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Abstract
The lateral resolution in microscopic imaging generally depends on both, the wavelength of light
and the numerical aperture of the microscope objective lens. To quantify the lateral resolution
Ernst Abbe considered an optical grating illuminated by plane waves. In contrast, the Rayleigh
criterion holds for two point sources or point scatterers separated by a lateral distance, which are
supposed to emit spherical waves. A portion of each spherical wave is collected by the objective lens
and results in an Airy disc corresponding to a diffraction limited intensity point spread function
(PSF). If incoherent illumination is employed the intensity PSFs related to different scatterers on an
object are added resulting in the well-known Rayleigh resolution criterion. In interference
microscopy instead of the intensity the electric field scattered or diffracted by an object will be
affected by the transfer function of the optical imaging system. For a reflective object the lateral
resolution of an interference microscope can be again characterized by the Abbe limit if the object
under investigation is a grating. However, if two irregularities on a flat surface are being imaged the
resolution no longer obeys the Rayleigh criterion. Instead, it corresponds to an optical system with
an annular aperture and thus surpasses the prediction given by the Rayleigh criterion. This holds
true for both, amplitude as well as phase objects, as it will be elucidated in this study by theoretical
considerations, simulation results and an experimental proof of principle.

1. Introduction

Extending the lateral resolution capabilities of optical microscopes is an essential subject of current research
as it directly enables the investigation of structure dimensions below the diffraction limit and thus broadens
the range of application of microscopic two- and three-dimensional imaging. Various resolution
enhancement and super-resolution techniques have been investigated in context with conventional and
confocal optical microscopy with particular focus on biological objects [1, 2]. These methods are mostly
dedicated to fluorescence microscopy and thus require a special labelling of the specimen under
investigation. Since we are primary interested in characterizing nanostructured surfaces produced by
engineering processes, fluorescence methods are not subject of this contribution as labelling is not desired in
this context. Label-free methods for resolution enhancement are based on structured illumination
microscopy [3] and microsphere assisted microscopy [4], for example. In contrast, in interference
microscopy resolution enhancement techniques are rarely applied till now. Nevertheless, techniques such as
microsphere-assistance or immersion systems known from conventional microscopic imaging are being used
in interference microscopy too [4–9].
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However, due to the complex composition of signals additional options for resolution enhancement exist
in interference microscopy. For example, it is well known that improved lateral resolution can be achieved by
use of annular apertures located in both, the illumination pupil as well as the pupil plane of the imaging path
of a microscope [10–12]. If reflective phase objects or three-dimensional micro-topographies are to be
measured, interference microscopy is often employed in order to gain depth information [13]. A so-called
depth scan changes the distance between the microscope and the object and thus, recording a series of images
results in a 3D image stack, which enables the numerical reconstruction of the surface topography. As a
consequence, the transfer characteristics of a depth scanning microscope can be best described by an optical
3D transfer function [14–21]. The two lateral spatial frequency coordinates of the 3D transfer function are
related to the transversal spatial frequency axes of the microscopic image. The axial spatial frequency results
from the interference signals occurring due to the depth scan. A familiar approach in this context is to define
a so-called equivalent wavelength of the interferogram and to use conventional two-dimensional Fourier
optics modeling [22]. However, we recently derived an analytic expression for the 3D transfer function of an
interference microscope that holds for surface topographies characterized by specular reflection and
diffraction [20, 21]. It should be noted that the spectral composition of an interference signal depends not
only on the spectral distribution of the light source and the spectral sensitivity of the camera but also on the
pupil functions of the microscope and the predominant lateral spatial frequencies of the surface topography
[23, 24]. If, for simplicity, monochromatic light is used, the pupil function and the lateral spatial frequency
distribution of the object’s surface will be most dominant. Here, we presume constant intensity in the
illuminating pupil plane and a constant apodization factor due to specular reflection, what leads to an
unambiguous 3D transfer function [21]. Therefore, the lateral spatial frequency distribution of an
interference image stack is given by the 3D spatial frequency representation of the complex reflection
function of the measuring object. This spatial frequency distribution is weighted by the 3D transfer function.
On the other hand, the axial spatial frequency corresponds to the frequency, for which an interference signal
of a single camera pixel is analyzed and thus can be varied by setting the parameters of the signal processing
algorithm. We call the relevant parameter ‘evaluation wavelength’. This is the wavelength, which is used to
calculate the phase value and the envelope position of a CSI (coherence scanning interferometry)
measurement signal. With the evaluation wavelength λeval the corresponding axial spatial frequency value
qz,eval results in:

qz,eval = 4π/λeval ∈
[
4π
√
1−NA2 /λ0 , 4π/λ0

]
, (1)

i.e.

λeval ∈
[
λ0, λ0

/√
1−NA2

]
, (2)

where λ0 is the central wavelength of light, emitted by the light source and NA represents the numerical
aperture of the system. In the following we will show that the 2D transfer function in the qx qy-plane
corresponding to a certain choice of λeval shows significant changes along the qz-axis. This is accompanied by
a strong dependence of the lateral resolution capabilities on the evaluation wavelength. We demonstrate that

the highest lateral resolution is reached for the maximum evaluation wavelength λeval = λ0

/√
1−NA2. For

a grating the achievable lateral resolution δA corresponds to the diffraction limited resolution given by the
Abbe limit δA = 0.5λ/NA. Lateral resolution beyond the fundamental Abbe limit is sometimes referred to as
super-resolution [25]. However, with respect to the smallest resolvable distance between two irregularities in
microscopic imaging with incoherent illumination the Rayleigh resolution criterion δR = 0.61λ/NA
becomes relevant [25]. In the following sections we show that lateral resolution well below the value given by
the Rayleigh criterion can be reached employing interference microscopy and using what we call a virtual
annular aperture.

The experimental setup used throughout this study is shown schematically in figure 1(a). An interference
signal called correlogram is obtained during the depth-scan along the z-axis from a flat area of polished
silicon. Figure 1(b) displays a correlogram employing a royal blue LED of 447 nm central wavelength and
20 nm wavelength bandwidth (FWHM) for illumination. The low number of visible interference fringes is
due to the high NA of 0.9 of the objective lenses. The absolute value of the Fourier transformed correlogram
plotted over the wavelength scale in figure 1(c) demonstrates that the spectrum of the correlogram is much
broader than the spectrum of the light source and extends to wavelengths of more than 1000 nm. This
phenomenon leads to the well-known NA-effect [26–29], which is usually considered by the equivalent
wavelength instead of the central wavelength of the light source in CSI signal processing [22].
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Figure 1. (a) Schematic setup of the Linnik interference microscope with royal blue LED light source and two 100x microscope
objectives lenses (MO 1 and MO 2) with an NA of 0.9 used throughout this study, (b) correlogram obtained from a single camera
pixel during the depth scan employing a piezo stage, (c) absolute value of the Fourier transform of the correlogram shown in
(b) on the wavelength scale.

2. Three-dimensional transfer function

As mentioned above, three-dimensional transfer functions (3D TFs) represent the full transfer capabilities of
microscope systems in the spatial frequency domain. 3D TFs can be obtained from the Ewald sphere
representation of the wave vectors of incident plane waves and waves scattered from a point object [10]. The
limitation of the angular distribution of these wave vectors by the numerical aperture of a microscope
objective lens results in truncated spherical caps instead of full spheres as it was pointed out by McCutchen
[30]. Thus, the corresponding Ewald spheres are sometimes called McCutchen spheres [18]. The 3D TF of a
microscope results from a three-dimensional correlation of the spherical caps corresponding to the incident
and scattered wave vectors [16, 20]. According to our previous studies mentioned above, the shape of the 3D
TF of a diffraction limited interference microscope with uniform monochromatic pupil illumination of
wavelength λ0 depends on the surface under investigation [20, 21]. In contrast to surfaces characterized by
single point scatterers for specularly reflective or diffractive continuous surfaces the normalized 3D TF
results in:

H(qρ,qz,k0) =
qz
2k0

for qz,0 ⩽ qz ⩽ qz,max,

H(qρ,qz,k0) =

(
1− 2

π
arccos

(
|q| (qz − qz,min)

qρ
√
4k20 − |q|2

))
qz
2k0

for qz,min ⩽ qz < qz,0,

H(qρ,qz,k0) = 0 elsewhere. (3)

The vector q in the spatial frequency domain with transverse spatial frequency qρ =
√
q2x + q2y and axial

spatial frequency qz represents the difference between the wave vector ks of the scattered light field and the
wave vector kin of the incident wave:

q= ks − kin = k0

 sin(θs)cos(ϕs)− sin(θin)cos(ϕin)
sin(θs) sin(ϕs)− sin(θin) sin(ϕin)

cos(θin)+ cos(θs)

 . (4)

q is defined in terms of the wavenumber k0 = 2π/λ0 and the polar and azimuth angles θin and ϕin of the
incident wave as well as the angles θs and ϕs of the scattered wave. Considering the distance qρ from the qz
axis of a system with the numerical aperture NA, the values qz,min, qz,0 and qz,max are given by:

3
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Figure 2. (a) Three-dimensional transfer function H(qx,qy,qz) for monochromatic light of wavenumber k0 = 2π/0.44µm−1

and NA= 0.9; the meshes indicate the upper and lower boundaries qz,max, and qz,0 of the Ewald limiting sphere, for qz < qz,min

the function H(qx,qy,qz) is equal to zero; (b) cross-sectional view of H(qx,qy,qz) in the qxqz-plane.

qz,min = 2k0
√
1−NA2,

qz,0 = k0
√
1−NA2 + k0

√
1− (qρ/k0 −NA)2,

qz,max = 2k0
√
1− q2ρ/(4k

2
0). (5)

For qz > qz,max and qz < qz,min the 3D TF will cut off, i.e. there will be no more contribution to
interference signals. Note that qz,0 and qz,max depend on the transverse spatial frequency qρ. The 3D transfer
function H(qρ,qz,k0) =H(qx,qy,qz) for monochromatic light of wavelength λ0 = 440 nm and NA= 0.9 is
plotted in figure 2(a). The upper and lower meshes are related to the boundaries of H(qx,qy,qz) at qz,max and
qz,0. The values of qz,max represent the outer sphere in figure 2(a), which corresponds to the backscattering
directions. The lower mesh is given by qz,0 values belonging to the maximum angle of incidence θmax with
respect to the optical axis. Finally the constant value qz,min represents the plane, were both, the angle of
incidence and the scattering angle, equal θmax. The colors of the mesh correspond to the values of the
function H(qx,qy,qz). Figure 2(b) demonstrates that even for out-of-plane rays related to qz,min < qz < qz,0,
H(qx,qy,qz) shows non-zero values. For qx = qy = 0, in agreement with [29, 31] H(qx,qy,qz) =H(qz) is
proportional to the axial spatial frequency qz. Since CSI signals are typically analyzed at a certain evaluation
wavelength corresponding to a certain value of qz, figure 3 shows exemplarily four horizontal 2D cross
sections of H(qx,qy) at qz/2k0 = 0.77,0.67,0.56, and 0.44. These cross sections are named ‘partial transfer
function Hp(qx,qy)’ in the following. The radius of the outer circular boundary of a partial transfer function
represents the spatial frequency bandwidth of the interference microscope for this particular partial transfer
function. The partial transfer functions shown in figure 3 correspond to evaluation wavelengths λeval of 574,
658, 787, and 1004 nm, respectively. Their shape depending on the lateral spatial frequency qρ determines
details of the transfer characteristics.

Obviously, the lateral spatial frequency bandwidth, which corresponds to the radius of a given partial TF,
increases as the evaluation wavelength increases. In CSI measurement the evaluation wavelength is typically
adjusted such that it coincides with the central peak of the spectrum obtained from an interference signal
[22, 29]. This corresponds to the partial TF according to figure 3(a), where the evaluation wavelength
λeval = 574 nm is approximately 30% longer than the central wavelength λ0 = 440 of the illuminating light.
Hence, if we select a short evaluation wavelength, i.e. qz > qz,0 the corresponding partial transfer function
will be a circular disc (see figure 3(a)) and its Fourier transform leads to an Airy disc in object space as it was
found by Abdulhalim [32, 33].

In contrast, the highest lateral resolution is reached for the longest evaluation wavelength λeval = 1004
nm, which corresponds to qz/2k0 = qz,min/2k0 = 0.44. Note that according to figure 3(d) the shape of this
partial transfer function equals the partial transfer function for incident and scattered rays including a
maximum angle θmax with respect to the optical axis. Thus, a similar result is to be expected for an annular
aperture of maximum diameter k0NA. However, in case of interference microscopy the evaluation
wavelength λeval can be adjusted by software settings such that no physical annular aperture is necessary.
Therefore, we use the term ‘virtual annular aperture’ in context with long evaluation wavelengths, where
light rays contributing to the interference signal propagate under angles θin ≈ θs ≈ θmax with respect to the
optical axis.
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Figure 3. Partial transfer functions defined as two-dimensional horizontal cross sections of the 3D TF according to figure 2:
(a) for qz/2k0 = 0.77, (b) for qz/2k0 = 0.67, (c) for qz/2k0 = 0.56, (d) for qz/2k0 = 0.44.

In order to create a virtual CSI instrument the partial transfer function needs to be multiplied by the
scattered light field in the spatial frequency domain. Based on the scalar Kirchhoff or physical optics
approximation the scattered light field Us (q) can be obtained from the field Uobj(x,y,qz) directly above the
surface of an object [22, 34, 35]:

Us (q) =
1

A

ˆ
A
Uobj(x,y,qz)e

−i(qxx+qyy)dxdy, (6)

where the area A of integration corresponds to the field of view of the microscope. Defining an appropriate
field illumination function A(x,y) equation (6) can be written as a two-dimensional Fourier transform:

Us (q) =
1

A

+∞ˆ

−∞

+∞ˆ

−∞

A(x,y)Uobj(x,y,qz)e
−i(qxx+qyy)dxdy. (7)

Note, that Uobj depends on the lateral coordinates x and y and on the axial spatial frequency qz. This is due to
the fact, that in interference microscopy the object is often considered as a pure phase object such that
Uobj(x,y,qz) results in:

Uobj(x,y,qz) = U0 e
−iqz s(x,y), (8)

where U0 is a constant field amplitude and s(x,y) is the surface height function, which modulates the phase
of the reflected field directly above the object. The same object field results via Fourier transform with
respect to the z coordinate from the so-called foil-model of a surface [21, 36]. However, a reflective object
may also cause a spatial amplitude modulation of the field instead of a phase modulation. If the angular
dependence of the reflectivity is neglected this results in:

Uobj(x,y,qz) = Uobj(x,y) = U0 a(x,y), (9)

where a(x,y) is the amplitude modulation function. Now, in q-space the intensity change∆I(q) due to
interference, which is transferred by the measuring instrument, results from frequency domain filtering of
the Fourier representation of the light field Us (q) scattered from the object using the 3D transfer function:

∆I(q)∼ Us (q)H(q) . (10)

5
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However, as mentioned above, in interference microscopy the resulting interferogram is usually analyzed at a
certain evaluation wavelength λz,eval = 4π/qz,eval. If this is considered in equation (10) the partial transfer
function Hp(qx,qy) =H(qx,qy,qz,eval) comes into play:

∆I
(
qx,qy

)
∼ Us

(
qx,qy,qz,eval

)
Hp(qx,qy). (11)

Consequently, phase and amplitude of the complex interference intensity∆Ĩ(x,y) in the object space
directly follow from inverse 2D Fourier transform of∆I

(
qx,qy

)
:

∆Ĩ(x,y) = F−1
{
∆I
(
qx,qy

)}
. (12)

If the object under investigation is a phase object the reconstructed surface height function srec(x,y)
results from the phase obtained from∆Ĩ(x,y):

srec(x,y) =
1

qz,eval
arg
{
∆Ĩ(x,y)

}
. (13)

If on the other hand the object is an amplitude object, its reconstructed amplitude distribution
U0 arec(x,y) is given by:

U0 arec(x,y)∼ Re{∆Ĩ(x,y)}. (14)

Note that U0 arec(x,y) is proportional to the amplitude reflection coefficient and thus may take negative
values. In conventional microscopy the intensity distribution I(x,y) of an object can be equivalently obtained
as the inverse Fourier transform of the product of the Fourier transformed object intensity Ĩobj

(
qx,qy

)
and

the well-known modulation transfer function MTF
(
qx,qy

)
, which holds for a diffraction limited system with

spatially incoherent illumination [37]:

Irec(x,y) = F−1
{
Ĩobj
(
qx,qy

)
MTF

(
qx,qy

)}
. (15)

Under the assumption of constant pupil illumination the two-dimensional MTF
(
qx,qy

)
and the 3D-TF

H(qx,qy,qz) are related to each other via the projection slice theorem [38], i.e.:

+∞ˆ

−∞

H(qx,qy,qz)dqz ∼MTF
(
qx,qy

)
. (16)

Note that the intensities I(x,y) and Irec(x,y) are proportional to the reflectivity of intensity and are thus
limited to positive values. The MTF

(
qx,qy

)
is also used to characterize the 2D transfer characteristics of

interference microscopes [22, 39, 40]. However, this approach is just a rough approximation, since in
contrast to 2D imaging, interference signals of an image stack are analyzed pixel by pixel with respect to
phase and envelope.

In the following we are interested in the question, how good two amplitude or phase irregularities, which
are a certain distance apart from each other, can be resolved by interference microscopy. For amplitude
objects the results can be compared with the Rayleigh resolution limit, which follows from equation (15).

3. Simulation

In order to elucidate the consequences of the above mentioned transfer characteristics and to point out the
differences in lateral resolution between conventional and interference microscopy this section introduces
simulation results for both, phase objects as well as amplitude objects. In addition, the discrepancies in
lateral resolution in case of gratings of certain period compared to two separated irregularities at a certain
lateral distance d from each other will be discussed.

First, we define a test structure, which represents a single irregularity ai(x,y) of diameter d in the
xy-plane:

ai(x,y) =

{
± 1

2

(
1+ cos

(
2π
√
x2 + y2/d

))
for
√
x2 + y2 ⩽ d/2

0 else.
(17)

This single irregularity can be added periodically to form a 2D amplitude object:

a(x,y) =
Mmax∑

m=Mmin

Nmax∑
n=Nmin

ai(x− d/2−md,y− d/2− nd). (18)

6
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Figure 4. (a) Surface topography function s(x,y) of 2 µm period in x and y direction corresponding to spatial frequency values
qx = qy = 3.14µm−1 of the first order diffraction maxima,Mmin = Nmin =−15 andMmax = Nmax = 16 and height difference
s0 = 25 nm, (b) reconstructed surface topography srec(x,y) using the low-pass filter function according to figures 3(a),
(c) difference between input topography s(x,y) and reconstructed topography srec(x,y).

If the differenceMmax −Mmin is a large number a(x,y) is an amplitude grating in x-direction, and the
same for the y-direction. Otherwise, ifMmin = 0,Mmax = 1 the object comprises two irregularities in a
distance d in x-direction. Using equation (8) and introducing the surface height factor s0 one can easily
transform any amplitude object into a phase object, where:

s(x,y) = s0 a(x,y), (19)

is the surface height function. In the following we assume that the field illumination function A(x,y) extends
over an area with dimensions that are very large compared to the distance d between two neighboring surface
irregularities. Hence, the periodic extension of A(x,y) due to the application of the discrete Fourier
transform does not affect the final result and equation (7) can be seen as a two-dimensional Fourier
transform of the object field Uobj(x,y,qz). Figure 4(a) shows a two-dimensional phase grating corresponding
to the surface height function s(x,y) of d= 2 µm period and s0 = 25 nm total height difference. Figure 4(b) is
the reconstructed surface height function srec(x,y), which results if the partial transfer function Hp(qx,qy)
according to figure 3(a) is used. Figure 4(c) shows the difference between (a) and (b) and indicates a nearly
perfect reconstruction, which is due to the rather long period of 2 µm. Note that the reconstructed surface
height function shows maximum deviations below 0.1 nm, although the partial transfer function Hp(qx,qy)
has a constant value of 0.766 over the whole transfer range of:√

q2x + q2y ⩽ 18.4µm−1.

This is due to the phase object, where both, the real and the imaginary part are multiplied by the same
value, such that the phase angle remains unchanged.

Figure 5(a) shows an amplitude grating a(x,y) with a period d of 170 nm in x and y direction, whereas in
figure 5(b) a(x,y) represents an amplitude grating along the x-axis and a double slit in y-direction, i.e. two
parallel gratings in x-direction separated by a distance d= 170 nm in y-direction. In figure 5(c), a(x,y) shows
amplitude irregularities in a quadratic arrangement, i.e. a double slit with d= 170 nm in x- and y-direction.
Figures 5(d)–(f) represent the absolute values of the 2D Fourier transforms of the input functions a(x,y)
according figures 5(a)–(c). After multiplying with the partial transfer function Hp(qx,qy) shown in
figure 3(d) the reconstructed amplitude reflection functions arec(x,y) according to figures 5(g)–(i) result. In
this case the maximum transmission spatial frequency is limited by:√

q2x + q2y ⩽ 25.7µm−1.

Therefore, the angular grating frequency 2π/d= 36.96 µm−1 is blocked by the partial transfer function
and in figure 5(g) the grating structure is no longer visible. According to figure 5(e) the Fourier transform of
the two parallel gratings of figure 5(b) results in discrete vertical lines representing the diffraction orders of
the grating, whereas the double slit arrangement along the y-direction leads to a cosinusoidal modulation
along the qy-axis, which still shows first order contributions different from zero for |qy|⩽ 25.7 µm−1.
Consequently, the vertical double slit structure is resolved in figure 5(h), whereas the grating structure is not.
Figure 5(i) shows that the quadratic arrangement of irregularities will be resolved and thus confirms the
above argumentation. However, note that the reflectivity changes of the reconstructed amplitude object are
much smaller than the original values. This follows from the rather small values of the partial transfer
function Hp(qx,qy) according to figure 3(d) [20].

7
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Figure 5. (a) Amplitude function a(x,y) with period d of 0.17 µm in x and y direction corresponding to spatial frequency values
qx = qy = 2π/0.17= 36.96µm−1 of the first order diffraction maxima forMmin = Nmin =−15 andMmax = Nmax = 16,
(b) amplitude function a(x,y) with period and distance d of 0.17 µm in x and y direction forMmin =−15,Mmax = 16, Nmin = 0,
Nmax = 1, (c) amplitude function a(x,y) with distance d of 0.17 µm in x and y direction forMmin = Nmin = 0 and
Mmax = Nmax = 1, (d)–f) absolute values of the 2D Fourier transforms of a(x,y) according to (a)–(c), (g)–(i) reconstructed
amplitude functions arec(x,y) using the filter function Hp(qx,qy) according to figure 3(d).

Figure 6 shows the same effects but for phase objects with distances d of 170 nm between irregularities of
height s0 of 100 nm. Again the double slit arrangement will be resolved even if the diffraction orders due to
the grating structure are filtered out by the partial transfer function. In this case of a phase object the
amplitudes of the resolved surface irregularities are much smaller than the original height difference of
100 nm.

Finally, figure 7 shows results for two horizontally shifted irregularities separated by distances d= 170 nm
in (a) and (d), d= 180 nm in (b) and (e) and d= 190 nm in (c) and (f). Comparison of the subfigures
corresponding to the same distance value d reveals that there is no difference in amplitude and phase
resolution capabilities. Due to normalization, according to the generalized Rayleigh criterion two
irregularities are resolved if the value of the local minimum at x= 0 is 0.735 [25]. This criterion holds for
distances d> 190 nm. Thus, compared to conventional imaging the lateral resolution is improved by 36%.
The situation corresponding to d= 170 nm leads to figures 5 and 6. Even in this case a local minimum is
visible at x= 0.

A more general concept in this context treats the irregularities related to an object as point sources
emitting spherical waves. With the point spread function (PSF) obtained from the MTF by an inverse 2D
Fourier transform this leads to the Rayleigh resolution criterion for a conventional brightfield microscope.
Even more, the lateral resolution of a conventional brightfield microscope can be improved by use of an
annular aperture. As pointed out in a previous paper [20] this kind of resolution enhancement is closely
related to the concept of partial transfer functions in interference microscopy. The normalized inverse 2D
Fourier transform of a partial transfer function of rotational symmetry, i.e. HP(qx,qy) =HP(qρ) leads to
what we call a partial PSF:

hP(ρ) =

∞́

0
HP(qρ) J0(qρ ρ)qρ dqρ

∞́

0
HP(qρ)qρ dqρ

with ρ=
√
x2 + y2, (20)
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Figure 6. (a) Real part of Uobj(x,y,qz) for qz/(2k0) = 0.44 with period d= 0.17 µm in x and y direction, surface height s0 = 0.1
µm andMmin = Nmin =−15 andMmax = Nmax = 16, (b) real part of Uobj(x,y,qz) for qz/(2k0) = 0.44 with d= 0.17 µm,
surface height s0 = 0.1 µm forMmin =−15,Mmax = 16, Nmin = 0, Nmax = 1, (c) real part of Uobj(x,y,qz) for qz/(2k0) = 0.44
with period 0.17 µm in x and y direction, surface height s0 = 0.1 µm forMmin = Nmin = 0 andMmax = Nmax = 1, (d)–f)
absolute values of the 2D Fourier transforms of a(x,y) according to (a)–c), (g)–i) reconstructed surface height functions srec(x,y)
using the filter function Hp(qx,qy) according to figure 3(d).

Figure 7. (a)–(c) Normalized reconstructed amplitude functions arec(x,y) for distances d= 170 nm (a), 180 nm (b) and
190 nm (c). (d)–(f) Normalized reconstructed surface height functions srec(x,y) for distances d= 170 nm (d), 180 nm (e) and
190 nm (f).

and J0(. . .) the zero order Bessel function of the first kind. In order to achieve an optimum lateral resolution
we take the partial transfer function at qz = qz,min. In figure 8(a) this partial PSF is compared to the Airy disc
and the PSF for a narrow annular ring aperture of maximum diameter. Compared to the PSF for this annular
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Figure 8. (a) Point spread functions of an Airy disc (NA= 0.9, λ0 = 440 nm), the corresponding annular ring aperture of
maximum diameter and the partial PSF calculated for the interference microscope, and superpositions of two point spread
functions separated by d= 192 nm (b), and d= 210 nm (c).

aperture the partial PSF is slightly narrower, but shows stronger side lobes. This is due to the fact that the
partial PSF directly corresponds to the inverse 2D Fourier transform of the partial transfer function, whereas
the PSF of a brightfield microscope is related to intensity and thus to the absolute square of the inverse 2D
Fourier transform of a circular ring. Figures 8(b) and (c) represent superpositions of two PSFs laterally
separated by d= 192 nm (b) and 210 nm (c). For d= 192 nm the partial PSF hP(x) fulfills the generalized
Rayleigh criterion, i.e. the value at x= 0 is 0.735 times the maximum value [25], whereas for the PSF of the
annular aperture a distance d= 210 nm is needed in order to fulfill the Rayleigh criterion. Note that the
Rayleigh resolution obtained from the Airy disc is 298 nm for an NA of 0.9 and a wavelength λ0 of 440 nm.
For comparison, the Sparrow criterion [12] leads to a lateral resolution of 164 nm for the partial PSF, 172 nm
for the annular PSF, and 230 nm for the PSF given by the Airy disc.

4. Experimental results

Figure 9 shows results obtained with the self-build Linnik interferometer introduced in section 1 comprising
two 100× objective lenses of NA= 0.9 and a royal blue LED (λ0 = 447 nm, FWHM≈ 20 nm) for
illumination. The first object under investigation is a nanoscale linewidth/pitch standard fabricated by
Supracon AG [41]. For certain linewidth/pitch values d the standard provides a rectangular grating (dark
rectangles at the bottom of the subimages in figure 9) as well as two parallel bars separated by a distance d
(top part of the calibration structure according to figure 9). Measurement results for d= 230 and d= 200 nm
are shown in figure 9. The upper subfigures (a) and (b) display interference patterns occurring at the focus
position. Subfigures (c) and (d) show reconstructed topographies obtained via phase analysis of the
interference data of an image stack recorded during a depth scan. In both cases the double bar structure is
resolved, whereas the grating structure is not. Profile sections taken from the topography data shown in
subfigures (c) and (d) are plotted in subfigures (e) and (f), respectively. These results confirm the theoretical
assumption according to which the two-point resolution is superior compared to the Abbe resolution limit
for the corresponding grating. Note, that the experiments were conducted with a Linnik interferometer in a
standard configuration. Only the evaluation wavelength for the lock-in phase calculation [42, 43] was
specifically adapted to values of 700 nm in figures 9(c), (e) and 740 nm in figures 9(d) and (f).

Another experimental result is shown in figure 10. In this case, the sample was fabricated by a focused ion
beam system. The individual structures consist of two craters 200 nm apart with a bar of less than 50 nm
width in between. Figure 10(a) is a scanning electron microscope (SEM) image of a cluster of five double
craters. Figures 10(b)–(d) represent results of interferometric phase analysis using an evaluation wavelength
of 700 nm (b), 560 nm (c) and 790 nm (d). Height profiles corresponding to single columns of figures 10(c)
and (d) are shown in subfigures (e) and (f). The profiles are separated by constant height offsets of 20 nm for
better visibility. Although the double crater structure is not resolved at the evaluation wavelength of 560 nm,
it can be clearly recognized at 700 and 790 nm evaluation wavelength. This confirms the concept of the
different partial transfer functions, which depend on the evaluation wavelength as introduced in section 2.
Note that the noise superimposing the reconstructed surface topography increases for longer evaluation
wavelengths due to the reduced amplitude of the corresponding interference component.

The experimental results from both samples exhibit additional side lobes as predicted by the simulations
introduced in section 3. The side lobes can be seen as ghost images of the double bar structure in figures 9(c)
and (d) and as additional grooves surrounding the double crater structures in figures 10(b) and (d). The
variation of the maximum height differences in figures 10(b)–(d) is a consequence of the lateral resolution
improvement: The better the lateral resolution, i.e. the longer the evaluation wavelength, the closer the
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Figure 9. Experimental results of a resolution target (nanoscale linewidth/pitch standard by Supracon AG [41]): interference
patterns for a grating (bottom of the standard) and a double line structure (top of the standard) of period/distance d= 230 nm
(a) and d= 200 nm (b), detailed view corresponding to results of interferometric phase analysis for evaluation wavelengths of
700 nm (c) and 740 nm (d) and height profiles taken at y≈ 30 µm (e) from the topography data according to (c) and (f) from the
topography data according to (d), the vertical lines indicate the position of the bars.

measured height values are to the real surface heights. This effect is already mentioned in earlier publications
[23, 24]. However, the physical origin of the side lobes is due to the sharp transition at the edges of the partial
transfer function. Consequently, reducing the sharp edges of the transfer function by an appropriate
apodization filtering in the spatial frequency domain may reduce the side lobes without significantly
affecting the lateral resolution capabilities.

The different evaluation wavelengths chosen in figures 9 and 10 elucidate the compromise between
optimizing the lateral resolution and the signal-to-noise ratio of the interference signals. Note that the
wavelength bandwidth of the light emitted by the blue LED is approximately 20 nm. Hence, the light is no
longer monochromatic, what leads to a significant reduction of the values of H(qx,qy,qz) at higher
transversal spatial frequencies qx and qz compared to the monochromatic case shown in figure 3 [21].

Although the experimental results obtained so far demonstrate the increase in resolution in a single
lateral direction only, we expect that the resolution enhancement behaves isotropic, i.e. apart from
aberrations of the optical system the lateral resolution enhancement is independent of the direction. This is
due to the fact that the 3D TF shows rotational symmetry.
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Figure 10. Experimental results of a silicon sample with double crater structures of distance d≈ 200 nm: (a) SEM image, (b)–(d)
detailed views representing results of interferometric phase analysis for an evaluation wavelength of 700, 560, and 790 nm, (e) and
(f) height profiles along the columns according to the legend, separated by constant height offsets of 20 nm for better visibility,
corresponding to 560 nm evaluation wavelength (e) and 790 nm evaluation wavelength (f), the locations of the craters are
indicated by vertical lines.

5. Conclusion

In this contribution the previously introduced three-dimensional transfer function of a CSI instrument is
used to build a virtual interference microscope of high numerical aperture and to study its lateral resolution
capabilities close to the resolution limit. Both, amplitude and phase objects are being examined.
Furthermore, these objects are either optical gratings, two-point irregularities or combinations of both.
Hence, the corresponding criteria characterizing the lateral resolution capabilities are either based on the
fundamental Abbe limit or on the Rayleigh criterion, which holds for two irregularities separated by a certain
distance. It turns out that for grating structures the Abbe limit represents a fundamental limitation even in
interference microscopy. On the other hand, if two points on an object are to be resolved, interference
microscopy provides a significantly superior lateral resolution compared to conventional microscopy. This is
due to the 3D transfer characteristics of an interference microscope, where the lateral resolution capabilities
depend on the axial spatial frequency value, which is closely related to the wavelength, at which an
interference signal resulting from a so-called depth scan is analyzed. Furthermore, the electric field reflected
from the object is the input quantity in interference microscopy instead of intensity in conventional
microscopy and other types of optical microscopes. The highest lateral resolution is achieved for the longest
evaluation wavelength. In this case the lateral resolution of an interference microscope is approximately 36%
better than the lateral resolution defined according to the Rayleigh criterion in conventional microscopic
imaging with spatially incoherent illumination. This is a consequence of the fact that long evaluation
wavelengths are due to oblique angles of incidence. Thus, choosing a long evaluation wavelength in the signal
analysis algorithm affects the lateral resolution in a similar manner as an annular aperture. At the lateral
resolution limit the relevant partial transfer function of an interference microscope acts as a virtual annular
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aperture, since only oblique light rays contribute to the object reconstruction from a stack of interferograms.
The results presented here give an advanced understanding of the physical mechanisms of interference
microscopy. They can be applied to both, phase as well as amplitude objects and demonstrate for the first
time that the lateral resolution capabilities of an interference microscope surpass those of conventional
brightfield microscopy.
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