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Abstract

Landscape changes, over time, lead to changes of floral resources available to pollinators, 
which in turn may result in the disappearance of ecologically specialized species. Here, 
we use pollen metabarcoding to infer historic and recent interactions between plants 
and bumblebees (Bombus). Bumblebees from Cuxhaven (Germany) were sampled from 
historical museum collections (1968/69) and in the field (2019). Pollen attached to 
their bodies was barcoded using multiple plant markers (ITS1, ITS2 and trnL-P6 loop). 
Our results show shifts in foraging habits between the historic and recent sampling 
periods, mostly determined by fewer Fabaceae interactions in 2019. The successful 
implementation of scalable molecular techniques for the analysis of historical pollen 
samples underscores the value of museum collections as a resource for biodiversity 
research. This study provides proof of concept of a comparative analysis of recent and 
historical pollination data. However, to ensure the robustness of our results, it is crucial 
to consider the broader methodology used. Our study found variation in the efficacy 
of the three plant barcoding markers. The ITS1 marker exhibited the highest species-
level identification success, while the trnL-P6 loop demonstrated utility in amplifying 
degraded DNA across diverse plant families.

Key words: barcoding, Bombus, bumblebee, Cuxhaven, Hamburg, ITS1, ITS, ITS2, natural 
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Introduction

The biodiversity of insects and especially pollinators is in rapid decline (Potts 
et al. 2010; Hallmann et al. 2017; Goulson 2019; Sánchez-Bayo and Wyckhu-
ys 2019; Janzen and Hallwachs 2021), exacerbated by a negative feedback 
cycle of plants and pollinators (Biesmeijer et al. 2006; Thomann et al. 2013). 
This impacts the stability of the ecosystem services of pollination (Gallai et al. 
2009; Bauer and Sue Wing 2016; IPBES 2016; Rhodes 2018). A major driver of 
pollinator loss is land-use change as a result of agricultural intensification and 
urbanization (Kleijn et al. 2009; Habel et al. 2019; Seibold et al. 2019; Vray et al. 
2019; Suzuki-Ohno et al. 2020; Rollin et al. 2020; Raven and Wagner 2021; Dicks 
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et al. 2021; Köthe et al. 2023), which also affects the plant community composi-
tion. Other drivers include pesticide use, climate change and habitat degradation 
(Wagner 2020). Biomonitoring of pollinators and their pollination service is an 
important tool to track plant and insect population changes and to potentially 
counteract population loss through conservation measures (Breeze et al. 2021). 
Bumblebees (Bombus ssp.) are a suitable taxon for such analyses because they 
are easy to spot and can be found in large numbers in natural history collections.

Bumblebees are important pollinators with great ecological and environmen-
tal impact (Willmer et al. 1994; Luca and Vallejo-Marín 2013; Ogilvie and Thom-
son 2015; Sapir et al. 2017). They are tolerant to colder climates (Williams 1998; 
Hines 2008), able to navigate well in difficult environments (Vries et al. 2020) 
and are capable of buzz pollination (Luca and Vallejo-Marín 2013). The pollen 
foraging preference of bumblebees is guided by continuous assessment of the 
nutritional value of the pollen, such as lipid and protein content (Ruedenauer 
et al. 2016; Hendriksma et al. 2019; Vaudo et al. 2020). In contrast, bumble-
bees’ nectar foraging is primarily directed towards high sugar concentrations 
(Konzmann and Lunau 2014). Most bumblebee species are generalist polli-
nators (polylectic), but their interspecific preferences can still differ markedly 
(Kleijn and Raemakers 2008; Vray et al. 2017; Timberlake et al. 2019). Conse-
quently, focusing on multiple taxa in bumblebee conservation is required to en-
sure a high local pollination efficiency (Bommarco et al. 2012; Wood et al. 2021). 
In some bumblebee species the relationship between dietary focus and distri-
bution decline is not as clear as in others (Connop et al. 2010), but, there are 
numerous examples of accelerated decline of bumblebee species with a narrow 
dietary range (Goulson et al. 2005; Goulson et al. 2008; Kleijn and Raemakers 
2008; Wood et al. 2019). Species with a dietary focus on Fabaceae have been 
reported to be especially vulnerable (Goulson et al. 2005; Wood et al. 2021). 
Despite the benefits of bumblebee monitoring (Breeze et al. 2021), bumblebee 
distribution data collection has received little attention in the past, and still does, 
resulting in poorly harmonized datasets and spatial and temporal gaps (Graves 
et al. 2020; Cameron and Sadd 2020), exacerbated by some datasets being not 
open-access (King et al. 2019). One possible solution to close this knowledge 
gap in the future is to implement a monitoring scheme for pollinators, includ-
ing bumblebees (Potts et al. 2021). Technical innovations, such as new camera 
technologies and genetic tools may help to implement efficient monitoring.

Metabarcoding is a promising approach for large-scale biomonitoring 
(Fahner et al. 2016; Elbrecht and Steinke 2018; Hardulak et al. 2020; Schwent-
ner et al. 2021). However, improper setup of various experimental stages might 
affect the final results (Thomsen and Willerslev 2015), calling for strict quality 
control (Thalinger et al. 2021). Nonetheless, the technique provides powerful 
data to tackle biodiversity challenges (Beng et al. 2016; Barsoum et al. 2019; 
Liu et al. 2020). Metabarcoding cannot only be used to directly monitor the 
pollinators, but also to study their diet by analyzing their foraging preferenc-
es based on pollen remains (Grozinger and Zayed 2020). Pollen metabarcod-
ing has shown to be equal or superior to microscopic studies (Smart et al. 
2017; Macgregor et al. 2019; Campbell et al. 2020; Polling et al. 2021). Studies 
comparing observations of flower visitation with pollen metabarcoding also 
confirmed that pollen metabarcoding was able to recover a higher amount of 
plant-pollinator interactions (Pornon et al. 2017; Piko et al. 2021). In addition to 
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these benefits, metabarcoding museum collections allows a window into the 
past (Ewers-Saucedo et al. 2021).

The city of Cuxhaven (Lower-Saxony, Germany) and its surrounding areas 
have been in the focus of historic bumblebee studies (Wagner 1969), with spec-
imens being deposited at the Leibniz Institute for the Analysis of Biodiversity 
Change (Hamburg, Germany). Reports of increasing urbanization by Wagner 
(1969) foreshadowed a bleak future for some of the 13 different non-parasitic 
bumblebee species detected at that time. We chose the same area to investi-
gate whether molecular tools are able to identify shifts in foraging between the 
past and present, which is an important factor in bumblebee wellbeing and also 
affected by urbanization. Our investigation of shifts in flower-pollinator interac-
tions focused on differences in the composition of pollen loads of bumblebees 
sampled in a previous study by Wagner (1969) and newly collected specimens 
in 2019 by using pollen metabarcoding on corbicula pollen and pollen sam-
pled on the bodies of recent bumblebees. We also compared technical aspects, 
such as the efficacy of the trnL-P6 loop versus the ITS1 and ITS2 (from here on 
ITS1/2) plant DNA barcoding markers.

Materials and methods

Sampling

Bumblebees were collected in Cuxhaven (Germany: Lower Saxony) in proximi-
ty to the coastline (700 m) between the coordinates 53°51'36.3"N, 8°35'58.4"E 
and 53°52'55.4"N, 8°37'49.0"E, including the protected area Cuxhavener Küsten-
heiden (WDPA-ID: 329318, protected since 2004). The sampling sites varied 
between disturbed ground (suburbia), wet pasture, sandy scrubland and heath. 
Gardens, farmland (including pastures) and broadleaf forest were within 1 km 
radius. Sampling took place on the 2019-07-31 between 11 am and 4 pm in 
sunny weather. Permission to collect specimens and to enter the protected ar-
eas was granted by the municipal administration of Cuxhaven (Fachbereich 4: 
Naturschutzbehörde und Landwirtschaft). For sampling, we focused on female 
worker bees with visible pollen loads from as many different species as pos-
sible. We occasionally caught male bumblebees, which were determined after 
sampling, but were kept and analyzed alongside the female worker bees. To our 
best knowledge, no queen bees were caught. Bumblebees were directly caught 
in new, clean 50 ml centrifuge tubes (one specimen per tube) and then subse-
quently frozen overnight. We kept tubes upright, however, due to transport condi-
tions, we cannot exclude minimal transfer of corbicula pollen to the bumblebee’s 
body. Pollen samples were taken within 24h thereafter by removing the pollen 
from the corbicula (if available) and by dabbing the bumblebee’s body with a 
toothpick covered in glycerol gelatin (except the hind leg). In 2019, we collected 
120 specimens, of which 117 specimens were included in the following analysis.

Historic pollen samples from Cuxhaven were retrieved from the bumblebee 
collection of the Zoological Museum Hamburg (ZMH, Museum der Natur, Leib-
nitz Institute for the Analysis of Biodiversity Change, Hamburg). Female worker 
bumblebees were screened for pollen packages at their hind leg. We focused 
our efforts on samples collected by Rainer Wagner (Wagner 1969). The pollen 
packages were removed by precision tweezers (Dumont T5036). If the sample 
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quantity was sufficient, one of the pollen packages was not removed for subse-
quent analysis. Pollen taken from the body hairs of historic bumblebees did not 
result in any PCR amplicons, regardless of the marker used (data not shown). 
In total, we sampled 81 historical bumblebees. These samples represent the 
subset of bumblebees caught by Wagner (1969), which were deposited in the 
museum and had visible pollen packages at their hind legs.

Bombus identification

Bumblebees were identified independently by COI barcoding with DNA extract-
ed from one hind leg, after pollen removal, and morphologically without dis-
parities. Following the manufacturers’ protocol, the BioSprint 96 DNA Blood 
Kit (Qiagen) was used for automated DNA extraction with a Biosprint 96 (Ther-
mo-Fisher). PCR targeting the 658 bp mitochondrial COI barcoding fragment 
was done using the primers HCO2198-JJ and LCO1490-JJ (Astrin and Stüben 
2008). PCRs were set up in volumes of 20 μl (2 μl DNA template, 0.8 μl of each 
primer (10 pmol/μl), 10 µl PCR Multiplex Mastermix (Qiagen, Hilden, Germany) 
and 6.4 µl H2O). PCR was performed by two different cycling regimes: 15 cy-
cles (denaturation for 35 s at 94 °C, step-down annealing at for 90 s at 55 °C 
with –1 °C per cycle, extension for 90 s at 72 °C) immediately followed by 25 
cycles (denaturation for 25 s at 94 °C, annealing for 90 s at 45 °C, extension 
for 90 s at 72 °C). Sanger sequencing with the same primers was outsourced 
to BGI (Hongkong, China). Sequences were assembled and analyzed by Gene-
ious 7.1.8 (Kearse et al. 2012). Voucher specimens are accessible (deposited 
in Zoological Museum Hamburg: ZMH844169–ZMH844289).

Pollen metabarcoding laboratory workflow

To avoid contamination, we treated surfaces, labware and plastic equipment 
with UV light and additionally with DNA AWAY (ROTH X996.2, Karlsruhe, Ger-
many) before use. DNA extractions and the setup of PCRs were performed in 
a sterile flow cabinet. The DNA extraction and PCR protocols were tested for 
various parameters and robustness (Kolter and Gemeinholzer (2021a), Suppl. 
material 1). Approximately 20% of all sequenced PCRs were blanks (PCR tem-
plate negative controls). Due to the potential risk of cross-contamination into 
low-DNA samples (1968/69), the decision was made to exclude positive ex-
traction controls from the experiment.

The DNA extraction buffer was modified from Sellers et al. (2018), while 
the extraction protocol was modified from the NucleoMag DNA extraction kit 
(REF744400.4 Macherey-Nagel, Düren, Germany). Samples were homogenized 
by bead milling in 1.5 ml tubes with six 1.5 mm stainless steel (grade SAE 316L) 
balls for 2.5 minutes at 30 Hz (MM400 Retsch, Haan, Germany) and DNA was 
subsequently isolated with a downscaled magnetic bead extraction protocol 
(Suppl. material 2). DNA was eluted by adding 35 µl of pre-warmed buffered 
H2O (5 mM Tris/HCl pH 8.5).

The ITS2 PCR protocol and sequencing strategy was previously described 
in Kolter and Gemeinholzer (2021a). Identical protocols were applied to ITS1, 
using the primers ITS-2plR1 and ITS-u1 (Cheng et al. 2016), modified by add-
ing a TruSeq HT (Illumina) primer tail to enable tagging by a subsequent PCR 
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(Suppl. material 3). The trnL-P6 primers g and h by Taberlet et al. (2007) were 
modified in the same way. Due to their age, samples from 1968/69 were not 
amplified with the ITS1/2 markers, as initial trials revealed little success (data 
not shown). PCR was performed in individually tagged triplicates (Suppl. ma-
terial 3). The paired-end 300 bp MiSeq sequencing run was performed on 1 ½ 
flow cells by LGC Genomics (Berlin, Germany).

Reference databases and bioinformatic analysis

Reference databases for ITS1/2 and trnL-P6 were generated from GenBank 
data files and filtered subsequently by a custom R script (Suppl. material 4). 
Reference database alignments were done with MAFFT and ITS regions were 
extracted using ITSx (Bengtsson-Palme et al. 2013; Katoh and Standley 2016).

The custom bioinformatic pipeline to analyze the MiSeq data used the R 
packages dada2 (featuring the DADA2 algorithm), vegan and ShortRead (Mor-
gan et al. 2009; Callahan et al. 2016; R Core Team 2021; Oksanen et al. 2022). 
In contrast to ITS1/2, the read length of 300 bp was sufficient to always cov-
er the whole trnL-P6 amplicon (< 160bp). To maximize the number of reads 
available for downstream analysis, the reverse (R2) sequencing reads were 
eliminated from the trnL-P6 workflow (Suppl. material 5). Amplicon sequence 
variant (ASV) generation by DADA2 was followed by multiple filtering steps. 
(Suppl. material 5). ASVs which could not be found in two out of three PCR 
replicates per sample were removed; this has been shown to minimize false 
positives and false negatives (Yang et al. 2021). The taxonomic assignment 
by SINTAX (Edgar 2016) was manually checked for plausibility. To address 
background noise-type contamination and more sporadic contamination types, 
a two-step process was implemented. First, ASVs whose sum of read count 
across all blanks surpasses 10% of their total read count across all samples 
were eliminated. Second, background contamination was mitigated by calcu-
lating the 90th percentile of read counts across all blank samples for each ASV, 
respectively, and subtracting this value from the read counts of the correspond-
ing ASV in all other samples. Any resulting negative values were adjusted to 
zero. ASVs only found in blanks were ignored (Suppl. material 5). Sequentially, 
read numbers of ASVs which were identified to the same taxonomic entity by 
SINTAX were conflated. The read numbers were transformed into presence / 
absence data. Pollination network graphs were generated by the R package bi-
partite (Dormann et al. 2009). The bioinformatic R pipeline, including a sample 
file, is available alongside the used reference databases (Suppl. material 6) and 
the ASV sequence data (Suppl. material 7).

For the comparison of the efficacy of the ITS1/2 makers, we assessed the 
number of detected taxa per sample after rarefaction, but excluded any sub-
sequent filtering steps to minimize pipeline bias (Suppl. material 5). This was 
only applied to 2019 samples where both, ITS1/2, were successfully amplified. 
The Jaccard similarity was calculated for each of the taxonomic levels (family, 
genus, species) to compare the taxon lists recovered by the ITS1/2 and trnL-P6 
loop. We ultimately decided to limit our analysis to presence / absence data 
because there currently is no consensus whether trnL-P6 read numbers show 
a significant correlation with pollen counts in the eDNA sample (Deagle et al. 
2019; Baksay et al. 2020; Polling et al. 2021).
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Results

Bumblebee specimens and sequencing success

Of the 99 sampled bumblebees from 2019 (99 body swap samples + 18 corbic-
ula pollen samples), 91 produced molecular data for all three plant barcoding 
markers. This dataset was used for foraging preference analysis and included 
the following bumblebee species, identified visually and via DNA barcoding: 40 
B. terrestris, 24 B. lapidarius, 23 B. pascuorum, 3 B. pratorum and 1 B. cryptarum 
(Appendices 1, 2). Of the 81 corbicula pollen samples sampled from muse-
um specimens (1968/69), we successfully generated NGS data of the trnL-P6 
loop from 65 samples (39 B. pascuorum, 10 B. veteranus, 7 B. distinguendus, 
5 B. hortorum, 3 B. lucorum, 1 B. muscorum).

Marker choice affects plant taxa detection

To assess the technical performance of ITS1/2 and the trnL-P6 loop, we mini-
mized the filter steps to increase sensitivity (Tables 1, 2, Appendix 4). As a re-
sult, we detected 37 plant families, 96 genera, and 61 species in the 99 bumble-
bee pollen samples from 2019 (Tables 1, 2, Appendix 4). The barcoding markers 
identified distinct sets of plant taxa. Differences in taxonomic resolution be-
tween the ITS1/2 markers were mainly observed at the genus and species lev-
els (Appendix 4). Although the Jaccard similarity at the genus level was 0.84 
(Table 2), the ITS1/2 markers can be considered roughly equivalent, given that 
most variation at the genus level involved plant taxa found in only one speci-
men respectively, such as Papaver or Clematis (Appendix 4). However, it is worth 
mentioning that the ITS1 marker detected 15 plant genera not detected by ITS2, 
while ITS2 only identified three genera not detected by ITS1 (Appendix 5).

In addition to variation in the identified taxa, the ITS1/2 markers also exhibit-
ed discrepancies in the sum of presence detections of a taxon across all sam-
ples (Table 2). Aggregating the presence detections for all plant taxa revealed 
that the ITS1 marker outperformed the ITS2 marker by approximately 20% in 
terms of identifications at the genus and species levels (714 vs. 562) (Table 1). 
This trend persisted even when excluding the taxa exclusively detected by ITS1 
from the count.

The trnL-P6 marker detected the most plant families (n=35), compared to 
ITS1 (n=32) and ITS2 (n=31), but fewer plant taxa at genus level (trnL-P6 n=42, 
ITS1 n=77, ITS2 n=65) and species levels (trnL-P6 n=13, ITS1 n=52, ITS2 n=45) 
(Table 1). Considering the detection counts, the trnL-P6 loop detected more indi-
vidual family signals (n=637) as the ITS1/2 markers (454 and 436, respectively) 
across all samples (Table 1). However, ITS1/2 outperformed the trnL-P6 on the 
individual genus and species level detections (Table 1). The families Asterace-
ae, Malvaceae and Rosaceae were most affected by the low trnL-P6 resolution 
(Appendices 4, 5). The low Jaccard similarity of detections between the trnL-P6 
loop and ITS1 or ITS2 on genus and species level can be primarily attributed to 
the low resolution of the trnL-P6 loop (Table 1, 2). In Asteraceae, for example, the 
resolution of the trnL-P6 loop is restricted to family level (except Achillea), while 
the ITS1/2 markers successfully distinguished between 23 genera (Appendix 4).

We also calculated the similarity between the ITS1 and ITS2 data of the 
same sample individually (1 vs. 1) instead of comparing the whole sample 
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pool (all ITS1 vs. all ITS2). Excluding genera exclusively being detected in either 
ITS1 or ITS2, the Jaccard similarity of bumblebee samples from 2019 (male 
and female, body and corbicula) between ITS1 and ITS2, per specimen, is 0.59 
(n=110) (Suppl. material 7). The similarity between the markers rises asymptot-
ically to 0.81 at a cutoff rate of 400 reads and reaches saturation at a similarity 
index of 0.88 at a cutoff rate of 870 reads (Suppl. material 7).

Pollen metabarcoding as a tool to reveal plant-pollinator interactions

Data used to analyze the plant-pollinator interactions was filtered more strictly 
to exclude rare and infrequent plant signals that may be of minor importance 
in terms of their impact on the bumblebee colonies nutritional status (Table 3; 
Fig. 1, Appendices 1–3). The plant taxa identification in ITS1 (n=42) and ITS2 
(n=45) were at least on the genus level (Appendices 1, 2). In trnL-P6, the highest 
taxonomic rank of the identified plant taxa (n=47) was either on family (n=12) 
or genus level (n=35) (Appendix 3). In detail, successful detections at genus or 
family level in the trnL-P6 loop, which were not detected by ITS1 and ITS2, can 
be partly attributed to Atriplex, Alnus, Robinia, Rumex, Acer, Pinus or Salicaceae 
(Appendix 4). In body samples (n=2) of B. pratorum the additionally detected 
taxa by the trnL-P6 loop in comparison to ITS1 and ITS2 were Convolvulace-
ae, Cucurbitaceae, Rosaceae, Ericaceae: Calluna, Fabaceae: Lotus, Lamiaceae: 
Mentha and Onagraceae: Oenothera (Appendix 3).

A quantitative count of the pollination network links (=connection) reveals 
that the markers show a different trend (Table 3). The median of detected taxa 
(statistical median of number of network links across specimens of the same 
species) in the trnL-P6 marker is always higher or equal to the other markers 
(Table 3). In contrast to most of the ITS1 or ITS2 evaluations (except B. pas-
cuorum in ITS2), trnL-P6 recovered more taxa in the corbicula samples than 
the body samples (Table 3). Despite the high abundance of some taxa, e.g. 

Table 1. Aggregated plant taxa detection counts by pollen metabarcoding of 2019 sam-
ples (Cuxhaven, Germany). The detected plant taxa are aggregated from all samples of 
2019 (n=99). The taxa presence detection count is calculated by summing up the number 
of detected plant taxa (frequency) per sample across all samples. Data originates from 
dataset without final two filtering steps to maximize taxa detection (Suppl. material 5).

Plant taxa Taxon presence detection sum

ITS1 ITS2 trnL-P6 combined ITS1 ITS2 trnL-P6

Family 32 31 35 37 454 436 637

Genus 77 65 42 96 714 562 473

Species 52 45 13 61 523 407 196

Table 2. Jaccard similarity index of three metabarcoding markers of 2019 samples 
(Cuxhaven, Germany). The Jaccard similarity has been calculated based on a pooling of 
all samples of 2019 (n=99). Data originates from dataset without final two filtering steps 
to maximize taxa detection (Suppl. material 5).

ITS1 vs. ITS2 ITS1 vs. trnL-P6 ITS2 vs. trnL-P6

Family 0.91 0.87 0.87

Genus 0.84 0.43 0.45

Species 0.71 0.28 0.34
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Scorzoneroides, Tanacetum, Lotus and Lythrum, detected in more than 10 spec-
imens in at least one bumblebee species by ITS1/2 (Appendices 1–3), the me-
dian number of plant taxa on individual female worker bumblebees was 2.5 to 
4 for ITS1 and ITS2 (where n > 3 bumblebees, Table 3). The old corbicula sam-
ples (1968/69) did not recover less taxa when compared to the 2019 samples 
(where n > 3 bumblebees, Table 3). Plant taxa were found in a median of two to 
three bumblebee body samples (where n > 3 bumblebees, Table 3).

Table 3. Plant taxa counts in bumblebee samples. The number of bumblebee connections describes the median number of 
plant taxa found in one sample (number of pollination network links from bumblebee to plant taxa). The number of median 
plant connections describes the number of samples each respective plant taxa was found in (number of pollination net-
work links from plant taxa to bumblebees). Samples from 1968/69 (=old) have been separated from the samples of 2019. 
The taxonomic identification level was always to genus in the ITS1 and ITS2 marker and to genus or family level in the 
trnL-P6 marker. The interquartile range (values in brackets) is only given if the number of samples (n) was greater than 2.

pollen 
source

bumblebee species 
(females only)

median bumblebee connections median plant connections

ITS1 ITS2 trnL–P6 ITS1 ITS2 trnL–P6

body B. terrestris (n=27) 3 (2–5) 3 (2–4) 4 (2–6) 3 (1–4) 2 (1–3.25) 2.5 (1–7.5)

B. lapidarius (n=24) 4 (2.75–5) 2.5 (1.75–4.25) 4 (2.75–5) 2.5 (1–5) 3 (2–6) 3 (2–9)

B. pascuorum (n=23) 4 (3–5.5) 3 (2–4) 4 (3.5–5) 2 (2–4) 3 (1–3.5) 2.5 (1–5.75)

B. pratorum (n=2) 1.5 – 1 – 7 – 1.5 – 2 – 2 –

B. cryptarum (n=1) 1 – 3 – 7 – 1 – 1 – 1 –

corbicula B. terrestris (n=10) 2 (2–3.75) 2 (2–3.75) 4.5 (3.25–5.75) 1 (1–2) 2 (1–3) 2.5 (1–4)

B. lapidarius (n=4) 1.5 (1–2.75) 1.5 (1–3) 7 (5–7.5) 1 (1–1.75) 1 (1–1.25) 2 (1–2.25)

B. pascuorum (n=4) 2 (2–2.5) 3.5 (3–4) 6 (5–7.5) 1 (1–2) 1.5 (1–2) 1 (1–2)

B. pascuorum (old) (n=39) – – – – 5 (3.5–8) – – – – 2 (1–9)

B. veteranus (old) (n=10) – – – – 5 (4–7.5) – – – – 3 (1–4)

B. distinguendus (old) (n=7) – – – – 5 (3–7) – – – – 1.5 (1–4)

B. hortorum (old) (n=5) – – – – 7 (4–10) – – – – 2 (1–2.5)

B. lucorum (old) (n=3) – – – – 13 (10.5–13) – – – – 1 (1–3)

B. muscorum (old) (n=1) – – – – 2 – – – – – 1 –

Comparison of corbicula and body pollen samples

85% (ITS1) and 75% (ITS2) of the plant taxa, at genus level, found in the cor-
bicula samples (n=18) from female bumblebees caught in 2019 (B. terrestris, 
B. lapidarius and B. pascuorum) can also be detected in the respective body 
samples of the same specimen (Suppl. material 7). On family level the overlap 
rises to 91% for ITS1 and 78% for ITS2 (Suppl. material 7). Due to high similarity 
indices between corbicula and body samples of the same individual in ITS1/2, 
the corbicula samples can be broadly viewed as a subset of the body samples. 
For the trnL-P6 loop, where a higher number of plant taxa has been detected 
in the corbicula samples, 75% of the plant taxa detected in body samples have 
been found in the corbicula samples of the same specimen (Suppl. material 7). 
At family level, the overlap increases to 79% (Suppl. material 7).

Comparison between historic and recent bumblebee samples

In general, the most often visited taxa in 2019 were also detected in the 1968/69 
samples and vice versa, albeit at a different frequency (Fig. 1). In detail, each of 
the well-covered plant families (s > 20) was found on each of the well-represent-
ed bumblebee species (n > 20) included in this study (Fig. 1). However, trends 
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of plant-pollinator interactions in the 2019 samples versus the samples from 
1968/69 using the trnL-P6 loop plant barcode marker are different. In detail, the 
ratio of recent / historic interactions per plant family (s > 20) varies with Astera-
ceae, Ericaceae and Lythraceae showing, relatively, more recent interactions and 
Fabaceae and Oleaceae showing the smallest ratio of recent interactions (Fig. 1). 
Phaseolus and Lathyrus (both Fabaceae), with one exception, can only be found 
on 1968/69 bumblebees. The difference in visitation pattern for B. pascuorum is 
especially striking, as we could rarely find Vicia and Trifolium plant-pollinator in-
teractions in recent data, compared to historic B. pascuorum specimens (Fig. 1). 
Bombus pascuorum visited the same plant taxa (with at least 3 interactions in 
historic and recent data) in historical and recent collections, except for Phaseo-
lus, which was additionally detected in the 2019 survey (Appendix 3).

Discussion

Biodiversity loss, particularly the decline of pollinators and its impact on ecosys-
tems, is a pressing contemporary issue. Understanding the potential causes be-
hind this decline is highly relevant. In the following, we discuss changes in flow-
er-visiting behavior over a span of approximately 50 years using museomics and 
metabarcoding of pollen. Our findings reveal a decline in interactions with Fabace-
ae, which may contribute to the decline of numerous rare species. Additionally, the 
effectiveness and consistency of our method across various barcoding markers 
are demonstrated. Subsequently, a detailed discussion of the results is provided.

Comparison of recent and historic Bombus samples

To the best of our knowledge, this is the first pollen metabarcoding study of his-
toric bumblebee pollen samples dating back ~50 years and the only bumblebee 
metabarcoding study reporting results from multiple endangered Bombus spe-
cies. Existing pollen metabarcoding studies are primarily focused on B. terrestris 
(Wilkinson et al. 2017; Biella et al. 2019; Potter et al. 2019; Bänsch et al. 2020; 
Piko et al. 2021; Bontšutšnaja et al. 2021). This can possibly be explained by 
the difficulties associated in locating rare bumblebee species in the field. In the 
study of Beyer et al. (2020), only 1.2% of the bumblebees caught belonged to an 
endangered bumblebee species (Westrich et al. 2011). This underlines the use-
fulness of historic natural history collections in reconstructing trophic interac-
tions between species, such as pollinator-plant interactions, especially when rare 
species are included (Scheper et al. 2014). However, it is important to recognize 
that plant-pollinator interactions must be supplemented with knowledge about 
the effects of shifts in flowering time, climate change, parasites or diseases, pes-
ticides, and competition before conservation measures can be taken. (Goulson 
et al. 2015; Miller-Struttmann et al. 2015; Marshall et al. 2018; Soroye et al. 2020).

Our data on shifts in flower visitations revealed trends that differ between 
current and historical bumblebee specimens. The bumblebee species caught in 
2019 are commonly reported to be present in urban environments and display a 
highly generalist foraging behavior (Banaszak-Cibicka and Żmihorski 2012; Zaj-
del et al. 2019; Sikora et al. 2020). This is different from two species only found 
in the historic samples (B. distinguendus and B. muscorum), which have been 
reported to be amongst the bumblebees with the narrowest dietary breadth 
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(Wood et al. 2021). On the other hand, B. lapidarius, B. terrestris and B. pas-
cuorum, in combination, have been reported in other areas with high population 
density, indicating their status as hemerophiles (Vray et al. 2019). Although we 
could show their generalist foraging strategy, most plant taxa could only been 
found on a small subset of all analyzed samples (Table 3). This indicates that a 
higher sampling depth is required to fully characterize the foraging habits. We 
can hypothesize that the greater frequency of Calluna flower visitation is due to 
the establishment of a strictly protected heathland that was not yet a formal pro-
tected area in 1969 (Wagner 1969). The higher visitation frequency of Lythrum 
could be a result of an increased amount of drainage channels, which provide an 
ideal habitat, due to intensified agriculture (Wagner 1969; Dierssen 1997). While 
difficult to predict, a shift in flowering time could also have played a role in floral 
availability (Rafferty et al. 2020), which, however, was not tested here.

Our analysis of recent and historic plant-pollinator interactions revealed distinct 
floral visits (Fig. 1). While the overlap of analyzed species is restricted to B. pas-
cuorum, it can be inferred that Fabaceae are an important part of bumblebee diet 

Figure 1. Plant-pollinator inference network of historic and recent bumblebee specimen by trnL-P6 pollen metabarcod-
ing. Corbicula pollen was sampled from bumblebees caught in 1968/69 (blue) and bumblebees caught in 2019 (orange). 
In addition, body pollen was sampled from all bumblebees caught in 2019 (yellow). The width of the colored bars reflects 
the sum of unique interactions (i) with plant taxa for all specimen (n) of the respective sample type (color). The width of 
the black bars reflects the total number of bumblebee specimens (s) in which the respective plant taxa has been found. 
Plant taxa were ordered to minimize network overlap. To avoid clutter, plant taxa found in less than two samples and 
bumblebee species represented by less than two specimens were omitted. Taxa represented by family names showed 
insufficient resolution in the trnL-P6 maker (e.g., Asteraceae).
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(Wood et al. 2021), particularly for B. lapidarius (Hülsmann et al. 2015). Therefore, 
if available, all accessible floral resources from the Fabaceae family would have 
been used by B. pascuorum and B. lapidarius, as observed in Lotus (Fig. 1). In con-
trast to our results, bumblebee diversity was more extensive in the Cuxhaven area 
in 1968/69 (Wagner 1969). An important consideration for our results is whether 
the species is truly absent from the area, or we just could not find it. Therefore, we 
will discuss probable causes for its absence in our 2019 sampling effort.

B. ombus lucorum is reported to be a generalist forager (Wood et al. 2021), 
which aligns with our data (Fig. 1, Appendix 3). Reports of B. lucorum in the area 
are inconsistent. It has been classified as an abundant species in the area (Witt 
2016), however, other studies report relatively low catch rates of 1.6% (Pers-
son et al. 2015). In 1968/69 it accounted for 4.5% of the bumblebees captured 
(Wagner 1969). Overall, we conclude that B. lucorum was likely missed in 2019 
due to insufficient sampling. Another possible explanation for the absence of B. 
lucorum in our samples is that the number of hot days (>25 °C) was higher than 
in 1968/69 (DWD 2022) and shortened the colony’s lifecycle (Maebe et al. 2021).

Our data confirms that B. distinguendus has a preference for Fabaceae 
(Diekötter et al. 2006; Witt 2016). However, we also observed the use of alterna-
tive pollen sources (Vray et al. 2017; Phelan et al. 2021), such as Rosa and Cal-
luna (Appendix 3). In contrast to reports between 1909 and 1969 (Alfken 1913; 
Wagner 1969; Rasmont et al. 2015), B. distinguendus is assumed to be absent 
from most parts of Lower Saxony nowadays (Sprichardt 2010; Rasmont et al. 
2015; Witt 2016), which may explain the absence in our study (Fig. 1). A similar 
trend of habitat destruction or extinction was also found in multiple other coun-
tries (Goulson et al. 2005; Charman et al. 2010; Dupont et al. 2011; Bommarco et 
al. 2012; Rasmont et al. 2015; Rollin et al. 2020). Common recommendations to 
protect B. distinguendus include modifying mowing practices of open grassland 
areas and converting pastures into species-rich grassland, provided suitable 
nesting sites are available (Charman et al. 2010; Witt 2016; Phelan et al. 2021).

The decline of B. hortorum, which is generally not considered a rare species 
in Germany, between 1959–1962 and 1968–1969 in the Cuxhaven area, can be 
attributed to land use changes (Wagner 1969). Although it was present in 2007 
and 2009 in the Cuxhaven area, it was only observed in 2 out of 85 sampling days 
(Sprichardt 2010). We were unable to capture any B. hortorum individuals in 2019. 
Bombus hortorum is known to show an extreme dietary preference for Trifolium 
(Goulson et al. 2008; Kleijn and Raemakers 2008), and likely also other Fabaceae 
species. Interactions between bumblebees and Trifolium were underrepresented 
in our 2019 data, compared to the data from 1968–1969 (Fig. 1). This possibly 
hints at the fact that the land use changes were accompanied by a change in 
floral availability. While some studies have not demonstrated a dietary focus on 
Fabaceae (Wood et al. 2021), it is challenging to compare results across dietary 
studies as many parameters are not being controlled for (i.e., floral availability).

It has been hypothesized that B. veteranus is closely associated with Faba-
ceae (Goulson et al. 2008; Wood et al. 2021), and our data confirms this finding 
(Appendix 3). However, another study showed B. veteranus to be tightly asso-
ciated with Cardueae (Vray et al. 2017), which was not reflected in our data 
(Fig. 1). Our data also revealed interactions with plants associated with an-
thropogenic influence, such as Ligustrum (Appendix 3). This suggests that the 
habitat of B. veteranus may be threatened by nearby land use changes, espe-
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cially urbanization. Bombus veteranus is considered a rare species in Germany 
(Westrich et al. 2011) and has experienced rapid decline in Belgium (Rollin et 
al. 2020). In the Cuxhaven area, its last record is from 1969 (Wagner 1969). In 
Lower Saxony only one large population is known (Witt 2016).

In summary, the detected floral interactions of bumblebees caught in 2019 
have shifted away from many Fabaceae genera. This is important for three rea-
sons: 1) Host plant availability has been identified as the main driving factor of 
wild bee decline (n = 57 species), with Fabaceae dependent species (29 out of 
57) showing the highest decline (Scheper et al. 2014). 2) Herbaceous Fabaceae, 
such as Vicia and Trifolium, are of principal importance for many rare bumblebees 
(Bäckman and Tiainen 2002; Goulson et al. 2005; Goulson et al. 2008; Kleijn and 
Raemakers 2008; Dupont et al. 2011; Timberlake et al. 2019; Wood et al. 2019; 
Sikora et al. 2020; Wood et al. 2021). And finally, 3) Fabaceae has been found to 
be the most effective plant family in mitigating negative effects of urbanization, 
promoting their usefulness also in urban landscapes (Hülsmann et al. 2015).

Plant barcoding markers in pollen metabarcoding

We tested three genetic markers, including the trnL-P6 loop, positioned between 
the trnL (UAA) exon 1 and the trnL (UAA) exon 2 (Taberlet et al. 2007), which 
has been utilized in multiple pollen and honey metabarcoding studies (Chiara et 
al. 2021; Milla et al. 2021; Polling et al. 2021). Compared to studies using pollen 
microscopy, it shows worse taxonomic resolution in the Asteraceae family and 
approximately the same taxonomic resolution in other plant families (Wood et 
al. 2019; Wood et al. 2021).

Comparing the trnL-P6 loop with ITS1/2 revealed two important findings. 
First, in accordance with Milla et al. (2021), we observed that the trnL-P6 loop 
is able to capture greater diversity at the family level than the ITS1/2 marker 
(Table 1). This increased diversity can be attributed to the trnL-P6 loop’s abil-
ity to amplify degraded DNA due to its shorter length (Valentini et al. 2009). 
There are multiple possible explanations for the additionally detected taxa 
in trnL-P6 compared to ITS1/2 in samples of 2019. Plant material attached 
could be accidentally deposited in the corbicula during combing alongside 
with pollen. Regurgitated nectar, used to fixate pollen on the corbicula (Thorp 
2000), which also contains ingested pollen (Owen et al. 2013), could also add 
traces of degraded DNA to the pollen package. This could also explain why, 
in contrast to the ITS1/2 marker, the trnL-P6 loop was able to identify more 
plant taxa in the corbicula samples, compared to the body samples (Table 3).

Second, supported by Polling et al. (2021), in contrast to Milla et al. (2021), our 
results show that the ITS1/2 markers recover a higher number of taxa at species 
and genus rank (Table 1). After the manual curation of SINTAX results, the trnL-P6 
loop identified only ~60% of the genera found by ITS1/2 in recent samples (Table 1).

These results demonstrate that sequencing shorter DNA fragments, such as the 
trnL-P6 loop, alongside with longer DNA fragments, such as the ITS1/2 barcode 
marker, will yield different insights and are well worth exploring. Unfortunately, we 
could not find comparable studies in literature and further controlled experiments 
are required to understand the differential detections of ITS1/2 and trnL-P6. In sum-
mary, the trnL-P6 loop was generally able to recover a higher taxonomic breadth, 
while the ITS1/2 maker was generally able to recover a higher taxonomic depth.
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Demonstrating the utility of ITS1 in metabarcoding

Our study shows that the ITS1 possesses favorable attributes, compared to the 
ITS2 marker. This can be demonstrated by more detected taxa on species and 
genus level, as well as the overall higher number of taxa in all samples (Table 1). 
The higher taxonomic resolution aligns with previous results (Wang et al. 2015; 
Kolter and Gemeinholzer 2021b). The increased richness of taxa per sample sug-
gests a more even amplification profile of mixed samples, potentially explained 
by the more conserved flanking regions of ITS1 (Wang et al. 2015; Kolter and Ge-
meinholzer 2021a). Another possible explanation could be the, on average, low-
er GC content of ITS1 compared to ITS2 (Wang et al. 2015), resulting in less sta-
ble secondary template structures during PCR. Our study, due to improvements 
in methodology (Cheng et al. 2016; Kolter and Gemeinholzer 2021a), contrasts 
the findings of Chen et al. (2010), who excluded ITS1 as a barcode candidate 
due to amplification problems. The overall performance of ITS1 also contradicts 
the study of Gous et al. (2019), which, however, used primers which were also 
designed for fungal amplification (White et al. 1990; Kolter and Gemeinholzer 
2021a). Subsequently, their findings are possibly a result of preferential amplifi-
cation of fungal DNA and must be verified with plant-specific primers.

One disadvantage of ITS1 is the presence of extremely long ITS1 sequenc-
es in certain Gymnosperms (Cheng et al. 2016), which currently exceeds the 
technical limits of the Illumina sequencing platform (2×300 bp). ITS1 has been 
used sparingly in pollen metabarcoding studies (Pornon et al. 2016; Gous et al. 
2019; Baksay et al. 2020; Gous et al. 2021), and further investigations, ideally 
including mock communities, are required, before it can be recommended over 
ITS2. In this context, it is important to mention that the number and quality of 
taxa recovered from any eDNA sample by metabarcoding depend heavily on 
the metabarcoding pipeline used (Pauvert et al. 2019). Finally, we conclude that 
the application of ITS1 in pollen metabarcoding studies needs more compara-
tive studies but shows promise.

Conclusion

In conclusion, our study was able to show differences in foraging trends of 
bumblebees caught in 1968/69 and 2019, contributing to our understanding 
of their interaction with foraging resources, despite their current absence from 
the study area.

Moreover, our findings demonstrate that the trnL-P6 loop had poorer tax-
onomic resolution compared to the ITS1/2 marker, but could detect more 
plant-pollinator interactions. We furthermore showed that the ITS1 marker per-
forms at least comparably to the ITS2 marker and holds promise for effective 
application in plant metabarcoding studies.
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Appendix 1

Table A1. ITS1 plant taxa detections in samples from 2019.
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Amaryllidaceae Allium ampeloprasum 1
Halimione portulacoides 1 2

Asteraceae Achillea millefolium 2 2 1 3
Artemisia 3 4 1 4 2
Bidens 1
Centaurea cyanus 1 2 1
Cirsium vulgare 4 3 1
Crepis capillaris 1 1 1 1 2
Dahlia 1 1 1 3
Eupatorium cannabinum 1 2 2
Helianthus annuus 1 1 1
Hypochaeris radicata 1 2 2 1 2
Leontodon 1 5
Liatris 4 2 1 3 4
Scorzoneroides autumnalis 4 1 1 18 2
Senecio inaequidens 1 2 2 1
Tanacetum vulgare 7 7 1 15 5 1

Balsaminaceae Impatiens glandulifera 1
Boraginaceae Borago officinalis 1 1
Campanulaceae Campanula 2 1
Convolvulaceae Calystegia sepium 2
Ericaceae Calluna vulgaris 2 4 7 7 3 6 2

Erica tetralix 4 2 2 5 1 5 1
Fabaceae Lotus 6 1 11 2 16 1

pedunculatus 5 1 9 2 18 1
Trifolium arvense 1 1 1 1

repens 2 1 1
Hydrangeaceae Hydrangea 3 1 2
Hydrophyllaceae Phacelia tanacetifolia 2 1 1 1 4
Hypericaceae Hypericum 5 4 4 2
Lythraceae Lythrum salicaria 1 9 1 4 18 2 2 1 1
Malvaceae Alcea 1 2

rosea 4 2 1 4
Malva 2

Oleaceae Ligustrum 1 2
Onagraceae Oenothera biennis 3 2 2 1 1
Plantaginaceae Linaria 1 1
Plumbaginaceae Limonium vulgare 1 1
Rosaceae Potentilla anserina 1 1 1

Rosa 3 3 1
Rosaceae Rubus 1 1 2
Solanaceae Solanum dulcamara 2 1

Taxa are not listed in a hierarchical manner (e.g., Lotus and Lotus pedunculatus counts originate from different ASVs). Each positive count represents a presence signal 
which persisted after all filtering steps. Bumblebee species are split by sex (f/m) and sample location on the bumblebee’s body (body, LP = corbicula).
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Appendix 2

Table A2. ITS2 plant taxa detections in samples from 2019.

Family Genus Species
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Apiaceae Pimpinella 1

Asteraceae Achillea 2 2 1 2

Artemisia vulgaris 2 3

Bidens 1

Centaurea cyanus 1 2 1

Cirsium vulgare 3 3

Crepis capillaris 1 1 1

Dahlia 1 1 1

Eupatorium cannabinum 1 1 2

Hypochaeris 1 2 6

Leontodon 3

Liatris 4 2 2 2 4

Scorzoneroides autumnalis 2 1 14 1

Senecio 2 3 1

Tanacetum 6 5 4 17 1 4 2 1

Balsaminaceae Impatiens glandulifera 1

Boraginaceae Borago officinalis 1

Brassicaceae Raphanus sativus 2 1 2

Ericaceae Calluna vulgaris 17 3 6 6 2 4 2 1

Erica tetralix 1 1 1 3 1

Fabaceae Lotus 5 2 1 1 2 16 2 1

corniculatus 2 1 1 8 2 1 1

pedunculatus 4 1 1 7 2 16 2

Ononis spinosa 1

Trifolium 1

repens 1 1 1

Hydrangeaceae Hydrangea paniculata 1 1 1

serrata 3 1 2

Hydrophyllaceae Phacelia tanacetifolia 2 1

Hypericaceae Hypericum 4 3

Lamiaceae Mentha 3 1

Lythraceae Lythrum salicaria 11 1 4 6 1 19 4 2 1 1

Malvaceae Alcea 2 1 1 3

Malva moschata 2

Oleaceae Ligustrum ovalifolium 1 1

Onagraceae Oenothera 2 1 3 1

Plantaginaceae Linaria vulgaris 1 1

Plumbaginaceae Limonium vulgare 1

Rosaceae Potentilla anserina 1 1 1

Rosa 5 3 1 2

Rubus 1

Scrophulariaceae Buddleja Davidii 4 1 3 1

Solanaceae Solanum Dulcamara 3 3 1

Taxa are not listed in a hierarchical manner (e.g., Lotus and Lotus pedunculatus counts originate from different ASVs). Each positive count represents a presence signal 
which persisted after all filtering steps. Bumblebee species are split by sex (f/m) and sample location on the bumblebee’s body (body, LP = corbicula).
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Appendix 3

Table A3. trnL-P6 plant taxa detections in samples from 1968 – 2019.

Family Genus Species

B.
 p

as
cu

or
um

 
(f

), 
n=

23

B.
 p

as
cu

or
um

 (f
)

LP
, n

=4

B.
 p

as
cu

or
um

 (f
)

(o
ld

), 
n=

39

B.
 te

rr
es

tri
s 

(f
), 

n=
27

B.
 te

rr
es

tri
s 

(m
), 

n=
13

B.
 te

rr
es

tri
s 

(f
)

LP
, n

=1
0

B.
 la

pi
da

riu
s 

(f
), 

n=
25

B.
 la

pi
da

riu
s 

(f
)

LP
, n

=4

B.
 v

et
er

an
us

 (f
)

(o
ld

), 
n=

10

B.
 d

is
tin

gu
en

du
s 

(f
)(

ol
d)

, n
=7

B.
 h

or
to

ru
m

 (f
)

(o
ld

), 
n=

5

B.
 p

ra
to

ru
m

 (f
), 

n=
2

B.
 p

ra
to

ru
m

 (m
), 

n=
1

B.
 lu

co
ru

m
 (f

)
(o

ld
), 

n=
3

B.
 m

us
co

ru
m

 (f
)

(o
ld

), 
n=

1

B.
 c

ry
pt

ar
um

 
(f

), 
n=

1

Asparagaceae Asparagus 1

Poaceae 1 1 3 1 1 1

Anacardiaceae Cotinus / Rhus 2 1

Apiaceae 1

Asteraceae 9 1 16 12 7 4 23 3 4 3 3 2 2

Betulaceae Alnus 1 1

Boraginaceae Anchusa 1 1

Brassicaceae Cardamine 1

Campanulaceae Campanula 2 1 1 2 1

Convolvulaceae 3 1 3 1 3 2 1 1 1

Cucurbitaceae 2 1 1 1 3 4 2 2 1 1

Ericaceae Calluna vulgaris 16 3 9 23 9 1 14 3 4 4 3 2 3 1

Erica tetralix 3 1 1 1 1 1

Fabaceae 3 3

Anthyllis vulneraria 1 1

Lathyrus pratensis 1 9 1 1

Lotus 16 3 21 12 5 5 15 2 4 5 4 2 1 2 1

Phaseolus vulgaris 5 1 1

Robinia pseudoacacia 1 1

Styphnolobium japonicum 1

Trifolium 6 2 27 1 2 1 3 1 7 4 3 1 1 1

Vicia 2 2 35 5 1 3 1 6 4 4 3 1 1

Hydrangeaceae Philadelphus 1 1

Hydrophyllaceae Phacelia tanacetifolia 4 5 1 2 1 4 1 1 1 1

Hypericaceae Hypericum 1 2 12 8 1 3 5 2 3 2 1 2

Lamiaceae 1

Mentha 1 2 1 1

Lythraceae Lythrum salicaria 21 3 8 14 9 9 12 4 3 1 2 2 1 3 1

Malvaceae 5 3 4 5 3 1 2 1 1 2

Oleaceae Ligustrum 2 13 4 2 1 2 6 2 1

Onagraceae Oenothera 3 2 1 1 1 1

Plantaginaceae Linaria vulgaris 1 1 1 1 1 1

Plumbaginaceae Limonium 1 1

Polygonaceae Fagopyrum esculentum 1

Polygonaceae Rumex 1 1 2 2 2

Ranunculaceae Delphinium 2

Rosaceae 6 1 23 9 3 4 5 2 3 4 2 2 1 2 1

Potentilla anserina 1 1 1

Spiraea 1 2 2 1 1 1

Scrophulariaceae 1 1 1 1

Buddleja 3 1 2 6 2

Solanaceae 1 2

Pinaceae Pinus 2 1 2 2 1 1 1 1

Taxaceae Taxus 1

Taxa are not listed in a hierarchical manner (e.g., Lotus and Lotus pedunculatus counts originate from different ASVs). Each positive count represents a presence signal 
which persisted after all filtering steps. Bumblebee species are split by sex (f/m) and sample location on the bumblebee’s body (body, LP = corbicula). Bumblebee 
samples from the 1968/69 period (=old) are always referring to corbicula samples.
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Appendix 4

Table A4. Biodiversity exploration.

Family Genus Species ITS1 ITS2 trnL-P6

Amaryllidaceae Allium 1

ampeloprasum 3 1

Poaceae 5

Lolium 3

Amaranthaceae Atriplex 5

Chenopodium 1 4

album 1

Halimione portulacoides 3 6

Araliaceae Hedera helix 3

Apiaceae 1

Anethum graveolens 1 2

Pastinaca sativa 3 1

Pimpinella 1 2

saxifraga 1

Torilis japonica 1

Asteraceae 62

Achillea 26 10 19

millefolium 17

Artemisia 28

vulgaris 10

Bellis perennis 1

Bidens 2 1

Centaurea cyanus 8 4

Cirsium vulgare 10 7

Crepis capillaris 17 4

Dahlia 13 4

Eupatorium cannabinum 9 6

Glebionis coronaria 2

Helianthus annuus 10 6

Hieracium 10

umbellatum 10

Hypochaeris radicata 29 17

Jacobaea 2

maritima 1

Leontodon 11

saxatilis 3

Leucanthemum 3 2

Liatris 15 16

Scorzoneroides

autumnalis 39 27

Senecio 10

inaequidens 15

Solidago 2 2

Tagetes 1

Tanacetum 51 51

vulgare 45

Tripleurospermum maritimum 1

Balsaminaceae Impatiens glandulifera 1 1 2

Betulaceae Alnus 4

Carpinus betulus 1

Bignoniaceae Catalpa 2

ovata 1

Borago 1

officinalis 2 2

Echium plantagineum 1

Symphytum officinale 1
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Family Genus Species ITS1 ITS2 trnL-P6

Brassicaceae 4

Brassica rapa 1

Raphanus sativus 8 7

Campanulaceae Campanula 5 14

rotundifolia 7

Lobelia 1

Jasione montana 1

Convolvulaceae 9

Calystegia sepium 2 6

Crassulaceae 6

Sempervivum 1 1

Ericaceae Calluna vulgaris 64 50 50

Erica tetralix 26 13 10

Fabaceae Hedysarum 1

Lathyrus pratensis 1 1 7

Lotus 53

corniculatus 12 45

pedunculatus 55 51

Ononis spinosa 1 2 5

Robinia pseudoacacia 2

Trifolium 18 6 23

arvense 9 1

pratense 1

repens 6 4

Vicia 4

Fagaceae 1

Fagus 1 2

Hydrangeaceae Hydrangea 15 20

paniculata 7

quercifolia 2

Philadelphus 2

Hydrophyllaceae Phacelia tanacetifolia 11 6 34

Hypericaceae Hypericum 18 8 17

Lamiaceae Clinopodium 2

Galeopsis 4

Lycopus 1

europaeus 1

Mentha 6 7 7

Physostegia 1

Lythraceae Lythrum salicaria 60 66 64

Malvaceae 37

Alcea 8

rosea 14

Malva 3

Malva moschata 3

Tilia 1

Oleaceae Ligustrum 9 27

ovalifolium 8

Onagraceae Chamaenerion angustifolium 2 2

Oenothera 10 10

Oenothera biennis 9

Orobanchaceae Melampyrum pratense 1

Odontites 3

vulgaris 3 2

Papaveraceae Papaver rhoeas 1

Plantaginaceae Digitalis purpurea 1 1

Linaria 4

vulgaris 2 9

Plantago lanceolata 3

Plumbaginaceae Limonium 9
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Appendix 5

Family Genus Species ITS1 ITS2 trnL-P6

Plumbaginaceae Limonium vulgare 2 3

Polygonaceae Fallopia 2

Polygonum aviculare 1 1

Rumex 4

Ranunculaceae Aconitum 1

Anemone 2

hupehensis 3 3

Clematis 1

Ranunculus 3

flammula 2 2

Rosaceae 22

Potentilla anserina 4 4 9

Prunus 1 4

Rosa 8 14

Rubus 8 3

Spiraea 1 2 11

Salicaceae 5

Sapindaceae Acer 1

Scrophulariaceae Buddleja 20

officinalis 1

davidii 13

Solanaceae 6

Solanum dulcamara 10 17

Pinaceae Pinus 25

Taxa are not listed in a hierarchical manner (e.g., Lotus and Lotus pedunculatus counts originate from different ASVs). 
Each count represents a taxonomic identification in one bumblebee specimen of 2019. Identifications shown here were 
made before any read abundance cutoffs were applied to the data.

Figure A1. Venn diagram of 2019 marker comparison on genus level. Please note that the large proportion of ITS1+ITS2 
(only) detections are due to a lack of resolution in the trnL-P6 marker (compare: Appendix 4). The number in brackets 
denote the number of plant taxa presence detections (specimen).
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Supplementary material 1

Optimizations

Authors: Andreas Kolter
Data type: workflow
Explanation note: Lab protocol (incl PCR) optimizations.
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.7.86883.suppl1

Supplementary material 2

DNA extraction protocol

Authors: Andreas Kolter
Data type: protocol
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.7.86883.suppl2

Supplementary material 3

trnL-P6 protocol - primer sequences

Authors: Andreas Kolter
Data type: PCR protocol & primer
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.7.86883.suppl3

http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.7.86883.suppl1
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.7.86883.suppl2
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.7.86883.suppl3
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Supplementary material 4

Reference database protocol

Authors: Andreas Kolter
Data type: workflow
Explanation note: Reference database filtering steps.
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.7.86883.suppl4

Supplementary material 5

Sequence processing workflow

Authors: Andreas Kolter
Data type: workflow
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.7.86883.suppl5

Supplementary material 6

R pipeline and reference database

Authors: Andreas Kolter
Data type: R script, fasta file
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.7.86883.suppl6

http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.7.86883.suppl4
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.7.86883.suppl5
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.7.86883.suppl6
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Supplementary material 7

Raw ASV data

Authors: Andreas Kolter
Data type: ASV table
Explanation note: ASV table and sample number list, bumblebee voucher information.
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/mbmg.7.86883.suppl7

http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.7.86883.suppl7
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