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Abstract: In this article, two data-driven modeling ap-
proaches are investigated, which allow an explicit mod-
eling of uncertainty. For this purpose, parametric Takagi-
Sugeno multi-models with bounded-error parameter esti-
mation and nonparametric Gaussian process regression
are applied and compared. These models can for instance
be used for robust model-based control design. As an ap-
plication, the prediction of residual stresses during hard
turning depending on the machining parameters and the
initial hardness is considered.

Keywords: Uncertainty, Takagi Sugeno model, Gaussian
process regression, hard turning.

Zusammenfassung: In diesem Artikel werden zwei da-
tengetriebene Modellierungsansätze für den Einsatz bei
zerspanenden Prozessen untersucht, die eine explizite
Modellierung der Unsicherheit erlauben. Dazu werden
ein parametrisches Takagi-Sugeno-Multi-Modell mit einer
Bounded-Error Parameterschätzung und eine nichtpara-
metrische Gaussprozessregression eingesetzt und vergli-
chen. Diese Modelle können beispielsweise für den robus-
ten Vorsteuerungs- und Regelungsentwurf eingesetzt wer-
den. Als Anwendung wird die Prädiktion der Eigenspan-
nungen beim Hartdrehen in Abhängigkeit der Maschinen-
stellgrößen und der initialen Härte betrachtet.
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1 Introduction

Becausemachining affects the surface condition of awork-
piece, it is of great interest to be able to control these pro-
cesses. As a final machining step, hard turning offers the
possibility to directly influence the surface condition and
therefore to replace subsequent finishing steps like grind-
ing. Important surface integrity parameters are the near-
surface residual stresses as they have a major impact on
structural integrity [7]. Measurement of the surface resid-
ual stress condition is usually conducted after manufac-
turing byX-ray diffractometry resulting in a very expensive
and time consuming procedure. The availability of real-
time residual stress predictions would permit to automati-
cally adjust machining parameters during manufacturing
to establish the required component properties in spite of
process disturbances and parameter variation.

Finite element simulations are time consuming and
therefore not suitable for real-time prediction [1]. Analyt-
ical approaches are difficult to establish as specific in-
depth knowledge of thematerial and the process is needed
[21]. Data-driven approaches allow for both high approx-
imation accuracies and real-time capability. However, to
use empirical models effectively, it is important to asses
their trustworthiness. Often little attention is paid to the
quantification of the model uncertainty in empirical mod-
eling for machining processes. Therefore, this paper fo-
cuses on approaches that quantify the uncertainty. The ob-
tained models can e. g. be used for robust model-based
control of the final residual stress state in hard turning
processes. The approaches can also easily be extended to
other machining processes and materials.

The rest of the paper is organized as follows: In sec-
tion 2 the problem of modeling with uncertainty quantifi-
cation is presented and relatedwork is reviewed. Section 3
and 4 introduce the consideredmodeling approaches. Sec-
tion 5 presents the case study and in Section 6 a conclusion
and an outlook is given.

https://doi.org/10.1515/teme-2020-0057
mailto:felix.wittich@mrt.uni-kassel.de


F. Wittich et al., Data-driven uncertainty modeling of nonlinear cause-effect models | 733

2 Problem statement and related
work

In general, the consideredproblem is finding theunknown
nonlinear functional relationship f : ℝn → ℝ between n
input variables x ∈ ℝn and the output variable y ∈ ℝ

y(k) = f (x(k)) + e(k), k = 1, . . . ,N (1)

with the error term e(k) and based on a data set ZN =
{x(k), y(k)}Nk=1 with N elements, containing measurements
of the inputs and the output of the process under consid-
eration. In the probabilistic setting the error is described
by a probability distribution. Any arbitrary probability dis-
tribution can be assumed but the most common assump-
tion is a normally distributed error. In general, the error
e = [e(1) . . . e(N)]T is multivariate normally distributed:

e ∼ N (μe,Σe). (2)

with the vector of means μe = [μe,1 . . . μe,N ]
T ∈ ℝN and

the covariance matrix Σe ∈ ℝN×N , Σe,i,j = cov(e(i), e(j)),
where cov(x, y) gives the covariance between the two in-
puts e(i) and e(j). An alternative error description,which is
independent of probabilistic assumptions, is thebounded-
error (BE) approach.Here, the assumption ismade that the
prediction error e(k) lies in an intervalwith definedbound-
aries:

e(k)min ≤ e(k) ≤ e(k)max, k = 1, . . . ,N . (3)

In this paper BE methods are used for parameter es-
timation of non-linear Takagi-Sugeno (TS) models. Para-
metric TS models are well suited to model nonlinear de-
pendencies with a compact model description that can be
used for model-based control design. In a previous work
[23], TSmodelswith least squares basedparameter estima-
tion outperformed a multiple linear regression approach
in predicting residual stresses in hard turning. Only few
publications report on TS models with BE parameter esti-
mation. In [11], TS models with BE parameter estimation
were used for fault detection for a valve in a sugar pro-
duction process. In [15], the BE approach was used with
TS models for state estimation in context of actuator fault
detection.

Nonparametric Gaussian process regression (GPR)
models were established in [17] in amachine learning con-
text and are especially suitable for small data sets. They
allowmodeling of uncertainty and are considered as an al-
ternative to the set-based TS modeling in this paper. How-
ever, as anonparametric approach they arenot suitable for

model-based control schemes. Only few publications ex-
ist where GPR is used for empirical modeling of machin-
ing processes. In [10], tool wear in a dry turning process
is predicted from cutting force measurements. In [24] GPR
was used for modeling the surface roughness in end face
milling.

Several publications with different empirical model-
ing approaches for prediction of the surface integrity in
hard turning have been published so far. In [4] polyno-
mial regression combined with the response surface de-
signmethodology is proposed tomodel residual stress pro-
files for different materials in turning operations. Artificial
neural networks (ANN)were used in [25] to predict the lon-
gitudinal and circumferential residual stresses at five dif-
ferent depths.

To further explore this topic, in the present paper the
influences of different initial hardness values in combina-
tion with selected feed rates and cutting speeds on the
residual stress profiles are modeled. The reviewed pub-
lications do not explicitly consider uncertainty. The pro-
posed approaches in the present work allow quantifying
the reliability of themodel. Therefore, they are the founda-
tion for a robust model-based control scheme of the rele-
vant surface condition in hard turning. Furthermore, both
approaches are in particular suitable for modeling with
sparse data sets. Other approaches such as ANNs require
larger data sets for training. Usually, BE estimation is used
for small modeling problems as it is computationally ex-
pensive. In this contribution it will be applied for TS mod-
els with a significant number of parameters.

3 Parametric bounded-error
identification of Takagi-Sugeno
models

The first considered approach for the identification of pre-
diction models is to use BE parameter estimation for para-
metric Takagi-Sugeno models such that the uncertainty is
described by guaranteed error bounds. This leads to a set
of feasible parameters for the model resulting from the er-
ror bounds.

3.1 Takagi-Sugeno models

TS fuzzy models [20] consist of c ∈ ℕ+ superposed local
models ŷj = f (θj,LM, φ̃) : ℝnp → ℝ, weighted by their corre-
sponding fuzzy basis function ϕj(z) : ℝnz → [0, 1], which
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depends on the scheduling variable z = [z1 . . . znz ]
⊤ ∈ ℝnz :

ŷ(z, θj,LM, φ̃) =
c
∑
j=1

ϕj(z) ⋅ ŷj(θj,LM, φ̃). (4)

Locally affine models are used:

ŷj(θj,LM, φ̃) =
n
∑
r=0

θj,r,LM ⋅ φ̃r = θj,LM ⋅ φ̃, (5)

with φ̃r being the r-th element of the vector

φ̃ = [1 x1 . . . xnp ]
⊤ (6)

and θj,r,LM being the r-th element of the corresponding lo-
cal parameter vector θj,LM ∈ ℝn. The TS model (4) can be
rewritten as:

ŷ = φ̄TθLM (7)

with the extended regression vector

φ̄ = [ϕ1 ϕ1x1 . . . ϕ1xnp | . . . |ϕc ϕcx1 . . . ϕcxnp]
T

(8)

and the vector of local model parameters

θLM = [a0,1 a1,1 . . . anp ,1| . . . |a0,c a1,c . . . anp ,c]
T
. (9)

The fuzzy basis function ϕj(z) defines the validity re-
gion for the corresponding j-th local model. It is given by

ϕj(z) =
μj(z)
∑cm=1 μm(z)

, (10)

with the membership function μj(z). In this contribution,
multivariate membership functions obtained from fuzzy-
c-means (FCM) clustering are used. FCM clustering con-
verges fast and themembership functions require only few
parameters while good modeling results are achieved, see
e. g. [12]. The μj(z) are given by

μj(z) =
[[

[

c
∑
i=1
(
‖z − vj‖2Aj

‖z − vi‖2Ai

)

1
ν−1
]]

]

−1

(11)

with the norm inducing matrix Aj defining individual dis-
tance norms

‖z − vj‖
2
Aj
= (z − vj)

⊤Aj(z − vj), (12)

the fuzziness parameter ν ∈ ℝ>1, and the partition’s proto-
types vj, vi ∈ ℝnz aggregated in the parameter vector θMF,

such thatμj(z) = μj(θMF, z). For simplicity, in this contribu-
tion, Aj = I ∀j with the identity matrix I is chosen, induc-
ing the Euclidean norm. The membership functions (11)
fulfill the orthogonality condition

c
∑
j=1

μj(z) = 1 ∀ z â⇒ ϕj(z) ≡ μj(z). (13)

The usual optimization problem resulting from the task of
point estimation and a least squares type cost function is

argmin
θLM ,θMF

N
∑
k=1
(y(k) −

c
∑
j=1

μj(z(k), θMF) ⋅ ŷj(k, θj,LM))
2

(14)

with θLM = [θ
T
1,LM . . . θ

T
c,LM]

T
∈ ℝ(n+1)⋅c.

A two-step procedure for data-driven identification
can be described as follows: i) the identification of the
parameters of the membership functions θMF and ii) the
identification of the local model parameters θLM. In this
contribution, i) is first solved using the FCM algorithm re-
ducing ii) to a simple linear least-squares estimation. The
obtained estimates are used to initialize a nonlinear opti-
mization of (14) where the prototypes and local model pa-
rameters are optimized simultaneously with respect to the
sum of squared prediction errors of the model. For the re-
mainder of this paper, z = x is chosen for simplicity.

3.2 Bounded-error parameter estimation

A set-based alternative to the aforementioned least
squares based parameter estimation is BE parameter esti-
mation. It assumes that the prediction error is bounded
by an interval e(k) ∈ [e(k)min, e(k)max]. The result of
the parameter estimation is not a single parameter vec-
tor but a feasible parameter set (FPS). For models that
are nonlinear in the parameters (non-LiP) the FPS can
be complex and non-connected. Methods like SIVIA
[9] to approximate the non-LiP FPS are computation-
ally expensive. For linear in the parameters (LiP) mod-
els, SFPS is a polytope, i. e. a bounded polyhedron, if
N ≥ dind > nθ holds, with dind the number of linearly
independent inequalities and nθ the number of parame-
ters. The output error e(k) can be chosen individually for
each k ∈ {1, . . . ,N}. In the following, the same symmetric
error bound δ = (e(k)min − e(k)max)/2, δ ∈ ℝ+ for each k
will be assumed. So for a LiPmodel ŷ = φTθ, θ ∈ ℝnθ such
as (7) and N observations, each of the inequalities

y(k) − δ ≤ φT (k)θ ≤ y(k) + δ, k = 1, . . . ,N (15)

restricts the FPS to two half-spaces in ℝnθ . In conse-
quence, 2N bounds result.
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Polytopes canbe representedby theH-representation,
i. e. through the half-spaces bounding the polytope P:

P = {θ ∈ ℝnθ |Φθ ≤ Y} (16)

with

Y =

[[[[[[[[[[[[

[

−y(1) + δ
y(1) + δ
−y(2) + δ
y(2) + δ

...
−y(N) + δ
y(N) + δ

]]]]]]]]]]]]

]

, Φ =

[[[[[[[[[[[[

[

φ(1)T

φ(1)T

φ(2)T

φ(2)T
...

φ(N)T

φ(N)T

]]]]]]]]]]]]

]

, θ =
[[[[[

[

θ1
θ2
...

θnθ

]]]]]

]

,

(17)
Φ ∈ ℝ2N×nθ , θ ∈ ℝnθ , and Y ∈ ℝ2N .

The representation of a polytope as a set of vertices is
also known as V-representation. The conversion from H-
to V-representation is a well-known problem in the field
of computational geometry. Various algorithms have been
developed to solve this problems. The methods can be di-
vided into two categories: pivoting and incremental algo-
rithms. Well established methods are the double descrip-
tion (DD) [5] and the reverse search method [2]. A detailed
overview of Vertex-Enumeration procedures can be found
in [6]. In this article the DD method was chosen being an
established procedure, which is also capable of handling
degenerate polytopes. The implementation from theMulti-
Parametric Toolbox 3.0 (MPT3) [8] is used, which is an im-
proved version of the original method [14].

4 Nonparametric probabilistic
identification of Gaussian
process regression models

An alternative approach to describe the functional rela-
tionship is to use Gaussian processes (GP). Contrary to the
parametric approach in Section 3,where the goal is to infer
the set of feasible parameters for the function f given the
data ZN , the distribution p(f |ZN ) is now inferred directly.

A detailed explanation and derivation of GPR can
be found in [18]. The idea behind a GP is to define a
probability distribution over functions. In order to de-
fine a distribution over functions it is sufficient to define
a distribution over the function’s value at a finite set of
points x(1), . . . , x(N). The GP assumes that the distribu-
tion p(f (x(1)), . . . , f (x(N))), x ∈ ℝn is jointly Gaussian. For
regression, the prior of the function to be learnt is defined

as:

f (x) = GP(m(x), κ(x, x�)) (18)

wherem(x) is the mean function and κ(x, x�) is the covari-
ance function for two points x and x� from the input space:

m(x) = E[f (x)] (19)
κ(x, x�) = E[(f (x) −m(x))(f (x�) −m(x�))⊤] (20)

with a positive definite kernel κ(x, x�). The kernel plays a
key role in GPs as it describes the dependencies between
the data points. The basic idea behind all kernel functions
for the covariance functions is that if two points x and
x� are similar, the outputs are also similar. The choice of
the kernel strongly influences the model’s behavior. The
GP defines a joint Gaussian distribution for a finite set of
points:

p(y|X) = N (y|m,K) (21)

with the designmatrixX ∈ ℝN×n describing the input data,
the covariancematrixK ∈ ℝN×N ,Ki,j = κ(x(i), x(j)), and the
vector of meansm = [m(x(1)) . . .m(x(N))]T ∈ ℝN .

In this paper, common choices for the kernel function
are considered. Firstly, the squared exponential (SE) ker-
nel

κSE(x, x
�) = θ2f,SE exp (−

1
2
dSE) (22)

with

dSE =
∑ni=1(xi − x

�
i )
2

θ2l,SE
(23)

and the scalingparameters θf,SE and θl,SE is used. Secondly,
the Matern 3\2 (M3\2) kernel

κM32(x, x
�) = θf,M32 (1 +√3dM32) exp (−√3dM32) (24)

with

dM32 =
√∑ni=1(xi − x�i )

2

θl,M32
(25)

and the scaling parameters θf,M32 and θl,M32 is used.
In themultivariate case, abovementionedkernel func-

tions have the same length scale for each variable. An au-
tomatic relevance determination (ARD) kernel modifica-
tion is used to assign individual parameters for the length
scale to each variable. TheARDmodification κSE+ARD(x, x�)
of (22) with

d̃SE =
n
∑
i=1

(xi − x�i )
2

θ2l,SE+ARD,i
(26)
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Figure 1:Matrix plot of hard turning input data with frequency distribution on the main diagonal.

and the individual length scales θ2l,SE+ARD,i is considered
here.Also theARDmodification κM32+ARD(x, x�)of (24)with

d̃M32 = √
n
∑
i=1

(xi − x�i )
2

θ2l,SE+ARD,i
(27)

and the individual length scales θ2l,M32+ARD,i is used.
To predict the output y∗ for a new test input x∗, the

posterior conditional probability is computed by condi-
tioning themultivariate Gaussian (zeromean and no noise
are assumed for simplicity):

p(y∗|x∗,X, y) = N (y∗|m∗, κ∗) (28)

withm∗ = K
T
∗K
−1y, (29)

and κ∗ = K∗∗ − K
T
∗K
−1K∗ (30)

with the new test input x∗ ∈ ℝn, the covariance matri-
ces K = κ(X,X) ∈ ℝN×N , K∗ = κ(X,X∗) ∈ ℝN , K∗∗ =
κ(X∗,X∗) ∈ ℝ and the vector of outputs y ∈ ℝN . Predic-
tions for the output can then be computed from the pos-
terior mean function (29) and predictions for uncertainty
from the posterior variance function (30).

Usually, it is assumed that the observed output is af-
fected by independent, normally distributed noise y =
f (x) + e, e ∼ N (0, σ2y). The noise component is then added
to the covariancematricesKy = K+σ2yIN . TheGPRmodel is
trained on the data set by optimization of its hyperparame-
ters, i. e. the kernel functionparameters and thenoise vari-
ance. The log marginal likelihood

logp(y|X) = − 1
2
yK−1y y − 1

2
log|Ky| −

N
2
log(2π) (31)

is maximized using a gradient-based optimizer. A detailed
derivation of the marginal likelihood function

p(y|X) = ∫ p(y|f ,X)p(f |X)df (32)

with f = [f (x(1)), . . . , f (x(N))]⊤ can be found in [18]. The
log marginal likelihood’s first term accounts for the data
fit and the second term for model complexity. In conse-
quence, a bias-variance trade-off is performed avoiding
overfitting.

5 Case study
Hard turning is a machining process for hardened work-
pieces with a geometrically defined cutting edge. Hard
turning not only determines the final geometry of the com-
ponent but also its surface layer properties, which in turn
have an effect on the components properties such as fa-
tigue [19]. Important surface layer properties are surface
residual stresses, which can be influenced by manipulat-
ing the machining parameters. Therefore, in this section
the methods from section 3 and 4 will be used to derive
models that predict tangential residual stress profiles σt
from machining parameters. Furthermore, the axial resid-
ual stress σa and the integral widths IWt and IWa were de-
termined and modeled. For the sake of brevity, only mod-
eling of σt as an important indicator for surface integrity is
presented. Data fromhard turning experiments and subse-
quent X-ray diffractionmeasurements are used. As inputs,
the feed rate f , the cutting speed vc as well as the initial
hardness of the workpiece HV0 are considered. To further
obtain the depth distribution of the residual stresses, the
distance from the workpiece’s surface ds was included as
explanatory variable.

5.1 Data base
The data shown in Fig. 1 stem from an experimental test
campaign [13]. The cyclindrical specimens made of AISI
6150 had six different initial hardness levels HV0 ∈ {322,
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425, 500, 564, 656, 680} HV10 (HV10 Vickers hardness). Af-
ter heat treatment and prior to turning, all specimenswere
machined to a diameter of d = 34mm and a length of
l = 200mm. The turning operations were conducted at the
Institute of Machining Technology (TU Dortmund) using
a NC-controlled lathe (Monforts RNC602) using polycrys-
talline boron nitride (PCBN) tool inserts with a chamfer-
width of bγ = 0.15mm and an angle of γf = 25°. The
feed rate and cutting speed were varied in the intervals
f ∈ [0.05,0.3]mm and vc ∈ [100, 250]m/min. The resid-
ual stresses were measured using a Ψ-diffractometer us-
ing CrKα radiation. The measurements were taken for 10
different distances from the specimens’ surface in the in-
terval ds ∈ [0, 150]µm by electrolytically removing mate-
rial. A total of N = 324 data points were generated. This
results in a multi-input-single-output regression problem
with a four dimensional input variable space consisting of
ds, f , vc andHV0 used to predict the residual stress σt. The
data were standardized to have zero mean and unit stan-
dard deviation. However, for ease of interpretation all fig-
ures and tables refer to non-standardized data.

5.2 Model validation

To evaluate and compare the predictive performance of
the trainedmodels, quantitative accuracymetrics are con-
sidered. Two metrics commonly used for regression prob-
lems, the root mean squared error (RMSE)

RMSE = √ 1
N
∑

N
k=1(y(k) − ŷ(k))

2 (33)

and the coefficient of determination R2

R2 = 1 −
∑Nk=1(y(k) − ŷ(k))

2

∑Nk=1(y(k) − ȳ)2
(34)

with the samplemean ȳ, are employed. To asses the gener-
alization capabilities of the models l-fold cross validation
(CV) is used with l = 10. In l-fold cross validation the data
set is split into l subsets {T1, . . . ,Tl} of equal size. In each
iteration i ∈ 1, . . . , l the model is trained with l − 1 subsets
{T1, . . . ,Tl}\{Ti} and validated on the remaining subset {Ti}.
The l results are averaged afterwards. The 10-fold cross val-
idated variants of the metrics (33) and (34) are denoted as
RMSECV and R2CV, respectively.

5.3 Results of TS-BE modeling

In Table 1 themodel accuracies for the residual stressσt are
summarized. The identificationwas conductedwith the TS

Table 1: Performance of TS models with BE parameter estimation
for σt (point predictions with local model parameters θLM = θcc).

RMSE RMSECV R2 R2CV
62.097 97.260 0.9292 0.8623

models detailed in section 3.1. The number of submodels
c = 3, the fuzziness parameter ν = 1.3, and the partition
centers θMF:

v1 = [0.586,0.787,−0.456,−0.107]
T

v2 = [0.312, 1.123,−0.576,−0.134]
T

v3 = [−2.662,0.644,0.035,−0.066]
T

were adopted from [23]. The local model parameters θLM
were estimated with the methods from section 3.2.

In practice, the size of the resulting feasible parameter
set is often determined by few data points, where the ac-
tual error is larger than the assumed error bound. Thismay
result, for example, from sensor faults, overoptimistic er-
ror bounds or the incapability of the model to explain the
systembehavior. For the considereduniformerror bounds,
this can even result in an empty FPS (SFPS = 0). As sug-
gested in [22], such critical data points were identified and
discarded in a pre-processing step.

For the case study, a simple procedure to discard these
data points was applied. The model parameters were esti-
matedbasedon thepoint estimationprocedure introduced
in 3.1. Then 5% of the training data with the largest resid-
uals were removed. More sophisticated methods for treat-
ing points that violate the error bound are possible but are
not discussed here for the sake of brevity, see e. g. [16]. The
choice of the error bound δ is important as an overopti-
mistic choicewould lead to an emptyparameter setwhile a
pessimistic choicewould promote a large parameter set. In
order to determine an appropriate error bound, δ was iter-
atively increased within a line-search starting from δ = 0.1
with an increment of 0.01 until SFPS was no longer empty
at a value of δ = 0.48.

The result of the BE parameter estimation is the
15-dimensional set of feasible parameters in the represen-
tation of its convex hull. To derive a (point-type) parame-
ter vector from SFPS the Chebyshev center θcc, i. e. the cen-
ter of the maximum volume of the nθ-dimensional sphere
inside the polytope SFPS, is used. The Chebyshev center
can be computed by solving a linear programming prob-
lem [3]. Computation time using TS models implemented
in MATLAB and the DDmethod fromMTP3 for vertex enu-
meration of the full 15-dimensional parameter space was
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Figure 2: Projections of SFPS for the first local model with point esti-
mations (×) using the Chebyshev center.

Figure 3: Response surface for σt with TS multi-model and BE pa-
rameter estimation with measured residual stresses (×) and non-
standardized error bounds δ = 119MPa as blue bars dependent
on initial hardnesses HV0 and distance from surface ds for constant
cutting parameters f = 0.125mm and vc = 175m/min.

26 s on a workstation with an Intel i5-6500 3.2 GHz and
16GB RAM.

Figure 2 shows the projections of SFPS together with
the Chebychev center θcc for one local model as example.
Fig. 3 shows the resulting response surface with the error
bars for the TS model using the Chebyshev center of SFPS
as local model parameters θLM = θcc, showing a good fit
to the measured data.

5.4 Results of GPR modeling

For the GPR modeling, the performance of four different
kernel functions were evaluated (SE, M3\2, SE with ARD,
M3\2 with ARD) using the MATLAB GPR toolbox. For the
quasi Newton optimization algorithm, automatic initial
parameter and step size determination was used in MAT-
LAB. The parameter estimation took 29 s using the same

Table 2: Performance of GPR models for σt with different kernel
functions.

Kernel RMSE R2 RMSECV R2CV
SE 49.403 0.9612 85.3642 0.8872
SE + ARD 39.3029 0.9754 73.8676 0.9120
M3\2 31.0733 0.9848 75.2392 0.9091
M3\2 + ARD 24.5145 0.9905 66.3113 0.9292

Table 3: Estimated noise standard deviations σy and values for
1.96 × σy corresponding to the 95% confidence interval for different
kernel functions for standardized data.

Quantil SE SE + ARD M3\2 M3\2 + ARD

σy 0.2530 0.1919 0.2070 0.1823
1.96 × σy 0.4959 0.3761 0.4057 0.3573

hardware as in Section 5.3. In Fig. 4 the response surface
with the 95% confidence interval for the SE and M3\2 ker-
nel are depicted. Table 2 shows that the M3\2 kernel func-
tion achieves the best performance on test and training
data. It is evident that the ARD improves the results sig-
nificantly as it eliminates the problem of scale invariance
in multivariate GPR.

5.5 Discussion

The results indicate that TS models with BE and GPR both
well predict the residual stresses. Best results with GPR
were achieved with the M3\2 + ARD kernel function. Con-
ducting the Shapiro-Wilk test on the residuals for the GPR
models reveals that the normality assumption cannot be
accepted at 5% significance level for all kernel functions.
Therefore, the GPR’s assumption of normally distributed
noise is violated, a problem that often arises in data-driven
modeling of real-world processes. The BE approachmakes
no statistical error assumption, and only requires the er-
ror to be bounded. However, single critical data points can
cause an empty parameter set as the probability for values
outside the interval is zero. In Table 3 the estimated noise
standard deviations are given together with the 1.96 × σy
values that correspond to the 95% confidence interval.
The error bound of δ = 0.48,where 5%of the datawith the
largest residuals were removed (i. e. 95% remained in the
data set), is similar to the estimated 95% confidence inter-
val of the GPR. For the case study, the computation time
for training is similar for both models: 26 s for the BE pa-
rameter estimation for TS and 29 s for the kernel parame-
ter and noise standard deviation estimation for GPR. How-
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Figure 4: Response surfaces (filled mesh) for σt with 95%-confidence envelopes (transparent meshes) of GPR models and measured residual
stresses (×) dependent on initial hardnesses HV0 and distance from surface ds for constant cutting parameters f = 0.125mm and vc =
175m/min.

ever, memory requirements are much larger for the GPR
model as all N data points have to be stored whereas the
TS model only requires the (n + 2) ⋅ c parameters. Mak-
ing predictions with the GPR model is computationally
more complex, which can be critical in a real time appli-
cation.

6 Conclusion

Approaches for the prediction of difficult to measure sur-
face properties in machining were introduced. Methods
to quantify the data-driven models uncertainty were pre-
sented. A nonparametric and a parametric approach both
achieved good results. With GPR very good predictive per-
formance on test and training data could be achieved.
With the proposed TS model the results were almost as
good but had a much more compact and parametric pro-
cess description. The choice of the appropriate modeling
approach is determined by the requirements of the user.
The BE approach offers guaranteed error bounds without
statistical assumptions while GPR is based on a Gaussian
noise assumption and provides a probability distribution.
The Gaussian noise assumption is often not met in prac-
tical applications. The BE error assumption is much less
stringent as it only poses a lower and upper bound. This
is the first contribution considering data-driven model-
ing that quantifies uncertainty for hard turning. The local
model approach offers a possibility for using LiP BE pa-
rameter estimation for nonlinear regression modeling.

In future work the set-based TS approach will be pur-
sued because of its better suitability for model-based con-
trol design compared to GPR models. Advanced methods
to treat the critical points will be examined and further

work on determining the error bound will be carried out.
Furthermore, the model will be extended by surface in-
tegrity properties like surface roughness and hardness.
Both modeling approaches can easily be transferred to
other machining processes.
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