in order to attenuate the CO2 emissions
by reducing the fuel consumption.

The More Electrical Aircraft (MEA) concept intends to avoid pollut-
ing emissions and simultaneously to ensure high electrical efficiency by
substituting the mechanical, hydraulic and pneumatic systems by the elec-
trical system in aircrafts. Beyond a high efficiency, it should also ensure
that the weight of the electrical system does not exceed the substituted
components [2]. Hence, hydraulic actuators are gradually replaced by
Electromechanical Actuators (EMAs) in aircraft applications. EMAs are
used in secondary applications (stairs, door actuation and door-locking
device) and also in more significant applications such as brakes, spoilers,
or flap actuation [3].

In addition, the number of personal cars has become greater with
increases in the global population. Most of these vehicles are equipped
with Internal Combustion Engine (ICE), causing the depletion of fossil-fuel
resources and being the major source of urban pollution, mainly through
CO2 emissions which contribute to the greenhouse effect [4, 5].

Environment awareness research and development efforts are now being
carried out to make Electric Vehicles (EVs) and Hybrid Vehicles (HEVs)
commercially viable. These work as an alternative to replacing the ICE
automobiles. EVs were invented in the middle of the 19th century and they
were very popular until 1918. However, their usage reduced drastically
soon after due to the limitation associated with the batteries as well as
the rapid advance of ICE automobiles [6].

The choice of the electric machine used for electric propulsion system in
the electric vehicle or in the aircraft system is a crucial decision. Some
requirements of the machine used in these applications are high power and
torque density, robustness for different operating conditions, reasonable
cost and reduced weight and volume.

2



1.1. Work motivation and overview

Beyond that, in electric vehicles or aircraft applications, the system
should operate with high reliability and must also have fault tolerance
properties so that it can continue in operation even in case of a failure in
the machine or in the converter. To fulfill this requirement, a multiphase
machine supplied by a multiphase drive, with each phase as a single module
is a good option.

Switched reluctance and brushless DC (BLDC) are good candidates for
multiphase machines. However, BLDC machines present more advantages
when compared with classical machines since they present reduced weight
and volume as well as ease of refrigeration, all of which favour its use in
limited space. Moreover, high power and torque density are important
features of BLDC machines.

According to what is described in the literature [7], each single-phase
module should present minimal electrical, magnetic and thermal interac-
tion with the other phases in an ideal fault-tolerant drive. A machine
designed with concentrated windings around each tooth provides thermal
and magnetic isolation between the coils. However, this work investigates
a six-phase brushless DC machine with a wave winding configuration. An
advantage of the wave winding configuration is the reduction of the ma-
chine frame size, but it also significantly increases the magnetic coupling
between the phases. The strong mutual coupling between the phases in
this machine is the main challenge for the current control loop design as it
increases significantly the complexity of the model. This is because the
self- and mutual inductances vary in accordance with the rotor’s position
and the current amplitude.

The most common controller applied to the BLDC machine is the classi-
cal Proportional Integral (PI) controller. However, in this particular case,
where parameter variations and uncertainties are added to the nominal
model, the proportional-integral controller does not have the robustness
property to overcome these disturbances and consequently fails to ensure
a good dynamic response within the entire machine operation range.

A satisfactory dynamic response over the entire operation range can be
achieved if the PI controller gains are carefully tuned, but there is still the

3



1. Introduction

risk that the control would become unstable due to its limited bandwidth.
Beyond that, considering that the model is nonlinear, the classical control
strategies are not ideal for the controller design.

The performance of BLDC machines can be improved by using a robust
control technique such as nonlinear adaptive control [8], model predictive
control [9], or sliding mode control [10, 11]. These techniques ensure a
good system performance, even against disturbances added to the model
and are an appropriate tool for solving problems of a nonlinear nature.

Taking into consideration that nonlinear adaptive control and predictive
control require extensive calculations and that they usually lead to a
more complex implementation, the sliding mode control technique will be
investigated owing to its simplicity and robustness property.

The sliding mode approach is a variable structure control technique
(VSC) that provides robustness to the system in the presence of uncertain
parameters or disturbances; it often provides systems completely insensitive
to these perturbations — in other words, invariant systems. The sliding
mode uses a discontinuous control law with high-frequency switching
control to orientate the system trajectory to a determined region in the
state-space, known as sliding surface and it is kept there for all future
time, regardless the plant parameter variations.

However, the sliding mode on the sliding surface occurs just when an
infinite switching frequency is considered. The switching frequency in real
systems is nevertheless limited and therefore the system slides in the vicinity
of the surface, causing high-frequency oscillations around this region. This
phenomenon, known as chattering, is inherent to the discontinuous control,
being the main restriction of this kind of control [12,13]. The chattering
mitigation is obtained by changing the dynamics of the system in the
vicinity of the sliding surface, avoiding the discontinuity and preserving
the main properties of the original system.

Most of the control strategies are nowadays implemented by using
microcontrollers. The measurements of some system variables, such as
phase currents, must be sampled for being used in the microprocessor
which is made by an analog-to-digital convert (AD converter). Hence, a

4



1.1. Work motivation and overview

continuous time control system is controlled by a discrete time computer,
which happens to be a limitation of the continuous time sliding mode
control implementation since it is intrinsically a continuous time control
technique whose implementation requires high switching frequency.

Assuming that the implementation is based on a digital microprocessor,
the information on control law can be updated at each sampling period,
which degrades the performance of the continuous time sliding mode
controller. Some approaches employ the discretization of the sliding mode
control law established in continuous time for digital implementation [14];
but, in this case, the stability proof law is developed in a continuous time
domain and it is no longer valid in a discrete time domain.

This fact motivates the research on the discrete time formulation of
the sliding mode controller. Different approaches are presented in the
literature for the development of a discrete time sliding mode control law.
This work focuses on the research of the approach presented in [15]. In
order to ensure the stability of a system in discrete time sliding mode,
the reaching condition must be modified in relation to continuous time.
In the reaching law considered in [15], the state trajectory should cross
the sliding surface in each sampling time. Hence, the system moves it in
a quasi-sliding mode band around the sliding surface and not more on
the sliding surface such as in the continuous time sliding mode control.
With this, it concludes that it is not possible to acquire an ideal sliding
mode with the discrete time sliding mode controller and consequently
the invariance property is lost. Despite this, a significant robustness,
related to the width of the quasi-sliding mode band, is preserved and the
system can overcome uncertainties and disturbances added to the model.
The quasi-sliding mode width depends on the sampling period and the
control parameters. For this reason, the robustness is limited and there is
the possibility that the system would suffer from chattering when large
disturbances are added to the model.

An association of a discrete time sliding mode control law, with a
disturbance observer, is an alternative to improving the robustness of
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1. Introduction

the system and the reference tracking accuracy such as those proposed
in [16–23].

This work presents a scenario where the uncertainties and parameter
variations intrinsic to the system are accounted as disturbance terms added
to the nominal model of the six-phase brushless DC machine. Hence,
considering that these disturbances are rather weighty, a controller design
procedure, based on the combination of a discrete time sliding mode control
and a discrete time disturbance observer, is developed.

1.2. Research objectives

This work aims to the study of sliding mode controllers combined with
a disturbance observer in a discrete time domain applied to the current
control of a multiphase fault-tolerant brushless DC machine. The BLDC
machine investigated in this work presents strong mutual coupling between
the phases, and the self- and mutual inductances are dependent on the
rotor position and on the current amplitude — all of which result in a
model with nonlinear characteristics. Therefore, the use of a linear classical
controller with limited bandwidth is not adequate for this application.
In looking for good machine performance, this work seeks to investigate
and to develop robust controllers based on the sliding mode technique
which is an appropriate tool for solving problems of a nonlinear nature.
It is also able to overcome the fact that the model is not exactly known
for presenting parameter variations and disturbances. The theoretical
formulation of the controllers and observers for the multiphase BLDC
machine model and the mathematical controller’s stability analysis are
included in the study aiming its subsequent implementation. In order
to experimentally investigate the performance of the proposed control
strategies, the development of an experimental setup, based on the FPGA
system and the implementation of the control strategies in VHDL code, is
part of the research. The dynamic controller response and robustness, the
presence of chattering and the observer’s ability to observe and decouple
the disturbances of the system under conditions of parameter uncertainties

6



1.3. Scientific contributions

and strong coupling between the phases are elements considered in the
analysis of the obtained results. Furthermore, the torque oscillations
analyzed in the results is a very important issue for this research since
the main purpose is to obtain a resultant torque with minimal oscillations,
even in a system with uncertainties and parameter variation, aiming to
the application of this research in traction systems where a torque with
no oscillations over the entire operation range is a requirement.

1.3. Scientific contributions

The main contributions achieved with the development of this work are:

• Analysis and development of high performance current control strate-
gies based on the discrete time sliding mode technique applied to
a multiphase BLDC machine under conditions of parameter uncer-
tainties and strong magnetic coupling between the phases. The
controllers developed in this work are the first-order sliding mode
controller based on Gao’s approach and the second-order sliding
mode based on the super-twisting algorithm;

• Analysis and development of disturbance observers, in combination
with current controllers in the discrete time domain, which are applied
to the multiphase BLDC machine in a scenario where parameter
variations and uncertainties are treated as disturbances added to the
nominal model;

• Development of an optimized current reference in order to mitigate
the effect of the mutual coupling between the phases of the multiphase
BLDC machine;

• Development of an experimental setup based on the FPGA system to
investigate the control strategies applied to a prototype multiphase
BLDC machine.

7



1. Introduction

1.4. Structure of the work

This work presents theoretical, simulation and practical analysis that
are structured into six chapters as the following: Chapter 2 provides an
overview of the permanent magnet synchronous machine and it presents
the concept of the six-phase fault-tolerant brushless DC machine. Chapter
3 presents the current controller strategies developed in the discrete time
domain applied to the multiphase BLDC machine and their mathematical
stability analysis. The continuous time sliding mode control is also pre-
sented in this chapter in order to provide the tools for the understanding
and development of discrete time sliding mode techniques. The develop-
ment of disturbance observers is carried out in Chapter 4. Simulation
results are presented in Chapters 3 and 4 in order to verify the perfor-
mance of the proposed controllers and disturbance observers. Chapter 5
presents an experimental investigation of the proposed strategies that are
applied to the multiphase BLDC, as well as a description of the developed
experimental setup. The results, general conclusions and suggestions for
future work are included in Chapter 6.

8



2. Modelling of six-phase brushless DC
machine

2.1. Permanent magnet machine

The use of permanent magnet motors has increased considerably in the last
few decades, mainly in applications where high efficiency and high power
density are needed. The great advances relating to magnetic materials
has enabled the manufacturing of magnets with high energy density by
using rare earth magnets, such Samarium Cobalt (SmCo) and Neodymium
Iron Boron (NdFeb), at reasonable costs. Furthermore, the development
of the power electronic semiconductor switches technology and digital
signal processors has fomented the use of converters and hence the use of
electronically commutated machines such as the brushless DC machine.

Permanent magnet motors present high efficiency compared with the
conventional machines such as Induction Motors (IM) and brushed DC
Motors. When compared with brushed DC motors, permanent magnet
motors require reduced maintenance and have longer life due to the absence
of the brushes. The presence of mechanical commutators and brushes
is the main drawback of a brushed DC motor, as they require periodic
maintenance, thereby providing lower speed range due to mechanical
limitations.

Induction motors, which are technically more mature, are well accepted
due to low cost, low torque ripple and the possibility to improve its
dynamic performance that may reach the extended speed range by flux
weakening. However, the rotor losses are significant, which requires cooling
and restriction of the overload capacity.

9



2. Modelling of six-phase brushless DC machine

Recently, the switched reluctance machine has aroused interest due to
the fact that it has one phase decoupled from another ensuring high fault
tolerance. It presents simple construction, low maintenance and power
density and efficiency when compared with the induction motor. The main
disadvantages of this machine are the presence of high torque ripple at low
speeds and acoustic noise problems, while its control is intricate due to
high nonlinearity [24].

The main advantage of the permanent magnet motor over other machines
is its high-power density with reduced weight and volume, which happens
to be ideal for applications with space restriction or in areas where the
access is limited. It presents lower rotor inertia due to the arrangement of
the permanent magnets on the rotor side and the windings on the stator
side — all of which mitigate the electrical losses and allows better heat
dissipation.

Permanent magnet motors are classified into permanent magnet syn-
chronous motors (PMSM) and brushless DC motors (BLDC). The shape
of the back electromotive force (back-emf) waveform distinguishes both
machines, as presented in Figure 2.1. The PMSM presents a sinusoidal
back-emf waveform and needs sinusoidal currents to produce a constant
torque, while the shape of the back-emf waveform in the BLDC machine
is trapezoidal and needs rectangular stator currents to produce constant
electric torque. This difference between the two back-emf waveforms de-
pends on the interconnection of coils in stator windings and the shape
of magnets. This differentiation impacts the drive choice and the control
structure [24].

The three-phase converter topology with MOSFETs or IGBTs with star
connection, as shown in Figure 2.2, is adequate and commonly used in
the three-phase BLDC machine. In this configuration two phases are
conducting at the same time during 120 electrical degrees and one phase
is non-energized during 60 electrical degrees. The rectangular pulses of
the phase current must coincide with the crest of the back-emf in the
corresponding phase, as shown in Figure 2.3. The drive operation of the
BLDC motor must be synchronized with the rotor position to energize

10



2.1. Permanent magnet machine

Back-emf (V)
Current (A)

(a) sinusoidal back-emf: PMSM.

Back-emf (V)
Current (A)

(b) trapezoidal back-emf:BLDC.

Figure 2.1.: Back-emf and phase current in the PMSM and in the BLDC machine.

the windings in the appropriate sequence. Usually, the position sensing is
made by Hall effect sensors — one Hall effect sensor is used for each phase

— which reduce the costs of the BLDC drive system in comparison with the
PMSM that requires a high-resolution feedback system (encoder or resolver)
which provides continuous and instantaneous rotor position feedback to
supply the magnitude of sinusoidal currents and voltages [24,25].

The BLDC motor needs the rotor-position feedback just at the commu-
tation points — what means at every 60 electrical degrees in a three-phase
motor— which results in six commutation sectors, as shown in Figure
2.3 [24,26,27].

In some applications, in order to reduce the cost and size of the motor,
the sensor is undesirable and the rotor position can be obtained through
sensorless techniques. The sensorless techniques applied to the brushless
DC motor are widely investigated in the literature [28–31].
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2. Modelling of six-phase brushless DC machine

Another advantage of the BLDC over the PMSM is that the power
density of the former is 15% greater than that in the latter [32].

a

b

c

VDC

S5S3S1

S6S4S2

BLDC

Figure 2.2.: Typical BLDC driver topology.

eb ,ib, Hb

ec ,ic, Hc

ea ,ia, Ha

S1 S2 S3 S4 S5 S6
� ����

eS1

30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°

Figure 2.3.: Hall sensor, back-emf and phase currents in the BLDC machine.
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2.1. Permanent magnet machine

Considering that the copper losses in the machine determine its power
density, it is possible to obtain the relationship between them by equating
the copper losses of the two machines.

P cP MSM = P cBLDC (2.1)

3RsIP MSM
2 = 3RsIBLDC

2 (2.2)

where IP MSM and IBLDC are RMS currents in each machine and are given
by:

IP MSM = IpeakP MSM√
2

IBLDC =

√
2
3

IpeakBLDC (2.3)

where IpeakP MSM and IpeakBLDC are the stator peak currents in the
permanent magnet synchronous machine and in the brushless DC machine,
respectively. Substituting (2.3) into (2.2), the relationship between the
peak currents in the machines is obtained:

3Rs

(
IpeakP MSM√

2

)2

= 3Rs

(√
2
3

IpeakBLDC

)2

(2.4)

IpeakBLDC =
√

3
2

IpeakP MSM (2.5)

The peak of the back-emf is equal for both machines and denoted by
E. In the BLDC motor only two phases conduct current at the same
time, while in the PMSM all three phases conduct current for all time
instants. Thus, the ratio between the power outputs in the machines can
be determined by:

PBLDC

PP MSM
= 2EIpeakBLDC

3 E√
2

IpeakP MSM√
2

=
2E

√
3

2 IpeakP MSM

3 EIpeakP MSM
2

= 1.154 (2.6)

13



2. Modelling of six-phase brushless DC machine

confirming that a three-phase BLDC machine can provide 15% more power
density than a three-phase PMSM with the same stator resistance and the
same frame size.

Considering that the relationship between power, electric torque and
speed in a machine is given by:

Pout = ωrTe (2.7)

Comparing the machines with the same rated speed, it is possible to
conclude mathematically that the BLDC machine also presents 15% more
torque density that the PMSM. The higher torque density can be attributed
to the interaction between the fundamental component of the rectangular
current and the fundamental component of the trapezoidal back-emf in
the BLDC machine [24].

Due to its advantages like high power and torque density, reduced
volume and size, low maintenance and control simplicity, the use of the
brushless DC motor has become interesting in many domestic, commercial
and industrial applications. It has recently become interesting in the field
of electrical and hybrid electrical vehicles due to environmental concerns.

A drawback of the BLDC machine is its high torque pulsations consti-
tuted by cogging torque and ripple torque. The cogging torque is produced
by the interaction between the permanent magnet on the rotor and the
stator slots, causing reluctance variations that depend on the angular
position and it is independent of the current presence [33].

The ripple torque is produced by the interaction between the stator
current and the back-emf when the waveform shape is non-ideal. The non-
idealities of the back-emf waveforms — caused by the motor construction

— can be reduced by an appropriate machine design, thereby making the
crest of the back-emf be wide and flat as possible.

Another source of ripple torque in the BLDC machine is the commutation
torque ripple that happens at each commutation point. To get the ideal
rectangular currents, the commutations must be instantaneous; however,
due to the electrical time constant of the motor windings, the current
cannot immediately commutate and requires finite time [34].
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2.1. Permanent magnet machine

One way to mitigate the torque pulsations is by increasing the number
of phases [35,36]. According to [37], the lowest torque ripple component
is proportional to 2nf , where nf represents the number of phases, and
therefore increasing the number of phases reduces the amplitude of the
torque pulsation and increases the frequency of the torque pulsation.

Another advantage of the multiphase machine is the possibility to reduce
the current per phase without increasing the voltage per phase beyond
their fault tolerance and high-reliability characteristics. In a fault-tolerant
motor drive, the system should continue to operate safely even after a
fault occurs.

In high-performance applications where the high reliability of the system
is crucial — such as electrical and hybrid vehicles, ship propulsion, or
aerospace applications — the use of the multiphase fault-tolerant brushless
DC machine can be a promising alternative, which would ensure a safety
operation even after a failure occurs [3, 38,39].

The more common faults that occur in a drive system are related to
the machine, such as the winding open circuit and the winding short-
circuit, or related to the power electronic converter, such as the inverter
switch open circuit and the inverter switch short-circuit. A modification
in the machine design can improve the fault tolerance ability of the
system [7,40]. This is achieved by configuring the BLDC windings, similar
to the configuration windings used in the switched reluctance motors.
According to [7], considering each phase as a single module with minimal
electrical, magnetic and thermal interaction between the phases improves
the fault tolerance and increases the reliability of the system. A machine’s
design with concentrated windings around each tooth provides thermal and
magnetic isolation between the coils, avoiding mutual coupling between
the phases. Supplying each phase with a single-phase bridge, the number
of switches and the volume of the drive unit will increase, as well as the
number of drive signals that require a digital signal processor with high
PWM and I/Os capacity. However, the electrical isolation between the
phases is ensured.
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2. Modelling of six-phase brushless DC machine

When a failure occurs, the fault-tolerant system continues to operate
but with a degraded performance. To improve the performance and ensure
a torque with minimal oscillations, besides the fault-tolerant machine
and driver design, a remedial control strategy should be adopted when a
failure occurs in the system. Such a strategy basically modifies the current
waveform of the operating phases by changing the current reference of
each phase.

The choice of a fault-tolerant drive increases the system’s costs and
hence its use is economically justified in specific applications where a fault
implies risks relating to human safety or loss of production.

This work presents a six-phase fault-tolerant BLDC machine, with each
phase as a single module. The machine and driver characteristics are
described in the following sections.

2.2. Six-phase brushless DC machine

The motor considered in this work is a prototype brushless DC machine
with six independent phases used in electrical auxiliary systems for electric
vehicles, such as oil pump systems. The machine configuration can also be
extended to applications with higher power. It has eight poles (permanent
magnets) on the rotor and 48 stator slots. As shown in the cross-section
of the motor (Figure 2.4), it presents an outer rotor design, also called
the inside-out motor [33], with an inner stator and the rotor magnets
surrounding the stator.

Figure 2.4.: Cross section of six-phase BLDC.
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2.2. Six-phase brushless DC machine

The magnetization of the permanent magnets and their displacement on
the rotor are chosen in such a way that the back-emf shape is trapezoidal.
Figure 2.5 shows the winding arrangement in the stator of the six-phase
BLDC machine. Each phase winding is arranged in the stator in the form
of wave winding, which means that the end of a coil is connected with
the beginning of the next coil until the winding closes on itself. The wave
winding configuration makes the machine construction more compact and
its frame size is reduced, but it increases the mutual coupling among the
phases. Six Hall effect sensors are embedded in the machine stator slots.
The hall sensors are responsible for the rotor position sensing and the
identification of the commutation points.

a1 b1 c1 d1 e1 f1 a8 b8 c8 d8 e8 f8
Hall

Sensor

Figure 2.5.: Wave winding.

For an appropriate operation of a multiphase fault-tolerant machine
each phase must be supplied by a separate H-bridge, ensuring the minimal
electrical interaction between the phases and consequently improving the
fault tolerance and reliability of the system, as shown in Figure 2.6 [7, 40].

C

Sa3Sa1

Sa4Sa2

VDC

Phase A

La Ra ea

ia

Figure 2.6.: One phase configuration of BLDC motor drive system.
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2. Modelling of six-phase brushless DC machine

2.2.1. Commutation of the six-phase BLDC machine

Due to the absence of brushes for commutation, the BLDC machine
is electronically commutated and synchronized with the rotor position.
Hence, the stator windings should be energized in a sequence.

The commutation sequence can be determined based on the combination
of the six hall sensor signals. When the hall sensor changes its state from
0 to 1, the current should changes its direction for negative to positive.
For a machine with six phases and six hall sensor signals there are 12
commutation sectors for each electrical rotation.

In order to produce constant electromagnetic torque in the BLDC
machine with trapezoidal back-emf, the phase currents must be rectangular
and synchronized with the rotor position. As previously mentioned, the
pulses of the phase current must coincide with the crest of the back-emf
in the corresponding phase and the polarity of the current corresponds to
that of the back-emf. Figure 2.7 shows the commutation sectors, with the
hall sensor signals, phase current and back-emf.

The commutation in a six-phase BLDC occurs in every 30 electrical
degree — each phase conducts during 150 electrical degrees and in each
sector five phases conduct at the same time. This is presented in the Table
2.1.

Sector Electrical
Angle Conducting Phases Hall sensor state

Ha Hb Hc Hd He Hf
S1 345◦-15◦ -B, -C, -D, -E, -F 1 0 0 0 0 0
S2 15◦-45◦ +A, -C, -D, -E, -F 1 1 0 0 0 0
S3 45◦-75◦ +A, +B, -D, -E, -F 1 1 1 0 0 0
S4 75◦-105◦ +A, +B, +C, -E, -F 1 1 1 1 0 0
S5 105◦-135◦ +A, +B, +C, +D, -F 1 1 1 1 1 0
S6 135◦-165◦ +A, +B, +C, +D, +E 1 1 1 1 1 1
S7 165◦-195◦ +B, +C, +D, +E, +F 0 1 1 1 1 1
S8 195◦-225◦ -A, +C, +D, +E, +F 0 0 1 1 1 1
S9 225◦-255◦ -A, -B, +D, +E, +F 0 0 0 1 1 1
S10 255◦-285◦ -A, -B, -C, +E, +F 0 0 0 0 1 1
S11 285◦-315◦ -A, -B, -C, -D, +F 0 0 0 0 0 1
S12 315◦-345◦ -A, -B, -C, -D, -E 0 0 0 0 0 0

Table 2.1.: Conducting phases in accordance with the operation sectors.
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2.2. Six-phase brushless DC machine

eb ,ib, Hb

ec ,ic, Hc
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ee ,ie, He
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Figure 2.7.: Back-emf, Hall sensor signals and phase current waveforms in accordance
with the electrical angle.

2.2.2. Six-phase BLDC model

This section presents the development of a phase variable model for the
BLDC machine. Due the trapezoidal back-emf, the use of the dq model does
not eliminate the angle-dependent phase inductances and therefore does
not offer many advantages. Other modelling methods such as harmonic
modelling or methods based on finite element analysis are presented in
the literature [38,41–44]. These, however, require complex mathematical
calculations and computation [45]. Hence, the phase variable approach is
more adequate for this machine and will be used in this work [26]. It is

19



2. Modelling of six-phase brushless DC machine

considered that the BLDC has symmetrical phases distributed every 60◦ in
the stator. The BLDC dynamic model can be obtained in accordance with
the voltage equations in abc coordinates. This is shown in the following:

⎡
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(2.8)

where vk is the phase voltage, ik is the phase current, Rs is the stator
resistance per phase, ek is the phase back-emf, Ls is the self-inductance of
each phase and Mkl is the mutual inductance between the phases k and l.
Due to the winding symmetry, the mutual inductances can be defined as:

Mab = Mbc = Mcd = Mde = Mef = Mba = Mcb = Mdc = Med = Mfe = M1

Mac = Mbd = Mce = Mdf = Mca = Mdb = Mec = Mfd = M2

Maf = Mfa = −M1

Mae = Mbf = Mea = Mfb = −M2

Mad = Mbe = Mcf = Mda = Meb = Mfc = M3

(2.9)
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2.2. Six-phase brushless DC machine

and (2.8) can be rewritten as:
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(2.10)
According to (2.10), one phase of the BLDC motor drive can be repre-

sented by Figure 2.8 as:
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Figure 2.8.: Single phase bridge considering the mutual coupling in the model.
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2. Modelling of six-phase brushless DC machine

The instantaneous back-emf is assumed to be trapezoidal and can be
expressed as:

ea = fa (θr) E

eb = fb (θr) E

ec = fc (θr) E

ed = fd (θr) E

ee = fe (θr) E

ef = ff (θr) E

(2.11)

According to [46], the functions fk have the same shape as ek, varying
in accordance with the rotor position and with a maximum magnitude of
+/ − 1. E represents the peak of the phase back-emf which is proportional
to the rotor speed and is given by:

E = Keωr (2.12)

where Ke is the back-emf factor and ωr the rotor speed.
The electromagnetic torque is given by:

Te = eaia + ebib + ecic + edid + eeie + ef if

ωr
(2.13)

The equation of motion is expressed as:

d

dt
ωr = Te − TL − bωr

J
(2.14)

where J is the rotor inertia, b is the viscous damping coefficient and TL

the load torque.
The electrical rotor speed and the mechanical rotor speed are related

by:

ωe = P

2
ωr (2.15)

where P is the number of pole pairs.
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2.2. Six-phase brushless DC machine

2.2.3. State-space model of six-phase BLDC machine

From the voltage equations of the six-phase BLDC machine in abc co-
ordinates, as presented in (2.10), it is possible to obtain the model in
state-space as:

{
ẋ = Ax + Bu + Fe
y = Cx

(2.16)

The state vector x is determined by:

x =
[

ia ib ic id ie if

]T

(2.17)

The input vectors by:

u =
[

va vb vc vd ve vf

]T

(2.18)

e =
[

ea eb ec ed ee ef

]T

(2.19)

Considering the inductance matrix given by:

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ls M1 M2 M3 −M2 −M1

M1 Ls M1 M2 M3 −M2

M2 M1 Ls M1 M2 M3

M3 M2 M1 Ls M1 M2

−M2 M3 M2 M1 Ls M1

−M1 −M2 M3 M2 M1 Ls

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.20)

and the resistance matrix:

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Rs 0 0 0 0 0
0 Rs 0 0 0 0
0 0 Rs 0 0 0
0 0 0 Rs 0 0
0 0 0 0 Rs 0
0 0 0 0 0 Rs

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.21)
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2. Modelling of six-phase brushless DC machine

The state matrix is determined by:

A = −Γ−1R−1 (2.22)

and the input matrices are given by:

B = Γ−1 (2.23)

F = −Γ−1 (2.24)

The output matrix is defined as:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.25)

Denoting the disturbance of the system as ξ ∈ �n and adding it to the
model, the system can be rewritten as:

{
ẋ = Ax + Bu + Fe + ξ(x,u,e,t)
y = x

(2.26)

In this work, a scenario where the disturbances are composed by param-
eter uncertainties and by non-idealities of the system is considered. The
non-idealities are basically related to the back-emf. The parameter uncer-
tainties represent the variation in the stator resistance, in the self- and in
the mutual inductances during the operation — these are not considered in
the nominal model represented by (2.16). The back-emf non-idealities and
the magnetic coupling between the phases will be described in a posteriorly
section.
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2.2. Six-phase brushless DC machine

2.2.4. Discrete time state-space model of the six-phase BLDC
machine

The discrete dynamic model of the machine is intended to the study
of control techniques based on the sliding mode design and disturbance
observers in discrete time domain. These techniques are applied to the
six-phase brushless DC machine in order to overcome the disturbance
added to the system, thereby ensuring a good performance of the system
where the model is not exactly known.

Applying the Euler method for the discretization of (2.26) results in:

{
x(k + 1) = (I + Ats) x(k) + Btsu(k) + Ftse(k) + ξts(k)
y(k) = x(k)

(2.27)

where ts is the sampling time. And it can be rewritten as:

{
x(k + 1) = Gx(k) + Hu(k) + We(k) + ξd(k)
y(k) = x(k)

(2.28)

where ξd represents the non-idealities and uncertainties intrinsic to the
discrete time model.

This work considers the non-idealities and uncertainties as disturbances
added to the nominal model.

2.2.5. Measurement of self- and mutual inductances

Due to the machine design, there is mutual coupling between the phases.
Moreover, the self- and mutual inductances have nonlinear characteristics
and are not constant as they depend on the rotor position and the current
variation.

To get a better knowledge of the machine parameters, the dependence
on the rotor angle at no-load of the self- and mutual inductances from one
winding to the other five windings was measured, as shown in Figure 2.9.
The self- and the mutual inductances of each phase were measured with a
LCR meter (Wayne Kerr) at each 15 mechanical degree.
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2. Modelling of six-phase brushless DC machine

Figure 2.9 presents the mutual inductances between the phases. It
should be noted that this measurement represents an approximated model.
Although the variations in self- and mutual inductances, depending on
rotor position, are measured, they are not enough to accurately describe
the model. This is because such variations are also current-dependent and
current variations are not considered for this measurement.

The fact that the model is only approximately known and is very
complex to build an accurate model which describes exactly the machine,
is a challenge for the control strategy that seeks to obtain a torque with
minimal oscillations, despite the effect of the mutual inductances in the
phase currents.

2.2.6. Measurement of back-emf

The ideal back-emf waveform in the BLDC machine is trapezoidal, as
shown in Figure 2.7, however due to machine design the back-emf is non-
ideal with oscillations in the crest of the waveform, where it should be
constant.

To obtain the real back-emf waveform and measure the back-emf factor,
a measurement of the no-load phase voltage for different speeds from zero
until the rated speed is carried out. According to (2.12), it is possible to
calculate the back-emf factor with the back-emf amplitude E and with the
measured speed in rad/s. An average of these measurements is calculated,
which gives the value 0.0198 V s/rad for the back-emf factor, as shown in
Table 2.2.
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2.2. Six-phase brushless DC machine
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Figure 2.9.: (a) Self- and mutual inductances from phase A as a function of the rotor

position, (b) self- and mutual inductances from phase B as a function of
the rotor position, (c) self- and mutual inductances from phase C as a
function of the rotor position, (d) self- and mutual inductances from phase
D as a function of the rotor position. (e) self- and mutual inductances
from phase E as a function of the rotor position. (f) self- and mutual
inductances from phase F as a function of the rotor position.
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2. Modelling of six-phase brushless DC machine

RPM rad/s Back-emf amplitude (E) Back-emf factor (Ke)
400 41.8879 0.85 0.0203
600 62.8319 1.24 0.0197
700 73.3038 1.45 0.0198
800 83.7758 1.65 0.0197
900 94.2478 1.85 0.0196
2250 235.6194 4.7 0.0199

0.01984286

Table 2.2.: Measurement of back-emf.

Figure 2.10 illustrates the linear dependence between the back-emf and
the speed, where the inclination of the curve represents the back-emf
factor.
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Figure 2.10.: Speed versus back-emf measurement for the back-emf factor determina-
tion.

Figure 2.11 shows the measured back-emf waveform for three of the six
phases at the rated speed.
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2.2. Six-phase brushless DC machine
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Figure 2.11.: Experimental back-emf from phase A, B and C of the six-phase phase
BLDC motor at 2250 rpm.

From Figure 2.11 it is possible to verify that the back-emf is non-ideally
trapezoidal and has oscillations in the crest of the waveform. The non-
idealities of the back-emf are intrinsic to the machine design and affect the
performance of the controller, thus contributing to the torque oscillations.

2.2.7. Summary

The particularities of the six-phase brushless DC model are presented in
this chapter. A general concept of the permanent magnet motors and a
comparison with the other machines have been provided here. The aim
of the following chapter is to investigate the current control strategies
that ensure a high performance operation of the machine with minimal
torque oscillations under conditions of parameter uncertainties and strong
magnetic coupling between the phases.
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3. Current control strategies applied to the
brushless DC machine

3.1. Introduction

Different control strategies have been considered for improving the perfor-
mance of BLDC motors. The proportional-integral controller and hysteresis
current control have been the most widely used control techniques for
controlling the BLDC motor [17, 26,47, 48]. However, the main drawback
is the linear nature of classical PI controller that lacks robustness when
facing an operation scenario where parameter variations and disturbances
are added to the nominal model [49,50].

To circumvent this problem and improve the BLDC response, this
chapter proposes an investigation of robust controllers which are based
on the sliding mode approach and developed in discrete time domain.
The sliding mode control is an appropriate tool for solving problems of
a nonlinear nature and overcomes the fact that the model is not exactly
known.

The proposed current controllers are applied to the six-phase BLDC ma-
chine and described in state-space, considering the model in phase variable
coordinates. This chapter will present firstly a classical proportional-
integral current controller. Next, the main concepts of the sliding mode
control theory will be introduced in order to provide a background to the
development of the discrete time sliding mode control. Two discrete time
sliding mode algorithms will be presented as well as their stability proof.
Lastly, simulation results demonstrate the performance of controllers.

Usually, a cascade control structure is adopted for BLDC control. An
external loop executes the speed control. The output of the speed controller,
which acts as an input to the current controller, generates the current
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3.2. Proportional-integral current controller

reference for the six inner current controllers. The output of each current
controller provides the duty cycle which will be used in the modulation to
generate the PWM output signals to be applied through the six independent
H-Bridges. The speed measurement is calculated from the Hall sensor
period of each phase that represents the electrical period of the machine.

Figure 3.1 shows the proposed control diagram for the six-phase BLDC
motor

3.2. Proportional-integral current controller

Proportional-integral is the most used control technique for current regula-
tion in BLDC motors and hence its application in the six-phase brushless
DC machine is presented in this work.

The control is developed in a phase variable model. Therefore, in each
phase, one PI controller independent of the other phases is used in order to
regulate the phase current, while one PI controller is used in the external
loop to control the speed. The method to calculate the current and speed
controller gains based on the bandwidth of the closed-loop system is shown
in Appendices A.1 and A.2, respectively.

A simplified model for the electric dynamic of the BLDC machine,
without the mutual inductances is considered in the design of PI current
controller gains. The mutual inductances are treated as disturbances of
the system.

Aiming to simplify the control, a compensation of the back-emf is carried
out by a feedforward control. The amplitude of the back-emf is calculated
by the measured speed, according to (2.12) and added to the output of
the current PI controller. There is the possibility that the back-emf can
only be partially cancelled by the feedforward control since just a constant
value for the back-emf amplitude is calculated. If it is non-ideal with
oscillations in the crest, this will not be compensated.
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3. Current control strategies applied to the brushless DC machine

The proportional-integral current controller in a discrete time domain is
defined by:

u(k) = emf(k) + KP dv (y∗(k) − y(k)) + KIdvxc(k − 1)
xc(k) = (y∗(k) − y(k)) + xc(k − 1)

(3.1)

where emf represents the feedforward control and KP dv and KIdv are the
controller gains. The block diagram of the current control loop for one
phase of the BLDC machine is shown in Figure 3.2.

Although PI control is well settled for the brushless DC machine, its
poor robustness against parameter variations and model uncertainties
does not ensure a good performance when the system model is not well
known. This is the case of the six-phase brushless DC machine model
presented is this work, which has the mutual inductance and the back-emf
non-idealities as unknown parameters that are treated as disturbances
added to the system.

In order to obtain an acceptable dynamic response over the whole
operation range, the PI controller gains must be carefully tuned and
adjusted again when an operation point is changed. Furthermore, owing
to the limited bandwidth of the conventional classical PI control, a greater
parameter variation may lead the control to instability.

The response of the six-phase BLDC machine to the PI current control
has been simulated and will be posteriorly presented in this chapter.
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Figure 3.1.: Block diagram of the BLDC machine.
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Figure 3.2.: Block diagram of PI current control with feedforward control for one phase
of the multiphase BLDC machine.

3.3. Continuous time sliding mode controller

The sliding mode control (SMC) is a kind of variable structure control
that changes its structure from one function to another in accordance with
a switching function. The theory of continuous time sliding mode control
and variable structure are deeply discussed in [12,51,52].

The study of sliding mode control started with Emelyanov in the 50s.
Since then, the sliding mode is being used in different applications such
as nonlinear, multivariable, discrete or stochastic systems. With the
technological advance of the microprocessors and the circuits with high
switching frequency, it has become possible to implement the SMC in
several applications such as robot control, underwater vehicles, high-
performance electric motors and aircraft control, among others [10].

Beyond the simple control design, the main property of this technique
is its robustness or insensitivity to model uncertainties and external dis-
turbances. Better than the robustness is its invariance property, found in
the continuous time sliding mode control.

The sliding mode satisfies the invariance definition when the system is
insensitive to parameters uncertainties and external disturbances applied
to the nominal plant. In other words, the system trajectory in the sliding
mode does not depend on the plant parameters [10].
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3.3. Continuous time sliding mode controller

In this work, the continuous time sliding mode is presented in order to
provide a theoretical background of the sliding mode control and thus to
aid the development of the discrete time sliding mode theory in the next
section.

Essentially, the SMC uses a discontinuous control law with high-frequency
switching control to orientate the system trajectory to a determined re-
gion in the state-space called sliding surface and remain it there for the
subsequent time [51].

Considering a dynamic system such as represented by equation (2.16),
the discontinuous feedback is given by:

ui =

{
ui

+(t,x), if σi > 0 i = 1,2,...,m

ui
−(t,x), if σi < 0

(3.2)

where σi represents the ith sliding surface.
The aim is to design a controller that carries the dynamic system to

track the output control references. The design of the sliding mode control
law is divided into two steps:

I. Sliding surface design: the design of a sliding mode surface that
represents a desired system dynamics and allows it, when in the
sliding condition, to achieve the reference tracking.

II. Controller design: the design of a discontinuous control law that
satisfies the existence and reachability of the sliding modes in such a
manner that any state outside the sliding surface is driven to reach
the surface in finite time and remain there.

3.3.1. Sliding surface design

The sliding surface is projected so that the system in the surface σ(x,t) = 0
has a desirable behavior. In this case, the control problem is that the
output tracks a predefined reference output.

Considering a sliding surface:

σ(x,t) =
[

σ1 σ2 ... σm

]T

(3.3)
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3. Current control strategies applied to the brushless DC machine

that is continuously differentiable. The design of each element of σ, for
a system with relative degree equal one1 [53], is done by the following
equation:

σi = c (yi − yi
∗) i = 1,2,...,m (3.4)

where yi is the output, yi
∗ is the output reference, and c is a gain. When

the system is in the sliding condition with σi = 0, (3.4) represents a linear
dynamic of the output tracking error that converges to the origin.

Once the system is on the sliding surface (σi = 0), it becomes invari-
ant against external disturbances, model uncertainties and parametric
variations.

Considering the system described by equation (2.16) with order n = 2.
The sliding surface behavior can be illustrated as a line in the phase plane
with slope −c, as shown in Figure 3.3.

An ideal sliding mode, where the system follows exactly over the sliding
surface (σ = 0), as represented in Figure 3.3, exists only when the state
trajectory x(t) of the controlled plant satisfies σ [x(t)] = 0 at every t > t0

for some t0 [11]. It requires that the control law switches instantly with
infinite frequency, which is impracticable in real systems due to the inertias
of actuators and sensors. It is more realistic to assume that the control
law switches with a high finite frequency. As a consequence, the sliding
motion oscillates in the neighbourhood of the sliding surface, as shown
in Figure 3.4. This phenomenon, known as chattering, is inherent to
the discontinuous control and is the major drawback in the sliding mode
approach, since it may excite non-modelled dynamics and leads the system
to instability [11–13,54–57].

Techniques to mitigate or eliminate the chattering will be presented in
a later section of this chapter.

1When the relative degree of the output is one (rd = 1), it means that the control
action appear explicitly in the first time derivative of the sliding surface.
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σ

c

σ

σ=0

sliding mode
exponencial convergence

Figure 3.3.: Illustration of the sliding surface behavior.

σ

σ

σ=0

Figure 3.4.: Illustration of the chattering sliding surface behavior.

For the sake of simplicity, for the six-phase brushless DC machine sliding
surface design, the parameter c will be considered equal 1 (c = 1). So
considering the state-space BLDC model represented in (2.26), the sliding
surface is defined in accordance with (3.4) as:

σ = [(y − y∗)]T =
[

σa σb σc σd σe σf

]T

= 0 (3.5)
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3. Current control strategies applied to the brushless DC machine

where y∗ represents the output reference vector and is given by:

y∗ =
[

ia
∗ ib

∗ ic
∗ id

∗ ie
∗ if

∗
]T

(3.6)

In this case, the sliding surface represents the dynamic of the phase
current error which characterizes the control purpose that is to carry the
current tracking error to zero.

3.3.2. Control law design

The control law design is based on the method of equivalent control
approach, proposed by Utkin [58].

Considering the state-space BLDC model represented in (2.26) and
assuming that the sliding surface has been designed in accordance with
(3.4), the next step is to design a variable structure control in such a
manner that any state outside the sliding surface is driven to reach the
surface in finite time.

The control action u is designed to bring the sliding surface σ to zero
in a finite time and then to keep it there for all future time. The structure
of the control is given by:

u = ueq + un (3.7)

where ueq is the equivalent control component and represents the continu-
ous component of the control, and un is the discontinuous component.

The sliding surface dynamic equation is defined as:

σ̇ = ẏ − ẏ∗ = ẋ − ẋ∗ (3.8)

The equivalent control is determined by assuming that all uncertainties
are zero and that σ̇ = 0 is necessary to maintain the state trajectory on
the sliding surface σ = 0.

Replacing (2.26) into (3.8):

σ̇ = (Ax + Bu + Fe + ξ) − ẋ∗ = 0 (3.9)
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3.3. Continuous time sliding mode controller

Hence, solving (3.9) and considering ξ = 0, the equivalent control can
be defined as:

ueq = (B)−1 (ẋ∗ − Ax − Fe) (3.10)

where B is non-singular for all time in the domain of interest.
To define the discontinuous control, the uncertainties must be accounted

to the system. Under the assumption that ξ is limited, it is possible to
design un by choosing an appropriate Lyapunov function candidate in
order to force the sliding surface to zero in accordance with the equation:

un = (B)−1 (−Ksign(σ)) (3.11)

where sign(σ) represents the sign function and K > ‖ξ(x,u,t)‖.
Knowing the equivalent control and the discontinuous control term, it

is possible to define the sliding mode control law as:

u = (B)−1 (ẋ∗ − Ax − Fe − Ksign(σ)) (3.12)

Now, substituting (3.12) into (3.9), the sliding mode dynamics can be
described as:

σ̇ =
(
Ax + B

[
(B)−1 (ẋ∗ − Ax − Fe − Ksign(σ))

]
+ Fe + ξ

)
− ẋ∗

(3.13)

σ̇ = −Ksign(σ) + ξ (3.14)

It should be noticed that the equivalent control component simplifies
the system by cancelling the known terms from the nominal model and the
discontinuous control term is responsible for overcoming the uncertainties
of the system.
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3. Current control strategies applied to the brushless DC machine

3.3.3. Stability proof of continuous time sliding mode

The second method of Lyapunov provides a natural setting for the sliding
mode control stability analysis. Considering the following Lyapunov
function candidate:

V (σ) = σT Pσ (3.15)

where P is an identity matrix.
The derivative of V along the trajectories of σ is given by:

V̇ (σ) =
(
σ̇T Pσ

)
+
(
σT Pσ̇

)
(3.16)

The stability of the system is proven if the negativity of V derivative is
ensured.

Now, substituting (3.9) into (3.16):

V̇ (σ) =
(
(Ax + Fe + Bu + ξ − ẋ∗)T Pσ

)
+

+
(
σT P (Ax + Fe + Bu + ξ − ẋ∗)

) (3.17)

and the control law given in (3.12) into (3.17):

V̇ (σ) =
(
(Ax + Fe + ẋ∗ − Ax − Fe − Ksign(σ) + ξ − ẋ∗)T Pσ

)
+

+
(
σT P (Ax + Fe + ẋ∗ − Ax − Fe − Ksign(σ) + ξ − ẋ∗)

)
(3.18)

V̇ (σ) =
(
(−Ksign(σ) + ξ)T Pσ

)
+
(
σT P (−Ksign(σ) + ξ)

)
(3.19)

(3.19) can be rewritten as:

V̇ (σ) = −2KS1 + 2S2 (3.20)

where:

S1 =

(
σasign(σa) + σbsign(σb) + σcsign(σc)+
+σdsign(σd) + σesign(σe) + σf sign(σf )

)
(3.21)
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3.3. Continuous time sliding mode controller

S2 = ξaσa + ξbσb + ξcσc + ξdσd + ξeσe + ξf σf (3.22)

The mathematical development of (3.19) to get to (3.20) is given in
Appendix B.1.

Considering that:

−2KS1 + 2S2 < 0 (3.23)

It results in:

K > S2S1
−1 (3.24)

The negativity of V̇ is ensured if the condition given in (3.24) is satisfied,
which means that the attractiveness of the sliding surface is guaranteed by
keeping the system trajectories on the surface, since to leave the surface a
positive derivative of V is required.

Taking the condition σ=0 , it is possible to obtain the relationship
between y and y∗ by replacing the control u in (2.26), as shown below:

{
ẋ = Ax + B

(
(B)−1 (ẋ∗ − Ax − Fe − Ksign(σ))

)
+ Fe + ξ

y = x
(3.25)

Considering that:

ẏ = ẋ (3.26)

Replacing (3.25) into (3.26):

ẏ = Ax + B
(
(B)−1 (ẋ∗ − Ax − Fe − Ksign(σ))

)
+ Fe + ξ (3.27)

with σ=0 it becomes:

ẏ = ẋ∗ + ξ (3.28)

41



3. Current control strategies applied to the brushless DC machine

which equals to:

ẏ = ẏ∗ + ξ (3.29)

Assuming that ξ=0:
ẏ = ẏ∗ (3.30)

According to the previous equation, when σ=0 and ξ=0, the output
system has the same dynamics from the reference.

3.3.4. Chattering

The main drawback of the sliding mode approach is the chattering effect
that appears due to the limited sampling frequency of the system, the delay
in the control law calculations and the inertia of the actuators. This effect
is negative and can result in oscillations with significant amplitude that
excites non-modelled dynamics in the system. Moreover, the chattering
decreases the lifetime of the actuator and components. Some approaches
have been developed to eliminate or to reduce the chattering [13,59].

The more common way to reduce the chattering is the continuation
approach [13,60] on the basis of a substitution to the discontinuous control
in the neighbourhood of the sliding surface by a continuous control or a
dead zone which is called boundary layer.

The discontinuous control will be applied just when the system trajectory
is out of the region limited by ±ϑ, as shown in Figure 3.5.

In a classic sliding mode control, the discontinuous control is imple-
mented by using the sign function. The use of boundary layer involves
alteration of the control structure and it is, therefore, necessary to define
new mathematical functions that would allow the use of the continuation
approach. Thus, two switching functions for the continuation approach
are defined: the saturation function and the dead zone. Hereafter, the
sign function, as well as the functions for the boundary layer, is presented.
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3.3. Continuous time sliding mode controller

σ

σ

σ=0

boundary layer

ϑ ϑ

Figure 3.5.: Boundary layer.

a. Sign Function

With the sign function, the invariance property is maintained. The sign
function takes the sign of the sliding surface and is defined below:

sign(σ) =

⎧⎪⎨
⎪⎩

1 σ(x,t) > 0
0 σ(x,t) = 0

−1 σ(x,t) < 0
(3.31)

The sign function is represented in Figure 3.6:

sign( )σ

0

1

-1

σ

Figure 3.6.: Sign function.

43



3. Current control strategies applied to the brushless DC machine

b. Continuation approach: saturation function

The saturation function is given by:

sat(σ) =

⎧⎪⎨
⎪⎩

1 −ϑ < σ(x,t)
σ
ϑ

−ϑ ≤ σ(x,t) ≤ −ϑ

−1 σ(x,t) > ϑ

(3.32)

where ϑ defines the boundary layer. The sign function acts outside the
boundary layer and inside it acts a linear function, as shown in Figure
3.7.

sat ( )σ

0

1

-1

ϑ
−ϑ

σ

Figure 3.7.: Chattering reduction: saturation function.

c. Continuation approach: dead zone

With the dead zone, the sign function acts outside the boundary layer
while inside it does not act the discontinuous control, as shown in Figure
3.8. The function that introduces a dead zone inside the boundary layer
is given by:

sat(σ) =

⎧⎪⎨
⎪⎩

1 −ϑ < σ(x,t)
0 −ϑ ≤ σ(x,t) ≤ −ϑ

−1 σ(x,t) > ϑ

(3.33)

According to [13], the chattering does not exist on the boundary layer.
However, the invariance property is lost, but the system is still robust
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sat( )σ
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1
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ϑ

−ϑ

σ

Figure 3.8.: Chattering reduction: dead zone function.

concerning the disturbance and uncertainties if the boundary layer is
sufficiently small. The boundary layer width implies a compromise between
the precision and chattering reduction.

Another way to eliminate the chattering effect, without loss robustness
and precision, is the high-order sliding mode approach [13, 61, 62]. The
principal idea is to consider the discontinuity introduced by the control
in high-order dynamics, instead of the first-order dynamics. A second-
order sliding mode with the super-twisting algorithm will be presented
posteriorly in this chapter.

This section presented the basic concepts of the sliding mode. The
theoretical background of the continuous time sliding mode control is widely
presented and well established in the literature. This kind of control is
inherent a continuous time technique and it requires that the discontinuous
part of the control works with high frequency to lead the system to the
sliding surface and keep it there. However, the implementation and control
of most systems are nowadays based on using digital microcontrollers (such
as DSPs and FPGAs), which encumbers the application of the continuous
time sliding mode control as the limited sampling rate deteriorates the
response of the discontinuous control and may lead the system to instability.
It must be taken in consideration that the stability proofs of the continuous
time sliding mode control are not valid in case of discrete implementation.
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3. Current control strategies applied to the brushless DC machine

For this reason, a discrete time formulation of the sliding mode control
will be presented in the next section.

3.4. Discrete time sliding mode controller

The practical engineering constraints of the continuous time sliding mode
control and the development of microprocessors that facilitate the imple-
mentation of discrete time techniques constituted a motivation to start
the studies about the discrete time sliding mode control. The study of
the discrete time sliding mode starts with the study of Milosavljevic [63].
After that, important contributions to the development and consolidation
of the discrete time sliding mode control appeared [15,64–67].

The mere discretization of the continuous time sliding mode formulation
is not sufficient to define a discrete time sliding mode [63]. The proofs
of the continuous time sliding mode stability are not valid in the discrete
time domain and therefore the control is updated just at each sampling
time — the discontinuous control part changes its state with a limited
sampling rate which deteriorates the robustness of the system and can lead
it to instability [68]. Due to these factors, an appropriate sliding mode
design based on discrete mathematical tools is needed. For the controller
design, the continuous plant to be controlled should also have its dynamics
represented in the discrete time domain.

The procedure to design the discrete time sliding mode control has two
steps. First, the sliding surface is designed and then the control design is
established. This procedure is similar to the one used to the continuous
time sliding mode control design. However, to ensure the stability of a
system in the discrete time sliding mode, the reaching condition must be
modified in relation to continuous time.

Considering that the control law can be changed just at sampling instants,
an ideal sliding mode does not occur in a discrete system. However, the
closed loop control moves around the sliding surface in a quasi-sliding mode
band. Hence, the invariance property is lost in the discrete time sliding
mode control. However, significant robustness is maintained, which means
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that the system is even able to withstand uncertainties and disturbances
added to the model.

Different reaching laws to the sliding mode design in discrete time
systems have been developed and are presented in the literature.

The reaching law proposed by [66] ensures necessary and sufficient
conditions obtained from the Lyapunov stability analysis to ensure a stable
convergence. The condition is defined by:

|σi (k + 1)| < |σi (k)| (3.34)

Considering the discrete time sliding surface as a Lyapunov candidate:

V (k) = σ2 (k) (3.35)

ΔV (k) = σ2 (k + 1) − σ2 (k) (3.36)

ΔV (k) = (σ (k + 1) + σ (k)) (σ (k + 1) − σ (k)) (3.37)

Multiplying (3.37) by sign(σ),

ΔV (k) = (σ (k + 1) + σ (k)) (σ (k + 1) − σ (k)) (sign (σ (k))) (3.38)

Condition (3.34) can be divided into two inequalities:

(σ (k + 1) − σ (k)) (sign (σ (k))) < 0 (3.39)

(σ (k + 1) + σ (k)) (sign (σ (k))) ≥ 0 (3.40)

where the inequality (3.39) represents the necessary condition and inequal-
ity (3.40) represents the sufficient condition in relation to the existence
of a discrete time sliding surface. These conditions define the upper and
lower limits of the control law, which is different to the stability analysis
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3. Current control strategies applied to the brushless DC machine

in continuous time where just one limit is established to the control law,
as shown in 3.24.

The study [15] presents a discrete reaching law where it is required
that the state trajectory would cross the sliding surface at every sampling
instant by defining a quasi-sliding mode band around the surface.

The papers [67] and [69] propose a reaching law where it is not necessary
that the system should cross the sliding surface in each control step and just
needs to remain in a small band around it. In this case, the control strategy
can be linear, avoiding the chattering effect caused by the discontinuous
control part.

This work follows the reaching law approach developed by [15] in which
the state trajectory should present the following properties in order to
define a discrete time sliding mode and the reaching condition:

a. Starting from any initial state, the trajectory will move monotonically
around the switching plane and cross it in finite time.

b. Once the trajectory has crossed the switching plane for the first time, it
will cross the plane again in every successive sampling period, resulting
in a zigzag motion about the switching plane.

c. The size of each successive zigzag step does not increase and the trajec-
tory stays within a specified band.

If the controlled systems satisfy these properties, given in [15], they are
designed in a quasi-sliding mode. From this point, it is possible to design
a discrete control law.

3.4.1. Discrete time sliding mode controller using Gao’s
approach applied to the six-phase BLDC machine

The design of the discrete time control law applied to the six-phase BLDC
machine is presented in this section.

Considering that the sliding surface is defined as:

σ(k) = (y(k) − y∗(k)) = (x(k) − x∗(k)) (3.41)
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and according to [15], the reaching law is given by:

σ(k + 1) − σ(k) = −qtsσ(k) − εtssign (σ(k)) (3.42)

with ε > 0, q > 0 , 1 − qts > 0 .
Substituting (3.41) into (3.42):

−qtsσ(k) − εtssign (σ(k)) = x(k + 1) − x∗(k + 1) + x∗(k) − x(k) (3.43)

Replacing (2.28) into (3.43), the following control law is achieved:

u(k) = (H)−1

[
x∗(k + 1) − x∗(k) + x(k) − Gx(k)−
−We(k) − qtsσ(k) − εtssign (σ(k))

]
(3.44)

In order to obtain the response of the system to the developed controller,
the control law gives in (3.44) is replaced into (2.28) and it becomes:

x(k + 1) = Gx(k) + We(k) + ξd(k)+

+H

(
(H)−1

[
x∗(k + 1) − x∗(k) + x(k) − Gx(k) − We(k)+
−qtsσ(k) − εtssign (σ(k))

])
(3.45)

According to the discrete state-space model given in (2.28), it is possible
to write:

y(k + 1) = x(k + 1) (3.46)

Replacing (3.45) into (3.46):

y(k + 1) = Gx(k) + We(k) + ξd(k)+

+H

(
(H)−1

[
x∗(k + 1) − x∗(k) + x(k) − Gx(k) − We(k)+
−qtsσ(k) − εtssign (σ(k))

])
(3.47)
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(3.47) can be rewritten as:

y(k + 1) = ξd(k) + y∗(k + 1) + σ(k) − qtsσ(k) − εtssign (σ(k)) (3.48)

In order to obtain the posterior value of y∗, (k + 1), the variable y∗ is
replaced by its filtered value yf

∗:

yf
∗(k + 1)

y∗(k + 1)
= F (z) = 1 − p

z − p
(3.49)

with p << 1.
So, (3.48) can be rewritten as:

y(k + 1) = ξd(k) + yf
∗(k + 1) + σ(k) (1 − qts) − εtssign (σ(k)) (3.50)

From (3.50) it is possible to conclude that the response of the system
depends on the quasi-sliding mode band, on the filtered reference and on
the disturbances.

From (3.50), the sliding mode dynamic can be written as:

σ(k + 1) = ξd(k) + σ(k) (1 − qts) − εtssign (σ(k)) (3.51)

According to the quasi-sliding mode definition, the sign of σ(k + 1) must
be opposite to the signal of σ(k) and the region where every state satisfies
this condition constitutes the quasi-sliding mode band. This region is
defined by:

|σ(k)| <
εts

1 − qts
(3.52)

The relationship shown in (3.52) represents the magnitude of the oscil-
lations of σ(k) around zero. Thus, the width of the quasi-sliding mode
band is given by:

2Δ = 2 εts

1 − qts
(3.53)
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and, in steady space, when σ(k) = 0, the region that constitutes the
quasi-sliding mode band is given by:

|σ(k)| < εts (3.54)

From the definition of the quasi-sliding mode band in steady-states, as
shown in (3.54), it can be concluded that the width of the boundary layer
may be reduced by using a smaller ε and/or reducing the sampling period.
In other words, the robustness is improved by decreasing the sampling
period and hence the smaller is the sampling time, the smaller is the effect
of the sampling in the system.

Bartoszewicz considers in [70] that the quasi-sliding mode band in the
steady space developed by Gao, shown in (3.54), is too conservative and
proposes a new quasi-sliding mode band definition when the system is in
the steady state. This is given by:

σ(k) ≤ εts

2 − qts
(3.55)

or
σ(k) = εts

2 − qts

The new definition of the quasi-sliding mode band in (3.55) shows that
the bandwidth in steady state depends not only on ε and ts but also on
the parameter q.

The dynamic performance of the Gao controller will be analyzed by the
simulation results and posterior by experimental investigations.

3.4.2. Stability proof of the discrete time sliding mode
controller on the basis of a Lyapunov function

The Lyapunov stability theory is used to analyze the stability of the current
controller by establishing a necessary and sufficient condition to ensure
a stable convergence. First, the stability analysis is carried out without
considering the disturbance in the model.
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Considering the positive definite function:

V (k) = σT (k)Pσ(k) (3.56)

and

V (k + 1) = σT (k + 1)Pσ(k + 1) (3.57)

From (3.56) and (3.57):

ΔV (k) = V (k + 1) − V (k) (3.58)

ΔV (k) =
(
σT (k + 1)Pσ(k + 1)

)
−
(
σT (k)P σ(k)

)
(3.59)

Considering that there are not disturbances in the system and replacing
(3.51) into (3.59), it becomes:

ΔV (k) =

[
σ(k)−qtsσ(k)−
−εtssign (σ(k))

]T

P

[
σ(k)−qtsσ(k)−
−εtssign (σ(k))

]
−

−
(
σT (k)Pσ(k)

) (3.60)

(3.60) can be rewritten as:

ΔV (k) = S3(k) (qts (−2 + qts)) + S1(k) (2εts (−1 + qts)) + ε2ts
2 (3.61)

where:

S1(k) =

⎛
⎜⎝ σa(k)sign(σa(k)) + σb(k)sign(σb(k))+

+σc(k)sign(σc(k)) + σd(k)sign(σd(k))+
+σe(k)sign(σe(k)) + σf (k)sign(σf (k))

⎞
⎟⎠ =

= |σa(k)| + |σb(k)| + |σc(k)| + |σd(k)| + |σe(k)| + |σf (k)|

(3.62)

S3(k) =
(
σa

2(k) + σb
2(k) + σc

2(k) + σd
2(k) + σe

2(k) + σf
2(k)

)
(3.63)
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The mathematical development of (3.60) to get to (3.61) is given in
Appendix B.2.

In order to ensure the convergence of the controlled system to the sliding
surface, the rate of change ΔV in (3.61) must be negative. Hence, it is
necessary to define the limits of the controller parameters in such a manner
that ΔV is negative.

Rewriting (3.61) as:

ΔV (k) = ΔV1(k) + ΔV2(k) + ΔV3(k) (3.64)

where:
ΔV1(k) = S3(k) (qts (−2 + qts)) (3.65)

ΔV2(k) = S1(k) (2εts (−1 + qts)) (3.66)

ΔV3(k) = ε2ts
2 (3.67)

Considering that S1(k) and S3(k) are always positive, the negativity of
the term ΔV1 is ensured if the following condition is satisfied:

q <
2
ts

(3.68)

However, the negativity of ΔV2 is ensured if it satisfies the condition:

q <
1
ts

(3.69)

|ΔV1(k) + ΔV2(k)| > |ΔV3(k)| (3.70)

Hence, in order to ensure simultaneously the negativity of ΔV1 and ΔV2,
the limits for the parameter q should satisfy the condition given in (3.69)
which is equivalent to the condition for the reaching law defined by Gao
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in [15]. It should be considered that the negativity of ΔV is ensured if the
following condition is satisfied:

(σ (k + 1) − σ (k)) (signσ (k))T < 0 (3.71)

After that, the limits for the term ε should be also defined in such a
manner that the negativity of ΔV is maintained. It is important to note
that a bigger value for ε can lead the system to instability because it
becomes more difficult to maintain the negativity of ΔV as the term ε2ts

2

is high.
Considering the lower limit inequality given in (3.39) and replacing

(3.51) on it, the lower limit of ε is defined by:

[−σ(k)qts − εtssign (σ(k))] sign(σ(k))T < 0 (3.72)

that becomes:

ε > −qS1(k) (3.73)

The mathematical development of (3.72) to get to (3.73) is given in
Appendix B.3.

From (3.73), the negativity of ε is always ensured for all values of q and
S1(k).

Considering the upper limit inequality given in (3.40) and replacing
(3.51) on it, it becomes:

[σ(k) − σ(k)qts − εtssign (σ(k)) + σ(k)] (sign (σ(k)))T ≥ 0 (3.74)

Solving the inequality:

2σ(k)(sign (σ(k)))T − σ(k)qts(sign (σ(k)))T −
−εtssign (σ(k)) (sign (σ(k)))T ≥ 0

(3.75)

and rewritten it as:

2S1(k) − qtsS1(k) ≥ εts (3.76)
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The upper limit of ε is given by:

ε ≤ S1(k) (2 − qts)
ts

(3.77)

The mathematical development of (3.75) to get to (3.76) is given in
Appendix B.4.

It can be concluded that the superior limit of ε is inversely proportional
to the sampling time. The lower the sampling time, the greater the upper
limit — ensuring the stability of the control law. The limit conditions
for the control parameters are established without having to consider
disturbances in the model. The next subsection will present the stability
analysis by considering a system where disturbances are added to the
model.

3.4.3. Stability proof of the discrete time sliding mode
controller on the basis of a Lyapunov function
considering disturbance in the system.

The stability of the system by considering disturbances in the nominal
model will be analyzed in this section following the Lyapunov stability
theory.

Replacing (3.51) into (3.59):

ΔV (k) =[
ξd(k) + σ(k) (1 − qts) −
−εtssign (σ(k))

]T

P

[
ξd(k) + σ(k) (1 − qts) −
−εtssign (σ(k))

]
−

−
(
σT (k)Pσ(k)

)
(3.78)

(3.78) can be rewritten as:

ΔV (k) = 2εtsS1(k) (qts − 1) + 2S2(k) (1 − qts) +
+qtsS3(k) (−2 + qts) + S4(k) − 2εtsS5(k) + ε2ts

2 (3.79)
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where S1(k) and S3(k) are defined in (3.62) and (3.63), respectively, and:

S2(k) = ξda(k)σa(k) + ξdb(k)σb(k) + ξdc(k)σc(k)+
+ξdd(k)σd(k) + ξde(k)σe(k) + ξdf (k)σf (k)

(3.80)

S4(k) = ξda
2(k) + ξdb

2(k) + ξdc
2(k) + ξdd

2(k) + ξde
2(k) + ξdf

2(k) (3.81)

S5(k) = ξda(k)sign (σa(k)) + ξdb(k)sign (σb(k)) + ξdc(k)sign (σc(k)) +
+ξdd(k)sign (σd(k)) + ξde(k)sign (σe(k)) + ξdf (k)sign (σf (k))

(3.82)
The mathematical development of (3.78) to get to (3.79) is given in

Appendix B.5.
Rewriting (3.79) as:

ΔV (k) = ΔV 1(k) + ΔV 2(k) + ΔV 3(k) + ΔV 4(k) (3.83)

where ΔV1(k), ΔV2(k), ΔV3(k) are defined in (3.65), (3.66), and (3.67),
and ΔV4(k) is given by:

ΔV4(k) = 2S2(k) (1 − qts) + S4(k) − 2εtsS5(k) (3.84)

The negativity of ΔV1(k) and ΔV2(k) is ensured following the condition
defined in (3.69).

Considering that ΔV3(k) is always positive and ΔV4(k) has a complex
definition due to its disturbance dependence, it could be assumed that the
negativity of ΔV (k) is ensured if:

|ΔV1(k) + ΔV2(k)| > |ΔV3(k) + ΔV4(k)| (3.85)

The parameter ε should be large enough to overcome the disturbances
in the term ΔV4(k) and to ensure Condition (3.85). However, the use of a
large value for ε can add chattering to the system, which is undesirable.
For this reason, the development of a disturbance observer is a good
alternative in order to estimate and compensate the disturbance of the
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system. Hence, the value of ε must not be very large to guarantee the
negativity of ΔV (k). The association of a disturbance observer with the
discrete time sliding mode based on Gao’s approach will be presented in
Chapter 4.

3.5. Discrete time super-twisting controller

Considering that the boundary layer approach used in order to reduce the
chattering in the first-order sliding mode degrades the robustness of the
control, the high-order sliding mode control emerges like an alternative to
eliminate the chattering, maintaining the accuracy and robustness of the
control. The high-order sliding mode (HOSM) concept was introduced by
Levant [57].

In the standard sliding mode control, also called first-order sliding mode
control, the discontinuous control action appears in the first total derivative
of the sliding surface (σ̇). For the high-order sliding mode with order rst,
the discontinuous control appears in the (r − 1) time derivative of the
sliding surface and hence the control input is continuous. Consequently,
the chattering is removed and the robustness of the control is maintained.
Therefore, the order of the HOSM is given by the number of total time
derivatives that are needed until the appearance of the discontinuous
control [71].

The main idea of HOSM is to reduce to zero not only the sliding surface
but also its high order derivatives. So, the r-order sliding mode must
satisfy the condition:

σ = σ̇ = σ̈ =
r−1
σ = 0 (3.86)

The major disadvantage of the HOSM approach is the increased infor-
mation demand — for example, a second-order sliding mode needs the
information about the first-time derivative of the sliding surface which is
often unavailable. One exception is the super-twisting algorithm that is a
second-order sliding mode controller and does not require any information
about the sliding surface time derivative (σ̇). The super-twisting algo-
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rithm is applied to the system with relative degree 1 in order to avoid the
chattering effect without losing the accuracy. It requires low information
demand and present implementation simplicity, and for this reason, it is
widely used in practical applications. This algorithm is characterized by
describing a spiral trajectory in the phase plane (σ − σ̇ ), as shown in
Figure 3.9.

�

�

Figure 3.9.: Super-twisting trajectory in the phase plane.

The continuous time super-twisting algorithm is defined by:

ust = −λ1|σ|1/2sign(σ) + u1

u̇1 = −λ2sign(σ)
(3.87)

From (3.87) it is possible to notice that the super-twisting algorithm
does not require the time derivative of the sliding variable [11].

The super-twisting algorithm was originally developed in continuous
time. However, the practical implementation in digital microprocessors
must be considered. The discrete time super-twisting approach is not well
established in the literature, with few articles addressing this issue.

As an important scientific contribution, this section presents the formu-
lation and stability analysis of a discrete time super-twisting algorithm
applied to a six-phase BLDC machine.
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In this work, a discrete time formulation of the super-twisting algorithm
is based on Euler discretization. The same approach is used in [72, 73] for
different applications.

The discretization issues of HOSM are examined in [74] by Levant, where
it is ensured that the accuracy of the output-feedback HOSM technique
is preserved if its digital implementation in controlling continuous time
systems is based on the simple zero order hold control and internal one-step
Euler integration.

3.5.1. Discrete time super-twisting controller applied to the
six-phase BLDC machine

Considering the sliding surface defined in accordance with (3.41), the first
time derivative of the sliding surface is given by:

σ(k + 1) − σ(k) = (x(k + 1) − x∗(k + 1)) − (x(k) − x∗(k)) (3.88)

Replacing the discrete dynamic model of the brushless DC machine
given in (2.28) into (3.88):

σ(k + 1) = (Hu(k) + Gx(k) + We(k) + ξd(k) − x∗(k + 1)) (3.89)

The equivalent control concept will be applied here to define the control
law:

u(k) = ueq(k) + un(k) (3.90)

where ueq is the equivalent control component and represents the contin-
uous component of the control, and un is the super-twisting algorithm
term.
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To define the equivalent control term, it should be considered that
σ(k + 1) = 0 and the disturbances of the system are null (ξd(k) = 0).
Hence, applying these conditions to (3.89) is given in the following:

ueq(k) = H−1 (x∗(k + 1) − Gx(k) − We(k)) (3.91)

Defining un as:

un(k) = H−1 (−ust(k)) (3.92)

So, replacing (3.91) and (3.92) into (3.90), the control law can be defined
as:

u(k) = H−1 (x∗(k + 1) − Gx(k) − We(k) − ust(k)) (3.93)

where ust represents the discrete super-twisting term that is defined by the
Euler discretization of the continuous super-twisting algorithm — given in
(3.87) — as:

ust(k) = −λ1|σ(k)|1/2sign(σ(k)) + u1(k)
u1(k + 1) = u1(k) − tsλ2sign(σ(k))

(3.94)

Now, replacing equation (3.93) into (3.89) gives the dynamic response
of the system:

σ(k + 1) =

(
H
[
H−1 (x∗(k + 1) − Gx(k) − We(k) − ust(k))

]
+

+Gx(k) + We(k) + ξd(k) − x∗(k + 1)

)
(3.95)

σ(k + 1) = (−ust(k) + ξd(k)) (3.96)

(3.96) represents the dynamics of the sliding surface. The dynamics of
the sliding surface converges to zero in finite time, depending on the
disturbance and on the super-twisting action.
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3.5.2. Stability proof of the discrete time super-twisting
controller on the basis of a Lyapunov function
considering disturbance in the system.

The study of the discrete time super-twisting is still not well established
in the literature. Only a few authors have presented the theoretical
background of this technique and its stability proofs. The stability analysis
of the discrete time super-twisting algorithm has been developed in this
work based on the approach presented by [73], where the stability of the
discrete super-twisting algorithm is analyzed with a quadratic Lyapunov
function while the stability conditions are achieved by a linear matrix
inequality. Considering the system given in (2.28) and the back-emf as a
disturbance added to the system, the dynamic model can be rewritten as:

x(k + 1) = Gx(k) + Hu(k) + ηd(k) (3.97)

with ηd=We(k)+ξd(k) and ηd ∈ �n.
Replacing the control law given in (3.94) into the plant given in (3.97):

x(k + 1) = Gx(k) + Hλ1|σ(k)|1/2sign(σ(k)) + Hu1(k) + ηd(k) (3.98)

Considering that there is an upper bound for the disturbances:

‖ηd(k)‖ ≤ Π+ (3.99)

The proof is developed by combining an n-order dynamic system given
in (3.98) with the control law equations given in (3.94) in a unique 2n-
dimensional system. This is given by:

ψ(k + 1) = Jψ(k) + L(k)sign(σ(k)) (3.100)

with: ψ(k + 1)∈ �2n, J ∈ �2nx2n, L(k) ∈ �2nxn. In this application
n = 6.

According to [73], considering the nonlinear system given in (3.100),
with gains λ1 > 0 and λ2 > 0 and if the LMI given by [AT (P + PΛP) A−
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(1 − ς) P + Q ≤ 0 has a positive solution, then the dynamic system
converges asymptotically to a ball centred at the origin with a radius given
by:

R = Θ
1 − ς

(3.101)

The proof of the discrete time super-twisting control stability is presented
in detail in Appendix B.6.

3.6. Simulation results

In this section, the performances of the proposed current controllers
developed in this chapter and applied to the six-phase brushless DC
machine are qualitatively analyzed by the simulation results.

The simulations are carried out with the software MATLAB R©, where
the algorithms are implemented with a sampling frequency of 50 kHz,
with exception of the continuous time sliding mode simulations that are
carried out with the software Simulink that has the appropriate functions
to perform a continuous simulation.

The parameters of the machine used in the simulations are shown in
Table 3.1.

Number of phases 6
Pole pairs - P 4
Number of stator slots 48
Number of turns 5
Phase resistance - Rs 38 mΩ
Phase inductance - Ls 10.5 μH
Back-emf constante - Ke 0.0198 Vs/rad
Rated torque - Te 2.5 Nm
Rated power 0.6 kW
DC link voltage - VDC 12 V
Rated speed 2250 rpm
Rated phase current 25 A

Table 3.1.: Motor specification.

It is assumed that the self- and mutual inductances of the model vary in
accordance with the measurements presented in Chapter 2, in Figure 2.9.
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It is considered that the back-emf is known and its effect is completely
cancelled through the feedforward control for all presented controllers;
therefore, the disturbances applied to the model in these simulations are
only the self- and mutual inductances variations.

The main aim of the simulations is to demonstrate that the proposed
controllers based on the sliding mode approach can provide robustness
with respect to parameter variations.

In the simulations, it is possible to analyze the controller dynamic re-
sponse by the simulated phase current versus the reference phase current.
It is important to verify if the controller is able to overcome the uncer-
tainties and parameter variations to ensure the convergence of the phase
current to the desired trajectories.

The final aim of the phase current control is to ensure a resultant
electrical torque in the machine with minimal oscillations, despite the
non-idealities of the model.

This section will also present the simulations results for the speed control
carried out with the software Simulink.

3.6.1. Discrete time proportional-integral controller

For the simulation, it is considered the discrete dynamic model of the
machine described as in (2.28).

The amplitude of the current reference is determined by the output of
the speed controller. The current reference is null in the points where the
back-emf is not constant; it is positive if the hall sensor signal is 0 and
negative if the signal is 1.

Figure 3.10 shows the simulation results of the discrete proportional-
integral current controller for an operation point with 2250 rpm speed and
1 Nm Load Torque. Figure 3.10 (a) shows the convergence of the current
to the current reference, while Figure 3.10 (b) shows the tracking error for
the phase current control. Figure 3.10 (c) shows the output of the current
controller, Figure 3.10 (d) the resultant electrical torque and Figure 3.10
(e) the zoom of the electrical torque.
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3. Current control strategies applied to the brushless DC machine

Through the simulation results an oscillatory response in the current
and consequently in the electrical torque is noted, although it is assumed
that the back-emf is known, due to the magnetic coupling between the
phases and the poor robustness of the conventional PI controller.

As the speed increases, the current controller should react rapidly so that
the controller gain should be adjusted, but owing to the limited bandwidth,
a greater parameter variation can lead the control to instability.

Therefore, we can conclude that the PI controller presents a slow response
time which reduces the operation range of the BLDC drive [48] and is not
robust to lead with the parameter variations and the non-idealities from
the machine model.

3.6.2. Continuous time sliding mode controller

The simulations for the continuous time sliding mode controller are carried
out with the software Simulink for an operation point with 2250 rpm speed
and 1 Nm Load Torque. The dynamic model of the machine is simulated
in accordance the model represented in (2.26). To verify the robustness
issues of the sliding mode control, it is assumed that the self- and mutual
inductances in the model are dependent on rotor angles and they behave
as presented in Chapter 2, in Figure 2.9. Figure 3.11 (a) presents the
phase current A versus the current reference; Figure 3.11 (b) presents
the tracking error for the current in phase A; Figure 3.11 (c) shows the
output of the sliding mode controller for phase A; Figure 3.11 (d) shows
the total electrical torque that is generated in the machine and Figure 3.11
(e) presents the zoom of the electrical torque.

In the simulations, the chattering phenomenon is reduced with the
use of the boundary layer. Even considering the model with self- and
mutual inductances varying with the rotor angle, the controller ensures a
good dynamic response against parameter variations and a good current
reference tracking, thereby proving the robustness of a system where the
model is not exactly known.

The problem with this kind of control is that its implementation should
be realized in continuous time domain to be valid. Many works use the
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Figure 3.10.: Discrete time proportional-integral control. (a) Current reference (ia
∗)

versus measured current (ia) for phase A; (b) tracking error for phase A;
(c) output of phase A current controller; (d) electrical torque; (e) zoom
of electrical torque.
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3. Current control strategies applied to the brushless DC machine

continuous time formulation of the sliding mode in a digital implementation,
but the stability proofs applied to a continuous time sliding mode controller
cannot be extended to a discrete implementation. The test bench for the
experimental results for this work uses a digital implementation in a FPGA
system and hence experimental tests of the continuous time sliding mode
control were not implemented. The continuous time sliding mode control
was presented in this chapter to provide the basic understanding of the
sliding mode technique concepts and facilitate the development of the
discrete time sliding mode approach.

3.6.3. Discrete time sliding mode controller: Gao’s approach

The simulations are carried out to validate the discrete time sliding mode
control law developed in this chapter and to demonstrate that it is possible
to overcome model uncertainties and external disturbances by using a
discrete algorithm.

In the six-phase machine simulated model, it is considered that the
self- and mutual inductances have the behavior described in Chapter 2,
in Figure 2.9, and also that the back-emf from each phase is ideal and
known.

The figure below shows the response of the discrete time sliding mode
at the rated speed (2250 rpm) and 1 Nm Load Torque. Figure 3.12 (a)
presents the phase current A versus the current reference; Figure 3.12
(b) presents the tracking error for the current in phase A; Figure 3.12 (c)
shows the output of the discrete time sliding mode controller for phase A;
Figure 3.12 (d) shows the total electrical torque that is generated in the
machine and Figure 3.12 (e) presents the zoom of the electrical torque.

By the simulations results it is possible to verify that the dynamic
response of the current is improved with the discrete time sliding mode
controller, in comparison with a classical proportional-integral controller.
Moreover, with the discrete time sliding mode control, it is not necessary
to adjust the controller gain for different operation points. The controller
tries to compensate the effect of the mutual inductances, which can be
verified in the output of the controller in Figure 3.12 (c). However, its
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Figure 3.11.: Continuous time sliding mode control. (a) Current reference (ia
∗) versus

measured current (ia) for phase A; (b) tracking error for phase A; (c)
output of phase A current controller; (d) electrical torque; (e) zoom of
electrical torque.

67



3. Current control strategies applied to the brushless DC machine

effort is not sufficient to compensate all the non-idealities in the model,
and there are oscillations in the phase current and in the electrical torque
related to the magnetic coupling. The oscillation torque is defined as the
average of the difference between the maximum and the minimum values
of torque which, in this case, is about 9%.

In the simulations presented in this chapter, it is assumed that the
back-emf is totally known, but actually the back-emf cannot be directly
measured and it can only be observed. It is possible to know partially the
amplitude of the back-emf by (2.12), but this does not reproduce the non-
idealities from the back-emf of each phase, as shown in Figure 2.11. It is
concluded that the discrete time sliding mode controller cannot overcome
all the disturbances present in the model and therefore a disturbance
observer in combination with the discrete time sliding mode controller is
proposed in the next chapter to ensure a good dynamic response for the
system under parameter variations.

3.6.4. Discrete time sliding mode controller: super-twisting
approach

The simulation results for the discrete time super-twisting sliding mode
control, considering that the self- and mutual inductances vary in accor-
dance with the rotor position and that the back-emf from each phase is
ideal and known, are shown is this section.

Figure 3.13 presents the response of the discrete super-twisting sliding
mode control at the rated speed and 1 Nm Load Torque. Figure 3.13 (a)
presents the phase current A versus the current reference; Figure 3.13
(b) presents the tracking error for the current in phase A; Figure 3.13 (c)
shows the output of the discrete time sliding mode controller for phase
A; Figure 3.13 (d) shows the total electrical torque and Figure 3.13 (e)
presents the zoom of the electrical torque.

The super-twisting controller presents a dynamic response even faster
that the discrete time sliding mode controller, which is the characteristic
of the second-order sliding mode controller as well as of the chattering
reduction. Similarly to the simulation results presented for the discrete

68



3.6. Simulation results

0 0.005 0.01 0.015 0.02 0.025
−20

−15

−10

−5

0

5

10

15

20

C
u
r
r
e
n
t
(A

)

time (s)

ia∗ ia

(a)

0 0.005 0.01 0.015 0.02 0.025
−15

−10

−5

0

5

10

15

T
r
a
c
k
in

g
e
r
r
o
r

time (s)

(b)

0 0.005 0.01 0.015 0.02 0.025
−20

−15

−10

−5

0

5

10

15

20

V
o
lt
a
g
e
(V

)

time (s)

(c)

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

T
o
r
q
u
e
(N

m
)

time (s)

(d)

0.02 0.03 0.04 0.05 0.06
0.8

0.9

0.95

1

1.05

1.1

T
o
r
q
u
e
(N

m
)

time (s)

(e)

Figure 3.12.: Discrete time sliding mode control. (a) Current reference (ia
∗) versus

measured current (ia) for phase A; (b) tracking error for phase A; (c)
output of phase A current controller; (d) electrical torque; (e) zoom of
electrical torque.
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3. Current control strategies applied to the brushless DC machine

time sliding mode controller, the super-twisting controller cannot overcome
all the effects of the coupling between the phases and a torque oscillation
about 9% is present. It is important to remark that the effect of the mutual
inductances in the phase current takes place with very fast dynamic and
that even a controller with a high dynamic response, such as the super-
twisting controller, is not enough to remove the effect of the non-idealities
at 50 kHz sampling frequency.

3.6.5. Speed control

The control structure of the BLDC machine has an internal loop for current
control and an external loop for speed control (Figure 3.1). The speed
control is carried out with a classical proportional-integral controller. Since
the mechanical dynamic is slower than the electrical dynamic and has to
deal just with the load torque variation, the classical PI controller seems
to be adequate.

The simulation was carried out with the software Simulink, considering
a continuous plant and a discrete control implementation with a sampling
frequency of 50 kHz. Figure 3.14 shows the speed tracking for a speed
reference that varies from 0 to 104.72 rad/s (1000 rpm) from 0s–1s and
keeps at 104.72 rad/s from 1s–5s, increases again from 104.72 rad/s to
209.44 rad/s (2000 rpm) from 5s-6s and remains at 209.44 rad/s from
6s–10s. A torque load of 2.25 Nm is applied to the system from 7s–10s.

Figure 3.14 (a) presents measured speed versus the speed reference;
Figure 3.14 (b) presents the speed tracking error; Figure 3.14 (c) shows
the output of proportional-integral speed controller and Figure 3.14 (d)
shows the load torque applied to the system.

The speed tracks the trajectory reference with a good dynamic response
even when a load torque is applied to the system. The output of the speed
controller in Figure 3.14 (c) defines the amplitude of the current reference.
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Figure 3.13.: Discrete time super-twisting control. (a) Current reference (ia
∗) versus

measured current (ia) for phase A; (b) tracking error for phase A; (c)
output of phase A current controller; (d) electrical torque; (e) zoom of
electrical torque.
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Figure 3.14.: (a) Speed reference versus measured speed; (b) speed tracking error; (c)
speed controller output; (d) load torque.

3.6.6. Summary

In this chapter, different current control strategies are presented in order to
ensure a good performance of the six-phase brushless DC machine. Firstly,
a standard proportional-integral controller was introduced for being one
of the most common used controllers in the industry. A sliding mode
controller was developed in the continuous time domain in order to provide
the basic concepts of the sliding mode technique. After that, two discrete
time sliding mode controllers have been presented: a first-order sliding
mode and a second-order sliding mode based on a super-twisting algorithm.
The controllers and the stability proofs are developed in the discrete time
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domain aiming the practical experimentation. The simulations are carried
out to show the performance of the controllers presented in this chapter.

With the simulation results, it is concluded that the proposed discrete
controllers are not capable of overcoming all the effects of the mutual
inductances in the phase currents. To solve this issue, the next chapter
presents a disturbance observer in combination with the proposed discrete
time sliding mode controllers. The next chapter also proposes a new current
reference to minimize the effect of the coupling between the phases.
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4. Discrete time disturbance observer
applied to the brushless DC machine

4.1. Introduction

The continuous time sliding mode control stands out for its invariance
property, control simplicity and robustness against parameter uncertainties
and external disturbances. However, there is a practical limitation of the
continuous time sliding mode control owing to the fact that most of the
practical implementations are carried out by using digital signal processors,
which deteriorates the discontinuous control response and may lead the
system to the instability. For this reason, a discrete time sliding mode
approach has been developed in this work. In the discrete time sliding
mode control the system is kept in a quasi-sliding mode band around the
sliding surface and the control law is changed only at discrete instants.
Hence, the invariance property is not achieved by discrete time sliding mode
controllers but remains a satisfying robustness property. Nevertheless, the
chattering appears in the presence of large varying disturbances.

According to the simulation results presented in the last chapter, it can
be concluded that the proposed discrete time sliding mode controllers are
not robust enough to overcome the unknown disturbances added to the
system, such as the back-emf non-idealities and the parameter variations
related to the mutual coupling between the phases of the six-phase brushless
DC machine.

To improve the tracking accuracy in the presence of internal and ex-
ternal disturbances and to remove the chattering, a control scheme, that
combines a discrete time sliding mode controller and a disturbance esti-
mator, is proposed. Many applications presented in the literature, such
as [16–23], have shown that the use of the sliding mode controller that in-
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4.2. DSMC with decoupled variable structure disturbance observer

cludes a disturbance observer improves the robustness and the disturbance
attenuation.

Since the uncertainties and the external disturbances are estimated by
the disturbance observer, the discrete time sliding mode controllers are
designed considering the nominal plant and as a consequence, the zigzag
motion in the quasi-sliding mode band around the surface substantially
reduces, which relieves the chattering problem.

The purpose of the disturbance observer is to compensate the effect of
the disturbance by a feedback control by forcing the real plant to behave
as the nominal plant.

The control law (u) will be composed by two terms, one relative to the
discrete time controller (usmc) and another to the observed disturbance
(ξ̂d ). This chapter proposes two different disturbance observer approaches,
combined with the discrete time sliding mode control based on Gao’s
approach, and one disturbance observer approach combined with the
discrete super-twisting controller in order to reject the disturbance of the
system and track a given current reference.

Figure 4.1 shows a block diagram of the control scheme with the controller
combined with a disturbance observer.

The design of the disturbance observer is carried out, considering that
only the output of the system, in case the phase currents, are measured
and no additional sensors are needed. In the next sections, two different
disturbance observers, which are combined with discrete time sliding mode
controllers and applied to the six-phase brushless DC machine model, will
be presented.

4.2. Discrete time sliding mode control with decoupled
variable structure disturbance observer

This work proposes a discrete time disturbance observer, combined with the
discrete time sliding mode controller based on Gao’s approach presented in
the previous chapter. The design of the disturbance observer is also based
on the variable structure concept and follows the formulation presented
in [75]. The aim is to develop a disturbance observer with the disturbance
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Figure 4.1.: System structure with nonlinear disturbance observer.

estimation dynamic decoupled from the controller tracking error dynamic
so that it becomes possible to independently regulate both dynamics. This
disturbance observer can be described by the following system:

ξ̂d(k) = ξ̂d(k − 1) + Λ (σ(k) − qtsσ(k − 1) + εtssign (σ(k − 1))) (4.1)

The study [75] proposes a modification in the Gao’s sliding surface
dynamic that is given by:

σ(k + 1) = ξ̃d(k) + qtsσ(k) − εtssign (σ(k)) (4.2)

The estimation error is defined as:

ξ̃d(k) = ξd(k) − ξ̂d(k) (4.3)

and it can be rewritten as:

ξ̃d(k + 1) = ξd(k + 1) − ξ̂d(k + 1) (4.4)

Replacing (4.1) into (4.4):

ξ̃d(k+1) = ξd(k+1)− ξ̂d(k)−Λσ(k+1)+Λqtsσ(k)−Λεtssign (σ) (4.5)
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4.2. DSMC with decoupled variable structure disturbance observer

and (4.2) into (4.5):

ξ̃d(k + 1) = ξd(k + 1) − ξ̂d(k) − Λξ̃d(k) − Λqtsσ(k)+
+Λεtssign (σ(k)) + Λqtsσ(k) − Λεtssign (σ(k))

(4.6)

it results in:

ξ̃d(k + 1) = ξd(k + 1) − ξ̂d(k) − Λξ̃d(k) (4.7)

Replacing (4.3) into (4.7):

ξ̃d(k + 1) = ξd(k + 1) − ξd(k) + (1 − Λ) ξ̃d(k) (4.8)

and considering that:

Δξd(k + 1) = ξd(k + 1) − ξd(k) (4.9)

(4.8) can be rewritten as:

ξ̃d(k + 1) = Δξd(k + 1) + (1 − Λ) ξ̃d(k) (4.10)

(4.10) represents the dynamic of the estimated error. With an appropri-
ate choice of the gain Λ , and following the condition (1 − Λ) < 1 , the
disturbance estimation error converges to zero in finite time, depending on
the disturbance variation, independent of the initial condition — which
means that the disturbance observer is asymptotically stable. It is assumed
that this variation is very small for high sampling frequencies.

Combining the discrete time sliding mode control with the proposed
disturbance observer, the control law is defined as:

u(k) = usmc(k) − H−1ξ̂d(k) (4.11)

where usmc
1 represents the discrete time controller term based on Gao’s

approach defined in (3.44).

1From this point, the discrete time control law based on Gao’s approach defined
in (3.44) will be represented by usmc.
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4. Discrete time disturbance observer applied to the BLDC machine

Replacing the control law given into (4.11) and the term related to the
discrete time sliding mode control based in Gao’s approach given in (3.44)
in the dynamic model presented in (2.28), it results in:

x(k + 1) = Gx(k) + We(k) + ξd(k) + H
[
usmc(k) − H−1ξ̂d(k)

]
(4.12)

x(k + 1) = x∗(k + 1) + σ(k) (1 − qts) − εtssign (σ(k)) + ξ̃d(k) (4.13)

According to (3.41), (4.13) can be rewritten as:

σ(k + 1) = σ(k) (1 − qts) − εtssign (σ(k)) + ξ̃d(k) (4.14)

(4.14) represents the dynamic of the controller combined with the dis-
turbance observer. The system slides asymptotically to the equilibrium
point when the estimation error tends to zero or is small in a sampling
period.

4.3. Discrete time sliding mode control with reduced order
disturbance observer

In this section, a combination of the Gao’s approach controller with a
reduced order discrete disturbance observer is presented. The proposed
disturbance observer follows the formulation developed by [76], which is
the discrete version of the continuous time disturbance observer presented
in [77].

The disturbance estimator can be described by the following equation:

ξ̂d(k) = Λ (x(k) − z(k)) (4.15)

where the variable z is defined as:

z(k + 1) = z(k) + (G − I) x(k) + Hu(k) + We(k) + ξ̂d(k) (4.16)
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4.3. DSMC with reduced order disturbance observer

Considering that the estimation error is given by:

ξ̃d(k) = ξd(k) − ξ̂d(k) (4.17)

and it can be rewritten as:

ξ̃d(k + 1) = ξd(k + 1) − ξ̂d(k + 1) (4.18)

Replacing (4.15) into (4.17):

ξ̃d(k + 1) = ξd(k + 1) − Λ (x(k + 1) − z(k + 1)) (4.19)

Now, considering the discrete BLDC dynamic model given in (2.28) and
replacing it into (4.19):

ξ̃d(k + 1) = ξd(k + 1) − Λ (Gx(k) + Hu(k) + We(k) + ξd(k) − z(k + 1))
(4.20)

and replacing (4.16) into (4.20), it becomes:

ξ̃d(k + 1) = ξd(k + 1) − Λξd(k) + Λz(k) − Λx(k) + Λξ̂d(k) (4.21)

Considering (4.9), (4.15) and (4.17), (4.21) can be rewritten as:

ξ̃d(k + 1) = Δξd(k + 1) + (1 − Λ) ξ̃d(k) (4.22)

The disturbance estimation error follows the dynamics presented in
(4.22). From (4.22) it can be verified that the disturbance observer pre-
sented in (4.15) and (4.16) is asymptotically stable with an appropriate
choice of Λ and following the condition (1−Λ) < 1, and thus, the estimated
disturbance is able to track the disturbance of the system.

It is possible to note that the estimation error dynamic is related to the
disturbance variation Δξd(k + 1). So the observer completely estimates
constant disturbances and work well with slowly varying disturbances,
which means that within one sampling period the disturbance variation
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4. Discrete time disturbance observer applied to the BLDC machine

should not be too large since it difficulties the convergence of the error to
zero [78].

In the scenario presented in this work, the disturbance variation is
associated with the phase voltages applied to the machine and its variation
is related to the frequency of the mechanical shaft speed.

From the combination of the discrete time sliding mode control with
the proposed disturbance observer, the control law can be defined as:

u(k) = usmc(k) − H−1ξ̂d(k) (4.23)

Replacing the control law given in (4.23) and the term related to the
discrete time sliding mode control based on Gao’s approach given in (3.44)
in the dynamic model presented in (2.28), it becomes:

x(k + 1) = x∗(k + 1) + σ(k) (1 − qts) − εtssign (σ(k)) + ξ̃d(k) (4.24)

According to (3.41), (4.24) can be rewritten as:

σ(k + 1) = σ(k) (1 − qts) − εtssign (σ(k)) + ξ̃d(k) (4.25)

(4.25) represents the dynamic of the controller combined with the dis-
turbance observer. The convergence of the sliding surface to zero depends
not only on the controller parameters (q, ε) and the sampling period as
well as on the disturbance observer error.

4.4. Discrete time super-twisting control with reduced
order disturbance observer

Combining the discrete super-twisting controller whose control law is
shown in (3.93) with the disturbance observer proposed in Section (4.3),
the control law becomes:

u(k) = uDSTC(k) − H−1ξ̂d(k) (4.26)
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where uDSTC
2 represents the super-twisting control law given in (3.93).

Replacing (3.93) into (4.26), the super-twisting control law combined
with the disturbance observer can be designed as:

u(k) = H−1 (x∗(k + 1) − Gx(k) − We(k) − ust(k)) − H−1ξ̂d(k) (4.27)

Now, replacing the control law given in (4.27) into the dynamic model
presented in (3.95) it becomes:

x(k + 1) = Gx(k) + We(k) + ξd(k)+
+H

[
H−1 (x∗(k + 1) − Gx(k) − We(k) − ust(k)) − H−1ξ̂d(k)

]
(4.28)

x(k + 1) = x∗(k + 1) − ust(k) + ξ̃d(k) (4.29)

According to (3.41), (4.29) can be rewritten and the dynamic of the
controller combined with the disturbance observer can represented by the
following equations:{

σ(k + 1) = −ust(k) + ξ̃d(k)
ξ̃d(k + 1) = Δξd(k) + (1 − Λ)ξ̃d(k)

(4.30)

From (4.30) it can be concluded that the convergence of the sliding
surface to zero depends on the super-twisting law and the disturbance
observer error.

4.5. Current reference optimization

According to the voltage equation of the six-phase brushless DC machine
presented in (2.10), it is possible to note that the inductance matrix is
related to the time derivatives of the phase currents.

2From this point, the discrete time super-twisting control law defined in (3.93)
will be represented by uDSTC.
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4. Discrete time disturbance observer applied to the BLDC machine

Commonly in brushless DC motors, it is desirable that the phase currents
present a square waveform so that the combination between all the phase
currents generate a constant torque in the machine, as described in Section
(2.2.1). However, the derivative of the square waveform results in the rising
and falling edges points towards in a very high signal which, multiplied by
the mutual inductances, increases considerably the effect of the coupling
inductance between the phases contributing to torque oscillations.

For this reason, this section proposes an optimization in the phase
current reference calculation, which has an inclination (Φ) in the rising and
falling edges of the signal so that its time derivative becomes softer and
consequently the effect of the magnetic coupling in the system is reduced,
thereby making the achievement of a torque with minimal oscillations
easier.

In order to obtain a constant torque by the interaction between the
phase current and the trapezoidal back-emf, the inclination in one phase
should be compensated in the other five phases and for hence the optimized
current reference is given in accordance with Figure 4.2.

Φ

Figure 4.2.: Optimized phase current reference versus standard phase current reference.

The greater the slope of the current reference, the lower is the effect of
mutual inductance, but the maximum value for this inclination is an angle
of 15 electrical degrees.
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The optimized phase currents, with a slope of Φ = 15◦, the respective
back-emf signals for all the six phases and the resultant electrical torque,
are shown in Figure 4.3.

4.6. Simulation results

In this section, the performance of the proposed disturbance observers,
combined with the current controllers and applied to the six-phase brushless
DC machine, is qualitatively investigated by the simulation results carried
out with the software MATLAB R©, where the algorithms are implemented
with a sampling frequency of 50 kHz. The parameters of the machine used
in the simulations are shown in Table 3.1.

The effect of the coupling inductances between the phases and its
variation in accordance with the rotor position and the non-idealities in
the back-emf are considered disturbances added to the model, which should
be estimated and compensated by the disturbance observers.

It is assumed that the back-emf amplitude, calculated by the relationship
between measured speed and back-emf constant, is known and compensated
by a feed-forward control. This simplifies the task of the observers that
should estimate just the non-idealities of the back-emf. In these simulations
a scenario is considered, where 10% parameter uncertainty and a random
oscillation in the crest are added to the back-emf signal as non-idealities.

Simulations with the standard current reference and the optimized
current reference are presented in order to compare both these approaches.

The purpose of the simulations is to show that the proposed observers
are able to estimate and compensate the disturbances present in the
model. Hence, the current controller does not have to lead with high
uncertainties, improving the controller dynamic response and ensuring a
resultant electrical torque with minimal oscillations.

All the simulations presented in this section are performed at nominal
speed (2250 rpm) and half load (1 Nm).
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Figure 4.3.: Optimized phase currents references, phase back-emf and resultant electri-
cal torque.
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4.6.1. Discrete time sliding mode control with decoupled
variable structure disturbance observer

The performance of the discrete time sliding mode control combined with
a variable structure disturbance observer, is analyzed by simulation results
in this section. It is very important to verify if the estimated disturbance
tracks the disturbance added to the system and if it is compensated.

Figure 4.4 (a) presents the phase current A versus the standard current
reference; Figure 4.4 (b) presents the tracking error for the current in
phase A; Figure 4.4 (c) shows the output of the controller in combination
with the observer; Figure 4.4 (d) shows the observed disturbance versus
the disturbance and Figure 4.4 (e) and (f) present the electrical torque
and its zoom.

Due to the discrete implementation, the control law information is
actualized at each sampling period and hence the disturbance observer
does not react instantly. Thus, there is a small delay between the observed
value and the disturbance in the system, as verified in Figure 4.4 (d).

As investigated in the formulation of the decoupled disturbance observer,
it presents a good performance when disturbances with relatively slow
variation are considered since the dynamics of the observer is related to the
disturbance error, as shown in (4.14). However, the disturbance associated
with the magnetic coupling between the phases results in disturbances
with fast variation when the standard current reference is used. For this
reason, the disturbance of the system is not perfectly observed and not
totally compensated and hence the oscillations in the phase currents and
in the electrical torque are not reduced. In this case, the torque oscillation
is about 11%.

It should be considered that as the observer in question follows a variable
structure approach, an increase in the observer’s gain in an attempt to
improve the disturbance tracking could result in chattering to the system.

The phase current tracking error varies between 11.458A and −11.5541A.
It is expected that with the use of the optimized current reference, the effect
of the mutual coupling between the phases gets minimized, thereby reducing
the current tracking error and improving the observer’s performance.
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Figure 4.4.: Discrete time sliding mode control with decoupled variable structure dis-
turbance observer. (a) Current reference (ia

∗) versus measured current
(ia) for phase A; (b) tracking error for phase A; (c) output of the current
controller in combination with the disturbance observer; (d) disturbance
versus estimated disturbance; (e) electrical torque; (f) zoom of electrical
torque.
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4.6.2. Discrete time sliding mode control with reduced order
disturbance observer

Simulation results for the discrete time sliding mode control combined with
a reduced order disturbance observer are shown in this section. Figure
4.5 (a) presents the phase current A versus the standard current reference;
Figure 4.5 (b) presents the phase current tracking error; Figure 4.5 (c)
shows the output of the controller in combination with the observer; Figure
4.5 (d) shows the observed disturbance versus the disturbance and Figure
4.5 (e) and (f) present the electrical torque and its zoom.

In this case, the difficulty to overcome the effect caused by the mutual
coupling between the phases, when the standard current reference is used,
is still present, as in the approach previously presented. The torque
oscillation is about 10.5%. In Figure 4.5 (d), a good disturbance tracking
from the disturbance observer is noted. However, it can be concluded that
the control does not react fast enough to compensate the disturbances and
there are oscillations in the phase currents, as shown in Figure 4.5 (a).

4.6.3. Discrete time super-twisting control with reduced order
disturbance observer

The simulation results of the discrete super-twisting control, combined
with a reduced order disturbance observer is analyzed in this section.
Figure 4.6 (a) presents the phase current A versus the standard current
reference; Figure 4.6 (b) presents the phase current tracking error; Figure
4.6 (c) shows the output of the controller in combination with the observer;
Figure 4.6 (d) shows the observed disturbance versus the disturbance and
Figure 4.6 (e) and (f) present the electrical torque and its zoom.

The results are very similar to the results from the discrete time sliding
mode controller combined with the reduced order disturbance observer.
However, the super-twisting control presents a faster dynamic response
in such a manner that the discrete time sliding mode controller and the
disturbances are better observed and compensated, when compared with
the other presented approaches. Nevertheless, the effect of the mutual
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Figure 4.5.: Discrete time sliding mode control with reduced order disturbance observer.
(a) Current reference (ia

∗) versus measured current (ia) for phase A; (b)
tracking error for phase A; (c) output of the current controller in combi-
nation with the disturbance observer; (d) disturbance versus estimated
disturbance; (e) electrical torque; (f) zoom of electrical torque.
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inductances in the phase current can be considered a very quick disturbance
variation that deteriorates the performance of the observer. An alternative
to making the disturbance variation in the system slower and improving the
performance of the observer is the use of the optimized current reference.

Furthermore, as is noted in Figure 4.4 (b), Figure 4.5 (b) and Figure 4.6
(b), the phase current tracking error varies between 10.7 A and −10.7A.
This error is associated with an abrupt modification in the standard current
reference (from zero until 10A, in this case) and it is expected that the use
of the optimized current reference contributes to a reduction in the tracking
error. The results of the proposed controller combined with disturbance
observers and using an optimized current reference will be shown in the
next sections.

4.6.4. Discrete time sliding mode control with decoupled
variable structure disturbance observer and optimized
current reference

This section presents the simulation results for the discrete time sliding
mode control combined with a variable structure disturbance observer and
using the optimized current reference. A slope of 15◦ electrical degree for
the calculation of the new current reference is considered.

Figure 4.7 (a) presents the phase current A versus the optimized current
reference; Figure 4.7 (b) presents the phase current tracking error; Figure
4.7 (c) shows the output of the controller in combination with the observer;
Figure 4.7 (d) shows the observed disturbance versus the disturbance and
Figure 4.7 (e) and (f) present the electrical torque and its zoom.

Analysing the response of the current in Figure 4.7 (a) and the current
tracking error in the Figure 4.7 (b), it is verified that the effect of the
magnetic coupling between the phases is substantially minimized and
results in a phase current tracking error varying between 2.74A and 2.92A.
In Figure 4.7 (d), a reduction in the disturbance is also noted and the
resulting torque oscillation is about 6%, thereby proving the efficiency of
the proposed optimized current reference. There is a delay between the
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Figure 4.6.: Discrete time super-twisting control with reduced order disturbance ob-
server. (a) Current reference (ia

∗) versus measured current (ia) for phase A;
(b) tracking error for phase A; (c) output of the current controller in com-
bination with the disturbance observer; (d) disturbance versus estimated
disturbance; (e) electrical torque; (f) zoom of electrical torque.
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disturbance and the observed disturbance, but that does not compromise
the observer performance.

4.6.5. Discrete time sliding mode control with reduced order
disturbance observer and optimized current reference

This section analyzes the simulation results for the discrete time sliding
mode control combined with the reduced order disturbance observer and
the optimized current reference. Figure 4.8 (a) presents the phase current
A versus the optimized current reference; Figure 4.8 (b) presents the phase
current tracking error; Figure 4.8 (c) shows the output of the controller
in combination with the observer; Figure 4.8 (d) shows the response of
the observed disturbance versus the disturbance and Figure 4.8 (e) and (f)
present the electrical torque and its zoom.

With the use of the optimized current reference there is an improvement
in the performance of the controller combined with the observer, resulting
in a torque with reduced oscillations — in this case about 5% — even in a
system where the model is not well known. It is concluded that the new
current reference reduces the effect of the coupling inductance between
the phases, or, in other words, it reduces the disturbance in the system
related to this coupling as observed in Figure 4.8 (d). The disturbance
tracking carried out by the proposed observer presents a good response,
estimating both disturbances relating to the back-emf as well as to the
magnetic coupling.

4.6.6. Discrete time super-twisting control with reduced order
disturbance observer and optimized current reference

This section presents the simulation results for the discrete time super-
twisting control combined with the reduced order disturbance observer
and the optimized current reference.
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Figure 4.7.: Discrete time sliding mode control with decoupled variable structure dis-
turbance observer and optimized current reference. (a) Current reference
(ia

∗) versus measured current (ia) for phase A; (b) tracking error for phase
A; (c) output of the current controller in combination with the distur-
bance observer; (d) disturbance versus estimated disturbance; (e) electrical
torque; (f) zoom of electrical torque.
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Figure 4.8.: Discrete time sliding mode control with reduced order disturbance observer
and optimized current reference. (a) Current reference (ia

∗) versus mea-
sured current (ia) for phase A; (b) tracking error for phase A; (c) output
of the current controller in combination with the disturbance observer; (d)
disturbance versus estimated disturbance; (e) electrical torque; (f) zoom
of electrical torque.
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Figure 4.9 (a) presents the phase current A versus the optimized current
reference; Figure 4.9 (b) presents the phase current tracking error; Figure
4.9 (c) shows the output of the controller in combination with the observer
and Figure 4.9 (d) shows the response of the observed disturbance versus
the disturbance. Figure 4.9 (e) and (f) present the electrical torque and
its zoom.

The results using the discrete time super-twisting control combined with
the disturbance observer are very similar to the results presented for the
first-order discrete time sliding mode control that is based on the Gao’s
approach combined with the same disturbance observer, with a torque
oscillation of about 5.5%. The advantage of the use of the discrete time
super-twisting control is a faster dynamic response and absence of the
chattering effect.

4.6.7. Summary

This chapter presented the formulation and analysis in the discrete time
domain of two proposed observers, combined with discrete time sliding
mode controllers, in order to improve the controller robustness, thereby
ensuring an electrical torque with minimal oscillations for a system where
the plant is not totally known. The purpose of the observers is to estimate
the disturbance in the system and to compensate this disturbance in the
control law. Furthermore, an optimized current reference is introduced in
order to minimize the effect of the magnetic coupling between the phases,
thereby reducing the resultant disturbances in the system. With the use
of the optimized current, a reduction of about 5% in the torque oscillation
is obtained as well a reduction in the tracking error. With a standard
current reference, the tracking error varies between 10A and −10A; with
the optimized current, a variation from 2A to −2A in the current tracking
error is obtained. The simulation results are carried out to verify the
efficiency of the proposed control techniques. In the next chapter, an
experimental investigation of the control strategies applied to the six-phase
BLDC machine will be presented to prove the practical effectiveness of the
proposed techniques.

94



4.6. Simulation results

0 0.005 0.01 0.015 0.02 0.025
−20

−15

−10

−5

0

5

10

15

20

C
u
r
r
e
n
t
(A

)

time (s)

i∗a ia

(a)

0 0.005 0.01 0.015 0.02 0.025
−5

−2.5

0

2.5

5

T
r
a
c
k
in

g
e
r
r
o
r

time (s)

(b)

0 0.005 0.01 0.015 0.02 0.025
−20

−15

−10

−5

0

5

10

15

20

V
o
lt
a
g
e
(V

)

time (s)

(c)

0 0.005 0.01 0.015 0.02 0.025
−5

−2.5

0

2.5

5

D
is
tu

r
b
a
n
c
e

time (s)

ξ̂d

ξd

(d)

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

T
o
r
q
u
e
(N

m
)

time (s)

(e)

0.02 0.03 0.04 0.05 0.06
0.8

0.9

1

1.1

T
o
r
q
u
e
(N

m
)

time (s)

(f)

Figure 4.9.: Discrete time super-twisting control with reduced order disturbance ob-
server and optimized current reference. (a) Current reference (ia

∗) versus
measured current (ia) for phase A; (b) tracking error for phase A; (c)
output of the current controller in combination with the disturbance ob-
server; (d) disturbance versus estimated disturbance; (e) electrical torque;
(f) zoom of electrical torque.
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5. Experimental Results

In this chapter the experimental investigation of the proposed discrete
time sliding mode controllers combined with the disturbance observers will
be presented to validate the theoretical analysis developed in the previous
chapters. Furthermore, this chapter describes the experimental setup built
to verify the performance of the control strategies proposed in this work.

5.1. Description of the experimental setup

The purpose of this work is to investigate the performance of the controllers
based on the sliding mode approach applied to a fault-tolerant six-phase
BLDC machine. A prototype BLDC machine, shown in Figure 5.1, is used
in this experimental investigation and its main specifications are given in
Table 3.1. The machine was constructed by Krebs und Aulich GmbH with
the design and concept developed by [79–81].

Figure 5.1.: Six-phase BLDC machine.

The experimental setup developed to investigate the application of the
control strategies to the six-phase BLDC machine is shown in Figure 5.2.
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5.1. Description of the experimental setup

The components of the experimental setup are identified with numbers
from 1 to 7 in the figure.

Figure 5.2.: Experimental setup for the investigation of control strategies applied to
the six-phase BLDC machine.

The six-phase brushless DC machine (3) is connected with a 2.2 kW
asynchronous machine (5) employed as load machine and powered by a
Siemens converter (7). The control of the asynchronous machine is carried
out with a specific tool from the Siemens System (Control Unit) and the
angular position is measured by an incremental encoder (6). The machines
are connected by a mechanical shaft adapter (4), where a torquemeter is
installed to measure the resultant torque and the speed of the system.

The aim is to generate with the load machine a braking torque on the
BLDC machine. To track the desired speed and maintain it in the value
defined in the speed control loop, the BLDC machine control generates a
torque in opposition to the braking torque generated by the asynchronous
machine. The resultant torque between both machines is measured with
a torquemeter and shown in an oscilloscope. Through the measurement
of the resultant torque of the system, the performance of the proposed
controllers would be verified.

Both machines are controlled separately. While the asynchronous ma-
chine is controlled through the Siemens control unit connected with a
computer by a RS232 transmission protocol, the BLDC machine drive is
controlled by an FPGA system (1).
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The FPGA board, shown in Figure 5.3, was developed by the KDEE
group (Centre of Competence for Distributed Electrical Power Technology).

Figure 5.3.: FPGA Board.

The motivation for using an FPGA system was the high numbers of
drive signals required in this application for measurements and command
signals, as the IOs and PWM units needed to feed the six-phase H-bridge
converter.

Furthermore, considering that the mathematical operations in the control
law involve the multiplication of a 6x6 matrix (G, H, W) by 6x1 vector,
the microprocessor should present a high computation capability.

Another factor that motivates the implementation in an FPGA system
is that the performance of the discrete time sliding mode control depends
on the sampling period, since the quasi-sliding mode bandwidth is related
to the sampling period. In this application, the implementation of the
proposed control strategies with 50 kHz sampling frequency have been
achieved by programming the FPGA system in VHDL code. The software
development was carried out with the support of the Digital Technology
Group from the University of Kassel.

According to the control structure of the BLDC machine, as shown in
Figure 3.1, in the external loop the speed control is carried out, while the
internal loop controls the phase current. In order to control the speed,
the speed measurement is needed. The speed measurement is carried out
through the Hall sensor signals. The six Hall sensor signals generated by
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5.1. Description of the experimental setup

the sensors embedded into the machine are digital signals and, for this
reason, are read by IOs ports in the FPGA. Detecting the rising edge of
the Hall sensor signal, its period is achieved and it corresponds to the
electrical period in the machine, as shown in Figure 5.4.

Hall sensor

te
t

Figure 5.4.: Hall sensor period.

With the Hall sensor signal period it is possible to calculate the angular
speed from the machine by the equation:

nrpm = 60
P te

(5.1)

where P is the number of pole pairs and te is the electrical period.
For a better resolution, the mean value of the six Hall sensor signal’s

periods are considered in the speed calculation.
Besides being used for the speed measurement, the Hall sensor signals

are very important to define the block commutation sequence, as was
presented in Table 2.1.

For the current control, each phase current is measured by a current
sensor from Allegro (ACS710) and these values are read by the ADC
channels of the FPGA board. An algorithm is developed in VHDL code to
generate the optimized current reference by using the speed control output
and the Hall sensor signal from phase A.

To ensure the fault tolerance of the system, each phase is considered as
a single module and a multiphase converter was developed to attend this
requirement. The multiphase converter (2) is composed by six H-bridges
that feed each phase from the BLDC machine. The multiphase converter
is shown in Figure 5.5. The converter topology for one phase is shown in
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Figure 2.8 and it is the same for all the other five phases. The switches
used in this application are MOSFETS (IRFH5250PbF) from International
Rectifier. Moreover, 12V has been applied to the DC link voltage.

Figure 5.5.: Six-phase H-Bridge converter.

At those points where the back-emf is not constant, the phase current
should be zero. This can be realized by the control, but an easy way to
bring the current to zero is to open all the H-bridge switches at the points
of non-constant back-emf. For this purpose, a reset signal is generated for
each phase at those points where the current should be zero. So, according
to Figure 5.6, if the reset signal is high, the four switches are open and no
current flows through the phase H-bridge.

As mentioned before, the Hall sensor signals are very important to
define the commutation sequence in the BLDC machine. However, the
Hall sensor’s signal changes its state only if the machine rotates. Therefore,
the machine must be started in an open loop from standstill until a desired
speed and so it should be switched to a closed loop. Furthermore, there
is another situation where the machine is not in the open loop and not
in the closed loop but in a failure mode. In the failure mode, if a fault is
detected — for example, an overcurrent in a phase — the PWM signals
of all switches are disabled and no current flows through the converter
and the machine so that the system goes to standstill. To control it again,
the machine should be started once more in the open loop. The three
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reseta

ea ,ia, Ha

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 � ����
eS1

sa1

sa2

Figure 5.6.: Reset signal from phase A.

modes (open loop, closed loop and failure mode) are programmed as state
machine in VHDL code in the FPGA, as shown in the diagram below:

open loop

closed loop

failure

standstill

PWM OFF

r�
*

r�=

start=1

i > lim

i > lim

Figure 5.7.: State machine for the six-phase BLDC machine control.

5.1.1. Unipolar four-quadrant PWM technique

A unipolar four quadrant PWM modulation approach is chosen for this
application. Considering that the machine inductance is very low, a high
switching frequency is needed in order to avoid a high ripple in the phase
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currents. A carrier wave with 50 kHz sampling frequency is employed for
the modulation.

The main motivation for the application of this modulation technique
relating to the six-phase brushless machine is that it doubles the frequency
seen by the machine.

Considering the full bridge converter shown in Figure 2.8, the pulse
signals for the switches sa2 and sa4 are complementary signals of the
pulse signals sa1 and sa3, respectively. The dead time between each
complementary signal is 1μs.

The triangular carrier wave varies from -1 to 1. It is important to
consider that the left (sa1 and sa3) and the right (sa3 and sa4) PWM
duty cycles must be equal, but with opposite polarity — what means that
these signals are shifted one from another in 180◦. Figure 5.8 shows the
carrier wave, duty cycles and gate signals generated by the modulation,
considering 0.5 duty cycle for the switches of the left converter side and
-0.5 for the switches of the right converter side.

From Figure 5.8, considering t1 the period of the carrier wave and t2 the
period of signal seen by the machine, it is possible to notice that the signal
seen by the machine has a duty cycle of 0.5 (or 50%) and double PMW
frequency, obtained from the combination of the left and high converter
side gate signals. Even if the machine sees the double PWM frequency
(100 kHz in this case), the switches still switch with the frequency of the
carrier wave (50 kHz), not producing many losses in the converter.
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sa1

sa2

sa3

sa4

1
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0.5
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0

Machine
Voltage

t1

t2

Figure 5.8.: Unipolar four-quadrant PWM technique.

Hereafter, the experimental results of the proposed current control
strategies, investigated when the system is in the closed loop, will be
presented. The measurements are carried out at 400 rpm and half load in
order to investigate the controller performance at low speed. But also, as
considered in the simulations, the performance of the controllers will be
analyzed at a nominal speed and half load.

Most of the experimental results presented in this chapter use the
optimized current reference with 15◦ slope, since, according to the simula-
tion results, the best performance is achieved with the optimized current
reference.

In the experimental investigation, it is also assumed that the back-emf
amplitude, calculated by the relationship between the measured speed and
the back-emf constant, is known and is compensated by a feedforward
control, even when the current controller is combined with a disturbance
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observer, simplifying the task of the observers that should estimate only
the non-idealities of the back-emf.

The aim is to verify by the experimental measurements the dynamic
response of the proposed current controllers and whether the proposed
observers are able to estimate and compensate the disturbances present in
the model.

A qualitative comparison of the resultant electrical torque between the
presented strategies is carried out in order to verify which strategy is
more adequate for the application in the six-phase brushless DC machine,
ensuring a torque with minimal oscillations, even considering the fact that
the model that describes the machine is just approximately known.

5.2. Discrete time proportional-integral current controller

In this section, the performance of the classical proportional-integral
controller applied to the multiphase brushless DC machine is experimentally
investigated. Figure 5.9 shows the measurements carried out with the
optimized current reference at 400 rpm and half load. The gain parameters
are defined in accordance with the approach presented in Appendix A.1.
Figure 5.9 (a) shows the measured currents in phases A, B and C; while
Figure 5.9 (b) shows the measured current versus the optimized current
reference for phase A and Figure 5.9 (c) shows the tracking error for the
phase current in phase A. Also, Figure 5.9 (d) shows the output of the
current controller and Figure 5.9 (e) the resultant electrical torque.

It can be concluded that the performance of the proportional-integral
controller with an optimized current reference is satisfactory at low speeds,
despite the low dynamic response of the controller. The next measurements
presented in Figure 5.10 show the results for the PI current controller at a
nominal speed and half load.

Despite a good reference track at low speeds, at nominal or at higher
speeds, for a same controller gain, the dynamic of PI controller is not
fast enough to track the current references. At high speeds, the current
controller should react rapidly so that a variation of the controller gain
design would be appropriate. For the results presented in Figure 5.11,
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5.2. Discrete time proportional-integral current controller

an adaptation in the gain parameter is carried out in order to make the
dynamic response faster at nominal speed.

It is noticed that an adjustment in the gain parameters improves the
performance of the PI controller and, therefore the use of an adaptive gain
parameter in the PI controller could be a good alternative. However, it
should be considered the fact that the classical PI controller has a limited
bandwidth with a poor stability margin and, hence an increase in the
control parameters could make the control response more oscillatory and
consequently, leads the control to the instability.

Despite the improvement in the reference tracking achieved with the
gain adjustment, the PI controller presents a poor dynamic response, which
reduces the operation range of the BLDC drive. Furthermore, due to the
linear nature of classical PI controller, this kind of controller is not robust
enough to lead with the parameter variations and with the non-idealities
added to the nominal model.

Given the fact that the machine model is just approximately known and
is very complex for building an accurate model; which exactly describes the
machine, the use of a robust controller based on the sliding mode design
that is an appropriate tool for solving problems of a nonlinear nature and
is not affected by the parameter variation and uncertainties in the model
seems to be adequate.

105



5. Experimental Results

0 0.05 0.1 0.15
−25

−15

−5
0
5

15

25
C
u
r
r
e
n
t
(A

)

time (s)

ia ib ic

(a)

0 0.05 0.1 0.15
−25

−15

−5
0
5

15

25

C
u
r
r
e
n
t
(A

)

time (s)

i∗a ia

(b)

0 0.05 0.1 0.15
−15

−5

0

5

15

T
r
a
c
k
in

g
e
r
r
o
r
(A

)

time (s)

(c)

0 0.05 0.1 0.15
−12

−3

0

3

12

V
o
lt
a
g
e
(V

)

time (s)

(d)

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

T
o
r
q
u
e
(N

m
)

time (s)

(e)

Figure 5.9.: Measurements with PI current controller and optimized current reference
at 400 rpm/1Nm. (a) Measured current for phase A, B and C; (b) current
reference (ia

∗) versus measured current (ia) for phase A; (c) tracking error
for phase A; (d) output of phase A current controller; (e) electrical torque.
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Figure 5.10.: Measurements with PI current controller and optimized current reference
at 2250 rpm/1Nm. (a) Measured current for phase A, B and C; (b) current
reference (ia*) versus measured current (ia) for phase A; (c) tracking
error for phase A; (d) output of phase A current controller; (e) electrical
torque.
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Figure 5.11.: Measurements with PI current controller and optimized current reference
at 2250 rpm/1Nm with gain parameter adjustment. (a) Measured current
for phase A, B and C; (b) current reference (ia

∗) versus measured current
(ia) for phase A; (c) tracking error for phase A; (d) output of phase A
current controller; (e) electrical torque.
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5.3. Discrete time sliding mode controller based on Gao’s
approach

The aim of the first experimental investigations is to verify the performance
of the proposed discrete time sliding mode controller, without considering
the disturbance observers. This section will present the experimental results
of the discrete time sliding mode controller, based on Gao’s approach,
applied to the multiphase BLDC machine. For the sake of comparison,
the experimental results with the standard current reference are shown in
Figure 5.12.

Figure 5.12 (a) shows the measured currents in phases A, B and C;
Figure 5.12 (b) shows the measured current versus the standard current
reference for phase A and Figure 5.12 (c) presents the tracking error for
the phase current in phase A. Figure 5.12 (d) shows the output of the
current controller and Figure 5.12 (e) the resultant electrical torque.

A fast dynamic response and a good reference tracking with the sliding
mode based controller are noticed. However, the effect of the coupling
between the phases is evident in the peaks in the phase currents, resulting
in oscillations in the electrical torque — which is not desired. Moreover, the
current peaks contribute to increase the converter losses and consequently
the temperature, thereby decreasing the BLDC drive efficiency.

Figure 5.13 shows the results of the same case presented before in Figure
5.12 but with the optimized current reference.

The measurements presented in Figure 5.13 confirms the effectiveness of
the optimized current reference when compared with the results presented
in Figure 5.12. It is verified that the tracking error is considerably reduced
with the use of the optimized current reference, since it minimizes the
effect of the mutual inductance in the phase currents. At low speeds,
the performance of the controller presents a good dynamic response and
good reference tracking. It is also noticed that being a controller based on
sliding mode approach, the chattering effect is not present by using the
appropriate gains for the control parameters. Considering that the aim is
to achieve a satisfactory performance in the entire operation range, the
results at a nominal speed are shown in Figure 5.14.
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Figure 5.12.: Measurements with discrete time sliding mode current controller at 400
rpm/0.75Nm, with standard current reference. (a) Measured current for
phase A, B and C; (b) current reference (ia

∗) versus measured current
(ia) for phase A; (c) tracking error for phase A; (d) output of phase A
current controller; (e) electrical torque.
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Figure 5.13.: Measurements with discrete time sliding mode current controller at 400
rpm/0.85 Nm, with optimized current reference. (a) Measured current
for phase A, B and C; (b) current reference (ia

∗) versus measured current
(ia) for phase A; (c) tracking error for phase A; (d) output of phase A
current controller; (e) electrical torque.
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It can be concluded that the performance of the discrete time sliding
mode controller is satisfactory — both on low speeds as on high speeds —
even without the disturbance observer. In this case, the back-emf is not
observed and only its amplitude that is calculated with the information
about the speed and the back-emf constant is compensated. Despite the
model uncertainties, a good control performance is noted and it ensures
a resultant torque with few oscillations, as shown in Figure 5.14 (e). It
is expected with the combination of the controller with a disturbance
observer, an improvement in the reference tracking and in the dynamic
response, since all the back-emf non-idealities and uncertainties of the
system are observed and compensated in this manner.

5.4. Discrete time super-twisting sliding mode controller

The experimental investigation of the discrete time second-order sliding
mode control based on the super-twisting algorithm and applied to the
multiphase brushless DC machine is carried out in this section.

Also, in this case, no disturbance observer is used. The aim is to verify
the robustness of the proposed controller against uncertainties in the model.
A very fast dynamic behavior, good reference tracking and no chattering
are expected with the use of the second-order sliding mode algorithm.

The first measurement is carried out at low speeds. Figure 5.15 (a) shows
the measured currents in phases A, B and C; Figure 5.15 (b) presents the
measured current versus the optimized current reference for phase A and
Figure 5.15 (c) depicts the tracking error for the phase current in phase
A. Also, Figure 5.15 (d) shows the output of the current controller and
Figure 5.15 (e) the resultant electrical torque.

The measurement results at nominal speed and half load are shown in
Figure 5.16.

A good control performance with very fast dynamic response even in the
model with uncertainties is verified by Figure 5.16 (a) and (b). The gain
parameters are adjusted in order to ensure a good correspondence between
the current reference and measured current and there is no chattering in
the system even with high gain parameters.
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Figure 5.14.: Measurements with discrete time sliding mode current controller at 2250
rpm/1 Nm, with optimized current reference. (a) measured current for
phase A, B and C; (b) current reference (ia

∗) versus measured current
(ia) for phase A; (c) tracking error for phase A; (d) output of phase A
current controller; (e) electrical torque.
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Figure 5.15.: Measurements with discrete super-twisting current controller at 400 rpm/1
Nm, with optimized current reference. (a) Measured current for phase
A, B and C; (b) current reference (ia

∗) versus measured current (ia) for
phase A; (c) tracking error for phase A; (d) output of phase A current
controller; (e) electrical torque.
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Figure 5.16.: Measurements with discrete super-twisting current controller at 2250
rpm/1 Nm, with optimized current reference. (a) Measured current for
phase A, B and C; (b) current reference (ia

∗) versus measured current
(ia) for phase A; (c) tracking error for phase A; (d) output of phase A
current controller; (e) electrical torque.
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5.5. Discrete time sliding mode controller based on Gao’s
approach with decoupled disturbance observer

One of the topics addressed in this work is the estimation of the disturbance
in the six-phase BLDC model. These algorithms have been developed in
Chapter 4 and here, the obtained experimental results are presented. The
first observer to be investigated is a decoupled disturbance observer based
on the sliding mode approach.

In Figure 5.17, the results of the discrete time sliding mode control
combined with the decoupled disturbance observer at 400 rpm are presented.
The measurement is carried out, considering the standard current reference.

Despite the fast dynamic and good tracking of the controller, the oscilla-
tions caused by mutual inductances in the phase currents are still present.
The performance of the observer is related to the disturbance variation.
For a good disturbance observer performance, the disturbances should not
vary too much between two consecutive sampling instances. However, in
this case, the disturbance variation is very quickly, which damages the
observer performance. The use of an optimized current reference is an
alternative to overcoming this problem. Figure 5.18 shows the results for
the decoupled disturbance observer with the use of the optimized current
reference. Figure 5.18 (a) shows the measured currents in phases A, B
and C; Figure 5.18 (b) presents the measured current versus the optimized
current reference for phase A and Figure 5.18 (c) depicts the tracking error
for the phase current in phase A. Also, Figure 5.18 (d) shows the output of
the current controller combined with the disturbance observer and Figure
5.18 (e) the resultant electrical torque. Furthermore, Figure 5.18 (f) shows
the observed disturbance in phase A.
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Figure 5.17.: Measurements with discrete time sliding mode controller combined with
decoupled disturbance observer at 400 rpm/1Nm, with standard current
reference. (a) Measured current for phase A, B and C; (b) current reference
(ia

∗) versus measured current (ia) for phase A; (c) tracking error for phase
A; (d)output of the phase A current controller in combination with the
disturbance observer; (e) electrical torque; (f) observed disturbance.
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Figure 5.18.: Measurements with discrete time sliding mode controller combined with
decoupled disturbance observer at 400 rpm/1 Nm, with optimized current
reference. (a) Measured current for phase A, B and C; (b) current reference
(ia

∗) versus measured current (ia) for phase A; (c) tracking error for phase
A; (d) output of the phase A current controller in combination with the
disturbance observer; (e) electrical torque; (f) observed disturbance.
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5.5. Gao’s approach DSMC with decoupled disturbance observer

In Figure 5.18 (f), it is possible to verify the observed disturbance. The
amplitude of the observed disturbance is not large, since part of the back-
emf amplitude is calculated and compensated by the relationship between
the measured speed and the constant back-emf (Kpre). Part of the back-
emf amplitude that is not compensated by this relationship is observed by
the disturbance estimator. Also, the non-idealities in the back-emf crest
and the coupling inductance between the phases are observed and they
are compensated by a feedforward action.

Figure 5.19 shows the results at nominal speed.
With the speed increasing, the challenge of the observer is even greater

since the frequency of the disturbances variation increases. Even if the
performance of the observer at high speeds is slightly inferior than the
performance at low speeds, the response is even satisfactory and presents
a good reference tracking with low electrical torque oscillations.
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Figure 5.19.: Measurements with discrete time sliding mode controller combined with
decoupled disturbance observer at 2250 rpm/1 Nm, with optimized current
reference. (a) Measured current for phase A, B and C; (b) current reference
(ia

∗) versus measured current (ia) for phase A; (c) tracking error for phase
A; (d) output of the phase A current controller in combination with the
disturbance observer; (e) electrical torque; (f) observed disturbance.
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5.6. Gao’s approach DSMC with reduced order disturbance observer

5.6. Discrete time sliding mode controller based on Gao’s
approach with reduced order disturbance observer

The results of the combination of the discrete time sliding mode controller,
with a reduced order disturbance observer applied to the six-phase BLDC
machine, are presented in this section. For the sake of comparison, the
results using the standard current reference at low speeds are shown in
Figure 5.20.

Figure 5.21 shows the results with the optimized current reference.
Fast dynamic response and good reference tracking are achieved with

the sliding mode controller combined with this observer at low speeds. In
the observed disturbance in Figure 5.21 (f) is possible to notice that the
observed signals are similar to a trapezoidal waveform. It concludes that
much of the observed disturbance is related to back-emf.

Figure 5.22 shows the results at nominal speed. Figure 5.22 (a) shows
the measured currents in phases A, B and C; Figure 5.22 (b) shows the
measured current versus the optimized current reference for phase A and
Figure 5.22 (c) presents the tracking error for the phase current in phase A.
Figure 5.22 (d) shows the output of the current controller combined with
the observer and Figure 5.22 (e) the resultant electrical torque. Figure
5.22 (f) shows the observed disturbance in phase A.

Despite the fact that at high speeds the frequency of the disturbance
variation increases, which, in turn, deteriorate the estimator performance,
the controller combined with the reduced order disturbance observer
presents a satisfactory response since the resultant electrical torque does
not present high oscillations and the current controller adequately tracks
the reference.
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Figure 5.20.: Measurements with discrete time sliding mode controller combined with
reduced order disturbance observer at 400 rpm/1 Nm, with standard
current reference. (a) Measured current for phase A, B and C; (b)
current reference (ia

∗) versus measured current (ia) for phase A; (c)
tracking error for phase A; (d) output of the phase A current controller
in combination with the disturbance observer; (e) electrical torque; (f)
observed disturbance.
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5.6. Gao’s approach DSMC with reduced order disturbance observer
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Figure 5.21.: Measurements with discrete time sliding mode controller combined with
reduced order disturbance observer at 400 rpm/1 Nm, with optimized
current reference. (a) Measured current for phase A, B and C; (b)
current reference (ia

∗) versus measured current (ia) for phase A; (c)
tracking error for phase A; (d) output of the phase A current controller
in combination with the disturbance observer; (e) electrical torque; (f)
observed disturbance.
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Figure 5.22.: Measurements with discrete time sliding mode controller combined with
reduced order disturbance observer at 2250 rpm/1 Nm, with optimized
current reference. (a) Measured current for phase A, B and C; (b)
current reference (ia

∗) versus measured current (ia) for phase A; (c)
tracking error for phase A; (d) output of the phase A current controller
in combination with the disturbance observer; (e) electrical torque; (f)
observed disturbance.
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5.7. Torque load variation and proportional-integral speed control

5.7. Torque load variation and proportional-integral speed
control

In order to verify the dynamic response of the proposed current controller,
a load torque variation is applied to the system, as shown in Figure 5.23
(c). The measurement was carried out considering the discrete time sliding
mode current controller combined with the reduced order disturbance
observer.

In Figure 5.23 (a) the phase currents for phases A, B, C are shown.
By the figure it is possible to verify a fast dynamic response without
overshooting in the current, when a load torque variation is applied to the
system.
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Figure 5.23.: (a) Measured current for phase A, B and C; (b) zoom of measured currents;
(c) electrical torque.
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5. Experimental Results

Figure 5.24 (a) e (b) show the performance of the proportional-integral
speed controller used in the external loop of the BLDC control. From 0s to
8s, the system is in open loop. When the measured angular speed reaches
the speed reference, the system goes to the closed loop. To verify the
dynamic response of the speed controller, variations in the speed reference
are carried out.

The PI speed controller presents a good dynamic response, when a speed
variation is applied to the system. The proportional-integral controller is
adequate to control the speed, since the mechanical model of the system
does not present strong uncertainties and its dynamic is slower as the
electrical dynamics.
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Figure 5.24.: (a) Speed reference versus measured speed in rpm; (b) speed tracking
error in closed loop.

To summarize the performance of the proposed current controllers
presented in this chapter, the maximal and the minimal values of the
torque and the torque oscillations for each test case are presented in Table
5.1. The test cases are described below:

• Test case 1: PI current controller with optimized current reference
at 400 rpm/1 Nm;

• Test case 2: PI current controller with optimized current reference
at 2250 rpm/1 Nm;
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5.7. Torque load variation and proportional-integral speed control

• Test case 3: PI current controller with optimized current reference
at 2250 rpm/1 Nm with gain parameter adjustment;

• Test case 4: discrete time sliding mode controller based on Gao’s
approach with standard current reference at 400 rpm/0.75 Nm;

• Test case 5: discrete time sliding mode controller based on Gao’s
approach with optimized current reference at 400 rpm/0.85 Nm;

• Test case 6: discrete time sliding mode controller based on Gao’s
approach with optimized current reference at 2250 rpm/1 Nm;

• Test case 7: discrete time super-twisting algorithm with optimized
current reference at 400 rpm/1 Nm;

• Test case 8: discrete time super-twisting algorithm with optimized
current reference at 2250 rpm/1 Nm;

• Test case 9: discrete time sliding mode controller based on Gao’s
approach with decoupled disturbance observer, with standard current
reference at 400 rpm/1 Nm;

• Test case 10: discrete time sliding mode controller based on Gao’s
approach with decoupled disturbance observer with optimized current
reference at 400 rpm/1 Nm;

• Test case 11: discrete time sliding mode controller based on Gao’s
approach with decoupled disturbance observer and optimized current
reference at 2250 rpm/1 Nm;

• Test case 12: discrete time sliding mode controller based on Gao’s
approach with reduced order disturbance observer with standard
current reference at 400 rpm/1 Nm;

• Test case 13: discrete time sliding mode controller based on Gao’s
approach with reduced order disturbance observer and optimized
current reference at 400 rpm/1 Nm;
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5. Experimental Results

• Test case 14: discrete time sliding mode controller based on Gao’s
approach with reduced order disturbance observer and optimized
reference current at 2250 rpm/1 Nm.

Test case Figure
Maximal
Torque
(Nm)

Minimal
Torque
(Nm)

Torque
variation
(Nm)

Torque
ripple
(%)

Test case 1 5.9 1.26 0.7 0.56 28
Test case 2 5.10 1.18 0.82 0.36 18
Test case 3 5.11 1.18 0.82 0.36 18
Test case 4 5.12 1.14 0.34 0.8 40
Test case 5 5.13 1 0.74 0.26 13
Test case 6 5.14 1.14 0.86 0.28 14
Test case 7 5.15 1.26 0.7 0.56 26.5
Test case 8 5.16 1.22 0.78 0.44 22
Test case 9 5.17 1.54 0.34 1.2 60
Test case 10 5.18 1.14 0.78 0.36 18
Test case 11 5.19 1.18 0.78 0.4 20
Test case 12 5.20 1.3 0.38 0.92 46
Test case 13 5.21 1.22 0.74 0.48 24
Test case 14 5.22 1.18 0.78 0.4 20

Table 5.1.: Electrical torque oscillations of each proposed current controller.

It is clear that the optimized current reference contributes considerably to
the torque oscillation reduction. By using the optimized current reference
all the current controllers present a satisfactory torque oscillation level for
applications like traction, for example. However, the classical proportional-
integral controller is not adequate for this application due to its slow
dynamic response. In order to obtain an acceptable dynamic response over
the whole operation range, the PI controller gains must be carefully tuned
and due to the fidelity prerequisites of the model, the robustness over
the whole operation range is effectively reduced by using the conventional
classical control with limited bandwidth.
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5.8. Summary

5.8. Summary

The main purpose of this chapter was to demonstrate experimentally
the performance of the discrete time controllers applied to the six-phase
brushless DC machine, as well the performance of the system when the
optimized current reference is used. The experimental results show that the
use of the optimized current reference contributes in minimizing the effect
of the magnetic coupling between the phases and consequently, it reduces
the oscillation in the phase current and in the resultant torque. The discrete
time sliding mode controllers combined with the disturbance observers
present a good performance over the entire operation range of the machine,
thereby ensuring a torque with minimal oscillations. Experimental results
from the combination of super-twisting controller with the reduced order
disturbance observer are not presented in this chapter because of the
similarity to the results obtained with the controller based on Gao’s
approach combined with the reduced order disturbance observer.
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6. Conclusions and future work

This work investigated the application of different current control strategies
based on the discrete time sliding mode approach in a fault-tolerant BLDC
system intended for high-performance applications such as electric vehicles
and aircraft systems. Ideally, in a fault-tolerant system, each single-
phase module should present minimal electrical, magnetic and thermal
interactions with the other phases. The electrical isolation between the
phases is achieved by supplying each phase with a full bridge. To avoid the
mutual coupling between the phases, a machine design with concentrated
windings around each tooth is recommended. Nevertheless, the machine
considered in this work presents a wave winding configuration, which
gives a frame-size machine reduction and also significantly increases the
magnetic coupling between the phases and consequently the complexity
of the model. Great effort must be invested to describe minutely the
model, since the self- and mutual inductances vary in accordance with the
rotor position and with the current amplitude. For this reason, a robust
controller approach has been chosen to ensure a good performance, even if
the machine model is not completely known.

In Chapter 2, some characteristics of the six-phase BLDC machine —
such as the back-emf, the partial behavior of the inductances and the
description of the model in abc coordinates — have been presented.

The uncertainties and parameter variations present in the six-phase
BLDC model due to the mutual coupling are a challenge for the controller
design.

The multiphase BLDC control system developed in this thesis comprises
an outer speed control loop and six inner current control loops. In the
outer speed loop a proportional-integral control has been adopted. The
proportional-integral classical controller is suitable to control the speed
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since the mechanical dynamic is slower than the electrical machine dynam-
ics and the mechanical model must reject just the disturbances caused by
load torque variations.

The inner loops have a faster dynamic and great complexity due to
the mutual magnetic coupling between the phases and non-idealities of
the back-emf that cannot be measured. The purpose of this work was to
develop a high-performance controller based on the sliding mode approach
for the inner loops of the multiphase brushless DC machine, which would
overcome the uncertainties and parameter variations in the model, thereby
providing robustness to a system where the model is not exactly known.

The choice of the sliding mode approach was made in consideration of
its robustness and high-simplicity controller design. The sliding mode is
an appropriate tool for solving problems of uncertain nonlinear systems.
Furthermore, the stability analysis in the continuous time domain is a
natural result of the control design based on a Lyapunov function.

The development of the proposed method followed a structured and
progressive sequence, to allow its understanding and implementation. First,
a theoretical background of the continuous time sliding mode control was
presented as a basis for the development of the sliding mode techniques in
the discrete time domain. Considering that the experimental setup is based
on an FPGA system, the experimental investigation of the continuous
time sliding mode controller was not carried out. Usually, in the literature,
the sliding mode controllers are designed in the continuous time domain
and implemented in the discrete time domain. However, the conditions of
existence of the sliding mode and the analysis of stability by Lyapunov in
continuous and in discrete time domain differ from each other. For this
reason, the design of the current controllers in the discrete time domain is
carried out in order to ensure its stability in practical investigations.

Two discrete time sliding mode algorithms have been developed in this
work: a first-order sliding mode based on Gao’s approach and a second-
order sliding mode controller based on a super-twisting algorithm. The
sliding mode existence conditions and the control stability proof in the
discrete time domain are presented for both algorithms.
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6. Conclusions and future work

Both algorithms are analyzed by simulation results presented in Chapter
3 and by experimental investigations presented in Chapter 5, and it has
been concluded that only the proposed discrete time sliding mode con-
trollers are not capable of overcoming the effects of the mutual inductances
and the back-emf non-idealities in the system. As in discrete time the
control law is updated just at sampling times, the invariance property of
the sliding mode is lost and the control acts with limited robustness.

In order to improve the robustness of the control and to reduce the
chattering, a combination of the discrete time sliding mode controller with
a disturbance observer has been proposed in Chapter 4. The purpose of the
observer is to estimate the disturbance in the system and to compensate
this disturbance in the control law, reducing the uncertainties that the
sliding mode controller has to overcome in order to keep its robustness.
The formulation and analysis in discrete time domain of the two proposed
observers, combined with the discrete time sliding mode controllers, are
presented as well as simulation and experimental results.

A challenge for the disturbance observer is to deal with time-variant
disturbances. The convergence of the estimation error depends on the
disturbance observer error. Therefore, within one sampling period, the
disturbance variation should not be too large owing to the fact that a fast
time-varying disturbance encumbers the convergence of the error to zero,
thereby diminishing the observer’s performance.

From the simulation and experimental results of the disturbance ob-
server, it has been concluded that the disturbance variations are not
sufficiently small to ensure a good system performance. For this reason, an
optimization in the current reference has been proposed in this work. The
aim of the current reference optimization is to smooth the time derivative
of the current signal in its rising and falling edges. By the simulations and
experimental investigations carried out in this work, it can be concluded
that the use of the optimized current contributes to a significant reduction
in torque oscillations caused by the magnetic coupling between the phases.

In order to experimentally verify the performance of the proposed control
techniques, an experimental setup based on FPGA implementation has
been developed. The choice by an FPGA system has been made due
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to the high numbers of PWM and IOs signals needed to feed the fault-
tolerant six-phase brushless DC machine. Beyond that, considering the
number of mathematical operations required to execute the control, the
microprocessor should present a high computation capability.

The controller implementation with 50 kHz sampling frequency was
desired in order to achieve a better performance of the discrete time
controllers. With the code implementation in VHDL language in the
FPGA, 50 kHz sampling frequency has been achieved.

The experimental results presented in Chapter 5 are qualitatively ana-
lyzed with regard to the controller dynamic response, tracking reference
accuracy and torque oscillations. A comparative table has been presented
with the resultant torque oscillations from each controller strategy de-
veloped in this work. It is possible to verify that the oscillations are
considerably reduced when the optimized current reference is used, even
for the proportional-integral current controller. However, it should be con-
sidered that the classical proportional-integral controller is not adequate
for nonlinear systems applications due to its linear nature. Furthermore,
due to the limited bandwidth, the conventional PI controller lacks ro-
bustness when facing an operation scenario where parameter variations
and disturbances are added to the nominal model and consequently, the
operation hardly remains satisfactory over the whole machine operation
range. When compared with the sliding mode controllers, the PI controller
presents a slow dynamic response which degrades the transient response
of the BLDC machine by stating that it is not ideal for high-performance
applications.

The discrete time controllers based on the sliding mode approach ensure
a good dynamic response against parameter variations and a satisfactory
performance over the entire BLDC operation range, even though the model
is not exactly known. Furthermore, the control algorithm is simple to be
implemented.

Future work that may stem from the development of this thesis includes
an application of the proposed control, based on the discrete time sliding
mode approach to a multiphase machine with higher electric power capacity,
aiming its application in a traction system.
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6. Conclusions and future work

Another possibility for future work is the development of a sensorless
strategy in order to eliminate the necessity of the hall sensors for the speed
and rotor position measurement. Thus, it is possible to reduce the sizes of
the motor.

It is also important the development and implementation of a remedial
strategy in order to ensure a torque with minimal oscillations, even if one or
more phases fail. When a failure occurs, the fault-tolerant system continues
to operate but with a degraded performance. To improve the performance
and ensure a torque with minimal oscillations — besides the fault-tolerant
machine and driver design — a remedial control strategy should be adopted
when a failure in the systems happens. A fault diagnostic algorithm should
be carried out in order to know which phase has failed and from this
information, a modification in the current reference from the phases that
are in operation should be made to compensate the phases that are not in
operation. It should be considered that if a sensorless strategy is indeed
developed, it should also be adapted to the fault-tolerant remedial strategy.

Beyond that, thorough investigation of the energy efficiency analysis
of the experimental setup is suggested, specifically an analysis of the
converter performance such as converter switching losses — for example,
by operating with the control strategies proposed in this work.
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Symbol Description Unit
Pout Output power W
Te Electrical torque Nm
P cP MSM Copper losses in permanent magnet syn-
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W
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A
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A
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A
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–
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–

KPdω Proportional gain in discrete time domain
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–

KIdω Integral gain in discrete time domain for
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–

rd Relative degree –
c Sliding surface gain –
sat Saturation function –
sign Sign function –
q Gao’s approach control gain –
S1 Auxiliary variable for stability analysis –
S2 Auxiliary variable for stability analysis –
S3 Auxiliary variable for stability analysis –
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S5 Auxiliary variable for stability analysis –
S6 Auxiliary variable for stability analysis –
S7 Auxiliary variable for stability analysis –
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X Term of Lambda inequality –
Y Term of Lambda inequality –
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ωr Mechanical rotor speed rad/s
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Φ Inclination of the new reference current –
σ Sliding mode surface –
σ Sliding mode surface vector –
ξ Disturbance vector in continuous time do-

main
V

ξd Disturbance vector in discrete time domain V
ξ̃d Vector of disturbance estimation error in

discrete time domain
V

ξ̂d Estimated disturbance vector in discrete
time domain

V

Λ Disturbance observer gain –
ϑ Boundary layer width –
ε Gao’s approach control gain –
λ1 Super-twisting control gain –
λ2 Super-twisting control gain –
δ1 Auxiliary variable for super-twisting stabil-

ity analysis
–
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Symbols

δ2 Auxiliary variable for super-twisting stabil-
ity analysis

–

Θ Auxiliary variable for super-twisting stabil-
ity analysis

–

ηd Disturbance vector considering back-emf as
disturbance

–

Π Disturbance upper bound –
ψ Matrix of a 2n super-twisting system –
ωb Control bandwidth –
ωn Corner frequency rad/s
ς Auxiliary variable for super-twisting stabil-

ity analysis
–

ρ Damping ratio –

Index
Symbol Description
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n System order
m System order
i i-th variable from a vector
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l Phase a, b, c, d, e, f
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A. Gain design of proportional-integral
controller

A.1. Proportional-integral current controller: gain design

A simplified model for the electric dynamic of the BLDC machine, without
to account the mutual inductances in the model is considered aiming to
design the current PI controller. The mutual inductances are considered
as disturbances of the system. The technique adopted for the design of
proportional-integral controllers is based on the bandwidth of the closed-
loop system. The BLDC nominal electrical dynamic with proportional-
integral current controller is shown in Figure A.1.

+
-

ua ia
i *a K

ivK
pv s

+

1

s s
L s R+

Figure A.1.: Block diagram for BLDC machine current control.

The transfer functions of the controller and of the electrical dynamic of
each phase are given by:

Gic(s) = Kpv + Kiv

s
(A.1)

Gp(s) = 1
Lss + Rs

(A.2)
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A.1. Proportional-integral current controller: gain design

The transfer function of the system in a closed-loop is represented by:

T F (s) =
sKpv+Kiv

Ls

s2 + RsKpv

Ls
s + Kiv

Ls

(A.3)

The transfer function of the system in a closed-loop is represented by:

T F (s) =
sKpv+Kiv

Ls

s2 + RsKpv

Ls
s + Kiv

Ls

(A.4)

Considering that the stator resistance is much lower than the controller
gains, it can be neglected and the equation (A.4) is rewrite as:

T F (s) =
sKpv+Kiv

Ls

s2 + Kpv

Ls
s + Kiv

Ls

(A.5)

This equation is identical to the equation of a second-order system in
the frequency domain:

Tref (s) = i(jωb)
i∗(jωb)

= 2ρωn(jωb) + ωn
2

(jωb)2 + 2ρωn(jωb) + ωn
2

(A.6)

where ωb is the bandwidth, ρ is the damping ratio, ωn is corner frequency
in rad/s.

Defining ix as the output and ix
∗ as reference, the bandwidth is given

by:

20 log
(

ix(jωb)
ix

∗(jωb)

)
= 3.01db (A.7)

It is considered that the bandwidth is defined when the module is equal
0.707 pu, so:

‖Tref (jωb)‖ =
∥∥∥∥ 2ρωn(jωb) + ωn

2

(jωb)2 + 2ρωn(jωb) + ωn
2

∥∥∥∥ = 0.707 (A.8)

Solving the module of (A.8):

‖Tref (jωb)‖ =

√
(2ρωnωb)2 + ωn

4√
(ωn

2 − ωb
2)2 + (2ρωnωb)2

= 0.707 (A.9)
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A. Gain design of proportional-integral controller

From (A.9):

ωn
4 = 0.5

[(
ωn

2 − ωb
2)2 + (2ρωnωb)2

]
− (2ρωnωb)2 (A.10)

Dividing the both equation sides by ω4
n :

1 = 0.5

{[
1 −

(
ωb

ωn

)2
]2

+ 4ρ2
(

ωb

ωn

)2
}

− 4ρ2
(

ωb

ωn

)2
(A.11)

Defining:

a =
(

ωb

ωn

)2
(A.12)

and replacing in (A.11):

1 = 0.5
[
(1 − a)2 + 4ρ2a

]
− 4ρ2a (A.13)

Solving (A.13):

−0.5a2 +
(
2ρ2 + 1

)
a + 0.5 = 0 (A.14)

a = 2ρ2 + 1 ±
√

(2ρ2 + 1)2 + 1 (A.15)

Replacing the equation (A.15) in (A.12):

(
ωb

ωn

)2
= 2ρ2 + 1 ±

√
(2ρ2 + 1)2 + 1 (A.16)

ωb = ωn

√
2ρ2 + 1 +

√
(2ρ2 + 1)2 + 1 (A.17)

From the transfer functions (A.5) and (A.6) it is possible to calculate
the gains for the current controller:

2ρωn = Kpv

Ls
(A.18)
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A.2. Proportional-integral speed controller: gain design

ωn
2 = Kiv

Ls
(A.19)

Replacing the equation (A.17) in (A.18) and in (A.19):

Kpv = 2ρωbLs√
2ρ2 + 1 +

√
(2ρ2 + 1)2 + 1

(A.20)

Kiv = ωb
2Ls

2ρ2 + 1 +
√

(2ρ2 + 1)2 + 1
(A.21)

The discrete gains are, calculated according to the Euler discretization:

KP dv = Kpv − Kivts

2
(A.22)

KIdv = Kivts (A.23)

A.2. Proportional-integral speed controller: gain design

The BLDC mechanical dynamic with proportional-integral speed controller
is represented in the Figure A.2.

+
-

i*K
iK

p s

ω

ω
+

K
T

Js b+

*

r
ω

r
ω

Figure A.2.: Block diagram for BLDC machine speed control.

The transfer function of the controller is given by:

Gωc(s) = Kpω + Kiω

s
(A.24)

Considering the equation for the electromagnetic torque:

Te = KT (ia + ib + ic + id + ie + if ) = KT I (A.25)
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A. Gain design of proportional-integral controller

The transfer function of the mechanical dynamic of the motor is repre-
sented the following equation:

Gpω(s) = KT

Js + b
(A.26)

Considering that b 
 KpωKiω , the parameter can be neglected and the
closed-loop transfer function is given by:

TωF (s) = ω(s)
ωref (s)

=
s

KpωKT

J
+ KiωKT

J

s2 +
(

KpωKT

J

)
s + KiωKT

J

(A.27)

with (A.27) and the second-order system (A.6), it is possible to calculate
the gains for the speed controller, similarly to the calculation of the gains
for the current controller presented before.

2ρωn = Kpω.KT

J
(A.28)

ωn
2 = Kiω

J
(A.29)

Replacing the equation (A.17) in the equations (A.27) and (A.28) the
proportional and the integral gain for the speed controller are respectively:

Kpω = J

KT

2ρωb√
2ρ2 + 1 ±

√
(2ρ2 + 1)2 + 1

(A.30)

Kiω = J

KT

ωb
2

2ρ2 + 1 ±
√

(2ρ2 + 1)2 + 1
(A.31)

The discrete gains are:

KP dω = Kpω − Kiωts

2
(A.32)

KIdω = Kiωts (A.33)
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B. Mathematical development for control
stability analysis

Appendix B presents the mathematical development carried out in order
to solve the equations used to the stability analysis of the controllers
presented in this thesis.

B.1. Stability proof of continuous time sliding mode
controller

From (3.19):

V̇ (σ) = −K

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign(σa)
sign(σb)
sign(σc)
sign(σd)
sign(σe)
sign(σf )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa

σb

σc

σd

σe

σf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξa

ξb

ξc

ξd

ξe

ξf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa

σb

σc

σd

σe

σf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa

σb

σc

σd

σe

σf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξa

ξb

ξc

ξd

ξe

ξf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

− K

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa

σb

σc

σd

σe

σf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa)
sign (σb)
sign (σc)
sign (σd)
sign (σe)
sign (σf )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(B.1)

165



B. Mathematical development for control stability analysis

V̇ (σ) = −K

⎛
⎜⎝ σasign (σa) + σbsign (σb) +

+σcsign (σc) + σdsign (σd) +
+σesign (σe) + σf sign (σf )

⎞
⎟⎠+

+ξaσa + ξbσb + ξcσc + ξdσd + ξeσe + ξf σf +
+ξaσa + ξbσb + ξcσc + ξdσd + ξeσe + ξf σf −

−K

⎛
⎜⎝ σasign (σa) + σbsign (σb) +

+σcsign (σc) + σdsign (σd) +
+σesign (σe) + σf sign (σf )

⎞
⎟⎠

(B.2)

B.2. Appendix B.2: Stability proof of discrete time sliding
mode controller based on a Lyapunov function

From (3.60):

ΔV (k) = σT (k)σ(k) − qtsσT (k)σ(k) − εtsσT (k)sign (σ(k)) −
−qtsσT (k)σ(k) + q2ts

2σT (k)σ(k) + εqts
2σT (k)sign (σ(k)) −

−(εtssign (σ(k)))T σ(k) + qts(εtssign (σ(k)))T σ(k)+
+
[
(εtssign (σ(k)))T (εtssign (σ(k)))

]
−
(
σT (k)σ(k)

) (B.3)

ΔV (k) = −2qtsσT (k)σ(k) − εtsσT (k)sign (σ(k)) −
+q2ts

2σT (k)σ(k) + εqts
2σT (k)sign (σ(k)) −

−(εtssign (σ(k)))T σ(k) + qts(εtssign (σ(k)))T σ(k) + ε2ts
2

(B.4)
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B.2. Stability proof of DSMC based on a Lyapunov function

Solving (B.4):

ΔV (k) = −2qts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

−εts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ q2ts
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

+εqts
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

−εts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

+qεts
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ ε2ts
2

(B.5)
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B. Mathematical development for control stability analysis

The (B.5) can be rewritten as:

ΔV (k) = −2qtsS3(k) − εtsS1(k) + q2ts
2S3(k)+

+εqts
2S1(k) − εtsS1(k) + qεts

2S1(k) + ε2ts
2 (B.6)

B.3. Stability proof of discrete time sliding mode
controller based on a Lyapunov function - Lower limit
of ε

From (3.72):

−qts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

−

−εts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

< 0

(B.7)

−qts

⎛
⎜⎝ σa(k)sign (σa(k)) + σb(k)sign (σb(k)) +

+σc(k)sign (σc(k)) + σd(k)sign (σd(k)) +
+σe(k)sign (σe(k)) + σf (k)sign (σf (k))

⎞
⎟⎠−

−εts

(
sign2 (σa(k)) + sign2 (σb(k)) + sign2 (σc(k)) +
+sign2 (σd(k)) + sign2 (σe(k)) + sign2 (σf (k))

)
< 0

(B.8)

−qts (|σa(k)| + |σb(k)| + |σc(k)| + |σd(k)| + |σe(k)| + |σf (k)|) − εts < 0
(B.9)
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B.4. Stability proof of DSMC based on a Lyapunov function

B.4. Stability proof of discrete time sliding mode
controller based on a Lyapunov function - Upper
limit of ε

From (3.75):

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

− qts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

−

−εts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

≥ 0

(B.10)

2

(
σa(k)sign (σa(k)) + σb(k)sign (σb(k)) + σc(k)sign (σc(k)) +
+σd(k)sign (σd(k)) + σe(k)sign (σe(k)) + σf (k)sign (σf (k))

)

−qts

(
σa(k)sign (σa(k)) + σb(k)sign (σb(k)) + σc(k)sign (σc(k)) +
+σd(k)sign (σd(k)) + σe(k)sign (σe(k)) + σf (k)sign (σf (k))

)

−εts

(
sign2 (σa(k)) + sign2 (σb(k)) + sign2 (σc(k)) +
+sign2 (σd(k)) + sign2 (σe(k)) + sign2 (σf (k))

)
≥ 0

(B.11)

2 (|σa(k)| + |σb(k)| + |σc(k)| + |σd(k)| + |σe(k)| + |σf (k)|)
−qts (|σa(k)| + |σb(k)| + |σc(k)| + |σd(k)| + |σe(k)| + |σf (k)|) − εts ≥ 0

(B.12)
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B. Mathematical development for control stability analysis

B.5. Stability proof of discrete time Sliding Mode
controller based on a Lyapunov function considering
disturbances in the model

From (3.78):

ΔV (k) =⎛
⎜⎜⎜⎝

(ξd(k))T (ξd(k) + σ(k) − σ(k)qts − εtssign (σ(k)))
+(σ(k))T (ξd(k) + σ(k) − σ(k)qts − εtssign (σ(k)))
−(σ(k)qts)T (ξd(k) + σ(k) − σ(k)qts − εtssign (σ(k)))
−(εtssign (σ(k)))T (ξd(k) + σ(k) − σ(k)qts − εtssign (σ(k)))

⎞
⎟⎟⎟⎠−

−
(
σT (k)Pσ(k)

)
(B.13)

Solving (B.13):
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B.5. Stability proof of DSMC with disturbances in the model

ΔV (k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξda(k)
ξdb(k)
ξdc(k)
ξdd(k)
ξde(k)
ξdf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξda(k)
ξdb(k)
ξdc(k)
ξdd(k)
ξde(k)
ξdf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξda(k)
ξdb(k)
ξdc(k)
ξdd(k)
ξde(k)
ξdf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

−qts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξda(k)
ξdb(k)
ξdc(k)
ξdd(k)
ξde(k)
ξdf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

− εts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξda(k)
ξdb(k)
ξdc(k)
ξdd(k)
ξde(k)
ξdf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξda(k)
ξdb(k)
ξdc(k)
ξdd(k)
ξde(k)
ξdf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

− qts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

−εts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

− qts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξda(k)
ξdb(k)
ξdc(k)
ξdd(k)
ξde(k)
ξdf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

−qts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ q2ts
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+
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B. Mathematical development for control stability analysis

+qεts
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

−εts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξda(k)
ξdb(k)
ξdc(k)
ξdd(k)
ξde(k)
ξdf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

−εts

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

+qεts
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σa(k)
σb(k)
σc(k)
σd(k)
σe(k)
σf (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

+ε2ts
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sign (σa(k))
sign (σb(k))
sign (σc(k))
sign (σd(k))
sign (σe(k))
sign (σf (k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(B.14)
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B.5. Stability proof of DSMC with disturbances in the model

ΔV (k) = ξda
2(k) + ξdb

2(k) + ξdc
2(k) + ξdd

2(k) + ξde
2(k) + ξdf

2(k)+
+ξda(k)σa(k) + ξdb(k)σb(k) + ξdc(k)σc(k)+
+ξdd(k)σd(k) + ξde(k)σe(k) + ξdf (k)σf (k)−

−qts

(
ξda(k)σa(k) + ξdb(k)σb(k) + ξdc(k)σc(k)+
+ξdd(k)σd(k) + ξde(k)σe(k) + ξdf (k)σf (k))

)
−

−εts

⎛
⎜⎝ ξda(k)sign (σa(k)) + ξdb(k)sign (σb(k)) +

+ξdc(k)sign (σc(k)) + ξdd(k)sign (σd(k)) +
+ξde(k)sign (σe(k)) + ξdf (k)sign (σf (k))

⎞
⎟⎠+

+ξda(k)σa(k) + ξdb(k)σb(k) + ξdc(k)σc(k)+
+ξdd(k)σd(k) + ξde(k)σe(k) + ξdf (k)σf (k)−
−qts

(
σa

2(k) + σb
2(k) + σc

2(k) + σd
2(k) + σe

2(k) + σf
2(k)

)
−

εts

⎛
⎜⎝ σa(k)sign (σa(k)) + σb(k)sign (σb(k)) +

+σc(k)sign (σc(k)) + σd(k)sign (σd(k)) +
+σe(k)sign (σe(k)) + σf (k)sign (σf (k))

⎞
⎟⎠−

−qts

(
ξda(k)σa(k) + ξdb(k)σb(k) + ξdc(k)σc(k)+
+ξdd(k)σd(k) + ξde(k)σe(k) + ξdf (k)σf (k))

)

−qts

(
σa

2(k) + σb
2(k) + σc

2(k) + σd
2(k) + σe

2(k) + σf
2(k)

)
+

q2ts
2 (σa

2(k) + σb
2(k) + σc

2(k) + σd
2(k) + σe

2(k) + σf
2(k)

)
+

+qεts
2

⎛
⎜⎝ σa(k)sign (σa(k)) + σb(k)sign (σb(k)) +

+σc(k)sign (σc(k)) + σd(k)sign (σd(k)) +
+σe(k)sign (σe(k)) + σf (k)sign (σf (k))

⎞
⎟⎠−

−εts

⎛
⎜⎝ ξda(k)sign (σa(k)) + ξdb(k)sign (σb(k)) +

+ξdc(k)sign (σc(k)) + +ξdd(k)sign (σd(k)) +
+ξde(k)sign (σe(k)) + ξdf (k)sign (σf (k))

⎞
⎟⎠−

−εts

⎛
⎜⎝ σa(k)sign (σa(k)) + σb(k)sign (σb(k)) +

+σc(k)sign (σc(k)) + +σd(k)sign (σd(k)) +
+σe(k)sign (σe(k)) + σf (k)sign (σf (k))

⎞
⎟⎠+

+qεts
2

⎛
⎜⎝ σa(k)sign (σa(k)) + σb(k)sign (σb(k)) +

+σc(k)sign (σc(k)) + σd(k)sign (σd(k)) +
+σe(k)sign (σe(k)) + σf (k)sign (σf (k))

⎞
⎟⎠ + ε2ts

2

(B.15)
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B. Mathematical development for control stability analysis

B.6. Stability proof of discrete time super-twisting
controller based on a Lyapunov function considering
disturbances in the model

Considering the system given in (3.100) where:

ψ(k + 1) =

[
x(k + 1)
u1(k + 1)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ia(k + 1)
ib(k + 1)
ic(k + 1)
id(k + 1)
ie(k + 1)
if (k + 1)

u1a(k + 1)
u1b(k + 1)
u1c(k + 1)
u1d(k + 1)
u1e(k + 1)
u1f (k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.16)

x(k + 1) ∈ �n, u1(k + 1) ∈ �n, J =

[
Gnxn Hnxn

0 Inxn

]
2nx2n

,

L(k) =

[
−Hnxn

(
λ1
∣∣σ(k)nx1

∣∣1/2
)

−Inxntsλ2

]
2nxn

Considering the candidate Lyapunov function:

V (k) = ‖ψ‖2
p (B.17)

and:
ΔV (k) := V (k + 1) − V (k) (B.18)

V (k) := ψT (k)Pψ(k) (B.19)

then:
ΔV (k) = ψT (k + 1)Pψ(k + 1) − ψT (k)Pψ(k) (B.20)
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B.6. Stability proof of DSTC with disturbances in the model

with P ∈ �2nx2n. Replacing (3.101) in (B.20):

ΔV (k) = JT ψT (k)PJψ(k) + JT ψT (k)PL(k)sign(σ(k))+
+LT (k)sign(σ(k))PJψ(k) + LT (k)sign(σ(k))PL(k)sign(σ(k))−
−ψT (k)Pψ(k)

(B.21)
According to [82], the lambda-inequality is defined as:

XT Y + YT X ≤ XT ΛX + YT Λ−1Y (B.22)

will be applied to the term:
JT ψT (k)PL(k)sign(σ(k)) + LT (k)sign(σ(k))PJψ(k).
It is considered that:

XT = JT ψT (k)P, X = PJψ(k),
YT = LT (k)sign(σ(k)), Y = L(k)sign(σ(k))

(B.23)

so:

JT ψT (k)PL(k)sign(σ(k)) + LT (k)sign(σ(k))PJψ(k) ≤
JT ψT (k)PΛ−1Jψ(k)P + LT (k)sign(σT (k))ΛL(k)sign(σ(k))

(B.24)

JT ψT (k)PL(k)sign(σ(k)) + LT (k)sign(σT (k))Jψ(k)P ≤
JT ψT (k)PΛJψ(k)P + LT (k)Λ−1L(k)

(B.25)

Replacing (B.25) in (B.21) and adding ςV (k) − ςV (k):

ΔV (k) ≤ JT ψT (k)PJψ(k) + JT ψT (k)PL(k)sign(σ(k))+
+JT ψT (k)PΛJψ(k)P + LT (k)Λ−1L(k)−
−ψT (k)Pψ(k) + ςV (k) − ςV (k)

(B.26)

ΔV (k) ≤ JT ψT (k)PJψ(k) + JT ψT (k)PΛ−1Jψ(k)P+
+LT (k)ΛL(k) − ψT (k)Pψ(k) + ς(ψT (k)Pψ(k)) − ςV (k)

(B.27)
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ΔV (k) ≤ ψT (k)
(
JT (P + PΛP) J − (1 − ς) P

)
ψ(k)+

+LT (k)
(
Λ−1 + P

)
L(k) − ςV (k)

(B.28)

Expanding the term LT (k)ZL(k) with:

Z =
(
Λ−1 + P

)
=

[
z11(nxn) z12(nxn)

z12(nxn) z22n(nxn)

]
2nx2n

(B.29)

LT (k)ZL(k) =[
−Hnxn

(
λ1|σ(k)|1/2)

−Inxntsλ2

]T

2nx2n

Z

[
−Hnxn

(
λ1|σ(k)|1/2)

−Inxntsλ2

]
2nx2n

(B.30)

=

[
−Hλ1|σ(k)|1/2z11 − tsλ2z12

−Hλ1|σ(k)|1/2z12 − tsλ2z22

]T [
−Hλ1|σ(k)|1/2

−tsλ2

]
(B.31)

= −Hλ1|σ(k)|1/2 (−Hλ1|σ(k)|1/2z11 − tsλ2z12
)

−
−tsλ2

(
−Hλ1|σ(k)|1/2z12 − tsλ2z22

) (B.32)

= H2λ1
2 |σ(k)| z11 + Htsλ1λ2z12|σ(k)|1/2+

+Htsλ1λ2|σ(k)|1/2z12 + ts
2λ2

2z22
(B.33)

Applying the lambda-inequality to the term:
[Htsλ1λ2z12|σ(k)|1/2 + Htsλ1λ2|σ(k)|1/2z12 with:

XT = |σ(k)|1/2, X = |σ(k)|1/2,

YT = Htsλ1λ2z12, Y = Htsλ1λ2z12
(B.34)

|σ(k)|1/2Htsλ1λ2z12 + Htsλ1λ2z12|σ(k)|1/2 ≤
|σ(k)|1/2Λ|σ(k)|1/2 + Htsλ1λ2z12Λ−1Htsλ1λ2z12

(B.35)

|σ(k)|1/2Htsλ1λ2z12 + Htsλ1λ2z12|σ(k)|1/2 ≤
|σ(k)| Λ + H2ts

2λ1
2λ2

2z12
2Λ−1 (B.36)

176



B.6. Stability proof of DSTC with disturbances in the model

So, (B.28) becomes:

LT (k)ZL(k) = H2λ1
2 |σ(k)| z11 + |σ(k)| Λ+

+H2ts
2λ1

2λ2
2z12

2Λ−1 + ts
2λ2

2z22
(B.37)

Replacing (B.37) in (B.28):

ΔV (k) ≤ ψT (k)
(
JT (P + PΛP) J − (1 − ς) P

)
ψ(k) − ςV (k)+

H2λ1
2 |σ(k)| z11 + |σ(k)| Λ + H2ts

2λ1
2λ2

2z12
2Λ−1 + ts

2λ2
2z22

(B.38)

ΔV (k) ≤ ψT (k)
(
JT (P + PΛP) J − (1 − ς) P

)
ψ(k) − ςV (k)+

+δ1 |σ(k)| + δ2

(B.39)
where:

δ1 = H2λ1
2z11 + Λ

δ2 = H2ts
2λ1

2λ2
2z12

2Λ−1 + ts
2λ2

2z22
(B.40)

Considering that Q = QT > 0 is the solution for the following LMI:

−Q = AT (P + PΛP) A − (1 − ς) P (B.41)

(B.39) becomes:

ΔV (k) ≤ −xT (k)Qx(k) − ςV (k) + δ1 |x1(k)| + δ2 (B.42)

ΔV (k) ≤ −‖x(k)‖2
Q − ςV (k) + δ1 |x1(k)| + δ2 (B.43)

By the Cholesky decomposition [82], the equation (B.43) becomes:

ΔV (k) ≤ −‖x(k)‖2
Q + δ1

∥∥QQ−1x(k)
∥∥ + δ2 − ςV (k) (B.44)
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B. Mathematical development for control stability analysis

ΔV (k) = −
(∥∥Q1/2x(k)

∥∥ − 1
2 δ1

)T (∥∥Q1/2x(k)
∥∥ − 1

2 δ1
)

+δ2 − ςV (k) + 1
4 δ1

2∥∥Q−1
∥∥2 (B.45)

Considering that −
(∥∥Q1/2x(k)

∥∥ − 1
2 δ1

)T (∥∥Q1/2x(k)
∥∥ − 1

2 δ1
)

is always
negative, (B.45) can be rewritten as:

ΔV (k) ≤ −ςV (k) + Θ (B.46)

where:

Θ = δ2 − ςV (k) + 1
4

δ1
2∥∥Q−1∥∥2 (B.47)

So, it has that:

V (k + 1) ≤ − (ς − 1) V (k) + Θ (B.48)

The solution of (B.48) is given by:

V (k + 1) ≤ (1 − ς)kV (0) +
k∑

i=1

(1 − γx)i−1Θ (B.49)

If k goes to infinity:

lim
k→∞

V (k) ≤ Θ
1 − ς

(B.50)

the radius of the convergence region of the discrete time super-twisting
algorithm is given by:

R ≤ Θ
1 − ς

(B.51)

Then, it can conclude that the trajectories of the dynamic systems gives
in (3.101) converges asymptotically to a ball Br centred at the origin
Br :=

{
x : ‖x‖2 < R

}
characterized with a radius:

R = Θ
1 − ς

(B.52)
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Nowadays, environmental issues motivates the replacement of mechanical, 
hydraulic and pneumatic system by electrical system in the transport sector aiming 
to reduce emissions generated by burning of fossil fuels in vehicles. The electrical 
system must ensure high electrical efficiency and should not exceed the weight 
of the substituted components. To attend these high performance requirements 
a fault-tolerant multiphase brushless DC machine  was chosen for this research.

The present work introduces a six-phase 600 W brushless DC machine with 8 poles. 
The main challenge for the control issues of this machine is the mutual magnetic 
coupling between the phases due to the wave winding machine configuration. 

In this context, theoretical and practical investigations of different current control 
strategies based on the sliding mode control approach applied to the six-phase 
brushless DC machine are presented.
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Discrete time sliding mode control strategies  
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